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Abstract
An explicit formula for analytic torsion forms for fibrations by projective curves is given. In
particular one obtains a formula for direct images in Arakelov geometry in the corresponding
setting. The main tool is a new description of Bismut’s equivariant Bott–Chern current in the
case of isolated fixed points.
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1 Introduction

The purpose of this paper is to make the computation of analytic torsion forms more acces-
sible, exploring a method relying on a result by Bismut and Goette. We use this method to
explicitly compute analytic torsion forms for fibrations by projective curves.

Analytic torsion forms have been constructed and investigated by Bismut and the author
in [14] using heat kernels of certain differential operators. This definition followed previous
constructions by Gillet and Soulé [21], Bismut et al. [15], Gillet and Soulé [23]. Further
constructions and extensions have been given by Faltings [18], Zha [38], Ma [33], Bismut
[12], Burgos Gil-Freixas i Montplet-Liţcanu [16] (including an axiomatic characterisation)
and several other articles and books. Analytic torsion forms Tπ (E) are differential forms on
the base B associated toHermitian holomorphic vector bundles E over fibrationsπ : M → B
of complex manifolds equipped with a certain Kähler structure. Their degree 0 part equals
Ray–Singer’s complex analytic torsion. Their main application is the construction of a direct
image π! of Hermitian vector bundles in Gillet–Soulé’s Arakelov K -theory of arithmetic
schemes. This direct image is the sum of higher direct images on algebraic schemes plus Tπ .
Bismut’s immersion formula for torsion forms [9] enabled Gillet–Rössler–Soulé to prove a
Grothendieck–Riemann–Roch theorem in Arakelov Geometry which relates π! to the direct
image inGillet–Soulé’sChow intersection theory of cycles andGreen currents [25], extending

B Kai Köhler
koehler@math.uni-duesseldorf.de

1 Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-023-03379-3&domain=pdf


47 Page 2 of 29 K. Köhler

[24]. The torsion form also played a key role in Fu’s and Zhang’s proof of the birational
invariance of BCOV torsion [20, 39].

While there are many computations for the degree 0 part of analytic torsion forms, there
are currently only few explicitly known values of analytic torsion forms in higher degree:
torsion forms are known for vector bundles over torus bundles [31].AlsoMourougane showed
Tπ (O)[2] = 0 as the value in degree 2 of Tπ for the fibration by Hirzebruch surfaces over
P1C [35]. Furthermore Bismut has shown that the equivariant torsion form of the Z-graded
holomorphic de Rham complex of the fibers vanishes in cohomology [11]. Puchol proved
a formula for asymptotic expansion of torsion forms for high powers of a line bundle [36],
extended in degree 0 by Finski [19]. In [10, Remark 8.11], the explicit calculation of torsion
forms for projective bundles was stated as an open problem with useful applications. We try
to improve the situation by proving the following result in Sect. 10:

Theorem 1.1 Let π : E → B be a holomorphic vector bundle of rank 2 over a complex
manifold. Consider the formal power series T� ∈ R[[X ]] given by

T�(−t2) :=
|�+1|∑

m=1

sin(2m − |� + 1|) t
2

sin t
2

logm +
(
cos (�+1)t

2 )

t sin t
2

)∗

− cos (�+1)t
2

sin t
2

∑

m≥1
m odd

(
2ζ ′(−m) + Hmζ(−m)

) (−1)
m+1
2 tm

m! ,

where (t2m)∗ := t2m · (2H2m+1 − Hm) with the harmonic numbers

Hm =
m∑

j=1

1

j
. (1)

The torsion form for O(�) on the P1C-bundle π : PE → B is given by Tπ (O(�)) =
e− �

2 c1(E)T�(c1(E)2 − 4c2(E)) ∈ H2•(B,R).

Our method is as follows. It has been pointed out (after Atiyah and Singer [2, p. 133–134])
by Bismut [5, p. 100–101], Bismut et al. [15] and Berline et al. [4, ch. 10.7] that Bismut super
connections and torsion forms can be understood in a more accessible way if the fibration
π : M → B and the associated objects are induced by a principle bundle P → B with
compact structure group G. Bismut and Goette [13] use this to describe the torsion form in
such a setting as a cohomology class which can be interpreted in terms of a g-equivariant
analytic torsion.

Bismut–Goette’smain result relates this g-equivariant analytic torsion to theG-equivariant
analytic torsion introduced in [29] via Bismut’s equivariant Bott–Chern current S. The
construction of this Bott–Chern current was inspired by Mathai–Quillen’s very influential
construction of a Gauß shape representative of the Thom class [34]. The crucial Gauß density
in this construction makes explicit integration in our example difficult, and thus our strategy
is to replace it by an indicator function closer to Thom’s original construction (Theorem 5.5).
We do this in a general setting for isolated fixed points as this construction shall be applied
to more general spaces in a forthcoming paper.

We also employ the formula for S to demonstrate the usage of the residue formula in
Arakelov theory [32, Th. 2.11] by applying it to P1

Z in Sect. 8. This residue formula (à la
Bott) has never been applied before as the S-current makes explicit evaluations difficult.
In Theorem 9.3 we give an explicit formula for the g-equivariant analytic torsion on P1C.
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Analytic torsion forms for fibrations by projective curves Page 3 of 29 47

In Theorem 12.2, we extend this to (g, G)-equivariant analytic torsion providing the G-
equivariant torsion form introduced in [33]. In Remark 9.5 we verify that the degree 0 part
of the formula in Theorem 1.1 equals the known value of the Ray–Singer analytic torsion
as given in [30, Theorem 18]. Theorem 11.2 shows that the last summand in Theorem 1.1
exactly cancels with another term in the arithmetic Grothendieck–Riemann–Roch Theorem
from [25].

The author is indebted to the referee for a careful reading of this paper and for his
comments.

2 Equivariant characteristic classes

Let M be a complex manifold. Corresponding to the decomposition T M ⊗ C = T M1,0 ⊕
T M0,1 define U = U 1,0 + U 0,1 for U ∈ T M ⊗ C. Let Ap,q(M) denote the vector space
of forms of holomorphic degree p and anti holomorphic degree q , and let Ap,q(M, E)

denote the corresponding forms with coefficients in a holomorphic vector bundle E . Let
X ∈ �(M, T M) be a vector field such that its local flow acts holomorphically on M , i.e.
X1,0 is a holomorphic section of T 1,0M .

An X -equivariant holomorphic vector bundle E equipped with an X -invariant Hermitian
metric shall be denoted by E . Let ∇E be the associated Chern connection with curvature
�E ∈ A1,1(M,End E).

Following [13, (2.7)] we denote by m E (X) := ∇E
X − L E

X ∈ �(M,End E) the moment
map as the skew adjoint endomorphism given by the difference between the Lie derivative
and the covariant derivative on E . In particular, for the flow �X

t associated to X and a zero
p of X , mT X (X)(p) = ∂

∂t

∣∣
t=0�

X
t (p) ∈ End Tp M . Set as in [13, (2.30), Def. 2.7] (compare

[4, ch. 7])

TdX (E) := Td

(
− �E

2π i
+ m E (X)

)
∈ A(M)

and

chX (E) := Tr exp

(
− �E

2π i
+ m E (X)

)
∈ A(M).

The Chern class cq,X (E) for 0 ≤ q ≤ rk E is defined in [32, Def. 2.5] as the part of total
degree deg M + deg t = q of

det

(−�E

2π i
+ tm E (X) + id

)
∈ A(M)

at t = 1, thus cq,X (E) = cq(−�E/2π i + m E (X)). For m E invertible we set [13, (3.10)]

(c−1
top,X )′(E) := ∂

∂b

∣∣
b=0crk E

(−�E

2π i
+ m E (X) + b id

)−1

. (2)

The bundle E splits at every component of the fixed point set MX := {p ∈ M | X p = 0}
into a sum of holomorphic vector bundles

⊕
Eϑ associated to eigenvalues iϑ ∈ iR of m E .

Let IX ∈ H•(MX ) denote the additive equivariant characteristic class which is given for a
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47 Page 4 of 29 K. Köhler

line bundle L as follows: If X ′ acts at the fixed point p by an angle ϑ ′ ∈ R× on L , then

IX ′(L)
∣∣

p :=
∑

k∈Z×

log(1 + ϑ ′
2πk )

c1(L) + iϑ ′ + 2kπ i
. (3)

Next consider a holomorphic action g on M . Assume that E is g-invariant as a holomorphic
Hermitian bundle and that E is equipped with an equivariant structure gE . The Hermitian
vector bundle E splits on the fixed point submanifold Mg into a direct sum

⊕
ζ∈S1 Eζ , where

the equivariant structure gE of E acts on Eζ as ζ . Then the g-equivariant Chern character
form is defined as

chg(E) :=
∑

ζ

ζch(Eζ )

= Tr gE +
∑

ζ

ζc1(Eζ ) +
∑

ζ

ζ

(
1

2
c21(Eζ ) − c2(Eζ )

)
+ · · · ∈ A(Mg).

Thus, c̃hg(E) = ∑
ζ ζ c̃h(Eζ ). With the g-invariant subbundle E1 → Mg , the Todd form of

a g-equivariant vector bundle is defined as

Tdg(E) := crk E1(E1)

chg

(∑rk E
j=0(−1) j
 j E

∗) .

3 Analytic torsion forms

In this section we describe the definition of equivariant Ray–Singer analytic torsions and
analytic torsion forms. We simplify the more general setting in [14] a bit for the sake of
exposition, as we shall use the torsion forms in this article only in a very restricted setting.

Let M be a compact Kähler manifold of complex dimension n with Kähler form ωT M ∈
A1,1(M). We choose the Kähler form such that it verifies the condition ωT M (U , V ) =
gT M (JU , V ) (note that [14], [13, p. 1302] use −ωT M instead as the Kähler form). Thus
ωT M

p = ∑n
j=0 dx2 j−1 ∧ dx2 j in geodesic coordinates at an origin p. For U ∈ T 0,1M ,

q ∈ N0, let ιU : 
q T ∗0,1M → 
q−1T ∗0,1M denote the interior product antiderivation.
Define fibrewise an action of the Clifford algebra assciated to (T M, gT M ) on
•T ∗0,1M ⊗ E
by

c(U ) := √
2(gT M (·, U 1,0)∧) − √

2ιU0,1 (U ∈ T M).

