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Summary

Magnetic Resonance Imaging (MRI) is an essential tool in both clinical diagnostics and

research, offering a wide range of contrast mechanisms for imaging anatomical structures

and assessing tissue properties. One key MRI application is diffusion-weighted imaging

(DWI), which sensitizes the MRI signal to the diffusive motion of water molecules, en-

abling the investigation of tissue microstructure. This is especially valuable for imaging

the human brain, as DWI can reveal white matter pathways by measuring diffusion

anisotropy. DWI provides a non-invasive method to indirectly assess structures on the

micrometer scale, despite MRI’s typical millimeter-scale spatial resolution. This thesis

focuses on the design of fast sequences for whole-brain DWI, which are combined with

techniques for correcting field inhomogeneity effects at high (3T) and ultra-high (7T)

field strengths.

In the first part, a framework for open-source sequence development and image recon-

struction is presented. Different open-source tools for sequence design, image reconstruc-

tion and image analysis were combined to form a workflow that allows rapid prototyping

of MR sequences and reconstructions, can be shared among other researchers, and is

independent from proprietary software. The workflow was validated by acquiring and re-

constructing data from different MRI scanners of different vendors. Example applications

included a 3D gradient echo (GRE) sequence with controlled aliasing (CAIPIRINHA)

acceleration, mapping of static deviations from the main magnetic field B0 and non-

Cartesian imaging with spiral k-space trajectories. Both Cartesian and non-Cartesian

image reconstruction algorithms were integrated into the workflow using open-source im-

age reconstruction toolboxes. The reconstruction algorithms included optional k-space

trajectory correction using the gradient impulse response function and correction for

magnetic field inhomogeneity. The workflow was additionally integrated into the MRI

simulation framework JEMRIS to allow direct comparison of experimental results to

simulation results. The proposed pipeline was extensively used for sequence design and

image reconstruction in the subsequent chapters.

The second part describes the improvement of non-invasive axon radius estimation in

the human white matter using a multiband spiral sequence on a 3T scanner with a high-

performance gradient system. Magnetic field monitoring was used to reduce artifacts

stemming from dynamic field inhomogeneities, mainly caused by eddy currents during
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Summary

the course of the DWI sequence. The actual encoding fields, measured up to the third

spatial order, and static magnetic field inhomogeneities, measured using a dual-echo GRE

sequence, were both incorporated into the image reconstruction algorithm. The spiral

sequence was compared to the current gold standard multiband echo-planar imaging

(EPI) sequence with image-based field corrections. An established diffusion-weighted

imaging protocol, which showed reproducible results in a previous study, was used to

estimate axon radii in white matter voxels. Strong diffusion weighting was applied to

suppress all extra-axonal signals, enabling the use of a single-compartment model for

the intra-axonal space. The axon radii were then estimated from the orientationally

averaged DWI signal. A test–retest study was performed to assess the repeatability of

axon radius estimation with EPI and spiral sequences. The higher signal-to-noise ratio

(SNR) provided by the spiral readout led to reduced test–retest variability of axon radius

estimates. Incorporating the actual encoding fields in the image reconstruction algorithm

effectively reduced artifacts related to eddy currents, which are caused by strong diffusion

gradients. However, a significant bias was detected in the test–retest measurements of

some subjects for both EPI and spiral sequences, indicating a potential issue with the

repeatability of axon radius estimation.

In the third part a new variant of the 3D dual refocusing echo acquisition mode

(3DREAM) sequence is developed at a 7T scanner. The 3DREAM sequence allows for

mapping of the B1 field, which is a prerequisite for parallel transmit (pTx) techniques.

The new variant uses a 3D stack-of-spirals instead of a Cartesian readout scheme, with

the aim of reducing blurring and increasing the effective resolution in B1 maps. The

blurring is caused by the fast decay of the stimulated echo signal, which is prepared

only once at the beginning of the sequence and decays with each following excitation.

Using a spiral readout allows for more efficient k-space sampling, thus reducing the

number of excitations. The spiral 3DREAM sequence was compared to the Cartesian

3DREAM sequence and three other established B1 mapping methods in phantom and

in-vivo measurements. Both 3DREAM sequences showed excellent agreement with the

three other methods, while their acquisition time was significantly lower. Blurring and

ventricular contrast in B1 maps were reduced for the spiral 3DREAM compared to

Cartesian 3DREAM, with the reduction becoming more significant at higher resolutions.

In the last part of this thesis, whole-brain DWI is performed on an ultra-high field

(7T) scanner. At ultra-high fields the inhomogeneity of the B1 field leads to severe

signal dropouts in lower brain areas such as the cerebellum. An eight transmit channel

RF coil and specifically designed pTx pulses were used to mitigate these inhomogeneities.

Multiband pTx pulses were integrated into EPI and spiral DWI sequences. Static and

dynamic field inhomogeneities were addressed by using field monitoring and static B0

field mapping. The performance of the pTx pulses was compared to standard circularly

polarized pulses. EPI and spiral images reconstructed with field monitoring data were

compared to EPI data with image-based field inhomogeneity correction. It was found

8
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that deteriorating effects of B1 inhomogeneities were largely resolved by using pTx pulses.

Increased signal in the cerebellum improved diffusion tensor fitting and resulted in more

accurate fractional anisotropy and mean diffusivity maps. A remaining challenge is the

low bandwidth of the pTx pulses, which results in bended slices in regions with large

B0 inhomogeneity. In accordance to the results of part two, the SNR for spiral DWI

was increased compared to EPI DWI. However, at a field strength of 7T, static B0

inhomogeneity posed a more severe problem in image reconstruction compared to 3T, as

artifacts such as geometric distortions and blurring could not be fully resolved.
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Zusammenfassung

Die Magnetresonanztomographie (MRT) ist ein wesentliches Werkzeug sowohl in der

klinischen Diagnostik als auch in der Forschung. Sie bietet verschiedene Kontrastmecha-

nismen zur Abbildung anatomischer Strukturen und zur Untersuchung von Gewebeei-

genschaften. Eine Schlüsselanwendung der MRT ist die diffusionsgewichtete Bildgebung

(DWI), die das MR-Signal auf die diffusive Bewegung von Wassermolekülen sensibilisiert

und somit die Untersuchung der Gewebemikrostruktur ermöglicht. Dies ist besonders

wertvoll für die Bildgebung des menschlichen Gehirns, da die DWI durch Messung der

Diffusionsanisotropie Nervenfaserbahnen in der weiße Substanz sichtbar machen kann.

DWI ist eine nicht-invasive Methode, die es erlaubt Strukturen im Mikrometerbereich

sichtbar zu machen, obwohl die räumliche Auflösung der MRT typischerweise im Mil-

limeterbereich liegt. Diese Dissertation konzentriert sich auf die Entwicklung schneller

Sequenzen für die DWI des gesamten Gehirns, die mit Techniken zur Korrektur von Feld-

inhomogenitäten bei hohen (3T) und ultra-hohen (7T) Feldstärken kombiniert werden.

Im ersten Teil wird eine Entwicklungsumgebung für Pulssequenzen und Bildrekon-

struktionsalgorithmen vorgestellt, die quelloffene Software nutzt. Verschiedene quellof-

fene Tools für Sequenzdesign, Bildrekonstruktion und Bildanalyse wurden kombiniert,

um einen Workflow zu erstellen, der eine schnelle Prototypenentwicklung von MRT Se-

quenzen und Rekonstruktionsalgorithmen ermöglicht, mit anderen Forschern geteilt wer-

den kann und unabhängig von proprietärer Software ist. Der Workflow wurde validiert,

indem Daten mit verschiedenen MRT-Scannern unterschiedlicher Hersteller akquiriert

und rekonstruiert wurden. Beispielanwendungen umfassten eine 3D Gradienten-Echo

(GRE) Sequenz mit „controlled aliasing (CAIPIRINHA)“-Beschleunigung, Messung von

statischen Magnetfeldabweichungen und nicht-kartesische Bildgebung mit spiralförmi-

gen k-Raum-Trajektorien. Sowohl kartesische als auch nicht-kartesische Bildrekonstruk-

tionsalgorithmen wurden unter Verwendung von quelloffener Software in den Work-

flow integriert. Die Rekonstruktionsalgorithmen beinhalteten eine optionale Korrektur

von k-Raum-Trajektorien unter Verwendung der Gradienten-Impuls-Antwort-Funktion

und Korrekturen für Magnetfeldinhomogenitäten. Der Workflow wurde zusätzlich in die

MRT-Simulationssoftware JEMRIS integriert, um einen direkten Vergleich der experi-

mentellen Ergebnisse mit Simulationsergebnissen zu ermöglichen. Der entwickelte Work-

flow wurde in den darauffolgenden Kapiteln ausgiebig für die Sequenzentwicklung und
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die Bildrekonstruktion verwendet.

Der zweite Teil beschreibt die Verbesserung der nicht-invasiven Quantifizierung des

Axonradius in der weißen Substanz des menschlichen Gehirns unter Verwendung einer

Multiband-Spiralsequenz an einem 3T-Scanner mit einem Hochleistungsgradientensy-

stem. Messungen der Gradientenfelder mit räumlich verteilten Magnetfeldsonden wur-

den durchgeführt, um Artefakte zu reduzieren, die durch dynamische Feldinhomogeni-

täten entstehen, welche hauptsächlich durch Wirbelströme während der DWI-Sequenz

verursacht werden. Die tatsächlichen Gradientenfelder, gemessen bis zur dritten Raum-

ordnung, sowie statische Magnetfeldinhomogenitäten, gemessen mit einer GRE-Sequenz

mit zwei verschiedenen Echozeiten, wurden in den Bildrekonstruktionsalgorithmus in-

tegriert. Die Spiralsequenz wurde mit dem aktuellen Goldstandard, einer Multiband

„Echo-Planar Imaging (EPI)“ Sequenz mit bildbasierten Feldkorrekturen verglichen. Ein

etabliertes diffusionsgewichtetes Bildgebungsprotokoll, das in einer früheren Studie re-

produzierbare Ergebnisse zeigte, wurde verwendet, um Axonradien in Voxeln innerhalb

der weißen Substanz abzuschätzen. Starke Diffusionsgewichtung wurde angewendet, um

das MR Signal außerhalb der Axone zu unterdrücken, wodurch die Modellierung des

diffusionsgewichteten Signals auf den intra-axonalen Raum beschränkt werden kann. Die

Axonradien wurden dann aus dem über alle Raumrichtungen gemittelten DWI Signal

berechnet. Eine Test-Retest-Studie wurde durchgeführt, um die Wiederholbarkeit der

Axonradius Messung mit EPI- und Spiralsequenzen zu bewerten. Das höhere Signal-

Rausch-Verhältnis (SNR), das durch die Spiraltrajektorie erreicht wurde, führte zu ei-

ner reduzierten Test-Retest-Variabilität der Axonradiusmessungen. Die Einbeziehung der

gemessenen Gradientenfelder in den Bildrekonstruktionsalgorithmus reduzierte Artefak-

te, die von Wirbelströmen aufgrund starker Diffusionsgradienten verursacht werden. Es

wurde jedoch ein signifikanter systematischer Fehler in den Test-Retest-Messungen bei

einigen Probanden sowohl für EPI- als auch für Spiralsequenzen festgestellt, was auf ein

potenzielles Problem bei der Wiederholbarkeit der Axonradiusmessungen hindeutet.

Im dritten Teil wurde eine neue Variante der „3D Dual Refocusing Echo Acquisition

Mode (3DREAM)“-Sequenz an einem 7T MRT entwickelt. Die 3DREAM Sequenz er-

laubt die Messung des Radiofrequenzfeldes B1, was eine Vorraussetzung für die Nutzung

von parallelen Sendetechniken (pTx) ist. Die Sequenz verwendet einen 3D Stapel von Spi-

ralen anstelle einer kartesischen Auslesetrajektorie, um Bildunschärfe zu reduzieren und

die effektive Auflösung in B1-Karten zu erhöhen. Diese Unschärfe wird durch den schnel-

len Zerfall des stimulierten Echosignals verursacht, das nur einmal zu Beginn der Sequenz

präpariert wird und mit jeder folgenden Anregung zerfällt. Die Verwendung einer Spi-

raltrajektorie ermöglicht eine effizientere k-Raum-Abtastung, wodurch die Anzahl der

Anregungen reduziert wird. Die Spiral-3DREAM Sequenz wurde mit der kartesischen

3DREAM-Sequenz und drei anderen etablierten B1-Messmethoden in Phantom- und

in-vivo-Messungen verglichen. Beide 3DREAM-Sequenzen zeigten eine hervorragende

Übereinstimmung mit den drei anderen Methoden, während ihre Akquisitionszeit deut-

12
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lich kürzer war. Bildunschärfe und ventrikulärer Kontrast in B1-Karten wurden bei der

Spiral-3DREAM im Vergleich zur kartesischen 3DREAM reduziert, wobei die Reduktion

bei höheren Auflösungen stärker ausgeprägt ist.

Im letzten Teil dieser Dissertation wurde die diffusionsgewichtete Bildgebung des

gesamten Gehirns an einem Ultra-Hochfeld (7T) MRT durchgeführt. Bei ultra-hohen

Feldstärken führt die Inhomogenität des B1-Feldes zu erheblichen Signalausfällen in un-

teren Hirnregionen wie dem Kleinhirn. Eine achtkanalige Radiofrequenzspule und spe-

ziell entwickelte parallele Transmissionspulse (pTx Pulse) wurden verwendet, um diese

Inhomogenitäten zu verringern. Multiband pTx Pulse wurden in EPI- und Spiral-DWI-

Sequenzen integriert. Statische und dynamische Feldinhomogenitäten wurden durch Mes-

sung der Gradientenfelder und der statischen B0 Abweichungen korrigiert. Die pTx Pul-

se wurden mit zirkular polarisierten Pulsen verglichen. EPI- und Spiralbilder, die un-

ter Berücksichtigung der gemessenen Gradientenfelder und statischen B0 Abweichun-

gen rekonstruiert wurden, wurden mit EPI-Daten mit bildbasierter Feldinhomogeni-

tätskorrektur verglichen. Es wurde festgestellt, dass die negativen Auswirkungen von

B1-Inhomogenitäten auf die Bildqualität durch die Verwendung von pTx Pulsen weit-

gehend behoben werden konnten. Ein erhöhtes SNR im Kleinhirn verbesserte den Fit

eines Diffusionstensors an die DWI Daten und führte zur genaueren Quantifizierung der

fraktionellen Anisotropie- und mittleren Diffusivität in diesem Hirnbereich. Eine verblei-

bende Herausforderung ist die geringe Bandbreite der pTx Pulse, die zu gekrümmten

Schichten in Bereichen mit großen B0-Inhomogenitäten führt. In Übereinstimmung mit

den Ergebnissen des zweiten Teils war das SNR der Spiral-DWI Sequenz im Vergleich

zur EPI-DWI Sequenz erhöht. Bei einer Feldstärke von 7T stellten im Vergleich zu einer

Feldstärke von 3T jedoch statische B0-Inhomogenitäten ein größeres Problem bei der

Bildrekonstruktion dar, da Artefakte wie geometrische Verzerrungen und Bildunschärfe

nicht vollständig behoben werden konnten.
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1 Introduction

Magnetic resonance imaging (MRI) is one of the most versatile imaging modalities in

clinical diagnosis and research. It provides a wide range of contrasts, which can be used

to visualize anatomical structures, tissue properties, and functional information. One

important contrast mechanism is the ability to sensitize the MRI signal to the diffusive

motion of water molecules [1]. This sensitivity is exploited in diffusion-weighted MRI

(DWI), which is used to probe tissue microstructure in the brain and other organs [2].

