
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use:

logicDT: a procedure for identifying response-associated interactions between binary
predictors

Suggested Citation:
Lau, M., Schikowski, T., & Schwender, H. (2023). logicDT: a procedure for identifying response-associated
interactions between binary predictors. Machine Learning, 113(2), 933–992.
https://doi.org/10.1007/s10994-023-06488-6

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20250307-113819-1

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Michael Lau, Tamara Schikowski & Holger Schwender

Article - Version of Record

Vol.:(0123456789)

Machine Learning (2024) 113:933–992
https://doi.org/10.1007/s10994-023-06488-6

1 3

logicDT: a procedure for identifying response‑associated
interactions between binary predictors

Michael Lau1,2 · Tamara Schikowski2 · Holger Schwender1

Received: 3 November 2022 / Revised: 13 October 2023 / Accepted: 16 November 2023 /
Published online: 22 December 2023
© The Author(s) 2023

Abstract
Interactions between predictors play an important role in many applications. Popular and
successful tree-based supervised learning methods such as random forests or logic regres-
sion can incorporate interactions associated with the considered outcome without specify-
ing which variables might interact. Nonetheless, these algorithms suffer from certain draw-
backs such as limited interpretability of model predictions and difficulties with negligible
marginal effects in the case of random forests or not being able to incorporate interactions
with continuous variables, being restricted to additive structures between Boolean terms,
and not directly considering conjunctions that reveal the interactions in the case of logic
regression. We, therefore, propose a novel method called logic decision trees (logicDT)
that is specifically tailored to binary input data and helps to overcome the drawbacks of
existing methods. The main idea consists of considering sets of Boolean conjunctions,
using these terms as input variables for decision trees, and searching for the best perform-
ing model. logicDT is also accompanied by a framework for estimating the importance of
identified terms, i.e., input variables and interactions between input variables. This new
method is compared to other popular statistical learning algorithms in simulations and real
data applications. As these evaluations show, logicDT is able to yield high prediction per-
formances while maintaining interpretability.

Keywords Decision trees · Interpretable machine learning · Regression procedure ·
Variable importance measures · Importance of interactions · Polygenic risk scores

Editor: Johannes Fürnkranz.

 * Michael Lau
 michael.lau@hhu.de

 Tamara Schikowski
 tamara.schikowski@iuf-duesseldorf.de

 Holger Schwender
 holger.schwender@hhu.de

1 Mathematical Institute, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf,
Germany

2 IUF - Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50,
40225 Düsseldorf, Germany

http://orcid.org/0000-0002-5327-8351
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06488-6&domain=pdf

934 Machine Learning (2024) 113:933–992

1 3

1 Introduction

In many practically relevant applications, a proper coverage of interactions between pre-
dictors is key for constructing strong predictive models. One particularly important exam-
ple is the analysis of genetic or environmental risk factors in epidemiological and medi-
cal studies for, e.g., constructing genetic/polygenic risk scores (Che & Motsinger-Reif,
2013; Ho et al., 2019) that can be viewed as a function � ∶ X → Y from the p-dimen-
sional space X = {0, 1, 2}p of p SNPs (single nucleotide polymorphisms), i.e., single
base-pair substitutions in the DNA, to the response space Y assigning a risk estimate.
For example, for a binary outcome such as a binary disease status, a probability estimate
P̂(Y = 1 ∣ X = x) ∈ [0, 1] of developing this disease might be a proper risk estimate. Since
SNPs are variables with three possible outcomes counting the number of minor allele
occurrences with respect to both chromosomes, i.e., how often the less frequent variant
occurs in an individual, they can be easily (and biologically meaningful) divided into two
binary variables each, i.e., in SNPD = 1(SNP ≠ 0) and SNPR = 1(SNP = 2) , coding for a
dominant and a recessive effect, respectively. It is well-known that in the analysis of genetic
features such as SNPs, interactions, e.g., gene-gene interactions (Che & Motsinger-Reif,
2013) and gene-environment interactions (Ottman, 1996), play a crucial role. Especially in
this setting, not only a high predictive ability of the resulting models, but also a high inter-
pretability for understanding which and how genetic variants influence the risk of disease
is desirable.

Tree-based statistical learning methods such as decision trees, random forests, or
logic regression are very popular and versatile in recognizing underlying data struc-
tures. These methods have been already applied to analyze SNP data (e.g., Bureau et al.,
2005; Winham et al., 2012; Ruczinski et al., 2004). However, these methods typically
fail at simultaneously achieving a reliable predictive strength and a high interpretability
of how exactly predictions are composed.

In this article, we propose the tree-based supervised learning procedure logicDT
(logic decision trees) which is specifically tailored for properly incorporating interac-
tions between binary predictors. Continuous relationships of additional covariates and
interactions of these covariates with the binary variables can also be covered by this
procedure. logicDT is designed for yielding highly interpretable prediction models,
while maintaining a high predictive ability. For measuring the influence of predictors
and their interactions, a novel variable importance measure framework is proposed
which, in principle, can be used in conjunction with any other learning procedure.

We start with briefly discussing similar methods and efforts on enhancing exist-
ing algorithms in Sect. 2. Then, logicDT and its extensions are presented in detail in
Sect. 3. We additionally prove that logicDT is consistent. In Sect. 4, the novel vari-
able importance measuring framework for estimating the influence of input variables
and their interactions is proposed. Empirical studies on simulated data as well as on
real data follow in Sect. 5 illustrating logicDT’s properties in practice and compar-
ing logicDT to other procedures. Sections 6 and 7 contain discussions and concluding
remarks.

935Machine Learning (2024) 113:933–992

1 3

2 Background and related work

In the following, we briefly discuss tree-based supervised learning procedures and their
extensions.

2.1 Decision trees and random forests

One very popular and powerful statistical learning method are decision trees. Impor-
tant implementations include classification and regression trees (CART) (Breiman et al.,
1984) and C4.5 (Quinlan, 1993). Decision trees recursively partition the predictor space
X considering one predictor per split into disjoint patches, to which individually a predic-
tion value will be assigned. For predicting new outcomes, one starts at the root node and
follows the edges corresponding to the specific predictor setting until a leaf is reached.
Figure 1a illustrates an exemplary decision tree consisting of three binary predictors in a
binary classification scenario.

Fig. 1 Exemplary tree models for three binary input variables X1 , X2 and X3 predicting two different classes
0/false and 1/true. In a, a classification tree is shown. b depicts a logic tree describing the Boolean expres-
sion X1 ∨ (X2 ∧ Xc

3
) , where negations are denoted by c in this article. For the logic tree, terminal nodes

containing negated predictors are depicted as black squares containing white text. Vice versa, non-negated
predictors are depicted as white squares containing black text. Both trees are equivalent, i.e., they perform
the same predictions for each predictor setting. Adapted from Lau et al. (2022)

936 Machine Learning (2024) 113:933–992

1 3

Similar to Louppe (2014), Algorithm 1 summarizes the fitting process of decision trees.
In Lines 11 through 14, the locally best split, i.e., the predictor and the splitting point which
maximize the node homogeneity after splitting is identified and used for further splitting
the tree into two subnodes. For measuring the homogeneity, an impurity measure i is used
which assigns a node an estimate of its heterogeneity. For evaluating the strength of a split
s partitioning the node t into two child nodes tL and tR , the impurity reduction

for the number of training observations nt falling into node t is maximized. For regression
purposes, the impurity measure of the mean squared error

is used as the impurity measure considering the subset Dt of the training data set D to
node t and the predicted outcome ŷt in node t. For classification or risk estimation, the Gini
impurity

is used for classes c ∈ Y and their corresponding frequency nc,t in node t. An alternative
popular impurity measure for classification tasks is the information gain

(1)Δi(s, t) ∶= i(t) −
ntL

nt
i(tL) −

ntR

nt
i(tR) ≥ 0

(2)iRegression(t) ∶=
1

nt

∑
(x,y)∈Dt

(y − ŷt)
2

(3)iGini(t) ∶=
∑
c∈Y

nc,t

nt

(
1 −

nc,t

nt

)

937Machine Learning (2024) 113:933–992

1 3

that is based on the Shannon entropy (e.g., Louppe, 2014).
The partitioning of a tree branch locally stops when the training data cannot be further

divided, i.e., if for all (x, y), (x�, y�) ∈ Dt , it either holds x = x
� or y = y� (see Line 7 of

Algorithm 1). Usually, to prevent overfitting, additional stopping criteria are used such as
the minimum node size, i.e., the minimum number of training observations falling into a
leaf, or a minimum impurity reduction which has to be achieved in order to split the node.
However, these additional stopping criteria yield hyperparameters which, thus, require
proper tuning. Finally, the last important step is the assignment of a predicted value to a
leaf (Line 8 of Algorithm 1). Although theoretically, this predicted value is already used
for evaluating the splits. The prediction values are obtained by empirical risk minimization
yielding the arithmetic mean for regression tasks. For binary risk estimation, also the arith-
metic mean of the outcome Y given the predictor values x is used if Y is coded as 0 or 1. If
pure classifications are considered, the class with the lowest risk estimate is chosen.

A particularly popular and successful extension of decision trees are random forests
which build ensembles of randomized decision trees yielding even higher predictive per-
formance at the cost of losing interpretability of the fitted models (Breiman, 2001). The
randomization is performed by employing bagging (Breiman, 1996), which is described in
more detail in Sect. 3.9, and by considering random predictor subsets for splitting at each
node. Random forests can substantially outperform single decision trees due to the instabil-
ity issue of decision trees, which states that small noise-like changes of the training data set
can lead to large modifications of the fitted model. This instability issue is mainly caused
by the greedy fashion of choosing splits (Li & Belford, 2002; Murthy & Salzberg, 1995).

If deep trees are grown, both single decision trees and random forests can overfit (Hastie
et al., 2009; Tang et al., 2018). For certain, not necessarily realistic scenarios (e.g., no
subsampling combined with totally randomized trees in which the splits are chosen inde-
pendent of the outcome or too extreme subsampling in which the subsample size remains
constant, but the sample size approaches infinity), Tang et al. (2018) proved that random
forests with deeply grown trees are inconsistent.

If shallow trees are grown, fruitful splits might be left out. Furthermore, decision trees
and random forests struggle uncovering interactions effects, if the interacting variables only
exhibit negligible marginal effects (Wright et al., 2016). Moreover, due to the prediction
values of the leaves being constant for finitely many predictor scenarios in conventional
decision trees and random forests, continuous function relationships can only be approxi-
mated by step functions. However, for example, in the analysis of genetic and environmen-
tal risk factors of certain diseases, in which random forests are frequently used (Winham
et al., 2012; Bellinger et al., 2017), a continuous influence of an environmental factor on
the disease risk is reasonable.

There are a variety of modifications to decision trees and random forests which try to
overcome the issues mentioned above. These methods, however, address individual issues.
In the following section, we will discuss some of these modifications.

iEntropy(t) ∶= −
∑
c∈Y

nc,t

nt
log2

(
nc,t

nt

)

938 Machine Learning (2024) 113:933–992

1 3

2.2 Extensions of decision trees and random forests

For improving the ability on detecting interactions, one well-known approach is the
usage of multivariate splits, i.e., splits based on multiple variables at once, e.g., by using
linear combinations of the predictors. Exemplary methods of this class are oblique deci-
sion trees (Murthy et al., 1994) and oblique random forests (Menze et al., 2011), where
a particular implementation of the latter is, e.g., SPORF (Sparse Projection Oblique
Randomer Forests; Tomita et al., 2020). For binary predictors as considered in this arti-
cle, these multivariate linear splits can be used for creating Boolean conjunctions of
predictors, thus, potentially splitting on an interaction. However, methods that try to
linearly separate the current feature space based on the (binary) class label in each split-
ting node (such as the method proposed by Menze et al., 2011) are only suited to classi-
fication tasks. Another recent modification is interaction forests (Hornung & Boulesteix,
2022) which directly searches for interaction splits at each node. An overview over such
interaction-focused modifications of decision trees and random forests is, e.g., given by
Hornung and Boulesteix (2022).

The greedy search algorithm employed in classic decision tree fitting procedures (such
as in CART) is fast and scales to high-dimensional problems. However, as the greedy
search conducts local searches for splits, it requires detectable marginal effects to identify
interaction effects. For example, if X1 and X2 interact with each other, X1 or X2 have to be
individually identified first as splitting variables. Due to increasing computational capabili-
ties, optimal decision trees have been proposed by Nijssen and Fromont (2010) and Bert-
simas and Dunn (2017) to perform a global optimization. In the former method, namely
DL8 (decision trees from lattices), dynamic programming is utilized to fit decision trees. In
the latter method, namely OCT (optimal classification trees), the decision tree fitting prob-
lem is phrased as a mixed-integer optimization problem. More recently, alternative optimal
decision tree algorithms that utilize dynamic programming such as DL8.5 (Aglin et al.,
2020a) and MurTree (Demirović et al., 2022) and optimal decision tree fitting procedures
that incorporate multivariate splits such as WODT (Yang et al., 2019) and SVM1-ODT
(Zhu et al., 2020) have been proposed. A review of optimal decision tree fitting procedures
is, e.g., given by Carrizosa et al. (2021).

Blockeel and De Raedt (1998) proposed combining decision trees with logic program-
ming. Their method is called TILDE (top-down induction of logical decision trees). At
each inner node, a Boolean conjunction is responsible for further partitioning the input
data. Model fitting is performed in a greedy fashion very similar as in C4.5 (Quinlan,
1993). However, the space of eligible splits, over which the greedy search is applied, has to
be defined by the user by utilizing background knowledge and, e.g., specifying which vari-
ables may be part of the same conjunction. Another important difference between TILDE
and other decision tree algorithms is that TILDE uses logic programs for specifying data
examples. This is in contrast to the statistical learning setup considered in this article. We
consider the standard setting, in which data are given in a tabular format and relevant back-
ground knowledge about the relationships of certain variables is not available.

Rule extraction methods aim at increasing the interpretability of tree ensemble meth-
ods while keeping their predictive strength. They start by fitting a tree ensemble such as
random forests and try to extract the most important prediction rules from the individual
decision tree paths. These prediction rules are then gathered in rule lists yielding the final
model, in which predictions are made according to which rules hold true. One of the first
and most established rule extraction methods is RuleFit (Friedman & Popescu, 2008),

939Machine Learning (2024) 113:933–992

1 3

which fits a boosted ensemble of decision trees and selects the most important rules using
the lasso (Tibshirani, 1996). Alternative rule extraction methods include node harvest
(Meinshausen, 2010) and SIRUS (Stable and Interpretable Rule Set, Bénard et al., 2021),
which both fit random forests for generating the models from which the rules are to be
extracted.

For modeling continuous regression models in the leaves, typically, GLMs are employed
such as in MOB (model-based recursive partitioning, Zeileis et al., 2008). An overview on
several GLM-based approaches is, e.g., given by Rusch and Zeileis (2013). However, the
right parametric model might not be known prior to fitting models so that a more flexible
non-linear regression model might be preferable. Moreover, these methods do not lay a
focus on properly handling interactions between the splitting variables.

2.3 Logic regression

Logic regression (Ruczinski et al., 2003) is another tree-based supervised learning method.
It has been specifically developed for analyzing SNP data and is, therefore, frequently used
in such analyses (e.g., Ruczinski et al., 2004; Zhi et al., 2015). Logic regression is focussed
on binary predictors and tries to identify Boolean combinations of the predictors that shall
explain the variation in the outcome. These Boolean expressions can also be presented as
logic trees, i.e., trees holding predictors (or their negations) in their leaves and recursively
combining them with the Boolean AND-operator (denoted by ∧ in the following) or the
Boolean OR-operator (denoted by ∨ in the following) using inner nodes. Figure 1b illus-
trates an exemplary logic tree corresponding to the Boolean expression X1 ∨ (X2 ∧ Xc

3
) . If a

true logic tree is identified with class 1 and a false logic tree is identified with class 0, this
tree is equivalent to the classification tree from Fig. 1a.

To generalize the usage of logic regression to regression purposes, logic trees are
embedded in GLMs, i.e., a model of the form

is considered for a link function g and logic trees L1,… , Lm . In general, every possible
logic regression model can be transformed into an equivalent decision tree, and vice versa
(Ruczinski et al., 2003). However, logic trees tend to be more sparse, i.e., by using Boolean
logic, logic trees can describe the same prediction model with fewer nodes than decision
trees in certain scenarios. For example, even in the simple prediction model depicted in
Fig. 1, the logic tree consists of five nodes, whereas seven nodes are required in the CART
tree to represent the Boolean expression. Note that this tree sparsity property holds true for
binary classification scenarios in which a hard classification task instead of a more general
class probability estimation task is considered.

The fitting procedure in logic regression is performed by a global stochastic search over
all possible models, i.e., logic trees L1,… , Lm and their GLM coefficients �0,… , �m , where
these GLM coefficients are determined by fitting a GLM using the considered logic trees
as predictors in each step of the global stochastic search. In particular, simulated annealing
(Kirkpatrick et al., 1983) is employed using simple modifications of the current model/
state, i.e., adding or removing branches, exchanging variables or operators, and splitting or
removing variables. Alternatively, a greedy local search always moving to the best neigh-
bor state can be employed. However, this faster search comes without any guarantees of
finding a globally optimal state. For evaluating the current state, a score function such as

g(�[Y ∣ X = x]) = �0 + �1L1(x) +⋯ + �mLm(x)

940 Machine Learning (2024) 113:933–992

1 3

the mean squared error for linear regression or the deviance for logistic regression is used.
For a detailed description and discussion of logic regression, see Ruczinski et al. (2003).

Single logic regression models tend to be unstable, if the signal is weak or if many
predictors are actually predictive. One approach to tackle this problem is to apply bagging
to logic regression models (Schwender & Ickstadt, 2007). However, similar to random for-
ests, these models are no longer easily interpretable.

Even single logic regression models can be hard to interpret due to possibly complex
logic tree structures. Typically, one is interested in the statistical interaction of predictors,
which can be defined as the effect of the presence of certain predictor settings at once, i.e.,
using Boolean conjunctions, since conjunctions of input variables directly reveal the spe-
cific type of interaction that is considered (Chen et al., 2011). By De Morgan’s laws, if a
Boolean disjunction needs to be represented, the negation of the conjunction containing the
negations of the input terms can be used, i.e., making disjunctions obsolete if all negations
are available.

Logic regression can only take quantitative covariables additively into account by add-
ing them to the linear predictor of the GLM containing the logic trees as single terms.
Thus, no interactions between the binary predictors and quantitative predictors can be
included. Similarly, interactions between logic trees themselves can also not be captured,
thus, relying on the additive structure of the individual terms. If, for example, the scale of
an underlying linear predictor is unknown, being able to also model interactions between
the terms can be beneficial. Consider, e.g., the regression function

On the squared scale, the terms X1 and X2 ∧ Xc
3
 do not interact. However, on the original

scale, if both terms are true at once, the linear predictor is adjusted by an additional 2��.

3 Logic decision trees

To overcome the issues mentioned in the last section, we propose a novel method, called
logicDT (logic decision trees), which combines decision trees and an improved version of
the Boolean term search of logic regression.

We define logic decision trees to be decision trees that can use Boolean conjunctions
of input variables as splitting variables, which is in contrast to standard decision tree pro-
cedures. Logic decision trees may be used for regression purposes, in which—similar to
regression trees—each leaf holds a direct estimate of the outcome, or for classification pur-
poses, in which—similar to probability estimation trees (Provost & Domingos, 2003; Mal-
ley et al., 2012)—each leaf holds an estimate of the class membership probability. As dis-
cussed in Sect. 3.5, logic decision trees may also contain regression models in their leaves
for modeling continuous relationships.

Allowing Boolean conjunctions of input variables as splitting variables, firstly, sim-
plifies the resulting decision tree. If we, e.g., consider an outcome that is only altered if
Xc
1
∧ X2 holds, then creating a tree stump (i.e., a decision tree consisting of only one split)

splitting on Xc
1
∧ X2 would be sufficient when using logicDT, whereas a common decision

�[Y ∣ X] =
[
� ⋅ 1(X1) + � ⋅ 1(X2 ∧ Xc

3
)
]2

= �2
⋅ 1(X1) + 2 ⋅ � ⋅ � ⋅ 1(X1 ∧ X2 ∧ Xc

3
) + �2 ⋅ 1(X2 ∧ Xc

3
).

