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Abstract
Purpose To evaluate if a machine learning prediction model based on clinical and easily assessable imaging features derived 
from baseline breast  [18F]FDG-PET/MRI staging can predict pathologic complete response (pCR) in patients with newly 
diagnosed breast cancer prior to neoadjuvant system therapy (NAST).
Methods Altogether 143 women with newly diagnosed breast cancer (54 ± 12 years) were retrospectively enrolled. All 
women underwent a breast  [18F]FDG-PET/MRI, a histopathological workup of their breast cancer lesions and evaluation 
of clinical data. Fifty-six features derived from positron emission tomography (PET), magnetic resonance imaging (MRI), 
sociodemographic / anthropometric, histopathologic as well as clinical data were generated and used as input for an extreme 
Gradient Boosting model (XGBoost) to predict pCR. The model was evaluated in a five-fold nested-cross-validation incor-
porating independent hyper-parameter tuning within the inner loops to reduce the risk of overoptimistic estimations. Diag-
nostic model-performance was assessed by determining the area under the curve of the receiver operating characteristics 
curve (ROC-AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. 
Furthermore, feature importances of the XGBoost model were evaluated to assess which features contributed most to dis-
tinguish between pCR and non-pCR.
Results Nested-cross-validation yielded a mean ROC-AUC of 80.4 ± 6.0% for prediction of pCR. Mean sensitivity, specific-
ity, PPV, and NPV of 54.5 ± 21.3%, 83.6 ± 4.2%, 63.6 ± 8.5%, and 77.6 ± 8.1% could be achieved. Histopathological data 
were the most important features for classification of the XGBoost model followed by PET, MRI, and sociodemographic/
anthropometric features.
Conclusion The evaluated multi-source XGBoost model shows promising results for reliably predicting pathological com-
plete response in breast cancer patients prior to NAST. However, yielded performance is yet insufficient to be implemented 
in the clinical decision-making process.
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Introduction

Breast cancer is the most common cancer in women world-
wide [1, 2]. Due to improvements in therapy and diag-
nostics, the 5-year overall survival (OS) rate approaches 
approximately 90% [3]. Especially for locally advanced- 
and high-risk breast cancer, accurate pre-therapeutic TNM 
staging is crucial following the initial diagnosis, as it influ-
ences subsequent therapy decisions, despite the determi-
nation of histopathological and molecular breast cancer 
characteristics [4]. Although current guidelines recom-
mend performing chest/abdomen computed tomography 
(CT) and bone scintigraphy for staging, positron-emission-
tomography/magnetic resonance imaging (PET/MRI) has 
become an increasingly vital diagnostic tool for “one-stop” 
whole-body staging at leading tumor centers in the last 
decade [4]. This is mainly due to its ability to combine 
metabolic imaging with high soft-tissue resolution in a 
multimodal dataset [5–10].

Current guidelines recommend neoadjuvant system 
therapy (NAST) for patients with locally advanced- and 
high-risk breast cancer [11]. The goal of this therapy is 
to achieve pathologic complete response (pCR) in both, 
breast cancer primaries and lymph nodes. Pathologic com-
plete response has been shown to be an independent sur-
rogate parameter for overall- and disease-free survival [12, 
13]. However, an invasive histopathological assessment 
after NAST is currently necessary to confirm pCR. Con-
sequently, early and non-invasive identification of breast 
cancer patients achieving or not achieving pCR during 
NAST would save a large amount of patients from further 
surgical treatment and would enable prompt adjustments to 
potentially toxic and ineffective chemotherapy [7]. Studies 
have assessed various imaging modalities, such as breast-
sonography, mammography, contrast-enhanced MRI, and 
increasingly PET/computed tomography (CT), for their 
potential in predicting pCR [14–16]. However, the results 
of these conventional examinations do not reach the clini-
cally required threshold for reliably predicting pathologi-
cal complete response in breast cancer patients.

Thus, image-based pCR prediction remains challeng-
ing and cannot replace invasive procedures for breast 
cancer patients in the actual stage of research. However, 
we hypothesize that advancements in the field of machine 
learning may offer new possibilities for the non-invasive 
diagnostic evaluation, as they can detect complex patterns 
in high-dimensional data. Thus, a lot could be expected 
from integrating multidimensional data of different modal-
ities. Given the promising results in various medical disci-
plines, it is unsurprising that machine learning algorithms 
are increasingly used in image-based data analysis, for 
example for clinical decision support for axillary lymph 

node staging in breast cancer patients [17–21]. Unravel-
ling complex patterns within multidimensional datasets, 
which may be imperceptible to humans, could thus help to 
predict pCR and potentially elevate diagnostic capabilities 
in breast cancer patients prior to therapy.

Therefore, this study aims to determine if a machine 
learning prediction model, utilizing clinical and easily 
assessable imaging features derived from baseline  [18F]
FDG-PET/MRI staging, can predict pCR in patients with 
newly diagnosed breast cancer prior to treatment.

Material and methods

Patients

The study was approved by the institutional review boards of 
the University Duisburg-Essen (study number 17-7396-B0) 
and University Düsseldorf (study number 6040R) and it was 
performed in accordance with the Declaration of Helsinki [22].

A total of 143 patients were retrospectively included from 
a trial (register number: DRKS00005410), which included 
women with newly diagnosed, therapy-naive early breast 
cancer between March 2018 and December 2021 at the Uni-
versity Düsseldorf and University Duisburg-Essen. Written 
informed consent was obtained at time of inclusion from 
all patients. Only breast cancer patients who received and 
completed a NAST and had immediate subsequent surgery 
with histologically workup were included. Furthermore, all 
patients underwent an initial breast-[18F]FDG-PET/MRI for 
staging purposes and met the following, further inclusion 
criteria: (i) newly diagnosed, therapy-naive T2 or higher 
T-stage tumor or (ii) newly diagnosed, therapy-naive triple-
negative tumor of any size or (iii) newly diagnosed, therapy-
naive tumor with a high-risk molecular profile (Ki67 > 14%, 
G3 or HER2-overexpression).

[18F]FDG‑PET/MRI

Patients fasted 6 h prior to the examination to maintain blood 
glucose levels below 150 mg/dl. The baseline breast-[18F]
FDG-PET/MRI was performed in head-first prone position 
on an integrated 3-Tesla PET/MRI system (Biograph mMR, 
Siemens Healthcare GmbH, Erlangen, Germany) using a 
dedicated 16-channel radiofrequency (RF) breast coil (Rapid 
Biomedical, Rimpar, Germany) [23]. PET and MRI data of 
both breasts were acquired simultaneously with a 20-min 
acquisition time per bed position.

