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Abstract
Interactions between predictors play an important role in many applications. Popular and 
successful tree-based supervised learning methods such as random forests or logic regres-
sion can incorporate interactions associated with the considered outcome without specify-
ing which variables might interact. Nonetheless, these algorithms suffer from certain draw-
backs such as limited interpretability of model predictions and difficulties with negligible 
marginal effects in the case of random forests or not being able to incorporate interactions 
with continuous variables, being restricted to additive structures between Boolean terms, 
and not directly considering conjunctions that reveal the interactions in the case of logic 
regression. We, therefore, propose a novel method called logic decision trees (logicDT) 
that is specifically tailored to binary input data and helps to overcome the drawbacks of 
existing methods. The main idea consists of considering sets of Boolean conjunctions, 
using these terms as input variables for decision trees, and searching for the best perform-
ing model. logicDT is also accompanied by a framework for estimating the importance of 
identified terms, i.e., input variables and interactions between input variables. This new 
method is compared to other popular statistical learning algorithms in simulations and real 
data applications. As these evaluations show, logicDT is able to yield high prediction per-
formances while maintaining interpretability.
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1 Introduction

In many practically relevant applications, a proper coverage of interactions between pre-
dictors is key for constructing strong predictive models. One particularly important exam-
ple is the analysis of genetic or environmental risk factors in epidemiological and medi-
cal studies for, e.g., constructing genetic/polygenic risk scores (Che & Motsinger-Reif, 
2013; Ho et  al., 2019) that can be viewed as a function � ∶ X → Y from the p-dimen-
sional space X = {0, 1, 2}p of p SNPs (single nucleotide polymorphisms), i.e., single 
base-pair substitutions in the DNA, to the response space Y assigning a risk estimate. 
For example, for a binary outcome such as a binary disease status, a probability estimate 
P̂(Y = 1 ∣ X = x) ∈ [0, 1] of developing this disease might be a proper risk estimate. Since 
SNPs are variables with three possible outcomes counting the number of minor allele 
occurrences with respect to both chromosomes, i.e., how often the less frequent variant 
occurs in an individual, they can be easily (and biologically meaningful) divided into two 
binary variables each, i.e., in SNPD = 1(SNP ≠ 0) and SNPR = 1(SNP = 2) , coding for a 
dominant and a recessive effect, respectively. It is well-known that in the analysis of genetic 
features such as SNPs, interactions, e.g., gene-gene interactions (Che & Motsinger-Reif, 
2013) and gene-environment interactions (Ottman, 1996), play a crucial role. Especially in 
this setting, not only a high predictive ability of the resulting models, but also a high inter-
pretability for understanding which and how genetic variants influence the risk of disease 
is desirable.

Tree-based statistical learning methods such as decision trees, random forests, or 
logic regression are very popular and versatile in recognizing underlying data struc-
tures. These methods have been already applied to analyze SNP data (e.g., Bureau et al., 
2005; Winham et al., 2012; Ruczinski et al., 2004). However, these methods typically 
fail at simultaneously achieving a reliable predictive strength and a high interpretability 
of how exactly predictions are composed.

In this article, we propose the tree-based supervised learning procedure logicDT 
(logic decision trees) which is specifically tailored for properly incorporating interac-
tions between binary predictors. Continuous relationships of additional covariates and 
interactions of these covariates with the binary variables can also be covered by this 
procedure. logicDT is designed for yielding highly interpretable prediction models, 
while maintaining a high predictive ability. For measuring the influence of predictors 
and their interactions, a novel variable importance measure framework is proposed 
which, in principle, can be used in conjunction with any other learning procedure.

We start with briefly discussing similar methods and efforts on enhancing exist-
ing algorithms in Sect. 2. Then, logicDT and its extensions are presented in detail in 
Sect.  3. We additionally prove that logicDT is consistent. In Sect.  4, the novel vari-
able importance measuring framework for estimating the influence of input variables 
and their interactions is proposed. Empirical studies on simulated data as well as on 
real data follow in Sect.  5 illustrating logicDT’s properties in practice and compar-
ing logicDT to other procedures. Sections 6 and 7 contain discussions and concluding 
remarks.
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2  Background and related work

In the following, we briefly discuss tree-based supervised learning procedures and their 
extensions.

2.1  Decision trees and random forests

One very popular and powerful statistical learning method are decision trees. Impor-
tant implementations include classification and regression trees (CART) (Breiman et al., 
1984) and C4.5 (Quinlan, 1993). Decision trees recursively partition the predictor space 
X  considering one predictor per split into disjoint patches, to which individually a predic-
tion value will be assigned. For predicting new outcomes, one starts at the root node and 
follows the edges corresponding to the specific predictor setting until a leaf is reached. 
Figure 1a illustrates an exemplary decision tree consisting of three binary predictors in a 
binary classification scenario.

Fig. 1  Exemplary tree models for three binary input variables X1 , X2 and X3 predicting two different classes 
0/false and 1/true. In a, a classification tree is shown. b depicts a logic tree describing the Boolean expres-
sion X1 ∨ (X2 ∧ Xc

3
) , where negations are denoted by c in this article. For the logic tree, terminal nodes 

containing negated predictors are depicted as black squares containing white text. Vice versa, non-negated 
predictors are depicted as white squares containing black text. Both trees are equivalent, i.e., they perform 
the same predictions for each predictor setting. Adapted from Lau et al. (2022)
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Similar to Louppe (2014), Algorithm 1 summarizes the fitting process of decision trees. 
In Lines 11 through 14, the locally best split, i.e., the predictor and the splitting point which 
maximize the node homogeneity after splitting is identified and used for further splitting 
the tree into two subnodes. For measuring the homogeneity, an impurity measure i is used 
which assigns a node an estimate of its heterogeneity. For evaluating the strength of a split 
s partitioning the node t into two child nodes tL and tR , the impurity reduction

for the number of training observations nt falling into node t is maximized. For regression 
purposes, the impurity measure of the mean squared error

is used as the impurity measure considering the subset Dt of the training data set D to 
node t and the predicted outcome ŷt in node t. For classification or risk estimation, the Gini 
impurity

is used for classes c ∈ Y and their corresponding frequency nc,t in node t. An alternative 
popular impurity measure for classification tasks is the information gain

(1)Δi(s, t) ∶= i(t) −
ntL

nt
i(tL) −

ntR

nt
i(tR) ≥ 0

(2)iRegression(t) ∶=
1

nt

∑
(x,y)∈Dt

(y − ŷt)
2

(3)iGini(t) ∶=
∑
c∈Y

nc,t

nt

(
1 −

nc,t

nt

)
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that is based on the Shannon entropy (e.g., Louppe, 2014).
The partitioning of a tree branch locally stops when the training data cannot be further 

divided, i.e., if for all (x, y), (x�, y�) ∈ Dt , it either holds x = x
� or y = y� (see Line 7 of 

Algorithm 1). Usually, to prevent overfitting, additional stopping criteria are used such as 
the minimum node size, i.e., the minimum number of training observations falling into a 
leaf, or a minimum impurity reduction which has to be achieved in order to split the node. 
However, these additional stopping criteria yield hyperparameters which, thus, require 
proper tuning. Finally, the last important step is the assignment of a predicted value to a 
leaf (Line 8 of Algorithm 1). Although theoretically, this predicted value is already used 
for evaluating the splits. The prediction values are obtained by empirical risk minimization 
yielding the arithmetic mean for regression tasks. For binary risk estimation, also the arith-
metic mean of the outcome Y given the predictor values x is used if Y is coded as 0 or 1. If 
pure classifications are considered, the class with the lowest risk estimate is chosen.

A particularly popular and successful extension of decision trees are random forests 
which build ensembles of randomized decision trees yielding even higher predictive per-
formance at the cost of losing interpretability of the fitted models (Breiman, 2001). The 
randomization is performed by employing bagging (Breiman, 1996), which is described in 
more detail in Sect. 3.9, and by considering random predictor subsets for splitting at each 
node. Random forests can substantially outperform single decision trees due to the instabil-
ity issue of decision trees, which states that small noise-like changes of the training data set 
can lead to large modifications of the fitted model. This instability issue is mainly caused 
by the greedy fashion of choosing splits (Li & Belford, 2002; Murthy & Salzberg, 1995).

If deep trees are grown, both single decision trees and random forests can overfit (Hastie 
et  al., 2009; Tang et  al., 2018). For certain, not necessarily realistic scenarios (e.g., no 
subsampling combined with totally randomized trees in which the splits are chosen inde-
pendent of the outcome or too extreme subsampling in which the subsample size remains 
constant, but the sample size approaches infinity), Tang et al. (2018) proved that random 
forests with deeply grown trees are inconsistent.

If shallow trees are grown, fruitful splits might be left out. Furthermore, decision trees 
and random forests struggle uncovering interactions effects, if the interacting variables only 
exhibit negligible marginal effects (Wright et al., 2016). Moreover, due to the prediction 
values of the leaves being constant for finitely many predictor scenarios in conventional 
decision trees and random forests, continuous function relationships can only be approxi-
mated by step functions. However, for example, in the analysis of genetic and environmen-
tal risk factors of certain diseases, in which random forests are frequently used (Winham 
et al., 2012; Bellinger et al., 2017), a continuous influence of an environmental factor on 
the disease risk is reasonable.

There are a variety of modifications to decision trees and random forests which try to 
overcome the issues mentioned above. These methods, however, address individual issues. 
In the following section, we will discuss some of these modifications.

iEntropy(t) ∶= −
∑
c∈Y

nc,t

nt
log2

(
nc,t

nt

)
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2.2  Extensions of decision trees and random forests

For improving the ability on detecting interactions, one well-known approach is the 
usage of multivariate splits, i.e., splits based on multiple variables at once, e.g., by using 
linear combinations of the predictors. Exemplary methods of this class are oblique deci-
sion trees (Murthy et al., 1994) and oblique random forests (Menze et al., 2011), where 
a particular implementation of the latter is, e.g., SPORF (Sparse Projection Oblique 
Randomer Forests; Tomita et al., 2020). For binary predictors as considered in this arti-
cle, these multivariate linear splits can be used for creating Boolean conjunctions of 
predictors, thus, potentially splitting on an interaction. However, methods that try to 
linearly separate the current feature space based on the (binary) class label in each split-
ting node (such as the method proposed by Menze et al., 2011) are only suited to classi-
fication tasks. Another recent modification is interaction forests (Hornung & Boulesteix, 
2022) which directly searches for interaction splits at each node. An overview over such 
interaction-focused modifications of decision trees and random forests is, e.g., given by 
Hornung and Boulesteix (2022).

The greedy search algorithm employed in classic decision tree fitting procedures (such 
as in CART) is fast and scales to high-dimensional problems. However, as the greedy 
search conducts local searches for splits, it requires detectable marginal effects to identify 
interaction effects. For example, if X1 and X2 interact with each other, X1 or X2 have to be 
individually identified first as splitting variables. Due to increasing computational capabili-
ties, optimal decision trees have been proposed by Nijssen and Fromont (2010) and Bert-
simas and Dunn (2017) to perform a global optimization. In the former method, namely 
DL8 (decision trees from lattices), dynamic programming is utilized to fit decision trees. In 
the latter method, namely OCT (optimal classification trees), the decision tree fitting prob-
lem is phrased as a mixed-integer optimization problem. More recently, alternative optimal 
decision tree algorithms that utilize dynamic programming such as DL8.5 (Aglin et  al., 
2020a) and MurTree (Demirović et al., 2022) and optimal decision tree fitting procedures 
that incorporate multivariate splits such as WODT (Yang et  al., 2019) and SVM1-ODT 
(Zhu et al., 2020) have been proposed. A review of optimal decision tree fitting procedures 
is, e.g., given by Carrizosa et al. (2021).

Blockeel and De Raedt (1998) proposed combining decision trees with logic program-
ming. Their method is called TILDE (top-down induction of logical decision trees). At 
each inner node, a Boolean conjunction is responsible for further partitioning the input 
data. Model fitting is performed in a greedy fashion very similar as in C4.5 (Quinlan, 
1993). However, the space of eligible splits, over which the greedy search is applied, has to 
be defined by the user by utilizing background knowledge and, e.g., specifying which vari-
ables may be part of the same conjunction. Another important difference between TILDE 
and other decision tree algorithms is that TILDE uses logic programs for specifying data 
examples. This is in contrast to the statistical learning setup considered in this article. We 
consider the standard setting, in which data are given in a tabular format and relevant back-
ground knowledge about the relationships of certain variables is not available.

Rule extraction methods aim at increasing the interpretability of tree ensemble meth-
ods while keeping their predictive strength. They start by fitting a tree ensemble such as 
random forests and try to extract the most important prediction rules from the individual 
decision tree paths. These prediction rules are then gathered in rule lists yielding the final 
model, in which predictions are made according to which rules hold true. One of the first 
and most established rule extraction methods is RuleFit (Friedman & Popescu, 2008), 
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which fits a boosted ensemble of decision trees and selects the most important rules using 
the lasso (Tibshirani, 1996). Alternative rule extraction methods include node harvest 
(Meinshausen, 2010) and SIRUS (Stable and Interpretable Rule Set, Bénard et al., 2021), 
which both fit random forests for generating the models from which the rules are to be 
extracted.

For modeling continuous regression models in the leaves, typically, GLMs are employed 
such as in MOB (model-based recursive partitioning, Zeileis et al., 2008). An overview on 
several GLM-based approaches is, e.g., given by Rusch and Zeileis (2013). However, the 
right parametric model might not be known prior to fitting models so that a more flexible 
non-linear regression model might be preferable. Moreover, these methods do not lay a 
focus on properly handling interactions between the splitting variables.

2.3  Logic regression

Logic regression (Ruczinski et al., 2003) is another tree-based supervised learning method. 
It has been specifically developed for analyzing SNP data and is, therefore, frequently used 
in such analyses (e.g., Ruczinski et al., 2004; Zhi et al., 2015). Logic regression is focussed 
on binary predictors and tries to identify Boolean combinations of the predictors that shall 
explain the variation in the outcome. These Boolean expressions can also be presented as 
logic trees, i.e., trees holding predictors (or their negations) in their leaves and recursively 
combining them with the Boolean AND-operator (denoted by ∧ in the following) or the 
Boolean OR-operator (denoted by ∨ in the following) using inner nodes. Figure 1b illus-
trates an exemplary logic tree corresponding to the Boolean expression X1 ∨ (X2 ∧ Xc

3
) . If a 

true logic tree is identified with class 1 and a false logic tree is identified with class 0, this 
tree is equivalent to the classification tree from Fig. 1a.

To generalize the usage of logic regression to regression purposes, logic trees are 
embedded in GLMs, i.e., a model of the form

is considered for a link function g and logic trees L1,… , Lm . In general, every possible 
logic regression model can be transformed into an equivalent decision tree, and vice versa 
(Ruczinski et al., 2003). However, logic trees tend to be more sparse, i.e., by using Boolean 
logic, logic trees can describe the same prediction model with fewer nodes than decision 
trees in certain scenarios. For example, even in the simple prediction model depicted in 
Fig. 1, the logic tree consists of five nodes, whereas seven nodes are required in the CART 
tree to represent the Boolean expression. Note that this tree sparsity property holds true for 
binary classification scenarios in which a hard classification task instead of a more general 
class probability estimation task is considered.

The fitting procedure in logic regression is performed by a global stochastic search over 
all possible models, i.e., logic trees L1,… , Lm and their GLM coefficients �0,… , �m , where 
these GLM coefficients are determined by fitting a GLM using the considered logic trees 
as predictors in each step of the global stochastic search. In particular, simulated annealing 
(Kirkpatrick et  al., 1983) is employed using simple modifications of the current model/
state, i.e., adding or removing branches, exchanging variables or operators, and splitting or 
removing variables. Alternatively, a greedy local search always moving to the best neigh-
bor state can be employed. However, this faster search comes without any guarantees of 
finding a globally optimal state. For evaluating the current state, a score function such as 

g(�[Y ∣ X = x]) = �0 + �1L1(x) +⋯ + �mLm(x)
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the mean squared error for linear regression or the deviance for logistic regression is used. 
For a detailed description and discussion of logic regression, see Ruczinski et al. (2003).