For example, investigation of diffusion anisotropy in the human brain can reveal neural

pathways in the white matter [3]. While the typical spatial resolution of MRI is in

the order of millimeters, DWI provides an indirect measure of tissue structure on a

micrometer level. Diffusion-sensitizing gradients generate a signal loss that depends on

the displacement of water molecules during the diffusion time. These displacements

are on the order of micrometers during typical diffusion times employed in DWI. This

principle is the foundation of all modern DWI pulse sequences.

The design of diffusion-weighted MRI pulse sequences and the development of ad-

vanced image reconstruction methods for these sequences are active fields of research.

Pulse sequence development for DWI includes improvements of radiofrequency (RF)

waveforms and readout gradients, as well as the development of new diffusion-sensitizing

gradient waveforms. Improvements in the design of RF pulses and readout gradients

aim to reduce image artifacts, decrease acquisition times and increase the signal-to-noise

ratio (SNR), while new diffusion-sensitizing waveforms are developed to reduce periph-

eral nerve stimulation, reduce artifacts related to eddy currents, or accomodate specific

advanced biophysical models.

Until today, the gold standard acquisition for whole-brain DWI is a multiband single-

shot echo-planar imaging (MB-EPI) sequence [4]. However, MB-EPI has some limita-

tions, such as long echo times resulting in reduced signal and long readout times, which

lead to geometric distortions and susceptibility artifacts. Spiral imaging has gained inter-

est as an alternative to EPI [5], [6], as it provides higher SNR due to shorter echo times

and more time-efficient k-space sampling. However, spiral imaging also poses challenges,

as it requires non-Cartesian image reconstruction and correction for field inhomogeneity

effects.

Imaging at higher field strengths is another way to increase SNR [7], but field inho-

mogeneity effects also become more pronounced. Inhomogeneities of the main magnetic

field and the encoding gradients lead to severe image artifacts such as geometric distor-

tions, while inhomogeneity of the RF field causes SNR reduction especially in lower areas

of the brain. Different strategies to mitigate these field inhomogeneity effects have been

proposed. Magnetic field monitoring [8] is a method to measure the actual encoding

fields during a pulse sequence, enabling the correction of dynamic field effects, such as

eddy currents, during image reconstruction [9]. Parallel transmit (pTx) techniques [10]

allow more control over the spatial RF transmit field (B1) distribution and can be used

to mitigate the effects of B1 inhomogeneity.
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1 Introduction

In this thesis, fast DWI sequences are combined with techniques for field inhomogene-

ity correction in order to improve DWI at high and ultra high field strengths. Chapter

2 gives an introduction to MRI and diffusion-weighted MRI (DWI). This chapter also

includes a description of static and dynamic field inhomogeneity effects that disturb im-

age encoding, and their quantification with field monitoring. The chapter continues with

an introduction to fast imaging techniques for DWI and concludes with an overview of

advanced image reconstruction techniques accounting for field inhomogeneity effects.

In Chapter 3, a framework for open-source sequence development and image recon-

struction is described. Different open-source tools for sequence design, image reconstruc-

tion and data analysis are combined to form a workflow that allows flexible prototyping

of MRI sequences and reconstructions, can be shared among other researchers and is

independent from proprietary software. The workflow is validated by acquiring and re-

constructing data from MRI scanners of various vendors. Additionally, it is integrated

into an existing simulation framework to allow direct comparison of experimental to sim-

ulated results. The proposed workflow is used to design pulse sequences and implement

image reconstruction algorithms, leading to the results of the subsequent chapters.

In Chapter 4, non-invasive axon radius estimation in the human white matter us-

ing a 3T scanner with a high-performance gradient system is described. An established

diffusion-weighted imaging protocol that showed reproducible results in a previous study

is modified by using a spiral instead of an EPI k-space trajectory. The spiral k-space tra-

jectory is monitored with a magnetic field camera to reduce artifacts from magnetic field

inhomogeneity. The aim of this study is to increase SNR of diffusion-weighted images

at ultra-high b-values. A test–retest study is performed to compare the repeatability of

axon radius estimation using EPI and spiral DWI sequences.

In chapter 5, a variant of the 3D dual refocusing echo acquisition mode (3DREAM)

sequence is proposed. The 3DREAM sequence allows for mapping of the B1 field, which

is a prerequisite for parallel transmit (pTx) techniques. The new variant uses a 3D

stack-of-spirals instead of a Cartesian readout scheme to efficiently acquire 3D k-space

and thus to reduce blurring in B1 maps caused by fast decay of the stimulated echo

signal. The new sequence is compared to the Cartesian 3DREAM sequence and three

other established B1 mapping methods in both phantom and in vivo measurements.

Chapter 6 investigates whole-brain DWI at 7T using multiband pTx pulses to mitigate

effects of B1 inhomogeneity in the brain. PTx pulses are integrated into both EPI and

spiral DWI sequences, and the encoding fields of these sequences are monitored with

a magnetic field camera. The performance of the pTx pulses is assessed in simulations

and in vivo measurements by comparing SNR maps and slice profiles of pTx pulses

to those of standard circularly polarized pulses. Additionally, EPI and spiral images

reconstructed with field monitoring data are compared to EPI data with image-based

field inhomogeneity correction. A diffusion tensor fit is performed for all images, and the

resulting fractional anisotropy and mean diffusivity maps are compared.
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1 Introduction

Chapters 3 and 4 correspond to first author publications, chapter 5 corresponds to

a shared first author publication and chapter 6 is partly based on abstracts presented

at two conferences (ESMRMB 2023 and 2024). The publications including personal

contributions are listed in the List of Publications.
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Chapter 2

Background



2.1 Basic Principles of MRI

2.1 Basic Principles of MRI

2.1.1 Nuclear Magnetic Resonance (NMR)

MRI is based on the physical phenomenom of nuclear magnetic resonance (NMR). NMR

describes the behaviour of atomic nuclei in the presence of external magnetic fields and

was discovered by Rabi in 1938 [11] and demonstrated in condensed matter by Bloch

and Purcell in 1946 [12], [13]. The nuclei have a property called spin, which gives rise

to a magnetic dipole moment, if the nuclei has nonzero spin. This is the case for all

nuclei with an odd number of protons or neutrons. If a sample containing many nuclei

is placed in an external magnetic field B0, the spins in the sample tend to align with the

external field, which polarizes the sample. As a result, a macroscopic magnetization can

be observed, which equals the vector sum of all microscopic magnetic moments in the

sample. This macroscopic magnetization increases with the field strength of the external

field, the number of spins in the sample and the gyromagnetic ratio. It decreases with

the temperature of the sample as thermal motion is counteracting the alignment of the

spins with the external field. At room temperature, a high number of spins is required

to obtain a measurable magnetization. Therefore, in MRI the most commonly used nu-

cleus for imaging of the human body is the proton, as the body consists mostly of water

molecules and the proton has a high gyromagnetic ratio of µ = 42.58MHzT−1. Typical

field strengths in MRI are in the range of 1.5 to 7 Tesla, which corresponds to Larmor

frequencies of 63 to 300 MHz for protons.

If the magnetic moments are not aligned with the direction of the external magnetic

field, a torque acts on them. This causes a motion that is analogous to the precession

of a spinning top in the gravity field. The precession frequency É0 is called the Larmor

frequency and is defined by

É0 = µB0, (2.1)

where B0 is the magnetic field strength of the external field.

By applying a radio frequency (RF) field B1 oscillating at the Larmor frequency

perpendicular to B0, the macroscopic magnetization is tipped away from the direction of

the main magnetic field B0 towards the transverse plane. This process is called excitation

and the rotation angle is called flip angle. The magnetization now precesses around the

main magnetic field and an alternating current – the NMR signal – can be measured

in a coil, that is placed around the sample. The time evolution of the macroscopic

magnetization vector during and after excitation can be described in a classical way

by the Bloch equation [12]. To simplify the description of the process of excitation, a

rotating frame of reference oscillating at the Larmor frequency is defined. In this rotating
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2.1.1 Nuclear Magnetic Resonance (NMR)

frame the B1 field is stationary. The Bloch equation for the excitation reads

dMrot

dt
= µMrot ×Beff, (2.2)

where Mrot refers to the magnetization vector in the rotating frame, and Beff denotes

the effective magnetic field. If B0 points into z-direction and B1 with amplitude B̂1 into

x-direction, the effective field is given by

Beff = B̂1ex + (B0 −
É

µ
)ez. (2.3)

In the case of on-resonant excitation, meaning all spins precess at the Larmor frequency

(É = É0), the effective field becomes Beff = B̂1 ex. In this case, the flip angle is

³(t) = µ

t
∫

0

B̂1(Ä)dÄ. (2.4)

Off-resonance can be caused by inhomogeneity of the main magnetic field and properties

of the sample as chemical shift and susceptibility. Off-resonances lead to a less effective

excitation and therefore to a lower flip angle as the rotation axis is altered. Controlled

off-resonances in the form of magnetic field gradients can be used to only excite parts of

the sample.

After excitation, the magnetization gradually returns to its equilibrium state. This

process is called relaxation. Including relaxation, the Bloch equation in the laboratory

frame is given by

dM

dt
= µM ×B − Mz −M0

T1
ez −

Mxex +Myey

T2
. (2.5)

Here T1 and T2 are the longitudinal and the transverse relaxation constants. The longi-

tudinal magnetization returns to equilibrium by exchanging energy with the surrounding

tissue in the form of heat transfer, which is described by the time constant T1. Trans-

verse relaxation always accompanies longitudinal relaxation, but can additionally occur

due to spin-spin interactions, causing spins to irreversibly lose their phase coherence or

‘dephase’, leading to the decay of transverse magnetization towards zero, characterized

by the time constant T2. Magnetic field inhomogeneities and susceptibility effects further

decrease the transverse relaxation time, resulting in a T ∗
2 relaxation time. The values

of T1 and T2 vary depending on the tissue, making them important contrast parameters

for MR imaging.

The measurable NMR signal after excitation is also called free induction decay (FID).

The time evolution of the FID signal S(t) of a sample with volume V is described by

the signal equation

S(t) =

∫

V

Mxy(t, r) d
3r. (2.6)
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2.1.2 Spatial Encoding and k-space Formalism

The evolution of the transverse magnetization after excitation can be calculated using

the Bloch equation. In the case of a homogenous main magnetic field B = B0ez and

an ideal excitation with resulting magnetization M(r) = M0(r)ex, the longitudinal

and transverse components of the Bloch equation decouple. If further all spins precess

at the Larmor frequency and T2 is spatially constant, the solution for the transverse

magnetization is

Mxy(t, r) = M0(r)e
−iω0te

− t

T2 . (2.7)

The resulting signal oscillates at the Larmor frequency decays with the transverse re-

laxation time constant T2. The initial magnetization M0(r) is dependent on the spin

density Ä(r) of the sample: M0(r) ∼ Ä(r).

2.1.2 Spatial Encoding and k-space Formalism

The NMR signal contains much information on the properties of the investigated sam-

ple. The signal strength and shape is dependent on the spin density, relaxation times,

chemical composition, magnetic field variation, motion of the molecules and many other

factors. As the signal originates from all nuclei within the excited sample, a form of

spatial encoding is required to derive spatial information from the measured signal. This

is achieved by modifying the precession frequency with magnetic field gradients along

the three spatial dimensions.

If a magnetic field gradient is applied along one spatial dimension, the precession

frequency becomes dependent on the position of the spins. This is used to encode spatial

information in the MRI signal. Three gradients are applied to encode the three spatial

dimensions. The gradient fields are defined as

Gi =
dBz

dri
i = x, y, z (2.8)

and are typically in the order of 10 − 100mT/m. The magnetic field of the gradients

point in the direction of the main field B0, here the z-direction. The fields vary linearly

in space along one of the three dimensions dependent on the distance ri to the origin (the

‘isocenter’) of the gradient. If a magnetic field gradient is applied along the z-direction,

the precession frequency in the rotating frame along the z-axis is

É(z) = µzGz. (2.9)

Magnetic field gradients are used in different ways to encode spatial information.

Three common concepts are slice selection, phase encoding and frequency encoding. In

order to excite only one slice of a three-dimensional sample, a slice-selection gradient is

applied along one dimension during the excitation RF pulse. This alters the precession

frequency of the spins along the slice-selection axis. According to equation 2.3, spins that
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2.1.2 Spatial Encoding and k-space Formalism

do not precess at the frequency of the RF pulse are excited less effectively. The thickness

of the excited slice ∆z is dependent on the amplitude of the slice-selection gradient Gz,

here in z-direction and the bandwidth ∆f of the RF pulse:

∆z =
2Ã∆f

µGz
. (2.10)

It can be shown that at small flip angles (f 90◦) the excited frequency band profile cor-

responds to the Fourier Transform of the RF shape. Therefore, a rectangular frequency

band is excited by an infinitely long sinc-shaped RF pulse. As infinitely long RF pulses

are not feasible, often filtered sinc pulses with limited sidelobes are used in practice.

The other two spatial dimensions are encoded by applying gradients before (phase-

encoding gradient Gy) and during (frequency-encoding gradient Gx) signal reception.

The phase of the spins at time t during the application of a gradient, here in x-direction,

is given by

ϕ(x, t) = É(x, t)t = µxGx(t)t. (2.11)

Frequency encoding leads to a time-varying phase of the spins during signal reception,

while phase encoding modifies the phase of the spins before signal reception. As the

phase of spins at different positions can not be disentangled from the MRI signal, phase

encoding has to be repeated n times with different amplitudes of the phase-encoding

gradient to encode a frequency. The solution of the Bloch equation in the rotating

frame for the transverse magnetization in the presence of phase and frequency encoding

gradients (ignoring relaxation) is given by:

Mxy(t) = Ä(r)e
−irγ

t∫

0

G(τ)dτ
. (2.12)

The signal in the rotating frame is then:

S(t) =

∫

V

Ä(r)e
−irγ

t∫

0

G(τ)dτ
=

∫

V

Ä(r)e−ik(t)rdr. (2.13)

From equation 2.13 the signal is identified as the Fourier transform of the spin density

Ä(r). The spatial frequency k(t) defines the position in k-space, which is a reciprocal

space to the image space containing the spatial frequencies of the image. The path

through k-space is referred to as the k-space trajectory, which is defined by:

k(t) = µ

t
∫

0

G(Ä)dÄ. (2.14)

Spatial information on the magnetization is reconstructed from the measured signal

by applying an inverse Fourier transform to the signal, typically in form of a fast Fourier
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2.1.2 Spatial Encoding and k-space Formalism

transform (FFT), which assigns a grayscale value to each position in image space as

shown in Figure 2.1. In the one-dimensional case, the spin density Ä(x) after applying

the inverse Fourier transform is given by

Ä(x) =

∫

kx

S(kx) exp (2Ãikxx) dkx. (2.15)

The k-space is an infinitely sized continuous three-dimensional space, where low spatial

frequencies belong to the center of k-space and high frequencies to its periphery. In an

MRI experiment the signal is successively acquired at N equidistant discrete positions in

k-space dimension with distance ∆k and a finite maximum k-space position kmax. The

finite and discrete sampling limits both the resolution and the field of view (FOV) of

the image. Replacing the continuous integral in equation 2.15 by a sum with discrete

positions yields

Ä(j∆x) =

N−1
∑

l=0

S(kx) exp (2Ãilj∆kx∆x) . (2.16)

The j-th element of the one-dimensional inverse discrete Fourier transform (DFT) [14]

of a series of data points d is defined as:

DFT−1 [d]j =
1

N

N−1
∑

l=0

dk exp

(

2Ãi
jl

N

)

. (2.17)

Comparing the exponents of equations 2.16 and 2.17, a relation between k-space sampling

and the image geometry can be derived:

∆x∆k =
1

N
. (2.18)

If the k-space is sampled from −kmax to kmax with kmax = ∆kN/2, the image resolution

x is dependent on the maximum acquired spatial frequency:

∆x =
1

2kmax
x

. (2.19)

In practice the resolution is limited by decreased signal-to-noise ratio (SNR) due to

dephasing of the spins caused by gradients, as well as relaxation and off-resonance effects.