941Machine Learning (2024) 113:933–992

1 3

tree only using single input variables for splitting would require a split on X1 and another
split on X2 in the branch in which X1 = 0 holds (see Fig. 2).

Secondly, this makes the prediction values in some leaves more robust. In our example,
the common decision tree in Fig. 2a would further distinct between X1 = 1 and Xc

1
∧ Xc

2
= 1 ,

while the tree in Fig. 2b uses one shared prediction, thus, utilizing more observations for creat-
ing the prediction value. Thirdly, due to the greedy search employed in standard decision tree
splitting approaches, the interaction might not be found due to potentially negligible marginal
effects of, in our example, X1 or X2 leading to splitting on other variables or not splitting at all,
if a stopping criterion is triggered.

In the following subsections, logicDT is presented in detail.

3.1 Preliminaries

Let X = (X1,… ,Xp) be a p-dimensional random vector of binary input variables taking val-
ues in the p-dimensional space X = {0, 1}p and let Y be a target random variable taking val-
ues in the space Y . Let D = {(x1, y1),… , (xn, yn)} be a training data set with independent
and identically distributed observations from the joint probability distribution of (X, Y) . Then
the corresponding statistical learning task can be formulated as estimating the true regressor
�(X,Y)[Y ∣ X = ⋅] by a function � ∶ X → Y using the training data set D (e.g., Hastie et al.,
2009).

In this article, Boolean conjunctions between binary input variables are denoted using the
Boolean ∧ (AND) and negations of binary input variables are denoted using a superscript c
(complement), i.e., Xc

j
= 1 − Xj.

logicDT is aimed at identifying response-associated interactions, where two input variables
Xi and Xj are defined to interact with each other with respect to the outcome Y, if the effect
of one input variable (i.e., the partial derivative/finite differences of �[Y ∣ X] with respect to
one input variable) depends on the other input variable (Sorokina et al., 2008). Therefore,
if there is no interaction between Xi and Xj , the regression function �(X) = �[Y ∣ X] can be
decomposed into a sum �(X) = �⧵i(X⧵i) + �⧵j(X⧵j) , where ⧵i denotes leaving out the ith entry
of the vector of input variables (Friedman & Popescu, 2008). This definition can be directly
generalized to (statistical) interactions of arbitrary order. If there is no interaction between
X(1),… ,X(k) , � can be decomposed into a sum of functions, in which no summand is a func-
tion of all considered variables X(1),… ,X(k) simultaneously.

In this article, we mainly focus on binary input variables. Therefore, every function
� ∶ X → Y mapping from a p-dimensional space of binary input variables to a real number
can be expressed as a sum of the form

Fig. 2 Decision trees for split-
ting on Xc

1
∧ X2 . In a, a standard

decision tree splitting on single
input variables is shown. In b, a
Boolean conjunction is used for
splitting

942 Machine Learning (2024) 113:933–992

1 3

where (c) denotes potentially negating the considered variable and kj,i is the index of the ith
variable in the jth summand. Hence, binary input variables X(1),… ,X(k) interact with each
other (with respect to Y), if � cannot be decomposed without using a Boolean conjunction
that simultaneously includes X(1),… ,X(k) . Boolean disjunctions are not considered in log-
icDT, since, by De Morgan’s laws, Boolean disjunctions can be expressed using Boolean
conjunctions and negations.

3.2 Core methodology of logicDT

The aim of logicDT is to identify important input variables and Boolean conjunctions of
input variables to perform accurate predictions of the outcome. An input variable or a
Boolean conjunction of input variables will be in the following referred to as a term. A set
of terms will be referred to as a state. Examples of possible states would be

In logicDT, states are obtained by a global stochastic search procedure that is introduced
later in this section.

Logic decision trees are induced by identifying a state and exclusively using the terms
contained in this state as input variables for fitting a conventional decision tree. For exam-
ple, the three terms Xc

1
∧ X2 , X5 , and X9 ∧ Xc

14
∧ Xc

42
 are used as input variables to induce a

decision tree, if the corresponding state {{Xc
1
∧ X2}, {X5}, {X9 ∧ Xc

14
∧ Xc

42
}} is considered.

Hence, creating a logic decision tree based upon a state is a two-stage procedure. First, the
original training data set is transformed into a tree training data set using the terms of the
considered state. Next, using this tree training data set, a decision tree is fitted.

For a set consisting of m terms

the original training data set is transformed into a tree training data set by constructing a
n × (m + 1) data matrix containing the m different predictors or conjunctions and the out-
come. For example, if a training data set is given by

 and the state s = {{X1}, {X2 ∧ Xc
3
}} is identified by the global stochastic search, the tree

training data set, which is directly used for fitting the decision tree, is given by

�(X) = �0 +
m∑
j=1

�j ⋅ 1

(
X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj

)
,

{{X73}} or {{Xc
1
∧ X2}, {X5}, {X9 ∧ Xc

14
∧ Xc

42
}}.

{{
X
(c)

k1,1
,… ,X

(c)

k1,p1

}
,… ,

{
X
(c)

km,1
,… ,X

(c)

km,pm

}}
,

943Machine Learning (2024) 113:933–992

1 3

Since each term is a binary variable itself, there is only one possible split of the data based
on this term. Thus, the tree fitting procedure only needs to consider one split per input
term, which makes the identification of the best local split particularly fast. For evaluat-
ing potential node splits and selecting the split, the conventional node impurity splitting
criterion from Eq. (1) is used. For regression tasks, the MSE (mean squared error) impurity
(see Eq. (2)) is used, and for classification tasks, the Gini impurity (see Eq. (3)) is used.

After the tree corresponding to the current state has been fitted, its performance on the
training data is evaluated by passing all observations through the tree and calculating a
score that measures the training data error, where the score is chosen so that a smaller value
of the score corresponds to a better fit. For regression purposes, the MSE is employed. For
risk estimation/classification purposes, probability estimation trees (Provost & Domingos,
2003; Malley et al., 2012) are grown that directly hold class probability estimates in their
leaves by using empirical probabilities, i.e., using proportions of class occurrences. Thus,
for scoring a state in the risk estimation/classification setting, the deviance is used, which
is also known as the cross entropy or the negative binomial log-likelihood.

Alternatively, the negative area under the curve with respect to the receiver operating
characteristic (AUC) might be used. However, the AUC does not capture the magnitude of
the risk estimate in contrast to the deviance. Another alternative is the Brier score, which is
the mean squared error between the risk estimate and the actual outcome.

For identifying an ideal state, logicDT performs a global search over all eligible states.
The search is performed by using the current state to construct a decision tree, evaluat-
ing the performance of this tree, modifying the current state, and repeating this procedure.
Modifications of logicDT states are called neighbors and are implicitly defined by slightly
altering a given state. Figure 3 illustrates the possible state modifications/neighbor states
using exemplary states. In the center of this figure, the current state is depicted. The pos-
sible state changes include

• exchanging or negating single variables (see, e.g., the replacement of X2 by X4 in the
top and the negation of X2 in the bottom of Fig. 3),

• adding or removing single variables from a term (see, e.g., the addition of X8 in the top
right and the removal of Xc

3
 in the bottom right of Fig. 3),

• adding or removing logic terms consisting of exactly one variable (see, e.g., the addi-
tion of X10 in the top left and the removal of X2 in the bottom left of Fig. 3).

To avoid tautologies and uninformative terms, some specific alterations are prohib-
ited. More precisely, the same variable should not occur more than once in a single term
and the same term should not occur more than once in the proposed state.

The search is initialized by finding the single input variable that minimizes the score
function, e.g., {{X73}} . Using this initial state, a global optimization procedure employ-
ing simulated annealing (Kirkpatrick et al., 1983) is carried out for finding the state that
minimizes the score function, i.e., now permitting all possible states potentially consist-
ing of more than one term.

(4)

944 Machine Learning (2024) 113:933–992

1 3

Simulated annealing is a stochastic optimization algorithm that, given a current state,
randomly selects one of its neighbor states, evaluates its score, and uses the score differ-
ence between these two states for determining the probability of transitioning to the pro-
posed neighbor state. For a state s and a proposed neighbor state s′ , the score function � ,
and the current temperature t, this state acceptance probability is given by

Thus, if a state with a better score is proposed, the transition is carried out with probability
1. However, worse states may also be accepted with the acceptance probability ∈ (0, 1) to
avoid getting stuck in local minima. The main idea of simulated annealing is slowly lower-
ing the temperature t such that the acceptance probability of worse states tends to 0 and in
the end, the globally optimal state is identified.

In logicDT, a fully automatic simulated annealing schedule governing the tem-
perature lowering is employed. If desired, the cooling schedule can be changed, e.g.,
by decreasing or increasing the parameter � , that controls the magnitude of the tem-
perature decreases, for performing a finer or coarser stochastic search. The number of
search iterations is, thus, (implicitly) controlled by � and stopping criteria for terminat-
ing the search procedure. Alternatively, a fixed geometric cooling schedule can also be
employed in logicDT. However, we recommend using the adaptive cooling schedule for
fitting logicDT models. More details on the simulated-annealing-based search in log-
icDT are given in Appendix 1.

(5)�(�(s), �(s�), t) ∶= min

{
1, exp

(
�(s) − �(s�)

t

)}
.

Fig. 3 Exemplary state modifications of the reference state {{X1,X
c
3
,X5}, {X2}} depicted in the center

945Machine Learning (2024) 113:933–992

1 3

The proposed state modifications ensure that the modifications lead to a Markov
chain that fulfills aperiodicity and irreducibility when performing a global search via
simulated annealing. These properties ensure that simulated annealing asymptotically
leads with probability 1 to a globally optimal state (Van Laarhoven & Aarts, 1987).
More details on these Markov properties are given in Appendix 2.

3.3 The logicDT algorithm

In Algorithm 2, the logicDT procedure is presented.

In Line 2, the initial state is obtained by choosing the single input variable that mini-
mizes the score. That is, for each input variable, a decision tree using only this input
variable, i.e., a decision tree stump, is fitted and evaluated. The input variable Xj that
leads to the minimum score is chosen as the initial state {{Xj}} . Alternatively, a random
state or an empty state could also be used as the initial state.

In Lines 3 and 8, the current state is used for transforming the original training data
set D into a tree training data set that can be directly used by a learning procedure using
the identified terms as input variables. See Eq. (4) for an example on how a tree train-
ing data set is obtained from the original data set consisting of the values of the input
variables.

If no leaf regression models for continuous covariables shall be fitted, the decision
trees are constructed using Algorithm 1 (see Lines 4 and 9 of Algorithm 2). If leaf regres-
sion models are to be fitted (see Sect. 3.5 for more details), the splitting criterion from
Sect. 3.5.2 is used in place of the impurity reduction criterion and the corresponding
regression models are fitted in each leaf in contrast to single prediction values.

In Lines 5 and 10 of Algorithm 2, the training data score is calculated by passing all
training observations through the fitted decision tree, performing predictions using

946 Machine Learning (2024) 113:933–992

1 3

leaf regression models if these were fitted, and comparing the predictions with the true
outcomes.

In Line 7, the current state is modified by randomly performing one of the state modifi-
cations proposed in Sect. 3.2, where the state modification is randomly drawn from a uni-
form distribution over all possible state modifications of the current state.

This proposed modified state is then evaluated in Line 11, i.e., it is randomly accepted
with the acceptance probability from Eq. (5).

The global search is carried out until a stopping criterion is true. More details on the
search algorithm itself are discussed in Appendix 1.

logicDT is implemented in the R package logicDT (Lau, 2023) available on CRAN.

3.4 Controlling the complexity of logicDT models

For restricting the complexity of logicDT models and regularizing them, the maximum
number ���_���� of terms and the total maximum number ���_���� of variables con-
tained in a state should in practice be properly tuned to avoid overfitting or underfitting.
Since some (potentially very long) conjunctions might correspond to no or very few obser-
vations, similar to the stopping criterion in decision trees, a minimum conjunction size,
defining the minimum number of observations falling into this conjunction and its nega-
tion, can be specified in logicDT to exclude practically useless terms. Furthermore, one
may prohibit the removal (and the addition) of whole terms in order to guarantee a cer-
tain number of terms. This might, e.g., be useful if a pure variable selection should be
performed so that the maximum number of total variables is set to the maximum number
of terms. In this case, the initial state should be chosen such that it already includes the
desired number of terms.

logicDT aims to identify the optimal set of predictors and conjunctions with regard to the
predictive ability. Thus, post-pruning of the fitted decision trees is not necessary, since the
model complexity is already covered by the model size hyperparameters and the ideal split-
ting terms are already identified by the global search, which is similar to logic regression and
in contrast to standard decision trees. However, the following two stopping criteria for locally
terminating the splitting of a branch are used to filter out completely unnecessary splits.

One of the stopping criteria is the minimum number of observations in the respective
leaves. If a split would lead to child nodes from which at least one of the children contains
less than the prespecified number of observations, this split is prohibited. This criterion
is particularly useful for regression and risk estimation purposes, where a stable estimate
needs a certain amount of observations.

As second stopping criterion, the minimum (scaled) impurity reduction is considered. A
split is discarded, if it does not reach the required impurity reduction, i.e., if

holds for the impurity reduction Δi(s, t) defined in Eq. (1) and the complexity parameter
cp ≥ 0 . For continuous outcomes, cp will be scaled by the empirical variance s2

Y
 of the out-

come Y to ensure the right scaling, i.e., cp ← cp ⋅ s2
Y
 . Since the impurity measure for con-

tinuous outcomes is the mean squared error, this can be interpreted as controlling the mini-
mum reduction of the normalized mean squared error (NRMSE—normalized root mean
squared error—to the power of two).

The hyperparameter optimization in logicDT is discussed in more detail in Sect. 3.6.

nt

n
⋅ Δi(s, t) ≤ cp,

947Machine Learning (2024) 113:933–992

1 3

3.5 Quantitative covariables

Decision trees are particularly suitable models for binary input data, since there is only a
finite number of possible predictor scenarios in this case, i.e., every possible prediction
function (including the true regression function �[Y ∣ X]) can be expressed using a decision
tree. Quantitative predictors often induce a continuous relationship to the outcome that
cannot be properly expressed with piecewise constant functions such as decision trees or
random forests. In standard decision-tree-based methods, continuous variables are included
as possible splitting candidates in the decision tree fitting process. This approach is very
intuitive for merely considering all available data. However, as mentioned above, this does
not allow to cover continuous relationships.

3.5.1 Leaf regression models

For properly including quantitative covariables in logicDT models, we propose, similar
to MOB (model-based recursive partitioning, Zeileis et al., 2008), to fit regression mod-
els in the leaves that result from splits exclusively using the binary terms. This approach
allows to fit individual curves for each binary term setting, thus, also covering interactions
between the binary predictors and the quantitative covariable.

In principle, any kind of regression model such as linear or non-linear regression mod-
els could be fitted in the leaves depending on the application. Moreover, multiple regres-
sion models could also be fitted, if multiple covariables need to be considered.

For properly evaluating logicDT states, regression models need to be fitted in each deci-
sion tree and used to generate the training data predictions for computing the score, i.e.,
the regression models should be fitted in each iteration of the search procedure of logicDT.
If, however, the computational burden is too high for, e.g., fitting non-linear regression
models in each leaf of each decision tree, we recommend using linear models for the search
and non-linear regression models for the final fit. In this case, the functional relationship is
still taken into account in the search process and the final model utilizes the desired type of
regression model. For a fast model fitting with a binary outcome, logistic regression curves
through LDA (linear discriminant analysis) might be fitted that have a closed-form solution
(Hastie, Tibshirani, and Friedman, 2009), and therefore, do not require an iterative optimi-
zation procedure such as standard logistic regression.

3.5.2 Splitting criterion

If regression models should be fitted in each leaf, functional trends have to be analyzed
instead of simple leaf means. Therefore, we propose evaluating splits based on a likeli-
hood-ratio test for comparing nested models as an alternative to the conventional node
impurity splitting criterion specified in Eq. (1). More precisely, linear regression or LDA
models, which can be determined particularly quickly, are fitted for each eligible split and
resulting child node. Since we consider simple regression models, each model consists of
two parameters (offset and slope) such that the difference in parameters of two submodels
versus one joint model is given by 2 ⋅ 2 − 2 = 2 . Thus, the likelihood-ratio test statistic

948 Machine Learning (2024) 113:933–992

1 3

is—under the null hypothesis of equal model parameters in both subnodes—asymptotically
�2-distributed with 2 degrees of freedom following Wilks’ theorem (Wilks, 1938). Here,
Lreduced denotes the maximized likelihood of the reduced model (i.e., the fitted joint regres-
sion model using one node) and Lfull denotes the maximized likelihood of the full model
(i.e., the model consisting of two individually fitted sub-regression models resulting in two
nodes).

With the test statistic from Eq. (6), we, hence, test

where t is the node that shall be splitted, X(t) is the subvector of input variables that are
used as splitting variables in ancestor nodes of t, x(t) is the corresponding binary vector
containing the predictor setting at node t, Xs is the binary predictor that shall be evaluated
for splitting the node, and E is (are) the continuous covariable(s). We, thus, test with this
likelihood-ratio test whether the split on Xs leads to different prediction models in the cur-
rent tree branch. E.g., for one continuous covariable, the model

is used for testing the null hypothesis H0 ∶ �0 = �1 = 0 , which is equivalent to the above
null hypothesis, using the identity as link function g for a continuous outcome and the logit
function as link function g for a binary outcome.

Using this new splitting criterion, likelihood-ratio tests for all eligible splits at a certain
node are performed to appropriately rank eligible splits and to interpretably quantify the
strength of a split. The split that achieves the lowest p-value is used, if this p-value is below
a prespecified significance threshold such as � = 50% . Here, we propose to use a very lib-
eral (high) threshold to avoid to miss fruitful splits. If no split can provide such a p-value,
the node in question is declared as a terminal node so that this splitting criterion can also
act as a stopping criterion.

Figure 4 illustrates an exemplary logicDT model with two terms and three variables in
total. The current set of terms on the left induces the decision tree on the right by fitting a
decision tree using the terms as potential splitting variables. The quantitative covariable E
is used for evaluating the splits in likelihood-ratio tests and for fitting the regression mod-
els in the leaves. Therefore, in the root node, the terms SNP3Dc ∧ SNP2D and SNP1D are
both evaluated as splitting candidates by fitting regression models using E as the predictor.
Since SNP3Dc ∧ SNP2D yields a lower p-value than SNP1D in the likelihood-ratio test
splitting criterion, the term SNP3Dc ∧ SNP2D is used for splitting the root node. The fit-
ted tree is then evaluated as a whole using a score function (see Sect. 3.2). Afterwards, the
state is slightly modified using the modifications proposed in Sect. 3.2 and the procedure is
repeated.

3.6 Hyperparameter optimization

For maximizing the performance of logicDT, it is necessary to optimize the model com-
plexity parameters that act as regularization parameters. These parameters are

(6)−2 log(Λ) ∶= −2 log

(
Lreduced

Lfull

)

H0 ∶ �[Y ∣ X(t) = x(t),Xs,E] = �[Y ∣ X(t) = x(t),E]

vs. H1 ∶ �[Y ∣ X(t) = x(t),Xs,E] ≠ �[Y ∣ X(t) = x(t),E],

g(�[Y ∣ X(t) = x(t),Xs,E]) = �0 + �1 ⋅ E + �0 ⋅ 1(Xs) + �1 ⋅ 1(Xs) ⋅ E

949Machine Learning (2024) 113:933–992

1 3

• ���_����—the total maximum number of variables contained in the model,
• ���_����—the maximum number of conjunctions/terms in the model,
• ��������—the minimum number of observations per leaf in the resulting decision

tree,
• ��������—the minimum of observations contained in a conjunction and its negation.

