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ABSTRACT

Given an Artin group AΓ, a common strategy in the study of AΓ is the

reduction to parabolic subgroups whose defining graphs have small di-

ameter, i.e., showing that AΓ has a specific property if and only if all

“small” parabolic subgroups of AΓ have this property. Since “small” par-

abolic subgroups are the building blocks of AΓ one needs to study their

behavior, in particular their intersections. The conjecture we address here

says that the class of parabolic subgroups of AΓ is closed under inter-

section. Under the assumption that intersections of parabolic subgroups

in complete Artin groups are parabolic, we show that the intersection

of a complete parabolic subgroup with an arbitrary parabolic subgroup

is parabolic. Further, we connect the intersection behavior of complete

parabolic subgroups of AΓ to fixed point properties and to automatic con-

tinuity of AΓ using Bass–Serre theory and a generalization of the Deligne

complex.

1. Introduction

Artin groups, also known as Artin–Tits groups, are a generalization of free

groups, free abelian groups and braid groups. Given a finite simplicial graph Γ

with the vertex set V (Γ), the edge set E(Γ) and with an edge-labeling

m : E(Γ) → {2, 3, 4, . . .}, the associated Artin group AΓ is defined as

AΓ := 〈V (Γ) | vwv · · ·
︸ ︷︷ ︸

m({v,w})-letters

= wvw · · ·
︸ ︷︷ ︸

m({v,w})-letters

whenever {v, w} ∈ E(Γ)〉.

The most common examples of Artin groups are braid groups and Artin

groups AΓ where E(Γ) = ∅ or m(E(Γ)) = {2}; those are called right-angled

Artin groups.

1.1. Intersections of parabolic subgroups. Given a subset X ⊂ V (Γ)

of the vertex set, we write AX for the subgroup generated by X . It was

proven by van der Lek in [Vdl83] that AX is canonically isomorphic to the

Artin group A〈X〉 where we denote by 〈X〉 the induced subgraph of X in Γ.

A group of the form AX is called a standard parabolic subgroup of AΓ,

and a subgroup conjugate to a standard parabolic subgroup is simply called a

parabolic subgroup. We see the parabolic subgroups of an Artin group as

building blocks of the whole group and we are in particular interested in their

intersection behavior. It was proven by van der Lek in [Vdl83] that the class of

standard parabolic subgroups is closed under intersection and it is conjectured
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that the same result holds for the class consisting of all parabolic subgroups.

Here our focus is mainly on parabolic subgroups where the diameter of the defin-

ing graph is small. We say that X ⊂ V (Γ) is free of infinity if {v, w} ∈ E(Γ)

for all v, w ∈ X, v 6= w. In this case the subgroup AX is called a complete

standard parabolic subgroup. A subgroup conjugate to a complete standard

parabolic subgroup is called a complete parabolic subgroup.

Usually, it is quite hard to prove that an Artin group AΓ has a specific prop-

erty, but it is sometimes possible to reduce a conjecture about AΓ to complete

standard parabolic subgroups of AΓ. The following reduction principle was

formulated by Godelle and the second author in [GP12a].

Reduction principle (RP): Let P be a property of a group and let AΓ be

an Artin group. If all complete parabolic subgroups of AΓ have property P ,

then all parabolic subgroups of AΓ have property P .

An example of a property satisfying (RP) is torsionfreeness. Here we are

interested in intersections of parabolic subgroups of AΓ and our aim is to re-

duce the intersection conjecture of parabolic subgroups to complete standard

parabolic subgroups of AΓ. Hence we are interested in the following properties

of AΓ:

• Property (Int): For each free of infinity subset Y ⊂ V (Γ) and for all

parabolic subgroups P1, P2 of AY , the intersection P1∩P2 is a parabolic

subgroup.

• Property (Int+): For all complete parabolic subgroups P1, P2 of AΓ,

the intersection P1 ∩ P2 is a parabolic subgroup.

• Property (Int++): For all parabolic subgroups P1, P2 of AΓ, the

intersection P1 ∩ P2 is a parabolic subgroup.

Unfortunately, we cannot prove that property (Int) implies property (Int++).

However, we can prove that property (Int) implies property (Int+–), which is

a property between properties (Int+) and (Int++), and which is defined as

follows.

• Property (Int+–): For each complete parabolic subgroup P1 and for

each parabolic subgroup P2 of AΓ, the intersection P1∩P2 is a parabolic

subgroup.
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It is easily checked that property (Int++) implies property (Int+) and that

property (Int+) implies property (Int). We think that all these properties are

actually equivalent and, even more, that they always hold. We show:

Theorem 1.1: Let AΓ be an Artin group. If AΓ has property (Int), then AΓ

has property (Int+–).

The crucial ingredient of the proof of Theorem 1.1 is Bass–Serre theory. If Γ

is not complete, then AΓ is an amalgam of smaller standard parabolic subgroups

and we use the action on the corresponding Bass–Serre tree to show the result

of the theorem.

For each Artin group AΓ there is an associated Coxeter group WΓ. It is

obtained by adding the relations v2 = 1 for all v ∈ V (Γ). Hence, the Coxeter

group WΓ associated to AΓ is given by the following presentation:

WΓ := 〈V (Γ) | v2 = 1, (vw)m({v,w}) = 1 for all v ∈ V (Γ), {v, w} ∈ E(Γ)〉.

An Artin group is of spherical type if the associated Coxeter group is finite

and an Artin group is of FC-type if all complete standard parabolic subgroups

are of spherical type. It was proven by Cumplido et al. in [CGGW19] that

intersections of parabolic subgroups in a finite type Artin group are parabolic,

therefore as an immediate corollary we obtain the following result.

Corollary 1.2: Let AΓ be an Artin group of FC-type and P1, P2 be two

parabolic subgroups. If P1 is complete, then P1 ∩ P2 is parabolic.

This is a generalization of Theorem 3.1 in [Mor21], which states that the

intersection of two complete parabolic subgroups of an Artin group of FC-type

is parabolic.

1.2. Automatic continuity. In a remarkable article [Dud61] Dudley was

interested in the relation between locally compact Hausdorff groups and free

(abelian) groups. Using a special length function on the target groups he showed

that any group homomorphism from a locally compact Hausdorff group into a

free (abelian) group is continuous. Inspired by this result Conner and Corson

defined the notion of lcH-slenderness [CC19]. A discrete group G is called lcH-

slender if any group homomorphism from a locally compact Hausdorff group

into G is continuous. Our focus here is on continuity of group homomorphisms

from locally compact Hausdorff groups into Artin groups. Many types of Artin



Vol. 261, 2024 PARABOLIC SUBGROUPS OF ARTIN GROUPS 813

groups are known to be lcH-slender such as right-angled Artin groups [KV19],

[CK20], [MV22], Artin groups of spherical type [KV19] and more generally Artin

groups of FC-type [KMV22]. We conjecture:

Conjecture: All Artin groups are lcH-slender.

Since automatic continuity of group homomorphisms from locally compact

Hausdorff groups into “geometric” groups and fixed point properties of these

geometric groups are strongly connected, see [MV22], we are interested in fixed

point properties of subgroups of Artin groups, in particular in properties FA′

and FC′.

Recall, a group G is called an FA′-group if any simplicial action of G on a

tree without inversion is locally elliptic, i.e., any element in G acts as an elliptic

isometry, that means every such isometry has a fixed point. Finite groups are

special cases of groups having property FA′ but there are also many examples of

infinite groups having this property, for instance divisible and compact groups

[CM11]. We conjecture:

Conjecture: No Artin group has non-trivial FA′-subgroups.