The full diagnostic breast-MRI protocol comprised the 
following sequences:
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• A transversal T2-weighted (T2w) Turbo-spin Echo (TSE) 
fat-saturated sequence with a slice thickness of 7 mm 
(TE 97 ms; TR 2840 ms; FOV 400 mm; phase FOV 
75%; acquisition matrix 256 × 192, in-plane resolution 
1.6 × 1.6 mm.2)

• A transversal diffusion-weighted echo-planar imaging 
(EPI) sequence with a slice thickness of 5.0 mm (TR 
8000 ms; TE 81 ms; b-values: 0, 400, and 800 s/mm2, 
matrix size 192 × 156; FOV 420 mm, phase FOV, 81.3%; 
GRAPPA, acceleration factor 2; in-plane resolution 
2.2 × 2.2 mm.2)

• Six repetitions of a transversal 3-dimensional fast low-
angle shot (FLASH) T1w sequence with a slice thickness 
of 7 mm (TE 3.62 ms; TR 185 ms; FOV 400 mm; phase 
FOV 75%; acquisition matrix 320 × 240, in-plane resolu-
tion 1.3 × 1.3  mm2) for dynamic contrast-enhanced imag-
ing. A dose of 0.2 mmol/kg body weight gadoterate meg-
lumine (Guerbet, Dotarem®, Sulzbach, Germany) was 
injected intravenously after the first FLASH sequence 
with a flow of 2 mL/s using an automated injector (Spec-
tris Solaris, MR Injection System; Medrad, Pittsburg, 
PA). Subsequent automated image subtraction was per-
formed.

For attenuation correction (AC) of the patient tissue a 
Dixon VIBE MR sequence was used [24]. MR images of 
the Dixon-VIBE sequence were automatically segmented 
into four tissue classes (background air, lung, fat, and soft 
tissue) with pre-defined linear attenuation coefficients. 
The resulting AC-map was completed with a bone atlas 
and truncation correction [25, 26]. For the RF breast coil 
AC, a registered CT-based AC-map was implemented on 

the PET/MR system [23]. PET image reconstruction was 
performed by using an iterative ordered subset expectation 
maximization algorithm with 3 iterations and 21 subsets, 
a Gaussian filter with 4-mm full width at half maximum, 
and a 256 × 256 image matrix. The resulting PET images 
had a matrix size of 344 × 344 × 127 and a resolution of 
2.09 mm × 2.09 mm × 2.03 mm per bed position.

Image analysis

All breast-[18F]FDG-PET/MRI datasets were analyzed using 
OsiriX (version 9.0.2; Pixmeo SARL, Bernex, Switzerland) 
in random order. Two readers with more than two and ten 
years of experience in breast- and hybrid imaging performed 
data evaluation in consensus.

Tumor size (mm) was measured on T1w post-contrast 
images in three dimensions. Additionally, tumor imaging 
features, detailed below, were measured using a tumor size 
adapted spherical volume of interest (VOI) that captured 
the breast cancer lesion as defined on the T1w post-contrast 
images. The predefined VOI was copied to each sequence 
of the individual PET/MRI imaging dataset to match the 
identical plane and position. When movement during the 
examination was noted, or when the VOI did not optimally 
align with the lesion due to distortion artifacts, the VOI was 
manually reshaped. For an example, see Fig. 1.

Patient demographics/characteristics 
and histopathological parameters

In addition to imaging data, specific patient history, clini-
cal data, and histopathologic data of the primary tumor 

Fig. 1  Example of the measur-
ing procedure of a malign 
breast cancer lesion at different 
sequences of breast-[18F]
FDG-PET/MRI dataset. The red 
circle represents the volume of 
interests (VOI)
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were collected for each patient (see Table 1). Adapting the 
World Health Organization classification after ultrasound 
guided biopsy, tumor grading (G1-G3), tumor type, and 
tumor biology, including estrogen (ER) and progesterone 
receptor (PR) as well as human epidermal growth factor 
receptor 2 (HER2) status, and Ki67 (proliferation marker), 
were recorded.

Reference standard

Histopathological workup of surgical resected breast can-
cer specimens after NAST served as a reference standard 
to distinguish between pCR and non-complete pathological 
response (non-pCR). Regression criteria defined by Sinn 
et al. (1994) were used to assess therapy response [27]. Sinn 
regression grades were dichotomized into “tumor detecta-
ble” (Sinn regression grades 0 to 3) vs. “tumor not detect-
able” (Sinn regression grade 4) to gain a binary variable 
for classification. The dichotomized Sinn regression grade 
served as the outcome variable for machine learning model 
development.

Feature definition

A total of 56 features were generated to be used in a machine 
learning model.

• Histopathological features consisting of the following: 
estrogen receptor measured in % as well as binary feature 
(yes/no); progesterone receptor measured in % as well as 
binary feature (yes/no); Ki67 measured in % and imple-
mented as one-hot-encoded using three different thresh-
olds (> 14%, > 20%, > 30%); HER2 expression divided 
into no, poor, moderate, and strong expression; HER2 
positivity (HER2 +) as binary feature (yes/no) according 
to the actual guideline definitions [4]; histological grade 
divided into G1, G2, and G3; molecular subtype divided 
into Luminal-A-like, Luminal-B-like, triple negative 
breast cancer (TNBC), and HER2 + .

• PET features consisting of the following: visual PET 
positivity (clearly delineated  [18F]FDG enhancement 
of breast cancer lesion compared to surrounding breast 
parenchyma) implemented as binary feature (yes/no); 
SUVmax and SUVmean values of the breast cancer 
lesion; ratios of SUVmax/SUVmean of the breast cancer 
lesion to SUVmax/SUVmean of blood pool measured in 
the proximal descending aorta, respectively; SUVmax/
SUVmean of the lesion to SUVmax/SUVmean of the 
liver measured in the right hepatic lobe; SUVmax of the 
lesion to SUVmax of breast parenchyma measured in the 
same quadrant of the opposite site (SQOS); SUVmax of 
the lesion to SUVmax of breast parenchyma measured 
in the opposite quadrant at the same site (OQSS).

• MRI features consisting of the following: length of 
the breast cancer lesion measured at 3 min T1w post-
contrast sequence; height of the breast cancer lesion 
measured at 3 min T1w post-contrast sequence; width 
of the breast cancer lesion measured at 3 min T1w post-
contrast sequence; volume of the breast cancer lesion 
measured at 3 min T1w post-contrast sequence; relative 
contrast enhancement of breast cancer lesions at 3 min 

Table 1  Overview of patient characteristics used as features for the 
machine learning approach

Patient demographic/characteristic Value

Number of patients n = 143
Age (years)
     Mean ± SD 54 ± 12
Height (cm)
   Mean ± SD 167 ± 7