Let N∞ : 
•T ∗M ⊗ E → N0 map each component to its differential form degree. Consider
a holomorphic isometric action of a Lie group G on M . Consider g ∈ G and a vector field
X induced by an element of the Lie algebra zG(g) ⊂ g of the centralizer of g. As above let
Ē → M be an X -equivariant Hermitian holomorphic vector bundle.

Assume that the action of X on (M, ω) is Hamiltonian, i.e. there exists a function μ ∈
C∞(M,R) such that dμ = ιXω. This implies X .μ = 0, and for M connected μ is uniquely
determined up to constant. If L → M is an X -invariant polarized variety and ω := i�L , one
can choose μ := −i · mL . With the Dolbeault operator associated to E , set as in [13, (2.40)]

C M
X ,t := √

t(∂̄M + ∂̄M∗) + 1

2
√
2t

c(X)
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acting on A0,•(M, E).

Definition 3.1 [13, p. 1319] For s ∈ C, Re s ∈]0, 1
2 [ and |X | sufficiently small, the zeta

function

Z(s) := −1

�(s)

∫ ∞

0
t s−1

(
Tr s

(
N∞ − iμ

t

)
g

· exp(−L X − (C M
X ,t )

2) − Tr H•(M,E)
s (N∞geX )

)
dt

is well-defined and Z has a holomorphic continuation to s = 0. The (g, X)-equivariant
complex Ray-Singer torsion is defined as Tg,X (M, E) := ∂

∂s

∣∣
s=0Z(s).

The g-equivariant torsion Tg(M, E) was defined in [29], and Bismut-Goette’s Definition
extends this such that Tg(M, E) = Tg,0(M, E).

Definition 3.2 [15, Def. 1.4] Let π : M
Z→ B be a proper holomorphic submersion of

complex manifolds M , B. Let T Z and T Z⊥ denote the vertical tangent bundle and the
horizontal distribution othogonal to it, respectively. Suppose that there exists a closed 2-form
ω ∈ A1,1(M) such that gT Z := ω

∣∣
T Z⊗2(·, J ·) is Hermitian. Then (π, gT Z , T Z⊥) is called a

Kähler fibration.

For b ∈ B set Zb := π−1({b}). For anyU ∈ Tb B we denote byU H ∈ (T Zb)
⊥ ⊂ T M the

horizontal lift to the orthogonal complement of the vertical tangent space. Let gT B be ametric
on B, inducing ∇(T Z⊥). Set ∇T M := ∇(T Z⊥) ⊕ ∇T Z with torsion T ∈ A1,1(M, T Z). Set
ωH ∈ A1,1(B) ⊗ C∞(M), ωH (U , U ′) := ω(U H , U ′H

), T H (U , U ′) := T (U H , U ′H
). Let

Ē → M be an Hermitian holomorphic vector bundle. Let F → B denote the∞-dimensional
vector bundle with fibre

Fb := �∞(Zb,

•T ∗0,1Zb ⊗ E

∣∣
Zb

)

and connection ∇F
U s := ∇
•T ∗0,1Z⊗E

U H s.

Definition 3.3 [14, Def. 1.8] For t ∈ R+, the number operator Nt ∈ �(B,
•T ∗ B ⊗End F)

is given by

Nt := N∞ − iωH

t
.

The Bismut super connection on F is defined using the Clifford operation c of the T Z
component of T on 
•T ∗0,1Z as

Bt := ∇F + C Z
−T H ,t .

The operator Bt is formed as an adiabatic limit of the Dirac operator on M . As differential
forms on the manifold B, the summands have the degrees 1, 0, 2.

Definition 3.4 [14, Def. 3.8] Set Ã(B) := ⊕
p A

p,p(B)/(im ∂ + im ∂̄). Assume

H•(Z ·, E
∣∣

Z·) → B to be vector bundles. For |Re s| < 1
2 set (regularized as in [14, (3.10)])

123



47 Page 6 of 29 K. Köhler

Z(s) := −1

�(s)

∫ ∞

0
t s−1(2π i)−N∞/2

·
(
Tr s Nt e

−B2
t − Tr s N∞e−�H•(Z·,E)

)
dt ∈

⊕

p

Ap,p(B).

The analytic torsion form associated to the Kähler fibration π and Ē is defined as Tπ (Ē) :=
Z ′(0) ∈ Ã(B).

In degree 0 one gets Tπ (Ē)[0]
∣∣
b = Tid(Zb, Ē

∣∣
Zb

) with the Ray-Singer torsion on the right
hand side.

Example 1 1) [31, Th. 4.1] Let Ē → B be an Hermitian holomorphic vector bundle of rank
k, 
 ⊂ E a Z2k-bundle with holomorphic local sections. Then π : M := E/
 → B is a
torus bundle. For Re s < 0 set

Z(s) := �(2k − 1 − s)

(2π)k(k − 1)!�(s)

∑

λ∈

λ�=0

(∂∂̄‖λ‖2)∧(k−1)

(‖λ‖2)2k−s−1 ∈ Ak−1,k−1(B).

Then Tπ (O) = Z ′(0)
Td(Ē)

∈ Ã(B). A Kähler fibration condition is not necessary.
2) Mourougane considered Hirzebruch surfaces

π : Fk = P(O(−k) ⊕ O) → P1C

and obtained 0 as the part of Tπ (O) in degree 2 ( [35, p. 239]).

4 Bismut’s equivariant Bott–Chern current

The equivariant Bott–Chern current has been introduced and investigated by Bismut in [6, 8].
In this section we briefly cite some of its properties following the presentation in [13]. In the
special case of isolated fixed points we shall necessarily obtain these results independently
in the next section to obtain our expression for SX . Let M be a compact Kähler manifold
acted upon by a holomorphic Killing field X . Denote [13, p. 1312, Def. 2.6]

dX := d − 2π i ιX , ∂X := ∂ − 2π i ιX0,1 , ∂̄X := ∂̄ − 2π i ιX1,0 .

The holomorphy of X implies ∂2X = 0, ∂̄2X = 0. Notice that d2
X = −2π i L X .

Let N∗
R denote the dual of the real normal bundle of the embedding MX ↪→ M . Let

P M
X ,MX

be the set of currents α on M with wave front set included in N∗
R, such that α is a

sum of currents of type (p, p) and L Xα = 0 [13, Def. 3.5]. Let P M,0
X ,MX

⊂ P M
X ,MX

denote

the subset consisting of those α = ∂Xβ + ∂̄Xβ ′, where β, β ′ are X -invariant currents whose
wave front set is included in N∗

R. We shall use the notation X � ∈ �(M, T ∗M) for the metric
dual of a vector field X ∈ �(M, T M). Set [13, p. 1322, Def. 3.3]

dt := ωT M

2π t
exp

(
∂̄X∂X

2π i t

−ωT M

2π

)
[14,Prop.3.2]= ωT M

2π t
exp

(
dX

X �

4π i t

)

= ωT M

2π t
exp

(
1

t

(
d(X �)

4π i
− 1

2
‖X‖2

))
. (4)
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Then [13, (3.9)] there is a current ρ1 ∈ P M
X ,MX

such that for t → 0+ and any η ∈ A(M),

∫

M
η · dt = 1

t

∫

MX

η · ωT M/2π

ctop,X (NMX /M )
+

∫

M
η · ωT M

2π
ρ1 + O(t). (5)

By Eq. (4), F2
η (s) := 1

�(s)

∫ ∞
1 (

∫
M ηdt )t s−1dt is well-defined and holomorphic for Re s < 1

( [13, (3.13)]). Similarly Eq. (5) shows that

F1
η (s) := 1

�(s)

∫ 1

0

(∫

M
ηdt

)
t s−1dt

is well-defined for Re s > 1 and that it has a holomorphic continuation to s = 0. Thus one
can set [13, p. 1324, Def. 3.7]

∫
M ηSX (M,−ωT M ) := ∂

∂s

∣∣
s=0(F1

η + F2
η ). By [13, Th. 3.9]

SX (M,−ωT M ) ∈ P M
X ,MX

. By [13, Prop. 3.8] or [8, Prop. 2.11] one gets

∫

M
ηSX (M,−ωT M )

=
∫ 1

0

∫

M
η

(
dt − ωT M

2π tctop,X (NMX /M , gT M )
δMX − ωT M

2π
ρ1

)
dt

t

+
∫ ∞

1

(∫

M
ηdt

)
dt

t
−

∫

MX

η
ωT M

2πctop,X (NMX /M , gT M )
− �′(1)

∫

M
η

ωT M

2π
ρ1.

According to [13, p. 1323, Th. 3.6] (or [6, (40)–(49)], [8, Th. 2.7])

ωT M

2π
ρ1 = (c−1

top,X )′(NMX /M , gT M )δMX (6)

up to currents in P M,0
X ,MX

. Thus when η is a dX -closed form,

∫

M
ηSX (M,−ωT M )

=
∫ 1

0

∫

M
η

(
dt − ωT M

2π tctop,X (NMX /M , gT M )
δMX − (c−1

top,X )′(NMX /M , gT M )δMX

)
dt

t

+
∫ ∞

1

(∫

M
ηdt

)
dt

t
−

∫

MX

η
ωT M

2πctop,X (NMX /M , gT M )

− �′(1)
∫

MX

η(c−1
top,X )′(NMX /M , gT M ). (7)

By replacing the first integral by lima→0
∫ 1

a and using
∫ 1

a
dt
t2

+ 1 = 1
a ,

∫ 1
a

dt
t = − log a,

∫ ∞
a ec/t dt

t2
Re c<0= ec/a−1

c (and the variant of the last equation for
∫ ∞

a ec/t dt
t2+m , m ≥ 0) as in

[32, p. 96] this becomes

∫

M
ηSX (M,−ωT M ) = lim

a→0+

(∫

M
η

−ωT M

2π
·
1 − exp

(
dX

X �

4π ia

)

dX
X �

4π i

+
∫

MX

η

( −ωT M

2πactop,X (NMX /M , gT M )
+ (log a − �′(1))(c−1

top,X )′(NMX /M , gT M )

))
.