We define a class A of Artin groups as follows: an Artin group AΓ is contained

in the class A if and only if AΓ has property (Int++). Examples of Artin groups

in the class A are right-angled Artin groups [DKR07], Artin groups of spherical

type [CGGW19], and large-type Artin groups [CMV23]. We reduce the above

conjecture for the class A to complete Artin groups.

Proposition 1.3: Let AΓ be an Artin group in the class A and let H ⊂ AΓ be

a subgroup. If H is an FA′-group, then H is contained in a complete parabolic

subgroup of AΓ.

Since a complete right-angled Artin group is isomorphic to a free abelian

group and free abelian groups do not have non-trivial FA′-subgroups, we obtain:

Corollary 1.4: Right-angled Artin groups do not have non-trivial FA′-sub-

groups.

The proof of Proposition 1.3 is of geometric nature. It is known that if AΓ

is not complete, then AΓ is an amalgam of non-trivial parabolic subgroups

AΓ1 ∗AΓ3
AΓ2 and this group acts on the Bass–Serre tree corresponding to this

splitting. We show that the subgroup H has a global fixed vertex and therefore
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it is contained in a conjugate of one of the factors in the amalgam. We proceed

to decompose the factors in the amalgam until the defining graphs of these

subgroups are complete. The main tool for showing that H has a global fixed

vertex is the following algebraic result concerning parabolic subgroups of Artin

groups. Note that, as in many other cases, the corresponding result for Coxeter

groups is known to be true (see, e.g., [Qi07]).

Proposition 1.5: Let AΓ be an Artin group and gAΩg
−1, hA∆h

−1 be two

parabolic subgroups such that gAΩg
−1 ⊂ hA∆h

−1. Then the cardinalities

of V (Ω) and V (∆) satisfy

|V (Ω)| ≤ |V (∆)|

and, if |V (Ω)| = |V (∆)|, then

gAΩg
−1 = hA∆h

−1.

As an immediate corollary we have:

Corollary 1.6: Let AΓ be an Artin group. If AΓ is in the class A, then

an arbitrary intersection of parabolic subgroups is a parabolic subgroup. In

particular, for a subset B ⊂ AΓ there exists a unique minimal (with respect to

inclusion) parabolic subgroup containing B.

By definition, a locally compact Hausdorff group L is called almost connected

if the quotient L/L◦, where L◦ is the connected component of L, is compact.

Using the fact that any almost connected locally compact Hausdorff group has

property FA′ [Alp82] we show:

Theorem 1.7: Let AΓ be an Artin group in the class A.

(1) Let ψ : L → AΓ be a group homomorphism from a locally compact

Hausdorff group L into AΓ. If L is almost connected, then ψ(L) is

contained in a complete parabolic subgroup of AΓ.

(2) If all complete standard parabolic subgroups of AΓ are lcH-slender,

then AΓ is lcH-slender.

Associated to an Artin group AΓ is a generalization of the Deligne complex,

the so called clique-cube complex CΓ, whose vertices are cosets of complete

standard parabolic subgroups of AΓ. We describe the construction of this cube

complex and some important properties of it in Section 4. The group AΓ acts

on CΓ via left-multiplication and preserves the cubical structure of CΓ. We use
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this action to show under “weaker” assumptions on parabolic subgroups of an

Artin group than on Artin groups in the class A that principle (RP) holds for

the property of being lcH-slender. Since the puzzle pieces of the complex CΓ are

cosets of complete standard parabolic subgroups of AΓ and hence the stabilizers

of these vertices are complete parabolic subgroups, this proof relies heavily on

their “good” behavior.

A generalization of the fixed point property FA′ is the property FC′. A

group G has property FC′ if every cellular action of G on a finite-dimensional

CAT(0) cube complex is locally elliptic. Examples of FC′-groups are finite,

divisible and compact groups, see [CM11]. It is known that torsion free CAT(0)

cubical groups do not have non-trivial FC′-subgroups. Hence, any FC′-subgroup

of a right-angled Artin group is trivial. We conjecture:

Conjecture: No Artin group has non-trivial FC′-subgroups.

We define a class B of Artin groups as follows: AΓ is in the class B if and

only if AΓ has property (Int). We show:

Proposition 1.8: Let AΓ be an Artin group in the class B. Let H ⊂ AΓ be

a subgroup. If H is a FC′-group, then H is contained in a complete parabolic

subgroup of AΓ.

Using the result of the Main Theorem in [MV22] we reduce the assumptions

regarding parabolic subgroups in Theorem 1.7 to complete parabolic subgroups.

Theorem 1.9: Let AΓ be an Artin group in the class B.

(1) Let ψ : L → AΓ be a group homomorphism from a locally compact

Hausdorff group L into AΓ. If L is almost connected, then ψ(L) is

contained in a parabolic complete subgroup of AΓ.

(2) If all complete standard parabolic subgroups of AΓ are lcH-slender,

then AΓ is lcH-slender.

In particular, (RP) holds for Artin groups in the class B for the property of

being lcH-slender.

Acknowledgment. We would like to thank the referee for many helpful com-

ments and remarks.
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2. Groups associated to edge-labeled graphs

In this section we review the basics of simplicial graphs, Coxeter groups and

Artin groups, which are relevant for our applications.

2.1. Graphs. We will be working with simplicial graphs. The basic, standard

definitions can be found in [Die17].

Recall, if X ⊆ V is a subset of the vertex set, then the subgraph generated

or induced by X , denoted by 〈X〉, is defined as the graph (X,F ), where

{v, w} ∈ F if and only if {v, w} ∈ E. Since the definition of the star and the link

of a vertex sometimes vary we recall their definitions. Given a graph Γ = (V,E)

and a vertex v ∈ V we define two subgraphs of Γ, the star of v, denoted

by st(v), and the link of v, denoted by lk(v), in the following way: The star

of v is the subgraph generated by all vertices connected to v and v, i.e., the

subgraph induced by

{w ∈ V |w = v or {v, w} ∈ E}.

We obtain the link of v from the star of v by removing the vertex v and all

edges that have v as an element; see Figure 1 for a concrete example of the link

and the star of a vertex. We say a graph Γ = (V,E) is complete if every pair

of vertices v, w ∈ V , v 6= w is connected by an edge, that is {v, w} ∈ E. We

often denote the vertex set of Γ by V (Γ) and the edge set by E(Γ).

w
v

st(v) lk(w)

Figure 1. Example of st(v) and lk(w).
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2.2. Coxeter and Artin groups. Let Γ be a finite simplicial graph with an

edge-labeling m : E(Γ) → N≥2.

(1) The Coxeter group WΓ is defined as

WΓ := 〈V (Γ) | v2, (vw)m({v,w}) for all v ∈ V (Γ) and whenever{v, w} ∈ E(Γ)〉.

(2) The Artin group AΓ is defined as

AΓ := 〈V (Γ) | vwv · · ·
︸ ︷︷ ︸

m({v,w})-letters

= wvw · · ·
︸ ︷︷ ︸

m({v,w})-letters

whenever {v, w} ∈ E(Γ)〉.

In particular, WΓ is the quotient of AΓ by the subgroup normally generated by

the set {v2 | v ∈ V (Γ)}. The epimorphism θ : AΓ → WΓ induced by v 7→ v is

called a natural projection and the kernel of θ, denoted by CAΓ, is called a

colored Artin group.

Given a subset X ⊂ V (Γ) of the vertex set, we write AX resp. WX for the

subgroup generated by X , and we set CAX = CAΓ ∩ AX . The group AX is

called a standard parabolic subgroup of AΓ resp. WX is called a standard

parabolic subgroup of WΓ.

Proposition 2.1: Let Γ be a finite simplicial graph with edge-labeling

m : E(Γ) → {2, 3, . . .} and AΓ resp. WΓ be the associated Artin resp. Coxeter

group. Let X be a subset of V (Γ).