Weight (kg)
     Mean ± SD 71 ± 14
Body surface  (cm2)
     Mean ± SD 17918 ± 1763
State of menopause
     pre-menopause n = 66/143 (46%)
     peri-menopause n = 14/143 (10%)
     post-menopause n = 63/143 (44%)
     Familiar breast cancer risk n = 34/143 (24%)
TNM staging (tumor)
     T1 n = 48/143 (33%)
     T2 n = 83/143 (58%)
     T3 n = 5/143 (4%)
     T4 n = 7/143 (5%)
TNM staging (nodus)
     N1 n = 37/143 (26%)
     N2 n = 2/143 (1%)
     N3 n = 14/143 (10%)
Histopathological status
     ER + n = 96/143 (67%)
     PR + n = 93/143 (65%)
     HER2 + n = 39/143 (27%)
     KI67 > 14% n = 137/143 (96%)
     G1 n = 1/143 (1%)
     G2 n = 74/143 (52%)
     G3 n = 68/143 (47%)
Molecular subtype
     Luminal A n = 1/143 (1%)
     Luminal B n = 107/143 (75%)
     HER2 + n = 3/143 (2%)
     TNBC n = 32/143 (22%)
Pathological complete response to NAST
     Yes (Sinn 4) n = 51/143 (35.7%)
     No (Sinn 0–3) n = 92/143 (64.3%)
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and 5 min compared to non-contrast non-fat saturated 
T1w-sequence; ADCmean value of the breast cancer 
lesion; ratios of the non-fat saturated, non-contrast T1w 
value of the breast cancer lesion to the pectoral muscle 
on the same side; ADCmean of the breast cancer lesion 
to ADCmean of breast parenchyma measured in the 
same quadrant of the opposite site; visual assessment of 
fibroglandular tissue divided into almost entirely fatty, 
scattered areas of fibroglandular density, heterogeneously 
dense and extreme dense; visual assessment of breast 
parenchyma enhancement divided into minimal, poor, 
moderate, and strong.

• Sociodemographic and anthropometric features consist-
ing of the following: age; weight; height; body mass 
index (BMI); body surface according to Dubois [28]; 
binary variable of familiar risk for breast cancer (yes/
no); state of menopause divided into pre-menopause, 
peri-menopause, post-menopause.

• “Other” features consisting of the following: site of breast 
cancer lesion; nodal involvement (N-status); T-status; 
UICC state broadly divided into 1, 2, 3, and 4; binary 
breast cancer NAST features consisting of the follow-
ing: cyclophosphamid (yes/no); carboplatin (yes/no); epi-
rubicin (yes/no); etoposid (yes/no); docetaxel (yes/no); 
paclitaxel (yes/no); tamoxifen (yes/no); GNRH (yes/no); 
aromatase inhibitors (yes/no); monoclonal antibodies 
(yes/no); a grouped feature of breast cancer NAST com-
binations divided into nine present therapeutic groups 
(group 1: paclitaxel, epirubicin and cyclophosphamid; 
group 2: paclitaxel, epirubicin, cyclophosphamid, carbo-
platin, and monoclonal antibodies; group 3: paclitaxel, 
etoposid, cyclophosphamide, and monoclonal antibodies; 

group 4: paclitaxel, carboplatin; group 5: cyclophospha-
mid, docetaxel; group 6: epirubicin, cyclophosphamid; 
group 7: paclitaxel, epirubicin, carboplatin, and mono-
clonal antibodies; group 8: paclitaxel and monoclonal 
antibodies; group 9: paclitaxel, cyclophosphamid, car-
boplatin, and monoclonal antibodies).

An overview of the implemented features is given in 
Fig. 2.

Model development

An eXtreme Gradient Boosting (XGBoost) model was 
deployed to predict treatment response after NAST. 
XGBoost is a tree-based gradient boosting algorithm, i.e. a 
machine learning technique that builds an ensemble of weak 
decision tree models and combines them to create a stronger 
model. One of the main advantages of XGBoost is its flex-
ibility in handling various data types and formats without the 
need for elaborate feature engineering or feature reduction 
techniques. Another advantage is its high performance on 
structured data problems, where XGBoost often outperforms 
other algorithms with regard to predictive power. The imag-
ing and non-imaging features of each breast cancer patient, 
as specified above, served as input to the model. The dichot-
omized modified Sinn regression grade (“tumor detectable” 
vs. “tumor not detectable”) was set as output variable for 
predictive modeling. A decision threshold determines the 
probability boundary for classifying outcomes; for instance, 
with a threshold of 0.5 in binary classification, probabili-
ties at or above 0.5 are classified as the positive class, and 
those below as the negative class. The XGBoost model was 

Fig. 2  Imaging data derived from PET/MRI used for further AI eval-
uation. The features are divided in histopathological features (blue), 
PET features (red), MRI features (beige), sociodemographic/anthro-

pometric features (green), and “other” features (yellow). Outcome 
variables of XGBoost are divided in pathologic complete response 
yes (darker grey) and pathologic complete response no (lighter grey)
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trained, optimized, and evaluated using a nested cross-vali-
dation performed on the whole dataset. This approach allows 
to estimate the generalization performance on unseen data 
with optimized hyperparameters while avoiding data leak-
age. The process involves two rounds of cross-validation: An 
outer loop, where the performance of the model is evaluated 
across the hold-out datasets of a k-fold cross-validation, and 
an inner loop, where the hyperparameters of the models are 
independently tuned in each iteration of the outer loop. For 
the current study, we used a five-fold cross-validation for the 
outer loop with five random 80:20 splits of the whole dataset 
stratified for the outcome variable. Each of the “train” splits 
of the outer loop runs is then subjected to another five-fold 
stratified cross-validation, the so-called inner loops, to iden-
tify the optimal hyperparameters for the XGBoost model 
using a random search with 100 iterations optimizing for the 
largest area under the curve of the receiver operating charac-
teristics (ROC-AUC) [29]. Hyperparameters considered for 
optimization comprised the number and the maximum depth 
of trees in XGBoost, the learning rate, gamma (i.e., the mini-
mum loss reduction for a partition in a tree), the subsample 
ratio for instances and features (“colsample_bytree”), and 
the number of boosting rounds for evaluation of early stop-
ping. For each split of the outer loops, the model was refit 
on the whole training data of that (outer loop) split using 
the optimized hyperparameters from the respective inner 
loop and then tested on the hold-out data of the outer loop. 
The mean predictive performance across the five outer loop 
splits for prediction of pCR was assessed by determining 
mean ROC-AUC, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) and accu-
racy. Additionally to the default decision threshold of the 
XGBosst model at 0.5, more conservative (threshold at 0.7) 
or lenient (threshold at 0.3) decision thresholds were tested 
and the aforementioned metrics were evaluated for these 
cut-off values. Despite total data evaluation a further sub-
group analysis focusing on HER2+ patients was conducted 
by employing another XGBoost model on this subsample 
using an equivalent model deployment and evaluation as 
for the total sample.

Model development and evaluation was conducted using 
Python v3.10.4 with the scikit-learn library v1.1.2 and using 
the XGBoost implementation for Python v1.7.2 (https:// 
github. com/ dmlc/ xgboo st/).