In general, ���_���� ≥ ���_���� has to be fulfilled. Furthermore, we recommend impos-
ing ���_���� ≤ 2 ⋅ ���_���� in cases in which marginal effects still seem to be domi-
nant and it is not justifiable that only high-order interaction terms compose the main influ-
ence on the outcome. This restriction is useful due to the standard learning issue that more
complex models usually fit the training data better. Moreover, it reduces the set of eligi-
ble hyperparameter configurations to be evaluated speeding up the hyperparameter tuning
process.

Specifically for fitting single logicDT models (via simulated annealing), it is advisable
to remove the ability of removing whole conjunctions from the model in the search pro-
cedure. This ensures that the final model consists of exactly ���_���� terms and that no
extensively complex conjunctions make up the model. This also allows for a simple vari-
able selection of marginal effects by additionally restricting ���_���� = ���_����.

The purpose of �������� is to ensure that each leaf contains enough observations for
concluding meaningful models, i.e., stable means, or if a continuous covariable is included,
regression models. A proper value for �������� avoids evaluating models with uninform-
ative conjunctions, i.e., conjunctions for which a split does not imply meaningful infor-
mation due to a low number of observations. Note that for the observed values, it holds
��������obs ≤ ��������obs , since the decision tree can further split the space. Thus, in
practice, �������� and �������� can be set to the same value. Similar to Malley et al.
(2012) who regarded probability estimation trees, we recommend a value between 1% and
10% of the total number of training observations for obtaining stable leaf estimates.

Fig. 4 An exemplary logicDT model/state. On the left hand side, the set of terms is depicted with an addi-
tional quantitative covariable which is excluded from the search over the set of terms. On the right hand
side, the resulting decision trees which uses the binary predictors and identified conjunctions as input/split-
ting variables. Since in this case also a quantitative variable is supplied, the leaves are continuous functions
instead of single point estimates

950 Machine Learning (2024) 113:933–992

1 3

Using these parameter restrictions, a grid search evaluating all possible parameter com-
binations is then carried out (based on validation data) in order to identify the best setting.
In Sect. 5, hyperparameter optimization following this scheme is performed.

3.7 Consistency of logicDT

In this section, we now study theoretical properties of logicDT, more precisely, the con-
sistency of logicDT. For this purpose, we consider the core logicDT methodology, i.e.,
only permitting binary predictors. Without loss of generality, we assume a continuous out-
come. Binary risk estimation/binary classification can be viewed as a special case using the
Brier score as score function in an empirical risk minimization framework. The following
theorem states that logicDT is strongly consistent. The proof of this theorem is given in
Appendix 2.

Theorem 1 (Consistency of logicDT) Suppose � ∶ {0, 1}p → Y is a p-dimensional regres-
sion function and that the outcome Y with

is bounded. Then, logicDT fitted via simulated annealing is strongly consistent, i.e., almost
sure convergence

holds for fitted logicDT models Tn to training data sets Dn = {(x1, y1),… , (xn, yn)}.

The following remark provides an application of Theorem 1 to hard classifications, in
which the misclassification rate is evaluated.

Remark 1 For the binary classification/risk estimation case, alternatively to considering the
Brier score, the excess misclassification rate is bounded by

for the classifiers �̂�Tn
(x) = 1(Tn(x) ≥ 0.5) and the Bayes classifier �∗ (see, e.g., Theo-

rem 1.1, Györfi et al., 2002).

Thus, the misclassification rate of the best possible classifier �∗ will be asymptotically
almost surely attained by logicDT.

Note that Theorem 1 holds as long as the proposed hyperparameters are properly chosen
so that the true underlying model satisfies the chosen hyperparameters. More precisely,
���_���� and ���_���� need to be sufficiently big and �������� and �������� need to
be sufficiently small.

�[Y ∣ X] = �(X)

�(X,Y)

[
(�(X) − Tn(X))

2
] a.s.

�������������������→
n→∞

0

0 ≤ ℙ(X,Y)(�̂�Tn
(X) ≠ Y) − ℙ(X,Y)(𝜑

∗(X) ≠ Y)

≤ 2

√
𝔼(X,Y)

[
(𝜇(X) − Tn(X))

2
] a.s.

�������������������→
n→∞

0

951Machine Learning (2024) 113:933–992

1 3

3.8 Computational complexity of logicDT

In this section, we study the computational complexity of logicDT, which is mainly con-
trolled by the complexities of conducting a simulated-annealing-based search and fitting
decision trees. A guarantee for obtaining a globally optimal model is only given if infi-
nite iterations (or iterations in the magnitude of the size of the complete search space) are
carried out in the simulated-annealing-based search (Van Laarhoven & Aarts, 1987). In
practice, this is because of the size of the search space, typically, infeasible. Therefore, this
asymptotic search is in practical applications approximated using a finite number of itera-
tions (for more details on the search process, see Appendix 1). Therefore, we assume that
the number of search steps is given by a finite number M.

Using the complexities of simulated annealing, decision tree fitting, and tree training
data set transformation and using Algorithm 2, the computational complexity of logicDT is
given in the following theorem. The proof of this theorem is given in Appendix 3.

Theorem 2 (Computational complexity of logicDT) Suppose M is the number of search
steps performed, n training observations are given, and the hyperparameters ���_���� ,
���_���� , �������� are fixed. Then, the computational complexity of logicDT is given by

Using Theorem 2, results about appropriate numbers M of search iterations based on
the Markov chain length (i.e., the number of search iterations for a fixed temperature), and
assumptions on the hyperparameter choices, the following corollary states that the com-
putational complexity of logicDT is polynomial in p. The corresponding proof is, again,
provided in Appendix 3.

Corollary 1 (Polynomial complexity of logicDT) Assume that the parameters ���_����
and ���_���� both scale linearly with p and that the parameter �������� is constant
(with respect to n which is the worst-case scenario in which the logic decision tree may be
arbitrarily deep). Further assume that the Markov chain length is fixed. Then, the computa-
tional complexity of logicDT is given by

If instead the Markov chain length is chosen in the magnitude of the number of neighbor
states per state (as suggested by Aarts & Van Laarhoven, 1985), the computational com-
plexity of logicDT is given by

3.9 Bagged logicDT

If a single model consisting of relatively few variables cannot explain the whole variation
in the outcome from the whole set of predictors or if the predictive power is of higher inter-
est than the interpretability of the model, ensemble models consisting of several simpler
models might be a preferable choice.

O
(
Mn

[
���_���� + ���_����

n

��������

])
.

O
(
n2p2 log(p)

)
.

O
(
n2p4 log(p)

)
.

952 Machine Learning (2024) 113:933–992

1 3

A particularly simple, yet effective approach is bagging (Breiman, 1996), in which for a
given number of bagging iterations (e.g., 500), a single model is fitted on a random subset
of the original training data set. The random subsets are typically generated via bootstrap-
ping, i.e., performing random draws from the original training data with replacement n
times. The resulting model is the ensemble of all models. Predictions are performed by
averaging the predictions of the individual models. The number of iterations should, as in
random forests, be chosen such that more iterations cannot reduce the generalization error
substantially anymore.

Since sufficient bagging iterations are also desired in logicDT, simulated annealing with
a proper amount of iterations itself might just be too slow. Moreover, the main issue of
greedy search approaches, i.e., that a globally optimal state could be missed due to being
stuck in a local optimum, might be diminished through considering different subsets of the
training data set and stabilizing the model over them. In other words, the variance stabiliz-
ing property of bagging might be sufficient to account for the drawbacks of a greedy search
(Murthy & Salzberg, 1995).

For the usage of logicDT in an ensemble framework, we, therefore, propose a greedy
search for fitting individual logicDT models. In this greedy search, the same state modi-
fications as in the simulated-annealing-based search are used (see Sect. 3.2). In contrast
to simulated annealing, the greedy search deterministically chooses the best neighbor in
each iteration. Thus, for each current state, all its neighbors are evaluated and the neighbor
with the lowest score amongst all neighbors is chosen as new state. Note that for increas-
ing numbers of predictors and increasing numbers of allowed terms and total variables,
the number of eligible neighbors per state increases quadratically, thus, slowing down the
greedy search. For handling higher-dimensional data, a randomization of the greedy search
might be a solution which we, however, did not consider in this article.

Another very useful property of bagging is that in the fitting of an individual model
not all observations from the training data are employed. The not considered observations
called oob (out-of-bag) observations can, therefore, be used to estimate the generalization
error, similar to using independent test data. This estimate is called the oob error and is
obtained by only using models that were not built using the considered observation. More
precisely, the oob error is calculated by averaging over the oob errors of the observations,
where the oob error of an observation can be computed by only choosing the models which
did not use this observation for training and by temporarily constructing an ensemble from
this subset of models for predicting the outcome of this observation. In particular, for the
estimation of variable importance measures (VIMs), bagging and oob observations are
very beneficial. As discussed in the following section, we, therefore, also use them in the
construction of the VIM considered in logicDT.

4 Variable importance measures

In many applications, it is useful to measure the influence of the input variables or their
interactions on the prediction of an outcome. Variable importance measures (VIMs)
directly try to quantify this influence. Typically, this influence is estimated by comparing
two models, namely

• the original full model containing the term of interest and

953Machine Learning (2024) 113:933–992

1 3

• a kind of informatively reduced model, in which the term of interest no longer plays an
informative role.

Then, the difference between the prediction errors of these two models is computed and
is taken as an estimate of how the prediction based on the model improves if the term is
properly included, where the prediction errors are, e.g., given by the mean squared error in
regression tasks or 1 − AUC in binary risk estimation tasks.

4.1 Computation of VIMs

Let �(X̃) be a prediction error measure capturing the performance of a fitted model infor-
matively using only the input variables in X̃ ⊆ X , interpreting the random vector of input
variables X = (X1,… ,Xp) as a set X = {X1,… ,Xp} . Then, the importance of an input vari-
able Xi is given by

Here, �(X ⧵ Xi) describes the prediction error of the reduced model informatively excluding
the variable Xi and �(X) describes the prediction error of the original full model.

Bagging allows the unbiased estimation of VIMs on the full training data set by per-
forming oob predictions. Moreover, bagging also has the advantage that multiple poten-
tially different models are explored stabilizing the VIMs themselves. Thus, for estimat-
ing VIMs in logicDT, bagging is used and the discussed VIMs are computed on the oob
observations.

4.1.1 Permutation VIM and removal VIM

One particularly popular approach for estimating the reduced model is the permutation
VIM used in random forests (Breiman, 2001). In this approach, for estimating the impor-
tance of a certain input variable, its corresponding observations are randomly permuted
and predictions with this random permutation are performed. Typically, the VIM data set is
permuted multiple times in the specific predictor and the average prediction error of these
permutations is compared against the original error.

As an alternative, the reduced model can also be directly fitted using a reduced training
data set from which the predictor of interest was removed (Mentch & Hooker, 2016). In the
following, we call this approach the removal VIM.

4.1.2 Logic VIM

For binary predictors, we additionally propose a specific third procedure for computing
VIMs. The idea of this logic VIM is based on considering each possible predictor setting
of the input variable of interest equally, i.e., for a binary predictor X1 ∈ {0, 1} , the error
of the reduced model is estimated by performing predictions fixing X1 = 0 , performing
predictions fixing X1 = 1 and averaging these predictions before computing the error. Thus,
for each observation, the prediction of the reduced model considers both possible decision
tree paths, one for X1 = 0 and one for X1 = 1 , equally and is generated without knowledge
about X1.

(7)VIM(Xi) = �(X ⧵ Xi) − �(X).

954 Machine Learning (2024) 113:933–992

1 3

4.2 Adjustment for interactions

In standard VIM procedures such as the permutation VIM in random forests, only impor-
tances of single input variables are considered. In the context of logicDT, we measure the
importance of terms, i.e., of identified single input variables or conjunctions of several
input variables. For instance, if the resulting model consists of {{X1}, {X2 ∧ Xc

3
}} , we are

interested in specifying the importance of X1 as well as the importance of the term X2 ∧ Xc
3
 .

This is achieved by considering terms such as X2 ∧ Xc
3
 as single input variables, i.e., by

directly considering a tree training data set as in Eq. (4).
Since decision trees can handle interactions themselves, it might be possible that, e.g.,

X1 as well as the interaction X1 ∧ Xc
2
 exhibit strong effects on the outcome. However, due

to the strong marginal effect, only the single predictors X1 and X2 might be included in the
logicDT model, complicating the estimation of the importance of the interaction.

Hence, we propose a novel VIM adjustment procedure for interactions that quantifies the
importance of interactions that were not identified by a supervised learner such as logicDT.
This VIM adjustment approach presented in the following does not depend on logicDT, but
enables logicDT to appropriately estimate interaction importances. Therefore, they could, in
principle, be applied to all black-box models for estimating interaction importances.

The idea behind the VIM adjustment procedure is based on considering several predictors
at once, i.e., the reduced model results from reducing multiple variables in one step. Compar-
ing the performances of this reduced model and the original model yields a joint VIM of the
set of predictors (Bureau et al., 2005). Analogously to Eq. (7), the joint VIM is obtained by

Since this joint VIM still includes the marginal effects of the individual predictors and
their sub-interactions of an order lower than the order of the actual interaction influencing
the outcome, we propose the interaction VIM that corrects for any effects contained in the
regarded interaction. This interaction VIM of Xi1

∧⋯ ∧ Xik
 is given by

where Z ∶= {Xi1
,… ,Xik

} is the set of input variables in the considered interaction. In our
notation, ∧ denotes the interaction importance, while commas represent the joint impor-
tance. By VIM(A ∣ X ⧵ Z) , the VIM of A considering the predictor set excluding the vari-
ables in Z , i.e., the improvement of additionally considering A , while regarding only the
predictors in X ⧵ Z , is denoted. The interaction importance captures the importance of a
general meaning of interaction, i.e., it considers whether some variables do interact in any
way and quantifies the effect of the joint presence of these variables adjusted for single
occurrences. For a predictor set Ã ∶= {Xj1

,… ,Xjl
} ⊆ Z , the restricted joint VIM, i.e., the

VIM of Ã considering only the predictors X ⧵ Z in the reduced model, is, following Eq. (8),
given by

Excluding all variables in Z composing the interaction in the respective reference models
is crucial for isolating the effects that should be adjusted for. If, e.g., a two-way interaction
X1 ∧ X2 is studied, its interaction VIM (9) is given by

(8)VIM(Xi1
,… ,Xik

) = �(X ⧵ {Xi1
,… ,Xik

}) − �(X).

(9)
VIM(Xi1

∧⋯ ∧ Xik
) = VIM(Xi1

,… ,Xik
∣ X ⧵ Z)

−
∑

{j1,…,jl}⊊{i1,…,ik}

VIM(Xj1
∧⋯ ∧ Xjl

∣ X ⧵ Z),

(10)VIM(Ã ∣ X ⧵ Z) = �(X ⧵ Z) − �(Ã ∪ (X ⧵ Z)).

955Machine Learning (2024) 113:933–992

1 3

If, e.g., VIM(X1 ∣ X ⧵ X1)
(7),(10)
= VIM(X1) would be used instead of

VIM(X1 ∣ X ⧵ {X1,X2}) in Eq. (11), the whole importance of X1 , that also contains the
interaction with X2 , would be subtracted from the joint importance not isolating the inter-
action importance that should be estimated.

Recursively applying Eq. (11) to the general case in Eq. (9) yields

Utilizing Eq. (10), this formula for the interaction VIM can also be written in terms of pre-
diction errors � , i.e., as

This formula can be used for efficiently computing the interaction VIM by directly consid-
ering prediction errors.

The interaction VIM (9) is similar to the interaction effect statistic proposed by Fried-
man and Popescu (2008), which utilizes the same effect decomposition and is based on
the explained variance of partial dependence functions instead of VIMs. Friedman and
Popescu (2008) theoretically justified this effect decomposition by showing that their sta-
tistic is zero, if the null hypothesis of no present interaction effect holds true. For exam-
ple, for analyzing a two-way interaction X1 ∧ X2 , Friedman and Popescu (2008) evaluate
FX1,X2

− FX1
− FX2

 , in which F
⋅
 denotes partial dependence functions of the considered

input variables. This term is analogous to the interaction VIM in Eq. (11) for X1 ∧ X2 with
the difference that VIMs, i.e., performance metrics, are used instead of partial depend-
ence functions. Moreover, the input feature effect decomposition utilized by the proposed
interaction VIM is also used by the Shapley interaction index (Lundberg et al., 2020; Fuji-
moto et al., 2006). However, in machine learning applications, Shapley values are based on
direct predictions of the fitted model instead of performance metrics such as VIMs.

For all three procedures for constructing VIMs mentioned in Sect. 4.1, the reduced joint
model can be intuitively constructed.

In the permutation VIM, the input variables of interest, i.e., the input variables par-
ticipating in the interaction for which the interaction VIM should be computed, are simply
permuted together by, e.g., permuting the values of each input variable separately.

For the removal VIM, the set of input variables of interest is removed as a whole from
the total set of input variables.

The logic VIM proposed in Sect. 4.1.2 performs uninformative predictions of an input
variable by considering both possible decision tree paths for an observation and averaging
the prediction. To generalize the logic VIM to multiple input variables at once for comput-
ing the interaction VIM, all possible predictor settings x ∈ {0, 1}p for the p input variables
that shall be informatively excluded are used to generate predictions. These 2p predictions
are averaged to create the prediction of the reduced model.

In logicDT, the logic VIM is used in conjunction with the proposed adjustment for inter-
action effects. Quantifying the importance of specific conjunctions, that are, e.g., identified
by logicDT, will be discussed in the following section. In Sect. 5, the permutation VIM,
the removal VIM, and the logic VIM are evaluated in empirical studies.

(11)
VIM(X1 ∧ X2) = VIM(X1,X2 ∣ X ⧵ {X1,X2})

− VIM(X1 ∣ X ⧵ {X1,X2}) − VIM(X2 ∣ X ⧵ {X1,X2}).

VIM(Xi1
∧⋯ ∧ Xik

) =
∑

{j1,…,jl}⊆{i1,…,ik}

(−1)k−l ⋅ VIM(Xj1
,… ,Xjl

∣ X ⧵ Z).

VIM(Xi1
∧⋯ ∧ Xik

) =
∑

{j1,…,jl}⊆{i1,…,ik}

(−1)l+1 ⋅ 𝜖(X ⧵ {Xj1
,… ,Xjl

}) − 𝜖(X).

956 Machine Learning (2024) 113:933–992

1 3

4.3 Adjustment for conjunctions

The VIM adjustment approach introduced in Sect. 4.2 only captures the importance of a
general meaning of interactions, i.e., it just considers the question whether some variables
do interact in some way. Since logicDT is aimed at identifying specific conjunctions (and
also determines the values of a VIM for them, if the conjunctions have been identified by
logicDT), a further adjustment approach is proposed that tries to identify the specific con-
junction leading to an interaction effect. For example, if the importance of the interaction
between X1 and X2 was quantified using the interaction adjustment proposed in Sect. 4.2,
the approach presented in the following assigns a Boolean conjunction to this importance,
e.g., the Boolean conjunction X1 ∧ Xc

2
 . The proposed procedure is, again, applicable to any

kind of supervised learning model. However, due to considering Boolean conjunctions, the
input variables for which the importance should be quantified need to be binary.

This approach considers each possible conjunction of the identified interaction and
chooses the conjunction that leads to the most severe deviation in the outcome, i.e., the
conjunction with the strongest effect on the outcome. The VIM of this conjunction is the
corresponding interaction VIM derived in Sect. 4.2.

The idea of this method is to consider the values of the outcome for each possible sce-
nario of the interacting variables, e.g., for X1 ∧ (Xc

2
∧ X3) , where we assume that the terms

X1 and Xc
2
∧ X3 were identified by logicDT. In this example, thus, two interacting terms

are regarded, i.e., the 22 = 4 possible scenarios X1 = 0 or X1 = 1 in combination with
Xc
2
∧ X3 = 0 or Xc

2
∧ X3 = 1 are considered. For each setting, the corresponding outcome

values are compared to the outcome values of the complementary set, i.e., the set in which
the considered conjunction is equal to zero. This means that in the considered example the
four statistical tests

with

potentially negating the subterms, are performed for i ∈ {1, 2, 3, 4} . For continuous out-
comes, Welch’s t-test is performed for comparing the means between these two groups,
i.e., the group in which the considered conjunction is equal to one and the group in which
the considered conjunction is equal to zero. For binary outcomes, Fisher’s exact test is per-
formed for testing different underlying case probabilities. The combination with the lowest
p-value is chosen as the explanatory term for the interaction effect. E.g., in the above exam-
ple, if the smallest p-value results from considering X1 = 0 and (Xc

2
∧ X3) = 1 , the term

Xc
1
∧ (Xc

2
∧ X3) is chosen as the conjunction responsible for the interaction effect.