(1) The subgroup WX is canonically isomorphic to W〈X〉 [Bou68].

(2) The subgroup AX is canonically isomorphic to A〈X〉 [Vdl83].

As a consequence we get:

Corollary 2.2: Let Γ be a finite simplicial graph with edge-labeling

m : E(Γ) → {2, 3, . . .}. Let X be a subset of V (Γ). Then the subgroup CAX

of CAΓ is canonically isomorphic to CA〈X〉.

For colored Artin groups there exists a very useful tool to project to standard

parabolic subgroups:

Proposition 2.3 ([GP12b]): Let AΓ be an Artin group andX ⊂ V (Γ) a subset.

Then CAX is a retract of CAΓ in the sense that there is a homomorphism

πX : CAΓ → CAX satisfying πX(a) = a for all a ∈ CAX .

We say that AX resp. WX is a complete standard parabolic subgroup if

the subgraph 〈X〉 is complete. From our point of view the building blocks of
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a general Artin group are complete standard parabolic subgroups, in the sense

that using amalgamation one can decompose any Artin group into complete

standard parabolic subgroups.

Lemma 2.4: Let AΓ be an Artin group and Γ1, Γ2 two induced subgraphs of Γ.

If Γ1 ∪ Γ2 = Γ, then

AΓ
∼= AΓ1 ∗AΓ1∩Γ2

AΓ2 .

The proof is done by analyzing the presentation of AΓ and the canonical

presentation of the amalgam.

In particular, if there exist two vertices v, w ∈ V (Γ) such that {v, w} /∈ E(Γ),

then

(1) AΓ
∼= Ast(v) ∗Alk(v)

AV−{v},

(2) AΓ
∼= AV −{v} ∗AV −{v,w}

AV −{w}.

Before we proceed to introduce further properties of Coxeter and Artin groups

we discuss one example of a decomposition into an amalgam. Let Γ be as in

Figure 2.

v w

xy

2

3

4

5

Figure 2. Graph Γ.

The associated Artin group is given by the presentation

AΓ = 〈v, w, x, y | vw = wv,wxw = xwx, xyxy = yxyx, yvyvy = vyvyv〉.

The vertices v and x in Γ are not connected by an edge, hence

AΓ
∼= Ast(v) ∗Alk(v)

AV −{v},

where

Ast(v) = 〈v, w, y | vw = wv, vyvyv = yvyvy〉, Alk(v) = 〈w, y〉,

AV−{v} = 〈w, x, y | wxw = xwx, xyxy = yxyx〉.
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We continue to decompose the amalgamated parts until the special subgroups

in the amalgamation are complete. We obtain

AΓ
∼=(〈v, w | vw = wv〉 ∗〈v〉 〈v, y | vyvyv = yvyvy〉)

∗〈w,y〉 (〈w, x | wxw = xwx〉 ∗〈x〉 〈x, y | xyxy = yxyx〉).

Hence Lemma 2.4 gives us an algebraic tool to reduce some questions about

Artin groups to complete standard parabolic subgroups.

2.3. Parabolic subgroups of Coxeter and Artin groups. Coxeter

groups are fundamental, well understood objects in group theory, but there

are many open questions concerning Artin groups. It is conjectured that most

properties of Coxeter groups carry over to Artin groups. Remember that the

conjugates of standard parabolic subgroups in AΓ resp. WΓ are called parabolic

subgroups.

Proposition 2.5 ([Qi07, proof of Lemma 3.3]): Let WΓ be a Coxeter group

and gWΩg
−1, hW∆h

−1 be two parabolic subgroups such that gWΩg
−1⊂hW∆h

−1.

Then the cardinalities of V (Ω) and V (∆) satisfy |V (Ω)| ≤ |V (∆)| and, if

|V (Ω)| = |V (∆)|, then

gWΩg
−1 = hW∆h

−1.

We now move to Proposition 1.5 from the introduction, namely the corre-

sponding version of the above proposition for Artin groups.

Proposition 2.6: Let AΓ be an Artin group and gAΩg
−1, hA∆h

−1 be two

parabolic subgroups such that gAΩg
−1 ⊂ hA∆h

−1. Then |V (Ω)| ≤ |V (∆)| and,

if |V (Ω)| = |V (∆)|, then

gAΩg
−1 = hA∆h

−1.

The remainder of the subsection is dedicated to the proof of the above propo-

sition.

First, we need to understand how to lift an inclusion of the form gWΩg
−1⊂W∆

to the corresponding Artin group (see Lemma 2.8). For that we will use the

following classical result on Coxeter groups. Given a Coxeter group WΓ, we

denote by lg : WΓ → N the word length with respect to V (Γ). For more

information on the length function of Coxeter groups see [Hum90].
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Proposition 2.7 ([Bou68]): Let WΓ be a Coxeter group and X,Y subsets of

V (Γ). Let g ∈ WΓ. There exists a unique element g0 of minimal length in the

double cosetWX ·g ·WY , and each element g′ ∈WX ·g ·WY can be written in the

form g′ = h1g0h2 with h1 ∈WX , h2 ∈ WY and lg(g′) = lg(h1)+ lg(g0)+ lg(h2).

Moreover, lg(g0h) = lg(g0) + lg(h) for all h ∈ WY and lg(hg0) = lg(h) + lg(g0)

for all h ∈WX .

Let Γ be a finite simplicial graph with edge-labeling m : E(Γ) → {2, 3, . . .}.

We consider a set-section ι : WΓ → AΓ of the natural projection θ : AΓ →WΓ

which is defined as follows. Let g ∈ WΓ. Recall that an expression g = v1 · · · vl
over V (Γ) is called reduced if lg(g)= l. Choose a reduced expression g=v1 · · · vl
of g and define ι(g) to be the element ofAΓ represented by the same word v1· · ·vl.

By Tits [Tits69] this definition does not depend on the choice of the reduced

expression. Note that ι is not a group homomorphism, but, if g, h ∈ WΓ are

such that lg(gh) = lg(g) + lg(h), then ι(gh) = ι(g) ι(h).

Lemma 2.8: Let Γ be a finite simplicial graph with edge-labeling

m : E(Γ) → {2, 3, . . .}. Let X,Y be two subsets of V (Γ) and g ∈ WΓ such

that gWXg
−1 ⊂WY . Then ι(g)AX ι(g)

−1 ⊂ AY , and, if |X | = |Y |, then

ι(g)AX ι(g)
−1 = AY .

Proof. By Proposition 2.7, we can write g in the form g = h1g0h2, where

h1 ∈ WY , h2 ∈ WX , g0 is the element of minimal length in the double

coset WY · g ·WX , and lg(g) = lg(h1) + lg(g0) + lg(h2). Then

ι(g) = ι(h1)ι(g0)ι(h2),

and, since h1 ∈WY and h2 ∈ WX , we also obtain g0WXg
−1
0 ⊂WY . Let v ∈ X .

There exists fv ∈WY such that g0v = fvg0. By Proposition 2.7,

lg(g0) + 1 = lg(g0v) = lg(fvg0) = lg(fv) + lg(g0),

hence lg(fv) = 1, that is, fv ∈ Y . Moreover, by the definition itself of ι,

ι(g0)v = ι(g0v) = ι(fvg0) = fvι(g0),

hence ι(g0)vι(g0)
−1 = fv. So, ι(g0)Xι(g0)

−1 ⊂ Y . This implies that, on the

one hand, ι(g0)AXι(g0)
−1 ⊂ AY , and, on the other hand, if |X | = |Y |, then

ι(g0)Xι(g0)
−1 = Y
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and therefore ι(g0)AX ι(g0)
−1 = AY . So, since ι(h1) ∈ AY and ι(h2) ∈ AX ,

ι(g)AX ι(g)
−1 = ι(h1)ι(g0)ι(h2)AXι(h2)

−1ι(g0)
−1ι(h1)

−1

= ι(h1)ι(g0)AXι(g0)
−1ι(h1)

−1

⊂ ι(h1)AY ι(h1)
−1

= AY ,

and we have equality if |X | = |Y |.