Single logic regression models tend to be unstable, if the signal is weak or if many 
predictors are actually predictive. One approach to tackle this problem is to apply bagging 
to logic regression models (Schwender & Ickstadt, 2007). However, similar to random for-
ests, these models are no longer easily interpretable.

Even single logic regression models can be hard to interpret due to possibly complex 
logic tree structures. Typically, one is interested in the statistical interaction of predictors, 
which can be defined as the effect of the presence of certain predictor settings at once, i.e., 
using Boolean conjunctions, since conjunctions of input variables directly reveal the spe-
cific type of interaction that is considered (Chen et al., 2011). By De Morgan’s laws, if a 
Boolean disjunction needs to be represented, the negation of the conjunction containing the 
negations of the input terms can be used, i.e., making disjunctions obsolete if all negations 
are available.

Logic regression can only take quantitative covariables additively into account by add-
ing them to the linear predictor of the GLM containing the logic trees as single terms. 
Thus, no interactions between the binary predictors and quantitative predictors can be 
included. Similarly, interactions between logic trees themselves can also not be captured, 
thus, relying on the additive structure of the individual terms. If, for example, the scale of 
an underlying linear predictor is unknown, being able to also model interactions between 
the terms can be beneficial. Consider, e.g., the regression function

On the squared scale, the terms X1 and X2 ∧ Xc
3
 do not interact. However, on the original 

scale, if both terms are true at once, the linear predictor is adjusted by an additional 2��.

3  Logic decision trees

To overcome the issues mentioned in the last section, we propose a novel method, called 
logicDT (logic decision trees), which combines decision trees and an improved version of 
the Boolean term search of logic regression.

We define logic decision trees to be decision trees that can use Boolean conjunctions 
of input variables as splitting variables, which is in contrast to standard decision tree pro-
cedures. Logic decision trees may be used for regression purposes, in which—similar to 
regression trees—each leaf holds a direct estimate of the outcome, or for classification pur-
poses, in which—similar to probability estimation trees (Provost & Domingos, 2003; Mal-
ley et al., 2012)—each leaf holds an estimate of the class membership probability. As dis-
cussed in Sect. 3.5, logic decision trees may also contain regression models in their leaves 
for modeling continuous relationships.

Allowing Boolean conjunctions of input variables as splitting variables, firstly, sim-
plifies the resulting decision tree. If we, e.g., consider an outcome that is only altered if 
Xc
1
∧ X2 holds, then creating a tree stump (i.e., a decision tree consisting of only one split) 

splitting on Xc
1
∧ X2 would be sufficient when using logicDT, whereas a common decision 

�[Y ∣ X] =
[
� ⋅ 1(X1) + � ⋅ 1(X2 ∧ Xc

3
)
]2

= �2
⋅ 1(X1) + 2 ⋅ � ⋅ � ⋅ 1(X1 ∧ X2 ∧ Xc

3
) + �2 ⋅ 1(X2 ∧ Xc

3
).
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tree only using single input variables for splitting would require a split on X1 and another 
split on X2 in the branch in which X1 = 0 holds (see Fig. 2).

Secondly, this makes the prediction values in some leaves more robust. In our example, 
the common decision tree in Fig. 2a would further distinct between X1 = 1 and Xc

1
∧ Xc

2
= 1 , 

while the tree in Fig. 2b uses one shared prediction, thus, utilizing more observations for creat-
ing the prediction value. Thirdly, due to the greedy search employed in standard decision tree 
splitting approaches, the interaction might not be found due to potentially negligible marginal 
effects of, in our example, X1 or X2 leading to splitting on other variables or not splitting at all, 
if a stopping criterion is triggered.

In the following subsections, logicDT is presented in detail.

3.1  Preliminaries

Let X = (X1,… ,Xp) be a p-dimensional random vector of binary input variables taking val-
ues in the p-dimensional space X = {0, 1}p and let Y be a target random variable taking val-
ues in the space Y . Let D = {(x1, y1),… , (xn, yn)} be a training data set with independent 
and identically distributed observations from the joint probability distribution of (X, Y) . Then 
the corresponding statistical learning task can be formulated as estimating the true regressor 
�(X,Y)[Y ∣ X = ⋅ ] by a function � ∶ X → Y using the training data set D (e.g., Hastie et al., 
2009).

In this article, Boolean conjunctions between binary input variables are denoted using the 
Boolean ∧ (AND) and negations of binary input variables are denoted using a superscript c 
(complement), i.e., Xc

j
= 1 − Xj.

logicDT is aimed at identifying response-associated interactions, where two input variables 
Xi and Xj are defined to interact with each other with respect to the outcome Y, if the effect 
of one input variable (i.e., the partial derivative/finite differences of �[Y ∣ X] with respect to 
one input variable) depends on the other input variable (Sorokina et  al., 2008). Therefore, 
if there is no interaction between Xi and Xj , the regression function �(X) = �[Y ∣ X] can be 
decomposed into a sum �(X) = �⧵i(X⧵i) + �⧵j(X⧵j) , where ⧵i denotes leaving out the ith entry 
of the vector of input variables (Friedman & Popescu, 2008). This definition can be directly 
generalized to (statistical) interactions of arbitrary order. If there is no interaction between 
X(1),… ,X(k) , � can be decomposed into a sum of functions, in which no summand is a func-
tion of all considered variables X(1),… ,X(k) simultaneously.

In this article, we mainly focus on binary input variables. Therefore, every function 
� ∶ X → Y mapping from a p-dimensional space of binary input variables to a real number 
can be expressed as a sum of the form

Fig. 2  Decision trees for split-
ting on Xc

1
∧ X2 . In a, a standard 

decision tree splitting on single 
input variables is shown. In b, a 
Boolean conjunction is used for 
splitting
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where (c) denotes potentially negating the considered variable and kj,i is the index of the ith 
variable in the jth summand. Hence, binary input variables X(1),… ,X(k) interact with each 
other (with respect to Y), if � cannot be decomposed without using a Boolean conjunction 
that simultaneously includes X(1),… ,X(k) . Boolean disjunctions are not considered in log-
icDT, since, by De Morgan’s laws, Boolean disjunctions can be expressed using Boolean 
conjunctions and negations.

3.2  Core methodology of logicDT

The aim of logicDT is to identify important input variables and Boolean conjunctions of 
input variables to perform accurate predictions of the outcome. An input variable or a 
Boolean conjunction of input variables will be in the following referred to as a term. A set 
of terms will be referred to as a state. Examples of possible states would be

In logicDT, states are obtained by a global stochastic search procedure that is introduced 
later in this section.

Logic decision trees are induced by identifying a state and exclusively using the terms 
contained in this state as input variables for fitting a conventional decision tree. For exam-
ple, the three terms Xc

1
∧ X2 , X5 , and X9 ∧ Xc

14
∧ Xc

42
 are used as input variables to induce a 

decision tree, if the corresponding state {{Xc
1
∧ X2}, {X5}, {X9 ∧ Xc

14
∧ Xc

42
}} is considered. 

Hence, creating a logic decision tree based upon a state is a two-stage procedure. First, the 
original training data set is transformed into a tree training data set using the terms of the 
considered state. Next, using this tree training data set, a decision tree is fitted.

For a set consisting of m terms

the original training data set is transformed into a tree training data set by constructing a 
n × (m + 1) data matrix containing the m different predictors or conjunctions and the out-
come. For example, if a training data set is given by

 and the state s = {{X1}, {X2 ∧ Xc
3
}} is identified by the global stochastic search, the tree 

training data set, which is directly used for fitting the decision tree, is given by

�(X) = �0 +
m∑
j=1

�j ⋅ 1

(
X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj

)
,

{{X73}} or {{Xc
1
∧ X2}, {X5}, {X9 ∧ Xc

14
∧ Xc

42
}}.

{{
X
(c)

k1,1
,… ,X

(c)

k1,p1

}
,… ,

{
X
(c)

km,1
,… ,X

(c)

km,pm

}}
,
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Since each term is a binary variable itself, there is only one possible split of the data based 
on this term. Thus, the tree fitting procedure only needs to consider one split per input 
term, which makes the identification of the best local split particularly fast. For evaluat-
ing potential node splits and selecting the split, the conventional node impurity splitting 
criterion from Eq. (1) is used. For regression tasks, the MSE (mean squared error) impurity 
(see Eq. (2)) is used, and for classification tasks, the Gini impurity (see Eq. (3)) is used.

After the tree corresponding to the current state has been fitted, its performance on the 
training data is evaluated by passing all observations through the tree and calculating a 
score that measures the training data error, where the score is chosen so that a smaller value 
of the score corresponds to a better fit. For regression purposes, the MSE is employed. For 
risk estimation/classification purposes, probability estimation trees (Provost & Domingos, 
2003; Malley et al., 2012) are grown that directly hold class probability estimates in their 
leaves by using empirical probabilities, i.e., using proportions of class occurrences. Thus, 
for scoring a state in the risk estimation/classification setting, the deviance is used, which 
is also known as the cross entropy or the negative binomial log-likelihood.

Alternatively, the negative area under the curve with respect to the receiver operating 
characteristic (AUC) might be used. However, the AUC does not capture the magnitude of 
the risk estimate in contrast to the deviance. Another alternative is the Brier score, which is 
the mean squared error between the risk estimate and the actual outcome.

For identifying an ideal state, logicDT performs a global search over all eligible states. 
The search is performed by using the current state to construct a decision tree, evaluat-
ing the performance of this tree, modifying the current state, and repeating this procedure. 
Modifications of logicDT states are called neighbors and are implicitly defined by slightly 
altering a given state. Figure 3 illustrates the possible state modifications/neighbor states 
using exemplary states. In the center of this figure, the current state is depicted. The pos-
sible state changes include

• exchanging or negating single variables (see, e.g., the replacement of X2 by X4 in the 
top and the negation of X2 in the bottom of Fig. 3),

• adding or removing single variables from a term (see, e.g., the addition of X8 in the top 
right and the removal of Xc

3
 in the bottom right of Fig. 3),

• adding or removing logic terms consisting of exactly one variable (see, e.g., the addi-
tion of X10 in the top left and the removal of X2 in the bottom left of Fig. 3).

To avoid tautologies and uninformative terms, some specific alterations are prohib-
ited. More precisely, the same variable should not occur more than once in a single term 
and the same term should not occur more than once in the proposed state.

The search is initialized by finding the single input variable that minimizes the score 
function, e.g., {{X73}} . Using this initial state, a global optimization procedure employ-
ing simulated annealing (Kirkpatrick et al., 1983) is carried out for finding the state that 
minimizes the score function, i.e., now permitting all possible states potentially consist-
ing of more than one term.

(4)
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Simulated annealing is a stochastic optimization algorithm that, given a current state, 
randomly selects one of its neighbor states, evaluates its score, and uses the score differ-
ence between these two states for determining the probability of transitioning to the pro-
posed neighbor state. For a state s and a proposed neighbor state s′ , the score function � , 
and the current temperature t, this state acceptance probability is given by

Thus, if a state with a better score is proposed, the transition is carried out with probability 
1. However, worse states may also be accepted with the acceptance probability ∈ (0, 1) to 
avoid getting stuck in local minima. The main idea of simulated annealing is slowly lower-
ing the temperature t such that the acceptance probability of worse states tends to 0 and in 
the end, the globally optimal state is identified.

In logicDT, a fully automatic simulated annealing schedule governing the tem-
perature lowering is employed. If desired, the cooling schedule can be changed, e.g., 
by decreasing or increasing the parameter � , that controls the magnitude of the tem-
perature decreases, for performing a finer or coarser stochastic search. The number of 
search iterations is, thus, (implicitly) controlled by � and stopping criteria for terminat-
ing the search procedure. Alternatively, a fixed geometric cooling schedule can also be 
employed in logicDT. However, we recommend using the adaptive cooling schedule for 
fitting logicDT models. More details on the simulated-annealing-based search in log-
icDT are given in Appendix 1.

(5)�(�(s), �(s�), t) ∶= min

{
1, exp

(
�(s) − �(s�)

t

)}
.

Fig. 3  Exemplary state modifications of the reference state {{X1,X
c
3
,X5}, {X2}} depicted in the center
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The proposed state modifications ensure that the modifications lead to a Markov 
chain that fulfills aperiodicity and irreducibility when performing a global search via 
simulated annealing. These properties ensure that simulated annealing asymptotically 
leads with probability 1 to a globally optimal state (Van Laarhoven & Aarts, 1987). 
More details on these Markov properties are given in Appendix 2.

3.3  The logicDT algorithm

In Algorithm 2, the logicDT procedure is presented.

In Line 2, the initial state is obtained by choosing the single input variable that mini-
mizes the score. That is, for each input variable, a decision tree using only this input 
variable, i.e., a decision tree stump, is fitted and evaluated. The input variable Xj that 
leads to the minimum score is chosen as the initial state {{Xj}} . Alternatively, a random 
state or an empty state could also be used as the initial state.

In Lines 3 and 8, the current state is used for transforming the original training data 
set D into a tree training data set that can be directly used by a learning procedure using 
the identified terms as input variables. See Eq. (4) for an example on how a tree train-
ing data set is obtained from the original data set consisting of the values of the input 
variables.

If no leaf regression models for continuous covariables shall be fitted, the decision 
trees are constructed using Algorithm 1 (see Lines 4 and 9 of Algorithm 2). If leaf regres-
sion models are to be fitted (see Sect.  3.5 for more details), the splitting criterion from 
Sect.  3.5.2 is used in place of the impurity reduction criterion and the corresponding 
regression models are fitted in each leaf in contrast to single prediction values.

In Lines 5 and 10 of Algorithm 2, the training data score is calculated by passing all 
training observations through the fitted decision tree, performing predictions using 
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leaf regression models if these were fitted, and comparing the predictions with the true 
outcomes.

In Line 7, the current state is modified by randomly performing one of the state modifi-
cations proposed in Sect. 3.2, where the state modification is randomly drawn from a uni-
form distribution over all possible state modifications of the current state.

This proposed modified state is then evaluated in Line 11, i.e., it is randomly accepted 
with the acceptance probability from Eq. (5).

The global search is carried out until a stopping criterion is true. More details on the 
search algorithm itself are discussed in Appendix 1.

logicDT is implemented in the R package logicDT (Lau, 2023) available on CRAN.

3.4  Controlling the complexity of logicDT models

For restricting the complexity of logicDT models and regularizing them, the maximum 
number ���_���� of terms and the total maximum number ���_���� of variables con-
tained in a state should in practice be properly tuned to avoid overfitting or underfitting. 
Since some (potentially very long) conjunctions might correspond to no or very few obser-
vations, similar to the stopping criterion in decision trees, a minimum conjunction size, 
defining the minimum number of observations falling into this conjunction and its nega-
tion, can be specified in logicDT to exclude practically useless terms. Furthermore, one 
may prohibit the removal (and the addition) of whole terms in order to guarantee a cer-
tain number of terms. This might, e.g., be useful if a pure variable selection should be 
performed so that the maximum number of total variables is set to the maximum number 
of terms. In this case, the initial state should be chosen such that it already includes the 
desired number of terms.

logicDT aims to identify the optimal set of predictors and conjunctions with regard to the 
predictive ability. Thus, post-pruning of the fitted decision trees is not necessary, since the 
model complexity is already covered by the model size hyperparameters and the ideal split-
ting terms are already identified by the global search, which is similar to logic regression and 
in contrast to standard decision trees. However, the following two stopping criteria for locally 
terminating the splitting of a branch are used to filter out completely unnecessary splits.

One of the stopping criteria is the minimum number of observations in the respective 
leaves. If a split would lead to child nodes from which at least one of the children contains 
less than the prespecified number of observations, this split is prohibited. This criterion 
is particularly useful for regression and risk estimation purposes, where a stable estimate 
needs a certain amount of observations.