5 Experiments

In the following, we evaluate the performance of logicDT on simulated and real data con-
sidering classification and regression problems and compare logicDT with other similar
methods. More precisely, we compare logicDT and bagged logicDT with conventional

H0 ∶ �
[
Y ∣ Ci = 1

]
= �

[
Y ∣ Ci = 0

]

vs. H1 ∶ �
[
Y ∣ Ci = 1

]
≠ �

[
Y ∣ Ci = 0

]
,

C1 = X1 ∧ (Xc
2
∧ X3), C2 = Xc

1
∧ (Xc

2
∧ X3),

C3 = X1 ∧ (Xc
2
∧ X3)

c, C4 = Xc
1
∧ (Xc

2
∧ X3)

c

957Machine Learning (2024) 113:933–992

1 3

decision trees (Breiman et al., 1984), DL8.5 (Aglin et al., 2020a), random forests (Brei-
man, 2001), gradient boosting (Friedman, 2001), logic regression (Ruczinski et al., 2003),
logic regression with bagging (Schwender & Ickstadt, 2007), MOB (model-based recursive
partitioning, Zeileis et al., 2008), interaction forests (Hornung & Boulesteix, 2022), and
RuleFit (Friedman & Popescu, 2008). Since DL8.5 (as similar openly available optimal
decision tree algorithms such as MurTree proposed by Demirović et al., 2022) are cur-
rently only implemented for classification tasks, DL8.5 is only applied to the considered
classification tasks. All analyses are carried out using R (R Core Team, 2022), except for
the application of DL8.5, which is performed using the Python implementation of Aglin
et al. (2020b).

5.1 Simulation study

We, first, consider the situation of genetic association studies in which single genes/genetic
pathways are analyzed and typically not more than a few tens of SNPs (single nucleotide
polymorphisms) are considered. Afterwards, we consider a more complex setting with
more SNPs to evaluate if logicDT is also applicable to high-dimensional problems.

5.1.1 First simulation setup

We analyze the performance of logicDT and the other supervised learning procedures first
in four different simulation scenarios in which we consider binary predictors and

• a binary outcome (such as a disease status) without an additional continuous covari-
able,

• a binary outcome with a continuous covariable,
• a continuous outcome (such as the blood pressure) without a continuous covariable,

and
• a continuous outcome with a continuous covariable.

Our simulations are based on the problem of analyzing risk factors in genetic epidemiol-
ogy. Thus, the generated input variables can be interpreted as SNPs that count the number
of minor alleles at a specific locus, i.e., the number of occurrences of a less frequent base-
pair substitution at a specific location in the DNA. Due to humans being diploid organ-
isms, i.e., carrying two complete sets of chromosomes, SNPs can take the values 0, 1, or
2. Similar to, e.g., logic regression, for the application of logicDT to SNP data, each SNP
is divided into the binary input variables SNPD = 1(SNP ≠ 0) and SNPR = 1(SNP = 2) ,
coding for a dominant and a recessive effect, respectively, such that no information is lost.
Conventional decision trees also implicitly divide SNPs into dominant and recessive effects
by considering SNPs as numerical variables such that a split can occur on ({0}, {1, 2}) or
on ({0, 1}, {2}) . Combined with the greedy search of decision trees over all possible splits,
this is equivalent to directly considering the binary variables SNPD and SNPR (Lau et al.,
2022).

The genotypes of the SNPs are generated independently, resembling sets of SNPs
from which, as often done in practice, highly correlated SNPs have been removed using
linkage-disequilibrium-based pruning (see, e.g., Purcell et al., 2007). The distributions of
the SNPs are defined via the MAF (minor allele frequency), i.e., the proportion of minor
allele occurrences, yielding the binomial distribution Bin(2,MAF) for each SNP. For all

958 Machine Learning (2024) 113:933–992

1 3

simulated SNPs, we consider a MAF of 0.25. For each data set, 50 SNPs are generated so
that X = (SNP1,… , SNP50) . However, in the considered scenarios described below, only a
small fraction influences the outcome such that most input variables act as noise regarding
the outcome.

For the analysis of the influence of a continuous covariable, an environmental varia-
ble (e.g., an air pollution indicator) is generated following a truncated normal distribution
(truncated at zero, since values below zero often do not occur in practice). In particular, the
environmental term E is generated by considering a N(20, 100)-distributed random vari-
able E′ and setting values below zero to zero so that E = max(0,E�) . The truncated values
might, e.g., be interpreted as measurements below a detection limit.

Since DL8.5 can only incorporate binary input variables, E is dichotomized into a
binary variable by considering Ebin = 1(E > 20) for fitting and evaluating DL8.5 models,
where the cutoff 20 is chosen due to 𝔼[E] = ℙ(E� > 0)𝔼[E� ∣ E� > 0] ≈ 20.

For the first simulation scenario considering a binary outcome without any continuous
covariables, the outcome is generated following the model

Therefore, SNP1 exhibits a moderate marginal effect and SNP2 and SNP3 interact with
each other. The linear predictor on the right-hand side is squared which means that, on
the scale of the total linear predictor, the term 1(SNP1 > 0) interacts with the term
1(SNP2 > 0 ∧ SNP3 = 0) . Thus, this resembles a situation in which it might be useful to
be able to model interactions between interactions, since the underlying scale of the linear
predictor is unknown prior to the analyses, which is usually the case in practice. The inter-
cept of −0.4 ensures that the resulting data sets are approximately balanced, i.e., that the
fraction of cases is approximately equal to 50%.

In the second scenario, a gene-environment interaction is introduced such that the out-
come in this case is modeled by

Thus, the environmental variable only influences the outcome, if the term
1(SNP2 > 0 ∧ SNP3 = 0) holds true. This kind of gene-environment interaction might be
reasonable for substances that are usually harmless, but might cause, e.g., allergic reactions
in individuals with a certain genetic makeup.

Analogously to the first scenario, the third scenario consists of data sets in which the
outcome is modeled by

Here and in the following scenario, random noise generated from N(0, 1) is added to the
linear predictor.

As in the second scenario, the fourth scenario follows the underlying model

logit(ℙ(Y = 1 ∣ X)) = −0.4 +
�√

log(1.5) ⋅ 1(SNP1 > 0)

+
√
log(2) ⋅ 1(SNP2 > 0 ∧ SNP3 = 0)

�2

.

logit(ℙ(Y = 1 ∣ X,E)) = − 0.45 + log(2) ⋅ 1(SNP1 > 0)

+ log(3) ⋅
E

20
⋅ 1(SNP2 > 0 ∧ SNP3 = 0).

�[Y ∣ X] = −0.4 +
�√

log(1.5) ⋅ 1(SNP1 > 0)

+
√
log(2) ⋅ 1(SNP2 > 0 ∧ SNP3 = 0)

�2

.

959Machine Learning (2024) 113:933–992

1 3

For each simulation scenario, 100 independent data sets are generated. For each data set,
it is assumed that this is the only data set available. Thus, for each replication, the data set
is randomly divided into a training, a validation, and a test data set. Thus, for the evalu-
ation of logicDT and comparable methods, we perform 100 independent evaluations. In
many practical applications such as in the construction of genetic risk scores, there is
only data for a relatively small number of observations available. Hence, in our simula-
tions, the randomly generated data sets consist of 1000 observations each. From each of
these data sets, 0.7 ⋅ 1000 = 700 randomly chosen observations are used as the interme-
diary data set for training and validating the model and the remaining 300 observations
yield the test data set for the final evaluation. The intermediary data set is further randomly
divided into 0.25 ⋅ 700 = 175 observations for choosing the best set of hyperparameters
and 0.75 ⋅ 700 = 525 observations for training in the hyperparameter optimization. After
the optimal hyperparameter setting has been identified, the final models are trained on the
intermediary data set consisting of 700 observations.

The predictive performance of logicDT and the comparable methods is assessed using
the AUC for binary outcomes and using the complement of the NRMSE (normalized root
mean squared error) for continuous outcomes on test data predictions.

5.1.2 Hyperparameter optimization

As described in Sect. 3.6, the model complexity parameters ���_���� (maximum number
of total variables) and ���_���� (maximum number of conjunctions) of logicDT should
be tuned. In this application, we prohibit removing complete conjunctions to ensure that
the models consist of exactly ���_���� conjunctions. Furthermore, the minimum num-
ber �������� of observations belonging to a leaf and the minimum number �������� of
observations belonging to a conjunction and its negation are tuned using the same value,
respectively. This ensures that the trees are grown to the ideal depth and prevents that mod-
els using uninformative conjunctions are evaluated.

For bagged logicDT models, ���_���� and ���_���� are tuned using the same param-
eter setting and allowing the removal of complete conjunctions in contrast to fitting single
logicDT models.

In Table 1, the considered hyperparameter settings for logicDT, bagged logicDT, and
the comparable tree-based statistical learning methods are summarized. For logicDT, the
hyperparameter settings proposed in Sect. 3.6 are considered. For the regarded comparable
methods, common hyperparameter choices are considered and the best performing one is
chosen. For all methods except for gradient boosting and RuleFit, a grid search among all
proposed settings is performed, due to relatively few plausible settings. For gradient boost-
ing and RuleFit, a sequential Bayesian hyperparameter search is carried out (Bergstra et al.,
2011; Wilson, 2021), since a finetuning of the learning rate parameter (for a fixed number
of boosting iterations) is required. Additionally, the subsample fraction and the minimum
node size, which can also be considered as continuous hyperparameters, have to be con-
figured jointly in gradient boosting and RuleFit. For this sequential search, 100 different
settings are evaluated.

�[Y ∣ X,E] = − 0.75 + log(2) ⋅ 1(SNP1 > 0)

+ log(4) ⋅
E

20
⋅ 1(SNP2 > 0 ∧ SNP3 = 0).

960 Machine Learning (2024) 113:933–992

1 3

Ta
bl

e
1

 R
eg

ar
de

d
hy

pe
rp

ar
am

et
er

 se
tti

ng
s w

ith
 a

cc
or

di
ng

 d
es

cr
ip

tio
ns

A
lg

or
ith

m
So

ftw
ar

e
pa

ck
ag

e
H

yp
er

pa
ra

m
et

er
D

es
cr

ip
tio

n
C

on
si

de
re

d
re

al
iz

at
io

ns

lo
gi

cD
T

l
o
g
i
c
D
T

 (L
au

, 2
02

3)
(m
a
x
_
v
a
r
s

, m
a
x
_
c
o
n
j

)
M

ax
im

um
 n

um
be

r o
f v

ar
ia

bl
es

 a
nd

m

ax
im

um
 n

um
be

r o
f c

on
ju

nc
tio

ns
{
(i
,
j)
∈
{
1
,
…

,
1
0
}
2
∣
i
≥
j
∧
i
≤
2
j}

n
o
d
e
s
i
z
e

/c
o
n
j
s
i
z
e

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
 a

nd
 m

in
im

um
 n

um
be

r o
f o

bs
er

-
va

tio
ns

 p
er

 c
on

ju
nc

tio
n

⌊{0
.0
1
,
0
.0
5
,
0
.1
}
⋅
N
⌋

lo
gi

cD
T–

B
ag

gi
ng

l
o
g
i
c
D
T

 (L
au

, 2
02

3)
(m
a
x
_
v
a
r
s

, m
a
x
_
c
o
n
j

)
M

ax
im

um
 n

um
be

r o
f v

ar
ia

bl
es

 a
nd

m

ax
im

um
 n

um
be

r o
f c

on
ju

nc
tio

ns
{
(1
,
1
),
…

,
(1
0
,
1
0
)}

n
o
d
e
s
i
z
e

/c
o
n
j
s
i
z
e

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
 a

nd
 m

in
im

um
 n

um
be

r o
f o

bs
er

-
va

tio
ns

 p
er

 c
on

ju
nc

tio
n

⌊{0
.0
1
,
0
.0
5
,
0
.1
}
⋅
N
⌋

b
a
g
g
i
n
g
.
i
t
e
r

N
um

be
r o

f b
ag

gi
ng

 it
er

at
io

ns
50

0
D

ec
is

io
n

Tr
ee

r
p
a
r
t

 (T
he

rn
ea

u
&

 A
tk

in
so

n,

20
19

)
c
p

C
om

pl
ex

ity
 p

ar
am

et
er

 fo
r o

pt
im

al

pr
un

in
g

{
0
,
1
0
−
3
,
1
0
−
2
.5
,
1
0
−
2
,
1
0
−
1
.5
,
1
0
−
1
,
1
0
−
0
.5
,
1
0
0
}

m
i
n
b
u
c
k
e
t

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
⌊{0

.0
1
,
0
.0
5
,
0
.1
}
⋅
N
⌋

D
L8

.5
P
y
D
L
8
.
5

 (A
gl

in
 e

t a
l.,

 2
02

0b
)

m
i
n
_
s
u
p

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
⌊{0

.0
1
,
0
.0
5
,
0
.1
,
0
.2
}
⋅
N
⌋

R
an

do
m

 F
or

es
ts

r
a
n
g
e
r

 (W
rig

ht
 &

 Z
ie

gl
er

,
20

17
)

m
t
r
y

N
um

be
r o

f r
an

do
m

ly
 d

ra
w

n
in

pu
t v

ar
i-

ab
le

s a
t e

ac
h

sp
lit

� {
0
.5
,
1
,
2
}
⋅
⌊√

p
⌋� ∪

� {
0
.5
,
1
,
2
}
⋅
⌊p 3

⌋�

m
i
n
.
n
o
d
e
.
s
i
z
e

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
⌊{0

.0
1
,
0
.0
5
,
0
.1
}
⋅
N
⌋

n
u
m
.
t
r
e
e
s

N
um

be
r o

f t
re

es
 g

ro
w

n
20

00
G

ra
di

en
t B

oo
sti

ng
x
g
b
o
o
s
t

 (C
he

n
&

 G
ue

str
in

,
20

16
)

s
u
b
s
a
m
p
l
e

Su
bs

am
pl

e
fr

ac
tio

n
fo

r d
ra

w
in

g
sa

m
pl

es
 w

ith
ou

t r
ep

la
ce

m
en

t f
or

ea

ch
 tr

ee

[0
.5

, 1
.0

]

m
i
n
_
c
h
i
l
d
_
w
e
i
g
h
t

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
{
m
∈
ℕ
∣
m
∈
[0
.0
1
⋅
N
,
0
.1
⋅
N
]}

e
t
a

Le
ar

ni
ng

 ra
te

[1
0
−
6
,
1
0
−
1
]

n
r
o
u
n
d
s

N
um

be
r o

f b
oo

sti
ng

 it
er

at
io

ns
50

0

961Machine Learning (2024) 113:933–992

1 3

Th
e

m
en

tio
ne

d
hy

pe
rp

ar
am

et
er

 n
am

es
 a

re
 th

e
na

m
es

 o
f t

he
 c

or
re

sp
on

di
ng

 a
rg

um
en

ts
 in

 th
e

re
sp

ec
tiv

e
R

/P
y
t
h
o
n

 p
ac

ka
ge

s

Ta
bl

e
1

 (c
on

tin
ue

d)

A
lg

or
ith

m
So

ftw
ar

e
pa

ck
ag

e
H

yp
er

pa
ra

m
et

er
D

es
cr

ip
tio

n
C

on
si

de
re

d
re

al
iz

at
io

ns

Lo
gi

c
Re

gr
es

si
on

L
o
g
i
c
R
e
g

 (K
oo

pe
rb

er
g

&

Ru
cz

in
sk

i,
20

22
)

(n
l
e
a
v
e
s

, n
t
r
e
e
s

)
M

ax
im

um
 n

um
be

r o
f (

to
ta

l)
le

av
es

 a
nd

m

ax
im

um
 n

um
be

r o
f t

re
es

{
(i
,
j)
∈
{
1
,
…

,
2
0
}
×
{
1
,
…

,
5
}
∣
i
≥
j}

a
n
n
e
a
l
.
c
o
n
t
r
o
l

Si
m

ul
at

ed
 a

nn
ea

lin
g

co
ol

in
g

sc
he

du
le

Ex
pe

rim
en

ta
l

Lo
gi

c
B

ag
gi

ng
l
o
g
i
c
F
S

 (S
ch

w
en

de
r &

 Ic
k-

st
ad

t,
20

07
)

(n
l
e
a
v
e
s

, n
t
r
e
e
s

)
M

ax
im

um
 n

um
be

r o
f (

to
ta

l)
le

av
es

 a
nd

m

ax
im

um
 n

um
be

r o
f t

re
es

{
(i
,
j)
∈
{
1
,
…

,
1
0
}
×
{
1
,
…

,
5
}
∣
i
≥
j}

B
B

ag
gi

ng
 it

er
at

io
ns

50
0

M
O

B
p
a
r
t
y

 (Z
ei

le
is

 e
t a

l.,
 2

00
8)

m
i
n
s
p
l
i
t

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
⌊{0

.0
1
,
0
.0
2
,
…

,
0
.0
9
,
0
.1
}
⋅
N
⌋

In
te

ra
ct

io
n

Fo
re

sts
d
i
v
e
r
s
i
t
y
F
o
r
e
s
t

 (H
or

-
nu

ng
, 2

02
2)

n
p
a
i
r
s

N
um

be
r o

f r
an

do
m

ly
 d

ra
w

n
in

pu
t v

ar
i-

ab
le

 p
ai

rs
 a

t e
ac

h
sp

lit
� {
0
.5
,
1
,
2
}
⋅
⌊√

p
⌋� ∪

� {
0
.5
,
1
,
2
}
⋅
⌊p 3

⌋�

m
i
n
.
n
o
d
e
.
s
i
z
e

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
⌊{0

.0
1
,
0
.0
5
,
0
.1
}
⋅
N
⌋

n
u
m
.
t
r
e
e
s

N
um

be
r o

f t
re

es
 g

ro
w

n
20

00
Ru

le
Fi

t
p
r
e

 (F
ok

ke
m

a,
 2

02
0)

s
a
m
p
f
r
a
c

Su
bs

am
pl

e
fr

ac
tio

n
fo

r d
ra

w
in

g
sa

m
pl

es
 w

ith
ou

t r
ep

la
ce

m
en

t f
or

ea

ch
 tr

ee

[0
.5

, 1
.0

]

m
i
n
b
u
c
k
e
t

M
in

im
um

 n
um

be
r o

f o
bs

er
va

tio
ns

 p
er

le

af
{
m
∈
ℕ
∣
m
∈
[0
.0
1
⋅
N
,
0
.1
⋅
N
]}

l
e
a
r
n
r
a
t
e

Le
ar

ni
ng

 ra
te

[1
0
−
6
,
1
0
−
1
]

n
t
r
e
e
s

N
um

be
r o

f b
oo

sti
ng

 it
er

at
io

ns
50

0

962 Machine Learning (2024) 113:933–992

1 3

For logicDT, Fig. 5 shows the validation data performances for the considered set-
tings of ���_���� and ���_���� combined with the respective best setting for ��������
/�������� . For each scenario, the highest performance is yielded by ���_���� = 3 and
���_���� = 2 corresponding to the true underlying simulation models. Generally, the fol-
lowing pattern can be observed. For many ���_���� settings, the maximizing setting is
given by ���_���� = ���_���� + 1 , which is due to the fact that in this case, additionally
to single variables as terms, a conjunction of two variables is contained in the model.

For most considered hyperparameter settings, the validation performance does not seem
to vary too severely between similar settings, which indicates that a slight hyperparameter
misspecification might not substantially impair the predictive performance of the resulting
logicDT model.