With this tool we can now prove the main proposition of this section.

Proof of Proposition 2.6. Recall that θ : AΓ → WΓ denotes the natural projec-

tion to the corresponding Coxeter group. By applying θ we have

θ(g)WΩθ(g)
−1 ⊂ θ(h)W∆θ(h)

−1,

hence, by Proposition 2.5, |V (Ω)| ≤ |V (∆)|.

Now, we assume that |V (Ω)| = |V (∆)| and we prove that gAΩg
−1 = hA∆h

−1.

Without loss of generality we can assume that h = 1, else we conjugate both

sides with h−1 and replace g by h−1g. Set ḡ = θ(g). We have ḡWΩḡ
−1 ⊂ W∆

and |V (Ω)| = |V (∆)|, hence, by Lemma 2.8, ι(ḡ)AΩι(ḡ)
−1 = A∆. Thus,

we obtain gAΩg
−1 ⊂ ι(ḡ)AΩι(ḡ)

−1 and after conjugating with ι(ḡ)−1 we ob-

tain kAΩk
−1 ⊂ AΩ, where k = ι(ḡ)−1g. Note that θ(k) = 1, that is, k ∈ CAΓ,

hence we can apply the retraction map πΩ : CAΓ → CAΩ to k.

We have the following commutative diagram:

CAΩ AΩ WΩ

CAΩ AΩ WΩ

where the vertical arrow WΩ → WΩ is the identity and the vertical arrows

CAΩ → CAΩ and AΩ → AΩ are conjugations by k. Using the retraction

map πΩ : CAΓ → CAΩ we show that the left vertical arrow is an isomorphism.

For a∈CAΩ we define a′ :=kπΩ(k
−1)aπΩ(k)k

−1. Then a′∈kCAΩk
−1⊂CAΩ,

and a′ = πΩ(a
′) = a. Hence, the arrow is surjective. Note that the arrow is

also injective, since the map is a conjugation. Since we know that the arrows

CAΩ → CAΩ and WΩ → WΩ are isomorphisms, by applying the five lemma

we get that the arrow AΩ → AΩ is an isomorphism as well, which means

that kAΩk
−1=AΩ. By conjugating with ι(ḡ) we conclude that gAΩg

−1=A∆.
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2.4. Parabolic closure. Let AΓ be an Artin group. Suppose that a sub-

set B ⊂ AΓ is contained in a unique minimal parabolic subgroup of AΓ (mini-

mal with respect to ⊂). Then this parabolic subgroup is called the parabolic

closure of B and is denoted by PCΓ(B).

In the case that the intersection of two parabolic subgroups is parabolic, we

show that the parabolic closure exists.

Proposition 2.9: Let AΓ be an Artin group. If AΓ has property (Int++),

then an arbitrary intersection of parabolic subgroups is a parabolic subgroup.

In particular, a subset B ⊂ AΓ admits PCΓ(B).

Proof. Let N be a set consisting of parabolic subgroups of AΓ. Our goal is to

show that
⋂
N is parabolic. We write N using indices in an index set I as

N =
⋃

i∈I{Pi} where each Pi is a parabolic subgroup of AΓ. We construct a

chain:

Pi1 ⊃ Pi1 ∩ Pi2 ⊃ Pi1 ∩ Pi2 ∩ Pi3 ⊃ · · · .

We show that this chain stabilizes after finitely many steps: Each proper inclu-

sion in the chain is of the form gA∆1g
−1 ) hA∆2h

−1 since a finite intersection

of parabolic subgroups is assumed to be parabolic. Due to Proposition 2.6 the

cardinality of the vertices in the defining graphs has to strictly reduce at each

step. Since Γ is finite, this can only happen finitely many times. Thus there

exists n ∈ N such that
⋂
N = Pi1 ∩ · · · ∩ Pin and by assumption this finite

intersection is parabolic.

For the particular statement, we consider the set

M = {P ⊂ AΓ|P is a parabolic subgroup and B ⊂ P}

and we write M using indices in an index set J as M =
⋃

j∈J{Qj}, where

each Qj is a parabolic subgroup of AΓ. We have

Qj1 ⊃ Qj1 ∩Qj2 ⊃ Qj1 ∩Qj2 ∩Qj3 ⊃ · · · .

This chain stabilizes after finitely many steps by the above proof. We define

R =
⋂

j∈J Qj which is a parabolic subgroup since the chain stabilizes after

finitely many steps. That R is minimal is obvious from its definition. Note

that R is also unique, more precisely: assume that there exists another minimal

parabolic subgroup R′ with B ⊂ R′. By assumption R ∩ R′ is a parabolic

subgroup containing B. Since R and R′ are minimal, we have R ∩ R′ = R

and R ∩R′ = R′, hence R = R′.
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In particular, the parabolic closure of a subset B ⊂ AΓ is the parabolic

subgroup aAΓ′a−1 containing B for |V (Γ′)| minimal.

The proofs of the following lemmata are of the same flavor as the proof of

the above proposition so we omit the details.

Lemma 2.10: Let AΓ be an Artin group and B be a subset of a complete

parabolic subgroup. If AΓ has (Int+–), then B admits a parabolic closure.

Lemma 2.11: Let AΓ be an Artin group and B1 and B2 be subsets of AΓ such

that B1 ⊂ B2. If B1 and B2 admit parabolic closures, then

PCΓ(B1) ⊂ PCΓ(B2).

Remember that we defined two classes of Artin groups in the introduction as

follows:

• An Artin group AΓ is contained in the class A if and only if AΓ has

property (Int++).

• An Artin group AΓ is contained in the class B if and only if AΓ has

property (Int).

Due to previous work of multiple authors, we know that many classes of Artin

groups fall into A or B, for example:

• Artin groups of spherical type, right-angled Artin groups and large type

Artin groups are in the class A [CGGW19, DKR07, CMV23].

• Artin groups of FC type are in the class B [Mor21].

In the next section we show that an Artin group in the class B already has

property (Int+–). This implies:

Corollary 2.12:

(1) Let AΓ be in the class A. Any subset B ⊂ AΓ admits a parabolic

closure.

(2) Let AΓ be in the class B. Any subset B ⊂ AΓ of a complete parabolic

subgroup admits a parabolic closure.

3. Bass–Serre theory meets Artin groups

Let ψ : G → Isom(T ) be a group action via simplicial isometries on a tree T

without inversion. One can consider a tree as a metric space by assigning each
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edge the length one. If we write ‘x ∈ T ’ we implicitly assume that we metrized

the tree in that way. For a subset A ⊂ G we denote by

Fix(ψ(A)) := {x ∈ T | ψ(a)(x) = x for all a ∈ A}

the fixed point set of ψ(A). Note that if Fix(ψ(A)) is non-empty, then it is a

subtree of T . Further, for a vertex v ∈ V (T ) the stabilizer of v, denoted by

stab(v), is defined as

stab(v) := {g ∈ G | ψ(g)(v) = v}

and for e = {v, w} ∈ E(Γ) we have stab(e) = stab(v) ∩ stab(w).