As second stopping criterion, the minimum (scaled) impurity reduction is considered. A 
split is discarded, if it does not reach the required impurity reduction, i.e., if

holds for the impurity reduction Δi(s, t) defined in Eq. (1) and the complexity parameter 
cp ≥ 0 . For continuous outcomes, cp will be scaled by the empirical variance s2

Y
 of the out-

come Y to ensure the right scaling, i.e., cp ← cp ⋅ s2
Y
 . Since the impurity measure for con-

tinuous outcomes is the mean squared error, this can be interpreted as controlling the mini-
mum reduction of the normalized mean squared error (NRMSE—normalized root mean 
squared error—to the power of two).

The hyperparameter optimization in logicDT is discussed in more detail in Sect. 3.6.

nt

n
⋅ Δi(s, t) ≤ cp,
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3.5  Quantitative covariables

Decision trees are particularly suitable models for binary input data, since there is only a 
finite number of possible predictor scenarios in this case, i.e., every possible prediction 
function (including the true regression function �[Y ∣ X] ) can be expressed using a decision 
tree. Quantitative predictors often induce a continuous relationship to the outcome that 
cannot be properly expressed with piecewise constant functions such as decision trees or 
random forests. In standard decision-tree-based methods, continuous variables are included 
as possible splitting candidates in the decision tree fitting process. This approach is very 
intuitive for merely considering all available data. However, as mentioned above, this does 
not allow to cover continuous relationships.

3.5.1  Leaf regression models

For properly including quantitative covariables in logicDT models, we propose, similar 
to MOB (model-based recursive partitioning, Zeileis et al., 2008), to fit regression mod-
els in the leaves that result from splits exclusively using the binary terms. This approach 
allows to fit individual curves for each binary term setting, thus, also covering interactions 
between the binary predictors and the quantitative covariable.

In principle, any kind of regression model such as linear or non-linear regression mod-
els could be fitted in the leaves depending on the application. Moreover, multiple regres-
sion models could also be fitted, if multiple covariables need to be considered.

For properly evaluating logicDT states, regression models need to be fitted in each deci-
sion tree and used to generate the training data predictions for computing the score, i.e., 
the regression models should be fitted in each iteration of the search procedure of logicDT. 
If, however, the computational burden is too high for, e.g., fitting non-linear regression 
models in each leaf of each decision tree, we recommend using linear models for the search 
and non-linear regression models for the final fit. In this case, the functional relationship is 
still taken into account in the search process and the final model utilizes the desired type of 
regression model. For a fast model fitting with a binary outcome, logistic regression curves 
through LDA (linear discriminant analysis) might be fitted that have a closed-form solution 
(Hastie, Tibshirani, and Friedman, 2009), and therefore, do not require an iterative optimi-
zation procedure such as standard logistic regression.

3.5.2  Splitting criterion

If regression models should be fitted in each leaf, functional trends have to be analyzed 
instead of simple leaf means. Therefore, we propose evaluating splits based on a likeli-
hood-ratio test for comparing nested models as an alternative to the conventional node 
impurity splitting criterion specified in Eq. (1). More precisely, linear regression or LDA 
models, which can be determined particularly quickly, are fitted for each eligible split and 
resulting child node. Since we consider simple regression models, each model consists of 
two parameters (offset and slope) such that the difference in parameters of two submodels 
versus one joint model is given by 2 ⋅ 2 − 2 = 2 . Thus, the likelihood-ratio test statistic
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is—under the null hypothesis of equal model parameters in both subnodes—asymptotically 
�2-distributed with 2 degrees of freedom following Wilks’ theorem (Wilks, 1938). Here, 
Lreduced denotes the maximized likelihood of the reduced model (i.e., the fitted joint regres-
sion model using one node) and Lfull denotes the maximized likelihood of the full model 
(i.e., the model consisting of two individually fitted sub-regression models resulting in two 
nodes).

With the test statistic from Eq. (6), we, hence, test

where t is the node that shall be splitted, X(t) is the subvector of input variables that are 
used as splitting variables in ancestor nodes of t, x(t) is the corresponding binary vector 
containing the predictor setting at node t, Xs is the binary predictor that shall be evaluated 
for splitting the node, and E is (are) the continuous covariable(s). We, thus, test with this 
likelihood-ratio test whether the split on Xs leads to different prediction models in the cur-
rent tree branch. E.g., for one continuous covariable, the model

is used for testing the null hypothesis H0 ∶ �0 = �1 = 0 , which is equivalent to the above 
null hypothesis, using the identity as link function g for a continuous outcome and the logit 
function as link function g for a binary outcome.

Using this new splitting criterion, likelihood-ratio tests for all eligible splits at a certain 
node are performed to appropriately rank eligible splits and to interpretably quantify the 
strength of a split. The split that achieves the lowest p-value is used, if this p-value is below 
a prespecified significance threshold such as � = 50% . Here, we propose to use a very lib-
eral (high) threshold to avoid to miss fruitful splits. If no split can provide such a p-value, 
the node in question is declared as a terminal node so that this splitting criterion can also 
act as a stopping criterion.

Figure 4 illustrates an exemplary logicDT model with two terms and three variables in 
total. The current set of terms on the left induces the decision tree on the right by fitting a 
decision tree using the terms as potential splitting variables. The quantitative covariable E 
is used for evaluating the splits in likelihood-ratio tests and for fitting the regression mod-
els in the leaves. Therefore, in the root node, the terms SNP3Dc ∧ SNP2D and SNP1D are 
both evaluated as splitting candidates by fitting regression models using E as the predictor. 
Since SNP3Dc ∧ SNP2D yields a lower p-value than SNP1D in the likelihood-ratio test 
splitting criterion, the term SNP3Dc ∧ SNP2D is used for splitting the root node. The fit-
ted tree is then evaluated as a whole using a score function (see Sect. 3.2). Afterwards, the 
state is slightly modified using the modifications proposed in Sect. 3.2 and the procedure is 
repeated.

3.6  Hyperparameter optimization

For maximizing the performance of logicDT, it is necessary to optimize the model com-
plexity parameters that act as regularization parameters. These parameters are

(6)−2 log(Λ) ∶= −2 log

(
Lreduced

Lfull

)

H0 ∶ �[Y ∣ X(t) = x(t),Xs,E] = �[Y ∣ X(t) = x(t),E]

vs. H1 ∶ �[Y ∣ X(t) = x(t),Xs,E] ≠ �[Y ∣ X(t) = x(t),E],

g(�[Y ∣ X(t) = x(t),Xs,E]) = �0 + �1 ⋅ E + �0 ⋅ 1(Xs) + �1 ⋅ 1(Xs) ⋅ E
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• ���_����—the total maximum number of variables contained in the model,
• ���_����—the maximum number of conjunctions/terms in the model,
• ��������—the minimum number of observations per leaf in the resulting decision 

tree,
• ��������—the minimum of observations contained in a conjunction and its negation.

In general, ���_���� ≥ ���_���� has to be fulfilled. Furthermore, we recommend impos-
ing ���_���� ≤ 2 ⋅ ���_���� in cases in which marginal effects still seem to be domi-
nant and it is not justifiable that only high-order interaction terms compose the main influ-
ence on the outcome. This restriction is useful due to the standard learning issue that more 
complex models usually fit the training data better. Moreover, it reduces the set of eligi-
ble hyperparameter configurations to be evaluated speeding up the hyperparameter tuning 
process.

Specifically for fitting single logicDT models (via simulated annealing), it is advisable 
to remove the ability of removing whole conjunctions from the model in the search pro-
cedure. This ensures that the final model consists of exactly ���_���� terms and that no 
extensively complex conjunctions make up the model. This also allows for a simple vari-
able selection of marginal effects by additionally restricting ���_���� = ���_����.

The purpose of �������� is to ensure that each leaf contains enough observations for 
concluding meaningful models, i.e., stable means, or if a continuous covariable is included, 
regression models. A proper value for �������� avoids evaluating models with uninform-
ative conjunctions, i.e., conjunctions for which a split does not imply meaningful infor-
mation due to a low number of observations. Note that for the observed values, it holds 
��������obs ≤ ��������obs , since the decision tree can further split the space. Thus, in 
practice, �������� and �������� can be set to the same value. Similar to Malley et al. 
(2012) who regarded probability estimation trees, we recommend a value between 1% and 
10% of the total number of training observations for obtaining stable leaf estimates.

Fig. 4  An exemplary logicDT model/state. On the left hand side, the set of terms is depicted with an addi-
tional quantitative covariable which is excluded from the search over the set of terms. On the right hand 
side, the resulting decision trees which uses the binary predictors and identified conjunctions as input/split-
ting variables. Since in this case also a quantitative variable is supplied, the leaves are continuous functions 
instead of single point estimates
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Using these parameter restrictions, a grid search evaluating all possible parameter com-
binations is then carried out (based on validation data) in order to identify the best setting. 
In Sect. 5, hyperparameter optimization following this scheme is performed.

3.7  Consistency of logicDT

In this section, we now study theoretical properties of logicDT, more precisely, the con-
sistency of logicDT. For this purpose, we consider the core logicDT methodology, i.e., 
only permitting binary predictors. Without loss of generality, we assume a continuous out-
come. Binary risk estimation/binary classification can be viewed as a special case using the 
Brier score as score function in an empirical risk minimization framework. The following 
theorem states that logicDT is strongly consistent. The proof of this theorem is given in 
Appendix 2.

Theorem 1 (Consistency of logicDT) Suppose � ∶ {0, 1}p → Y is a p-dimensional regres-
sion function and that the outcome Y with

is bounded. Then, logicDT fitted via simulated annealing is strongly consistent, i.e., almost 
sure convergence

holds for fitted logicDT models Tn to training data sets Dn = {(x1, y1),… , (xn, yn)}.

The following remark provides an application of Theorem 1 to hard classifications, in 
which the misclassification rate is evaluated.

Remark 1 For the binary classification/risk estimation case, alternatively to considering the 
Brier score, the excess misclassification rate is bounded by

for the classifiers �̂�Tn
(x) = 1(Tn(x) ≥ 0.5) and the Bayes classifier �∗ (see, e.g., Theo-

rem 1.1, Györfi et al., 2002).

Thus, the misclassification rate of the best possible classifier �∗ will be asymptotically 
almost surely attained by logicDT.

Note that Theorem 1 holds as long as the proposed hyperparameters are properly chosen 
so that the true underlying model satisfies the chosen hyperparameters. More precisely, 
���_���� and ���_���� need to be sufficiently big and �������� and �������� need to 
be sufficiently small.

�[Y ∣ X] = �(X)

�(X,Y)

[
(�(X) − Tn(X))

2
] a.s.

�������������������→
n→∞

0

0 ≤ ℙ(X,Y)(�̂�Tn
(X) ≠ Y) − ℙ(X,Y)(𝜑

∗(X) ≠ Y)

≤ 2

√
𝔼(X,Y)

[
(𝜇(X) − Tn(X))

2
] a.s.

�������������������→
n→∞

0
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3.8  Computational complexity of logicDT

In this section, we study the computational complexity of logicDT, which is mainly con-
trolled by the complexities of conducting a simulated-annealing-based search and fitting 
decision trees. A guarantee for obtaining a globally optimal model is only given if infi-
nite iterations (or iterations in the magnitude of the size of the complete search space) are 
carried out in the simulated-annealing-based search (Van Laarhoven & Aarts, 1987). In 
practice, this is because of the size of the search space, typically, infeasible. Therefore, this 
asymptotic search is in practical applications approximated using a finite number of itera-
tions (for more details on the search process, see Appendix 1). Therefore, we assume that 
the number of search steps is given by a finite number M.

Using the complexities of simulated annealing, decision tree fitting, and tree training 
data set transformation and using Algorithm 2, the computational complexity of logicDT is 
given in the following theorem. The proof of this theorem is given in Appendix 3.

Theorem  2 (Computational complexity of logicDT) Suppose M is the number of search 
steps performed, n training observations are given, and the hyperparameters ���_���� , 
���_���� , �������� are fixed. Then, the computational complexity of logicDT is given by

Using Theorem 2, results about appropriate numbers M of search iterations based on 
the Markov chain length (i.e., the number of search iterations for a fixed temperature), and 
assumptions on the hyperparameter choices, the following corollary states that the com-
putational complexity of logicDT is polynomial in p. The corresponding proof is, again, 
provided in Appendix 3.

Corollary 1 (Polynomial complexity of logicDT) Assume that the parameters ���_���� 
and ���_���� both scale linearly with p and that the parameter �������� is constant 
(with respect to n which is the worst-case scenario in which the logic decision tree may be 
arbitrarily deep). Further assume that the Markov chain length is fixed. Then, the computa-
tional complexity of logicDT is given by

If instead the Markov chain length is chosen in the magnitude of the number of neighbor 
states per state (as suggested by Aarts & Van Laarhoven, 1985), the computational com-
plexity of logicDT is given by

3.9  Bagged logicDT

If a single model consisting of relatively few variables cannot explain the whole variation 
in the outcome from the whole set of predictors or if the predictive power is of higher inter-
est than the interpretability of the model, ensemble models consisting of several simpler 
models might be a preferable choice.

O
(
Mn

[
���_���� + ���_����

n

��������

])
.

O
(
n2p2 log(p)

)
.

O
(
n2p4 log(p)

)
.
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A particularly simple, yet effective approach is bagging (Breiman, 1996), in which for a 
given number of bagging iterations (e.g., 500), a single model is fitted on a random subset 
of the original training data set. The random subsets are typically generated via bootstrap-
ping, i.e., performing random draws from the original training data with replacement n 
times. The resulting model is the ensemble of all models. Predictions are performed by 
averaging the predictions of the individual models. The number of iterations should, as in 
random forests, be chosen such that more iterations cannot reduce the generalization error 
substantially anymore.

Since sufficient bagging iterations are also desired in logicDT, simulated annealing with 
a proper amount of iterations itself might just be too slow. Moreover, the main issue of 
greedy search approaches, i.e., that a globally optimal state could be missed due to being 
stuck in a local optimum, might be diminished through considering different subsets of the 
training data set and stabilizing the model over them. In other words, the variance stabiliz-
ing property of bagging might be sufficient to account for the drawbacks of a greedy search 
(Murthy & Salzberg, 1995).

For the usage of logicDT in an ensemble framework, we, therefore, propose a greedy 
search for fitting individual logicDT models. In this greedy search, the same state modi-
fications as in the simulated-annealing-based search are used (see Sect.  3.2). In contrast 
to simulated annealing, the greedy search deterministically chooses the best neighbor in 
each iteration. Thus, for each current state, all its neighbors are evaluated and the neighbor 
with the lowest score amongst all neighbors is chosen as new state. Note that for increas-
ing numbers of predictors and increasing numbers of allowed terms and total variables, 
the number of eligible neighbors per state increases quadratically, thus, slowing down the 
greedy search. For handling higher-dimensional data, a randomization of the greedy search 
might be a solution which we, however, did not consider in this article.

Another very useful property of bagging is that in the fitting of an individual model 
not all observations from the training data are employed. The not considered observations 
called oob (out-of-bag) observations can, therefore, be used to estimate the generalization 
error, similar to using independent test data. This estimate is called the oob error and is 
obtained by only using models that were not built using the considered observation. More 
precisely, the oob error is calculated by averaging over the oob errors of the observations, 
where the oob error of an observation can be computed by only choosing the models which 
did not use this observation for training and by temporarily constructing an ensemble from 
this subset of models for predicting the outcome of this observation. In particular, for the 
estimation of variable importance measures (VIMs), bagging and oob observations are 
very beneficial. As discussed in the following section, we, therefore, also use them in the 
construction of the VIM considered in logicDT.

4  Variable importance measures

In many applications, it is useful to measure the influence of the input variables or their 
interactions on the prediction of an outcome. Variable importance measures (VIMs) 
directly try to quantify this influence. Typically, this influence is estimated by comparing 
two models, namely

• the original full model containing the term of interest and
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• a kind of informatively reduced model, in which the term of interest no longer plays an 
informative role.

Then, the difference between the prediction errors of these two models is computed and 
is taken as an estimate of how the prediction based on the model improves if the term is 
properly included, where the prediction errors are, e.g., given by the mean squared error in 
regression tasks or 1 − AUC in binary risk estimation tasks.