Fig. 5 Predictive performances of different hyperparameter settings for the parameters ���_���� (maxi-
mum number of variables) and ���_���� (maximum or exact number of terms) in logicDT in the sim-
ulation study considering four different scenarios. The performance for binary outcomes is measured by
the AUC and the performance for continuous outcomes is measured by the complement of the NRMSE
(normalized root mean squared error). Results on validation data sets for the best respective setting of the
parameter ��������/�������� in the set {1%, 5%, 10%} . The evaluated hyperparameter settings are listed
in Table 1. Justifications for evaluating these settings are given in Sect. 3.6

963Machine Learning (2024) 113:933–992

1 3

5.1.3 Predictive performance

Figure 6 depicts the performances of logicDT, the comparable methods, and the true under-
lying model in the simulation study, where the performance of the true model was assessed
by performing predictions using the true regression functions presented in Sect. 5.1.1.

In the first simulation scenario considering a binary outcome without an environmental
covariable, most notably, standard logicDT and bagged logicDT lead to the best perfor-
mances, i.e., the largest AUC values, which almost coincide with the performance of the
true model. Among the comparable methods, logic bagging seems to be the best method.

For the second scenario in which also a gene-environment interaction is considered,
logicDT, bagged logicDT, gradient boosting, logic regression, and logic bagging induce
similar results superior to the remaining methods. Here, logicDT and logic regression seem
to produce slightly better results than the other procedures.

Fig. 6 Predictive performances of logicDT and the comparable methods in the simulation study consider-
ing four different scenarios. The performance for binary outcomes is measured by the AUC and the per-
formance for continuous outcomes is measured by the complement of the NRMSE (normalized root mean
squared error)

964 Machine Learning (2024) 113:933–992

1 3

For the third and fourth simulation scenarios considering a continuous outcome without
or with an environmental covariable, logicDT and bagged logicDT yield the highest pre-
dictive performances close to the true underlying models. When considering no environ-
mental covariable, logic bagging seems to be the best method among the comparable meth-
ods. MOB yields the highest performance among the comparable methods when including
an environmental covariable.

5.1.4 Variable importance

Using the VIMs and adjustment approaches for interactions and conjunctions proposed
in Sect. 4, we computed variable importances in the four different simulation scenarios.
We fitted bagged logicDT models on the 100 complete sub data sets for each scenario.
The VIMs themselves were computed using out-of-bag data. For properly summarizing
the 100 repetitions, means of the 100 repetitions were computed. A term not occur-
ring in one repetition received a VIM of zero. Additionally, asymptotic 95% confidence
intervals for these means � were calculated by �̂� ± 1.96 ⋅ �se , where ŝe is the estimated
standard error. For binary outcomes, the AUC was used for determining VIMs, while
for continuous outcomes, the MSE was employed.

Figure 7 depicts the determined VIMs. For all four scenarios and all three considered
measures, the true influential input variables SNP1D, SNP2D, SNP3D receive the high-
est importance values. Theoretically non-influential terms comprised of variables not
influencing the outcome were assigned importance values close to zero in all cases. In
the first simulation scenario, the logic VIM and the removal VIM both assign the tri-
plet SNP1D ∧ SNP2D ∧ SNP3Dc the highest importance among all interactions. The
permutation VIM favors the sub-conjunction SNP2D ∧ SNP3Dc of this triplet. Both
interpretations are correct regarding the true model in their own sense, since the term
SNP2D ∧ SNP3Dc interacts with SNP1D due to squaring the linear predictor.

In the remaining three scenarios, all VIMs assign the term SNP2D ∧ SNP3Dc
the highest importance among all interactions. However, in the third scenario con-
sidering, as in the first scenario, the square of the linear predictor, the conjunction
SNP1D ∧ SNP2D ∧ SNP3Dc and additionally sub-conjunctions receive importance
values greater than zero. In the last scenario considering a continuous outcome and an
influential environmental covariable, the interaction SNP2D ∧ SNP3Dc received the
highest importance overall for all three importance measures.

In the first three scenarios, the three single input variables yield the highest impor-
tances. This is due to the fact that the VIM of single input variables coincides with the
standard definition of VIMs, i.e., the difference in error when informatively removing a
single input variable. Thus, the VIM of a single input variables captures all of its effects,
including effects of interaction in which this input variable participates. In the fourth
scenario, the two-way interaction SNP2D ∧ SNP3Dc seems to be identified in almost
every logicDT application so that the single input variables SNP2D and SNP3D receive
lower importances due to being identified less often. Hence, the importances should be
compared in groups corresponding to the interaction order, i.e., marginal importances
should be compared to each other, two-way interactions should be compared to each
other, and so forth.

In summary, all measures yield very similar and plausible results. The determination
of the logic VIM is considerably faster than the determination of the removal VIM and
the permutation VIM, since the model does not have to be refitted and predictions do

965Machine Learning (2024) 113:933–992

1 3

Fig. 7 Logic, removal, and permutation VIMs yielded by bagged logicDT models for the four scenarios in
the simulation study. Adjustment for interactions and conjunctions was performed. Means and asymptotic
95% confidence intervals for the 100 repetitions are presented. Negations of input variables are denoted
using a minus sign in the front

966 Machine Learning (2024) 113:933–992

1 3

not have to be performed for a high number of permutations for computing the logic
VIM. Instead, for a term consisting of k variables, only 2k predictions have to performed
and compared to the original prediction.

5.1.5 Second simulation setup

To investigate if logicDT is also suitable in scenarios in which a larger amount of input
variables is considered and more input variables influence the outcome, we evaluate
logicDT and the comparable methods in additional simulations. Two scenarios are
investigated, one considering a binary outcome and one considering a continuous out-
come, that are both simulated according to the linear model

where g is the logit function for the binary outcome and the identity function for the contin-
uous outcome. This model was chosen, since it exhibits a more complex structure, as nine
SNPs influence the outcome as main effects, two-way interactions, three-way interactions,
or gene-environment interactions. In total, 1000 SNPs (i.e., 2000 binary input variables
coding for dominant and recessive modes of inheritance for these SNPs) and one continu-
ous covariable were simulated for data sets with sample size n = 1000 . The input variables
are simulated analogously to the ones in Sect. 5.1.1. Both scenarios are, again, evaluated
based on 100 independent replications, i.e., 100 random data sets, which are analogously to
Sect. 5.1.1 divided into training, validation, and test data sets.

5.1.6 Predictive performance

In Fig. 8, the predictive performance of logicDT and the comparable methods in the
application to the two additional simulation scenarios are depicted. Both scenarios seem
to be relatively complex, since the discrepancy between the predictive performance of
the true model and the fitted models is larger than, e.g., in the previously conducted
simulations.

For the binary outcome, the best performance is induced by gradient boosting,
closely followed by logicDT, bagged logicDT, random forests, logic regression, and
logic bagging. Out of these methods, logicDT and logic regression are the only methods
that yield interpretable models. Conventional decision trees, DL8.5, MOB, and RuleFit
lead to lower AUCs.

For the continuous outcome, the best results are induced by logicDT, bagged log-
icDT, gradient boosting, logic regression, logic bagging, and RuleFit. The other inter-
pretability-focused methods, namely conventional decision trees and MOB, yield lower
predictive performances.

(12)

g(�[Y ∣ X,E]) = − 0.25 + log(2) ⋅ 1(SNP1 > 0) + log(2.5) ⋅
E

20
⋅ 1(SNP2 > 0)

− log(1.5) ⋅ 1(SNP3 = 2) − log(1.5) ⋅ 1(SNP4 = 0)

+ log(3) ⋅
E

20
⋅ 1(SNP5 > 0) ⋅ 1(SNP6 = 2)

− log(3) ⋅ 1(SNP7 > 0) ⋅ 1(SNP8 = 0) ⋅ 1(SNP9 < 2),

967Machine Learning (2024) 113:933–992

1 3

Hence, logicDT seems to be also applicable and yielding comparatively high predic-
tive performances, when considering scenarios with larger numbers of input variables
(here, 2000 binary input variables) and influential input variables.

5.1.7 Variable importance

In Fig. 9, the estimated variable importances by bagged logicDT in the application to
the two additional simulation scenarios are displayed. Since a relatively complex sce-
nario is considered, not every influential term is identified. Nonetheless, for the binary
outcome and each considered VIM type, each term with a strongly positive variable
importance is truly influential in the underlying data-generating model (12). Moreover,
for both the binary and the continuous outcome and all VIM types, the two-way interac-
tion SNP8Dc ∧ SNP7D is correctly identified.

For the continuous outcome and the permutation VIM, the five top-ranking impor-
tances correspond to truly influential terms. However, the terms showing the next
highest importances corresponding to theoretically non-influential terms such as
(SNP8Dc ∧ SNP7D)c ∧ SNP2D indicate that these terms are influential as well due to their
importance confidence intervals fully being above zero. This issue of falsely identified
terms seems to be alleviated when employing the logic VIM or the removal VIM due to
less non-influential terms that yield VIM confidence intervals fully above zero when using
these VIMs. This, thus, indicates that the logic VIM and the removal VIM in conjunction
with the adjustment for interactions can also be employed in more complex scenarios with
a larger number of input variables.

Fig. 8 Predictive performances of logicDT and the comparable methods in the simulation study consider-
ing two more complex scenarios. The performance for the binary outcome is measured by the AUC and the
performance for the continuous outcome is measured by the complement of the NRMSE (normalized root
mean squared error)

968 Machine Learning (2024) 113:933–992

1 3

5.2 Real data application

We have also applied logicDT and the comparable statistical learning methods to sev-
eral real data sets, from which the data set of the SALIA study is of particular inter-
est. Therefore, we consider, first, in the following subsections this study and the per-
formance of logicDT and the comparable methods in their application to the data from
the SALIA study. Afterwards, we summarize the results of the analyses of the other
data sets in Sect. 5.2.4. A more detailed discussion of these evaluations can be found in
Appendix 4.

5.2.1 SALIA study

logicDT was applied to a real data set from a German cohort study called the SALIA
study (Study on the Influence of Air Pollution on Lung, Inflammation and Aging,
Schikowski et al., 2005). The results of logicDT were compared to the results of the
methods also considered in the comparisons in Sect. 5.1. The data set consists of data
from 517 women, from which 123 had a rheumatic disease so that 394 women did not
show a rheumatic disease. For these women, data from 77 SNPs from the HLA-DRB1
gene, which presumably plays a major role in the heritability of rheumatoid arthritis
(Clarke & Vyse, 2009), are available. For more details about the SALIA study itself and

Fig. 9 Logic, removal, and permutation VIMs yielded by bagged logicDT models for the two more com-
plex scenarios in the simulation study. Adjustment for interactions and conjunctions was performed. Means
and asymptotic 95% confidence intervals for the 100 repetitions are presented. Negations of input variables
are denoted using a minus sign in the front

969Machine Learning (2024) 113:933–992

1 3

an analysis of rheumatic diseases in the SALIA study, see Krämer et al. (2010) and Lau
et al. (2022), respectively.

The analysis was performed using a similar scheme as in the simulation study. For
100 independent repetitions, training, validation and test data sets were randomly drawn
from the total data set. Hyperparameter optimization was performed using, again, the
parameter values summarized in Table 1.

5.2.2 Predictive performance

In Fig. 10, the performances of logicDT and the comparable methods in their application to
the SNP data from the SALIA study are shown. This figure reveals that all evaluated statisti-
cal learning procedures induce similarly high AUCs, except for conventional decision trees,
DL8.5, and RuleFit, which show inferior predictive performances. RuleFit seems to have
issues to detect a signal in the data set at all, despite optimizing its hyperparameters.

We would like to point out that logicDT is the only other procedure than conventional
decision trees, DL8.5, logic regression, and RuleFit that yields easily interpretable predic-
tion models. In contrast to these models, logicDT still leads to comparatively high predic-
tive performances. Single logic regression models yield similar AUCs as logicDT. How-
ever, due to logic regression models including complex terms consisting of mixtures of
Boolean conjunctions and disjunctions, logic regression models tend to be harder to inter-
pret than logicDT models.

Figure 11 shows the fitted logicDT model on the complete SALIA data. This tree is
still relatively easy to interpret, i.e., it is easy to understand how predictions are made and
which interactions are involved in the prediction. In comparison, the fitted logic regression
model on the complete SALIA is given by

Fig. 10 Predictive performances of logicDT and the comparable methods in the evaluation of the SALIA
data

970 Machine Learning (2024) 113:933–992

1 3

For this model, it is not trivial which interactions are involved in the prediction and how
predictions for ℙ(Y = 1 ∣ X) are constructed.

5.2.3 Variable importance

Figure 12 illustrates the measured variable importances in the application to the SALIA data
for the three proposed VIM approaches using bagged logicDT models. In the top row, the
importances for the top 5 single input variables are depicted. In the second and third row, the
importances for the top 5 two-way and three-way interactions are shown, respectively.

For verifying whether the terms identified by logicDT really have an influence on the out-
come of interest, i.e., the rheumatic disease status, we considered for each identified term X in
Fig. 12 a logistic regression model

and performed statistical hypothesis tests testing whether the respective term has an influ-
ence on the outcome, i.e., testing H0 ∶ �1 = 0 vs. H1 ∶ �1 ≠ 0 using a Wald test. For each

logit(ℙ(Y = 1 ∣ X)) = − 1.14

− 19.63 ⋅ 1((rs113608847D ∧ (rs113505515Dc ∨ rs9270143R))

∧ (rs1060176D ∨ (rs28724138Rc ∧ rs17884945Rc)))

− 2.91 ⋅ 1((rs34578704Dc ∧ rs34084957D)

∨ ((rs41288045R ∨ rs9269814Dc) ∨ rs72844253R))

+ 1.41 ⋅ 1((rs113322920D ∨ rs36101847R) ∧ rs17879702Dc).

(13)logit(ℙ(Y = 1 ∣ X = x)) = �0 + �1x

Fig. 11 Fitted logicDT model on the complete SALIA data

971Machine Learning (2024) 113:933–992

1 3

set of five identified terms, we evaluated how many terms lead to significant coefficients
in the model from Eq. (13) using a significance level of � = 5% and adjusting for multiple
testing using the method by Benjamini and Hochberg (1995).

Table 2 shows the results for this post-hoc analysis. None of the identified single input
variables proves to be significant. However, for the logic VIM, four of the five identified
two-way interactions and all five three-way interactions seem to have a significant influ-
ence on the outcome. For the more computationally intensive removal and permutation
VIMs, the results seem to be inferior, since only two of the five two-way interactions are
significant, and three or four of the five three-way interactions, respectively, are significant.

Note that the VIMs of the single input variables depicted in Fig. 12 are considerably
higher than the VIMs of the interaction terms, yet the single input variables were not sig-
nificant. As discussed in the simulation study in Sect. 5.1.4, this is due to the fact that the
VIMs for single input variables also capture the importance of interactions that contain the
input variable of interest. Thus, if a single input variable is part of many interactions, this

Fig. 12 Logic, removal, and permutation VIMs yielded by bagged logicDT models in the evaluation of the
SALIA data—divided into VIMs of single input variables, two-way interactions and three-way interactions.
Adjustment for interactions and conjunctions was performed. Means and asymptotic 95% confidence inter-
vals for the 100 repetitions are presented. Negations of input variables are denoted using a minus sign in the
front

Table 2 Numbers of identified terms from Fig. 12 that were significant with respect to � = 5% using a false
discovery rate adjustment

Significant terms/5 Logic VIM Removal VIM Permutation VIM

Single Input Variables 0 0 0
Two-Way Interactions 4 2 2
Three-Way Interactions 5 3 4

972 Machine Learning (2024) 113:933–992

1 3

inflates its importance value without leading to a significant main effect of the variable. For
example, the most influential input variable across all three VIM calculation approaches,
rs1060176D, is in every considered situation part of one identified interaction term.

5.2.4 Additional real data evaluations

logicDT and the comparable methods are also evaluated in additional experiments using
24 real data sets from various application fields. The main result is that logicDT induces
high predictive performances among single-model procedures in the application to these
additional real data sets. Among the ensemble methods, bagged logicDT also induces
for most data sets relatively high predictive performances. More details on the analyses
of the additional real data sets can be found in Appendix 4.

6 Discussion

In this article, we have presented a statistical learning procedure called logicDT that
is specifically tailored to finding interactions between binary input variables and that
can also take continuous covariables into account by fitting regression models in the
decision tree branches. In contrast to, e.g., logic regression, all possible interactions of
the binary input data with this continuous covariable can be included in the prediction
model as well as interactions between interactions of the binary input data. logicDT is
aimed at maximizing both predictive power and interpretability motivated by applica-
tions in genetic epidemiology.

As a simulation study as well as real data applications show, logicDT is able to ful-
fill these objectives and yields comparable or better predictive performances as simi-
lar methods, while maintaining interpretability, which is lost when applying most other
approaches. Moreover, through simulated annealing and theory on decision trees, theo-
retical success of logicDT, i.e., that the true underlying regression function is asymp-
totically attained, could be proven.

For maximizing the predictive performance regardless of being able to interpret how
exactly predictions are made, bagging can be applied to logicDT, yielding performances
as state-of-the-art algorithms such as random forests or gradient boosting.

Through different VIMs and VIM adjustment approaches for measuring the impor-
tances of interactions and specific conjunctions, highly predictive bagged logicDT mod-
els are still very useful for deriving which variables influence the outcome in interaction
with which other variables. In comparison to standard VIM approaches, the proposed
interaction VIM is able to capture influences of interactions and is not restricted to
single input variables. Note that the proposed VIM adjustment approaches can also be
applied to other statistical learning procedures, e.g., black-box methods such as deep
neural networks or random forests, since no restricting assumptions on the model fitting
procedure itself are made in these approaches.

Fitting logicDT models is computationally intensive due to the global search via sim-
ulated annealing, and takes, in particular, more time than fitting conventional decision
trees that employ a greedy algorithm. However, as could be seen in the simulation study
and the real data applications, logicDT consistently outperformed conventional decision
trees considering the predictive performance. Moreover, logicDT still does not seem to

973Machine Learning (2024) 113:933–992

1 3

be slower than other interpretability-focused methods such as logic regression or Rule-
Fit. A model fitting time evaluation of logicDT and other procedures in the simulation
study and real data application can be found in Appendix 5.

logicDT was designed for interpretable modeling in low- to mid-dimensional problems,
e.g., considering single genes, pathways, or selections of SNPs that were significantly
influencing the outcome in prior analyses. However, in theory, logicDT can be applied
to problems with an arbitrarily large number p of input variables. Nonetheless, as shown
in Sect. 3.8, the computational complexity of logicDT is polynomial in p under certain
assumptions. Moreover, in practice, only finitely many computational resources are avail-
able. In simulations considering 1000 SNPs (i.e., p = 2000 input variables due to splitting
each SNP into two binary variables) and a more complex underlying model, logicDT still
induced relatively high predictive performances (see Sect. 5.1.5). Hence, we recommend
applying logicDT in situations with p ≤ 2000 . For comparison, in the software imple-
mentation of logic regression, where also a stochastic search algorithm is employed, the
authors allow a maximum of p = 1000 input variables (Kooperberg & Ruczinski, 2022).

The main issue of conventional decision trees is its instability issue, i.e., that small
modifications of the training data set imply unproportionally severe alterations of the fit-
ted model. This behavior is mainly induced by the greedy fitting algorithm (Li & Belford,
2002; Murthy & Salzberg, 1995). logicDT aims at identifying the globally optimal set of
predictors and interactions responsible for the variation in the outcome. Thus, only impor-
tant predictors are used for fitting the decision tree and interactions are already covered by
single splits. Therefore, the instability issue should be diminished by logicDT.