Typical resolutions achieved with modern MRI scanners are on the scale of 1-5mm.

As the signal is acquired at discrete sampling points with sampling distance ∆k, the

reconstructed image repeats itself over a spatial interval – the FOV. It can be derived

from equation 2.18:

FOV = N∆x =
1

∆k
. (2.20)

This is known as the Nyquist sampling criterion, which states that the sampling fre-

quency has to be twice as large as the maximum frequency in the signal to be recon-
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2.1.2 Spatial Encoding and k-space Formalism

structed. All signal stemming from outside the FOV will fold into the image, which is

called aliasing. The FOV should therefore be chosen large enough to avoid such alias-

ing artifacts. Increasing either the FOV or the resolution requires a higher number of

samples in k-space.

There are many different possibilities of covering k-space. One common way of k-

space sampling is 2D ‘spin-warp imaging’. One slice of a 3D volume is acquired by

applying slice selection on one axis to excite a 2D slice, which is encoded by phase

and frequency encoding gradients on the other two axes. The 2D k-space is sampled

line-by-line by varying the amplitude of the phase encoding gradient.

Although the combination of a slice-selection, phase-encoding and frequency encoding

gradient is a common way of encoding a three dimensional volume, other combinations

of gradients are possible. For instance, the slice-selection gradient can be replaced by a

second phase encoding gradient, if the whole volume instead of a single slice is excited.

This is referred to as 3D imaging. It is also possible, to acquire multiple k-space lines

or even the whole 2D k-space after one excitation pulse. Sampling on a non-equidistant

(non-Cartesian) grid is also possible, but requires modifications to the reconstruction

process, as the FFT can not be used anymore in a straightforward way. These fast

imaging techniques are further discussed in section 2.4.

FT

Δx Δkx

ΔkyΔy

-kx
max+FOVx /2-FOVx /2

+FOVy /2

-FOVy /2

+kx
max

-ky
max

+ky
max

Figure 2.1: Image space and k-space are connected via a (inverse) Fourier Transform. The
resolution defined by the voxel size ∆x is inversely proportional to the maximum k-space position
and the field of view (FOV) is inversely proportional to the sampling distance ∆k. If the FOV
is chosen too small, i.e. the sampling distance is too large, aliasing artifacts can occur.
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2.1.3 Basic MRI Pulse Sequences

2.1.3 Basic MRI Pulse Sequences

Two important classes of MRI pulse sequences are gradient echo (GRE) and spin echo

(SE) sequences [14]. The basic two concepts are briefly explained as both gradient and

spin echo sequences are used throughout this thesis. In the following, instead of the

three ‘physical’ gradient axes Gx,Gy,Gz, ‘logical’ gradient axes Gr, Gp, Gs are used,

the ‘readout’, ‘phase’ and ‘slice’ axes. These logical axes allow the description of pulse

sequences regardless of the orientation of the acquired images.

2.1.3.1 Gradient Echo Sequence

The basic 2D gradient echo sequence (Figure 2.2) starts with an RF pulse with flip angle

³, that is typically not larger than 90◦. The RF pulse is accompanied by a slice selection

gradient on the slice axis with the corresponding amplitude to excite a slice of the desired

thickness according to equation 2.10. After the slice selection gradient a slice rewinder

gradient is applied on the same axis. This rewinder has half the gradient moment of the

slice selection gradient with opposite polarity and reverses dephasing of the spins in slice

direction due to the slice selection gradient.

At the same time of the rewinder, a phase encoding gradient on the phase axis

and a prephaser gradient on the readout axis are used to reach the k-space position

(−kmax
r ,−kp). The subsequent readout gradient on the readout axis has twice the mo-

ment of the prephaser with opposite polarity, such that at the end of this gradient the

k-space position (kmax
r ,−kp) is reached. During the readout gradient, the signal of this

k-space line is acquired. In the middle of the readout gradient, the spins are completely

rephased in readout direction, leading to a gradient echo. The time from the middle of

the excitation pulse to the echo is referred to as the echo time TE. After the readout

gradient, the phase encoding gradient is repeated with opposite polarity and a spoiler

gradient is applied on the slice axis to dephase any remaining transverse magnetization.

This basic sequence building block is the sequence kernel and it is repeated with varying

phase encoding gradient amplitude to acquire all lines of the 2D k-space from −kmax
p to

kmax
p . It is important that the net gradient moment is the same in each repetition to

avoid undesired echoes in subsequent k-space lines. The time between successive excita-

tion pulses is denoted as the repetition time TR. Both TE and TR, as well as the flip

angle of the RF pulse are important parameters for the contrast of the image as they

define how the longitudinal and transverse magnetization evolve during the sequence.

The kernel is additionally repeated with different frequency offsets of the RF pulse

to acquire the desired number of slices. The line-by line acquisition of k-space is ro-

bust against gradient imperfections, but takes a long time, because excitation has to be

repeated for every phase encoding step and every slice. Therefore, often some sort of

acceleration is used, e.g. by acquiring multiple k-space lines or slices with one excitation

or using parallel imaging techniques. This is explained in more detail in section 2.4.
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2.1.3.2 Spin Echo Sequence
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Figure 2.2: Gradient echo sequence timing diagram with RF, gradient and signal axes. The
acquisition of one k-space line selected by the phase encoding gradient is illustrated on the right.

2.1.3.2 Spin Echo Sequence

In a spin echo sequence (Figure 2.3), a second ‘refocusing’ RF pulse with flip angle ´

is added after the excitation RF pulse. The refocusing pulse flips the dephasing spins

to the opposite side of the transverse plane such that they rephase and form a spin

echo. The echo time in the spin echo sequence is twice the time between the center of

the two pulses. In the spin echo signal, dephasing from static field effects is refocused

leading to a partial recovery of the FID signal. These static effects are T ∗
2 relaxation and

inhomogeneities of the main magnetic field. Dephasing due to time dependent local field

distortions experienced by moving spins as well as random field changes corresponding to

T2 relaxation are not refocused. The spin echo mechanism was first described by Hahn

in 1950 [15].

The spin-warp acquisition of k-space in the spin echo sequence is similar to that in

the gradient echo sequence. In order to acquire k-space lines in the same order as in

the gradient echo sequence, the polarity of the prephaser on the readout axis and of the

phase encoding gradient have to be inverted, if they are applied before the refocusing

pulse. That is, because after the refocusing pulse, the k-space position is reflected around

k-space center. The readout gradient and the acquisition window are typically centered

around the echo time TE.

27



2.2 Diffusion-weighted MRI
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Figure 2.3: Spin echo sequence timing diagram with RF, gradient and signal axes. The acquisi-
tion of one k-space line selected by the phase encoding gradient is illustrated on the right. After
the refocusing pulse, the k-space position is flipped around the k-space center.

2.2 Diffusion-weighted MRI

This section focuses on how the diffusion process of water molecules in human tissue

can be used as a contrast mechanism in MRI. Diffusion-weighted MRI (DWI) allows to

probe the microstructure of human tissue indirectly by quantifying the diffusive motion of

water molecules. The voxel size of MR images is typically on the order of 1-5mm3, while

the biological structures in human tissue are on a micrometer scale and can therefore

not directly be assessed. However, diffusing water molecules move on a micrometer

scale during typical time intervals of an MRI sequence (1-100ms). As the diffusive

motion is hindered or restricted by cell boundaries, tissue structure can be investigated

by quantifying diffusion anisotropy. The most investigated tissue compartment in brain

diffusion MRI is white matter, where the diffusion process is highly anisotropic due to

the presence of myelinated axons.

In this section, the principles of the diffusion process are explained, followed by a

description of the Stejskal-Tanner sequence, which is a common way to sensitize the

MRI signal to the diffusion process. The section concludes with a brief overview of

quantifying microstructure with diffusion MRI.
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2.2.1 Principles of Diffusion and DWI

The diffusive motion of water molecules in the human body is caused by random thermal

motion. A one-dimensional diffusion process can be described by Fick’s second law [16]:

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, (2.21)

where c(x, t) is the concentration of water molecules at position x and time t and D is the

diffusion coefficient. The solution of the diffusion equation in the case of free diffusion

is a Gaussian distribution

c(x, t) =
1√
4ÃDt

exp

(

− x2

4Dt

)

. (2.22)

The MRI signal can be sensitized to the diffusive motion by applying magnetic field

gradients. Any diffusive motion during and between the application of gradients leads

to a loss of phase coherence of moving spins, which results in a signal attenuation. The

effect of molecular diffusion on the MRI signal can be described by the Bloch-Torrey

equation [17], which is an extension of the Bloch equation (eq. 2.5) to include the

diffusion process:

∂M

∂t
= µM ×B − Mz −M0

T1
ez −

Mxex +Myey

T2
+D∇2M , (2.23)

A solution of the Bloch-Torrey equation in the case of free (Gaussian) diffusion is

Mxy(t, r) =MBloch
xy exp






−Dµ2

t
∫

0





t′
∫

0

G(t′′)dt′′





2

dt′







=MBloch
xy exp (−B : D) = MBloch

xy exp



−
∑

i

∑

j

BijDij





(2.24)

where MBloch
xy is the solution of the Bloch equation (eq. 2.12), G is the effective gradient

vector considering phase-reversal from refocusing RF pulses, B is the B-tensor, D is the

diffusion tensor and B : D is the scalar product of the two tensors. The B-tensor and

the diffusion tensor are symmetric 3×3 matrices, that describe the diffusion weighting of

the MRI sequence and the diffusive motion in all three dimensions, respectively [18]. The

trace of the B-tensor is called the b-value, a scalar that represents the overall diffusion

weighting due to the gradients in the MRI sequence. The trace of the diffusion tensor is

the apparent diffusion coefficient (ADC). The term ’apparent’ considers that the diffusion

coefficient is averaged over multiple different tissue compartments in a voxel, which might

have different diffusion coefficients, and that water diffusion in human cells is restricted,

e.g. by cell membranes.
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2.2.2 Stejskal-Tanner Sequence
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Figure 2.4: Illustration of the single pulsed gradient spin echo sequence. The sequence consists
of a 90 ◦ RF pulse, a pair of two monopolar diffusion sensitizing gradients and a 180 ◦ refocusing
pulse. The diffusion sensitizing gradients are applied along the phase axis. For stationary
spins the accumulated phase from the first diffusion gradient is reversed by the second diffusion
gradient, while diffusing spins experience dephasing, which leads to phase dispersion and signal
cancellation inside a voxel.

The signal attenuation due to free diffusion is described by

S = S0e
−B:D, (2.25)

where S0 is the signal without diffusion weighting (zero b-value). According to equation

2.24, each gradient in an MRI sequence is contributing to the diffusion weighting of

the signal. In practice, specific gradients with large amplitudes and duration are used as

diffusion sensitizing gradients and the contribution of imaging gradients can be neglected

at sufficiently high b-values. The signal S0 is then the signal without the application of

any diffusion sensitizing gradients.

2.2.2 Stejskal-Tanner Sequence

Diffusion-weighted encoding can be realized with the pulsed gradient spin echo technique

(PGSE) developed by Stejskal and Tanner in 1965 [1]. In the PGSE sequence (Figure 2.4)

a pair of two monopolar gradient pulses is applied before and after the 180◦ refocusing

pulse of a spin echo sequence. The gradient pulses are applied along the same axis

and have the same amplitude and duration. Stationary spins are not affected by these

gradients, as the phase evolution of the spins due to the first gradient is refocused by the
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2.2.3 Quantification of Microstructure

Figure 2.5: Raw T2-weighted and diffusion-weighted images (b = 1000 s/mm2) are shown in a)
and b). Diffusion-weighted images were obtained for 30 diffusion directions. The resulting mean
diffusivity (MD) and fractional anisotropy (FA) maps are displayed in (c) and (d). The FA map
is color-coded in e) to show the principal diffusion direction (red=left-right, green=anterior-
posterior, blue=inferior-superior).

second gradient after the 180◦ pulse. This refocusing is incomplete for diffusing spins,

as they are exposed to a different magnetic field during the second diffusion gradient.

This leads to phase dispersion inside a voxel and results in signal reduction dependent

on the diffusion coefficient (Figure 2.4). While any gradients without a net moment,
TE
∫

0

G(t′)dt′ = 0, can be used as diffusion gradients, a pair of two trapezoidal gradients

is the most time-efficient choice to realize a certain b-value. The b-value of the PGSE

sequence with two trapezoidal gradients with amplitude G, duration ¶ and ramp time ϵ

on one axis is given by:

b = µ2G2
[

¶2(∆− ¶/3) + ϵ3/30− ¶ϵ2/6
]

, (2.26)

where ∆ is the time between the center of the two gradients – the diffusion time.

The signal in the PGSE sequence is acquired with a readout module, that typically

samples 2D k-space data along a single-shot k-space trajectory. Single-shot trajectories

are more time-efficient and motion-insensitive than multi-shot trajectories as the whole

2D slice is encoded in one shot and the diffusion preparation is only applied once. How-

ever, they are also more sensitive to static and dynamic field imperfections and suffer

from T ∗
2 decay. Single-shot echo planar imaging (EPI) and spiral trajectories will be

discussed in section 2.4. Multi-shot and 3D acquisition schemes have been proposed for

high resolution diffusion imaging [19]–[22], but require longer scan times and need to be

corrected for motion-induced phase inconsistencies between shots [23], [24].

2.2.3 Quantification of Microstructure

The diffusion-weighted signal provides an indirect measure of the properties of tissue

microstructure. Properties of interest include, among many others, the size, orientation

and characteristic length scales of pore microstructure or the volume fraction of different

tissue compartments.