Feature importances

To evaluate which features contributed most to the classifica-
tion of pCR and non-pCR, a built-in function of XGBoost 
was used to analyze feature-importance and averaged across 
the outer splits of nested cross-validation. It is based on the 
“gain” of each feature, i.e. the average gain in classification 
accuracy of the tree’s splits which use the feature for each tree 

in the model. A higher gain for a feature implies that it is more 
important for generating a valid prediction.

Results

Patient demographics/characteristics

Fifty-one of 143 (35.7%) patients achieved pCR according 
to the reference standard and 92/143 (64.3%) patients were 
designated non-pCR. A detailed overview of the demograph-
ics and patient characteristics is provided in Table 1.

XGBoost model performance

Nested-cross-validation employing the XGBoost model on 
total data yielded a mean ROC-AUC of 80.4 ± 6.0% (range: 
71.7 to 86.3%) for the prediction of pCR across the outer 
loops. With the default decision threshold at 0.5, a mean 
sensitivity (recall) of 54.5 ± 21.3% (range: 30.0 to 72.7%), 
a mean specificity of 83.6 ± 4.2% (range: 77.7 to 89.5%), a 
mean PPV (precision) of 63.6 ± 8.5% (range: 55.5 to 72.7%), 
a mean NPV of 77.6 ± 8.1% (range: 70.8 to 88.9%), and a 
mean accuracy of 73.3 ± 6.4% (range: 67.8 to 82.8%) could 
be achieved. After adapting the decision cut-off to 0.7, mean 
sensitivity drops to 21.4 ± 17.0% (range: 0.0 to 100.0%) 
while mean specificity increases to 98.9 ± 2.1% (range: 94.7 
to 100.0%), mean PPV increases to 76.7 ± 38.9% (range: 0.0 
to 100.0%), mean NPV slightly decreases to 69.8 ± 4.5% 
(range: 65.5 to 78.2%), and mean accuracy is quite stable 
with 71.3 ± 4.7% (range: 65.5–79.3%). Lowering the deci-
sion cut-off to 0.3 yielded an increased mean sensitivity 
of 90.3 ± 8.6% (range: 81.8 to 100.0%), a decreased mean 
specificity of 51.3 ± 26.9% (range: 0.0 to 78.9%), a slightly 
decreased mean PPV of 53.8 ± 11.1% (range: 34.5 to 69.2%), 
and an increased mean NPV of 90.7 ± 36.8% (range: 0.0 
to 100.0%). The mean accuracy was slightly decreased to 
65.1 ± 16.2% (range: 34.5–82.8%). For a graphical overview, 
see Table 2.

A separate subgroup analysis focusing on HER2+  
patients employing the XGBoost model yielded a mean 
ROC-AUC of 85.6 ± 12.2% (range: 61.5 to 93.8%) for the 
prediction of pCR across the outer loops. A mean sensitiv-
ity of 35.0 ± 27.9% (range: 0.0 to 75.0%), a mean specific-
ity of 95.4% ± 9.2% (range: 76.9 to 100.0%), a mean PPV 
of 65.0 ± 43.6% (range: 0.0 to 100.0%), a mean NPV of 
79.9% ± 8.4% (range: 71.4 to 92.9%), and a mean accuracy 
of 78.8 ± 11.8% (range: 61.1–94.1%) could be achieved.

Feature importance

The rank of the 20 most important features contributing to 
the performance of the XGBoost model across the nested 
cross validation are visualized in Fig. 3.

https://github.com/dmlc/xgboost/
https://github.com/dmlc/xgboost/
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With regard to the distinct data sources of the features, 
histopathological features (ER+ measured in %; histologi-
cal grade ranging from G1 to G3; Ki67 measured in %; 
PR+ measured in %) contributed to four of the five most 
important features. The most important image based feature 
was the ratio of SUVmean of the lesion to SUVmean of the 

proximal descending aorta (blood pool) and contributed as 
second most important feature of the XGBoost model. PET 
and MRI features contributed with a nearly equal feature 
importance and consisted of the following PET features: 
(i) the ratio of SUVmax of the lesion to SUVmax of the 
breast parenchyma measured in the same quadrant of the 

Table 2  Performance of the XGBoost model for predicting pathologi-
cal complete response (pCR) vs. non-pCR on total data. Performance 
metrics were calculated across the outer loops of a fivefold nested 
cross-validation. Mean, standard deviation, and ranges are reported 

for ROC-AUC, sensitivity, specificity, positive predictive value (PPV; 
precision); negative predictive value (NPV) and accuracy. Decision 
cut-off values of 0.3, 0.5, and 0.7 were evaluated

Performance criteria XGBoost model XGBoost model XGBoost model

cut-off 0.5 cut-off 0.3 cut-off 0.7

mean ± SD (range) mean ± SD (range) mean ± SD (range)

ROC-AUC 80.4 ± 6.0% (71.7–86.3%) 80.4 ± 6.0% (71.7–86.3%) 80.4 ± 6.0% (71.7–86.3%)
Sensitivity 54.5 ± 21.3% (30.0–72.7%) 90.3 ± 8.6% (81.8–100.0%) 21.4 ± 17.0% (0.0–100.0%)
Specificity 83.6 ± 4.2% (77.7–89.5%) 51.3 ± 26.9% (0.0–78.9%) 98.9 ± 2.1% (94.7–100.0%)
Positive predictive value (PPV) 63.6 ± 8.5% (55.5–72.7%) 53.8 ± 11.1% (34.5–69.2%) 76.7 ± 38.9% (0.0–100.0%)
Negative predictive value (NPV) 77.6 ± 8.1% (70.8–88.9%) 90.7 ± 36.8% (0.0–100.0%) 69.8 ± 4.5% (65.5–78.2%)
Accuracy 73.3 ± 6.4% (67.8–82.8%) 65.1 ± 16.2% (34.5–82.8%) 71.3 ± 4.7% (65.5–79.3%)

Fig. 3  The twenty most important features to the predictive perfor-
mance of the XGBoost model across the outer loops of the nested 
cross-validation. The features are divided in histopathological (HP, 

blue), PET (red), MRI (beige), and sociodemographic/anthropometric 
(SD/AP, green) features. X-axis visualizes the rate of feature impor-
tance
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opposite site (SQOS) and (ii) SUVmax of the lesion (iii) the 
ratio of SUVmax of the lesion to SUVmax of the proximal 
descending aorta (blood pool) (iv) the ratio of SUVmean 
of the lesion to SUVmean of the liver and following MRI 
features: (i) the tumor length (ii) relative contrast enhance-
ment of the tumor at 5 min T1w post-contrast sequence (iii) 
absolute contrast enhancement of the tumor at 5 min T1w 
post-contrast sequence (iv) the tumor volume (v) relative 
contrast enhancement of the tumor at 3 min T1w post-con-
trast sequence (vi) the tumor width. Overall, features of the 
sociodemographic and anthropometric subgroup contributed 
less than histopathologic and nearly equal to several PET 
and MRI imaging features, whereas age, weight, size, and 
BMI were the most important sociodemographic and anthro-
pometric factors.