The search procedure in logicDT utilizes the training data both for fitting decision trees
and scoring them for guiding the search, which might suggest that this might lead to over-
fitting. However, both training trees based on states and evaluating states are part of the
logicDT fitting procedure and the balance of overfitting and underfitting is controlled by
the hyperparameters tuned using independent validation data (see Sect. 3.6). Moreover,
established statistical modeling approaches such as stepwise linear regression or logic
regression also employ the full training data set for both fitting the models and guiding
the search. Nonetheless, one idea might be to further split the available training data into
training data for fitting the decision tree based on the considered state and inner validation
data for scoring the state’s performance. However, due to the need for further splitting the
available data, less observations are available for both the tree fitting step and the scoring
step, leading to a decreased performance (on independent test data) compared to the origi-
nal algorithm in empirical experiments (see Appendix 6). Moreover, the resulting model
should not heavily rely on the data split used for this inner validation. Hence, ideally, mul-
tiple data splits—fitting and scoring multiple trees for one state and averaging the results as
in (inner) cross-validation—should be used, leading to an increased computational burden.

Bagged logicDT was designed for situations in which a larger number of input vari-
ables influences the outcome or variable/interaction term importances shall be measured.
In the simulation study conducted in Sect. 5.1.1, bagged logicDT performed similarly
well compared to logicDT due to single logic decision trees being able to fully capture
the considered underlying models. In additional simulations considering scenarios with
larger numbers of influential input variables (see Sect. 5.1.5) and real data evaluations (see
Appendix 4), bagged logicDT was able to achieve higher predictive performances in com-
parison to logicDT. Nevertheless, in these additional analyses, logicDT induced strong per-
formances compared to other single-model methods.

For bagged logicDT, one idea to further increase its performance might be to further ran-
domize the search similar to random forests. This could be realized by selecting a random

974 Machine Learning (2024) 113:933–992

1 3

sample of the neighbor states to be evaluated in each iteration of the greedy search, which is
similar to randomly sampling potential splitting variables in random forests. However, this
would create another hyperparameter—the number of randomly drawn candidate neighbor
states—that potentially should be tuned and could depend on the total number of neighbor
states that can change for each considered state.

logicDT is motivated by applications in genetic epidemiology in which mainly binary input
data is analyzed. Although not considered in this article, it is possible to generalize logicDT to
numerical input data by considering numerical interactions

∏
j Xj instead of Boolean conjunc-

tions
⋀

j Xj , where in the case of binary input data, these two definitions coincide.
The development of logicDT was, more precisely, motivated by the problem of construct-

ing genetic risk scores that are usually built based on linkage-disequilibrium-based pruned
SNPs, i.e., SNPs that can be interpreted as independent variables (So & Sham, 2017; Dud-
bridge & Newcombe, 2015). Therefore, throughout this manuscript, the assumption was made
that there are no strong correlations between the considered input variables. In future research,
logicDT and the interaction VIM could be analyzed and potentially adjusted for settings in
which strong correlations between input variables exist so that, ideally, input variables (highly)
correlated with truly predictive input variables do not diminish the importance of these truly
predictive input variables.

If, additionally, a quantitative variable such as a quantitative environmental variable is con-
sidered, logicDT uses this covariable to fit regression models in the leaves of the decision tree.
Since logicDT splits, in the context of genetic epidemiology, on genetic variants, a gene-envi-
ronment is present if and only if the leaf regression models differ more than by fixed offsets
describing marginal effects of the genetic variants. Thus, in future research, logicDT could be
expanded for statistically testing the presence of a gene-environment interaction in the consid-
ered subregion of the DNA.

Moreover, the proposed interaction importance measuring methodology could also be
expanded for statistically testing if certain single input variables or interaction terms signifi-
cantly influence the outcome. This can, e.g., be used in the context of genetic epidemiology,
testing the presence of gene-gene interactions. For implementing this testing procedure, the
variable importance testing framework proposed by Watson and Wright (2021) might be
applied to the importance measures proposed in this manuscript.

7 Conclusion

logicDT yields highly interpretable decision trees with superior predictive performances com-
pared to other single-model procedures such as standard decision trees by being able to detect
interaction effects between binary predictors on split level. Fitting ensembles of logicDT mod-
els through bagging can further increase the predictive performance if many predictors have
effects on the outcome. The novel VIM adjustment procedure can be applied to these logicDT
ensembles to derive which input variables influence the outcome in which interplay and mag-
nitude—also measuring the importance of interaction effects between input variables.

Appendix 1: Simulated‑annealing‑based search procedure

The main methodology of logicDT, for which consistency is proven, employs simulated
annealing as its search algorithm. In applications of logicDT, we suggest using an adap-
tive cooling schedule that requires no temperature tuning at all, which is in contrast to

975Machine Learning (2024) 113:933–992

1 3

a geometric cooling schedule that is, e.g., used in logic regression. An adaptive cooling
schedule automatically tunes the cooling behavior of simulated annealing, i.e., the start
temperature, the temperature lowering steps or the Markov chain lengths, and the end
temperature. Using an adaptive cooling schedule simplifies the application of simulated
annealing, since these parameters do not have to be fine-tuned manually.

The start temperature is generally chosen such that at the beginning of the algorithm
essentially a random walk is performed. For finding an appropriate initial temperature,
a brief random walk over the state space (e.g., visiting 10,000 states) is carried out in
logicDT and the state scores are recorded. Since the acceptance function

in simulated annealing is chosen so that better or equal states are automatically accepted,
the temperature only influences the acceptance behavior of proposed worse states. Thus,
only moves leading to worse states are used to estimate a temperature at which, e.g., 90%
of the worse states are accepted.

We employ the homogeneous version of simulated annealing that runs through many
consecutive homogeneous Markov chains. In practice, we limit the number of iterations
per chain to, e.g., 1000 and adaptively choose the next temperature in a way that equi-
librium of the next chain can be easily reattained. More precisely, we employ the tem-
perature lowering scheme proposed by Huang et al. (1986) that is given by

where t is the current temperature, t′ is the new temperature of the next Markov chain,
and �(t) is the standard deviation of the scores observed in the finished Markov chain (see
also, e.g., Van Laarhoven & Aarts, 1987). Here, � ∈ (0, 1] is a parameter controlling the
speed of the total algorithm, which means that a higher value of � leads to larger decreases
in the temperature t, and hence, to less total iterations. Consequently, a value closer to 0
leads to a finer search, requiring more iterations. Generally, more iterations are preferable
for approximating the theoretical asymptotic search. However, in practice, we recommend
using a value of � ∈ [0.01, 0.1] for performing at least a few hundred thousand iterations.

For stopping the stochastic search, we evaluate the fraction of accepted states yield-
ing a different score than the previous one, i.e., ignoring two neighbor states that yield
the exact same score. If, e.g., for five consecutive chains the fraction of this adjusted
state acceptance ratio is below 1%, the search is terminated. Alternatives include using
the total number of chains instead of restricting to consecutive ones or using, similar
to Triki et al. (2005), the standard deviation of the scores in a chain. For very small
temperatures, simulated annealing should only move to better or equal states in terms of
the score function. Thus, if an ideal state is reached, the score should no longer change,
leading to a standard deviation of the score of 0.

Similar to the cooling schedule proposed by Triki et al. (2005), in the beginning
of the search, the lowering of the temperature will also be triggered, if a threshold of
accepted states in a single Markov chain is reached. This threshold might, e.g., be set to
50% of the total Markov chain length and prevents the search from focusing too long on
the initial near random walk type of search, but instead focusing on the middle part of
simulated annealing.

�(�(s), �(s�), t) = min

{
1, exp

(
�(s) − �(s�)

t

)}

t� = t ⋅ exp

(
−�

t

�(t)

)
,

976 Machine Learning (2024) 113:933–992

1 3

The theory of simulated annealing is based on two convergences, namely

• the convergence of the individual Markov chains, i.e., reaching equilibrium or the
respective stationary distribution,

• the convergence of the temperature to 0, i.e., approaching an infinitesimal low tempera-
ture.

In practice, since limited computing resources are available, there is no guarantee that sim-
ulated annealing finishes in a global minimum. Thus, it might be possible that a globally
optimal state is visited in the initial exploration of the state space, but due to relatively few
iterations another local optimum is reached afterwards and is not abandoned anymore. We,
therefore, let the algorithm also remember the best visited state so far in the search.

Due to noninformative terms or noninformative predictors in a conjunction, it might
be possible that two neighbor states yield the exact same score. In this case, generally the
simpler model is preferred. Thus, when the search is finished, each term is inspected for
variables and conjunctions that do not improve the score and these variables or conjunc-
tions are removed from the model. Furthermore, if a new neighbor is proposed that leads
to exactly the same score as the current state, this new neighbor is accepted in simulated
annealing, regardless of the current temperature.

Visiting a single state multiple times can also occur due to the random nature of simu-
lated annealing itself. To account for this behavior in the searching procedure, a hash table
containing sorted linked lists of the specific states and their respective scores is used for
remembering already visited states. Thus, if a state is reached multiple times, the predictor
transformation and the decision tree fitting do not have to be repeated.

Appendix 2: Consistency proof

In this appendix, we prove Theorem 1 that was stated in Sect. 3.7. For proving this theo-
rem, some preliminary results are necessary that are proven in the following lemmata. We
start by proving that simulated annealing leads to an optimal solution in logicDT.

Lemma 1 The Markov chains constructed in logicDT fulfill the prerequisites of simulated
annealing such that the stationary distributions �t = limq→∞ ℙ(Qt(q) = ⋅) exist and it holds
that

for the set Rs of neighbor states of state s and the set Ropt of optimal states.

Proof For establishing convergence of the individual (finite and homogeneous) Markov
chains to their stationary distributions, it is sufficient to prove their irreducibility and ape-
riodicity (e.g., Theorem 1 in Section 3.1.2, Van Laarhoven & Aarts, 1987).

The Markov chains Qt in simulated annealing are generally based on the transition
probabilities

lim
t↘0

�t(s) =

⎧⎪⎨⎪⎩

�Rs�∑
s�∈Ropt

�Rs� �
, s ∈ Ropt

0, s ∉ Ropt

977Machine Learning (2024) 113:933–992

1 3

for s ≠ s′ and all q ∈ ℕ , where �(�(s), �(s�), t) describes the acceptance probability depend-
ing on the scores �(⋅) of the states and �(s, s�) yields the generation probability of s′ given
state s. In logicDT, the standard acceptance function

is used together with the uniform distribution for the generation probability

Since 𝛾(𝜖(s), 𝜖(s�), t) > 0 for every pair of states s, s′ and t > 0 and the choice of the moves,
i.e., modifications of states, proposed in Sect. 3.2 ensure that each state can be reached from
any other state in a finite number of steps, the Markov chains in logicDT are irreducible.

Aperiodicity is fulfilled, if for all states s the greatest common divisor (gcd) of

is equal to 1. This property would be directly fulfilled, if the chains would be reflexive, i.e.,
fulfilling 𝜏(s, s, t) > 0 for each state s. However, since it might be the case that a state has
only neighbors exhibiting better scores, leading to �(�(s), �(s�), t) = 1 for each s� ∈ Rs , the
probability of staying in state s can be equal to 0, as, for the probability of proposing the
current state, it holds that �(s, s) = 0 by choice of � . Therefore, three different cases for
states s have to be considered.

Case 1: s has a neighbor state s′ with 𝜖(s�) < 𝜖(s) . In this case, the probability �(s, s�, t)
of changing to state s′ is positive. The probability �(s�, s, t) of returning to s is posi-
tive as well, which is due to 𝛾 > 0 . Furthermore, the probability �(s�, s�, t) of remaining
in s′ is also positive, since, if s is generated by �(s�, ⋅) , s will be accepted with prob-
ability 𝛾(s�, s, t) < 1 because of 𝜖(s) − 𝜖(s�) > 0 and the choice of � in Eq. (14). Thus,
𝜏2(s, s, t) > 0 and 𝜏3(s, s, t) > 0 hold true yielding the greatest common divisor of
gcd(2, 3) = 1.
Case 2: s has at least one neighbor state s′ with 𝜖(s�) > 𝜖(s) , but no neighbor s′′ with
𝜖(s��) < 𝜖(s) . In this case, it holds that �(�(s), �(s�), t) ∈ (0, 1) , and thus,

Case 3: For all neighbor states s′ of s, it holds that �(s�) = �(s) . Here, we have

 and therefore, 𝜏2(s, s, t) > 0 . Let s′′ be another state with �(s��) ≠ �(s) . Such a state
has to exist, since otherwise each state would have the exact same score. The state
s′′ can be chosen such that, due to the irreducibility, there exists a sequence of states
(s, s1, s2,… , sn, s

��) , in which each succeeding state is a neighbor of its predecessor, with

�
(
s, s�, t

)
∶= ℙ

(
Qt(q + 1) = s� ∣ Qt(q) = s

)
= �

(
�(s), �(s�), t

)
⋅ �

(
s, s�

)

(14)�(�(s), �(s�), t) = min

{
1, exp

(
�(s) − �(s�)

t

)}

(15)�(s, s�) =

{
1

|Rs| , s
� ∈ Rs

0, s� ∉ Rs.

{
n ∈ ℕ ∣ 𝜏n(s, s, t) ∶= ℙ(Qt(1 + n) = s ∣ Qt(1) = s) > 0

}

𝜏1(s, s, t) = 𝜏(s, s, t) > 0.

�(�(s), �(s�), t) = �(�(s�), �(s), t) = 1,

978 Machine Learning (2024) 113:933–992

1 3

 for any n ∈ ℕ . Thus, it follows �(sn) ≠ �(s��).
Case 3.1: 𝜖(sn) > 𝜖(s��). Due to 𝜖(s��) − 𝜖(sn) < 0 and Eq. (14), it follows 𝛾(s��, sn, t) < 1 ,
and hence, 𝜏(s��, s��, t) > 0 . Using the state sequence (s, s1,… , sn, s

��, s��, sn,… , s1, s) ,
it becomes obvious that �2n+3(s, s, t) is positive. Furthermore, it follows that
gcd(2, 2n + 3) = 1 , as 2n + 3 is odd.
Case 3.2: 𝜖(sn) < 𝜖(s��). Analogously to Case 3.1, it follows that 𝜏(sn, sn, t) > 0 . Using
the state sequence (s, s1,… , sn, sn,… , s1, s) , the probability �2n+1(s, s, t) has to be posi-
tive so that gcd(2, 2n + 1) = 1 , since 2n + 1 is odd.

Thus, aperiodicity is given so that the individual limiting distributions exist.
Applying Theorem 2 from Section 3.1.3 of Van Laarhoven and Aarts (1987) to the con-

structed Markov chains using the choices for � in Eq. (14) and � in Eq. (15) directly shows
that the stationary distributions converge to a distribution that exactly has the set of optimal
states as its support. ◻

Now we have to show that the empirical risk minimization (ERM), which is per-
formed by simulated annealing, is asymptotically equivalent to a true risk minimization
in logicDT.

Lemma 2 (ERM consistency of logicDT) Let the outcome Y be bounded. Then, logicDT is
strongly consistent with respect to empirical risk minimization, i.e.,

where Remp(T) =
1

n

∑n

i=1
L(yi, T(xi)) is the empirical risk, Rtrue(T) = �(X,Y)[L(Y , T(X))] is

the true risk, and L(y, ŷ) = (y − ŷ)2 is the squared error loss.

Proof By assumption, Y is bounded. Thus, as the predictions of decision trees are generated
by means of observed values, the predictions are bounded by the same bound. Furthermore,
the L2 loss is bounded likewise. Let this bound be given by B > 0 , i.e., L(y, ŷ) ∈ [0,B].

In order to prove distribution-independent ERM consistency, it is necessary
and sufficient that the VC (Vapnik and Chervonenkis) dimension is finite (Vapnik,
2000), where the VC dimension is defined as the maximum number m of data points
z1,… , zm ∶= (x1, y1),… , (xm, ym) that can be shattered by a binary loss function
L(y,T(x)) ∈ {0, 1} . For m ∈ ℕ , there thus exists a sample z1,… , zm such that for all pos-
sible 2m binary outcomes ∈ {0, 1}m there exists a prediction function T in the consid-
ered space that divides the sample according to the label setting using the loss function
L(y,T(x)) . In the general regression setting, the VC dimension is defined as the VC dimen-
sion of the indicators 1(L(y,T(x)) ≥ �) , where � ∈ [0,B] is interpreted as part of the func-
tion space for the determination of the VC dimension so that for each outcome setting a
function T and a value for � have to be found.

For deriving the VC dimension of logicDT, note that the prediction values for each pre-
dictor setting can be chosen independently, i.e., it is only necessary to consider for how
many data points the data can be shattered along one single predictor setting. In the case
of not fully grown trees with shared leaves for different possible predictor settings (for
example, a tree stump only splitting on X1 ∈ {0, 1} such that T((X1, 0)) = T((X1, 1))), the

�(s) = �(s1) = �(s2) = ⋯ = �(sn)

sup
T

|||Remp(T) − Rtrue(T)
|||

a.s.
�������������������→
n→∞

0,

979Machine Learning (2024) 113:933–992

1 3

prediction values are not necessarily independent of each other. However, in this case, the
number of shatterable data points decreases compared to the independent prediction case
so that this case does not have to be considered with regard to the VC dimension. Thus, it
is sufficient to consider one single predictor X ∈ {0, 1} , since the shattering behavior only
has to be analyzed independently for each setting.

Figure 13 depicts the shatterability for two and three data points, respectively. Two
observations on one axis, as depicted here for X = 0 , can be shattered by properly position-
ing the corresponding prediction value a = T(0) and choosing an adequate � so that

i.e., choosing a and � such that red crosses are "far away" from a and black crosses are
"close" to a.

For three data points, there is only one problematic labeling: If three different observations
are considered that lie on one axis, one data point has to be the middle point. This middle
point cannot be classified as 1/red while classifying the outer points as 0/black. This is due
to the fact that the middle point needs to be far away from the prediction b = T(1) to achieve
this labeling, while the surrounding points need to be close to b, which is not possible.

Thus, for each prediction axis/tree branch, two is the maximum number of points that
can be shattered. Since for p predictors there are 2p possible predictor settings and two data
points can be shattered for each setting, the VC dimension VC of logicDT is equal to

1((y − a)2 ≥ 𝛽) =

{
Red ×, (y − a)2 ≥ 𝛽
Black ×, (y − a)2 < 𝛽,

VC = 2 ⋅ 2p = 2p+1.

Fig. 13 VC dimension illustration for logicDT models. Here, one binary predictor X ∈ {0, 1} is consid-
ered. For X = 0 , all 22 = 4 classifications for two data points are depicted. For X = 1 , all 23 = 8 classifica-
tions for three data points are shown. Black crosses indicate 1(L(y, T(x)) ≥ �) = 0 . Red crosses indicate
1(L(y, T(x)) ≥ �) = 1 . a and b are the (fixed) predictions T(0) = a , T(1) = b such that the corresponding
classification pattern can be achieved, i.e., there exists an appropriate � . f depicts the situation in which an
appropriate prediction value, and thus, an appropriate tree cannot be constructed

980 Machine Learning (2024) 113:933–992

1 3

For bounded loss composition functions L◦T̃ ∶ X × Y → [0,B] with T̃(x, y) ∶= (y, T(x)) ,
where L is in here given by L(y, ŷ) = (y − ŷ)2 so that (L◦T̃)(x, y) = (y − T(x))2 , a uniform
bound

involving the growth function G holds for all 𝜀 > 0 (see Equation (3.10), Vapnik, 2000).
This growth function G is bounded by a function of the VC dimension. In particular, for
n > VC , it holds that

(see Equation (3.23), Vapnik, 2000).
For proving almost sure convergence of (16), i.e., for proving

it suffices to show that the corresponding series converges (see, e.g., Corollary 1, Sec-
tion 1.11.1, Vapnik, 1998), i.e., that

Using (17), the right-hand side of (16) is bounded by

Using the ratio test for checking the convergence of series, the ratio of two consecutive
summands is given by

Thus, for this ratio Rn+1
n

 , it follows that there exists a number ñ ∈ ℕ so that for all n > ñ
it holds Rn+1

n
< 1 . Therefore, the series converges and almost sure convergence in (18) is

established. ◻

(16)ℙ

(
sup
T

|||Remp(T) − Rtrue(T)
||| > 𝜀

)
≤ 4 exp

{(
G(2n)

n
−

𝜀2

B2

)
n

}

(17)G(n) ≤ VC
(
log

(
n

VC

)
+ 1

)

(18)sup
T

|||Remp(T) − Rtrue(T)
|||

a.s.
�������������������→
n→∞

0,

∞∑
n=1

ℙ

(
sup
T

|||Remp(T) − Rtrue(T)
||| > 𝜀

)
< ∞.