Different approaches for the quantification of microstructure can be divided into
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signal representations and tissue or biophysical models [25]. Signal representations are

mathematical functions that approximate the signal attenuation due to the diffusion

process without making any assumptions about the underlying microstructure, while

models try to increase specificity to the microstructure by taking into account only

relevant biophysical parameters to explain the diffusion-weighted signal [25].

One of the most widely used signal representations is the characterization of the

diffusion signal with the diffusion tensor. The diagonal elements of the diffusion tensor

can be determined from equation 2.25 by acquiring three images with diffusion gradients

in three different orthogonal directions and one image without diffusion-weighting. These

three images can be combined by taking the geometric mean resulting in an image that

is weighted by the trace of the diffusion tensor:

Strace =
3

√

SxxSyySzz = S0e
−b(Dxx+Dyy+Dzz/3) = S0e

−bADC. (2.27)

The average of the trace is typically referred to as the ADC or the mean diffusivity (MD).

The whole diffusion tensor can be obtained, if the diffusion-weighted signal is measured

along a minimum of six non-colinear directions, which is the number of unique elements

of the tensor. This is the concept of Diffusion Tensor Imaging (DTI) [18]. Usually more

than six directions are acquired to increase the accuracy of the tensor estimation by

linear least squares fitting of equation 2.25. The diffusion tensor can be transformed to a

frame of reference, in which the off-diagonal elements disappear. This frame is spanned

by the three eigenvectors of the tensor. Together with the corresponding eigenvalues,

the tensor can be represented by an ellipsoid.

As the diffusion tensor is rotationally invariant, the mean diffusivity can be calculated

as the average of the eigenvalues of the diffusion tensor:

MD =
1

3
(¼1 + ¼2 + ¼3). (2.28)

Defining ¼1 g ¼2 g ¼3, the axial diffusivity (D|| = ¼1) is a measure for the diffusive

motion along the principal diffusion direction and the radial diffusivity (D§ =
√

¼2
2 + ¼2

3)

corresponds to the magnitude of diffusive motion in the orthogonal direction.

The fractional anisotropy (FA) is a measure of diffusion asymmetry inside a voxel.

The FA is defined as

FA =

√

3

2

(¼1 − MD)2 + (¼2 − MD)2 + (¼3 − MD)2

¼2
1 + ¼2

2 + ¼2
3

, (2.29)

Fractional anisotropy and mean diffusivity maps obtained from a scan with 30 diffusion

directions at a b-value of b = 1000 s/mm2 are shown in Figure 2.5. The fractional

anisotropy can be color-coded to show the principal diffusion direction by modulating

the FA with the directional cosines of the principal eigenvector (Figure 2.5 e).

The principal diffusion directions obtained from DTI can also be used for fiber track-
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ing [26], which is a method to estimate the trajectories of white matter fiber bundles

in the brain. Fiber tracking is based on the assumption that the principal diffusion di-

rection is parallel to the main fiber orientation in white matter. This points to a major

limitation of DTI, which can not resolve different fiber populations in a voxel, if they are

crossing, kissing or bending. Additionally, at b-values much higher than b = 1000 s/mm2,

the signal attenuation is not well described by the diffusion tensor anymore, as restricted

non-Gaussian diffusion becomes more important.

Several advanced concepts have been proposed to account for different fiber orien-

tations inside a voxel. Diffusion Kurtosis Imaging (DKI) extends equation 2.25 by a

kurtosis tensor, which is a metric for the deviation of the diffusion process from a Gaus-

sian distribution [27]. DKI requires at least two non-zero b-values and 15 diffusion direc-

tions. Double or multidimensional diffusion encoding has been proposed to disentangle

compartment sizes and shapes from their orientation distribution in a voxel by adding

a second (or third) pair of diffusion gradients to the PGSE sequence [28]–[30]. Lastly,

specific biophysical models have been used to assign the diffusion signal to specific tissue

compartments, e.g. by modelling white matter tissue as a composition of small axons

represented by sticks and the extra-axonal space [31]. These and several more advanced

signal representation and modelling concepts are explained in more detail in chapter 22

of Ref. [32].

2.3 Field Imperfections

In this section, deviations from the main magnetic field B0, their impact on image

encoding and their measurement are discussed. These deviations can be classified into

static field deviations, which arise mainly due to susceptibility effects and are independent

of the MRI sequence, and dynamic field deviations, mainly caused by eddy currents due

to the magnetic field gradients. Additionally, inhomogeneities of the transmit B1 field

and parallel transmit techniques are briefly discussed.

2.3.1 Static Field Imperfections

Image encoding in MRI relies on a homogeneous background magnetic field B0 in the

imaged volume of interest. For a commercial MRI scanner, the deviations from the

specified magnetic field are typically smaller than one part per million. However, different

magnetic susceptibility of the components of an object placed inside the scanner bore

leads to a spatially varying magnetic field in the object. In the human brain, the largest

deviations of the magnetic field arise at the interfaces of air and tissue, e.g. at the

paranasal sinuses. Local deviations from the specified magnetic field lead to spatially

varying precessional frequencies ∆É(r) (off-resonances). Another source of off-resonance

effects is the chemical shift especially in fat tissue: The resonance frequency of protons in

fat molecules is reduced compared to that in water by about 3.5 ppm because protons in
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2.3.2 Static Field Mapping

Figure 2.6: One slice of a static field map obtained from a dual-echo gradient echo sequence at
a 7T scanner. The phase difference map, calculated from the phase images of the two echoes,
contains phase wraps especially in the frontal part of the brain. The phase difference map was
spatially unwrapped and a field map was calculated using the echo time difference ∆TE. Voxels
containing only noise were masked with a brain mask calculated from the magnitude image of
the first echo shown on the left. In the last step, outliers were removed with a despiking filter
and the field map was smoothed with a Gaussian filter (Ã = 0.5).

fat are more strongly shielded from the external magnetic field by surrounding electrons.

The signal equation 2.13 can be extended by including the spatial off-resonance dis-

tribution:

S(t) =

∫

V

Ä(r)e−ik(t)re−i∆ω(r)tdr. (2.30)

The off-resonance term distorts image encoding with magnetic field gradients, as the

signal phase depends not only on the k-space trajectory anymore. This leads to different

artifacts in the reconstructed images, which are dependent on the magnitude of the field

deviations, the acquisition strategy, k-space trajectory and the sequence parameters.

Typical artifacts are geometric distortions, reduced effective resolution (blurring) and

signal loss due to intravoxel dephasing [33]. Signal loss is especially challenging in GRE

sequences, as dephasing due to off-resonances is not refocused. In 2D imaging, large off-

resonances on the order of the RF pulse bandwidth can additionally lead to incomplete

excitation and refocusing as well as bended slices. These artifacts are more severe at

higher fields as the maximum field deviations are proportional to the strength of the

background field [34].

Strategies for reduction of artifacts include prospective field homogenization (shim-

ming), and retrospective corrections. Shimming is typically done with specific shim coils,

which can produce spherical harmonic fields of up to second or third spatial order. The

shim fields are adjusted to counteract the field inhomogeneity, but the limited spatial

order is not sufficient to completely homogenize the field. Different strategies for ret-

rospective off-resonance correction exist, which are applied in k-space or image space

and during image reconstruction or postprocessing. These strategies will be discussed in

section 2.5.3.
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2.3.2 Static Field Mapping

Both prospective shimming and retrospective off-resonance correction require accurate

mapping of local deviations from the precessional frequency (‘B0 mapping’). This is done

in a calibration prescan before the actual imaging scan is performed. The most common

approach to B0 mapping is the dual-echo gradient echo method, where two gradient echo

images are acquired at different echo times. The phase evolution of the spins inside a

voxel is a function of the local off-resonance:

∆ϕ(r) = ∆É(r)∆TE, (2.31)

where ∆ϕ(r) is the phase difference between the two images and ∆TE is the echo time

difference. The choice of the echo times impacts the accuracy of the field maps [35], [36].

Lower echo times lead to less T ∗
2 decay and therefore higher SNR especially in areas with

large off-resonance, where T ∗
2 decay is stronger. A higher echo time difference increases

the SNR in the phase difference measurement, as the accumulated phase difference is

higher. The downside of a higher echo time difference is increased phase wrapping,

especially in regions with large off-resonance. Spatial phase unwrapping [37] can recover

the actual phase accrual, but might fail at very strong local gradients in the off-resonance

map. Acquiring more than two echoes allows for voxel-wise temporal phase unwrapping

[38], which can improve unwrapping in these areas. An example unwrapped field map

obtained from a dual-echo gradient echo sequence is shown in Figure 2.6.

Another confounding factor for field mapping is the fat signal, that mixes with the

water signal and disturbs the assumption of a linear phase evolution. A possible solution

is to select echo times at which the (on-resonant) water and fat signals are in phase,

which is dependent on the off-resonance frequency of fat. Another solution is to use fat

suppression or water specific excitation in the GRE field mapping sequence [39].

B0 field maps tend to become inaccurate, especially near air-tissue interfaces, where

the GRE signal is low and large off-resonances occur. Therefore, voxels containing only

noise or with low SNR are masked. As B0 deviations in the brain are typically spatially

smooth, applying spatial smoothing, as shown in Figure 2.6, can improve the field map.

Global smoothing operations include Gaussian or median filters, while local smoothing

removes spikes in the field maps [40]. Gaps in the field map can be filled by inter- and

extrapolation.

Static B0 field mapping can be compromised by subject motion, which is especially

problematic for retrospective field correction, as the field maps geometrically do not fit

the imaging data anymore. Additionally, the B0 field can change significantly due to

motion [41].
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2.3.3 Dynamic Field Imperfections

Besides static field deviations, temporal changes of the magnetic field in the sample occur

during the course of an MRI sequence. These dynamic field imperfections are mainly

caused by eddy currents due to the magnetic field gradients. Eddy currents are induced

in the conducting structures of the MRI scanner, e.g. the gradient coils, and generate

a magnetic field that opposes the change of the original magnetic field [42]. The field

generated by eddy currents is dependent on the gradient waveforms applied during the

MRI sequence. Eddy currents can persist for several milliseconds after the gradient is

switched off. Other sources of dynamic field imperfections are mechanical vibrations

and bandwidth limitations of the gradient coils [43], thermal drift due to heating of the

coils [44], timing delays between the gradients and the receive coil and head motion as

well as physiological noise. Additionally, concomitant fields always accompany gradient

fields as a direct consequence of the Maxwell equations. These fields increase with higher

gradient amplitudes and decrease with higher main magnetic field strength [45].

Dynamic field imperfections distort the encoding fields, generated by magnetic field

gradients, during image acquisition. As dynamic field imperfections originate mostly

from structures outside the imaging volume, they are spatially smooth inside the volume

[8]. The field components fulfill the Laplace equation, assuming there are no sources

of dynamic fields inside the volume. In most MRI sequences, field deviations of zeroth

and first spatial order are predominant, which correspond to global phase shifts and

deviations from the ideal magnetic field gradients. Strong gradients, such as those used

for diffusion-weighted imaging, can result in significant higher order field deviations.

Changes in the gradient time courses lead to deviations from the nominal k-space

trajectory, resulting in shifted k-space sampling positions. In image reconstruction, the

signal will be assigned to incorrect positions in k-space leading to different artifacts

depending on the specific k-space trajectory. Adjusting the signal equation for zeroth

and first order effects yields:

S(t) =

∫

V

Ä(r)e−i[k(t)+∆k(t)]re−i[∆ω(r)t+∆φ(t)]dr, (2.32)

where ∆ϕ represents a global phase evolution and ∆k deviations from the k-space tra-

jectory due to field imperfections.

Shifts of the k-space trajectory caused by dynamic field imperfections lead to phase

shifts in the signal, which in turn results in spatial shifts in image space. This manifests

as ghosting, skewed and rotated images, or leads to blurring. Artifacts caused by dy-

namic field imperfections can often be corrected if the actual encoding fields are known.

Correction might not be possible if field deviations are so large that essential k-space

information is missing, e.g. when the Nyquist criterion is violated.

36



2.3.4 Spatiotemporal Magnetic Field Monitoring

a

b

Figure 2.7: Spatiotemporal magnetic field monitoring with an NMR field probe system. a) Field
probes mounted to a plastic frame with field probe positions relative to the gradient isocenter
shown on the right. b) Example data from a field probe measurement of a spiral sequence. Field
coefficients of up to third order are shown along with concomitant field coefficients of second
order. At the top right of b), the two-dimensional k-space trajectory of the spiral sequence is
plotted.

2.3.4 Spatiotemporal Magnetic Field Monitoring

Accurate measurement of the actual encoding fields with high temporal and sufficient

spatial resolution is a prerequisite for correcting dynamic field imperfections. In this

thesis, an approach based on small NMR field probes is used [8], [46]. The field probes

consist of a small NMR-active sample that is surrounded by a solenoid coil for both

transmission and reception. If the field probe is placed in a magnetic field at position

rp and the sample is excited by applying an RF pulse at the Larmor frequency of the

sample, an FID signal can be measured by the surrounding coil. The phase evolution

φ(rp, t) of the FID signal is dependent on the amplitude of the magnetic field at the

probe position:

φ(rp, t) = µp





t
∫

0

Bd(rp, Ä)dÄ +Bs(rp)t



+ φ0. (2.33)
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where µp is the gyromagnetic ratio of the probe sample, Bd(rp, Ä) is the dynamic (tem-

porally changing) component of the magnetic field amplitude, Bs(rp) is the static com-

ponent and φ0 is the initial phase after excitation. The dynamic component can be

extracted by taking the time derivative of the phase evolution if the static field compo-

nent is known:
dφ(rp, t)

dt
= É(rp) = µBd(rp) + És(rp). (2.34)

where É(rp) represents the angular frequency at the probe position and És(rp) represents

the angular frequency due to the static field component. The temporal resolution of this

field measurement is limited only by the resolution of the spectrometer, which is typically

on the order of microseconds.

Assuming a spatially smooth dynamic magnetic field in the imaging volume, it can

be approximated by a small number NL of basis functions fl(r) as

Bd(r, t) =

NL
∑

l=1

cl(t)fl(r), (2.35)

with dynamic field coefficients cl(t). Defining the phase coefficients kl(t) = µ
t
∫

0

cl(Ä)dÄ

with µ as the gyromagnetic ratio of the imaged object, the phase of the probe neglecting

the initial phase yields

φ(rp, t) =
µp
µ

NL
∑

l=1

kl(t)fl(rp) + És(rp)t (2.36)

If the phase of a number NP of field probes at different positions around the imaging

volume is measured, equation 2.36 can be rewritten as a linear system of equations:

ϕ(t) = Pk(t) + ωst. (2.37)

Here, ϕ(t), k(t) and ωs are vectors of length NP . The probing matrix P has size NP×NL

with elements Ppl =
γp
γ fl(rp). The phase coefficients k(t) can be estimated by measuring

the phase evolution of each probe, subtracting the initial phase φ0 and solving the linear

system in equation 2.37 with a least squares approach using the pseudoinverse of the

probing matrix:

k(t) = (PTP )−1PT [ϕp(t)− És(rp)t] . (2.38)

The number of field probes NP should be at least equal to the number of basis functions

NL, and the field probes should be distributed evenly around the imaging volume within

the linear range of the gradients to ensure good conditioning of the least squares fit. An

optimized field probe placement is shown in Figure 2.7. Spherical harmonics are used as

basis functions, as they fulfill the Laplace equation within a sphere and can approximate

smooth fields effectively with a relatively low number of basis functions. They are also

38



2.3.4 Spatiotemporal Magnetic Field Monitoring

Table 2.1: Real-valued spherical harmonics used as basis functions for field monitoring.