Discussion

At locally advanced or high-risk breast cancer, NAST is rec-
ommended as the therapy of choice in current breast can-
cer guidelines as part of a multimodal therapeutic approach 
[11]. The goal of this neo-adjuvant therapy regimen is the 
achievement of a pCR, which is considered an independent 
surrogate parameter for overall- and disease-free survival 
[12, 13]. However, the major problem during such intense 
therapies are adverse effects and complications increasing 
with patient’s age, accomplished by naturally decreasing 
resilience [30]. Although several conventional studies exam-
ined histopathological data and different imaging modalities 
for their potential in predicting pCR [14–16, 31, 32], by now, 
only histopathological workup of resected breast cancer tis-
sue after NAST provides adequate sensitivity.

For that purpose, this study presents and evaluates an 
XGBoost-based machine learning model for the prediction 
of pCR based on clinical, histopathologic, and easily assess-
able multimodal imaging features derived from baseline 
breast  [18F]FDG-PET/MRI prior to NAST in breast cancer 
patients to predict pCR on an individual basis, which may 
contribute to an improved patient-centered therapy.

According to the presented data, three important observa-
tions can be derived: First, histopathological data including 
receptor state (ER and PR), histological grade, and prolifera-
tion index (Ki67) were the most important features for the 
predictive performance of the XGBoost model. This is con-
sistent with actual clinical decision making in routine clini-
cal practice. Here, the individual histopathological profile 
of the breast cancer has a decisive influence on the choice 
of NAST. Thus, for example, endocrine target therapies are 
crucial in hormone receptor positive breast cancer [4].

Second, metabolic (PET) features show a high feature 
importance in the XGBoost model and the ratio of SUVmean 
of the lesion to SUVmean of the proximal descending aorta 

(blood pool) contributed as second most important feature of 
the model, outperforming all MRI features and shows similar 
importance to several histopathologic features. This could 
be explained by the representation of tumor metabolism, 
which is also influenced by tumor biology and thus allows 
indirect conclusions about the effect of therapy [33]. Previ-
ous studies have shown correlations between metabolism 
(SUV) and tumor biology in conventional statistical analysis, 
further bolstering this understanding. For instance, Catalano 
et al. (2017) identified an inverse correlation between the 
SUVmax of the BC lesion and both estrogen receptor and 
progesterone receptor expression, a finding also supported 
by other research [34, 35]. Additionally, correlations of SUV 
values with Ki67 and tumor grading hint at potential ties to 
tumor aggressiveness [35].

Third, the XGBoost model achieved a mean ROC-AUC 
of about 80% across a nested cross-validation, indicating 
a good predictive performance of the approach to unseen 
data. These results are comparable to a deep-learning based 
approach published by Choi et al. (2020), yielding a ROC-
AUC of 80% by implementing a deep learning model based 
on PET data from PET/CT and breast MRI data [36]. Devi-
ating from our study, Choi and colleagues used imaging data 
collected before and after NAC and did not include other 
patient data. Our approach achieves comparable predictive 
performance only with data collected before NAST. This is 
particularly noteworthy because, in the absence of exter-
nal validation data, our study used a nested cross-validation 
approach, which is a rather conservative method in regard to 
estimating the generalizability of a model to given data due 
to reduced risk of overestimation/overfitting of a machine 
learning model [37–39].

It should be mentioned that the XGBoost model (cut-
off 0.5) yielded a relatively large spread of sensitivity 
(30–72.7%), specificity (77.7–89.5%), PPV (55.5–72.7%), 
and NPV (70.8–88.9%) across the random splits of the 
nested cross-validation, most likely owed to a rather high 
subtype heterogeneity of the included sample as well the het-
erogeneity of performed NAST regimes. Although this study 
included a relatively large collection of high-risk breast 
cancer patients imaged with  [18F]FDG-PET/MRI, a much 
larger patient cohort might homogenize the results and also 
improve the model performance in some cases. Nonetheless, 
there is the risk that variance and heterogeneity of the data 
could also increase after including much more patients and 
data. This could negatively affect the model performance 
and results and must be considered even if larger cohorts 
and datasets are used. Nevertheless, testing such predictive 
models in large samples with a wide range of variance will 
be important to better estimate the generalizability of a mod-
el’s performance in real-life scenarios [40]. Furthermore, 
according to previous studies, repetitive imaging during 
NAST seems to be a promising approach and is expected to 
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increase the predictive performance [41, 42]. For example, 
Syed et al. (2023) achieved an AUC of 95% using longitu-
dinal MRI features, tumor characteristics, and patient demo-
graphics in their XGBoost model [42]. Since our evaluation 
showed a high rank of the PET component with respect to 
the feature importance, it can be assumed that the predictive 
power can be further increased with additional longitudinal 
parameters. Furthermore, sensitivity might also benefit from 
longitudinal imaging, as Syed et al. (2023) demonstrated 
with a sensitivity of 93% in their study [42].

Predicting NAST non-responders in breast cancer patients 
may also be of great clinical importance for therapeutic deci-
sion making. Early identification of a non-responding patient 
could lead to early alternative treatment planning in case of 
severe side effects. In this scenario, high negative predictive 
values and high specificities are more desirable than high 
sensitivities, which is the case in our model. However, the 
mean NPVs (77.7%) and specificities (83.6%) obtained are 
not yet high enough to justify the use of such an approach 
as a single marker for clinical decision making, but can be 
used to guide decisions in case of doubt. Additionally, with 
regard to the presented data on differing decision cut-offs, 
threshold modifications could be helpful adjust a model in 
a direction to more appropriately answer specific clinical 
questions. Thus, for example, lowering the cut-off to 0.3 
increased the NPV to 90.7%.

Future research should focus on reliably predicting pCR 
and non-PCR in breast cancer patients by leveraging the 
huge amount of multimodal data already available. With 
respect to potentially increasing variance and heterogeneity 
of data, increasing the number of patients could be one pos-
sibility for model improvement. A reduction of implemented 
features would probably not increase model performance in 
the used gradient boosting approach that is not very prone 
to feature redundancy and already entails an implicit fea-
ture selection. Based on the current literature and the pre-
sented data, integrating (even short-term) follow-up scans 
might add substantially important information for the deci-
sion task, which could probably elevate model performance 
metrics to another level. Furthermore, integrating informa-
tion from axillary lymph node involvement/pCR would be 
important to get a more integral view of therapy response 
after NAST [17]. Following this could significantly improve 
individualized and patient-centered decision making in favor 
and against a NAST in breast cancer patients.