4.1  Computation of VIMs

Let �(X̃) be a prediction error measure capturing the performance of a fitted model infor-
matively using only the input variables in X̃ ⊆ X , interpreting the random vector of input 
variables X = (X1,… ,Xp) as a set X = {X1,… ,Xp} . Then, the importance of an input vari-
able Xi is given by

Here, �(X ⧵ Xi) describes the prediction error of the reduced model informatively excluding 
the variable Xi and �(X) describes the prediction error of the original full model.

Bagging allows the unbiased estimation of VIMs on the full training data set by per-
forming oob predictions. Moreover, bagging also has the advantage that multiple poten-
tially different models are explored stabilizing the VIMs themselves. Thus, for estimat-
ing VIMs in logicDT, bagging is used and the discussed VIMs are computed on the oob 
observations.

4.1.1  Permutation VIM and removal VIM

One particularly popular approach for estimating the reduced model is the permutation 
VIM used in random forests (Breiman, 2001). In this approach, for estimating the impor-
tance of a certain input variable, its corresponding observations are randomly permuted 
and predictions with this random permutation are performed. Typically, the VIM data set is 
permuted multiple times in the specific predictor and the average prediction error of these 
permutations is compared against the original error.

As an alternative, the reduced model can also be directly fitted using a reduced training 
data set from which the predictor of interest was removed (Mentch & Hooker, 2016). In the 
following, we call this approach the removal VIM.

4.1.2  Logic VIM

For binary predictors, we additionally propose a specific third procedure for computing 
VIMs. The idea of this logic VIM is based on considering each possible predictor setting 
of the input variable of interest equally, i.e., for a binary predictor X1 ∈ {0, 1} , the error 
of the reduced model is estimated by performing predictions fixing X1 = 0 , performing 
predictions fixing X1 = 1 and averaging these predictions before computing the error. Thus, 
for each observation, the prediction of the reduced model considers both possible decision 
tree paths, one for X1 = 0 and one for X1 = 1 , equally and is generated without knowledge 
about X1.

(7)VIM(Xi) = �(X ⧵ Xi) − �(X).
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4.2  Adjustment for interactions

In standard VIM procedures such as the permutation VIM in random forests, only impor-
tances of single input variables are considered. In the context of logicDT, we measure the 
importance of terms, i.e., of identified single input variables or conjunctions of several 
input variables. For instance, if the resulting model consists of {{X1}, {X2 ∧ Xc

3
}} , we are 

interested in specifying the importance of X1 as well as the importance of the term X2 ∧ Xc
3
 . 

This is achieved by considering terms such as X2 ∧ Xc
3
 as single input variables, i.e., by 

directly considering a tree training data set as in Eq. (4).
Since decision trees can handle interactions themselves, it might be possible that, e.g., 

X1 as well as the interaction X1 ∧ Xc
2
 exhibit strong effects on the outcome. However, due 

to the strong marginal effect, only the single predictors X1 and X2 might be included in the 
logicDT model, complicating the estimation of the importance of the interaction.

Hence, we propose a novel VIM adjustment procedure for interactions that quantifies the 
importance of interactions that were not identified by a supervised learner such as logicDT. 
This VIM adjustment approach presented in the following does not depend on logicDT, but 
enables logicDT to appropriately estimate interaction importances. Therefore, they could, in 
principle, be applied to all black-box models for estimating interaction importances.

The idea behind the VIM adjustment procedure is based on considering several predictors 
at once, i.e., the reduced model results from reducing multiple variables in one step. Compar-
ing the performances of this reduced model and the original model yields a joint VIM of the 
set of predictors (Bureau et al., 2005). Analogously to Eq. (7), the joint VIM is obtained by

Since this joint VIM still includes the marginal effects of the individual predictors and 
their sub-interactions of an order lower than the order of the actual interaction influencing 
the outcome, we propose the interaction VIM that corrects for any effects contained in the 
regarded interaction. This interaction VIM of Xi1

∧⋯ ∧ Xik
 is given by

where Z ∶= {Xi1
,… ,Xik

} is the set of input variables in the considered interaction. In our 
notation, ∧ denotes the interaction importance, while commas represent the joint impor-
tance. By VIM(A ∣ X ⧵ Z) , the VIM of A considering the predictor set excluding the vari-
ables in Z , i.e., the improvement of additionally considering A , while regarding only the 
predictors in X ⧵ Z , is denoted. The interaction importance captures the importance of a 
general meaning of interaction, i.e., it considers whether some variables do interact in any 
way and quantifies the effect of the joint presence of these variables adjusted for single 
occurrences. For a predictor set Ã ∶= {Xj1

,… ,Xjl
} ⊆ Z , the restricted joint VIM, i.e., the 

VIM of Ã considering only the predictors X ⧵ Z in the reduced model, is, following Eq. (8), 
given by

Excluding all variables in Z composing the interaction in the respective reference models 
is crucial for isolating the effects that should be adjusted for. If, e.g., a two-way interaction 
X1 ∧ X2 is studied, its interaction VIM (9) is given by

(8)VIM(Xi1
,… ,Xik

) = �(X ⧵ {Xi1
,… ,Xik

}) − �(X).

(9)
VIM(Xi1

∧⋯ ∧ Xik
) = VIM(Xi1

,… ,Xik
∣ X ⧵ Z)

−
∑

{j1,…,jl}⊊{i1,…,ik}

VIM(Xj1
∧⋯ ∧ Xjl

∣ X ⧵ Z),

(10)VIM(Ã ∣ X ⧵ Z) = �(X ⧵ Z) − �(Ã ∪ (X ⧵ Z)).
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If, e.g., VIM(X1 ∣ X ⧵ X1)
(7),(10)
= VIM(X1) would be used instead of 

VIM(X1 ∣ X ⧵ {X1,X2}) in Eq. (11), the whole importance of X1 , that also contains the 
interaction with X2 , would be subtracted from the joint importance not isolating the inter-
action importance that should be estimated.

Recursively applying Eq. (11) to the general case in Eq. (9) yields

Utilizing Eq. (10), this formula for the interaction VIM can also be written in terms of pre-
diction errors � , i.e., as

This formula can be used for efficiently computing the interaction VIM by directly consid-
ering prediction errors.

The interaction VIM (9) is similar to the interaction effect statistic proposed by Fried-
man and Popescu (2008), which utilizes the same effect decomposition and is based on 
the explained variance of partial dependence functions instead of VIMs. Friedman and 
Popescu (2008) theoretically justified this effect decomposition by showing that their sta-
tistic is zero, if the null hypothesis of no present interaction effect holds true. For exam-
ple, for analyzing a two-way interaction X1 ∧ X2 , Friedman and Popescu (2008) evaluate 
FX1,X2

− FX1
− FX2

 , in which F
⋅
 denotes partial dependence functions of the considered 

input variables. This term is analogous to the interaction VIM in Eq. (11) for X1 ∧ X2 with 
the difference that VIMs, i.e., performance metrics, are used instead of partial depend-
ence functions. Moreover, the input feature effect decomposition utilized by the proposed 
interaction VIM is also used by the Shapley interaction index (Lundberg et al., 2020; Fuji-
moto et al., 2006). However, in machine learning applications, Shapley values are based on 
direct predictions of the fitted model instead of performance metrics such as VIMs.

For all three procedures for constructing VIMs mentioned in Sect. 4.1, the reduced joint 
model can be intuitively constructed.

In the permutation VIM, the input variables of interest, i.e., the input variables par-
ticipating in the interaction for which the interaction VIM should be computed, are simply 
permuted together by, e.g., permuting the values of each input variable separately.

For the removal VIM, the set of input variables of interest is removed as a whole from 
the total set of input variables.

The logic VIM proposed in Sect. 4.1.2 performs uninformative predictions of an input 
variable by considering both possible decision tree paths for an observation and averaging 
the prediction. To generalize the logic VIM to multiple input variables at once for comput-
ing the interaction VIM, all possible predictor settings x ∈ {0, 1}p for the p input variables 
that shall be informatively excluded are used to generate predictions. These 2p predictions 
are averaged to create the prediction of the reduced model.

In logicDT, the logic VIM is used in conjunction with the proposed adjustment for inter-
action effects. Quantifying the importance of specific conjunctions, that are, e.g., identified 
by logicDT, will be discussed in the following section. In Sect. 5, the permutation VIM, 
the removal VIM, and the logic VIM are evaluated in empirical studies.

(11)
VIM(X1 ∧ X2) = VIM(X1,X2 ∣ X ⧵ {X1,X2})

− VIM(X1 ∣ X ⧵ {X1,X2}) − VIM(X2 ∣ X ⧵ {X1,X2}).

VIM(Xi1
∧⋯ ∧ Xik

) =
∑

{j1,…,jl}⊆{i1,…,ik}

(−1)k−l ⋅ VIM(Xj1
,… ,Xjl

∣ X ⧵ Z).

VIM(Xi1
∧⋯ ∧ Xik

) =
∑

{j1,…,jl}⊆{i1,…,ik}

(−1)l+1 ⋅ 𝜖(X ⧵ {Xj1
,… ,Xjl

}) − 𝜖(X).
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4.3  Adjustment for conjunctions

The VIM adjustment approach introduced in Sect. 4.2 only captures the importance of a 
general meaning of interactions, i.e., it just considers the question whether some variables 
do interact in some way. Since logicDT is aimed at identifying specific conjunctions (and 
also determines the values of a VIM for them, if the conjunctions have been identified by 
logicDT), a further adjustment approach is proposed that tries to identify the specific con-
junction leading to an interaction effect. For example, if the importance of the interaction 
between X1 and X2 was quantified using the interaction adjustment proposed in Sect. 4.2, 
the approach presented in the following assigns a Boolean conjunction to this importance, 
e.g., the Boolean conjunction X1 ∧ Xc

2
 . The proposed procedure is, again, applicable to any 

kind of supervised learning model. However, due to considering Boolean conjunctions, the 
input variables for which the importance should be quantified need to be binary.

This approach considers each possible conjunction of the identified interaction and 
chooses the conjunction that leads to the most severe deviation in the outcome, i.e., the 
conjunction with the strongest effect on the outcome. The VIM of this conjunction is the 
corresponding interaction VIM derived in Sect. 4.2.

The idea of this method is to consider the values of the outcome for each possible sce-
nario of the interacting variables, e.g., for X1 ∧ (Xc

2
∧ X3) , where we assume that the terms 

X1 and Xc
2
∧ X3 were identified by logicDT. In this example, thus, two interacting terms 

are regarded, i.e., the 22 = 4 possible scenarios X1 = 0 or X1 = 1 in combination with 
Xc
2
∧ X3 = 0 or Xc

2
∧ X3 = 1 are considered. For each setting, the corresponding outcome 

values are compared to the outcome values of the complementary set, i.e., the set in which 
the considered conjunction is equal to zero. This means that in the considered example the 
four statistical tests

with

potentially negating the subterms, are performed for i ∈ {1, 2, 3, 4} . For continuous out-
comes, Welch’s t-test is performed for comparing the means between these two groups, 
i.e., the group in which the considered conjunction is equal to one and the group in which 
the considered conjunction is equal to zero. For binary outcomes, Fisher’s exact test is per-
formed for testing different underlying case probabilities. The combination with the lowest 
p-value is chosen as the explanatory term for the interaction effect. E.g., in the above exam-
ple, if the smallest p-value results from considering X1 = 0 and (Xc

2
∧ X3) = 1 , the term 

Xc
1
∧ (Xc

2
∧ X3) is chosen as the conjunction responsible for the interaction effect.

5  Experiments

In the following, we evaluate the performance of logicDT on simulated and real data con-
sidering classification and regression problems and compare logicDT with other similar 
methods. More precisely, we compare logicDT and bagged logicDT with conventional 

H0 ∶ �
[
Y ∣ Ci = 1

]
= �

[
Y ∣ Ci = 0

]

vs. H1 ∶ �
[
Y ∣ Ci = 1

]
≠ �

[
Y ∣ Ci = 0

]
,

C1 = X1 ∧ (Xc
2
∧ X3), C2 = Xc

1
∧ (Xc

2
∧ X3),

C3 = X1 ∧ (Xc
2
∧ X3)

c, C4 = Xc
1
∧ (Xc

2
∧ X3)

c
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decision trees (Breiman et al., 1984), DL8.5 (Aglin et  al., 2020a), random forests (Brei-
man, 2001), gradient boosting (Friedman, 2001), logic regression (Ruczinski et al., 2003), 
logic regression with bagging (Schwender & Ickstadt, 2007), MOB (model-based recursive 
partitioning, Zeileis et  al., 2008), interaction forests (Hornung & Boulesteix, 2022), and 
RuleFit (Friedman & Popescu, 2008). Since DL8.5 (as similar openly available optimal 
decision tree algorithms such as MurTree proposed by Demirović et  al., 2022) are cur-
rently only implemented for classification tasks, DL8.5 is only applied to the considered 
classification tasks. All analyses are carried out using R (R Core Team, 2022), except for 
the application of DL8.5, which is performed using the Python implementation of Aglin 
et al. (2020b).

5.1  Simulation study

We, first, consider the situation of genetic association studies in which single genes/genetic 
pathways are analyzed and typically not more than a few tens of SNPs (single nucleotide 
polymorphisms) are considered. Afterwards, we consider a more complex setting with 
more SNPs to evaluate if logicDT is also applicable to high-dimensional problems.

5.1.1  First simulation setup

We analyze the performance of logicDT and the other supervised learning procedures first 
in four different simulation scenarios in which we consider binary predictors and

• a binary outcome (such as a disease status) without an additional continuous covari-
able,

• a binary outcome with a continuous covariable,
• a continuous outcome (such as the blood pressure) without a continuous covariable, 

and
• a continuous outcome with a continuous covariable.

Our simulations are based on the problem of analyzing risk factors in genetic epidemiol-
ogy. Thus, the generated input variables can be interpreted as SNPs that count the number 
of minor alleles at a specific locus, i.e., the number of occurrences of a less frequent base-
pair substitution at a specific location in the DNA. Due to humans being diploid organ-
isms, i.e., carrying two complete sets of chromosomes, SNPs can take the values 0, 1, or 
2. Similar to, e.g., logic regression, for the application of logicDT to SNP data, each SNP 
is divided into the binary input variables SNPD = 1(SNP ≠ 0) and SNPR = 1(SNP = 2) , 
coding for a dominant and a recessive effect, respectively, such that no information is lost. 
Conventional decision trees also implicitly divide SNPs into dominant and recessive effects 
by considering SNPs as numerical variables such that a split can occur on ({0}, {1, 2}) or 
on ({0, 1}, {2}) . Combined with the greedy search of decision trees over all possible splits, 
this is equivalent to directly considering the binary variables SNPD and SNPR (Lau et al., 
2022).

The genotypes of the SNPs are generated independently, resembling sets of SNPs 
from which, as often done in practice, highly correlated SNPs have been removed using 
linkage-disequilibrium-based pruning (see, e.g., Purcell et al., 2007). The distributions of 
the SNPs are defined via the MAF (minor allele frequency), i.e., the proportion of minor 
allele occurrences, yielding the binomial distribution Bin(2,MAF) for each SNP. For all 
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simulated SNPs, we consider a MAF of 0.25. For each data set, 50 SNPs are generated so 
that X = (SNP1,… , SNP50) . However, in the considered scenarios described below, only a 
small fraction influences the outcome such that most input variables act as noise regarding 
the outcome.

For the analysis of the influence of a continuous covariable, an environmental varia-
ble (e.g., an air pollution indicator) is generated following a truncated normal distribution 
(truncated at zero, since values below zero often do not occur in practice). In particular, the 
environmental term E is generated by considering a N(20, 100)-distributed random vari-
able E′ and setting values below zero to zero so that E = max(0,E�) . The truncated values 
might, e.g., be interpreted as measurements below a detection limit.

Since DL8.5 can only incorporate binary input variables, E is dichotomized into a 
binary variable by considering Ebin = 1(E > 20) for fitting and evaluating DL8.5 models, 
where the cutoff 20 is chosen due to 𝔼[E] = ℙ(E� > 0)𝔼[E� ∣ E� > 0] ≈ 20.