(8)

123



47 Page 8 of 29 K. Köhler

We shall need in the case of isolated fixed points a sharper version of Eqs. (5), (6):∫
M η · dt = ∫

MX
η(c−1

top,X )′(T M) + O(t) for any smooth form η (Lemma 5.4) and not only
for dX -closed forms.

The dependence of SX (M,−ωT M ) on ωT M is analysed in [13, Th. 3.10]:

Theorem 4.1 [13, Th. 3.10] For Kähler forms ω
′T M , ωT M on M and the induced metrics

g
′T M , gT M on NMX /M ,

SX (M,−ω
′T M ) − SX (M,−ωT M ) = − ˜c−1

top,X (NMX /M , g
′T M , gT M ) · δMX

in P M
X ,MX

/P M,0
X ,MX

.

An important special case ariseswhen rescalingω
′T M = c2ωT M :We shall use the notation

α[q] for the part in degree q of a differential form α. Because of ˜ch[q](E, c2hE , hE ) =(
c̃h(C, c2| · |2, | · |2)ch(E, hE )

)[q−2]
by [22, (1.3.5.2)] and c̃h(C, c2| · |2, | · |2) = − log c2 (

[22, (1.2.5.1)]), one finds

˜ch[q](E, c2hE , hE ) = − log c2 · ch(E, hE )[q−2]

= − log c2 · ∂

∂t

∣∣
t=0ch

[q]
(

− �E

2π i
+ t idE

)
.

Thus this relation holds when replacing ch[q] by any other polynomial in the Chern classes,
in particular

− ˜c−1
top,X (NMX /M , c2gT M , gT M ) = log c2 · (c−1

top,X )′(NMX /M , gT M ).

This way Theorem 4.1 implies a useful formula for the dependence of St X on t , which we
shall verify independently for isolated fixed points on the level of currents in Corollary 5.6:

Corollary 4.2 Let N∞ : A•(M) → N0 denote the number operator. Then

cN∞/2+1ScX (M,−ωT M ) − SX (M,−ωT M ) = log c2 · (c−1
top,X )′(NMX /M , gT M ) · δMX

in P M
X ,MX

/P M,0
X ,MX

.

Note that P M
X ,MX

, P M,0
X ,MX

are invariant under rescaling of X .

Proof When replacing ωT M by ω′ := bωT M with b ∈ R+, the corresponding form d ′
t is

given by d ′
t = dt/b. On the other hand when replacing X by X̃ := cX with c �= 0, the

associated form d̃t equals

d̃t = ωT M

2π t
exp

(
1

t

(
cd X �

4π i
− c2

2
‖X‖2

))

= c−1 ωT M/c

2π t/c2
exp

(
1

t/c2

(
d X �/c

4π i
− 1

2
‖X‖2

))

= c−N∞/2−1dt/c2 .

Thus ScX (M,−ωT M ) = c−N∞/2−1SX (M,−c2ωT M ) and the result follows from Theo-
rem 4.1,

cN∞/2+1ScX (M,−ωT M ) − SX (M,−ωT M ) = − ˜c−1
top,X (NMX /M , c2gT M , gT M ) · δMX

��

123



Analytic torsion forms for fibrations by projective curves Page 9 of 29 47

Remark 4.3 If M is compact, its Lie group of isometries is compact and thus the closure of
the subgroup generated by a Killing field X is a compact torus T . Thus in this case η can be
made X -invariant by taking the mean value η̃

∣∣
q := 1

volT

∫
T (y∗η)

∣∣
q dvoly . As the equivariant

Bott–Chern current is X -invariant, one can make the substitution
∫

M ηSX (M,−ωT M ) =∫
M η̃SX (M,−ωT M ) and thus always assume that L Xη = 0. The condition dXη = 0 then is

a cohomological condition.

5 A formula for the equivariant Bott–Chern current

As in the last section M shall be a compact Kähler manifold and X a holomorphic Killing
field. For all of the results in this section, M can as well be any compact subset of a (possibly
non-compact) Kähler manifold M̃ and X can be a holomorphic Killing field on M̃ without
any zeros on ∂ M , when T M, dvolM ,A(M) are replaced by T M̃, dvolM̃ ,A(M̃).

We assume that the zero set MX =: {p� ∈ M | � ∈ J } of X has dimension 0. Set

ν := d X �

4π i

(while for large parts of the results it could be any differential form of degree 2).
Choose R small enough such that the connected component B� of p� in {q ∈ M | ‖Xq‖ ≤

R} can be covered by a chart and such that B� does not contain another zero. For a fixed
� ∈ J we shall denote the corresponding coordinates by x , chosen such that x = 0 at p�. Let
‖ · ‖eucl, dλ denote the euclidean metric and the Lebesgue measure in this chart.

Part (2) of the following Proposition gives a first estimate for the right hand side in equation
(8).

Proposition 5.1 1. There exists c0 ∈ R+ such that for all s ∈ N0, s < n, a > 0, m ∈ R
∫

B�

a−m‖X‖−2se− 1
2a ‖X‖2dvolM < c0an−m−s .

2. For a → 0+ and any η̃ ∈ A(M) with deg η̃ ≥ 2,

∫

B�

η̃
1 − e

ν− 1
2 ‖X‖2

a

ν − 1
2‖X‖2 −

∫

B�

η̃
νn−1

(
e− 1

2a ‖X‖2 − 1
)

( 1
2‖X‖2)n

= −
n−1∑

s=1

∫

B�

η̃
νs−1

( 1
2‖X‖2)s +

n−1∑

m=1

∫

B�

η̃e− 1
2a ‖X‖2 · νn−1

( 1
2‖X‖2)−n+m

m!am
+ O(a).

In part (2) the summands on the right hand side converge for a → 0+. In general the
summands on the left hand side do not converge.

Proof 1) Choose c, C > 0 such that c‖x‖eucl < ‖X‖∣∣x and dvolM|x = f (x) · dλ with
| f | < C and, as defined above, dλ being the Lebesgue measure. Then for 0 ≤ s < n,

∫

B�

‖X‖−2sdvolM <

∫

B�

(c‖x‖eucl)−2sC dλ <

∫

c‖x‖eucl<R
(c‖x‖eucl)−2sC dλ

= C

c2s
vol(S2n−1) ·

∫ R

0
r2n−1−2sdr = C

c2s
vol(S2n−1) · R2n−2s

2n − 2s
. (9)
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Similarly,
∫

B�

‖X‖−2se− 1
2a ‖X‖2dvolM <

∫

B�

(c‖x‖eucl)−2se− c2
2a ‖x‖2euclC dλ

<

∫

R2n
(c‖x‖eucl)−2se− c2

2a ‖x‖2euclC dλ = Can−s

c2n

∫

R2n

1

‖x‖2s
eucl

e− ‖x‖2eucl
2 dλ.

The integral on the right hand side exists by inequality (9) (or, of course, classically). Thus
there is a constant c0 depending only on c, C, n and s such that

∫

B�

‖X‖−2se− 1
2a ‖X‖2dvolM < c0an−s .

As s varies over a finite range, c0 can be chosen independently of s.
2) For 1

2‖X‖2 �= 0 Taylor expansion shows

1

ν − 1
2‖X‖2 = 1

− 1
2‖X‖2

∞∑

s=1

(
ν

1
2‖X‖2

)s−1

= −
∞∑

s=1

νs−1

( 1
2‖X‖2)s

where the sum is finite, as ν has vanishing degree 0 part. Additionally expanding exp shows

∫

B�

η̃
1 − e

ν− 1
2 ‖X‖2

a

ν − 1
2‖X‖2 =

∫

B�

η̃

∞∑

s=1

−νs−1

( 1
2‖X‖2)s

(
1 − e− ‖X‖2

2a

∞∑

m=0

(
ν
a

)m

m!

)

=
∫

B�

η̃

( ∞∑

s=1

−νs−1

( 1
2‖X‖2)s + e

−‖X‖2
2a ·

∞∑

s=1

∞∑

m=0

νm+s−1
( 1
2‖X‖2)−s

m!am

)

where summands with s + m > n are vanishing. For s < n, the integral over the first
summand exists by inequality (9). For s < n and a → 0+, by part (1) the integral over the
second summand converges if s + m ≤ n and it equals O(a) for s + m < n. ��

Choose an oriented orthonormal base of Tp�
M with

(∇ X)
∣∣

p�
=

(
0 −ϑ1
ϑ1 0

.
.
.

)
=: A.

In the corresponding geodesic coordinates,

Xx = Ax = (−ϑ1x2, ϑ1x1, . . . )
t ,

X � = ϑ1(−x2 dx1 + x1 dx2) + · · · + o(‖x‖)

and d X �
∣∣

p�
= 2

n∑

j=1

ϑ j dx2 j−1 ∧ dx2 j .

Proposition 5.2 Define a� via (η̃ ∧ νn−1)
∣∣

p�
=: a� dvolM . If η̃ = η ∧ ωT M

2π , then

a� = η
[0]
p�

2n−1vol(S2n−1)
(c−1

top,X )′(T M)
∏

j

ϑ2
j .
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Proof With ωT M
∣∣

p�
= ∑n

j=1 dx2 j−1 ∧ dx2 j we get

ωT M

2π
∧
(

d X �

4π i

)n−1 ∣∣
p�

= 2n−1 (n − 1)!
2π(4π i)n−1

n∑

j=1

1

ϑ j

n∏

j=1

ϑ j · dλ

= 1

(2i)n−1vol(S2n−1)

n∑

j=1

1

ϑ j

n∏

j=1

ϑ j · dλ

= 1

2n−1vol(S2n−1)
(c−1

top,X )′(T M)
∏

j

ϑ2
j · dλ.