4 exp

{(
G(2n)

n
−

�2

B2

)
n

}
≤ 4 exp

{
VC

(
log

(
2n

VC

)
+ 1

)
−

�2

B2
n

}
.

Rn+1
n

∶=
4 exp

{
VC

(
log

(
2(n+1)

VC

)
+ 1

)
−

𝜀2

B2
(n + 1)

}

4 exp
{
VC

(
log

(
2n

VC

)
+ 1

)
−

𝜀2

B2
n
}

=
exp

{
VC

(
log

(
2(n+1)

VC

))}

exp
{
VC

(
log

(
2n

VC

))} exp

{
−
𝜀2

B2

}

=

(
2(n+1)

VC

)VC

(
2n

VC

)VC
exp

{
−
𝜀2

B2

}
=

(
n + 1

n

)VC

���������
↘ 1 as n→∞

exp

{
−
𝜀2

B2

}

�������������
< 1 fixed

.

981Machine Learning (2024) 113:933–992

1 3

Now it has to be shown that the true regression function can be fitted by logicDT so
that the risk minimizing logicDT function asymptotically becomes the true regression
function.

Lemma 3 (Each model is possible in logicDT) Let � ∶ {0, 1}p → Y be a p-dimensional
regression function with Y ⊆ ℝ . Then, � can be fitted by logicDT, i.e., � ∈ L with L being
the class of all logicDT models.

Proof Since � takes only binary predictors as its input, � can be expressed as

for values g0, gj ∈ Y and distinct conjunctions Cj(X) ∶= X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj
 , where these con-

junctions are distinct in the sense that for a given x ∈ {0, 1}p it holds that 1(Cj(x)) = 1 is
true for at most one j ∈ {1,… ,m} . Let Dn be a noise-free training data set that fully resem-
bles � , i.e.,

with the additional restriction that each conjunction scenario Cj and the null scenario with
Cj = 0 for all j have to occur at least once in Dn . Using a proper logicDT state, i.e., a set of
conjunctions that distinguish between the conjunctions that compose � , the corresponding
fitted logic decision tree assigns the ideal values g0 or g0 + gj to its leaves. Thus, the result-
ing model is equal to � . ◻

Now the lemmata can be assembled for proving Theorem 1.

Proof of Theorem 1 Simulated annealing operates on a finite state space, which is also the
case for logicDT. In logicDT, simulated annealing leads with probability 1 to an ideal
model on the training data (see Lemma 1), i.e.,

for a temperature t ≥ 0 , the homogeneous Markov chains Qt , and the set of optimal states
Ropt . More specifically, the stationary distribution �t = limq→∞ ℙ(Qt(q) = ⋅) converges for
t ↘ 0 to a specific distribution on Ropt , namely

where Rs is the set of neighbor states of state s. Thus, if this final stationary distribution is
reached, an optimal model has to be attained due to the finiteness of the state space.

�(X) = g0 +

m∑
j=1

gj ⋅ 1

(
X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj

)

Dn ⊆

{
(x, y) ∶

[
y = g0 + gj ∧ j ≠ 0 ∧ 1(Ci(x)) = 1(i = j) ∀i

]

∨

[
y = g0 ∧ 1(Ci(x)) = 0 ∀i

]}

lim
t↘0

lim
q→∞

ℙ(Qt(q) ∈ Ropt) = 1

(19)lim
t↘0

�t(s) =

� �Rs�∑
s�∈Ropt

�Rs� � , s ∈ Ropt

0, s ∉ Ropt,

982 Machine Learning (2024) 113:933–992

1 3

For proving consistency of random forests with respect to the number of observa-
tions, Scornet et al. (2015) studied a theoretical random forest with an infinite number of
trees due to the pointwise almost sure convergence resulting from the law of large num-
bers. Similarly, we assume that the convergences in simulated annealing have occurred,
and therefore, an empirical-risk-minimizing logicDT model is given due to the station-
ary distribution in Eq. (19). The CART methodology ensures that, for a given predictor/
conjunction setting, the empirical-risk-minimizing decision tree is grown, if the tree is
allowed to fully develop, i.e., not using any stopping criteria, since the prediction val-
ues are obtained by empirical risk minimization in the respective leaves (Breiman et al.,
1984).

Note that this model will be in the set Ropt of empirical risk minimizing models, if the
original predictor model consisting of the input variables X1,… ,Xp is included in the con-
sidered state space. However, if the true underlying model � is not a linear function of the
individual predictors, the original model {{X1},… , {Xp}} and equivalent extensions may
be excluded from the state space while maintaining consistency. Thus, this theorem shows
that logicDT models different from the original CART are consistent as long as the true
function exhibits an adequate structure.

Let Tn be the empirical risk minimizer and � be the true regression function. Applying
Lemma 10.1 from Györfi et al. (2002) yields

where the supremum and the infimum are determined over all logicDT models T.
Using Lemma 2, ERM consistency is established, i.e.,

where the almost sure convergence occurs with respect to the training data distribution
ℙDn

= ℙ
⊗n

(X,Y)
 . Therefore, the first term on the right-hand side of (20) converges almost

surely to zero.
Lemma 3 states that logicDT can lead to every possible regression function � . Thus, it

follows

so that the second term on the right-hand side of (20) vanishes.
Hence, in total, we obtain

which was to be shown. ◻

(20)
�(X,Y)

[
(�(x) − Tn(x))

2
]
≤ 2 sup

T

|||||
1

n

n∑
i=1

(yi − T(xi))
2 − �(X,Y)

[
(Y − T(X))2

]|||||
+ inf

T
�(X,Y)

[
(�(X) − T(X))2

]
,

sup
T

|||Remp(T) − Rtrue(T)
||| = sup

T

|||||
1

n

n∑
i=1

(yi − T(xi))
2 − �(X,Y)

[
(Y − T(X))2

]|||||
a.s.

�������������������→
n→∞

0,

inf
T
�(X,Y)

[
(�(X) − T(X))2

]
= �(X,Y)

[
(�(X) − �(X))2

]
= 0

�(X,Y)

[
(�(X) − Tn(X))

2
] a.s.

�������������������→
n→∞

0,

983Machine Learning (2024) 113:933–992

1 3

Appendix 3: Computational complexity proof

In this appendix, we prove Theorem 2 and Corollary 1 that were stated in Sect. 3.8.

Proof of Theorem 2 Following Algorithm 2, logicDT modifies the current state, creates a
tree training data set, and fits and evaluates a decision tree based on this tree training data
set to decide if the newly proposed state is accepted in every search iteration. Hence, the
computational complexities of these individual steps have to be determined.

State modifications are performed randomly by modifying one variable in the current
state. Therefore, the complexity of state modifications is given by O(1).

Tree training data sets are obtained by computing Boolean conjunctions using the vari-
ables in the considered term for each term in the considered state and each training obser-
vation (see Sect. 3.2). Since a state contains at most ���_���� variables, transforming a
training data set into a tree training data set amounts to a complexity of O(n ⋅ ���_����).

Decision trees are fitted by recursively screening all p input variables for the best split
(see Algorithm 1). This screening amounts to a complexity of O(np) for n training observa-

tions and p input variables and it is performed for at most
⌊

n

��������

⌋
− 1 inner nodes (cor-

responding to the worst-case scenario of an unbalanced tree in which the observations are
perfectly divided into leaves of sample size ��������). Thus, the (worst-case) complexity
of fitting decision trees is given by O(n2p∕��������) . This complexity remains valid for
the case in which one additional continuous covariable is included due to univariate linear
regression/LDA models being fitted and evaluated using closed-form solutions (i.e., each
fitting/evaluation of these univariate regression models amounts to a complexity of O(n)).

Since a maximum of ���_���� input variables are used for fitting a logic decision tree,
the tree fitting (and scoring) complexity in logicDT is given by O(n2���_����∕��������) .
Therefore, using the aforementioned complexities, the computational complexity of log-
icDT is given by

which was to be shown. ◻

Proof of Corollary 1 The number M of search steps that are conducted in similar simulated-
annealing-based search procedures is in the magnitude of O(L log(|S|)) (Van Laarhoven
& Aarts, 1987), where L is the number of iterations performed per Markov chain and S is
the search space. Since the search space considered in logicDT consists of sets of possible
Boolean conjunctions that include at most ���_���� conjunctions and at most ���_����
input variables, the magnitude of this search space is given by

The first factor amounts for all selections of input variables or their negations of size
���_���� , while the second factor amounts for the number of possibilities to assign
the variables to terms. The rationale behind the second factor is assigning each of the
���_���� variables a number in {1,… , ���_����} that specifies to which term the vari-
able belongs. Hence, it follows that

O

(
M

[
n ⋅ ���_���� + n2

���_����

��������

])
= O

(
Mn

[
���_���� + ���_����

n

��������

])
,

|S| ∈ O((2p)���_���� ⋅ ���_�������_����).

M ∈ O(L ⋅ ���_����(log(p) + log(���_����))).

984 Machine Learning (2024) 113:933–992

1 3

Since, by assumption, the parameters ���_���� and ���_���� both scale linearly with p
and the parameter �������� is constant, it follows with Theorem 2 that the computational
complexity of logicDT is given by

If it is assumed that the Markov chain length L is fixed, the computational complexity of
logicDT becomes

The number of neighbor states per state in logicDT is in the magnitude of O(���_���� ⋅ p) ,
since each variable in the state might be exchanged by another variable. Therefore, if
instead the Markov chain length L is chosen in the magnitude of the number of neighbor
states per state, the computational complexity of logicDT is given by

 ◻

Appendix 4: Additional real data evaluations

In the following, logicDT, bagged logicDT, and the comparable methods are evaluated
on 24 real data sets that were also analyzed in Aglin et al. (2020a) and Demirović et al.
(2022). These data sets exclusively contain binary input variables and binary outcomes
and were obtained from CP4IM1 that provides (modified) data sets from the UCI Machine
Learning Repository2 that were modified by dichotimizing continuous variables into binary
variables.

In Table 3, the dimensions of the considered data sets are summarized. Similar to
Sect. 5, each method was applied to each data set 100 times using random splits into train-
ing, validation, and test data sets.

Figure 14 shows the predictive performance (as, again, measured by the AUC) of log-
icDT and the comparable methods in their applications to the 24 additional real data sets.
This figure shows that logicDT achieves for most data sets a superior performance com-
pared to conventional decision trees and DL8.5. logicDT seems to be on par with logic
regression, since, in most cases, both methods yield similar results and, in the remaining
cases, sometimes logicDT and sometimes logic regression induce better performances
(see, e.g., the results from the applications to the vehicle and zoo-1 data set).

Ensemble methods that produce less interpretable models such as random forests, gradi-
ent boosting, and logic bagging yield better performances compared to logicDT for most
data sets. However, when also considered logicDT in an ensemble framework, i.e., when
considering bagged logicDT, then the performances are on a similar level as the other
ensemble methods.

O
(
L ⋅ n2p2 log(p)

)
.

O
(
n2p2 log(p)

)
.

O
(
n2p4 log(p)

)
.

1 CP4IM: https:// dtai. cs. kuleu ven. be/ CP4IM/.
2 UCI Machine Learning Repository: https:// archi ve. ics. uci. edu.

https://dtai.cs.kuleuven.be/CP4IM/
https://archive.ics.uci.edu

985Machine Learning (2024) 113:933–992

1 3

Appendix 5: Computation times

For the simulation study conducted in Sect. 5.1.1 and the application to the SALIA data
conducted in Sect. 5.2, model fitting and prediction times were recorded. The calcu-
lations were performed using an Intel Xeon Gold 6346 CPU running on 3.6GHz. For
the time measurement, no parallel computing was performed to reflect realistic single
model evaluation times.

In Table 4, the mean model fitting and prediction times over ten replications is sum-
marized. logicDT seems to be faster than logic regression, which also employs a sto-
chastic search algorithm. In the application to the SALIA data, a more complex setting
consisting of five terms was identified for logicDT compared to three terms for logic
regression, which might explain the higher fitting time of logicDT compared to logic
regression in the real data application.

Due to the computationally intensive global search, logicDT takes more time than
comparable methods that employ greedy fitting algorithms such as conventional deci-
sion trees, random forests, gradient boosting, and MOB. Nonetheless, logicDT seems to

Table 3 Dimensions of the 24
real data sets used for evaluating
logicDT and the comparable
methods

n denotes the sample size and p the number of input variables in the
respective data set. n1 and n0 denote the numbers of observations with
Y = 1 and Y = 0 , respectively, since binary outcomes are considered

Data set n p n1 n0

anneal 812 93 625 187
audiology 216 148 57 159
australian-credit 653 125 357 296
breast-wisconsin 683 120 444 239
diabetes 768 112 500 268
german-credit 1000 112 700 300
heart-cleveland 296 95 160 136
hepatitis 137 68 111 26
hypothyroid 3247 88 2970 277
ionosphere 351 445 225 126
kr-vs-kp 3196 73 1669 1527
letter 20,000 224 813 19,187
lymph 148 68 81 67
mushroom 8124 119 4208 3916
pendigits 7494 216 780 6714
primary-tumor 336 31 82 254
segment 2310 235 330 1980
soybean 630 50 92 538
splice-1 3190 287 1655 1535
tic-tac-toe 958 27 626 332
vehicle 846 252 218 628
vote 435 48 267 168
yeast 1484 89 463 1021
zoo-1 101 36 41 60

986 Machine Learning (2024) 113:933–992

1 3

vehicle vote yeast zoo−1

segment soybean splice−1 tic−tac−toe

lymph mushroom pendigits primary−tumor

hypothyroid ionosphere kr−vs−kp letter

diabetes german−credit heart−cleveland hepatitis

anneal audiology australian−credit breast−wisconsin

0.80

0.85

0.90

0.95

1.00

0.4

0.6

0.8

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

0.7

0.8

0.9

0.6

0.7

0.8

0.9

0.97

0.98

0.99

1.00

0.96

0.97

0.98

0.99

1.00

0.80

0.85

0.90

0.95

1.00

0.65

0.70

0.75

0.80

0.85

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.75

0.80

0.85

0.90

0.95

1.00

0.985

0.990

0.995

1.000

0.80

0.85

0.90

0.95

1.00

0.92

0.94

0.96

0.98

1.00

0.5

0.6

0.7

0.8

0.9

0.65

0.70

0.75

0.80

0.85

0.96

0.98

1.00

0.6

0.7

0.8

0.9

1.0

0.94

0.96

0.98

1.00

0.85

0.90

0.95

1.00

A
U

C

Algorithm
logicDT

logicDT – Bagging

Decision Tree

DL8.5

Random Forests

Gradient Boosting

Logic Regression

Logic Bagging

Interaction Forests

RuleFit

Fig. 14 Predictive performance of logicDT and the comparable methods in the evaluation of 24 real data
sets

987Machine Learning (2024) 113:933–992

1 3

be faster than RuleFit. DL8.5 was faster than logicDT in the simulation study. For the
real data application, DL8.5 was substantially slower than logicDT.

Bagged logicDT models take more time to be evaluated than bagged logic regression
models. This is, in particular, due to the fact that the hyperparameter optimization for
logic bagging identified ������ = 3 with ������� = 3 as the best setting for the simu-
lation scenario with a binary outcome and an environmental covariable, i.e., a linear
model involving three predictors, while bagged logicDT fits trees of depth of up to three
in every greedy search step. This explanation also holds true for the other three sce-
narios and the real data application, since the hyperparameter optimization also yielded
simpler settings for logic bagging compared to bagged logicDT.

Interaction forests are similarly fast as bagged logicDT and logic bagging in the sim-
ulation study. In the application to the SALIA data, interaction forests are comparably
fast, since the hyperparameter optimization yielded for the number of randomly drawn
input variable pairs per split ������ = 4 , which is smaller than in the considered simu-
lation study scenarios.

Unsurprisingly, for most methods, the computation time increases when also con-
sidering a continuous (environmental) covariable in comparison to not including a
continuous (environmental) covariable. For some methods, this trend does not seem to
be true, for example for logic regression, since the mean computation decreases when
additionally considering a continuous covariable for a continuous outcome. However,
this phenomenon is presumably caused by the identified hyperparameter setting, which
is ������ = 4 with ������� = 8 for the continuous outcome scenario without a con-
tinuous covariable, corresponding to a rather complex model, and ������ = 2 with
������� = 3 for the continuous outcome scenario including a continuous covariable,
corresponding to a rather simple model.

Table 4 Mean model evaluation times in seconds for the simulation study conducted in Sect. 5.1.1 and the
real data application conducted in Sect. 5.2

The first line of the simulation scenario name corresponds to the considered outcome type (binary or con-
tinuous) and the second line corresponds to whether a continuous environmental covariable was incorpo-
rated (no E or E)

Algorithm Simulation scenario/study

Binary No E Binary E Continuous No E Continuous E SALIA

logicDT 29.334 87.615 12.826 33.414 38.727
logicDT–Bagging 260.063 307.279 82.151 770.853 1960.524
Decision Tree 0.184 0.183 0.184 0.179 0.186
DL8.5 2.907 3.571 – – 700.399
Random Forests 5.704 6.440 6.875 7.133 1.980
Gradient Boosting 3.012 2.901 3.440 3.559 2.434
Logic Regression 27.004 206.816 33.671 22.710 15.803
Logic Bagging 82.584 40.730 57.809 63.202 575.047
MOB – 0.513 – 0.479 –
Interaction Forests 82.682 344.738 322.515 501.945 40.416
RuleFit 77.568 96.647 71.394 78.370 92.420

988 Machine Learning (2024) 113:933–992

1 3

Appendix 6: Inner validation

An idea to further robustify logicDT against overfitting might be to separate the decision
tree fitting and evaluation steps in the search procedure by splitting the available training
data into independent data sets for these two steps. We refer to this approach as inner vali-
dation, due to validating the states on independent validation data and the fitting procedure
being nested in an outer validation that evaluates the performance of resulting logicDT
models for tuning hyperparameters (see Sect. 3.6). This approach is similar to a nested
cross-validation, which is, however, typically used for estimating unbiased prediction
errors (see, e.g., Varma & Simon, 2006).

The trained logicDT model should not be heavily depending on the data split used such
that a k-fold cross-validation approach is employed that randomly splits the training data
into k approximately equally sized data sets D1,… ,Dk . For every j ∈ {1,… , k} , k − 1 of
these data sets Dj′ (j� ∈ {1,… , k}⧵j) are combined to one data set and used for training the
decision trees (Line 9 in Algorithm 2) and the remaining data set Dj is used for computing
the score (Line 10 in Algorithm 2). The total score of the state used to guide the search is
then obtained by averaging the k scores.

In Fig. 15, the predictive performances of logicDT are summarized that were obtained
using the aforementioned inner validation approach with 5-fold cross-validation in the sim-
ulation study presented in Sect. 5.1.1. For the binary outcome scenarios, the performance
is worse compared to standard logicDT. For the continuous outcome scenarios, the perfor-
mance is identical.

The performance loss can presumably be explained by the need to further split the avail-
able training data so that both the tree training step and the score computation step have to
use less observations as opposed to standard logicDT. Moreover, the inner validation also
leads to an increased computational burden due to fitting k trees in comparison to fitting a
single tree in each search iteration. Therefore, the outer validation for hyperparameter opti-
mization seems to be sufficient to balance the amount of underfitting and overfitting.

Acknowledgements The authors would like to thank Gaël Aglin for insightful discussions on the proper
application of DL8.5. Computational infrastructure and support were provided by the Centre for Informa-
tion and Media Technology at the Heinrich Heine University Düsseldorf.