There are some limitations to this study. Although it has 
to be noted that in light of the limited availability of breast 
 [18F]FDG-PET/MRI datasets, this study includes a rela-
tively large number of patients, including a larger number of 
patients might be beneficial. A second limitation is the pre-
sent inhomogeneity, especially with regard to the histopatho-
logical characteristics or NAST therapy regimes. Although 

the presented subgroup analysis of HER2+ patients not reach 
the increase of model performance Umutlu et al. (2022) 
mentioned in their analysis, it could be a hint that sample 
heterogeneity maybe one of the relevant factors responsi-
ble for only moderate predictive performances in the main 
analysis. Nevertheless, it has to be mentioned that the num-
ber of patients in this subgroup analysis is rather low, which 
may affect reliability of the observed results. Nonetheless, 
the risk of inhomogeneity of course is consistent with the 
clinical reality of breast cancer patients, but underlines the 
need for a large number of patients to include in a machine 
learning–based approach so that as many combinations as 
possible can be learned by the model. Furthermore, analysis 
of feature importance should be interpreted with respective 
caution in regard to possible dilution effects in case of col-
linearity of included features. However, such dilution effect 
due to collinearity is mainly a problem of parallel ensemble 
learning classifiers (e.g., random forest) and can be largely 
avoided in the gradient boosting models like the one used 
for the current study.

Conclusion

In conclusion, the evaluated multimodal machine learning 
model shows promising results for predicting pathological 
complete response in breast cancer patients prior to NAST, 
but yielded results are currently insufficient to be imple-
mented in the clinical decision-making process.

Future studies with larger patient cohorts and longitudinal 
breast  [18F]FDG-PET/MRI data during NAST may be help-
ful to develop clinical valid models.

Author contribution Kai Jannusch: data curation, writing—original 
draft preparation, investigation, visualization, validation, formal analy-
sis. Julian Kirchner, Christian Rubbert, Julian Caspers: conceptualiza-
tion, methodology, investigation, patient recruitment, patient treatment, 
writing—review and editing, supervision. Ann-Kathrin Bittner, Svjet-
lana Mohrmann: patient recruitment, patient treatment data curation, 
writing—review and editing. Frederic Dietzel: data curation, investi-
gation, writing—review and editing. Nils Martin Bruckmann, Janna 
Morawitz, Matthias Boschheidgen, Peter Minko, Harald H. Quick: data 
curation, writing—review and editing. Ken Herrmann, Lale Umutlu, 
Gerald Antoch: writing—reviewing and editing, supervision, resources. 
All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt 
DEAL. The study is funded by Deutsche Forschungsgemeinschaft 
(DFG), the German Research Foundation (BU3075/2-1 and KI2434/1-
2). The funding foundation was not involved in trial design, patient 
recruitment, data collection, analysis, interpretation or presentation, 
writing or editing of the reports, or the decision to submit for publica-
tion. The corresponding author had full access to all data in the study 
and had all responsibility for the decision to submit for publication.



1460 European Journal of Nuclear Medicine and Molecular Imaging (2024) 51:1451–1461

1 3

Data availability The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.

Declarations 

Ethics approval All procedures performed were in accordance with 
the ethical standards of the institutional research committee and with 
the principles of the 1964 Declaration of Helsinki and its later amend-
ments.

Consent to participate Written informed consent was obtained from 
all individual participants included in the study.

Competing interests Ken Herrmann reports personal fees from Bayer, 
personal fees and other from Sofie Biosciences, personal fees from 
SIRTEX, non-financial support from ABX, personal fees from Adacap, 
personal fees from Curium, personal fees from Endocyte, grants and 
personal fees from BTG, personal fees from IPSEN, personal fees from 
Siemens Healthineers, personal fees from GE Healthcare, personal fees 
from Amgen, personal fees from Fusion, personal fees from Immedica, 
personal fees from Onkowissen.de, personal fees from Novartis, per-
sonal fees from Molecular Partners, personal fees from ymabs, personal 
fees from Aktis Oncology, personal fees from Theragnostics, personal 
fees from Pharma15, personal fees from Debiopharm, personal fees 
from AstraZeneca, personal fees from Janssen. All other authors 
declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, 
Jemal A, et al. Global cancer statistics 2020: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in 185 
countries. CA Cancer J Clin. 2021;71:209–49. https:// doi. org/ 10. 
3322/ caac. 21660.

 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal 
A. Global cancer statistics 2018: GLOBOCAN estimates of inci-
dence and mortality worldwide for 36 cancers in 185 countries. 
CA Cancer J Clin. 2018;68:394–424. https:// doi. org/ 10. 3322/ caac. 
21492.

 3. Rose J, Puckett Y. Breast Reconstruction Free Flaps. StatPearls. 
Treasure Island (FL): StatPearls Publishing Copyright © 2022, 
StatPearls Publishing LLC.; 2022.

 4. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft DK, 
AWMF). S3-Leitlinie Früherkennung, Diagnose, Therapie und 
Nachsorge des Mammakarzinoms. 2021; Version 4.4. AWMF 
Registernummer: 032-045OL. http:// www. leitl inien progr amm- 
onkol ogie. de/ leitl inien/ mamma karzi nom/. (abgerufen  am: 
11.11.2023)

 5. Bruckmann NM, Morawitz J, Fendler WP, Ruckhäberle E, Bittner 
AK, Giesel FL, et al. A role of PET/MR in breast cancer? Semin 
Nucl Med. 2022. https:// doi. org/ 10. 1053/j. semnu clmed. 2022. 01. 
003.

 6. Murthy V, Sonni I, Jariwala N, Juarez R, Reiter RE, Raman SS, 
et al. The role of PSMA PET/CT and PET/MRI in the initial stag-
ing of prostate cancer. Eur Urol Focus. 2021;7:258–66. https:// doi. 
org/ 10. 1016/j. euf. 2021. 01. 016.

 7. Heacock L, Weissbrot J, Raad R, Campbell N, Friedman 
KP, Ponzo F, et  al. PET/MRI for the evaluation of patients 
with lymphoma: initial observations. AJR Am J Roentgenol. 
2015;204:842–8. https:// doi. org/ 10. 2214/ AJR. 14. 13181.

 8. Kirchner J, Grueneisen J, Martin O, Oehmigen M, Quick HH, 
Bittner A-K, et al. Local and whole-body staging in patients with 
primary breast cancer: a comparison of one-step to two-step stag-
ing utilizing 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 
2018;45:2328–37. https:// doi. org/ 10. 1007/ s00259- 018- 4102-4.

 9. Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Herrmann K, 
Bittner AK, et al. Prospective comparison of CT and 18F-FDG 
PET/MRI in N and M staging of primary breast cancer patients: 
initial results. PLoS ONE. 2021;16: e0260804. https:// doi. org/ 10. 
1371/ journ al. pone. 02608 04.

 10. Bruckmann NM, Kirchner J, Umutlu L, Fendler WP, Seifert R, 
Herrmann K, et al. Prospective comparison of the diagnostic accu-
racy of 18F-FDG PET/MRI, MRI, CT, and bone scintigraphy for 
the detection of bone metastases in the initial staging of primary 
breast cancer patients. Eur Radiol. 2021;31:8714–24. https:// doi. 
org/ 10. 1007/ s00330- 021- 07956-0.