��
The next Proposition further simplifies the terms in Proposition 5.1(2): (1) computes a

limit for the second summand on the right hand side, and (2) simplifies the second summand
on the left hand side.

Proposition 5.3 As a → 0+ the following estimates hold:

1. For n = s + m and 0 ≤ s < n
∫

B�

η̃ ∧ νn−1

amm! ( 12‖X‖2)s e− 1
2a ‖X‖2 = a�

vol(S2n−1)
∏n

ϑ2
j

2n−1

m
+ O(a).

2. For n = s and B ′
�(a) := {x ∈ B� | ‖Xx‖2 < 2a},

∫

B�

η̃ ∧ νn−1

( 1
2‖X‖2)n

(
e− 1

2a ‖X‖2 − 1
)

+
∫

B�\B′
�(a)

η̃
νn−1

( 1
2‖X‖2)n

=
∫

B′
�(a)

η̃
νn−1

( 1
2‖X‖2)n

(
e− 1

2a ‖X‖2 − 1
)

+
∫

B�\B′
�(a)

η̃
νn−1

( 1
2‖X‖2)n e

− 1
2 ‖X‖2

a

= a�

vol(S2n−1)
∏n

ϑ2
j

2n−1�′(1) + O(a).

We shall use the notation B2n
R (x) ⊂ R2n for the euclidean ball of radius R and center x .

Proof Replacing the radius R by a smaller number does not affect these statements, as

this causes the left hand sides to change by O(a−me− R2
2a ). Expanding the metric on M in

geodesic coordinates at p� as 〈·, ·〉∣∣x = 〈·, ·〉∣∣0 + β with β = O(‖x‖2) and Xx = Ax , one
gets ‖Xx‖2 = ‖Ax‖20 +β(Ax, Ax) = ‖Ax‖20 + O(‖x‖4). As A is invertible, we can choose
R > 0 sufficiently small such that c > 0 exists with

∣∣‖Xx‖2 − ‖Ax‖20
∣∣ < c‖Ax‖40 on {x ∈

B� | ‖Xx‖ < R}. Then replace R by a smaller value such that c‖Ax‖40 < 1
2‖Ax‖20 on {x ∈

B� | ‖Xx‖ < R}. By themean value Theorem |y−s − y−s
0 | ≤ |y− y0| sup|t−y0|<|y−y0| st−s−1

applied to y �→ y−s , one obtains for s ∈ R+
0 , x �= 0

∣∣∣‖Xx‖−2s − ‖Ax‖−2s
0

∣∣∣ ≤ c‖Ax‖40 sup
1
2 ‖Ax‖20<t< 3

2 ‖Ax‖20
st−s−1 = c2s+1s(‖Ax‖20)−s+1.

(10)
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The same way, for s ≥ 0∣∣∣‖Xx‖−2se− 1
2a ‖X‖2 − ‖Ax‖−2s

0 e− 1
2a ‖Ax‖20

∣∣∣

≤ c‖Ax‖40 sup
1
2 ‖Ax‖20<t< 3

2 ‖Ax‖20
e− t

2a

(
st−s−1 + 1

2a
t−s

)

= ce− 1
4a ‖Ax‖20

(
2s+1s(‖Ax‖20)−s+1 + 2s−1

a
(‖Ax‖20)−s+2

)
. (11)

Applying Proposition 5.1(1) to the right hand side of equation (11) shows that one can replace

‖X‖ by ‖Ax‖0 in the integrals
∫

B�

η̃∧νn−1

am ( 12 ‖X‖2)s e− 1
2a ‖X‖2 for m + s ≤ n, 0 ≤ s ≤ n up to a

term O(a) as a → 0+. Similarly for B ′′
� (a) := {x ∈ R2n | ‖Ax‖20 < 2a}

∫

{x |‖Ax‖20<2a}
1

(‖Ax‖20)n−1
dλ

y=Ax= 1

| det A|
∫

B2n√
2a

(0)

1

‖y‖2n−2
0

dλ

= vol(S2n−1)

| det A|
∫ √

2a

0
r dr = O(a).

combined with (10) provides this replacement in
∫

B′′
� (a)

η̃ νn−1

( 12 ‖X‖2)n

(
e− 1

2a ‖X‖2 − 1
)
for the

remaining factor-(−1)-term.
Furthermore the integration range B ′

�(a) can be replaced by B ′′
� (a) for m + s = n,

0 ≤ s ≤ n: One has {x ∈ B� | ‖Ax‖20 + c‖Ax‖40 < 2a} ⊂ B ′
�(a) ⊂ {x ∈ B� | ‖Ax‖20 −

c‖Ax‖40 < 2a},where‖Ax‖20 < 1
2c on B�. Thus onefinds (B ′

�(a)\B ′′
� (a))∪(B ′′

� (a)\B ′
�(a)) ⊂

{x ∈ B� | |‖Ax‖20 − 2a| < c‖Ax‖40 and ‖Ax‖20 < 1
2c }. The solutions A± = ‖Ax‖0 of

‖Ax‖20 ± c‖Ax‖40 = 2a verify |A± − √
2a| < c′a3/2 for a sufficiently small. Then integrals

over the difference between B ′
�(a), B ′′

� (a) are bounded by
∫

{x ||‖Ax‖20−2a|<c‖Ax‖40}
a−m(‖Ax‖20)−se− 1

2a ‖Ax‖20 dλ

≤
∫

{x ||‖Ax‖20−2a|<c‖Ax‖40}
a−m(‖Ax‖20)−s dλ

<
vol(S2n−1)

| det A|

⎧
⎪⎪⎨

⎪⎪⎩

a−m r2n−2s
2n−2s

∣∣∣
√
2a+c′a3/2

√
2a−c′a3/2

log r

∣∣∣
√
2a+c′a3/2

√
2a−c′a3/2

if s<n
s=n

= O(a).

Similarly replacing the integration range B� by {x ∈ R2n | ‖Ax‖20 < R2} causes a difference
equal to O(a−me− R2

3a ).
(1) For n = s + m, m ≥ 1 and a → 0+
∫

{x |‖Ax‖20<R2}
1

am‖Ax‖2s
0

e− 1
2a ‖Ax‖20 dλ

y=Ax= 1

| det A|
∫

B2n
R (0)

1

am‖y‖2s
0

e− ‖y‖20
2a dλ

= vol(S2n−1)

am | det A|
∫ R

0
r2n−1−2se− r2

2a dr
u= r2

2a= vol(S2n−1)

am | det A|
∫ R2

2a

0
a
√
2au

2n−2−2s
e−u du

= vol(S2n−1)

| det A| 2m−1(m − 1)! + O

(
e− R2

2a

)
.
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(2) Let Ei denote the exponential integral function given by Ei(x) = − ∫ +∞
−x

e−t

t dt for
x ∈ R−. For s = n, m = 0 one finds

∫

{x |‖Ax‖20<2a}
e− 1

2a ‖Ax‖20 − 1

‖Ax‖2n
0

dλ

y=Ax= 1

| det A|
∫

B2n√
2a

(0)

e− ‖y‖20
2a − 1

‖y‖2n
0

dλ = vol(S2n−1)

| det A|
∫ √

2a

0

e− r2
2a − 1

r
dr

u= r2
2a= vol(S2n−1)

| det A|
∫ 1

0

e−u − 1

2u
du = vol(S2n−1)

2| det A| (�′(1) + Ei(−1)),

∫

{x |2a<‖Ax‖20<R2}
e− 1

2a ‖Ax‖20
‖Ax‖2n

0

dλ

y=Ax= 1

| det A|
∫

B2n
R (0)\B2n√

2a
(0)

e− ‖y‖20
2a

‖y‖2n
0

dλ = vol(S2n−1)

| det A|
∫ R

√
2a

e− r2
2a

r
dr

u= r2
2a= vol(S2n−1)

| det A|
∫ R2

2a

1

e−u

2u
du = vol(S2n−1)

2| det A|
(
Ei

(
− R2

2a

)
− Ei(−1)

)
.

Using | det A| = ∏n
j=1 ϑ2

j the Proposition follows. ��
Now one can verify as a refinement of Eqs. (5), (6)

Lemma 5.4 For t → 0+ and η ∈ A(M),
∫

M η · dt = ∫
MX

η(c−1
top,X )′(T M) + O(t).

Proof One finds
∫

M
η

ωT M

2π t
exp

(
d X �

4π i t
− 1

2t
‖X‖2

)

Prop. 5.1(1)=
∫

M
η

ωT M

2π tn

1

(n − 1)!
(

d X �

4π i

)n−1

e− 1
2t ‖X‖2 + O(t)

Prop. 5.3(1)=
∑

�∈J

a�

2n−1vol(S2n−1)
∏n

j=1 ϑ2
j

+ O(t)

Prop. 5.2=
∑

�∈J

ηp�
(−i−n−1)

∑

j

1

ϑ j

∏

j

1

ϑ j
+ O(t)

=
∫

MX

ηp�
(c−1

top,X )′(T M) + O(t).

��
Theorem 5.5 Let X have isolated zeros. For a → 0+, B ′

�(a) = {x ∈ B� | ‖Xx‖2 < 2a} and
η ∈ A(M),

∫

M
ηSX (M,−ωT M ) =

∫

M
η

ωT M

2π

(
1

1
2‖X‖2 − d X �

4π i

)[<2n−2]

+
∫

M\⋃�∈J B′
�(a)

η
ωT M

2π

(
d X �

4π i

)n−1 (
1

2
‖X‖2

)−n
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+(log a − 2�′(1) − Hn−1)

∫

MX

η(c−1
top,X )′(T M) + O(a)

where α[<2n−2] denotes the part of degree less than 2n −2 and Hn−1 is the harmonic number
as in Eq. (1).