For the first simulation scenario considering a binary outcome without any continuous 
covariables, the outcome is generated following the model

Therefore, SNP1 exhibits a moderate marginal effect and SNP2 and SNP3 interact with 
each other. The linear predictor on the right-hand side is squared which means that, on 
the scale of the total linear predictor, the term 1(SNP1 > 0) interacts with the term 
1(SNP2 > 0 ∧ SNP3 = 0) . Thus, this resembles a situation in which it might be useful to 
be able to model interactions between interactions, since the underlying scale of the linear 
predictor is unknown prior to the analyses, which is usually the case in practice. The inter-
cept of −0.4 ensures that the resulting data sets are approximately balanced, i.e., that the 
fraction of cases is approximately equal to 50%.

In the second scenario, a gene-environment interaction is introduced such that the out-
come in this case is modeled by

Thus, the environmental variable only influences the outcome, if the term 
1(SNP2 > 0 ∧ SNP3 = 0) holds true. This kind of gene-environment interaction might be 
reasonable for substances that are usually harmless, but might cause, e.g., allergic reactions 
in individuals with a certain genetic makeup.

Analogously to the first scenario, the third scenario consists of data sets in which the 
outcome is modeled by

Here and in the following scenario, random noise generated from N(0, 1) is added to the 
linear predictor.

As in the second scenario, the fourth scenario follows the underlying model

logit(ℙ(Y = 1 ∣ X)) = −0.4 +
�√

log(1.5) ⋅ 1(SNP1 > 0)

+
√
log(2) ⋅ 1(SNP2 > 0 ∧ SNP3 = 0)

�2

.

logit(ℙ(Y = 1 ∣ X,E)) = − 0.45 + log(2) ⋅ 1(SNP1 > 0)

+ log(3) ⋅
E

20
⋅ 1(SNP2 > 0 ∧ SNP3 = 0).

�[Y ∣ X] = −0.4 +
�√

log(1.5) ⋅ 1(SNP1 > 0)

+
√
log(2) ⋅ 1(SNP2 > 0 ∧ SNP3 = 0)

�2

.
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For each simulation scenario, 100 independent data sets are generated. For each data set, 
it is assumed that this is the only data set available. Thus, for each replication, the data set 
is randomly divided into a training, a validation, and a test data set. Thus, for the evalu-
ation of logicDT and comparable methods, we perform 100 independent evaluations. In 
many practical applications such as in the construction of genetic risk scores, there is 
only data for a relatively small number of observations available. Hence, in our simula-
tions, the randomly generated data sets consist of 1000 observations each. From each of 
these data sets, 0.7 ⋅ 1000 = 700 randomly chosen observations are used as the interme-
diary data set for training and validating the model and the remaining 300 observations 
yield the test data set for the final evaluation. The intermediary data set is further randomly 
divided into 0.25 ⋅ 700 = 175 observations for choosing the best set of hyperparameters 
and 0.75 ⋅ 700 = 525 observations for training in the hyperparameter optimization. After 
the optimal hyperparameter setting has been identified, the final models are trained on the 
intermediary data set consisting of 700 observations.

The predictive performance of logicDT and the comparable methods is assessed using 
the AUC for binary outcomes and using the complement of the NRMSE (normalized root 
mean squared error) for continuous outcomes on test data predictions.

5.1.2  Hyperparameter optimization

As described in Sect. 3.6, the model complexity parameters ���_���� (maximum number 
of total variables) and ���_���� (maximum number of conjunctions) of logicDT should 
be tuned. In this application, we prohibit removing complete conjunctions to ensure that 
the models consist of exactly ���_���� conjunctions. Furthermore, the minimum num-
ber �������� of observations belonging to a leaf and the minimum number �������� of 
observations belonging to a conjunction and its negation are tuned using the same value, 
respectively. This ensures that the trees are grown to the ideal depth and prevents that mod-
els using uninformative conjunctions are evaluated.

For bagged logicDT models, ���_���� and ���_���� are tuned using the same param-
eter setting and allowing the removal of complete conjunctions in contrast to fitting single 
logicDT models.

In Table 1, the considered hyperparameter settings for logicDT, bagged logicDT, and 
the comparable tree-based statistical learning methods are summarized. For logicDT, the 
hyperparameter settings proposed in Sect. 3.6 are considered. For the regarded comparable 
methods, common hyperparameter choices are considered and the best performing one is 
chosen. For all methods except for gradient boosting and RuleFit, a grid search among all 
proposed settings is performed, due to relatively few plausible settings. For gradient boost-
ing and RuleFit, a sequential Bayesian hyperparameter search is carried out (Bergstra et al., 
2011; Wilson, 2021), since a finetuning of the learning rate parameter (for a fixed number 
of boosting iterations) is required. Additionally, the subsample fraction and the minimum 
node size, which can also be considered as continuous hyperparameters, have to be con-
figured jointly in gradient boosting and RuleFit. For this sequential search, 100 different 
settings are evaluated.

�[Y ∣ X,E] = − 0.75 + log(2) ⋅ 1(SNP1 > 0)

+ log(4) ⋅
E

20
⋅ 1(SNP2 > 0 ∧ SNP3 = 0).
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For logicDT, Fig.  5 shows the validation data performances for the considered set-
tings of ���_���� and ���_���� combined with the respective best setting for ��������
/�������� . For each scenario, the highest performance is yielded by ���_���� = 3 and 
���_���� = 2 corresponding to the true underlying simulation models. Generally, the fol-
lowing pattern can be observed. For many ���_���� settings, the maximizing setting is 
given by ���_���� = ���_���� + 1 , which is due to the fact that in this case, additionally 
to single variables as terms, a conjunction of two variables is contained in the model.

For most considered hyperparameter settings, the validation performance does not seem 
to vary too severely between similar settings, which indicates that a slight hyperparameter 
misspecification might not substantially impair the predictive performance of the resulting 
logicDT model.

Fig. 5  Predictive performances of different hyperparameter settings for the parameters ���_���� (maxi-
mum number of variables) and ���_���� (maximum or exact number of terms) in logicDT in the sim-
ulation study considering four different scenarios. The performance for binary outcomes is measured by 
the AUC and the performance for continuous outcomes is measured by the complement of the NRMSE 
(normalized root mean squared error). Results on validation data sets for the best respective setting of the 
parameter ��������/�������� in the set {1%, 5%, 10%} . The evaluated hyperparameter settings are listed 
in Table 1. Justifications for evaluating these settings are given in Sect. 3.6
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5.1.3  Predictive performance

Figure 6 depicts the performances of logicDT, the comparable methods, and the true under-
lying model in the simulation study, where the performance of the true model was assessed 
by performing predictions using the true regression functions presented in Sect. 5.1.1.

In the first simulation scenario considering a binary outcome without an environmental 
covariable, most notably, standard logicDT and bagged logicDT lead to the best perfor-
mances, i.e., the largest AUC values, which almost coincide with the performance of the 
true model. Among the comparable methods, logic bagging seems to be the best method.

For the second scenario in which also a gene-environment interaction is considered, 
logicDT, bagged logicDT, gradient boosting, logic regression, and logic bagging induce 
similar results superior to the remaining methods. Here, logicDT and logic regression seem 
to produce slightly better results than the other procedures.

Fig. 6  Predictive performances of logicDT and the comparable methods in the simulation study consider-
ing four different scenarios. The performance for binary outcomes is measured by the AUC and the per-
formance for continuous outcomes is measured by the complement of the NRMSE (normalized root mean 
squared error)
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For the third and fourth simulation scenarios considering a continuous outcome without 
or with an environmental covariable, logicDT and bagged logicDT yield the highest pre-
dictive performances close to the true underlying models. When considering no environ-
mental covariable, logic bagging seems to be the best method among the comparable meth-
ods. MOB yields the highest performance among the comparable methods when including 
an environmental covariable.

5.1.4  Variable importance

Using the VIMs and adjustment approaches for interactions and conjunctions proposed 
in Sect. 4, we computed variable importances in the four different simulation scenarios. 
We fitted bagged logicDT models on the 100 complete sub data sets for each scenario. 
The VIMs themselves were computed using out-of-bag data. For properly summarizing 
the 100 repetitions, means of the 100 repetitions were computed. A term not occur-
ring in one repetition received a VIM of zero. Additionally, asymptotic 95% confidence 
intervals for these means � were calculated by �̂� ± 1.96 ⋅ �se , where ŝe is the estimated 
standard error. For binary outcomes, the AUC was used for determining VIMs, while 
for continuous outcomes, the MSE was employed.

Figure 7 depicts the determined VIMs. For all four scenarios and all three considered 
measures, the true influential input variables SNP1D, SNP2D, SNP3D receive the high-
est importance values. Theoretically non-influential terms comprised of variables not 
influencing the outcome were assigned importance values close to zero in all cases. In 
the first simulation scenario, the logic VIM and the removal VIM both assign the tri-
plet SNP1D ∧ SNP2D ∧ SNP3Dc the highest importance among all interactions. The 
permutation VIM favors the sub-conjunction SNP2D ∧ SNP3Dc of this triplet. Both 
interpretations are correct regarding the true model in their own sense, since the term 
SNP2D ∧ SNP3Dc interacts with SNP1D due to squaring the linear predictor.

In the remaining three scenarios, all VIMs assign the term SNP2D ∧ SNP3Dc 
the highest importance among all interactions. However, in the third scenario con-
sidering, as in the first scenario, the square of the linear predictor, the conjunction 
SNP1D ∧ SNP2D ∧ SNP3Dc and additionally sub-conjunctions receive importance 
values greater than zero. In the last scenario considering a continuous outcome and an 
influential environmental covariable, the interaction SNP2D ∧ SNP3Dc received the 
highest importance overall for all three importance measures.

In the first three scenarios, the three single input variables yield the highest impor-
tances. This is due to the fact that the VIM of single input variables coincides with the 
standard definition of VIMs, i.e., the difference in error when informatively removing a 
single input variable. Thus, the VIM of a single input variables captures all of its effects, 
including effects of interaction in which this input variable participates. In the fourth 
scenario, the two-way interaction SNP2D ∧ SNP3Dc seems to be identified in almost 
every logicDT application so that the single input variables SNP2D and SNP3D receive 
lower importances due to being identified less often. Hence, the importances should be 
compared in groups corresponding to the interaction order, i.e., marginal importances 
should be compared to each other, two-way interactions should be compared to each 
other, and so forth.

In summary, all measures yield very similar and plausible results. The determination 
of the logic VIM is considerably faster than the determination of the removal VIM and 
the permutation VIM, since the model does not have to be refitted and predictions do 
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Fig. 7  Logic, removal, and permutation VIMs yielded by bagged logicDT models for the four scenarios in 
the simulation study. Adjustment for interactions and conjunctions was performed. Means and asymptotic 
95% confidence intervals for the 100 repetitions are presented. Negations of input variables are denoted 
using a minus sign in the front
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not have to be performed for a high number of permutations for computing the logic 
VIM. Instead, for a term consisting of k variables, only 2k predictions have to performed 
and compared to the original prediction.

5.1.5  Second simulation setup

To investigate if logicDT is also suitable in scenarios in which a larger amount of input 
variables is considered and more input variables influence the outcome, we evaluate 
logicDT and the comparable methods in additional simulations. Two scenarios are 
investigated, one considering a binary outcome and one considering a continuous out-
come, that are both simulated according to the linear model

where g is the logit function for the binary outcome and the identity function for the contin-
uous outcome. This model was chosen, since it exhibits a more complex structure, as nine 
SNPs influence the outcome as main effects, two-way interactions, three-way interactions, 
or gene-environment interactions. In total, 1000 SNPs (i.e., 2000 binary input variables 
coding for dominant and recessive modes of inheritance for these SNPs) and one continu-
ous covariable were simulated for data sets with sample size n = 1000 . The input variables 
are simulated analogously to the ones in Sect. 5.1.1. Both scenarios are, again, evaluated 
based on 100 independent replications, i.e., 100 random data sets, which are analogously to 
Sect. 5.1.1 divided into training, validation, and test data sets.

5.1.6  Predictive performance

In Fig.  8, the predictive performance of logicDT and the comparable methods in the 
application to the two additional simulation scenarios are depicted. Both scenarios seem 
to be relatively complex, since the discrepancy between the predictive performance of 
the true model and the fitted models is larger than, e.g., in the previously conducted 
simulations.

For the binary outcome, the best performance is induced by gradient boosting, 
closely followed by logicDT, bagged logicDT, random forests, logic regression, and 
logic bagging. Out of these methods, logicDT and logic regression are the only methods 
that yield interpretable models. Conventional decision trees, DL8.5, MOB, and RuleFit 
lead to lower AUCs.

For the continuous outcome, the best results are induced by logicDT, bagged log-
icDT, gradient boosting, logic regression, logic bagging, and RuleFit. The other inter-
pretability-focused methods, namely conventional decision trees and MOB, yield lower 
predictive performances.

(12)

g(�[Y ∣ X,E]) = − 0.25 + log(2) ⋅ 1(SNP1 > 0) + log(2.5) ⋅
E

20
⋅ 1(SNP2 > 0)

− log(1.5) ⋅ 1(SNP3 = 2) − log(1.5) ⋅ 1(SNP4 = 0)

+ log(3) ⋅
E

20
⋅ 1(SNP5 > 0) ⋅ 1(SNP6 = 2)

− log(3) ⋅ 1(SNP7 > 0) ⋅ 1(SNP8 = 0) ⋅ 1(SNP9 < 2),
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Hence, logicDT seems to be also applicable and yielding comparatively high predic-
tive performances, when considering scenarios with larger numbers of input variables 
(here, 2000 binary input variables) and influential input variables.

5.1.7  Variable importance

In Fig. 9, the estimated variable importances by bagged logicDT in the application to 
the two additional simulation scenarios are displayed. Since a relatively complex sce-
nario is considered, not every influential term is identified. Nonetheless, for the binary 
outcome and each considered VIM type, each term with a strongly positive variable 
importance is truly influential in the underlying data-generating model (12). Moreover, 
for both the binary and the continuous outcome and all VIM types, the two-way interac-
tion SNP8Dc ∧ SNP7D is correctly identified.

For the continuous outcome and the permutation VIM, the five top-ranking impor-
tances correspond to truly influential terms. However, the terms showing the next 
highest importances corresponding to theoretically non-influential terms such as 
(SNP8Dc ∧ SNP7D)c ∧ SNP2D indicate that these terms are influential as well due to their 
importance confidence intervals fully being above zero. This issue of falsely identified 
terms seems to be alleviated when employing the logic VIM or the removal VIM due to 
less non-influential terms that yield VIM confidence intervals fully above zero when using 
these VIMs. This, thus, indicates that the logic VIM and the removal VIM in conjunction 
with the adjustment for interactions can also be employed in more complex scenarios with 
a larger number of input variables.

Fig. 8  Predictive performances of logicDT and the comparable methods in the simulation study consider-
ing two more complex scenarios. The performance for the binary outcome is measured by the AUC and the 
performance for the continuous outcome is measured by the complement of the NRMSE (normalized root 
mean squared error)



968 Machine Learning (2024) 113:933–992

1 3

5.2  Real data application

We have also applied logicDT and the comparable statistical learning methods to sev-
eral real data sets, from which the data set of the SALIA study is of particular inter-
est. Therefore, we consider, first, in the following subsections this study and the per-
formance of logicDT and the comparable methods in their application to the data from 
the SALIA study. Afterwards, we summarize the results of the analyses of the other 
data sets in Sect. 5.2.4. A more detailed discussion of these evaluations can be found in 
Appendix 4.

5.2.1  SALIA study

logicDT was applied to a real data set from a German cohort study called the SALIA 
study (Study on the Influence of Air Pollution on Lung, Inflammation and Aging, 
Schikowski et  al., 2005). The results of logicDT were compared to the results of the 
methods also considered in the comparisons in Sect. 5.1. The data set consists of data 
from 517 women, from which 123 had a rheumatic disease so that 394 women did not 
show a rheumatic disease. For these women, data from 77 SNPs from the HLA-DRB1 
gene, which presumably plays a major role in the heritability of rheumatoid arthritis 
(Clarke & Vyse, 2009), are available. For more details about the SALIA study itself and 

Fig. 9  Logic, removal, and permutation VIMs yielded by bagged logicDT models for the two more com-
plex scenarios in the simulation study. Adjustment for interactions and conjunctions was performed. Means 
and asymptotic 95% confidence intervals for the 100 repetitions are presented. Negations of input variables 
are denoted using a minus sign in the front
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an analysis of rheumatic diseases in the SALIA study, see Krämer et al. (2010) and Lau 
et al. (2022), respectively.