 11. Cardoso F, Paluch-Shimon S, Senkus E, Curigliano G, Aapro MS, 
André F, et al. 5th ESO-ESMO international consensus guidelines 
for advanced breast cancer (ABC 5). Ann Oncol. 2020;31:1623–
49. https:// doi. org/ 10. 1016/j. annonc. 2020. 09. 010.

 12. Mougalian SS, Hernandez M, Lei X, Lynch S, Kuerer HM, Sym-
mans WF, et al. Ten-year outcomes of patients with breast cancer 
with cytologically confirmed axillary lymph node metastases and 
pathologic complete response after primary systemic chemother-
apy. JAMA Oncol. 2016;2:508–16. https:// doi. org/ 10. 1001/ jamao 
ncol. 2015. 4935.

 13. Fayanju OM, Ren Y, Thomas SM, Greenup RA, Plichta JK, 
Rosenberger LH, et al. The clinical significance of breast-only 
and node-only pathologic complete response (pCR) after neoad-
juvant chemotherapy (NACT): a review of 20,000 breast cancer 
patients in the National Cancer Data Base (NCDB). Ann Surg. 
2018;268:591–601. https:// doi. org/ 10. 1097/ sla. 00000 00000 
002953.

 14. Gu YL, Pan SM, Ren J, Yang ZX, Jiang GQ. Role of magnetic 
resonance imaging in detection of pathologic complete remission 
in breast cancer patients treated with neoadjuvant chemotherapy: 
a meta-analysis. Clin Breast Cancer. 2017;17:245–55. https:// doi. 
org/ 10. 1016/j. clbc. 2016. 12. 010.

 15. Urso L, Evangelista L, Alongi P, Quartuccio N, Cittanti C, Ram-
baldi I, et al. The value of semiquantitative parameters derived 
from (18)F-FDG PET/CT for predicting response to neoadjuvant 
chemotherapy in a cohort of patients with different molecular sub-
types of breast cancer. Cancers (Basel). 2022;14(23):5869. https:// 
doi. org/ 10. 3390/ cance rs142 35869.

 16. Park SH, Moon WK, Cho N, Chang JM, Im S-A, Park I, et al. 
Comparison of diffusion-weighted MR imaging and FDG PET/CT 
to predict pathological complete response to neoadjuvant chemo-
therapy in patients with breast cancer. Eur Radiol. 2012;22:18–25.

 17. Morawitz J, Sigl B, Rubbert C, Bruckmann NM, Dietzel F, 
Häberle LJ, et al. Clinical decision support for axillary lymph 
node staging in newly diagnosed breast cancer patients based 
on (18)F-FDG PET/MRI and machine learning. J Nucl Med. 
2023;64:304–11. https:// doi. org/ 10. 2967/ jnumed. 122. 264138.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/
http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/
https://doi.org/10.1053/j.semnuclmed.2022.01.003
https://doi.org/10.1053/j.semnuclmed.2022.01.003
https://doi.org/10.1016/j.euf.2021.01.016
https://doi.org/10.1016/j.euf.2021.01.016
https://doi.org/10.2214/AJR.14.13181
https://doi.org/10.1007/s00259-018-4102-4
https://doi.org/10.1371/journal.pone.0260804
https://doi.org/10.1371/journal.pone.0260804
https://doi.org/10.1007/s00330-021-07956-0
https://doi.org/10.1007/s00330-021-07956-0
https://doi.org/10.1016/j.annonc.2020.09.010
https://doi.org/10.1001/jamaoncol.2015.4935
https://doi.org/10.1001/jamaoncol.2015.4935
https://doi.org/10.1097/sla.0000000000002953
https://doi.org/10.1097/sla.0000000000002953
https://doi.org/10.1016/j.clbc.2016.12.010
https://doi.org/10.1016/j.clbc.2016.12.010
https://doi.org/10.3390/cancers14235869
https://doi.org/10.3390/cancers14235869
https://doi.org/10.2967/jnumed.122.264138


1461European Journal of Nuclear Medicine and Molecular Imaging (2024) 51:1451–1461 

1 3

 18. Pehrson LM, Nielsen MB, Ammitzbøl LC. Automatic pulmonary 
nodule detection applying deep learning or machine learning algo-
rithms to the LIDC-IDRI database: a systematic review. Diagnos-
tics. 2019;9:29.

 19. Rubbert C, Wolf L, Turowski B, Hedderich DM, Gaser C, Dahnke 
R, et al. Impact of defacing on automated brain atrophy estima-
tion. Insights Imaging. 2022;13:54. https:// doi. org/ 10. 1186/ 
s13244- 022- 01195-7.

 20. Morawitz J, Bruckmann N-M, Dietzel F, Ullrich T, Bittner A-K, 
Hoffmann O, et al. Comparison of nodal staging between CT, 
MRI, and [(18)F]-FDG PET/MRI in patients with newly diag-
nosed breast cancer. Eur J Nucl Med Mol Imaging. 2022;49:992–
1001. https:// doi. org/ 10. 1007/ s00259- 021- 05502-0.

 21. Atallah D, Moubarak M, Arab W, El Kassis N, Chahine G, Salem 
C. MRI-based predictive factors of axillary lymph node status in 
breast cancer. Breast J. 2020;26:2177–82. https:// doi. org/ 10. 1111/ 
tbj. 14089.

 22. Association WM. World Medical Association Declaration of 
Helsinki: ethical principles for medical research involving human 
subjects. JAMA. 2013;310:2191–4. https:// doi. org/ 10. 1001/ jama. 
2013. 281053.

 23. Oehmigen M, Lindemann ME, Lanz T, Kinner S, Quick HH. 
Integrated PET/MR breast cancer imaging: attenuation correc-
tion and implementation of a 16-channel RF coil. Med Phys. 
2016;43:4808. https:// doi. org/ 10. 1118/1. 49595 46.

 24. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, 
Chefd’hotel C, Ziegler SI, et al. Tissue classification as a poten-
tial approach for attenuation correction in whole-body PET/MRI: 
evaluation with PET/CT data. J Nucl Med. 2009;50:520–6. https:// 
doi. org/ 10. 2967/ jnumed. 108. 054726.

 25. Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Her-
mosillo G, et al. Whole-body PET/MR imaging: quantitative 
evaluation of a novel model-based MR attenuation correction 
method including bone. J Nucl Med. 2015;56:1061–6. https:// 
doi. org/ 10. 2967/ jnumed. 115. 156000.

 26. Lindemann ME, Oehmigen M, Blumhagen JO, Gratz M, Quick HH. 
MR-based truncation and attenuation correction in integrated PET/
MR hybrid imaging using HUGE with continuous table motion. 
Med Phys. 2017;44:4559–72. https:// doi. org/ 10. 1002/ mp. 12449.

 27. Sinn HP, Schmid H, Junkermann H, Huober J, Leppien G, Kauf-
mann M, et al. Histologic regression of breast cancer after pri-
mary (neoadjuvant) chemotherapy. Geburtshilfe Frauenheilkd. 
1994;54:552–8. https:// doi. org/ 10. 1055/s- 2007- 10223 38.