Spatial order Spherical harmonic
0 1
1 x
1 y
1 t
2 xy
2 zy
2 3z2 − (x2 + y2 + z2)
2 xz
2 x2 − y2

3 3yx2 − y3

3 xzy
3 (5z2 − (x2 + y2 + z2)) · y
3 5z3 − 3z(x2 + y2 + z2)
3 (5z2 − (x2 + y2 + z2)) · x
3 x2z − y2z
3 x3 − 3xy2

commonly used for shimming purposes. The spherical harmonics of up to third spatial

order are displayed in Table 2.1.

After determination of the field coefficients, the phase in the object can be estimated

by

φ(r, t) =

NL
∑

l=1

kl(t)fl(r) + És(r)t. (2.39)

Expanding the phase up to first spatial order ignoring the static field yields φ(r, t) =

k0(t) + k1(t)x + k2(t)y + k3(t)z. Here k0(t) is a global phase evolution and k1(t) =

kx(t), k2(t) = ky(t) and k3(t) = kz(t) represent the k-space trajectory. Example phase

coefficients for a spiral sequence are shown in Figure 2.7.

In order to fit the k-space coefficients, the field probe positions and the static field

frequency És are determined in a calibration prescan. The frequency És is determined by

unwrapping the phase of the FID signal and conducting a linear fit. In order to combine

the dynamic phase model with a B0 field map, the FID should be acquired with the

same shim settings as the field map. The probe positions are determined by acquiring

three FIDs with a constant gradient with known amplitude in all three dimensions and

applying equation 2.36.

The NMR field probes used in this thesis contain a fluorine-based sample, instead of

a water-based one [46]. Fluorine has a gyromagnetic ratio of µF = 40.08 MHz/T, which

is similar to that of protons and yields high NMR sensitivity. However, the Larmor

frequencies are sufficiently different such that the fluorine sample is not excited by the

transmit coil of the scanner allowing for simultaneous field monitoring and imaging. The

field probe samples have a short T1 to allow for fast re-excitation. Contrast agents are
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used to achieve a low T1 of T1 = 80ms while maintaining a sufficiently high T2 of 50ms

ensuring accurate field measurements over a duration comparable to T2.

2.3.5 Transmit Field Inhomogeneity

At high field strengths of 3 Tesla and above, inhomogeneity of the B1 transmit field

is observed in the human brain, which manifests as abnormally dark or bright areas

in images. The cause of these inhomogeneities is partly attributed to destructive and

constructive interference due to standing wave effects [47]. Spin-echo sequences with large

flip angles such as the PGSE sequence are particularly sensitive to B1 inhomogeneities as

efficiency of the refocusing pulse is reduced. In the human brain, flip angles are typically

higher than the nominal flip angle at the center, while being lower in the periphery. At

a field strength of 7 Tesla, this typically leads to significant signal loss in the cerebellum.

Parallel transmission techniques (pTx) aim to mitigate B1 inhomogeneities by em-

ploying multiple transmit channels distributed around the sample. These transmit chan-

nels can be controlled individually to create a B1 field that counteracts the field inhomo-

geneities. The resulting B1 field of a transmit array consisting of Nc transmit channels

can be expressed by:

B1(r, t) =

Nc
∑

i=1

pi(t)Si(r), (2.40)

where pi(t) is the pulse form applied on the respective transmit channel and Si(r) is the

spatial sensitivity profile of that channel [10].

The most basic pTx implementation is to use the same pulse form for each channel

and only apply a set of complex weights wi(r) to each channel, which is referred to as B1

shimming or static pTx. Usually the deviation from a nominal flip angle distribution is

minimized based on measured B1 sensitivity profiles, accounting for hardware and SAR

limits. Dynamic pTx is more flexible by optimizing the pulse form for each channel indi-

vidually along with the respective transmit k-space trajectory defined by the gradients

applied during the pulse. Dynamic pTx pulse design algorithms rely on simulations of

the Bloch equation to obtain the rotation of the magnetization given a set of pulse forms

and transmit coil sensitivities [10].

A requirement for the design of pTx pulses is an accurate measurement of the transmit

field sensitivities, for which several spatial B1 mapping techniques have been proposed

[48]–[50]. Additionally, a B0 map is required to account for off-resonances in pTx pulse

design. Both B0 and B1 maps are subject-specific, therefore calibration measurements

have to be repeated for each subject before the pTx pulses can be designed. Since B1

and B0 mapping are time-consuming and pTx pulse design algorithms are computation-

ally demanding, the universal pulse (UP) design concept [51] has been proposed as a

calibration-free pTx technique. The basic idea of UPs is to optimize the pTx pulses on

a database of pre-acquired B0 and B1 instead of acquiring subject-specific maps in each

scan session. This concept relies on the assumption that B1 and B0 maps are similar
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up to certain degree for different subjects. For the human brain, initial results indicate

that performance of UPs is similar to subject-specific pulses even for subjects not in the

pulse design database [51].

2.4 Fast MRI Sequences for DWI

Quantification of brain microstructure with DWI requires acquisition of diffusion-weighted

images at different b-values and with different diffusion directions covering the whole

brain. Therefore, a high number of volumes has to be acquired in a reasonable amount

of time. Additionally, the large diffusion gradients increase undesired sensitivity to bulk

and physiological motion. Rapid imaging techniques are used in DWI to address these

requirements.

Another important factor in DWI is image SNR, which is inherently low for DWI

acquisitions at high b-values. The transverse magnetization of a spin-echo sequence at

the echo time is given by [52]:

M (TE) = M0

(

1− 2e−(TR−TE/2)/T1 + e−TR/T1

)

e−TE/T2 . (2.41)

As TR is typically long in DWI sequences, the signal is mainly dependent on T2. There-

fore, the echo time TE should be minimized to maximize the SNR. This is especially

important at ultra-high fields above 3T as T2 decreases at these field strengths [7]. Echo

time reduction can be achieved by optimizing the readout module of the sequence or

by improvement of the gradient hardware allowing higher gradient amplitudes and slew

rates for the diffusion gradients [53].

2.4.1 Single-Shot EPI

Different image encoding strategies can be used for the readout module of the PGSE

sequence (Figure 2.4). The most common strategy is a single-shot 2D EPI k-space

trajectory, shown in Figure 2.8 (left) [54]. The EPI trajectory starts at one edge of the

2D k-space and all k-space lines are acquired by adding small phase-encoding gradients

(‘blips’) between frequency-encoding gradients, which are reversed for subsequent lines.

In this way, all k-space lines are acquired in one TR. The data is sampled on a Cartesian

grid, but every second k-space line is acquired in reversed order.

The achievable echo time of an EPI readout, defined at the center of k-space, depends

on the length of the EPI imaging train. The readout length of the EPI trajectory

increases with higher resolution, larger FOV of the imaging plane and lower bandwidth

in readout direction and can reach up to several tens of milliseconds. Parallel imaging

(section 2.4.3) and Partial Fourier (PF) techniques allow to reduce the readout length

and therefore the echo time. The PF technique uses the conjugate symmetry of k-space

by acquiring only a fraction of the first half of k-space lines and filling the rest based

on this symmetry (Figure 2.8 middle). As field imperfections and motion lead to phase
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Figure 2.8: EPI and spiral k-space trajectories undersampled by an acceleration factor of R = 2.
Left: EPI trajectory with corresponding readout und phase-encoding gradients. Middle: Same
EPI trajectory accelerated with the Partial Fourier (PF) technique. Right: Spiral out trajectory
with oscillating gradients. Beginning and end of the trajectories are marked with green and red
dots.

errors in k-space, more than half of k-space has to be acquired to be able to correct for

these phase errors.

Shifts of the EPI trajectory caused by dynamic field imperfections lead to a shift

between the echo centers of subsequent phase encoding lines. This results in replicas

of the image that are shifted by half the FOV in phase encoding direction, commonly

referred to as N/2 or Nyquist ghosts, which are a common artifact in EPI. Static field

inhomogeneities lead to geometric distortions mainly along the phase encoding direction

as the bandwidth is significantly lower than in readout direction. Distortions are more

severe for longer EPI readout trajectories.

2.4.2 Single-Shot Spiral

Spiral k-space trajectories represent an alternative to EPI trajectories. The spiral trajec-

tory is generated by two oscillating frequency encoding gradients defining a spiral path

through k-space as shown in Figure 2.8 (right) [55]. Spirals allow for faster sampling of

k-space compared to EPI trajectories, as the gradient hardware is used more efficiently

for spatial encoding. Therefore, the required readout length for acquiring images at the

same resolution and FOV is usually shorter than for EPI trajectories. The velocity at

which k-space is sampled is mainly limited the maximum gradient slew rate, as the gra-

dient hardware has to be able to switch the gradients fast enough to follow the spiral

path.
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Spiral trajectories can vary in their starting points, with some beginning at the center

(spiral out) and others at the periphery (spiral in) of k-space. The spiral out trajectory

is particularly advantageous for DWI because it samples the k-space center early in the

trajectory, thereby minimizing the echo time [6].

The single-shot spiral out k-space trajectory is sensitive to different artifacts than the

EPI trajectory. The trajectory is susceptible to gradient imperfections, as the gradients

constantly change during data acquisition. Therefore, accurate measurement of the

actual k-space trajectories is important for image reconstruction. Distortions of the

spiral k-space trajectory lead to rotated and shifted images, as well as blurring [56].

Static field imperfections and T ∗
2 decay can lead to image blurring, which is more severe

for long readouts, as outer k-space is acquired at the end of the readout. Compared to

EPI, spirals are less sensitive to motion artifacts due to the fast coverage of k-space and

dense sampling of its k-space center.

As spiral trajectories sample the k-space on a non-Cartesian grid, special reconstruc-

tion techniques are needed, which are introduced in section 2.5.2.

2.4.3 Parallel Imaging

Parallel imaging is a widely used technique to accelerate the image acquisition by un-

dersampling k-space and exploiting different spatial sensitivities of the RF receive coil

array [57]: Instead of one volume coil, modern MRI scanners use an array of RF coils

for signal detection, which consist of multiple overlapping coil elements that are placed

around the imaging volume. The individual receive elements contain spatial information

about the imaged object, as parts of the object close to the coil element contribute more

to the signal. The image Äj reconstructed from the j-th receive channel is weighted by

the spatial sensitivity profile cj of the j-th coil element:

Äj(r) = cj(r)Ä(r). (2.42)

The spatial information and differences in coil sensitivities of the different receiver chan-

nels can be used to accelerate image acquisition. Acceleration is realized by undersam-

pling of k-space, which refers to a higher sampling distance between k-space points than

required for a given FOV according to the Nyquist criterion. In the EPI trajectory this

is typically done by acquiring only every R-th phase-encoding line, where R is the ac-

celeration factor. A single-shot spiral trajectory can be undersampled by designing a

trajectory with R spiral arms and then omitting all but one during image acquisition.

The achievable acceleration factor is typically much smaller than the number of coils, as

non-ideal coil geometry and noise prohibit higher acceleration factors.

In order to avoid aliasing artifacts in the reconstructed images, the missing k-space

information has to be recovered in image reconstruction, which is covered in section 2.4.3.

Filling the missing k-space information requires mapping of the spatial coil sensitivities.

Various methods have been proposed for the determination of coil sensitivity maps [58]–
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Figure 2.9: The top row shows singleband, multiband and minimum-time VERSE multiband
90◦ excitation pulses with the corresponding slice selection gradients for 1.5mm slice thickness.
The singleband RF shape was calculated with the SLR algorithm. For visualization purposes,
the multiband pulses have only a small slice separation of 4.5mm. The RF pulse duration of the
minimum-time VERSE pulse is reduced, as the sidelobes of the pulse are compressed in time.
The bottom row shows the corresponding longitudinal and transverse magnetization profiles
along the slice direction. Vertical black lines indicate the nominal slice positions.

[60], which are typically obtained from a fully-sampled low-resolution calibration pre-

scan.

2.4.4 Multiband Imaging

In-plane acceleration as presented in the previous section reduces the readout length and

therefore reduces artifacts from field imperfections. However, the acquisition time of the

PGSE sequence is dominated by the length of the diffusion gradients and the number

of slices to be acquired. Considerable reduction of the acquisition time is therefore

only possible by additional parallel imaging acceleration along the slice dimension. This

requires excitation of multiple slices at once, which should be spatially separated as far as

possible. Otherwise, the differences in coil sensitivities may be too small to disentangle

the slices. Simultaneous excitation of multiple slices can be achieved by superimposing

multiple slice-selective RF pulses with amplitude A(t) and phase φj , each shifted by a

frequency offset ∆Éj(z) that depends on the slice separation:

BMB
1 (t) = A(t)

N
∑

j=1

ei(∆ωj(z)t+ϕj). (2.43)
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2.4.4 Multiband Imaging

This technique is called multiband (MB) or simultaneous multislice (SMS) imaging [61].

The resulting multiband pulse BMB
1 (t) is applied together with the same slice gradient

as the initial singleband pulse. An example for singleband and multiband pulses along

with their simulated slice profiles is shown in Figure 2.9.

If multiple slices are excited, k-space becomes three-dimensional rather than two-

dimensional with the Nyquist criterion in slice direction being ∆kz = 1/FOVz = 1/(N∆z)

[62]. Here, the FOV in slice direction (FOVz) is defined by the slice center-to-center dis-

tance ∆z and the number of simultaneously excited slices N . If a single-shot 2D readout

is used, the k-space in slice direction is undersampled by a factor of N . In order to

achieve a more homogenous sampling of k-space, an additional gradient on the slice axis

can be used during signal readout, which results in a better conditioning of the recon-

struction problem. The initial singleband RF shapes for the excitation and refocusing

pulses of the PGSE sequence are usually calculated with the Shinnar-Le Roux (SLR)

algorithm [63], [64], which allows to derive the RF shape from the desired slice profile

even at large flip angles. A detailed description of the SLR algorithm can be found in

Ref. [63].

Peak amplitude and power deposition of multiband pulses is increased compared to

singleband pulses, which can lead to a violation of the maximum allowed RF amplitude

or the maximum specific absorption rate (SAR). One way to reduce both peak amplitude

and SAR is to stretch the pulse in time. However, this makes the pulse more suscepti-

ble to off-resonance and relaxation effects and might result in a longer echo time. An

alternative to stretching the whole pulse is to use variable stretching factors along the

RF shape, a method known as variable-rate selective excitation (VERSE) [65]. Vari-

able stretching factors allow to decrease peak amplitudes of the pulse, while amplifying

the sidelobes. As SAR scales with the square of the pulse amplitude, the total SAR is

reduced, while the duration of the pulse is kept short.