Given an amalgam A ∗C B, there is a simplicial tree TA∗CB on which A ∗C
B acts simplicially without a global fixed point. The Bass–Serre tree TA∗CB

is constructed as follows: the vertices of TA∗CB are cosets of A and B and

two vertices gA and hB, g, h ∈ A ∗C B are connected by an edge if and only

if gA ∩ hB = gC. For more information about amalgamated products and Bass–

Serre theory see [Ser03]. For the very small example of G = Z/4Z ∗ Z/6Z

(a portion of) the Bass–Serre tree is drawn in Figure 3 (suppose G = 〈a, b〉,

ord(a) = 4, ord(b) = 6)

1〈a〉 1〈b〉

b〈a〉

b2〈a〉

b3〈a〉

b4〈a〉

b5〈a〉

a〈b〉

a2〈b〉

a3〈b〉

Figure 3. A portion of the Bass–Serre tree for G = Z/4Z ∗ Z/6Z.

How the Bass–Serre tree changes with amalgamation can be seen in [Ser03,

p. 35], where the Bass–Serre tree is drawn for Z/4Z ∗Z/2Z Z/6Z.
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The group G = A∗CB acts on its Bass–Serre tree via left-multiplication. For

this action the stabilizer of a vertex gA is given by gAg−1 and the stabilizer of

an edge between gA and hB is given by gCg−1 (since gA ∩ hB = gC).

3.1. Intersection of parabolic subgroups. In this section we prove The-

orem 1.1 from the introduction. Our proof is of geometric nature with the main

tool being Bass–Serre theory. We will be using a slightly different notation for

the vertices and edges of the Bass–Serre tree associated to AΓ = AX ∗AZ
AY .

Notation 3.1: Given an Artin group AΓ = AX ∗AZ
AY , we write vertices in the

Bass–Serre tree T as v(a,X) := aAX and v(b, Y ) := bAY . For the edges we

simply associate an edge e(a) to each a ∈ AΓ with endpoints v(a,X) and v(a, Y ).

We have e(a) = e(b) if and only if aAZ = bAZ and every edge of T has this

form.

For the upcoming proof we want to point out one subtlety that is very im-

portant and easy to miss. Given two parabolic subgroups P1 and P2 of an Artin

group AΓ such that P1 ⊆ P2, then P1 is a parabolic subgroup of P2; see [BP23,

Thm. 1.1].

Proof of Theorem 1.1. We assume that AΓ has Property (Int). We take a

complete parabolic subgroup P1 and a parabolic subgroup P2 of AΓ, and we

prove that P1 ∩ P2 is a parabolic subgroup by induction on the number of

pairs {s, t} ⊂ V (Γ) satisfying {s, t} /∈ E(Γ).

If there is no such a pair, then Γ itself is complete and then property (Int)

suffices for saying that P1 ∩P2 is a parabolic subgroup. So, we can assume that

there exists a pair {s, t} ⊂ V (Γ) such that {s, t} /∈ E(Γ) and that the inductive

hypothesis holds.

We set I = V (Γ)\{s}, J = V (Γ)\{t}, and K = V (Γ)\{s, t}. By Lemma 2.4

we have the amalgamated product AΓ
∼= AI ∗AK

AJ , which leads to the con-

struction of the Bass–Serre tree T associated to this splitting.

There exist subsets X,Y ⊂ V (Γ) and elements g, h ∈ AΓ such that X is free

of infinity, P1 = gAXg
−1, and P2 = hAY h

−1. Since X is free of infinity, we

have either X ⊂ I or X ⊂ J , hence there exists a vertex u0 = v(a0, U0) of T

such that

P1 = gAXg
−1 ⊂ stab(u0) = a0AU0a

−1
0 .

From here the proof is divided into two cases.
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Case 1: {s, t} 6⊂ Y . Then either Y ⊂ I or Y ⊂ J , hence there exists a vertex

v0 = v(b0, V0) of T such that

P2 = hAY h
−1 ⊂ stab(v0) = b0AV0b

−1
0 .

We denote by d the distance in T between u0 and v0 and we argue by induction

on d. Suppose d = 0, that is, u0 = v0. Then a−1
0 P1a0 is a complete para-

bolic subgroup of AU0 and a−1
0 P2a0 is a parabolic subgroup of AU0 by [BP23,

Thm. 1.1]. Consider the subgraph induced by U0 and the number of pairs of

vertices {i, j} which are not connected by an edge. Now look at the same con-

struction in the graph Γ: The number of pairs of vertices {u, v} in V (Γ) not

connected by an edge is strictly larger than in U0. Hence, by the induction

hypothesis,

(a−1
0 P1a0) ∩ (a−1

0 P2a0) = a−1
0 (P1 ∩ P2)a0

is a parabolic subgroup of AU0 , and therefore a parabolic subgroup of AΓ. So,

P1 ∩ P2 is a parabolic subgroup of AΓ.

Now we assume that d ≥ 1 and that the inductive hypothesis on d holds. Let

(u0, u1, . . . , ud) be the unique geodesic in T connecting u0 with v0 = ud; see

Figure 4. For i ∈ {1, . . . , d} we denote by ei the edge connecting ui−1 with ui.

Note that, since P1 ⊂ stab(u0) and P2 ⊂ stab(v0), we have P1 ∩ P2 ⊂ stab(ui)

for all i ∈ {0, 1, . . . , d} and P1 ∩ P2 ⊂ stab(ei) for all i ∈ {1, . . . , d}. We

set u1 = v(a1, U1) and e1 = e(c1).

u0 = v(a0, U0)

u1 = v(a1, U1)

v0 = ud

e(
c 1
)

Figure 4. The unique geodesic from u0 to v0.

The group a−1
0 gAXg

−1a0 is a complete parabolic subgroup of AU0 and

a−1
0 c1AKc

−1
1 a0 is a parabolic subgroup of AU0 (by [BP23, Thm. 1.1]). Hence, we

can use the induction hypothesis (on the number of pairs (i, j) ∈ V (U0)×V (U0)
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such that {i, j} is not an edge) to see that

(a−1
0 gAXg

−1a0) ∩ (a−1
0 c1AKc

−1
1 a0) = a−1

0 ((gAXg
−1) ∩ (c1AKc

−1
1 ))a0

is a parabolic subgroup. Therefore we conclude that (gAXg
−1) ∩ (c1AKc

−1
1 ) is

a parabolic subgroup. It is complete because it is contained in P1 = gAXg
−1.

So, there exist g1 ∈ AΓ and X1 ⊂ V (Γ) such that X1 is free of infinity and

(gAXg
−1) ∩ (c1AKc

−1
1 ) = g1AX1g

−1
1 .

Moreover,

g1AX1g
−1
1 ⊂ c1AKc

−1
1 ⊂ a1AU1a

−1
1 = stab(u1).

By the induction hypothesis (on d), it follows that

P1 ∩ P2 = (gAXg
−1) ∩ (hAY h

−1)

= (gAXg
−1) ∩ (c1AKc

−1
1 ) ∩ (hAY h

−1)

= (g1AX1g
−1
1 ) ∩ (hAY h

−1)

is a parabolic subgroup of AΓ. This finishes the proof of Case 1.

Case 2: {s, t} ⊂ Y . We set

YI = Y \ {s} = Y ∩ I, YJ = Y \ {t} = Y ∩J and YK = Y \ {s, t} = Y ∩K.

As for AΓ we have the amalgamated product AY = AYI
∗AYK

AYJ
. We denote

by TY the Bass–Serre tree associated to this amalgamated product.

Claim:We have an embedding of TY into T which, for each a∈AY , sends v(a, YI)

to v(a, I), v(a, YJ ) to v(a, J), and e(a) to e(a).

Proof of the Claim. Let a, b ∈ AY . We need to show the following equivalences:

aAYI
= bAYI

⇔ aAI = bAI , aAYJ
= bAYJ

⇔ aAJ = bAJ ,

aAYK
= bAYK

⇔ aAK = bAK .