The analysis was performed using a similar scheme as in the simulation study. For 
100 independent repetitions, training, validation and test data sets were randomly drawn 
from the total data set. Hyperparameter optimization was performed using, again, the 
parameter values summarized in Table 1.

5.2.2  Predictive performance

In Fig. 10, the performances of logicDT and the comparable methods in their application to 
the SNP data from the SALIA study are shown. This figure reveals that all evaluated statisti-
cal learning procedures induce similarly high AUCs, except for conventional decision trees, 
DL8.5, and RuleFit, which show inferior predictive performances. RuleFit seems to have 
issues to detect a signal in the data set at all, despite optimizing its hyperparameters.

We would like to point out that logicDT is the only other procedure than conventional 
decision trees, DL8.5, logic regression, and RuleFit that yields easily interpretable predic-
tion models. In contrast to these models, logicDT still leads to comparatively high predic-
tive performances. Single logic regression models yield similar AUCs as logicDT. How-
ever, due to logic regression models including complex terms consisting of mixtures of 
Boolean conjunctions and disjunctions, logic regression models tend to be harder to inter-
pret than logicDT models.

Figure  11 shows the fitted logicDT model on the complete SALIA data. This tree is 
still relatively easy to interpret, i.e., it is easy to understand how predictions are made and 
which interactions are involved in the prediction. In comparison, the fitted logic regression 
model on the complete SALIA is given by

Fig. 10  Predictive performances of logicDT and the comparable methods in the evaluation of the SALIA 
data
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For this model, it is not trivial which interactions are involved in the prediction and how 
predictions for ℙ(Y = 1 ∣ X) are constructed.

5.2.3  Variable importance

Figure 12 illustrates the measured variable importances in the application to the SALIA data 
for the three proposed VIM approaches using bagged logicDT models. In the top row, the 
importances for the top 5 single input variables are depicted. In the second and third row, the 
importances for the top 5 two-way and three-way interactions are shown, respectively.

For verifying whether the terms identified by logicDT really have an influence on the out-
come of interest, i.e., the rheumatic disease status, we considered for each identified term X in 
Fig. 12 a logistic regression model

and performed statistical hypothesis tests testing whether the respective term has an influ-
ence on the outcome, i.e., testing H0 ∶ �1 = 0 vs. H1 ∶ �1 ≠ 0 using a Wald test. For each 

logit(ℙ(Y = 1 ∣ X)) = − 1.14

− 19.63 ⋅ 1((rs113608847D ∧ (rs113505515Dc ∨ rs9270143R))

∧ (rs1060176D ∨ (rs28724138Rc ∧ rs17884945Rc)))

− 2.91 ⋅ 1((rs34578704Dc ∧ rs34084957D)

∨ ((rs41288045R ∨ rs9269814Dc) ∨ rs72844253R))

+ 1.41 ⋅ 1((rs113322920D ∨ rs36101847R) ∧ rs17879702Dc).

(13)logit(ℙ(Y = 1 ∣ X = x)) = �0 + �1x

Fig. 11  Fitted logicDT model on the complete SALIA data
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set of five identified terms, we evaluated how many terms lead to significant coefficients 
in the model from Eq. (13) using a significance level of � = 5% and adjusting for multiple 
testing using the method by Benjamini and Hochberg (1995).

Table 2 shows the results for this post-hoc analysis. None of the identified single input 
variables proves to be significant. However, for the logic VIM, four of the five identified 
two-way interactions and all five three-way interactions seem to have a significant influ-
ence on the outcome. For the more computationally intensive removal and permutation 
VIMs, the results seem to be inferior, since only two of the five two-way interactions are 
significant, and three or four of the five three-way interactions, respectively, are significant.

Note that the VIMs of the single input variables depicted in Fig. 12 are considerably 
higher than the VIMs of the interaction terms, yet the single input variables were not sig-
nificant. As discussed in the simulation study in Sect. 5.1.4, this is due to the fact that the 
VIMs for single input variables also capture the importance of interactions that contain the 
input variable of interest. Thus, if a single input variable is part of many interactions, this 

Fig. 12  Logic, removal, and permutation VIMs yielded by bagged logicDT models in the evaluation of the 
SALIA data—divided into VIMs of single input variables, two-way interactions and three-way interactions. 
Adjustment for interactions and conjunctions was performed. Means and asymptotic 95% confidence inter-
vals for the 100 repetitions are presented. Negations of input variables are denoted using a minus sign in the 
front

Table 2  Numbers of identified terms from Fig. 12 that were significant with respect to � = 5% using a false 
discovery rate adjustment

Significant terms/5 Logic VIM Removal VIM Permutation VIM

Single Input Variables 0 0 0
Two-Way Interactions 4 2 2
Three-Way Interactions 5 3 4
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inflates its importance value without leading to a significant main effect of the variable. For 
example, the most influential input variable across all three VIM calculation approaches, 
rs1060176D, is in every considered situation part of one identified interaction term.

5.2.4  Additional real data evaluations

logicDT and the comparable methods are also evaluated in additional experiments using 
24 real data sets from various application fields. The main result is that logicDT induces 
high predictive performances among single-model procedures in the application to these 
additional real data sets. Among the ensemble methods, bagged logicDT also induces 
for most data sets relatively high predictive performances. More details on the analyses 
of the additional real data sets can be found in Appendix 4.

6  Discussion

In this article, we have presented a statistical learning procedure called logicDT that 
is specifically tailored to finding interactions between binary input variables and that 
can also take continuous covariables into account by fitting regression models in the 
decision tree branches. In contrast to, e.g., logic regression, all possible interactions of 
the binary input data with this continuous covariable can be included in the prediction 
model as well as interactions between interactions of the binary input data. logicDT is 
aimed at maximizing both predictive power and interpretability motivated by applica-
tions in genetic epidemiology.

As a simulation study as well as real data applications show, logicDT is able to ful-
fill these objectives and yields comparable or better predictive performances as simi-
lar methods, while maintaining interpretability, which is lost when applying most other 
approaches. Moreover, through simulated annealing and theory on decision trees, theo-
retical success of logicDT, i.e., that the true underlying regression function is asymp-
totically attained, could be proven.

For maximizing the predictive performance regardless of being able to interpret how 
exactly predictions are made, bagging can be applied to logicDT, yielding performances 
as state-of-the-art algorithms such as random forests or gradient boosting.

Through different VIMs and VIM adjustment approaches for measuring the impor-
tances of interactions and specific conjunctions, highly predictive bagged logicDT mod-
els are still very useful for deriving which variables influence the outcome in interaction 
with which other variables. In comparison to standard VIM approaches, the proposed 
interaction VIM is able to capture influences of interactions and is not restricted to 
single input variables. Note that the proposed VIM adjustment approaches can also be 
applied to other statistical learning procedures, e.g., black-box methods such as deep 
neural networks or random forests, since no restricting assumptions on the model fitting 
procedure itself are made in these approaches.

Fitting logicDT models is computationally intensive due to the global search via sim-
ulated annealing, and takes, in particular, more time than fitting conventional decision 
trees that employ a greedy algorithm. However, as could be seen in the simulation study 
and the real data applications, logicDT consistently outperformed conventional decision 
trees considering the predictive performance. Moreover, logicDT still does not seem to 
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be slower than other interpretability-focused methods such as logic regression or Rule-
Fit. A model fitting time evaluation of logicDT and other procedures in the simulation 
study and real data application can be found in Appendix 5.

logicDT was designed for interpretable modeling in low- to mid-dimensional problems, 
e.g., considering single genes, pathways, or selections of SNPs that were significantly 
influencing the outcome in prior analyses. However, in theory, logicDT can be applied 
to problems with an arbitrarily large number p of input variables. Nonetheless, as shown 
in Sect. 3.8, the computational complexity of logicDT is polynomial in p under certain 
assumptions. Moreover, in practice, only finitely many computational resources are avail-
able. In simulations considering 1000 SNPs (i.e., p = 2000 input variables due to splitting 
each SNP into two binary variables) and a more complex underlying model, logicDT still 
induced relatively high predictive performances (see Sect. 5.1.5). Hence, we recommend 
applying logicDT in  situations with p ≤ 2000 . For comparison, in the software imple-
mentation of logic regression, where also a stochastic search algorithm is employed, the 
authors allow a maximum of p = 1000 input variables (Kooperberg & Ruczinski, 2022).

The main issue of conventional decision trees is its instability issue, i.e., that small 
modifications of the training data set imply unproportionally severe alterations of the fit-
ted model. This behavior is mainly induced by the greedy fitting algorithm (Li & Belford, 
2002; Murthy & Salzberg, 1995). logicDT aims at identifying the globally optimal set of 
predictors and interactions responsible for the variation in the outcome. Thus, only impor-
tant predictors are used for fitting the decision tree and interactions are already covered by 
single splits. Therefore, the instability issue should be diminished by logicDT.

The search procedure in logicDT utilizes the training data both for fitting decision trees 
and scoring them for guiding the search, which might suggest that this might lead to over-
fitting. However, both training trees based on states and evaluating states are part of the 
logicDT fitting procedure and the balance of overfitting and underfitting is controlled by 
the hyperparameters tuned using independent validation data (see Sect.  3.6). Moreover, 
established statistical modeling approaches such as stepwise linear regression or logic 
regression also employ the full training data set for both fitting the models and guiding 
the search. Nonetheless, one idea might be to further split the available training data into 
training data for fitting the decision tree based on the considered state and inner validation 
data for scoring the state’s performance. However, due to the need for further splitting the 
available data, less observations are available for both the tree fitting step and the scoring 
step, leading to a decreased performance (on independent test data) compared to the origi-
nal algorithm in empirical experiments (see Appendix 6). Moreover, the resulting model 
should not heavily rely on the data split used for this inner validation. Hence, ideally, mul-
tiple data splits—fitting and scoring multiple trees for one state and averaging the results as 
in (inner) cross-validation—should be used, leading to an increased computational burden.

Bagged logicDT was designed for situations in which a larger number of input vari-
ables influences the outcome or variable/interaction term importances shall be measured. 
In the simulation study conducted in Sect.  5.1.1, bagged logicDT performed similarly 
well compared to logicDT due to single logic decision trees being able to fully capture 
the considered underlying models. In additional simulations considering scenarios with 
larger numbers of influential input variables (see Sect. 5.1.5) and real data evaluations (see 
Appendix 4), bagged logicDT was able to achieve higher predictive performances in com-
parison to logicDT. Nevertheless, in these additional analyses, logicDT induced strong per-
formances compared to other single-model methods.

For bagged logicDT, one idea to further increase its performance might be to further ran-
domize the search similar to random forests. This could be realized by selecting a random 
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sample of the neighbor states to be evaluated in each iteration of the greedy search, which is 
similar to randomly sampling potential splitting variables in random forests. However, this 
would create another hyperparameter—the number of randomly drawn candidate neighbor 
states—that potentially should be tuned and could depend on the total number of neighbor 
states that can change for each considered state.

logicDT is motivated by applications in genetic epidemiology in which mainly binary input 
data is analyzed. Although not considered in this article, it is possible to generalize logicDT to 
numerical input data by considering numerical interactions 

∏
j Xj instead of Boolean conjunc-

tions 
⋀

j Xj , where in the case of binary input data, these two definitions coincide.
The development of logicDT was, more precisely, motivated by the problem of construct-

ing genetic risk scores that are usually built based on linkage-disequilibrium-based pruned 
SNPs, i.e., SNPs that can be interpreted as independent variables (So & Sham, 2017; Dud-
bridge & Newcombe, 2015). Therefore, throughout this manuscript, the assumption was made 
that there are no strong correlations between the considered input variables. In future research, 
logicDT and the interaction VIM could be analyzed and potentially adjusted for settings in 
which strong correlations between input variables exist so that, ideally, input variables (highly) 
correlated with truly predictive input variables do not diminish the importance of these truly 
predictive input variables.

If, additionally, a quantitative variable such as a quantitative environmental variable is con-
sidered, logicDT uses this covariable to fit regression models in the leaves of the decision tree. 
Since logicDT splits, in the context of genetic epidemiology, on genetic variants, a gene-envi-
ronment is present if and only if the leaf regression models differ more than by fixed offsets 
describing marginal effects of the genetic variants. Thus, in future research, logicDT could be 
expanded for statistically testing the presence of a gene-environment interaction in the consid-
ered subregion of the DNA.

Moreover, the proposed interaction importance measuring methodology could also be 
expanded for statistically testing if certain single input variables or interaction terms signifi-
cantly influence the outcome. This can, e.g., be used in the context of genetic epidemiology, 
testing the presence of gene-gene interactions. For implementing this testing procedure, the 
variable importance testing framework proposed by Watson and Wright (2021) might be 
applied to the importance measures proposed in this manuscript.

7  Conclusion

logicDT yields highly interpretable decision trees with superior predictive performances com-
pared to other single-model procedures such as standard decision trees by being able to detect 
interaction effects between binary predictors on split level. Fitting ensembles of logicDT mod-
els through bagging can further increase the predictive performance if many predictors have 
effects on the outcome. The novel VIM adjustment procedure can be applied to these logicDT 
ensembles to derive which input variables influence the outcome in which interplay and mag-
nitude—also measuring the importance of interaction effects between input variables.

Appendix 1: Simulated‑annealing‑based search procedure

The main methodology of logicDT, for which consistency is proven, employs simulated 
annealing as its search algorithm. In applications of logicDT, we suggest using an adap-
tive cooling schedule that requires no temperature tuning at all, which is in contrast to 
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a geometric cooling schedule that is, e.g., used in logic regression. An adaptive cooling 
schedule automatically tunes the cooling behavior of simulated annealing, i.e., the start 
temperature, the temperature lowering steps or the Markov chain lengths, and the end 
temperature. Using an adaptive cooling schedule simplifies the application of simulated 
annealing, since these parameters do not have to be fine-tuned manually.

The start temperature is generally chosen such that at the beginning of the algorithm 
essentially a random walk is performed. For finding an appropriate initial temperature, 
a brief random walk over the state space (e.g., visiting 10,000 states) is carried out in 
logicDT and the state scores are recorded. Since the acceptance function

in simulated annealing is chosen so that better or equal states are automatically accepted, 
the temperature only influences the acceptance behavior of proposed worse states. Thus, 
only moves leading to worse states are used to estimate a temperature at which, e.g., 90% 
of the worse states are accepted.

We employ the homogeneous version of simulated annealing that runs through many 
consecutive homogeneous Markov chains. In practice, we limit the number of iterations 
per chain to, e.g., 1000 and adaptively choose the next temperature in a way that equi-
librium of the next chain can be easily reattained. More precisely, we employ the tem-
perature lowering scheme proposed by Huang et al. (1986) that is given by

where t is the current temperature, t′ is the new temperature of the next Markov chain, 
and �(t) is the standard deviation of the scores observed in the finished Markov chain (see 
also, e.g., Van Laarhoven & Aarts, 1987). Here, � ∈ (0, 1] is a parameter controlling the 
speed of the total algorithm, which means that a higher value of � leads to larger decreases 
in the temperature t, and hence, to less total iterations. Consequently, a value closer to 0 
leads to a finer search, requiring more iterations. Generally, more iterations are preferable 
for approximating the theoretical asymptotic search. However, in practice, we recommend 
using a value of � ∈ [0.01, 0.1] for performing at least a few hundred thousand iterations.

For stopping the stochastic search, we evaluate the fraction of accepted states yield-
ing a different score than the previous one, i.e., ignoring two neighbor states that yield 
the exact same score. If, e.g., for five consecutive chains the fraction of this adjusted 
state acceptance ratio is below 1%, the search is terminated. Alternatives include using 
the total number of chains instead of restricting to consecutive ones or using, similar 
to Triki et  al. (2005), the standard deviation of the scores in a chain. For very small 
temperatures, simulated annealing should only move to better or equal states in terms of 
the score function. Thus, if an ideal state is reached, the score should no longer change, 
leading to a standard deviation of the score of 0.