Author Contributions ML and HS developed logicDT and the interaction VIM and designed the simulation
study. ML and TS conceived the analyses of the real data application. The simulation study and the real data

0.50

0.55

0.60

0.65

0.70

A
U

C

No environmental covariable

Binary outcome

0.50

0.55

0.60

0.65

0.70

A
U

C

Environmental covariable

Binary outcome

0.08

0.12

0.16

0.20

1−
N

R
M

S
E

No environmental covariable

Continuous outcome

0.16

0.20

0.24

0.28

1−
N

R
M

S
E

Environmental covariable

Continuous outcome

Algorithm logicDT logicDT – Inner Validation True Model

Fig. 15 Predictive performances of logicDT, logicDT using inner validation, and the true underlying model
in the simulation study considering four different scenarios. The performance for binary outcomes is meas-
ured by the AUC and the performance for continuous outcomes is measured by the complement of the
NRMSE (normalized root mean squared error)

989Machine Learning (2024) 113:933–992

1 3

evaluations were conducted by ML. ML was the major contributor in writing the manuscript. All authors
read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This work has been supported
by the Research Training Group “Biostatistical Methods for High-Dimensional Data in Toxicology” (RTG
2624, Project R3) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation—
Project Number 427806116). The SALIA follow-up study 2007–2010 was funded by the German Statutory
Accident Insurance (DGUV) Grant No: 617.0-FP266 and the European Community’s Seventh Framework
Programme (FP 7/2007-2011) under the Grant Agreement Number 211250.

Data availability The simulated data sets are available upon request. The modified real data sets from the
UCI Machine Learning Repository (https:// archi ve. ics. uci. edu) that are analyzed in Appendix 4 have been
downloaded in May 2023 from https:// github. com/ aia- uclou vain/ pydl8.5.

Code availability The proposed methods are implemented and publicly available in the R package logicDT
on CRAN (Lau, 2023).

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

Consent for publication Not applicable.

Ethics approval and consent to participate The SALIA cohort study was conducted in accordance to the
declaration of Helsinki and has been approved by the Ethics Committees of the Ruhr-University Bochum
and the Heinrich Heine University Düsseldorf. We received written informed consent from all participants.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aarts, E., & Van Laarhoven, P. (1985). Statistical cooling: A general approach to combinatorial optimiza-
tion problems. Philips Journal of Research, 40(4), 193–226.

Aglin, G., Nijssen, S., & Schaus, P. (2020). Learning optimal decision trees using caching branch-and-bound
search. In Proceedings of the AAAI conference on artificial intelligence, (Vol. 34, pp. 3146–3153).

Aglin, G., Nijssen, S., & Schaus, P. (2020b). PyDL8.5: A library for learning optimal decision trees. In
Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20 (pp.
5222–5224). International Joint Conferences on Artificial Intelligence Organization.

Bellinger, C., Mohomed Jabbar, M. S., Zaïane, O., & Osornio-Vargas, A. (2017). A systematic review of
data mining and machine learning for air pollution epidemiology. BMC Public Health, 17, 907. https://
doi. org/ 10. 1186/ s12889- 017- 4914-3

Bénard, C., Biau, G., da Veiga, S., & Scornet, E. (2021). Interpretable random forests via rule extraction. In
Proceedings of the 24th international conference on artificial intelligence and statistics, Volume 130
of Proceedings of machine learning research (pp. 937–945). PMLR.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1),
289–300. https:// doi. org/ 10. 1111/j. 2517- 6161. 1995. tb020 31.x

https://archive.ics.uci.edu
https://github.com/aia-uclouvain/pydl8.5
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s12889-017-4914-3
https://doi.org/10.1186/s12889-017-4914-3
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

990 Machine Learning (2024) 113:933–992

1 3

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In
Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS’11
(pp. 2546–2554). Curran Associates Inc.

Bertsimas, D., & Dunn, J. (2017). Optimal classification trees. Machine Learning, 106, 1039–1082. https://
doi. org/ 10. 1007/ s10994- 017- 5633-9

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial
Intelligence, 101(1), 285–297. https:// doi. org/ 10. 1016/ S0004- 3702(98) 00034-4

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https:// doi. org/ 10. 1007/ BF000
58655

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https:// doi. org/ 10. 1023/A: 10109
33404 324

Breiman, L., Friedman, J. H., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC
Press.

Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., & Van Eerdewegh, P. (2005).
Identifying SNPs predictive of phenotype using random forests. Genetic Epidemiology, 28(2), 171–
182. https:// doi. org/ 10. 1002/ gepi. 20041

Carrizosa, E., Molero-Río, C., & Romero Morales, D. (2021). Mathematical optimization in classification
and regression trees. TOP, 29, 5–33. https:// doi. org/ 10. 1007/ s11750- 021- 00594-1

Che, R., & Motsinger-Reif, A. (2013). Evaluation of genetic risk score models in the presence of interaction
and linkage disequilibrium. Frontiers in Genetics, 4, 138. https:// doi. org/ 10. 3389/ fgene. 2013. 00138

Chen, C. C., Schwender, H., Keith, J., Nunkesser, R., Mengersen, K., & Macrossan, P. (2011). Methods for
identifying SNP interactions: A review on variations of logic regression, random forest and Bayes-
ian logistic regression. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(6),
1580–1591. https:// doi. org/ 10. 1109/ TCBB. 2011. 46

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’16, New
York, NY, USA (pp. 785–794). Association for Computing Machinery.

Clarke, A., & Vyse, T. J. (2009). Genetics of rheumatic disease. Arthritis Research & Therapy, 11(5), 248.
https:// doi. org/ 10. 1186/ ar2781

Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., Ramamohanarao, K., & Stuckey, P.
J. (2022). MurTree: optimal decision trees via dynamic programming and search. Journal of Machine
Learning Research, 23(26), 1–47.

Dudbridge, F., & Newcombe, P. J. (2015). Accuracy of gene scores when pruning markers by linkage dis-
equilibrium. Human Heredity, 80(4), 178–186. https:// doi. org/ 10. 1159/ 00044 6581

Fokkema, M. (2020). Fitting prediction rule ensembles with R package pre. Journal of Statistical Software,
92(12), 1–30. https:// doi. org/ 10. 18637/ jss. v092. i12

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statis-
tics, 29(5), 1189–1232. https:// doi. org/ 10. 1214/ aos/ 10132 03451

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied
Statistics, 2(3), 916–954. https:// doi. org/ 10. 1214/ 07- AOAS1 48

Fujimoto, K., Kojadinovic, I., & Marichal, J. L. (2006). Axiomatic characterizations of probabilistic and
cardinal-probabilistic interaction indices. Games and Economic Behavior, 55(1), 72–99. https:// doi.
org/ 10. 1016/j. geb. 2005. 03. 002

Györfi, L., Kohler, M., Krzyżak, A., & Walk, H. (2002). A distribution-free theory of nonparametric regres-
sion. Springer.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, infer-
ence, and prediction. Springer.

Ho, D. S. W., Schierding, W., Wake, M., Saffery, R., & O’Sullivan, J. (2019). Machine learning SNP based
prediction for precision medicine. Frontiers in Genetics. https:// doi. org/ 10. 3389/ fgene. 2019. 00267

Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex split procedures in
random forests. SN Computer Science, 3(1), 1–16. https:// doi. org/ 10. 1007/ s42979- 021- 00920-1

Hornung, R., & Boulesteix, A. L. (2022). Interaction forests: Identifying and exploiting interpretable quan-
titative and qualitative interaction effects. Computational Statistics & Data Analysis, 171, 107460.
https:// doi. org/ 10. 1016/j. csda. 2022. 107460

Huang, M., Romeo, F., & Sangiovanni-Vincentelli, A. (1986). An efficient general cooling schedule for
simulated annealing. In Proceedings of the IEEE international conference on computer-aided design,
Santa Clara, California, USA (pp. 381–384). IEEE Computer Society.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
220(4598), 671–680. https:// doi. org/ 10. 1126/ scien ce. 220. 4598. 671

Kooperberg, C., & Ruczinski, I. (2022). LogicReg: Logic regression. R Package Version 1.6.5.

https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1016/S0004-3702(98)00034-4
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/gepi.20041
https://doi.org/10.1007/s11750-021-00594-1
https://doi.org/10.3389/fgene.2013.00138
https://doi.org/10.1109/TCBB.2011.46
https://doi.org/10.1186/ar2781
https://doi.org/10.1159/000446581
https://doi.org/10.18637/jss.v092.i12
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1016/j.geb.2005.03.002
https://doi.org/10.1016/j.geb.2005.03.002
https://doi.org/10.3389/fgene.2019.00267
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1126/science.220.4598.671

991Machine Learning (2024) 113:933–992

1 3

Krämer, U., Herder, C., Sugiri, D., Strassburger, K., Schikowski, T., Ranft, U., & Rathmann, W. (2010).
Traffic-related air pollution and incident type 2 diabetes: Results from the salia cohort study. Environ-
mental Health Perspectives, 118(9), 1273–1279. https:// doi. org/ 10. 1289/ ehp. 09016 89

Van Laarhoven, P., & Aarts, E. (1987). Simulated annealing: Theory and applications. Springer.
Lau, M. (2023). logicDT: Identifying interactions between binary predictors. R Package Version 1.0.3.
Lau, M., Wigmann, C., Kress, S., Schikowski, T., & Schwender, H. (2022). Evaluation of tree-based statisti-

cal learning methods for constructing genetic risk scores. BMC Bioinformatics, 23, 97. https:// doi. org/
10. 1186/ s12859- 022- 04634-w

Li, R. H., & Belford, G. G. (2002). Instability of decision tree classification algorithms. In Proceedings
of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, New
York, NY, USA (pp. 570–575). Association for Computing Machinery.

Louppe, G. (2014). Understanding random forests: From theory to practice. Dissertation, University of
Liège, Department of Electrical Engineering & Computer Science. arXiv: 1407. 7502.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J.,
Bansal, N., & Lee, S. I. (2020). From local explanations to global understanding with explainable
AI for trees. Nature Machine Intelligence, 2, 56–67. https:// doi. org/ 10. 1038/ s42256- 019- 0138-9

Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability machines: Con-
sistent probability estimation using nonparametric learning machines. Methods of Information in
Medicine, 51(1), 74–81. https:// doi. org/ 10. 3414/ ME00- 01- 0052

Meinshausen, N. (2010). Node harvest. The Annals of Applied Statistics, 4(4), 2049–2072. https:// doi.
org/ 10. 1214/ 10- AOAS3 67

Mentch, L., & Hooker, G. (2016). Quantifying uncertainty in random forests via confidence intervals
and hypothesis tests. Journal of Machine Learning Research, 17(26), 1–41.

Menze, B. H., Kelm, B. M., Splitthoff, D. N., Koethe, U., & Hamprecht, F. A. (2011). On oblique ran-
dom forests. In Proceedings of the joint European conference on machine learning and knowledge
discovery in databases, Berlin, Heidelberg (pp. 453–469). Springer.

Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision trees. Jour-
nal of Artificial Intelligence Research, 2, 1–32. https:// doi. org/ 10. 1613/ jair. 63

Murthy, S. K., & Salzberg, S. (1995). Decision tree induction: How effective is the greedy heuristic? In
Proceedings of the first international conference on knowledge discovery and data mining, KDD’95
(pp. 222–227). AAAI Press.

Nijssen, S., & Fromont, E. (2010). Optimal constraint-based decision tree induction from itemset lattices.
Data Mining and Knowledge Discovery, 21, 9–51. https:// doi. org/ 10. 1007/ s10618- 010- 0174-x

Ottman, R. (1996). Gene-environment interaction: Definitions and study design. Preventive Medicine,
25(6), 764–770. https:// doi. org/ 10. 1006/ pmed. 1996. 0117

Provost, F., & Domingos, P. (2003). Tree Induction for probability-based ranking. Machine Learning,
52(3), 199–215. https:// doi. org/ 10. 1023/A: 10240 99825 458

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., De
Bakker, P. I., Daly, M. J., & Pak, C. S. (2007). PLINK: A tool set for whole-genome association
and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559–575.
https:// doi. org/ 10. 1086/ 519795

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc.
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statis-

tical Computing.
Ruczinski, I., Kooperberg, C., & LeBlanc, M. (2003). Logic regression. Journal of Computational and

Graphical Statistics, 12(3), 475–511. https:// doi. org/ 10. 1198/ 10618 60032 238
Ruczinski, I., Kooperberg, C., & LeBlanc, M. (2004). Exploring interactions in high-dimensional

genomic data: An overview of logic regression, with applications. Journal of Multivariate Analysis,
90(1), 178–195. https:// doi. org/ 10. 1016/j. jmva. 2004. 02. 010

Rusch, T., & Zeileis, A. (2013). Gaining insight with recursive partitioning of generalized linear mod-
els. Journal of Statistical Computation and Simulation, 83(7), 1301–1315. https:// doi. org/ 10. 1080/
00949 655. 2012. 658804

Schikowski, T., Sugiri, D., Ranft, U., Gehring, U., Heinrich, J., Wichmann, H. E., & Krämer, U. (2005).
Long-term air pollution exposure and living close to busy roads are associated with COPD in
women. Respiratory Research, 6, 152. https:// doi. org/ 10. 1186/ 1465- 9921-6- 152

Schwender, H., & Ickstadt, K. (2007). Identification of SNP interactions using logic regression. Biosta-
tistics, 9(1), 187–198. https:// doi. org/ 10. 1093/ biost atist ics/ kxm024

Scornet, E., Biau, G., & Vert, J. P. (2015). Consistency of random forests. The Annals of Statistics,
43(4), 1716–1741. https:// doi. org/ 10. 1214/ 15- aos13 21

https://doi.org/10.1289/ehp.0901689
https://doi.org/10.1186/s12859-022-04634-w
https://doi.org/10.1186/s12859-022-04634-w
http://arxiv.org/abs/1407.7502
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.3414/ME00-01-0052
https://doi.org/10.1214/10-AOAS367
https://doi.org/10.1214/10-AOAS367
https://doi.org/10.1613/jair.63
https://doi.org/10.1007/s10618-010-0174-x
https://doi.org/10.1006/pmed.1996.0117
https://doi.org/10.1023/A:1024099825458
https://doi.org/10.1086/519795
https://doi.org/10.1198/1061860032238
https://doi.org/10.1016/j.jmva.2004.02.010
https://doi.org/10.1080/00949655.2012.658804
https://doi.org/10.1080/00949655.2012.658804
https://doi.org/10.1186/1465-9921-6-152
https://doi.org/10.1093/biostatistics/kxm024
https://doi.org/10.1214/15-aos1321

992 Machine Learning (2024) 113:933–992

1 3

So, H. C., & Sham, P. C. (2017). Improving polygenic risk prediction from summary statistics by an
empirical Bayes approach. Scientific Reports, 7, 41262. https:// doi. org/ 10. 1038/ srep4 1262

Sorokina, D., Caruana, R., Riedewald, M., & Fink, D. (2008). Detecting statistical interactions with
additive groves of trees. In Proceedings of the 25th international conference on machine learning,
ICML ’08, New York, NY, USA (pp. 1000–1007). Association for Computing Machinery.

Tang, C., Garreau, D., & von Luxburg, U. (2018). When do random forests fail? In Proceedings of the
32nd international conference on neural information processing systems, NIPS’18, Montréal, Can-
ada (pp. 2987–2997).

Therneau, T., & Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package
version 4.1-15.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1), 267–288. https:// doi. org/ 10. 1111/j. 2517- 6161. 1996. tb020
80.x

Tomita, T. M., Browne, J., Shen, C., Chung, J., Patsolic, J. L., Falk, B., Priebe, C. E., Yim, J., Burns, R.,
Maggioni, M., & Vogelstein, J. T. (2020). Sparse projection oblique randomer forests. Journal of
Machine Learning Research, 21(104), 1–39.

Triki, E., Collette, Y., & Siarry, P. (2005). A theoretical study on the behavior of simulated annealing lead-
ing to a new cooling schedule. European Journal of Operational Research, 166(1), 77–92. https:// doi.
org/ 10. 1016/j. ejor. 2004. 03. 035

Vapnik, V. N. (1998). Statistical learning theory. Wiley-Interscience.
Vapnik, V. N. (2000). The nature of statistical learning theory. Springer.
Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection.

BMC Bioinformatics, 7, 91. https:// doi. org/ 10. 1186/ 1471- 2105-7- 91
Watson, D. S., & Wright, M. N. (2021). Testing conditional independence in supervised learning algo-

rithms. Machine Learning, 110, 2107–2129. https:// doi. org/ 10. 1007/ s10994- 021- 06030-6
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses.

The Annals of Mathematical Statistics, 9(1), 60–62. https:// doi. org/ 10. 1214/ aoms/ 11777 32360
Wilson, S. (2021). ParBayesianOptimization: Parallel Bayesian optimization of hyperparameters. R Package

Version 1.2.4.
Winham, S. J., Colby, C. L., Freimuth, R. R., Wang, X., de Andrade, M., Huebner, M., & Biernacka, J. M.

(2012). SNP interaction detection with random forests in high-dimensional genetic data. BMC Bioin-
formatics, 13, 164. https:// doi. org/ 10. 1186/ 1471- 2105- 13- 164

Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional
data in C++ and R. Journal of Statistical Software, 77(1), 1–17. https:// doi. org/ 10. 18637/ jss. v077. i01

Wright, M. N., Ziegler, A., & König, I. R. (2016). Do little interactions get lost in dark random forests?
BMC Bioinformatics, 17, 145. https:// doi. org/ 10. 1186/ s12859- 016- 0995-8

Yang, B. B., Shen, S. Q., & Gao, W. (2019). Weighted oblique decision trees. In Proceedings of the AAAI
conference on artificial intelligence (Vol. 33, pp. 5621–5627).

Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computa-
tional and Graphical Statistics, 17(2), 492–514. https:// doi. org/ 10. 1198/ 10618 6008X 319331

Zhi, S., Li, Q., Yasui, Y., Edge, T., Topp, E., & Neumann, N. F. (2015). Assessing host-specificity of
Escherichia coli using a supervised learning logic-regression-based analysis of single nucleotide poly-
morphisms in intergenic regions. Molecular Phylogenetics and Evolution, 92, 72–81. https:// doi. org/
10. 1016/j. ympev. 2015. 06. 007

Zhu, H., Murali, P., Phan, D., Nguyen, L., & Kalagnanam, J. (2020). A scalable MIP-based method for
learning optimal multivariate decision trees. In Advances in neural information processing systems
(Vol. 33, pp. 1771–1781). Curran Associates, Inc.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1038/srep41262
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.ejor.2004.03.035
https://doi.org/10.1016/j.ejor.2004.03.035
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1007/s10994-021-06030-6
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1186/1471-2105-13-164
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1186/s12859-016-0995-8
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1016/j.ympev.2015.06.007
https://doi.org/10.1016/j.ympev.2015.06.007

	Titelblatt_Lau_final
	Lau_logicDT
	logicDT: a procedure for identifying response-associated interactions between binary predictors
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Decision trees and random forests
	2.2 Extensions of decision trees and random forests
	2.3 Logic regression

	3 Logic decision trees
	3.1 Preliminaries
	3.2 Core methodology of logicDT
	3.3 The logicDT algorithm
	3.4 Controlling the complexity of logicDT models
	3.5 Quantitative covariables
	3.5.1 Leaf regression models
	3.5.2 Splitting criterion

	3.6 Hyperparameter optimization
	3.7 Consistency of logicDT
	3.8 Computational complexity of logicDT
	3.9 Bagged logicDT

	4 Variable importance measures
	4.1 Computation of VIMs
	4.1.1 Permutation VIM and removal VIM
	4.1.2 Logic VIM

	4.2 Adjustment for interactions
	4.3 Adjustment for conjunctions

	5 Experiments
	5.1 Simulation study
	5.1.1 First simulation setup
	5.1.2 Hyperparameter optimization
	5.1.3 Predictive performance
	5.1.4 Variable importance
	5.1.5 Second simulation setup
	5.1.6 Predictive performance
	5.1.7 Variable importance

	5.2 Real data application
	5.2.1 SALIA study
	5.2.2 Predictive performance
	5.2.3 Variable importance
	5.2.4 Additional real data evaluations

	6 Discussion
	7 Conclusion
	Appendix 1: Simulated-annealing-based search procedure
	Appendix 2: Consistency proof
	Appendix 3: Computational complexity proof
	Appendix 4: Additional real data evaluations
	Appendix 5: Computation times
	Appendix 6: Inner validation
	Acknowledgements
	References