We prove the first one. The others can be proved in the same way. Recall that,

by Van der Lek [Vdl83], AYI
= AY ∩I = AY ∩ AI . So, since a

−1b ∈ AY ,

aAYI
= bAYI

⇔ a−1b ∈ AYI
= AY ∩AI ⇔ a−1b ∈ AI ⇔ aAI = bAI .

This completes the proof of the Claim.
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u0

hTY

v0

Figure 5. The unique vertex v0.

Let v0 be the unique vertex of hTY at minimal distance from u0; see Figure 5.

Note that v0 may be equal to u0.

Since P1 stabilizes u0 and P2 stabilizes hTY (as a set, not pointwise), P1 ∩P2

stabilizes v0, that is, P1 ∩ P2 ⊂ stab(v0) due to the minimality of the distance

between u0 and v0. Let a ∈ AY and V ∈ {I, J} such that v0 = v(ha, V ). We

have

stab(v0) ∩ P2 = (haAV a
−1h−1) ∩ (hAY h

−1)

= (haAV a
−1h−1) ∩ (haAY a

−1h−1)

= ha(AV ∩ AY )a
−1h−1 = haAV ∩Y a

−1h−1,

hence

P1 ∩ P2 = P1 ∩ stab(v0) ∩ P2 = P1 ∩ (haAV ∩Y a
−1h−1).

Since {s, t}6⊂V ∩Y , we conclude by Case 1 that P1∩P2 is a parabolic subgroup.

3.2. Serre’s property FA and a generalization of this fixed point

property. We use Bass–Serre theory in this section to prove Proposition 1.3

and Theorem 1.7. Let us first recall the definitions of properties FA and FA′

and the basic implications we need later on.

A group G is said to have property FA if every simplicial action of G on

any tree without inversions has a global fixed vertex. A weaker property is

property FA′, here we require that for every action of G on any tree without

inversions every element has a fixed point.

Proposition 3.2: Let AΓ be an Artin group. If AΓ is non-trivial, then AΓ

does not have property FA.
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Proof. Due to [Ser03, Thm. 15] a countable group cannot have property FA

if it has a quotient isomorphic to Z. Given an Artin group AΓ with standard

generating set V = {v1, . . . , vn} we define a homomorphism ϕ : AΓ → Z by

setting ϕ(vi) = 1 for every i ∈ {1, . . . , n}. Due to the universal property of

group presentations this defines a homomorphism, since all relations are in the

kernel. Furthermore this map is surjective, which means that AΓ indeed has a

quotient isomorphic to Z, namely AΓ/ ker(ϕ).

Moving on to property FA′ we need the following lemma to show that FA′

subgroups of Artin groups have to be contained in complete parabolic sub-

groups.

Lemma 3.3 ([Ser03, Prop. 26]): Let ψ : G → Isom(T ) be a simplicial ac-

tion on a tree T without inversion. Let A and B be subgroups of G. If

Fix(ψ(A)) 6= ∅,Fix(ψ(B)) 6= ∅ and Fix(ψ(ab)) 6= ∅ for all a ∈ A and b ∈ B,

then Fix(ψ(〈A,B〉)) 6= ∅.

This allows us to prove the following proposition:

Proposition 3.4: Let ψ : G → Isom(T ) be a simplicial action on a tree T

without inversion. If Fix(ψ(g)) 6= ∅ for all g ∈ G, then either

(1) Fix(ψ(G)) 6= ∅, or

(2) there exists a sequence of edges (ei)i∈N such that

stab(e1) ( stab(e2) ( · · · .

Additionally, if G is countable, then G =
⋃

i∈N
stab(ei).

Proof. We differentiate two cases:

Case 1: There exists a subgroup H ⊂ G such that Fix(ψ(H)) consists of

exactly one vertex v.

Then for g ∈ G we know by Lemma 3.3 that Fix(ψ(〈H, g〉)) 6= ∅, hence

ψ(g)(v) = v. Since g is arbitrary we have Fix(ψ(G)) = {v}.

Case 2: For any subgroup H ⊂ G such that Fix(ψ(H)) 6= ∅ the fixed point set

Fix(ψ(H)) always contains an edge.

Note that only the two cases can occur, since fixed point sets are convex,

so if a fixed point set contains multiple vertices, it always contains the unique

geodesic between those two vertices and hence at least one edge.
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Let g1 be in G. By assumption the fixed point set of ψ(g1) contains at

least one edge e1 ∈ Fix(ψ(g1)). If e1 ∈ Fix(ψ(G)), then we are done. Oth-

erwise there exists g2 ∈ G − stab(e1). By Lemma 3.3 the fixed point set

Fix(ψ(〈stab(e1), g2〉)) is non-empty and by assumption this set contains at least

one edge e2 ∈ Fix(ψ(〈stab(e1), g2〉)). We obtain

stab(e1) ( stab(e2).

If e2∈Fix(ψ(G))6=∅, then we are done. Otherwise there exists g3∈G−stab(e2)

and we proceed as before. By this construction we obtain an ascending chain

of stab(ei). Now there are two possibilities: this chain either stabilizes after

finitely many steps or it does not.

If it stabilizes, then there exists an edge en such that G = stab(en) and thus

en ∈ Fix(ψ(G)). If the chain does not stabilize, then we end up in case (2)

of Proposition 3.4 and if G is countable, then it is straightforward to ver-

ify that it is possible to write G =
⋃

i∈N
stab(ei). This can be done with a

slight modification of the chain construction by always picking a specific ele-

ment gm ∈ G− stab(em−1).

While it is easy to come up with examples where the first case of the above

proposition occurs, it may be harder to come up with an example where the

second case happens. One example for this will be discussed in detail in Exam-

ple 4.2.

Corollary 3.5: Let G = A ∗C B denote an amalgamated free product and

H ⊂ G be a subgroup. If H is an FA′-group, then

(1) H is contained in a conjugate of A or B or

(2) there exists a sequence of elements (gi)i∈N, gi ∈ G such that

g1Cg
−1
1 ∩H ( g2Cg

−1
2 ∩H ( · · · .

Additionally, if H is countable, then H =
⋃

i∈N
giCg

−1
i ∩H .

Proof. The group G acts on its Bass–Serre tree without inversion. Restricting

this action to H and applying Proposition 3.4 shows the corollary since the

stabilizers of vertices are conjugates of A or B and the stabilizers of edges are

conjugates of C intersected with H .
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Proposition 3.6: Let AΓ be an Artin group in the class A and let H ⊂ AΓ be

a subgroup. If H is an FA′-group, then H is contained in a complete parabolic

subgroup of AΓ.

Proof. Let AΓ denote an Artin group in the class A and H ⊂ AΓ an FA′

subgroup. If Γ is not complete, then decompose AΓ as an amalgamated prod-

uct according to Lemma 2.4, thus AΓ = Ast(v) ∗Alk(v)
AV−{v}. We now apply

Corollary 3.5 to the amalgamated product AΓ = Ast(v) ∗Alk(v)
AV−{v}.

If we are in case (1), we are in a conjugate of one of the factors and we repeat

the process of decomposing the factor into an amalgam.

If we are in case (2), we obtain a proper infinite chain

g1Alk(v)g
−1
1 ∩H ( g2Alk(v)g

−1
2 ∩H ( · · ·

and since AΓ is countable we know that H is countable, hence

H =
⋃

i∈N

giAlk(v)g
−1
i ∩H.

By Lemma 2.11 we can transform the above chain into the following chain of

parabolic subgroups:

PCΓ(g1Alk(v)g
−1
1 ∩H) ⊂ PCΓ(g2Alk(v)g

−1
2 ∩H) ⊂ · · ·

and we also have

H ⊂
⋃

i∈N

PCΓ(giAlk(v)g
−1
i ∩H).