Proof On M \ ⋃
�∈J B�,

∣∣∣∣
∫

M\⋃�∈J B�

η̃

ν− 1
2 ‖X‖2 e

ν− 1
2 ‖X‖2

a

∣∣∣∣ = o(e− C ′
a ) for a constant C ′ >

0 depending on a lower bound for ‖X‖2∣∣M\⋃� B�
. On B� one gets according to Eq. (8)

(generalized to this situation by Lemma 5.4) and the previous Propositions

∫

M
ηSX (M,−ωT M )

(5),Lemma 5.4=
∫

M
η

ωT M

2π
·
exp

(
dX

X �

4π ia

)
− 1

dX
X �

4π i

+(log a − �′(1))
∫

MX

η(c−1
top,X )′(NMX /M , gT M ) + O(a)

Prop. 5.1(2)=
∫

B�

η
ωT M

2π
·
νn−1

(
1 − e

−‖X‖2
2a

)

( 1
2‖X‖2)n

+
∫

B�

η
ωT M

2π

((
1

1
2‖X‖2 − ν

)[<2n−2]

−e
−‖X‖2

2a · νn−1
n−1∑

m=0

( 1
2‖X‖2)−n+m

m!am

)

+(log a − �′(1))
∫

MX

η(c−1
top,X )′(NMX /M , gT M ) + O(a)

Prop. 5.3=
∫

M\⋃�∈J B′
�(a)

η
ωT M

2π
· νn−1

( 1
2‖X‖2)n

+
∫

B�

η
ωT M

2π

(
1

1
2‖X‖2 − ν

)[<2n−2]

−vol(S2n−1)
∏n

ϑ2
j

2n−1a�

( n−1∑

m=1

1

m
+ �′(1)

)

+(log a − �′(1))
∫

MX

η(c−1
top,X )′(NMX /M , gT M ) + O(a).

Using the value of a� as given in Proposition 5.2 finishes the proof. ��
We check Corollary 4.2 at this point:

Corollary 5.6 Assume that X has isolated zeros. Then

cN∞/2+1ScX (M,−ωT M ) − SX (M,−ωT M ) = log c2 · (c−1
top,X )′(NMX /M , gT M ) · δMX

in P M
X ,MX

/P M,0
X ,MX

.
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Proof Consider η1 ∈ ⊕
q A

q,q(M) and set ηt := t−N∞/2η = ∑
q t−q/2η[q] for t ∈ R+. By

Theorem 5.5,
∫

M
η1

(
t

N−2n
2 St X (M,−ωT M )

)
=

∫

M
ηt St X (M,−ωT M )

=
n−1∑

j=1

∫

M
η

[2n−2 j]
t

ωT M

2π
· t− j−1ν j−1

( 1
2‖X‖2) j

+ t−n−1
∫

M\⋃�∈J B′
�(a/t2)

η
[0]
1

ωT M

2π
· νn−1

( 1
2‖X‖2)n

+ (log
a

t2
+ log t2 − 2�′(1) − Hn−1)t

−n−1
∫

MX

η
[0]
1 ·

(
c−1
top,X

)′
(T M) + O(a)

= t−n−1
∫

M
η1SX (M,−ωT M ) + log(t2)t−n−1

∫

MX

η
[0]
1 ·

(
c−1
top,X

)′
(T M).

��
When dXη1 = 0, then dt Xηt = 0.

6 The equivariant Bott–Chern current on the projective plane

Consider the line bundle L := O(1) on the projective line M := P1C with the chart

ψ :]0, 2π [×] − π/2, π/2[ → P1C ⊂ R3

(v, u) �→
⎛

⎝
cos u cos v

cos u sin v

sin u

⎞

⎠ .

In these coordinates, the complex structure J T M is given by J T M ∂
∂v

= cos u ∂
∂u . As before,

let�T M denote the curvature of T M , which in this case equals the curvature tensor of M . For
any SO(3)-invariant metric we find −�T M ( ∂

∂v
, ∂

∂u ) ∂
∂v

= cos2 u · ∂
∂u . Thus the Fubini-Study

form ωT M := 2πc1(O(1)) = πc1(T M) = 1
2 J T M�T M is given by ωT M ( ∂

∂v
, ∂

∂u ) = cos u
2 .

Then

vol(P1C) =
∫

P1C

ωT M

2π
= 1.

Consider the circle action induced by the vector field X := ∂
∂v
. Thus, ‖X‖2 = cos2 u

2 and

mT M = ∇T M· X = sin u · J T M .

As T M ∼= O(2) as SU(2)-equivariant vector bundles, we find mO(1) = i
2 sin u for the

corresponding su(2)-action.

Remark 6.1 When instead considering the action of u(2), there is an additional non-trivial
constant action of multiples of idR2 on O(1), which induces a constant summand for mO(1).
We shall not do this in this paper.

For μ := −imO(1) one finds

dμ = 1

2
cos u du = ιX (ωT M )
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as in [13, (2.4)], except that the sign of ωT M is chosen differently.
Let η ∈ C∞(P1C,C). Thus in the above coordinates 1

2π

∫
η
∣∣
(uv)

dv depends smoothly on

u and thus on sin u. Assume that the moment map of X onO(1) at the north pole is given by
mO(1) = i

2 . Hence it acts by m N = iϑ = i on T M = N at this point. Thus for the normal

bundle N → {p} at any fixed point p, one has (c−1
top,t X )′(N ) = −1

ctop,t X (N )

∑
ϑ

1
c1(N̄ϑ )+i tϑ

=
−1

(i tϑ)2
= 1

t2
.

Theorem 6.2 For η ∈ C∞(P1C,C) set

g(sin u, v) := η
∣∣
(uv)

and g̃(r) := 1

2π

∫ 2π

0

g(r , v) + g(−r , v)

2
dv.

Then
∫

MX
η(c−1

top,t X )′(T M) = 2g̃(1)
t2

and

∫

M
ηSt X (M,−ωT M )

=
∫ 1

−1

(
2g̃(r)

t2
− 2g̃(1)

t2

)
· dr

1 − r2
+ (log t2 − 2�′(1)) · 2g̃(1)

t2
.

Proof The equivariant Bott–Chern current S is X -invariant. It switches sign under the isom-
etry r : (u

v) → (−u
v ), as X is r -invariant and r∗ωT M = −ωT M . As r changes the orientation,∫

M (r∗η)SX (M,−ωT M ) = ∫
M ηSX (M,−ωT M ). Hence in the integrals η and g can be

replaced by their mean value η̃, g̃ over the compact orbit of these symmetries. Let η̃0 := g̃(1)
denote the value of η̃ at the poles. Applying Theorem 5.5 results in

∫

M
ηSt X (M,−ωT M )

=
∫

M
(η̃ − η̃0)

ωT M

2π

(
1

2
‖t X‖2

)−n

+
∫

M\⋃� B′
�(a)

η̃0
ωT M

2π

(
1

2
‖t X‖2

)−n

+ (log a − 2�′(1) − Hn−1)

∫

MX

η̃
(

c−1
top,t X

)′
(T M) + O(a)

=
∫ π/2

−π/2
(g̃(sin u) − g̃(1)) · cos u

4π

(
t2 cos2 u

4

)−1

2π du

+
∫ cos−1 2

√
a

t

− cos−1 2
√

a
t

g̃(1) · cos u

4π

(
t2 cos2 u

4

)−1

2π du

+ (log a − 2�′(1)) · 2g̃(1) · t−2 + O(a).

Using the substitution r := sin u in both integrals on the right hand side, we get the expression
in the Theorem as the second integral equals

g̃(1) ·
∫ √

1−4a/t2

−
√

1−4a/t2

2 dr

t2(1 − r2)
= −g̃(1) · 4

t2
Artanh

√
1 − 4a

t2
= g̃(1) · 2

t2
log

t2

a
+ O(a).

��
The expression in Theorem 6.2 can be given a more combinatorial form for η analytic. For

m ≥ 0 let Hm = ∑m
j=1

1
j denote the harmonic numbers as in Eq. (1), in particular H0 = 0.
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Theorem 6.3 Set ϕ(r)# := ∑∞
m=1 ϕm(2H2m−1 − Hm−1) for any complex power series

ϕ(r) = ∑∞
m=0 ϕmr2m. Assume that g̃(r) is analytic at r = 0 with radius of convergence > 1.

Then
∫

M
ηSt X (M,−ωT M ) = −

(
2g̃(r)

t2

)#

+ (log t2 − 2�′(1)) · 2g̃(1)

t2
.

Proof The integrands Laurent expansion by t in
∫ 1
−1

(
2g̃(r)

t2
− 2g̃(1)

t2

)
· dr
1−r2

provides integrals

of the form
∫ 1

−1
(1 − r2m)

dr

1 − r2
=

m∑

j=1

2

2 j − 1
=

{2H2m−1−Hm−1

0
if

m>0

m=0

for m ≥ 0. The result follows by Theorem 6.2. ��

For the computation of the torsion form we shall need the following variant.

Theorem 6.4 Set ϕ(t)∗ := ∑∞
m=0 ϕm(2H2m+1 − Hm)t2m for any complex Laurent power

series ϕ(t) = ∑∞
m=−1 ϕmt2m. For η ∈ C∞(P1C,C) define g,g̃ as in Theorem 6.2 and set

ηt |(uv) := η
∣∣
(arcsin(t sin u)

v
)

for t ∈ [−1, 1].

1.
∫

MX
ηt (c

−1
top,t X )′(T M) = 2g̃(t)

t2
and

∫

M
ηt St X (M,−ωT M )

=
∫ 1

−1

(
2g̃(tr)

t2
− 2g̃(t)

t2

)
· dr

1 − r2
+ (log t2 − 2�′(1)) · 2g̃(t)

t2
.

2. Assume that g̃(t) is analytic at t = 0 with radius of convergence > 1. Then
∫

M
ηt St X (M,−ωT M ) = −

(
2g̃(t)

t2

)∗
+ (log t2 − 2�′(1)) · 2g̃(t)

t2

= −
(∫

MX

ηt (c
−1
top,t X )′(T M)

)∗
+ (log t2 − 2�′(1))

∫

MX

ηt (c
−1
top,t X )′(T M).