Similar to the cooling schedule proposed by Triki et  al. (2005), in the beginning 
of the search, the lowering of the temperature will also be triggered, if a threshold of 
accepted states in a single Markov chain is reached. This threshold might, e.g., be set to 
50% of the total Markov chain length and prevents the search from focusing too long on 
the initial near random walk type of search, but instead focusing on the middle part of 
simulated annealing.

�(�(s), �(s�), t) = min

{
1, exp

(
�(s) − �(s�)

t

)}

t� = t ⋅ exp

(
−�

t

�(t)

)
,
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The theory of simulated annealing is based on two convergences, namely

• the convergence of the individual Markov chains, i.e., reaching equilibrium or the 
respective stationary distribution,

• the convergence of the temperature to 0, i.e., approaching an infinitesimal low tempera-
ture.

In practice, since limited computing resources are available, there is no guarantee that sim-
ulated annealing finishes in a global minimum. Thus, it might be possible that a globally 
optimal state is visited in the initial exploration of the state space, but due to relatively few 
iterations another local optimum is reached afterwards and is not abandoned anymore. We, 
therefore, let the algorithm also remember the best visited state so far in the search.

Due to noninformative terms or noninformative predictors in a conjunction, it might 
be possible that two neighbor states yield the exact same score. In this case, generally the 
simpler model is preferred. Thus, when the search is finished, each term is inspected for 
variables and conjunctions that do not improve the score and these variables or conjunc-
tions are removed from the model. Furthermore, if a new neighbor is proposed that leads 
to exactly the same score as the current state, this new neighbor is accepted in simulated 
annealing, regardless of the current temperature.

Visiting a single state multiple times can also occur due to the random nature of simu-
lated annealing itself. To account for this behavior in the searching procedure, a hash table 
containing sorted linked lists of the specific states and their respective scores is used for 
remembering already visited states. Thus, if a state is reached multiple times, the predictor 
transformation and the decision tree fitting do not have to be repeated.

Appendix 2: Consistency proof

In this appendix, we prove Theorem 1 that was stated in Sect. 3.7. For proving this theo-
rem, some preliminary results are necessary that are proven in the following lemmata. We 
start by proving that simulated annealing leads to an optimal solution in logicDT.

Lemma 1 The Markov chains constructed in logicDT fulfill the prerequisites of simulated 
annealing such that the stationary distributions �t = limq→∞ ℙ(Qt(q) = ⋅) exist and it holds 
that

for the set Rs of neighbor states of state s and the set Ropt of optimal states.

Proof For establishing convergence of the individual (finite and homogeneous) Markov 
chains to their stationary distributions, it is sufficient to prove their irreducibility and ape-
riodicity (e.g., Theorem 1 in Section 3.1.2, Van Laarhoven & Aarts, 1987).

The Markov chains Qt in simulated annealing are generally based on the transition 
probabilities

lim
t↘0

�t(s) =

⎧⎪⎨⎪⎩

�Rs�∑
s�∈Ropt

�Rs� �
, s ∈ Ropt

0, s ∉ Ropt
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for s ≠ s′ and all q ∈ ℕ , where �(�(s), �(s�), t) describes the acceptance probability depend-
ing on the scores �(⋅) of the states and �(s, s�) yields the generation probability of s′ given 
state s. In logicDT, the standard acceptance function

is used together with the uniform distribution for the generation probability

Since 𝛾(𝜖(s), 𝜖(s�), t) > 0 for every pair of states s, s′ and t > 0 and the choice of the moves, 
i.e., modifications of states, proposed in Sect. 3.2 ensure that each state can be reached from 
any other state in a finite number of steps, the Markov chains in logicDT are irreducible.

Aperiodicity is fulfilled, if for all states s the greatest common divisor (gcd) of

is equal to 1. This property would be directly fulfilled, if the chains would be reflexive, i.e., 
fulfilling 𝜏(s, s, t) > 0 for each state s. However, since it might be the case that a state has 
only neighbors exhibiting better scores, leading to �(�(s), �(s�), t) = 1 for each s� ∈ Rs , the 
probability of staying in state s can be equal to 0, as, for the probability of proposing the 
current state, it holds that �(s, s) = 0 by choice of � . Therefore, three different cases for 
states s have to be considered.

Case 1: s has a neighbor state s′ with 𝜖(s�) < 𝜖(s) . In this case, the probability �(s, s�, t) 
of changing to state s′ is positive. The probability �(s�, s, t) of returning to s is posi-
tive as well, which is due to 𝛾 > 0 . Furthermore, the probability �(s�, s�, t) of remaining 
in s′ is also positive, since, if s is generated by �(s�, ⋅) , s will be accepted with prob-
ability 𝛾(s�, s, t) < 1 because of 𝜖(s) − 𝜖(s�) > 0 and the choice of � in Eq. (14). Thus, 
𝜏2(s, s, t) > 0 and 𝜏3(s, s, t) > 0 hold true yielding the greatest common divisor of 
gcd(2, 3) = 1.
Case 2: s has at least one neighbor state s′ with 𝜖(s�) > 𝜖(s) , but no neighbor s′′ with 
𝜖(s��) < 𝜖(s) . In this case, it holds that �(�(s), �(s�), t) ∈ (0, 1) , and thus, 

Case 3: For all neighbor states s′ of s, it holds that �(s�) = �(s) . Here, we have 

 and therefore, 𝜏2(s, s, t) > 0 . Let s′′ be another state with �(s��) ≠ �(s) . Such a state 
has to exist, since otherwise each state would have the exact same score. The state 
s′′ can be chosen such that, due to the irreducibility, there exists a sequence of states 
(s, s1, s2,… , sn, s

��) , in which each succeeding state is a neighbor of its predecessor, with 

�
(
s, s�, t

)
∶= ℙ

(
Qt(q + 1) = s� ∣ Qt(q) = s

)
= �

(
�(s), �(s�), t

)
⋅ �

(
s, s�

)

(14)�(�(s), �(s�), t) = min

{
1, exp

(
�(s) − �(s�)

t

)}

(15)�(s, s�) =

{
1

|Rs| , s
� ∈ Rs

0, s� ∉ Rs.

{
n ∈ ℕ ∣ 𝜏n(s, s, t) ∶= ℙ(Qt(1 + n) = s ∣ Qt(1) = s) > 0

}

𝜏1(s, s, t) = 𝜏(s, s, t) > 0.

�(�(s), �(s�), t) = �(�(s�), �(s), t) = 1,
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 for any n ∈ ℕ . Thus, it follows �(sn) ≠ �(s��).
Case 3.1: 𝜖(sn) > 𝜖(s��). Due to 𝜖(s��) − 𝜖(sn) < 0 and Eq. (14), it follows 𝛾(s��, sn, t) < 1 , 
and hence, 𝜏(s��, s��, t) > 0 . Using the state sequence (s, s1,… , sn, s

��, s��, sn,… , s1, s) , 
it becomes obvious that �2n+3(s, s, t) is positive. Furthermore, it follows that 
gcd(2, 2n + 3) = 1 , as 2n + 3 is odd.
Case 3.2: 𝜖(sn) < 𝜖(s��). Analogously to Case 3.1, it follows that 𝜏(sn, sn, t) > 0 . Using 
the state sequence (s, s1,… , sn, sn,… , s1, s) , the probability �2n+1(s, s, t) has to be posi-
tive so that gcd(2, 2n + 1) = 1 , since 2n + 1 is odd.

Thus, aperiodicity is given so that the individual limiting distributions exist.
Applying Theorem 2 from Section 3.1.3 of Van Laarhoven and Aarts (1987) to the con-

structed Markov chains using the choices for � in Eq. (14) and � in Eq. (15) directly shows 
that the stationary distributions converge to a distribution that exactly has the set of optimal 
states as its support.   ◻

Now we have to show that the empirical risk minimization (ERM), which is per-
formed by simulated annealing, is asymptotically equivalent to a true risk minimization 
in logicDT.

Lemma 2 (ERM consistency of logicDT) Let the outcome Y be bounded. Then, logicDT is 
strongly consistent with respect to empirical risk minimization, i.e.,

where Remp(T) =
1

n

∑n

i=1
L(yi, T(xi)) is the empirical risk, Rtrue(T) = �(X,Y)[L(Y , T(X))] is 

the true risk, and L(y, ŷ) = (y − ŷ)2 is the squared error loss.

Proof By assumption, Y is bounded. Thus, as the predictions of decision trees are generated 
by means of observed values, the predictions are bounded by the same bound. Furthermore, 
the L2 loss is bounded likewise. Let this bound be given by B > 0 , i.e., L(y, ŷ) ∈ [0,B].

In order to prove distribution-independent ERM consistency, it is necessary 
and sufficient that the VC (Vapnik and Chervonenkis) dimension is finite (Vapnik, 
2000), where the VC dimension is defined as the maximum number m of data points 
z1,… , zm ∶= (x1, y1),… , (xm, ym) that can be shattered by a binary loss function 
L(y,T(x)) ∈ {0, 1} . For m ∈ ℕ , there thus exists a sample z1,… , zm such that for all pos-
sible 2m binary outcomes ∈ {0, 1}m there exists a prediction function T in the consid-
ered space that divides the sample according to the label setting using the loss function 
L(y,T(x)) . In the general regression setting, the VC dimension is defined as the VC dimen-
sion of the indicators 1(L(y,T(x)) ≥ �) , where � ∈ [0,B] is interpreted as part of the func-
tion space for the determination of the VC dimension so that for each outcome setting a 
function T and a value for � have to be found.

For deriving the VC dimension of logicDT, note that the prediction values for each pre-
dictor setting can be chosen independently, i.e., it is only necessary to consider for how 
many data points the data can be shattered along one single predictor setting. In the case 
of not fully grown trees with shared leaves for different possible predictor settings (for 
example, a tree stump only splitting on X1 ∈ {0, 1} such that T((X1, 0)) = T((X1, 1)) ), the 

�(s) = �(s1) = �(s2) = ⋯ = �(sn)

sup
T

|||Remp(T) − Rtrue(T)
|||

a.s.
�������������������→
n→∞

0,
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prediction values are not necessarily independent of each other. However, in this case, the 
number of shatterable data points decreases compared to the independent prediction case 
so that this case does not have to be considered with regard to the VC dimension. Thus, it 
is sufficient to consider one single predictor X ∈ {0, 1} , since the shattering behavior only 
has to be analyzed independently for each setting.

Figure  13 depicts the shatterability for two and three data points, respectively. Two 
observations on one axis, as depicted here for X = 0 , can be shattered by properly position-
ing the corresponding prediction value a = T(0) and choosing an adequate � so that

i.e., choosing a and � such that red crosses are "far away" from a and black crosses are 
"close" to a.

For three data points, there is only one problematic labeling: If three different observations 
are considered that lie on one axis, one data point has to be the middle point. This middle 
point cannot be classified as 1/red while classifying the outer points as 0/black. This is due 
to the fact that the middle point needs to be far away from the prediction b = T(1) to achieve 
this labeling, while the surrounding points need to be close to b, which is not possible.

Thus, for each prediction axis/tree branch, two is the maximum number of points that 
can be shattered. Since for p predictors there are 2p possible predictor settings and two data 
points can be shattered for each setting, the VC dimension VC of logicDT is equal to

1((y − a)2 ≥ 𝛽) =

{
Red ×, (y − a)2 ≥ 𝛽
Black ×, (y − a)2 < 𝛽,

VC = 2 ⋅ 2p = 2p+1.

Fig. 13  VC dimension illustration for logicDT models. Here, one binary predictor X ∈ {0, 1} is consid-
ered. For X = 0 , all 22 = 4 classifications for two data points are depicted. For X = 1 , all 23 = 8 classifica-
tions for three data points are shown. Black crosses indicate 1(L(y, T(x)) ≥ �) = 0 . Red crosses indicate 
1(L(y, T(x)) ≥ �) = 1 . a and b are the (fixed) predictions T(0) = a , T(1) = b such that the corresponding 
classification pattern can be achieved, i.e., there exists an appropriate � . f depicts the situation in which an 
appropriate prediction value, and thus, an appropriate tree cannot be constructed
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For bounded loss composition functions L◦T̃ ∶ X × Y → [0,B] with T̃(x, y) ∶= (y, T(x)) , 
where L is in here given by L(y, ŷ) = (y − ŷ)2 so that (L◦T̃)(x, y) = (y − T(x))2 , a uniform 
bound

involving the growth function G holds for all 𝜀 > 0 (see Equation (3.10), Vapnik, 2000). 
This growth function G is bounded by a function of the VC dimension. In particular, for 
n > VC , it holds that

(see Equation (3.23), Vapnik, 2000).
For proving almost sure convergence of (16), i.e., for proving

it suffices to show that the corresponding series converges (see, e.g., Corollary 1, Sec-
tion 1.11.1, Vapnik, 1998), i.e., that

Using (17), the right-hand side of (16) is bounded by

Using the ratio test for checking the convergence of series, the ratio of two consecutive 
summands is given by

Thus, for this ratio Rn+1
n

 , it follows that there exists a number ñ ∈ ℕ so that for all n > ñ 
it holds Rn+1

n
< 1 . Therefore, the series converges and almost sure convergence in (18) is 

established.   ◻

(16)ℙ

(
sup
T

|||Remp(T) − Rtrue(T)
||| > 𝜀

)
≤ 4 exp

{(
G(2n)

n
−

𝜀2

B2

)
n

}

(17)G(n) ≤ VC
(
log

(
n

VC

)
+ 1

)

(18)sup
T

|||Remp(T) − Rtrue(T)
|||

a.s.
�������������������→
n→∞

0,

∞∑
n=1

ℙ

(
sup
T

|||Remp(T) − Rtrue(T)
||| > 𝜀

)
< ∞.

4 exp

{(
G(2n)

n
−

�2

B2

)
n

}
≤ 4 exp

{
VC

(
log

(
2n

VC

)
+ 1

)
−

�2

B2
n

}
.

Rn+1
n

∶=
4 exp

{
VC

(
log

(
2(n+1)

VC

)
+ 1

)
−

𝜀2

B2
(n + 1)

}

4 exp
{
VC

(
log

(
2n

VC

)
+ 1

)
−

𝜀2

B2
n
}

=
exp

{
VC

(
log

(
2(n+1)

VC

))}

exp
{
VC

(
log

(
2n

VC

))} exp

{
−
𝜀2

B2

}

=

(
2(n+1)

VC

)VC

(
2n

VC

)VC
exp

{
−
𝜀2

B2

}
=

(
n + 1

n

)VC

���������
↘ 1 as n→∞

exp

{
−
𝜀2

B2

}

�������������
< 1 fixed

.
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Now it has to be shown that the true regression function can be fitted by logicDT so 
that the risk minimizing logicDT function asymptotically becomes the true regression 
function.

Lemma 3 (Each model is possible in logicDT) Let � ∶ {0, 1}p → Y be a p-dimensional 
regression function with Y ⊆ ℝ . Then, � can be fitted by logicDT, i.e., � ∈ L with L being 
the class of all logicDT models.

Proof Since � takes only binary predictors as its input, � can be expressed as

for values g0, gj ∈ Y and distinct conjunctions Cj(X) ∶= X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj
 , where these con-

junctions are distinct in the sense that for a given x ∈ {0, 1}p it holds that 1(Cj(x)) = 1 is 
true for at most one j ∈ {1,… ,m} . Let Dn be a noise-free training data set that fully resem-
bles � , i.e.,

with the additional restriction that each conjunction scenario Cj and the null scenario with 
Cj = 0 for all j have to occur at least once in Dn . Using a proper logicDT state, i.e., a set of 
conjunctions that distinguish between the conjunctions that compose � , the corresponding 
fitted logic decision tree assigns the ideal values g0 or g0 + gj to its leaves. Thus, the result-
ing model is equal to � .   ◻

Now the lemmata can be assembled for proving Theorem 1.