We can now apply Proposition 2.6 to see that the above chain of parabolic

subgroups stabilizes after finitely many steps, say at PCΓ(gnAlk(v)g
−1
n ∩ H).

Then we have

H ⊂ PCΓ(gnAlk(v)g
−1
n ∩H) ⊂ gnAlk(v)g

−1
n ⊂ gnAst(v)g

−1
n .

If the subgraph st(v) is complete we are done, if not then we decompose Ast(v)

again and proceed as before. This process stops at some point since the graph Γ

is finite and we remove at least one vertex at every step of the decomposition.

Before moving to the proof of Theorem 1.7 we recall a basic result about

lcH-slender groups. By definition, a discrete group G is called lcH-slender if

every group homomorphism from a locally compact Hausdorff group into G is

continuous. From here on we will be dealing with locally compact Hausdorff

groups and their basic properties. Everything that will be used can be found

in [Str06] and theorems will be cited, however not every basic property will be

cited in that way.
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It was shown in [Cor20] (see the proof of Thm. C) that lcH-slender groups

are always torsion free. For completeness we include a proof here.

Lemma 3.7: Let G be a group. If G is lcH-slender, then G is torsion free.

Proof. Suppose there exists a non-trivial torsion element g ∈ G. Without loss

of generality we can assume that g has order p ∈ N and p is a prime number (if

it is composite, there is a power of g having a prime order). Then 〈g〉 ∼= Z/pZ.

Now consider the group
∏

N
Z/pZ. This is a compact topological group and also

a vector space. The space
⊕

N
Z/pZ is a linear subspace.

We define ψ :
⊕

N
Z/pZ → Z/pZ by setting

ψ(x) :=
∑

m∈N

xm.

Now we take a basis B of
⊕

N
Z/pZ and extend it to a basis C of

∏

N
Z/pZ. We

then extend the map ψ to a map ϕ :
∏

N
Z/pZ → Z/pZ via linear extension of

ϕ(cj) :=







ψ(cj) if cj ∈ B,

0 if cj ∈ C −B.

The linearity of this map ensures that it is a group homomorphism. How-

ever, this map cannot be continuous because of the following reason: If it was

continuous, then ϕ−1(0) would be an open neighborhood V of the identity,

since {0} ⊂ Z/pZ is an open subset. So (after reordering the factors) V con-

tains a set A1×A2×· · ·×Am×
∏

n>m Z/pZ. But then the elements x = (0, 0, . . .)

and y = (0, . . . , 0, 1, 0, 0, . . .), where the 1 is in coordinate m+ 1, both lie in V

and we have 0 = ϕ(x) = ϕ(y) = ϕ(x) + 1 = 1 which is a contradiction.

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. We begin by proving assertion (1). It is known that an

almost connected locally compact Hausdorff group has property FA′ [Alp82,

Cor. 1]. Thus, by Proposition 1.3, it follows that ψ(L) is contained in a complete

parabolic subgroup since property FA′ is preserved under images of homomor-

phisms proving claim (1).

For the second assertion let ϕ : L → AΓ be a group homomorphism from

a locally compact Hausdorff group L into an Artin group AΓ that is in the

class A. We give AΓ the discrete topology. By (1) we know that the image of
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the connected component L◦ under ϕ is contained in a parabolic complete sub-

group gA∆g
−1 of AΓ. By assumption, any special complete subgroup of AΓ is

lcH-slender, therefore the restricted group homomorphism ϕ|L◦ : L◦ → gA∆g
−1

is continuous. Since the image of a connected group under a continuous group

homomorphism is connected, the group ϕ(L◦) is trivial and therefore the map ϕ

factors through ψ : L/L◦ → AΓ. The group L/L
◦ is totally disconnected, hence

there exists a compact open subgroup K ⊂ L/L◦ by van Danzig’s Theorem

[Bou89, III §4, No. 6]. By (1) we know that ψ(K) is contained in a parabolic

complete subgroup hAΩh
−1. By assumption we know that ψ|K is continuous.

The image of a compact set under a continuous map is always compact, so ψ(K)

is finite. We also know that an lcH-slender group is always torsion free due to

Lemma 3.7, thus ψ(K) is trivial. Hence the map ψ has open kernel, since it

contains the compact open group K and is therefore continuous. The canonical

quotient map π : L→ L/L◦ is continuous, so is ϕ = ψ ◦ π.

4. The clique-cube complex

In this section we will be using CAT(0) spaces and their basic properties. For

the definition and further properties of these metric spaces we refer to [BH99].

Associated to an Artin group AΓ is a CAT(0) cube complex CΓ where the

dimension is bounded above by the cardinality of V (Γ). We describe the con-

struction of this cube complex that is closely related to the Deligne complex

introduced in [CD95].

For an Artin group AΓ we consider the poset

{aA∆ | a ∈ AΓ and ∆ is a complete subgraph of Γ or ∆ = ∅}.

This poset is ordered by inclusion. We now construct the cube complex CΓ

in the usual way: The vertices are the elements in the poset and two ver-

tices aA∆1 ( bA∆2 span an n-cube if |∆2| − |∆1| = n.

The group AΓ acts on CΓ by left multiplication and preserves the cubical

structure. Moreover, the action is strongly cellular, i.e., the stabilizer group

of any cube fixes that cube pointwise. Therefore, if a subgroup H ⊂ AΓ has

a global fixed point in CΓ, then there exists a vertex in CΓ which is fixed

by H . The action is cocompact with the fundamental domain K, which is

the subcomplex spanned by all cubes with vertices 1A∆ for ∆ ⊂ Γ a complete

subgraph. However the action will in general not be proper, since the stabilizer

of a vertex gAX for X 6= ∅ is the parabolic complete subgroup gAXg
−1.
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Theorem 4.1 ([GP12b], Thm. 4.2): The clique-cube complex CΓ is a finite-

dimensional CAT(0) cube complex.

It was proven in [LV20, Thm. A] that any cellular action of a finitely gener-

ated group on a finite-dimensional CAT(0) cube complex via elliptic isometries

always has a global fixed point. In general, this result is not true for not finitely

generated groups, not even for actions on trees.

Example 4.2 ([Ser03, Thm. 15]): Consider the group Q and pick an infinite

sequence of elements (gi)i∈N such that 〈g1〉 ( 〈g1, g2〉 ( · · · and
⋃

i∈N

〈g1, g2, . . . , gi〉 = Q.

This is possible since Q is not finitely generated and denumerable. Set

Gi := 〈g1, g2, . . . , gi〉

for i ∈ N and define a graph Γ in the following way. The set of vertices of Γ is

the disjoint union of Q/Gn, i.e., the vertices are the cosets qGn and there is an

edge between two vertices if and only if they correspond to consecutive Q/Gn

and Q/Gn+1 and correspond under the canonical projection Q/Gn → Q/Gn+1.

One can now check that this is a tree with a natural action of Q. The key

feature is that this action does not have a global fixed point.

We conjecture that the structure of Artin groups does not allow such an

example, that means:

Conjecture: Let AΓ be an Artin group and Φ: AΓ → Isom(CΓ) be the action

on the associated clique-complex via left multiplication. Let H ⊂ AΓ be a

subgroup. If Φ(h) is elliptic for all h ∈ H , then Fix(Φ(H)) is non-empty,

thus Φ(H) is contained in a complete parabolic subgroup.

Before we prove that this conjecture holds for Artin groups in the class B we

discuss tools for proving that some fixed point sets are non-empty. We have

Fix(Φ(H)) =
⋂

h∈H

Fix(Φ(h)).

Note that if H is finitely generated, then Fix(Φ(H)) is non-empty by [LV20,

Thm. A] and by [Far09, Thm. 3.2]. However, if H is not finitely generated, the

set {Fix(Φ(h)) | h ∈ H}, which does consist of closed and convex subsets, can
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in general not be written as a finite intersection

⋂

h∈H

Fix(Φ(h)) =

n⋂

i=1

Fix(Φ(hi)),

hence the result of [Far09, Thm. 3.2] is not applicable.