For a piece-wise constant RF pulse shape, the stretching factor ³(k) for the k-th

sample of duration ∆t is defined as ³(k) = ∆t/t(k), where t(k) is the dilated time-

vector. The resulting VERSE pulse samples b1(k) and the corresponding slice gradient

g(k) are defined as:

b1(k) = ³(k)B1(k), g(k) = ³(k)G (2.44)

where G is a constant slice select gradient amplitude and B1(k) is the k-th sample of the

original RF shape. The resulting RF and gradient pair, when resampled to a uniform

time grid, excites the same slice profile as the original pair in the case of on-resonant

spins. This is shown for the multiband pulse in Figure 2.9. However, VERSE pulses are

more susceptible to off-resonance effects, as their bandwidth is decreased in areas with

high amplitude of the original pulse.

The stretching factors can be calculated by different design strategies, such as minimum-

SAR or minimum-time formulations [65]. The design of VERSE pulses is constrained by

hardware limits, which are the maximum gradient strength, the maximum slew-rate and
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the maximum RF amplitude. An iterative algorithm for the design of minimum-time

VERSE pulses, that is used in this thesis can be found in [66].

2.5 Advanced Image Reconstruction

This section provides a brief introduction to advanced image reconstruction methods,

including the reconstruction of undersampled data with parallel imaging, reconstruction

of non-Cartesian data, and strategies for off-resonance correction during image recon-

struction. The section concludes with a description of an expanded encoding model that

incorporates higher order dynamic fields.

2.5.1 Parallel Imaging Reconstruction

One of the most commonly used methods for the reconstruction of undersampled MRI

data is SENSitivity Encoding (SENSE) [59]. In SENSE, the signal of the j-th receive

coil is modeled by including the coil sensitivity profile cj(r) in the signal equation:

Sj(t) =

∫

V

Ä(r)cj(r)e
−ik(t)rdr. (2.45)

The signal equation can be rewritten in matrix-vector form

s = Eρ, (2.46)

with the encoding matrix Ej,m,n = cj(rn)e
−ikmrn , where km is the m-th position in

k-space and rn is the position of the n-th voxel. As equation 2.46 represents a linear

system of equations, the image ρ can be reconstructed by inverting the encoding matrix.

The encoding matrix is of size ncnk×nv, where nc is the number of coils, nk the number

of k-space samples and nv the number of voxels. The encoding matrix is in general not

a square matrix, as the number of coils is typically larger than the acceleration factor R.

The linear system is therefore overdetermined and a least squares solution maximizing

SNR is given by

ρ =
(

EHE
)−1

EHs, (2.47)

where EH is the conjugate transpose of the encoding matrix. This equation assumes

uncorrelated noise in the receive coils. Decorrelation of the receive channels is described

in [59].

As the encoding matrix is typically a large matrix, the inversion is numerically de-

manding. In the case of regular Cartesian undersampling, the number of aliased voxels

is equal to the acceleration factor and individual voxels can be unfolded using the coil

sensitivities after reconstruction of aliased images via FFT. In the general case of arbi-

trary k-space trajectories, aliasing is more complex and image reconstruction is typically

done by iteratively solving equation 2.47 [67]. Iterative reconstruction relies on find-
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ing the image that best fits the measured data after a limited number of iterations by

minimizing the error norm ∥s−Eρ∥22, starting from an initial guess Ä0. One popular

method is the conjugate gradient (CG) algorithm, which achieves good results after only

a few iterations for moderate acceleration factors. The main computation steps in CG

are multiplications of the matrices E and EH with intermediate vectors, which can be

efficiently done with FFT for faster calculation [67].

The SNR of images reconstructed with SENSE is reduced compared to fully sampled

images:

SNRacc =
SNRfull√

Rg
. (2.48)

The geometry factor g is dependent on the spatial arrangement of the coils and the

acceleration factor.

2.5.2 Non-Cartesian Image Reconstruction

In non-Cartesian MRI, k-space data is sampled on a non-equidistant grid. Non-Cartesian

sampling is present in every MRI acquisition as field imperfections and motion lead to de-

viations from nominal Cartesian k-space trajectories. Intentional non-Cartesian k-space

sampling with radial or spiral trajectories is used to reduce echo times, sample k-space

more efficiently or to improve motion insensitivity. Reconstruction of non-Cartesian data

is more complex than reconstruction of Cartesian data, as the FFT is not directly appli-

cable. The DFT in equation 2.17 can be generalized for non-equidistant sampling points,

but it is much slower than FFT reconstruction due to the higher number of operations.

In order to still be able to make use of the FFT, the non-Cartesian data has to be

interpolated onto a regular Cartesian grid. A widely used method for this interpolation

is gridding [68], where the non-Cartesian data is convolved with a kernel function and

sampled on a Cartesian grid. Typical kernel functions are a windowed sinc or a Kaiser-

Bessel window [69]. Finite kernels, such as these, can lead to undesired effects such as

aliasing and apodization, which manifests as a reduction of the signal at the edges of

the FOV. Aliasing can be avoided by performing gridding on a denser Cartesian grid

and then cropping the image afterwards. Deapodization can be achieved by dividing the

image by the Fourier transform of the kernel function in image space.

Non-Cartesian k-space trajectories sample k-space non-uniformly. For example, ra-

dial and spiral trajectories sample the center of k-space more densely than the periphery.

This leads to blurred images, when the gridding reconstruction is performed due to the

non-uniform weighting of k-space points. To account for this, the k-space data is mul-

tiplied by a density compensation function, calculated from the k-space trajectory [70],

before the gridding reconstuctiong.

Gridding can be combined with iterative parallel imaging reconstruction [67]. While

density compensation and deapodization are not essential in iterative reconstruction,

they can facilitate faster convergence.
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Figure 2.10: T2-weighted images acquired with single-shot EPI and spiral trajectories are shown
with and without off-resonance correction in the reconstruction. The corresponding B0 field map
is shown on the right. Off-resonance correction removes most off-resonance related artifacts.
Remaining artifacts due to insufficient correction are visible especially in the frontal part of the
brain.

2.5.3 Off-resonance Correction

Ignoring static field inhomogeneity in the image reconstruction can lead to severe arti-

facts in reconstructed images, especially when using long readouts. This is illustrated in

Figure 2.10, where T2-weighted images acquired with single-shot EPI and spiral trajecto-

ries are shown with and without correction for off-resonance. EPI images show dislocated

voxels, while spiral images show considerable blurring especially in areas with large B0

deviations. Equation 2.30 includes an off-resonance term in the signal equation. Fol-

lowing that equation, one approach for image reconstruction that accounts for spatially

varying off-resonance is to demodulate the signal at each time point by the conjugate of

the accrued phase [71], [72]:

Ä(r) =

T
∫

0

S(t)eik(t)rei∆ω(r)tdt, (2.49)

where T is the readout duration. This method is commonly referred to as conjugate phase

(CP) reconstruction. Equation 2.49 does not represent a Fourier Transform anymore and

the FFT can not be applied anymore. Instead the image has to be reconstructed for each

voxel individually with the corresponding off-resonance frequency, which is computation-

ally expensive.

Two different approximations to the CP reconstruction have been proposed, that

remove the time dependency and the spatial dependency of the off-resonance term, re-

spectively. One is the time-segmented CP reconstruction [73], which segments the total

readout of duration T into L windows of width 2Ä that are Ä = T/L apart. For each win-

dow, the off-resonance phase contribution is assumed to be constant, which removes the

time dependence of the off-resonance term. This allows for a standard FFT reconstruc-

tion for each time segment, followed by multiplying the resulting image by e−i∆ω(r)nτ ,

where nÄ is the center of the n-th time segment. The final image is obtained by summing

up the images of all time segments. The k-space data of one window is usually weighted
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2.5.4 Higher Order Image Reconstruction

Figure 2.11: Diffusion-weighted images (b = 1000 s/mm2) acquired with a single-shot spiral
trajectory. The images are reconstructed with a) the nominal k-space trajectory and no correc-
tion of the global phase k0, b) with measured k0 and the nominal k-space trajectory, c) with
measured k0 and measured k-space trajectory, and d) with measured phase terms up to third
spatial order. Note that in a) model based correction of the global phase via the vendors eddy
current correction was disabled.

by a window function that accounts for the time distance between each k-space sample

and the center of the window.

The other approximation is multifrequency interpolation [74], where L different im-

ages are reconstructed, each assuming a spatially independent offresonance term e−i∆ωlt,

where Él represents the l-th frequency. The signal is multiplied by the constant offres-

onance before applying the FFT, effectively demodulating the signal at different fre-

quencies. This results in parts of the images being ‘in focus’ and other parts being ‘out

of focus’. The final image is reconstructed by interpolation of the L individual images

accounting for the individual off-resonance frequency É(r) of each voxel.

Both the time-segmented reconstruction and multifrequency interpolation are com-

putationally more efficient than CP reconstruction but still require L times more oper-

ations than a standard FFT reconstruction. The choice of L depends on the range of

off-resonance frequencies in the field map and can be reduced if the range is smaller.

2.5.4 Higher Order Image Reconstruction

The encoding matrix in equation 2.46 consists of the coil sensitivities and a phase term,

which contains the k-space trajectory and describes the spatial encoding via magnetic
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field gradients. Deviations from the nominal k-space trajectory can be accounted for in

the encoding matrix by replacing the nominal with a measured trajectory obtained from

field monitoring. However, during an MRI sequence, not only first order, but also zeroth

and higher spatial order field deviations arise, which is especially the case when gradients

of long duration and with high amplitudes are used. In order to include dynamic field

deviations up to a certain spatial order in image reconstruction, the phase term in the

encoding matrix can be expanded [9] with the phase coefficients obtained from field

monitoring (equation 2.39):

ϕ(r, t) = ∆É(r)t+

NL
∑

l=1

kl(t)fl(r). (2.50)

This already includes the correction for static field deviations ∆É(r) as described in the

last section. The encoding matrix can be expressed as:

Ej,m,n = cj(rn)e
−iφ(rn,tm). (2.51)

If dynamic field coefficients of higher than first spatial order are included in the encoding

matrix, Fourier Transforms can not be used for image reconstruction anymore due to the

form of the phase term. Instead, iterative image reconstruction requires explicit matrix-

vector multiplications, which makes it considerably slower than Fourier based algorithms

[9].

Figure 2.11 shows diffusion-weighted images acquired with a single-shot spiral tra-

jectory and reconstructed with different orders of dynamic field corrections. It can be

seen that the image quality improves especially when correcting for zeroth and first or-

der fields as these have a high impact on spatial encoding. Higher order corrections

affect mostly the periphery of the FOV as the phase contributions increase with greater

distance to the gradient’s isocenter.
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3.1 Introduction

3.1 Introduction

Open science and open-source software tools are of increasing importance in today’s MR

research because the number of available open-source softwares has constantly grown over

the years. The International Society for Magnetic Resonance in Medicine (ISMRM) web-

site MR-Hub [75] and the website of the Open Source Imaging Initiative [76] currently list

over 40 MRI-related open-source tools. Many of these tools are actively developed and

contain state-of-the-art algorithms for MR imaging. Open-source imaging software and

hardware readily helps many researchers to collaborate and improve their own research,

as well as reproduce outcomes of published literature.

Recently, results from the first ISMRM reproducibility challenge targeting MR im-

age reconstruction were published [77]. In this challenge, reconstruction results from

conjugate gradient-SENSE implementations of different submissions were compared. It

concluded that small variations in implementation details or input parameters can lead

to significant differences in images, and that access to the original source code and data

is indispensable for a reliable reproduction of research results. Well-maintained online re-

sources consolidating open-source tools, such as opensourceimaging.org [76], are expected

to play an increasingly important role in promoting reproducibility and sustainability of

MR imaging studies.

Open-source software tools are available for many parts of the MR imaging process,

including sequence development, data acquisition, image reconstruction, and image post-

processing or analysis. In the case of development or modification of MRI sequences,

the exact time course of RF pulses and gradients may be of high importance for re-

producibility. However, publications typically do not contain the detailed fine-grained

timing information of new sequences but only the general idea and high-level features.

Sequence source code itself may also not be shareable for intellectual property or con-

tractual reasons, and hardware and software versions may be incompatible.

The Pulseq [78] and TOPPE [79] file formats provide an open-source description

of a complete pulse sequence’s timing and waveforms defined in one file, which can be

executed on scanners running different software versions and also from different vendors.

On the other end of the imaging pipeline, reconstruction of MR images is increas-

ingly dependent on parameter choices as algorithms get more complicated and allow more

tuning parameters. The results may depend on the specific implementation of a recon-

struction algorithm, making comparisons between studies difficult. Novel reconstruction

algorithms are often executed offline due to the difficulty of integrating them into the

existing vendors’ reconstruction frameworks. The Gadgetron [80] project addresses this

problem by using an extensible image reconstruction framework based on streaming data

pipelines that can be integrated into the existing reconstruction environment of the MRI

scanner.

The diversity in input raw data such as format, ordering, and preprocessing further

complicates the development of a generalizable pipeline. Therefore, widely used open-
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source data formats, such as the MR Raw Data (MRD, originally ISMRMRD [81]) or the

Neuroimaging Informatics Technology Initiative format [82] for image data, are crucial

for standardizing data structures and sharing algorithms efficiently.

These openly available tools contribute toward improving reproducibility of published

research results. However, there is currently no open-source workflow covering all aspects

of the MR imaging process from sequence design to image reconstruction. For example,

results may only be partly reproducible if specific raw datasets are needed to reproduce

the results of an image reconstruction algorithm because the sequence may not be made

available. The proposed workflow aims at combining different tools to form an open-

source end-to-end imaging pipeline, which is completely shareable and can easily be

extended by new tools. The pipeline covers MRI sequence development, data acquisition,

image reconstruction, and postprocessing of images. MRI sequence development and

data acquisition is based on the Pulseq framework, whereas the MRD format is used for

storage of MR raw- and metadata. Acquired raw data are processed by a Python-based

server. The data can be streamed to the reconstruction server either offline or online,

for which the latter requires a vendor-dependent streaming interface. Reconstruction is

done with the Berkeley Advanced Reconstruction Toolbox (BART) [83].

The pipeline was also integrated into the JEMRIS [84], [85] simulation framework by

adding an interface to the image reconstruction pipeline to the framework. As a result,

sequences designed and simulated in JEMRIS can be executed without modification on

the MRI scanner, and simulated and acquired data can be reconstructed with the same

pipeline.

The whole workflow is based on openly available tools, with the exception of the in-

terfaces for on-scanner sequence execution and data streaming for online reconstruction.

These interfaces are vendor-dependent and thus not entirely open-source. However, the

streaming interface is optional because the image reconstruction pipeline can also be

executed offline. The Pulseq interpreter sequence is also shared in the source code form

within the respective vendor communities.

3.2 Methods

The open-source imaging workflow contains sequence design, data acquisition, image

reconstruction, and optional postprocessing of images. An overview of the whole pipeline

is shown in Figure 3.1.

3.2.1 Sequence Development

Sequence design can be done with the Pulseq framework using the MatLab (MathWorks,

Natick, MA) implementation [86], the Python implementation PyPulseq [87] or JEMRIS.