Proof This follows immediately from Theorems 6.2, 6.3 by replacing η with ηt and using(
g̃(t)
t2

)∗ =
(

g̃(tr)

t2

)#
. ��

7 The defining property of SX

The equivariant Bott–Chern current verifies the critical relation

Theorem 7.1 [13, Th. 3.9] Using the inverse of the equivariant top Chern class, the identity

∂̄X∂X

2π i
SX (M,−ωT M ) = 1 − c−1

top,X (NMX /M )δMX

holds.
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In this section we shall quickly illustrate how this relation can be seen using the formula
in Theorem 6.2. Because of

(
∂̄X∂X

2π i
η

)[0]
= 2π iη[2](X0,1, X1,0) − X1,0.η[0],

when setting η =: f1ωT M + f0 with f0, f1 ∈ C∞(M), Theorem 7.1 translates to

2π i
∫

M
f1 · ωT M (X0,1, X1,0)SX (M,−ωT M ) =

∫

M
f1 · ωT M , (12)

−
∫

M
(X1,0. f0)SX (M,−ωT M ) = −

∫

MX

f0c−1
top,X (NMX /M ). (13)

In the coordinates u, v as above, X1,0 = 1
2 (

∂
∂v

− i cos u ∂
∂u ) and 2π iωT M (X0,1, X1,0) =

π
2 cos2 u. Assume w.l.o.g. that f1 and X1,0. f0 are invariant under X and under (u

v) �→ (−u
v ).

The X -invariance of X1,0. f0 is in fact equivalent to the X -invariance of f0, as the equation
∂2

∂v2
f0 = 0 for the real part implies ∂

∂v
f0 =const. And f0 is periodic in v, thus ∂

∂v
f0 = 0.

Now with

g̃1(sin u) := π

2
f1
((

u
v

))
cos2 u, g̃1(±1) := 0

as in Theorem 6.2, Eq. (12) is equivalent to

2π i
∫

M
f1 · ωT M (X0,1, X1,0)SX (M,−ωT M )

=
∫ 1

−1
2g̃1(r)

dr

1 − r2
=

∫ 2π

0

∫ π/2

−π/2

1

2
f1
((

u
v

))
cos u du ∧ dv =

∫

M
f1 · ωT M .

The real part of X1,0. f0 = 1
2

∂ f0
∂v

− i
2 cos u· ∂ f0

∂u does not contribute because of the X -invariance
of X1,0. f0. Setting as in Theorem 6.2

g̃0(sin u) := −i cos u

2
· ∂ f0

∂u
, g̃0(±1) := 0

one finds

−
∫

M
(X1,0. f0)SX (M,−ωT M ) =

∫ π/2

−π/2
i
∂ f0
∂u

du

= i f0
((

π/2
v

)) − i f0
((−π/2

v

))
.

Using c−1
top,X (NMX /M )

∣∣
N = 1

i = −i , c−1
top,X (NMX /M )

∣∣
S = − 1

i = i , Eq. (13) and thus the
equation in Theorem 7.1 follows.

8 The height of P1Z

One of the applications of Bismut’s equivariant Bott–Chern current is a residue formula (in
the spirit of Bott’s formula) in Arakelov geometry [32]. In this section we verify that the
formula gives the correct classically well-known value for the height of the projective plane
over SpecZ. We refer to [37] for the concepts of Arakelov geometry and for the associated
notations. By [37, p. 70], the height of the projective plane f : P1

Z → SpecZ with respect

to the line bundle L := O(1) is given bŷdeg ( f∗ĉ1(O(1))2) ∈ R in terms of the Arakelov
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characteristic class ĉ1 having values in the Gillet-Soulé intersection theory ̂C H(P1
Z). Let

T := SpecZ[X , X−1] be the one-dimensional torus group scheme and consider its canonical
action on P1

Z with fixed point scheme consisting of two copies of SpecZ. Let r denote the
additive characteristic class which is defined in [32, p. 90] as

rX (L)
∣∣

p := −
∑

j≥0

(−c1(L)) j

(iϕ) j+1

⎛

⎝−2�′(1) + 2 log |ϕ| −
j∑

k=1

1

k

⎞

⎠ ∈ H•(MX )

for L a line bundle acted upon by X with an angle ϕ ∈ R at p ∈ MX . According to the
residue formula in Arakelov geometry proven in [32, Th. 2.11], the height can be computed
using equivariant Arakelov characteristic classes ĉ1,t , ĉtop,t and the normal bundle N̄ as

̂deg ( f∗ĉ1(O(1))2) =̂deg

(
f T∗

ĉ1(O(1))2)

ĉtop,t (N̄ )

)

+1

2

∫

P1C
c1,X (O(1))2SX (P1C,−ωTP1C) − 1

2

∫

P1
T C

c1,X (O(1))2
rX (N )

ctop,X (N )
.

(14)

Classically, at the fixed point subscheme ĉ1(L) = ĉ1(N )/2 = 0, thus the arithmetic term on
the right hand side of the residue formula (14) vanishes. At a fixed point p let t X act by an
angle ϕ on O(1) and by an angle ϑ on N . In our case the angles ϕ and ϑ at the fixed points
are given by ± t

2 and ±t , respectively. As in [32, p. 98],

−1

2

∫

P1
T C

c1,X (L)2
rX (N )

ctop,X (N )
= −1

2

∑

p∈P1
T C

c1,X (L)2

ctop,X (N )
rX (N )

=
∑

p∈P1
T C

ϕ2
p∏

ϑ ϑ

∑

ϑ

−�′(1) + log |ϑ |
ϑ

= −�′(1)
2

+ 1

4
log t2.

According to Theorem 6.4 we get with ηt = (mL(t X))2 = − t2
4 sin2 u and g̃(t) = − 1

4 t2

1

2

∫

P1C
ηt St X (P1C,−ωTP1C) = 1

2

(
1 − 1

2
log t2 + �′(1)

)
.

Hence the residue formula in Arakelov geometry [32, Th. 2.11] states in this case

̂deg f∗ĉ1(L)2 = 1

2
(15)

which is the well-known classical value [37, p. 71].

9 Lie algebra equivariant torsion on P1C

We employ the following special case of Bismut–Goette’s main result:

Theorem 9.1 [13, Th. 0.1] For |t | sufficiently small,

Tet X (P1C,O(�)) − Tid,t X (P1C,O(�))

=
∫

P1C
Tdt X (TP1C)cht X (O(�))St X (P1C,−ωTP1C)
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−
∫

(P1C)X

Tdet X (TP1C)chet X (O(�))It X (NP1CX
).

With the angle tϑ of the operation of g = et X on Tp M at the fixed point p, t �= 0, we get

Tdet X (T M)chet X (E)It X (T M)
∣∣

p = Tr gE

det(1 − (gT M )−1)

∑

k∈Z\{0}
ϑ

log
(
1 + tϑ

2πk

)

i tϑ + 2kπ i
.

By [7, (20) (appendix)], for 0 < |tϑ | < 2π the last term It X (P1C) equals

∑

k∈Z\{0}

log
(
1 + tϑ

2πk

)

i tϑ + 2kπ i
=

∑

m≥1
m odd

Hm
ζ(−m)(i tϑ)m

m!

using the harmonic numbers as given in Eq. (1). For M = P1C, TP1C = O(2), ϑO(1) =
±1/2 at the fixed points we get for the second summand on the right hand side in Theorem9.1

∫

MX

Tdet X (T M)chet X (O(�))It X (T M)

=
∑

p

e±i t�/2

1 − e∓i t

∑

m≥1
m odd

Hm
ζ(−m)(±i t)m

m! = cos (�+1)t
2

i sin t
2

∑

m≥1
m odd

Hm
ζ(−m)(i t)m

m! . (16)

Proposition 9.2 For M = P1C, t �= 0, the first summand on the right hand side in
Theorem 9.1 is given by

∫

M
Tdt X (T M)cht X (O(�))St X (M,−ωT M )

=
∫ 1

−1

(
r cos (�+1)tr

2

sin tr
2

− cos (�+1)t
2

sin t
2

)
· dr

t(1 − r2)
+ (log t2 − 2�′(1)) · cos

(�+1)t
2

t sin t
2

= −
(
cos (�+1)t

2 )

t sin t
2

)∗
+ (log t2 − 2�′(1)) · cos

(�+1)t
2

t sin t
2

.

Proof Setting mL := mO(1) the X -equivariant classes are given by

η := Tdt X (T M)cht X (O(�)) = 2tmL

1 − e−2tmL et�mL + terms of higher degree.

Thus we get

Tdt X (T M)cht X (O(�))(c−1
top,t X )′(N )

∣∣
p = 1

t2
±i te±i t�/2

1 − e∓i t

and henceforth
∫

MX

Tdt X (T M)cht X (O(�))(c−1
top,t X )′(N ) = cos (�+1)t

2

t sin t
2

.

Remember that by its definition via the integral
∫

M η ∧ dt , where dt as in Eq. (4) is a form of
degree 2 and higher, in this complex-1-dimensional case

∫
ηSt X (M,−ωT M ) only depends on
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η[0] for any formη. Hence the result follows by applyingTheorem6.4with g̃(t) = t cos( (�+1)t
2 )

2 sin( t
2 )

.
��

Theorem 9.3 For 0 < t < 2π , the value in Proposition 9.2 has for � → +∞ an asymptotic
expansion given by

∫

M
Tdt X (T M)cht X (O(�))St X (M,−ωT M )

= − cos (�+1)t
2

t sin t
2

log(� + 1) + sin (�+1)t
2 · π

2 − cos (�+1)t
2 · (�′(1) − log t

)

t sin t
2

+ O

(
1

�

)
.

Note that log(� + 1) = log � + O( 1
�
).