A different strategy of proving this intersection is non-empty, which seems

possible at first glance, is the following. Recall, a family of subsets (Ai)i∈I of a

metric space is said to have the finite intersection property if the intersection of

each finite subfamily is non-empty. Monod proved in [Mon06, Thm. 14] that a

family consisting of bounded closed convex subsets of a complete CAT(0) space

with the finite intersection property has a non-empty intersection.

We consider the family consisting of fixed point sets (Fix(Φ(h)))h∈H . Since

the CAT(0) space CΓ is a finite-dimensional cubical complex we know by [LV20,

Thm. A] that this family has the finite intersection property. However, in

general a fixed point set does not need to be bounded as the following example

shows. Thus we need a different strategy in order to prove that Fix(Φ(H)) is

non-empty.

Example 4.3: Let Γ be the following graph:

a b c2 2

Figure 6. Graph Γ.

Now we consider the corresponding Artin group AΓ and the clique-comp-

lex CΓ. For the clique-complex the fundamental domain K is given in Figure 7.

A{a} A∅ A{c}

A{a,b} A{b} A{b,c}

Figure 7. The fundamental domain K.
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Let Φ: AΓ → Isom(CΓ) denote the natural action by left multiplication. We

want to show that Fix(Φ(b)) is unbounded. First notice that since Γ is not

complete, the clique-complex is unbounded itself by [CM19, Lemma 2.6]. First

we calculate K ∩ Fix(Φ(b)):

Since b 6= an and b 6= ck for any n, k ∈ Z, b does not fix A{a} or A{c} and it

also cannot fix A∅. However b fixes all the vertices in the top row, that is

Φ(b)(A{a,b}) = A{a,b}, Φ(b)(A{b}) = A{b} and Φ(b)(A{b,c}) = A{b,c}

and also the edges between those.

In general we know that b lies in the center of AΓ, so following the pattern

from above it is easy to see that Φ(b) fixes vertices of the following form: wA∆,

where w ∈ AΓ is an arbitrary element and ∆ is a subgraph of Γ containing the

vertex b. That means any copy of the ‘top edge’ in the fundamental domain

is fixed by Φ(b). Since K is a fundamental domain for the action and CΓ is

unbounded, it immediately follows that Fix(Φ(b)) is unbounded, too.

Let AΓ be in the class B and H be a subgroup that is contained in a parabolic

complete subgroup. Since the action of AΓ on CΓ is strongly cellular, we can

write the parabolic closure of a subgroup H as

PCΓ(H) :=
⋂

v∈V (CΓ)

{stab(v) | H ⊂ stab(v)},

which coincides with the notion defined in Section 2.

Proposition 4.4: Let AΓ be in B and Φ: AΓ → Isom(CΓ) be the action on the

associated clique-complex via left multiplication. Let H ⊂ AΓ be a subgroup.

If Φ(h) is elliptic for all h ∈ H , then Fix(Φ(H)) is non-empty and therefore

Φ(H) is contained in a complete parabolic subgroup.

Proof. If Φ(H) had no global fixed point, then we could construct an infinite

chain

Fix(Φ(H1)) ) Fix(Φ(H2)) ) · · · ,

where

Hi := 〈h1, h2, . . . , hi〉,

since any finitely generated group acting locally elliptically already has a global

fixed point due to [LV20, Thm. A].
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Now we claim that for a subset B of a parabolic complete subgroup we have

Fix(Φ(B)) = Fix(Φ(PCΓ(B))).

The inclusion “⊃” is clear since B ⊂ PCΓ(B). For the other directions, let

v ∈ Fix(Φ(B)). It suffices to check that v ∈ Fix(Φ(PCΓ(B))) since the action

is strongly cellular. Since B fixes the vertex v, we have B ⊂ stab(v). Due to

the definition of the parabolic closure, we therefore obtain

PCΓ(B) ⊂ stab(v),

and thus PCΓ(B) fixes v as well, or in other words, v ∈ Fix(Φ(PCΓ(B))).

So, our chain transforms into

Fix(Φ(PCΓ(H1))) ) Fix(Φ(PCΓ(H2))) ) · · · .

On the other hand, since Hi ⊂ Hi+1 for all i, we have the chain

PCΓ(H1) ⊂ PCΓ(H2) ⊂ · · ·

Since Γ is finite, this chain stabilizes after finitely many steps by Proposition 2.6.

So, there exists an index j such that PCΓ(Hi) = PCΓ(Hj) for all i ≥ j, hence

Fix(Φ(PCΓ(Hi))) = Fix(Φ(PCΓ(Hj)))

for all i ≥ j, which is a contradiction.

Therefore Φ(H) has a global fixed vertex. Since the stabilizer of a vertex is

a complete parabolic subgroup, Φ(H) is contained in such a group.

This implies Proposition 1.8 from the introduction, since an FC′ group acts

locally elliptically on every CAT(0) cube complex.

Corollary 4.5: Let K denote a group and AΓ an Artin group in the class B,

further let φ : K → AΓ be a group homomorphism. If K is compact, then φ(K)

is contained in a complete parabolic subgroup.

Proof. Due to [MV22, Cor. 4.4] the compact group K acts locally elliptically

on CΓ. Thus by Proposition 4.4 the image of K under φ is contained in a

complete parabolic subgroup.
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4.1. Proof of Theorem 1.9. First we recall the result of the Main Theorem

in [MV22].

Theorem 4.6: Let Φ: L→ Isom(X) be a group action of an almost connected

locally compact Hausdorff group L on a complete CAT(0) space X of finite flat

rank. If

(1) the action is semi-simple,

(2) the infimum of the translation lengths of hyperbolic isometries is posi-

tive,

(3) any finitely generated subgroup of L which acts on X via elliptic isome-

tries has a global fixed point,

(4) any subfamily of {Fix(Φ(l)) | l ∈ L} with the finite intersection property

has a non-empty intersection,

then Φ has a global fixed point.

Proof of Theorem 1.9. The proof of the second part is very similar to the proof

of Theorem 1.7.

For the first part let ψ : L → AΓ be a group homomorphism from an almost

connected locally compact Hausdorff group L into an Artin group AΓ that is

contained in the class B. Further, let Φ: AΓ → Isom(CΓ) be the action on the

associated clique-cube complex via left-multiplication.

Since the dimension of CΓ is finite we know that the flat rank of CΓ is also

finite. Further, the first three conditions are satisfied by any cellular action on

a finite-dimensional CAT(0) cube complex [Bri99, Thm. A and Prop.], [LV20,

Thm. A], hence also the action ψ◦Φ: L→ AΓ → Isom(CΓ) satisfies these condi-

tions. By Proposition 4.4 it follows that any subfamily of {Fix(ψ ◦ Φ(l)) | l ∈ L}

with the finite intersection property has a non-empty intersection. Hence, the

action ψ ◦Φ has a global fixed point. Since the action is strongly cellular there

exists a vertex gA∆ ∈ CΓ that is fixed by this action and therefore ψ(L) is con-

tained in the stabilizer of this vertex, which is equal to gA∆g
−1. This proves

the first claim.

For the second assertion let ϕ : L → AΓ be a group homomorphism from

a locally compact Hausdorff group L into an Artin group AΓ that lies in the

class B. Once again we give AΓ the discrete topology. By the above paragraph

we know that the image of the connected component L◦ under ϕ is contained

in a parabolic complete subgroup gA∆g
−1 of AΓ. Now we follow the same

argument as given in the proof of Theorem 1.7 (2) to finish the proof.
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