All tools generate Pulseq sequence files, which contain the complete timing for RF pulses,

gradients, and ADC sampling points. Here, PyPulseq and JEMRIS are used because
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3.2.1.1 PyPulseq

Figure 3.1: Overview of the whole workflow with data acquisition at an MRI scanner (light blue)
or in JEMRIS simulations (light green). Pulseq sequence and MRD metadata files are created
with either PyPulseq or JEMRIS. The sequence file is executed at the scanner using a vendor-
specific interpreter. Raw data are sent to the reconstruction server via the FIRE interface, and
the metadata from the MRD file are merged. Images are reconstructed with BART and sent back
to the scanner via FIRE. In an offline reconstruction, the FIRE interface is replaced by an MRD
converter and a Python-based client. Acquired data from JEMRIS simulations is merged with
the metadata inside JEMRIS and saved in the MRD format. The same reconstruction pipeline
as for data from an MRI scanner data is executed. BART, Berkeley Advanced Reconstruction
Toolbox; FIRE, framework for image reconstruction environments; MRD, MR raw data.

neither depends on commercial software.

The Pulseq format currently has no support for transferring metadata and k-space

information to the MRI scanner; it only contains the sequence timing. The vendor’s

raw data files that originate from the Pulseq sequence execution therefore contain only

the acquired data with no information on k-space sampling. These raw data files do

contain a header section, but only with dummy values. For this reason, an additional

MRD metadata file is created together with the Pulseq sequence. This file contains all

relevant information about the measurement and is merged with the raw data before

image reconstruction.

For identification of the files, the Message-Digest Algorithm 5 (MD5) hash of the

Pulseq sequence file is calculated and appended to both the sequence and the metadata

file as a signature.

3.2.1.1 PyPulseq

The PyPulseq toolbox implements the functionalities of Pulseq in Python. It provides

common RF pulses and gradient waveforms, as well as example sequences. Arbitrary

gradient and RF waveforms are also possible, allowing for high flexibility. The additional
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Figure 3.2: Left: Sequence development and metadata file creation with PyPulseq. The meta-
data file is initialized, and a header is created from global sequence parameters (full header
function not shown). The sequence object is created, and event blocks are added. At the same
time, readout information such as k-space flags, counters, and the k-space trajectory are added
to the metadata file. Right: Dump of the sequence tree from a sequence developed with the
JEMRIS simulation framework. The metadata header is generated from the global parameters in
JEMRIS. Acquisition-specific k-space information is generated from the new JEMRIS loop-type
and ADC-type parameters and added to the metadata, together with the k-space trajectory.
Green color indicates new features.

metadata file is created with the Python implementation of the MRD format [81].

First, all elements of a sequence containing RF pulses, gradient waveforms, and

ADCs are defined. Sequence parameters such as the FOV, resolution, number of slices,

and k-space trajectory type are added to the MRD header as illustrated in Figure 3.2

(left). The timing of the sequence is represented as a gapless concatenation of time slices

termed blocks in Pulseq. Each block may define a single RF, ADC or gradient pulse

event per gradient axis, whereas each of these events may be delayed by an arbitrary

period of time. The duration of each block is defined by the duration of the longest event

within that block, or an optional additional delay object that can be used to increase

the duration of the block.

For each ADC/readout event present in the sequence, acquisition parameters are

added to the MRD metadata file, containing k-space counters, flags, and optionally

the k-space trajectory. Further sequence-specific information for reconstruction and

postprocessing (e.g., b values for diffusion sequences) can be added by using user defined

parameters and arrays. Auxiliary information, such as the sequence name or the FOV,

can be added to the Pulseq file. Knowledge about the FOV is useful for a correct

visualization of the acquisition volume at the scanner.
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3.2.1.2 JEMRIS

JEMRIS provides a graphical user interface for sequence development and the sequence

timing is defined in XML files, that can also be edited directly. JEMRIS also provides

common RF and gradient shapes, as well as the ability to import user-defined shapes

via Hierarchical Data Format (HDF5) files. Sequences can be simulated directly in

JEMRIS or exported to the Pulseq format for scanner execution. The export of the

JEMRIS sequence XML file to Pulseq is done automatically based on the provided

XML file. For this work, the Pulseq file export was extended to support rotations of

gradient waveforms with a given rotation angle. This simplifies sequence development

for rotationally symmetrical k-space trajectories such as radial or spiral trajectories.

Additionally, a new time-optimized spiral gradient [88] was implemented in JEMRIS.

An MRD metadata file is automatically created during export to the Pulseq format.

Header information is taken directly from the parameter module in JEMRIS. k-space

positions are defined by the k-space trajectory, which is calculated for each ADC event

in the sequence. However, because JEMRIS does not distinguish between different types

of loops or ADCs, different k-space acquisitions cannot be separated easily. Therefore,

the loop-type and ADC-type parameters were added to each pulse module, which is

shown in Figure 3.2 (right). The loop type classifies loops to distinguish if different

lines in k-space (e.g., phase encoding and partition loop) or different images (e.g., slice,

contrast, set, or average loop) are acquired. The ADC type defines the ADC sampling

as an imaging ADC or some sort of calibration ADC (noise, parallel imaging calibration,

phase calibration).

3.2.2 Data Acquisition and Simulation

Raw data in the presented workflow can originate either from a real acquisition on an

MRI scanner or from a simulation with the JEMRIS framework. For the latter, the

sequence must be designed in JEMRIS because there is currently no efficient import of

Pulseq sequences in JEMRIS.

In a real experiment, the sequence file is exported to the MRI scanner and selected in

the scanner graphical user interface (GUI) for execution as shown in Figure 3.1. Pulseq

sequences are run with a vendor-specific interpreter sequence, which supports integrated

FOV positioning. Currently, sequence interpreters for Siemens (Siemens Healthineers,

Erlangen, Germany), GE (General Electric Healthcare, Waukesha, WI, USA), and table-

top MRI scanners are available. During sequence execution, both the sequence name and

the MD5 signature are saved in the raw data header in order to identify the correct meta-

data file in the reconstruction.

Simulation of a sequence in JEMRIS is executed either from the command line or

in the GUI by providing the sequence XML file, the digital phantom and its MRI-

relevant parameters, and optionally receive and transmit coil sensitivities. An MRD

file is generated after simulation (Figure 3.1), containing both the MRI signal and the
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Figure 3.3: Detailed view of the reconstruction pipeline for raw data from an MRI scanner or
the JEMRIS simulation framework. Raw data from the scanner are first converted to MRD.
The data is streamed to the reconstruction server, which is where the reconstruction pipeline is
started. The pipeline supports an optional correction of gradient imperfections with the GIRF.
Image reconstruction and optional calculation of coil sensitivity maps are done with BART.
Reconstructed images are displayed in the GUI of the scanner, the JEMRIS GUI, or saved to a
file. GIRF, gradient impulse response function; GUI, graphical user interface.

metadata as well as receive coil sensitivities for multi-coil simulations.

3.2.3 Image Reconstruction and Postprocessing

The image reconstruction is initiated by streaming the raw data to a Python server

running inside a Docker container. Data processing scripts are selected by a configuration

string sent to the server together with the raw data. An overview of the pipeline is given

in Figure 3.3.

3.2.3.1 MRI Scanner Data

Raw data from the scanner are converted to the MRD format and streamed to the

reconstruction server by a client using a format initially developed by the Gadgetron

framework and extended for other workflows. This is done either online with a vendor-

dependent interface or offline with a converter and a Python-based client. Convert-

ers from the most common vendor data formats to MRD are provided by the MRD

project (https://github.com/ismrmrd). The prototype Siemens framework for image

reconstruction environments (FIRE) [89] was used as the vendor interface for online re-

construction in this work. This interface allows real-time streaming of acquired data,

which can be selected in the scanner GUI prior to execution of the sequence. The online

pipeline is configured with an XML file that is linked to the Pulseq interpreter sequence

[89], similar to the configuration used by the Gadgetron project [80].
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Prior to image reconstruction, the MRD metadata file is transferred to the reconstruc-

tion server. The header and k-space information from the metadata file are automati-

cally merged with the corresponding raw data in the reconstruction pipeline. Optional

trajectory correction with the gradient impulse response function (GIRF) [90] can be

performed by supplying gradient shapes instead of k-space trajectories. This requires

knowledge of the scanner-specific GIRF as well as additional information for aligning the

trajectory with the ADC readout samples.

Image reconstruction is triggered when all data for a complete image is collected,

for example, by a metadata flag identifying the last acquisition in a slice. The pipeline

contains processing steps for sorting the data, noise prewhitening with noise scans, and

parallel imaging calibration using reference k-space data. Prescan data is separated from

imaging data by reading the corresponding metadata flags. Calculation of coil sensitivity

maps is done with the eigenvector-based iterative self-consistent parallel imaging recon-

struction (ESPIRiT) algorithm [58], implemented in BART. Other reconstruction steps,

such as k-space filtering and application of phase navigator data, can be integrated into

the existing pipeline.

Fully sampled Cartesian data are reconstructed with a simple fast Fourier transform

(FFT) in Python, whereas undersampled and non-Cartesian data are processed with

BART using its parallel imaging and Nonuniform fast Fourier transform (NUFFT) im-

plementations. If sensitivity maps were calculated, the parallel imaging with compressed

sensing reconstruction (pics) implemented in BART is executed. Online reconstructed

data are streamed back to the MRI scanner in real time and can be viewed in the scan-

ner console GUI while the acquisition is still ongoing. Images that were reconstructed

in offline mode are stored in the MRD image format.

3.2.3.2 JEMRIS Simulation Data

For simulated data, the reconstruction pipeline can either be started from the JEMRIS

GUI or from the command line. In the first step, the MRD data are streamed to the

server application (Figure 3.3). Simulated data are processed with the same pipeline as

data from the MRI scanner that were acquired with a JEMRIS sequence. The MRD

file created after simulation already contains both metadata and imaging data. In the

case of multiple simulated receiver coils, the coil sensitivities that were used during the

simulation are directly passed to the pipeline. If no additional reference data for parallel

imaging calibration are acquired in the simulation, these coil sensitivities are also used

in the reconstruction.

Currently, it is not possible to define Cartesian k-space sampling for JEMRIS se-

quences in the metadata or to detect Cartesian sampling during the reconstruction.

Therefore, the image reconstruction treats all simulated data as non-Cartesian and thus

requires the k-space trajectory, even if all data points lie on a Cartesian grid. Recon-

struction is done either with BART’s NUFFT or with its parallel imaging reconstruction
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implementation. After reconstruction, images are saved in the MRD image format and

displayed in the JEMRIS GUI if the pipeline was started from the GUI.

3.2.4 Experiments

Different imaging sequences were created with the JEMRIS GUI, as well as with Py-

Pulseq, to demonstrate the flexibility of the presented workflow. Experimental data

were mainly acquired on a 7 Tesla (T) scanner in Bonn (Siemens Magnetom 7T Plus,

Siemens Healthineers), whereas one example sequence was additionally executed on sev-

eral 3T scanners as described below. The first example sequence designed with JEMRIS

contains a 3D GRE Cartesian readout. Signal excitation was achieved by a nonselective

block excitation pulse with a duration chosen to achieve water excitation (suppressing

fat signal) at 7T (d = 1.02ms). The acquisition was accelerated by a factor of R = 4 in

the first phase-encoding direction, with and without a CAIPIRINHA [91] shift of ¶ = 1.

FLASH-based low-resolution reference scans were acquired prior to the measurement

in order to obtain coil sensitivity maps. The FOV was 210 × 210 × 160mm3 at 1mm

isotropic resolution. The measurement was repeated with 4 different variations:

1. TE =5 ms, TR= 10 ms, with RF spoiling

2. TE =5 ms, TR =10 ms, with RF spoiling, fat-selective sinc-pulse (1 kHz band-

width) instead of water excitation

3. TE =25 ms, TR= 30 ms, no RF spoiling

4. TE =25 ms, TR= 30 ms, no RF spoiling, no CAIPIRINHA shift

As a non-Cartesian example, a 2D spiral sequence with a time-optimized [88] k-space

trajectory was created using both JEMRIS (without fat saturation pulse) and PyPulseq

(with fat saturation pulse). One slice with a slice thickness of 1 mm and a FOV of

220× 220mm2 at 1 mm isotropic resolution was acquired. The PyPulseq version of this

sequence was additionally executed at 2 3T scanners in Bonn (3T Skyra, Siemens Health-

ineers) and Freiburg (3T Prisma, Siemens Healthineers) to demonstrate portability. It

was successfully executed also on a 3T Vida scanner (Siemens Healthineers) running

on a different vendor’s software version (results not shown). Additionally, the sequence

was converted to the TOPPE [79] file format using the PulseGEq converter provided by

the TOPPE project [92]. It was then executed on a 3T UHP scanner (General Electric

Healthcare) to show the compatibility of the pipeline across 2 different vendors. At 3T,

both the slice thickness (3 mm) and TR (200 ms) were increased for higher SNR and

better contrast. Because the TOPPE format currently does not support ADC sampling

intervals of different duration, coil sensitivity calibration was performed with the spiral

data.

A slightly modified version of the same spiral sequence was simulated in JEMRIS,

demonstrating the influence of chemical shift and susceptibility in a sample. In the simu-
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lation, gradient spoiling was replaced with long TR spoiling because correct simulation of

gradient spoiling needs many simulated spins resulting in exceedingly long computation

times [93].

A 2D Cartesian B0 mapping sequence was developed to show the postprocessing

capabilities of the reconstruction pipeline and to allow for B0 correction of the spiral

imaging data. One slice with 2mm slice thickness and a FOV of 220× 220mm2 at 2 mm

isotropic resolution was acquired.

All images were reconstructed with BART. Calculation of the B0 field map from

raw GRE images was done with Python, using the scikit-image [94] and SciPy [95]

libraries for phase unwrapping and filtering. The spiral data acquired with the PyPulseq

sequence were reconstructed with a GIRF predicted trajectory. The PowerGrid toolbox

[96] was used in the pipeline to achieve B0 correction of the spiral data with a time-

segmented reconstruction approach [97] using the B0 field map calculated before. Online

reconstruction was performed exclusively on the 7T MRI scanner.

3.3 Results

Reconstructed images from the 3D GRE sequence designed with JEMRIS are displayed

in Figure 3.4. Images with water excitation in the upper row show a typical T1 weighted

contrast at short TE. Fat signal in the skull is suppressed, whereas it is the dominant

signal in the fat excited images in the lower row. However, images acquired with fat

excitation still show some residual water signal in the brain. Figure 3.5 shows images

from the same 3D GRE sequence with a longer TE time with and without CAIPIRINHA

shifts, demonstrating a T ∗
2 contrast. The CAIPIRINHA shift reduces artifacts, which

are especially visible in the sagittal view where stripe-shaped artifacts disappear.

In Figure 3.6 (A) the magnitude GRE image from the B0 mapping sequence at the

first TE (TE = 2.04ms) is shown. The phase difference map in Figure 3.6 (B), which

was calculated from both echoes, has no visible phase wraps in the brain. Figure 3.6

(C) is the resultant B0 field map, which was smoothed with Gaussian (Ã = 0.5 pix) and

median filters (kernel size 2× 2 pix).