 28. Du Bois D, Du Bois EF. Clinical calorimetry: tenth paper a for-
mula to estimate the approximate surface area if height and weight 
be known. Arch Intern Med. 1916;XVII:863–71. https:// doi. org/ 
10. 1001/ archi nte. 1916. 00080 13001 0002.

 29. Bergstra J, Bengio Y. Random search for hyper-parameter optimi-
zation. J Mach Learn Res. 2012;13:281–305.

 30. Hurria A, Soto-Perez-de-Celis E, Allred JB, Cohen HJ, Arsenyan 
A, Ballman K, et al. Functional decline and resilience in older 
women receiving adjuvant chemotherapy for breast cancer. J Am 
Geriatr Soc. 2019;67:920–7. https:// doi. org/ 10. 1111/ jgs. 15493.

 31. Heil J, Kümmel S, Schaefgen B, Paepke S, Thomssen C, Rauch 
G, et al. Diagnosis of pathological complete response to neoadju-
vant chemotherapy in breast cancer by minimal invasive biopsy 

techniques. Br J Cancer. 2015;113:1565–70. https:// doi. org/ 10. 
1038/ bjc. 2015. 381.

 32. Del Prete S, Caraglia M, Luce A, Montella L, Galizia G, Sper-
longano P, et al. Clinical and pathological factors predictive of 
response to neoadjuvant chemotherapy in breast cancer: a single 
center experience. Oncol Lett. 2019;18:3873–9. https:// doi. org/ 
10. 3892/ ol. 2019. 10729.

 33. Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast 
Cancer Metastasis. Front Oncol. 2020;10: 602416. https:// doi. org/ 
10. 3389/ fonc. 2020. 602416.

 34. Catalano OA, Horn GL, Signore A, Iannace C, Lepore M, Vangel 
M, et al. PET/MR in invasive ductal breast cancer: correlation 
between imaging markers and histological phenotype. Br J Can-
cer. 2017;116:893–902. https:// doi. org/ 10. 1038/ bjc. 2017. 26.

 35. Jannusch K, Bittner A-K, Bruckmann NM, Morawitz J, Stieglitz 
C, Dietzel F, et al. Correlation between imaging markers derived 
from pet/mri and invasive acquired biomarkers in newly diagnosed 
breast cancer. Cancers. 2023;15:1651.

 36. Choi JH, Kim H-A, Kim W, Lim I, Lee I, Byun BH, et al. Early 
prediction of neoadjuvant chemotherapy response for advanced 
breast cancer using PET/MRI image deep learning. Sci Rep. 
2020;10:21149. https:// doi. org/ 10. 1038/ s41598- 020- 77875-5.

 37. Parvandeh S, Yeh H-W, Paulus MP, McKinney BA. Consensus 
features nested cross-validation. Bioinformatics. 2020;36:3093–8. 
https:// doi. org/ 10. 1093/ bioin forma tics/ btaa0 46.

 38. Tsamardinos I, Rakhshani A, Lagani V. Performance-estima-
tion properties of cross-validation-based protocols with simul-
taneous hyper-parameter optimization. Int J Artif Intell Tools. 
2015;24:1540023. https:// doi. org/ 10. 1142/ s0218 21301 54002 30.

 39. Wainer J, Cawley G. Nested cross-validation when selecting clas-
sifiers is overzealous for most practical applications. Expert Syst 
Appl. 2021;182: 115222. https:// doi. org/ 10. 1016/j. eswa. 2021. 
115222.

 40. Varoquaux G, Cheplygina V. Machine learning for medical 
imaging: methodological failures and recommendations for 
the future. NPJ Digit Med. 2022;5:48. https:// doi. org/ 10. 1038/ 
s41746- 022- 00592-y.

 41. Tahmassebi A, Wengert GJ, Helbich TH, Bago-Horvath Z, Alaei 
S, Bartsch R, et al. Impact of machine learning with multiparamet-
ric magnetic resonance imaging of the breast for early prediction 
of response to neoadjuvant chemotherapy and survival outcomes 
in breast cancer patients. Invest Radiol. 2019;54:110–7. https:// 
doi. org/ 10. 1097/ rli. 00000 00000 000518.

 42. Syed A, Adam R, Ren T, Lu J, Maldjian T, Duong TQ. Machine 
learning with textural analysis of longitudinal multiparametric 
MRI and molecular subtypes accurately predicts pathologic com-
plete response in patients with invasive breast cancer. PLoS ONE. 
2023;18: e0280320. https:// doi. org/ 10. 1371/ journ al. pone. 02803 
20.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s13244-022-01195-7
https://doi.org/10.1186/s13244-022-01195-7
https://doi.org/10.1007/s00259-021-05502-0
https://doi.org/10.1111/tbj.14089
https://doi.org/10.1111/tbj.14089
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1118/1.4959546
https://doi.org/10.2967/jnumed.108.054726
https://doi.org/10.2967/jnumed.108.054726
https://doi.org/10.2967/jnumed.115.156000
https://doi.org/10.2967/jnumed.115.156000
https://doi.org/10.1002/mp.12449
https://doi.org/10.1055/s-2007-1022338
https://doi.org/10.1001/archinte.1916.00080130010002
https://doi.org/10.1001/archinte.1916.00080130010002
https://doi.org/10.1111/jgs.15493
https://doi.org/10.1038/bjc.2015.381
https://doi.org/10.1038/bjc.2015.381
https://doi.org/10.3892/ol.2019.10729
https://doi.org/10.3892/ol.2019.10729
https://doi.org/10.3389/fonc.2020.602416
https://doi.org/10.3389/fonc.2020.602416
https://doi.org/10.1038/bjc.2017.26
https://doi.org/10.1038/s41598-020-77875-5
https://doi.org/10.1093/bioinformatics/btaa046
https://doi.org/10.1142/s0218213015400230
https://doi.org/10.1016/j.eswa.2021.115222
https://doi.org/10.1016/j.eswa.2021.115222
https://doi.org/10.1038/s41746-022-00592-y
https://doi.org/10.1038/s41746-022-00592-y
https://doi.org/10.1097/rli.0000000000000518
https://doi.org/10.1097/rli.0000000000000518
https://doi.org/10.1371/journal.pone.0280320
https://doi.org/10.1371/journal.pone.0280320

	Titelblatt_Rubbert_Final
	Rubbert_Prediction
	Prediction of therapy response of breast cancer patients with machine learning based on clinical data and imaging data derived from breast [18F]FDG-PETMRI
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Material and methods
	Patients
	[18F]FDG-PETMRI
	Image analysis
	Patient demographicscharacteristics and histopathological parameters
	Reference standard
	Feature definition
	Model development
	Feature importances

	Results
	Patient demographicscharacteristics
	XGBoost model performance
	Feature importance

	Discussion
	Conclusion
	References