Proof We decompose the integral in Proposition 9.2 as

∫ 1

−1

(
r cos (�+1)tr

2

sin tr
2

− cos (�+1)t
2

sin t
2

)
· dr

t(1 − r2)

=
∫ 1

−1

cos (�+1)tr
2 − cos (�+1)t

2

(1 − r2)t sin t
2

dr +
∫ 1

−1

(
r

sin tr
2

− 1

sin t
2

)
· cos

(�+1)tr
2

t(1 − r2)
dr .

For |t | < 2π , the factor f (r) :=
(

r
sin tr

2
− 1

sin t
2

)
· 1

t(1−r2)
in the second integral on the right

hand side is smooth on r ∈ [−1, 1]. Partial integration shows

∫ 1

−1

(
r

sin tr
2

− 1

sin t
2

)
· cos

(�+1)tr
2

t(1 − r2)
dr

= 2

(� + 1)t
sin

(� + 1)tr

2
· f (r)

∣∣∣
1

−1
− 2

(� + 1)t

∫ 1

−1
sin

(� + 1)tr

2
· f ′(r) dr = O(1/�).

To estimate the first integral on the right hand side, we represent it as twice the integral
over [0, 1], decompose 1

1−r2
= 1/2

1−r + 1/2
1+r and use the trigonometric addition formula for

cos (�+1)tr
2 = cos

(
(�+1)t(r−1)

2 + (�+1)t
2

)
. Let Si and Ci denote the sine and cosine integral

functions, respectively, which are given by Si(x) = ∫ x
0

sin t
t dt and Ci(x) = − ∫ +∞

x
cos t

t dt
for x ∈ R+. Then the above integral equals

∫ 1

−1

cos (�+1)tr
2 − cos (�+1)t

2

(1 − r2)t sin t
2

dr

= sin (�+1)t
2 · Si((� + 1)t) − cos (�+1)t

2 · (−�′(1) − Ci((� + 1)t) + log((� + 1)t)
)

t sin t
2

= sin (�+1)t
2 · π

2 − cos (�+1)t
2 · (−�′(1) + log((� + 1)t)

)

t sin t
2

+ O

(
1

�

)
.

Adding the term (log t2 − 2�′(1)) · cos (�+1)t
2

t sin t
2

from Proposition 9.2, one obtains the result. ��

By iterating the partial integration, one can extend this expansion to arbitrary negative
powers of � + 1.
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Theorem 9.4 With respect to the action of the vector field X ∈ �(P1C, TP1C), the X-
equivariant torsion is given by

Tid,t X (P1C,O(�)) = −cos (�+1)t
2

sin t
2

∑

m≥1
m odd

(
2ζ ′(−m) + Hmζ(−m)

) (−1)
m+1
2 tm

m!

+
|�+1|∑

m=1

sin(2m − |� + 1|) t
2

sin t
2

logm +
(
cos (�+1)t

2 )

t sin t
2

)∗

where (t2m)∗ := t2m · {2H2m+1−Hm
0 if m≥0

m=−1 (as in Theorem 6.4) and Hm is the harmonic
number as in Eq. (1).

The first summand contains exactly the function defining the (non-equivariant) Gillet–
Soulé R-class [37, p. 160],

R(L) =
∑

m≥1
m odd

(
2ζ ′(−m) + Hmζ(−m)

) c1(L)m

m! (17)

(see Theorem 11.2 for a closer analysis). The ζ ′-term as well as the equivariant-metric-terms
are derived from the equivariant torsion. The ∗-summand originates from the equivariant
Bott–Chern current and the Hmζ(−m)-term is the I -class. Some terms from the first two
summands cancel each other.

Proof [29, Th. 2] shows for t ∈]0, 2π [,

Tet X (P1C,O(�)) = 2Rrot(t)
cos (�+1)t

2

sin t
2

+
|�+1|∑

m=1

sin(2m − |� + 1|) t
2

sin t
2

logm (18)

where according to [29, Prop. 1],

Rrot(t) = −�′(1) + log t

t
−

∑

m≥1
m odd

ζ ′(−m)(−1)
m+1
2

tm

m! . (19)

Combining this with Bismut–Goette’s Theorem 9.1, Proposition 9.2 and Eq. (9.2) we find

Tid,t X (P1C,O(�)) = 2

⎛

⎜⎝
−�′(1) + log t

t
−

∑

m≥1
m odd

ζ ′(−m)(−1)
m+1
2

tm

m!

⎞

⎟⎠
cos (�+1)t

2

sin t
2

+
|�+1|∑

m=1

sin(2m − |� + 1|) t
2

sin t
2

logm − (log t2 − 2�′(1)) · cos
(�+1)t

2

t sin t
2

+
(
cos (�+1)t

2 )

t sin t
2

)∗
+ cos (�+1)t

2

i sin t
2

∑

m≥1
m odd

Hm
ζ(−m)(i t)m

m! .

��
This sum does not contain a factor log t nor any negative powers of t anymore. It is an

even power series in t . The expansion in t up to O(t4) is given by
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Tid,t X (P1C,O(�))

= 4ζ ′(−1) +
|�+1|∑

m=1

(2m − |� + 1|) logm − |� + 1|2
2

+
(
10|1 + �|4 − 5|1 + �|2 − 4

720
+ −4ζ ′(−3) − (|1 + �|2 − 1|)ζ ′(−1)

6

+
|�+1∑

m=1

(|� + 1| − 2m)3 − (|� + 1| − 2m)

24
logm

⎞

⎠ · t2 + O(t4). (20)

Remark 9.5 We shall verify that the value of Tid,t X (P1C,O(�)) for t = 0 equals the known
formula for T (P1C,O(�)):

The equivariant torsion has been computed in [30, Theorem 18] for equivariant vector
bundles on symmetric spaces. We shall use the notations ζ , ζ ′, χ∗ etc. from [30, p. 102]: For
ϕ ∈ R and Re s > 1, consider the Lerch zeta function

ζL(s, ϕ) =
∞∑

k=1

eikϕ

ks
. (21)

For ϕ fixed, the function ζL has analytic continuation in the variable s to C\{1}. Set
ζ ′

L(s, ϕ) := ∂/∂s(ζL(s, ϕ)). Let P : Z → C be a function of the form

P(k) =
m∑

j=0

c j k
n j eikϕ j

with m ∈ N0, n j ∈ N0, c j ∈ C, ϕ j ∈ R for all j . Then for p ∈ R we shall use the notations
Podd(k) := (P(k) − P(−k))/2,

ζ P :=
m∑

j=0

c jζL(−n j , ϕ j ), ζ ′ P :=
m∑

j=0

c jζ
′
L(−n j , ϕ j ),

ζ P :=
m∑

j=0

c jζL(−n j , ϕ j )

n j∑

�=1

1

�
, Res P(p) :=

m∑

j=0
ϕ j ≡0 mod2π

c j
pn j +1

2(n j + 1)

and

P∗(p) := −
m∑

j=0
ϕ j ≡0 mod 2π

c j
pn j +1

4(n j + 1)

n j∑

�=1

1

�
.

For P1C = U(2)/U(1) × U(1) =: G/K identify the Lie algebra of the maximal torus
withR2 with the ordering (e1, e2). Then the positive roots are given by�+ = ψ = {e1−e2},
and the weight providing O(�) is given by 
 = −� · e2. Thus for α = e1 − e2, ρG = α

2 we

get the dimension χρG+
+kα(0) = 〈α,ρG+�·e1+kα〉
〈α,ρG 〉 = 1+�+2k. Furthermore (α, ρG +
) =

2〈α,ρG+�·e1〉〈α,α〉 = 1+ �. The formula in [30, Theorem 18] requires the highest weight 
 of the
bundle to be in the closure of the positive Weyl chamber. Thus for � ≥ 0, one obtains for the
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evaluation of the characters at the neutral element

T (P1C,O(�)) = 2ζ ′ ∑

�

χodd
ρG+
+kα − 2

∑

�

χ∗
ρG+
−kα ((α, ρG + 
))

−
∑

�

(α,ρG+
)∑

k=1

χρG+
−kα log k −
∑

�

ζχρG+
+kα log
‖α‖2�
2

= 4ζ ′(−1) − (α, ρG + 
)2

2
H1 −

�+1∑

k=1

(1 + � − 2k) log k

= 4ζ ′(−1) − (� + 1)2

2
−

�+1∑

k=1

(1 + � − 2k) log k (22)

for the choice ‖α‖2�
2 = 1 as in [30, (71)]. Köhler [30, Theorem 18] contained a mistyped sign

in the third summand. A formula valid for arbitrary equivariant bundles (andwithout the typo)
was given in [27, Th. 5.2], written slightly differently using ζ P(k) = −ζ P(−k) − P(0).

This result shows for any � ∈ Z that T (P1C,O(�)) = 4ζ ′(−1) − (�+1)2

2 −∑|�+1|
k=1 (|1+ �| −

2k) log k. For arbitrary X0 one gets an additional summand

− ζχρ+�λ+kα log
‖α‖2�
2

= −ζ (2k + � + 1) log
‖α‖2�
2

= −
(
2 · −1

12
− � + 1

2

)
log

‖α‖2�
2

=
(
2

3
+ �

2

)
log

‖α‖2�
2

, (23)

where 2
‖α‖� = 1

〈α,ρG 〉� = vol�P1C by [4, Cor. 7.27]. See also [28, p. 840] for additional
remarks.

10 The torsion form

Let P → B be a U(2) principal bundle, P → B the induced P1C-bundle and E := P ×U(2)
C2. Then P = P(E). The curvature form � ∈ 
1,1T ∗ B ⊗ (P ×U(2) u(2)) inserted in the
torsion form as a C-valued homogeneous polynomial on u(2) provides an expression in
terms of c1(E), c2(E) via the fiber bundle embedding P ×U(2) u(2) ↪→ P ×U(2) End(C2) =
End(E). In general [13, (2.74)] shows for such bundles induced by principal bundles with
compact structure group that the torsion form is a cohomology class.