Proof of Theorem 1 Simulated annealing operates on a finite state space, which is also the 
case for logicDT. In logicDT, simulated annealing leads with probability 1 to an ideal 
model on the training data (see Lemma 1), i.e.,

for a temperature t ≥ 0 , the homogeneous Markov chains Qt , and the set of optimal states 
Ropt . More specifically, the stationary distribution �t = limq→∞ ℙ(Qt(q) = ⋅) converges for 
t ↘ 0 to a specific distribution on Ropt , namely

where Rs is the set of neighbor states of state s. Thus, if this final stationary distribution is 
reached, an optimal model has to be attained due to the finiteness of the state space.

�(X) = g0 +

m∑
j=1

gj ⋅ 1

(
X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj

)

Dn ⊆

{
(x, y) ∶

[
y = g0 + gj ∧ j ≠ 0 ∧ 1(Ci(x)) = 1(i = j) ∀i

]

∨

[
y = g0 ∧ 1(Ci(x)) = 0 ∀i

]}

lim
t↘0

lim
q→∞

ℙ(Qt(q) ∈ Ropt) = 1

(19)lim
t↘0

�t(s) =

� �Rs�∑
s�∈Ropt

�Rs� � , s ∈ Ropt

0, s ∉ Ropt,
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For proving consistency of random forests with respect to the number of observa-
tions, Scornet et al. (2015) studied a theoretical random forest with an infinite number of 
trees due to the pointwise almost sure convergence resulting from the law of large num-
bers. Similarly, we assume that the convergences in simulated annealing have occurred, 
and therefore, an empirical-risk-minimizing logicDT model is given due to the station-
ary distribution in Eq. (19). The CART methodology ensures that, for a given predictor/
conjunction setting, the empirical-risk-minimizing decision tree is grown, if the tree is 
allowed to fully develop, i.e., not using any stopping criteria, since the prediction val-
ues are obtained by empirical risk minimization in the respective leaves (Breiman et al., 
1984).

Note that this model will be in the set Ropt of empirical risk minimizing models, if the 
original predictor model consisting of the input variables X1,… ,Xp is included in the con-
sidered state space. However, if the true underlying model � is not a linear function of the 
individual predictors, the original model {{X1},… , {Xp}} and equivalent extensions may 
be excluded from the state space while maintaining consistency. Thus, this theorem shows 
that logicDT models different from the original CART are consistent as long as the true 
function exhibits an adequate structure.

Let Tn be the empirical risk minimizer and � be the true regression function. Applying 
Lemma 10.1 from Györfi et al. (2002) yields

where the supremum and the infimum are determined over all logicDT models T.
Using Lemma 2, ERM consistency is established, i.e.,

where the almost sure convergence occurs with respect to the training data distribution 
ℙDn

= ℙ
⊗n

(X,Y)
 . Therefore, the first term on the right-hand side of (20) converges almost 

surely to zero.
Lemma 3 states that logicDT can lead to every possible regression function � . Thus, it 

follows

so that the second term on the right-hand side of (20) vanishes.
Hence, in total, we obtain

which was to be shown.   ◻

(20)
�(X,Y)

[
(�(x) − Tn(x))

2
]
≤ 2 sup

T

|||||
1

n

n∑
i=1

(yi − T(xi))
2 − �(X,Y)

[
(Y − T(X))2

]|||||
+ inf

T
�(X,Y)

[
(�(X) − T(X))2

]
,

sup
T

|||Remp(T) − Rtrue(T)
||| = sup

T

|||||
1

n

n∑
i=1

(yi − T(xi))
2 − �(X,Y)

[
(Y − T(X))2

]|||||
a.s.

�������������������→
n→∞

0,

inf
T
�(X,Y)

[
(�(X) − T(X))2

]
= �(X,Y)

[
(�(X) − �(X))2

]
= 0

�(X,Y)

[
(�(X) − Tn(X))

2
] a.s.

�������������������→
n→∞

0,
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Appendix 3: Computational complexity proof

In this appendix, we prove Theorem 2 and Corollary 1 that were stated in Sect. 3.8.

Proof of Theorem 2 Following Algorithm 2, logicDT modifies the current state, creates a 
tree training data set, and fits and evaluates a decision tree based on this tree training data 
set to decide if the newly proposed state is accepted in every search iteration. Hence, the 
computational complexities of these individual steps have to be determined.

State modifications are performed randomly by modifying one variable in the current 
state. Therefore, the complexity of state modifications is given by O(1).

Tree training data sets are obtained by computing Boolean conjunctions using the vari-
ables in the considered term for each term in the considered state and each training obser-
vation (see Sect. 3.2). Since a state contains at most ���_���� variables, transforming a 
training data set into a tree training data set amounts to a complexity of O(n ⋅ ���_����).

Decision trees are fitted by recursively screening all p input variables for the best split 
(see Algorithm 1). This screening amounts to a complexity of O(np) for n training observa-

tions and p input variables and it is performed for at most 
⌊

n

��������

⌋
− 1 inner nodes (cor-

responding to the worst-case scenario of an unbalanced tree in which the observations are 
perfectly divided into leaves of sample size �������� ). Thus, the (worst-case) complexity 
of fitting decision trees is given by O(n2p∕��������) . This complexity remains valid for 
the case in which one additional continuous covariable is included due to univariate linear 
regression/LDA models being fitted and evaluated using closed-form solutions (i.e., each 
fitting/evaluation of these univariate regression models amounts to a complexity of O(n)).

Since a maximum of ���_���� input variables are used for fitting a logic decision tree, 
the tree fitting (and scoring) complexity in logicDT is given by O(n2���_����∕��������) . 
Therefore, using the aforementioned complexities, the computational complexity of log-
icDT is given by

which was to be shown.   ◻

Proof of Corollary 1 The number M of search steps that are conducted in similar simulated-
annealing-based search procedures is in the magnitude of O(L log(|S|)) (Van Laarhoven 
& Aarts, 1987), where L is the number of iterations performed per Markov chain and S is 
the search space. Since the search space considered in logicDT consists of sets of possible 
Boolean conjunctions that include at most ���_���� conjunctions and at most ���_���� 
input variables, the magnitude of this search space is given by

The first factor amounts for all selections of input variables or their negations of size 
���_���� , while the second factor amounts for the number of possibilities to assign 
the variables to terms. The rationale behind the second factor is assigning each of the 
���_���� variables a number in {1,… , ���_����} that specifies to which term the vari-
able belongs. Hence, it follows that

O

(
M

[
n ⋅ ���_���� + n2

���_����

��������

])
= O

(
Mn

[
���_���� + ���_����

n

��������

])
,

|S| ∈ O((2p)���_���� ⋅ ���_�������_����).

M ∈ O(L ⋅ ���_����(log(p) + log(���_����))).
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Since, by assumption, the parameters ���_���� and ���_���� both scale linearly with p 
and the parameter �������� is constant, it follows with Theorem 2 that the computational 
complexity of logicDT is given by

If it is assumed that the Markov chain length L is fixed, the computational complexity of 
logicDT becomes

The number of neighbor states per state in logicDT is in the magnitude of O(���_���� ⋅ p) , 
since each variable in the state might be exchanged by another variable. Therefore, if 
instead the Markov chain length L is chosen in the magnitude of the number of neighbor 
states per state, the computational complexity of logicDT is given by

  ◻

Appendix 4: Additional real data evaluations

In the following, logicDT, bagged logicDT, and the comparable methods are evaluated 
on 24 real data sets that were also analyzed in Aglin et al. (2020a) and Demirović et al. 
(2022). These data sets exclusively contain binary input variables and binary outcomes 
and were obtained from CP4IM1 that provides (modified) data sets from the UCI Machine 
Learning Repository2 that were modified by dichotimizing continuous variables into binary 
variables.

In Table  3, the dimensions of the considered data sets are summarized. Similar to 
Sect. 5, each method was applied to each data set 100 times using random splits into train-
ing, validation, and test data sets.

Figure 14 shows the predictive performance (as, again, measured by the AUC) of log-
icDT and the comparable methods in their applications to the 24 additional real data sets. 
This figure shows that logicDT achieves for most data sets a superior performance com-
pared to conventional decision trees and DL8.5. logicDT seems to be on par with logic 
regression, since, in most cases, both methods yield similar results and, in the remaining 
cases, sometimes logicDT and sometimes logic regression induce better performances 
(see, e.g., the results from the applications to the vehicle and zoo-1 data set).

Ensemble methods that produce less interpretable models such as random forests, gradi-
ent boosting, and logic bagging yield better performances compared to logicDT for most 
data sets. However, when also considered logicDT in an ensemble framework, i.e., when 
considering bagged logicDT, then the performances are on a similar level as the other 
ensemble methods.

O
(
L ⋅ n2p2 log(p)

)
.

O
(
n2p2 log(p)

)
.

O
(
n2p4 log(p)

)
.

1 CP4IM: https:// dtai. cs. kuleu ven. be/ CP4IM/.
2 UCI Machine Learning Repository: https:// archi ve. ics. uci. edu.

https://dtai.cs.kuleuven.be/CP4IM/
https://archive.ics.uci.edu
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Appendix 5: Computation times

For the simulation study conducted in Sect. 5.1.1 and the application to the SALIA data 
conducted in Sect.  5.2, model fitting and prediction times were recorded. The calcu-
lations were performed using an Intel Xeon Gold 6346 CPU running on 3.6GHz. For 
the time measurement, no parallel computing was performed to reflect realistic single 
model evaluation times.

In Table 4, the mean model fitting and prediction times over ten replications is sum-
marized. logicDT seems to be faster than logic regression, which also employs a sto-
chastic search algorithm. In the application to the SALIA data, a more complex setting 
consisting of five terms was identified for logicDT compared to three terms for logic 
regression, which might explain the higher fitting time of logicDT compared to logic 
regression in the real data application.

Due to the computationally intensive global search, logicDT takes more time than 
comparable methods that employ greedy fitting algorithms such as conventional deci-
sion trees, random forests, gradient boosting, and MOB. Nonetheless, logicDT seems to 

Table 3  Dimensions of the 24 
real data sets used for evaluating 
logicDT and the comparable 
methods

n denotes the sample size and p the number of input variables in the 
respective data set. n1 and n0 denote the numbers of observations with 
Y = 1 and Y = 0 , respectively, since binary outcomes are considered

Data set n p n1 n0

anneal 812 93 625 187
audiology 216 148 57 159
australian-credit 653 125 357 296
breast-wisconsin 683 120 444 239
diabetes 768 112 500 268
german-credit 1000 112 700 300
heart-cleveland 296 95 160 136
hepatitis 137 68 111 26
hypothyroid 3247 88 2970 277
ionosphere 351 445 225 126
kr-vs-kp 3196 73 1669 1527
letter 20,000 224 813 19,187
lymph 148 68 81 67
mushroom 8124 119 4208 3916
pendigits 7494 216 780 6714
primary-tumor 336 31 82 254
segment 2310 235 330 1980
soybean 630 50 92 538
splice-1 3190 287 1655 1535
tic-tac-toe 958 27 626 332
vehicle 846 252 218 628
vote 435 48 267 168
yeast 1484 89 463 1021
zoo-1 101 36 41 60
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vehicle vote yeast zoo−1

segment soybean splice−1 tic−tac−toe

lymph mushroom pendigits primary−tumor

hypothyroid ionosphere kr−vs−kp letter

diabetes german−credit heart−cleveland hepatitis

anneal audiology australian−credit breast−wisconsin
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Fig. 14  Predictive performance of logicDT and the comparable methods in the evaluation of 24 real data 
sets
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be faster than RuleFit. DL8.5 was faster than logicDT in the simulation study. For the 
real data application, DL8.5 was substantially slower than logicDT.

Bagged logicDT models take more time to be evaluated than bagged logic regression 
models. This is, in particular, due to the fact that the hyperparameter optimization for 
logic bagging identified ������ = 3 with ������� = 3 as the best setting for the simu-
lation scenario with a binary outcome and an environmental covariable, i.e., a linear 
model involving three predictors, while bagged logicDT fits trees of depth of up to three 
in every greedy search step. This explanation also holds true for the other three sce-
narios and the real data application, since the hyperparameter optimization also yielded 
simpler settings for logic bagging compared to bagged logicDT.

Interaction forests are similarly fast as bagged logicDT and logic bagging in the sim-
ulation study. In the application to the SALIA data, interaction forests are comparably 
fast, since the hyperparameter optimization yielded for the number of randomly drawn 
input variable pairs per split ������ = 4 , which is smaller than in the considered simu-
lation study scenarios.

Unsurprisingly, for most methods, the computation time increases when also con-
sidering a continuous (environmental) covariable in comparison to not including a 
continuous (environmental) covariable. For some methods, this trend does not seem to 
be true, for example for logic regression, since the mean computation decreases when 
additionally considering a continuous covariable for a continuous outcome. However, 
this phenomenon is presumably caused by the identified hyperparameter setting, which 
is ������ = 4 with ������� = 8 for the continuous outcome scenario without a con-
tinuous covariable, corresponding to a rather complex model, and ������ = 2 with 
������� = 3 for the continuous outcome scenario including a continuous covariable, 
corresponding to a rather simple model.

Table 4  Mean model evaluation times in seconds for the simulation study conducted in Sect. 5.1.1 and the 
real data application conducted in Sect. 5.2

The first line of the simulation scenario name corresponds to the considered outcome type (binary or con-
tinuous) and the second line corresponds to whether a continuous environmental covariable was incorpo-
rated (no E or E)

Algorithm Simulation scenario/study

Binary No E Binary E Continuous No E Continuous E SALIA

logicDT 29.334 87.615 12.826 33.414 38.727
logicDT–Bagging 260.063 307.279 82.151 770.853 1960.524
Decision Tree 0.184 0.183 0.184 0.179 0.186
DL8.5 2.907 3.571 – – 700.399
Random Forests 5.704 6.440 6.875 7.133 1.980
Gradient Boosting 3.012 2.901 3.440 3.559 2.434
Logic Regression 27.004 206.816 33.671 22.710 15.803
Logic Bagging 82.584 40.730 57.809 63.202 575.047
MOB – 0.513 – 0.479 –
Interaction Forests 82.682 344.738 322.515 501.945 40.416
RuleFit 77.568 96.647 71.394 78.370 92.420
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Appendix 6: Inner validation

An idea to further robustify logicDT against overfitting might be to separate the decision 
tree fitting and evaluation steps in the search procedure by splitting the available training 
data into independent data sets for these two steps. We refer to this approach as inner vali-
dation, due to validating the states on independent validation data and the fitting procedure 
being nested in an outer validation that evaluates the performance of resulting logicDT 
models for tuning hyperparameters (see Sect.  3.6). This approach is similar to a nested 
cross-validation, which is, however, typically used for estimating unbiased prediction 
errors (see, e.g., Varma & Simon, 2006).

The trained logicDT model should not be heavily depending on the data split used such 
that a k-fold cross-validation approach is employed that randomly splits the training data 
into k approximately equally sized data sets D1,… ,Dk . For every j ∈ {1,… , k} , k − 1 of 
these data sets Dj′ ( j� ∈ {1,… , k}⧵j ) are combined to one data set and used for training the 
decision trees (Line 9 in Algorithm 2) and the remaining data set Dj is used for computing 
the score (Line 10 in Algorithm 2). The total score of the state used to guide the search is 
then obtained by averaging the k scores.

In Fig. 15, the predictive performances of logicDT are summarized that were obtained 
using the aforementioned inner validation approach with 5-fold cross-validation in the sim-
ulation study presented in Sect. 5.1.1. For the binary outcome scenarios, the performance 
is worse compared to standard logicDT. For the continuous outcome scenarios, the perfor-
mance is identical.

The performance loss can presumably be explained by the need to further split the avail-
able training data so that both the tree training step and the score computation step have to 
use less observations as opposed to standard logicDT. Moreover, the inner validation also 
leads to an increased computational burden due to fitting k trees in comparison to fitting a 
single tree in each search iteration. Therefore, the outer validation for hyperparameter opti-
mization seems to be sufficient to balance the amount of underfitting and overfitting.
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