Remark 10.1 In generalP1C-bundles can lookmore complicated; the relevant structure group
is PU(2) = SO(3) and the obstruction is an element of H3(B,Z): The structure group of
projective bundles is PU(k) = U(k)/U(1) = SU(k)/(Z/kZ) (embedded diagonally). Thus
one gets an obstruction α ∈ H3(B,Z) with kα = 0 (see [26, p. 517]; [1], and [3]). See also
[17] for a more detailed discussion of the holomorphic situation.

Proof (of Theorem 1.1) Each Y ∈ u(2) induces a vector field on P1C = U(2)/U(1) × U(1),
which we shall denote by ρ(Y ). The Lie algebra element

(
i/2
0

0−i/2
) ∈ u(2) acts with

period π on P1C and induces the vector field X = ∂
∂v
. Thus the element Y0 = (

iα
0
0

iβ
) ∈

u(2) induces the vector field (α − β) · X . For any Y ∈ g, γ ∈ G the equality
Tid,ρ(Adγ Y )(P1C,O(�)) = Tid,ρ(Y )(P1C,O(�)) holds, as both vector bundle and metric are
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γ -invariant. Thus Tid,t X (P1C,O(�)) determines Tid,ρ(Y )(P1C,O(�)) completely. Because
of the Ad-invariance of Tr , det and (Tr Y0)

2 − 4 det Y0 = −(α − β)2,

Tid,ρ(Y )(P1C,O(�)) = T
i X

√
(Tr Y )2−4 det Y

(P1C,O(�)). (24)

Considering the determinant of the Euler sequence for the map π : P1C →point

0 → O(−1) → π∗C2 → TP1C ⊗ O(−1) → 0

one finds O(−2) ∼= π∗
2C2 ⊗ T ∗P1C. As eY0 ∈ U(2) acts with weight ei(α+β) on the
pointwise trivial line bundle π∗
2C2, the action of eY0 on O(�) is given by the action of

the traceless component in su(2) composed with the pointwise factor e−i� α+β
2 . Thus, when

considering the torsion with respect to the action of the Lie algebra element Y ∈ g instead

of the action of the vector field ρ(Y ), one gets the value (24) multiplied by e− �
2 Tr Y .

According to [13, (2.74)], one obtains the torsion form Tπ (O(�)) by replacing Y ∈ g

with − 1
2π i �

E . Thus in the value of Tid,t X (P1C,O(�)) given by Theorem 9.4, −t2 has to be

replaced by c1(E)2 − 4c2(E), and the factor e− �
2 Tr Y gets replaced by e− �

2 c1(E). ��
One can also verify quickly that the class c1(E)2−4c2(E) is invariant under E �→ E ⊗L′

for every line bundle L′. This verifies that it is indeed well-defined for P1C-bundles.

11 Comparison with the arithmetic Grothendieck–Riemann–Roch
theorem

Given a P1C-bundle π : P → B, we denote the vertical tangent space by T π .

Proposition 11.1 For any P1C-bundle π : P → B one obtains

π∗c1(E) = c1(T π) − 2c1(O(1)) and π∗(c1(E)2 − 4c2(E)) = c1(T π)2.

Thus π∗Tπ (O(�)) = T�(c1(T π)2).

Proof Using the Euler sequence for projective fibrations

0 → O(−1) → π∗E → T π ⊗ O(−1) → 0

one finds

π∗ch(E) = ch(O(−1))(1 + ch(T π))2 + [2c1(O(−1)) + c1(T π)]
+
[

c1(O(−1))2 + c1(T π)c1(O(−1)) + 1

2
c1(T π)2

]
+ . . .

and thus π∗c1(E) = c1(T π) − 2c1(O(1)) and

c1(T π)2 = π∗(−(ch(E)[2])2 + 4ch(E)[4]) = π∗(c1(E)2 − 4c2(E)).

��
For a general P1C-bundle one has to replace E by H0(P1C,O(1)) in the result. The

arithmetic Grothendieck–Riemann–Roch theorem [25] states with the fibres Z ∼= P1C of the
fibration PE → B

ĉh(π∗O(�)) − Tπ (O(�)) = π∗(ĉh(O(�))T̂d(T π)) −
∫

Z
ch(O(�))Td(T π)R(T π).
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Theorem 11.2 When multiplied by e− �
2 c1(E), the summand

T̃�(−t2) := −cos (�+1)t
2

sin t
2

∑

m≥1
m odd

(
2ζ ′(−m) + Hmζ(−m)

) (−1)
m+1
2 tm

m!

of T�(−t2) contributes the term
∫

Z ch(O(�))Td(T π)R(T π) to the torsion form.

Proof By the projection formula π∗(π∗α ∧ β) = α ∧ π∗β in cohomology and Proposi-
tion 11.1,

∫

Z
c1(T π)2m = (c1(E)2 − 4c2(E))m ·

∫

Z
0 = 0. (25)

Similarly, one finds
∫

Z
c1(T π)2m+1 =

∫

Z
(2c1(O(1)) + π∗c1(E)) · c1(T π)2m

= 2
∫

Z
c1(O(1)) · π∗(c1(E)2 − 4c2(E))m +

∫

Z
π∗(c1(E) · (c1(E)2 − 4c2(E))m)

= 2(c1(E)2 − 4c2(E))m ·
∫

Z
c1(O(1)) = 2(c1(E)2 − 4c2(E))m . (26)

Noticing T̃�(−(i t)2) = cosh (�+1)t
2

sinh t
2

R(t), one gets

∫

Z
ch(O(�))Td(T π)R(T π) =

∫

Z
e�c1(O(1)) c1(T π)

1 − e−c1(T π)
R(T π)

Prop. 11.1= e− �
2 c1(E)

∫

Z
e

�
2 c1(T π) c1(T π)

1 − e−c1(T π)
R(T π)

(25)= e− �
2 c1(E)

∫

Z

c1(T π)

2
· cosh

(�+1)c1(T π)
2

sinh c1(T π)
2

R(T π)

= e− �
2 c1(E)

∫

Z

c1(T π)

2
· T̃�(c1(T π)2)

(26)= e− �
2 c1(E)T̃�(c1(E)2 − 4c2(E)).

��

12 Equivariant torsion forms

Consider a holomorphic isometric action of a Lie group G on M . Consider g ∈ G and a
vector field X induced by an element of the Lie algebra zG(g) ⊂ g of the centralizer of g.
Let Ig,X denote the additive equivariant characteristic class on Mg ∩ MX which is given for
a line bundle L as follows: If X acts at the fixed point p by an angle ϑ ′ ∈ R on L and g acts
by eiϑ with ϑ ∈ [0, 2π [, then for |ϑ ′| sufficiently small

Ig,X (L)
∣∣

p :=
∑

k∈Z
2πk+ϑ �=0

log
(
1 + ϑ ′

2πk+ϑ

)

c1(L) + iϑ + iϑ ′ + 2kπ i
. (27)
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Set R̃0(ϑ, x) := ∑∞
k=0

(
∂
∂s ζL(−k, ϑ) + ζL(−k, ϑ)

Hk
2

)
xk

k! with ζL as inEq. (21). Forϑ �= 0,

set R(ϑ, x) := R̃0(eiϑ , x) − R̃0(e−iϑ ,−x). In [29, Prop. 1], it is shown that 2i Rrot(ϑ) =
R(ϑ, 0) for ϑ ∈]0, 2π[ with Rrot given by Eq. (19). Bismut–Goette showed in equation [13,
(0.13)] that for ϑ �= 0, |ϑ ′| sufficiently small,

Ig,X (L)
∣∣

p = R(ϑ, c1(L) + iϑ ′) − R(ϑ + ϑ ′, c1(L)).

We refer to [13, Th. 2.7] for the definition of (g, t X)-equivariant characteristic classes Tdg,t X ,
chg,t X and torsion Tg,t X . Bismut–Goette’s main result shows for the action of g ∈ SU(2)
and the infinitesimal action of X ∈ su(2) on P1C:

Theorem 12.1 [13, Th. 1] Let g ∈ SU(2), X ∈ zSU(2)(g) act of P1C. Then the (g, t X)-
equivariant torsion Tg,t X (P1C,O(�)) verifies for |t | sufficiently small

Tget X (P1C,O(�)) − Tg,t X (P1C,O(�))

=
∫

P1Cg

Tdg,t X (TP1C)chg,t X (O(�))St X (P1Cg,−ωTP1C)

−
∫

P1CX ∩P1Cg

Tdget X (TP1C)chget X (O(�))Ig,t X (NP1Cg
).

If g =: es X acts with isolated fixed points, the S-current term disappears, as the S-current
has no degree 0 part. Thus

Tes X ,t X (P1C,O(�)) = Te(s+t)X (P1C,O(�))

+
∫

P1CX

Tde(s+t)X (TP1C)che(s+t)X (O(�))Ies X ,t X (TP1CX ).

Similarly to Eq. (16), one finds
∑

p

Tde(s+t)X (T M)che(s+t)X (O(�))Ies X ,t X (T M)
∣∣

p

= −cos (�+1)(s+t)
2

sin (s+t)
2

∑

k∈Z

log
(
1 + t

2πk+s

)

2πk + t + s
.

Thus using Eqs. (18) and [13, (0.13)] one obtains

Theorem 12.2 The (es X , t X)-equivariant torsion verifies for |s|, |t | sufficiently small

Tes X ,t X (P1C,O(�))

= 2Rrot(s + t)
cos (�+1)(s+t)

2

sin (s+t)
2

+
|�+1|∑

m=1

sin(2m − |� + 1|) (s+t)
2

sin (s+t)
2

logm

−cos (�+1)(s+t)
2

sin (s+t)
2

∑

k∈Z

log(1 + t
2πk+s )

2πk + t + s

=
|�+1|∑

m=1

sin(2m − |� + 1|) (s+t)
2

sin (s+t)
2

logm + cos (�+1)(s+t)
2

i sin (s+t)
2

R(t, is).

This provides the value of the G-equivariant torsion form introduced in [33] analogous
to Theorem 1.1.
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