Images acquired with the 2D spiral sequence are shown in Figure 3.7. The image

(A), acquired without fat suppression, shows a stripe-shaped artifact at the periphery of

the brain caused by folded fat signal. The overall blurring in this image is mainly due to

B0 inhomogeneities. In image (B), fat artifacts are removed due to the fat suppression

pulse and blurring is reduced significantly. In (C), the same image with additional B0

correction using the map in (C) has even less blurring, and signal is recovered especially

in the anterior part of the brain. The images acquired at all three 3T scanners in (D)-

(F) show only minor artifacts in the frontal brain, mostly caused by B0 inhomogeneities.

Slight geometric distortions presumably due to gradient imperfections are visible in the

posterior part of the brain.

Reconstructed images from one simulated slice acquired with a spiral sequence are
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Figure 3.4: Reconstructed images from a T1 weighted 3D GRE sequence created with JEMRIS,
with a TE of 5 ms and 4× undersampling with a CAIPIRINHA shift. Water images were
acquired with block pulses of 1.02 ms length suppressing fat signal (upper images), whereas fat
excitation was achieved with fat-selective sinc-pulses (lower images). CAIPIRINHA, controlled
aliasing in volumetric parallel imaging; GRE, gradient echo.

shown in Figure 3.8. Simulating a clean digital phantom yields artifact-free images.

Adding the chemical shift of fat to the digital brain phantom results in stripe-shaped

artifacts similar to the artifacts in Figure 3.7 (A). Including magnetic susceptibility in

simulations that is causing B0 inhomogeneities leads to the typical blurring artifact,

well-known in spiral imaging. Both chemical shift and susceptibility differences lead to

signal loss, especially in the lower brain (upper row in Figure 3.8).
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Figure 3.5: Images from the same 3D GRE sequence as in Figure 3.4, with a TE of 25 ms. Upper
images were acquired with a CAIPIRINHA shift, whereas lower images were acquired without
this shift. The red arrow indicates artifacts in images without CAIPIRINHA.

Figure 3.6: Reconstructed images from a B0 mapping sequence. Image (A) is the first magnitude
image with TE = 2.04 ms; (B) is the phase difference map of the 2 echoes; and (C) shows the
corresponding filtered B0 field map.
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Figure 3.7: Reconstructed images from a 2D spiral GRE sequence acquired at 7T (A-C) and
3T (D,E) scanners from 4 different subjects. Image (A) was acquired with a spiral sequence
without fat suppression; whereas in (B) fat suppression was added to the sequence, and GIRF
trajectory correction was done in the reconstruction. Image (C) was reconstructed from the
same raw data, but with an additional B0 correction using the field map shown in Figure 6C.
Images (D-F) were acquired at 3 different 3T scanners with fat suppression, but without GIRF
correction in the reconstruction. Red arrows indicate artifacts from gradient imperfections and
from off-resonance due to chemical shift and magnetic susceptibility. T, Tesla.
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Figure 3.8: Images reconstructed from data simulated with the JEMRIS simulation frame-
work. A spiral sequence was simulated for 2 different slices either with a clean digital phantom,
with additional chemical shift from fat or with susceptibility differences across the digital brain
phantom. Artifacts from chemical shift and susceptibility are indicated by red arrows. The B0

maps on the right show both chemical shift (at approximately 1 kHz) and susceptibility-induced
off-resonance effects.
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3.4 Discussion

3.4.1 Flexibility and Extensibility

The examples presented in this chapter demonstrate the high flexibility of the proposed

workflow regarding the sequence design methods and the applied reconstruction algo-

rithms. Advanced imaging techniques such as parallel imaging with CAIPIRINHA or

non-Cartesian sampling are integrated in the workflow. The workflow allows users to pro-

totype new sequences and reconstruct the acquired data with vendor-independent tools.

Existing code for sequence generation can easily be extended with additional sequence

design tools, such as Sigpy [98] or the gradient optimization toolbox GrOpt [99].

Based on the example of a spiral sequence, we showed that sequence execution across

different scanners and vendors is possible using the same image reconstruction pipeline

(with minor modifications). However, porting a sequence from 1 acquisition system to

another requires adhering to any differences in hardware properties and safety limits that

may exist. For example, in the presented spiral sequence, the gradient slewrate had to

be slightly reduced from 7T to 3T scanners due to peripheral nerve stimulation limits.

For the conversion of the spiral sequence to the GE-compatible format TOPPE,

prescans for noise and coil sensitivity calibration had to be removed. These prescans

can be acquired with separate sequences, but this does require manual integration of the

calibration data into the spiral reconstruction. Small timing changes were needed to fit

the requirements of the TOPPE format with only minimal effect on the acquired data for

this particular sequence. Because TOPPE is a relatively young file format under active

development, future improvements regarding the compatibility of Pulseq and TOPPE

are expected.

Furthermore, the workflow allows for comparison of data from the JEMRIS MRI

simulator with an actual acquisition at the MRI scanner. This is useful for testing se-

quences before running them on a real MRI scanner or to investigate the influence of

specific physical properties (e.g., presence of fat) on data acquisition. However, simu-

lating the exact same sequence that is running on the MRI scanner sometimes is not

feasible because some physical effects might not be included in the simulated model or

require excessively long computation times.

The available reconstruction pipelines for both Pulseq and JEMRIS data can recon-

struct images from many different MR imaging sequences and can be used as a start-

ing point for more elaborate reconstructions or postprocessing techniques. Additional

sequence-specific meta information such as inversion times or b values can be transferred

and accessed in the reconstruction pipeline by adding them as user-defined parameters

or arrays to the MRD metadata file. BART already provides much functionality for

preprocessing and calibration of data, as well as for advanced image reconstruction al-

gorithms. However, integration of new reconstruction or postprocessing tools into the

existing pipeline is also possible.
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Online integration of the reconstruction pipeline simplifies testing of novel sequences

that require nonstandard reconstruction techniques such as non-Cartesian sequences. It

also allows using reconstructed images from novel sequences for calibration such as B0

or B1-shimming. Because reconstruction scripts can be dynamically embedded into the

Docker container without rebuilding, reconstruction scripts can be changed and tested

during a scanning session.

3.4.2 Openness and Reproducibility

All file formats used in the workflow are open-source, including the Pulseq sequence file,

MRD metadata file, and JEMRIS XML files. Source code of the reconstruction pipelines

and sequences developed in Python can be made openly available because no proprietary

code is used. Reconstruction pipelines can be shared and deployed via Docker images,

which require no additional modifications of the system because all dependencies are

already installed inside the container.

In summary, the presented workflow allows sharing the whole imaging workflow by

providing the sequence file, metadata file, and reconstruction pipeline. In this way, it

is potentially possible to reproduce data acquisition and reconstruction with the same

parameters at MRI scanners from different vendors, with different software versions

and at different sites. Sharing the source code of both sequences and reconstruction

can simplify collaborations between different sites. For sites already using the Pulseq

framework, integration of the proposed workflow into existing pipelines would not require

much effort.

We demonstrated the portability of the workflow by acquiring images with the same

sequence at three different 3T scanners located at three different sites using the same

image reconstruction pipeline.

Inline reconstruction directly on the vendor’s interface significantly improves the

workflow by providing real-time feedback during experiments and improves the user

experience by automating the reconstruction. However, inline integration is optional,

and all reconstruction pipelines can also be run offline if a vendor-dependent interface is

unavailable or a fully open-source pipeline is desired. Therefore, no proprietary software

is required for the postacquisition part of the workflow because converters to the MRD

file format exist for all common vendor raw data formats.

3.4.3 Performance of the Pipeline

If sequence parameters are changed, both sequence and metadata files must be recreated

and transferred to the scanner and the reconstruction server. This procedure can be

automated, depending on the local scanner setup, although for long sequences metadata

files can get quite large due to redundant trajectory information stored for each readout.

The computation times for creating metadata files increases with file size, which might

limit rapid testing of different protocols as well as manual parameter optimization at
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the scanner for long sequences. However, recreation of the metadata file for online

reconstruction is only necessary if reconstruction-specific parameters are changed.

The performance of the reconstruction pipeline depends on many factors, including

configuration of reconstruction parameters and possible preprocessing steps. Perfor-

mance optimization is especially important when the pipeline is to be executed online.

The example 2D spiral reconstruction required about 10 s of computation, whereas the

2D Cartesian reconstruction finished in under 1 s. The much larger accelerated 3D

Cartesian dataset required about 15 min of computation (16 core CPU, NVIDIA A6000

GPU [NVIDIA, Santa Clara, CA, USA]). Reconstruction times for the simulated data

are negligible compared to the simulation times.

For complex reconstructions and large datasets, the total reconstruction time mainly

depends on the time for the coil sensitivity calibration and the reconstruction with BART.

Optimization of reconstruction parameters or the usage of coil compression hold poten-

tial for future performance improvements. For large datasets, reading and merging the

metadata takes a significant amount of time. In future development, metadata could be

stored in a less redundant way or transferred directly to the scanner at sequence runtime

via the Pulseq format to accelerate the merging process.

3.4.4 Limitations

In the current implementation of the reconstruction pipeline, calibration data must be

acquired within the same sequence as the imaging data. Separately acquired prescans

for coil sensitivity calibration or field correction must be integrated manually into the

reconstruction, requiring modification of the reconstruction code. This is unfavorable if

the user wants to reconstruct multiple datasets using the same calibration from a single

prescan. Future implementation of linking calibration to imaging data would increase

usability of the pipeline.

The automatic metadata and sequence file creation from JEMRIS simplifies the de-

velopment process because no programming is necessary. However, it is currently not

possible to add arbitrary user-defined sequence-specific information to the metadata file.

Further extension of JEMRIS to include such information may be the focus of future

work. Data acquisition by simulation in JEMRIS is only possible for sequences designed

in JEMRIS. Conversion of Pulseq sequence files to the JEMRIS XML format is possi-

ble [100] although the high-level loop structure of a sequence cannot be recovered from

Pulseq files, leading to excessively long computation times in simulations.

Setting up the whole pipeline and extending it for one’s own experiments might

require some time and experience with Pulseq, the MRD file format, and the processing

of streamed data. However, several examples for sequences and reconstruction scripts

are available in the GitHub repository, which can be used or modified for one’s own

purposes.

Online reconstruction of acquired data requires a vendor-dependent interface and is
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only feasible if the reconstruction time is not excessively long. Time-consuming recon-

struction routines, for example, for non-Cartesian 3D acquisitions may therefore have

to be performed offline depending on the computational power of the reconstruction

computer.

3.5 Conclusion

The demonstrated end-to-end open-source sequence programming and image reconstruc-

tion workflow allows for rapid prototyping and testing of MRI sequences. By using the

Pulseq framework, a flexible MRD-based metadata file, and streamed reconstruction

pipelines, the whole imaging workflow becomes highly extensible. The workflow enables

comparison of data from different MRI scanners and from MRI simulations in JEMRIS

using the same pipeline for image reconstruction. The (online) image reconstruction

pipeline is versatile because it is not restricted to particular types of MRI sequences

and can be extended in various ways with one’s own code or using available open-source

tools. Because all software in the proposed workflow is open-source, both sequence code

and image reconstruction pipelines are vendor-independent and can be shared freely,

facilitating greater reproducibility of MRI experiments.

3.6 Data Availability

The source code, sequence and metadata files created with PyPulseq and JEMRIS, and

raw data and reconstructed images can be found at https://github.com/mrphysics-bonn/

python-ismrmrd-reco (Git hash 15df3aa, https://doi.org/10.5281/zenodo.6683903).

The filenames in the repository are linked to the figures of this chapter as shown in Ap-

pendix Table A1. The repository also contains the reconstruction server with instructions

on how to set up and use the pipeline (with and without GPU support). A Docker im-

age of the reconstruction server can be found at https://hub.docker.com/repository/

docker/mavel101/bart-reco-server. The new JEMRIS version with additional exam-

ples for the metadata file export and the reconstruction of simulated data are available

in the JEMRIS GitHub repository (https://github.com/JEMRIS/jemris) and on the

JEMRIS website (https://www.jemris.org/).
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4.1 Introduction

4.1 Introduction

Axons form the neural pathways in the white matter of the human brain. The axon

radius is a crucial factor influencing the speed and efficiency of axonal signal transmis-

sion [101]. Previous ex vivo studies have associated axonal degeneration with various

diseases; for instance, acute axonal damage is a key morphological feature in the early

stages of multiple sclerosis [102]. Therefore, the axon radius could serve as an important

biomarker, if accurate noninvasive in vivo quantification were possible.

Diffusion-weighted MRI (dMRI) has been proposed as a method for measuring axon

radii in the human brain noninvasively [103], [104]. Approaches to model the diffusion-

weighted signal in the white matter include both single- and multi-compartment models.

Multi-compartment models typically differentiate intra-axonal, extra-axonal and free

diffusion (CSF) compartments [103], [105]. If any extra-axonal and free water signal is

fully suppressed with sufficiently strong diffusion-weighting [106], it is possible to reduce

the model to only the intra-axonal compartment, where axons are typically modeled as

impermeable cylinders with finite axon radius [31].

Sensitizing the MR signal to the axon radius requires data acquisition with very

strong diffusion-weighting, as the signal attenuation due to diffusion perpendicular to

the axonal cylinder is typically small. Therefore, high amplitude gradients are required

to achieve imaging at high b-values. In recent years, the noninvasive quantification of

axon radii in the human white matter has come into reach, due to the development of

high-performance gradient systems like the Connectom system with gradient strengths of

up to 300mT/m [53]. However, even with these gradient systems, the sensitivity of the

diffusion-weighted signal is still restricted to large axons greater than approximately 3 µm

in diameter [107], which represent only a small fraction of the axon radius distribution

[108]. Additionally, pointwise estimates of axon radii using diffusion MRI are heavily

weighted towards the larger radii represented by the tail of the distribution [107], [109].

This makes it difficult to gain any information about the underlying distribution of axon

radii within a voxel without making any assumptions regarding that distribution [104] or

further approximations [106]. In order to maximize the signal attenuation and decrease

the resolution limit of axon diameter mapping, the b-value has to be maximized while

preserving enough SNR.

Fast MRI sequences are required to acquire diffusion data at sufficiently short echo

times and to achieve reasonable scan times. These sequences typically suffer from arti-

facts due to magnetic field inhomogeneities and eddy currents. The workhorse of dMRI is

a 2D multi-band single-shot EPI sequence [4] used in most dMRI studies. This sequence

offers fast acquisition of the 2D k-space, but suffers from susceptibility and eddy current

induced geometric distortions. Advanced correction methods in image space have been

developed [110] allowing the elimination of most of these distortion artifacts. Spiral

k-space trajectories offer a promising alternative to a rectilinear EPI readout, as acqui-

sition starts in the center of k-space, resulting in a reduced echo time and potentially
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higher SNR [6]. However, single-shot spiral acquisitions are prone to artifacts arising

from hardware imperfections and eddy currents, especially in the presence of strong dif-

fusion sensitizing gradients. These artifacts typically manifest as image blurring and can

not easily be corrected in image space, due to the non-Cartesian acquisition of k-space.

Measurement of the actual encoding fields during the MR sequence, also termed field

monitoring, aims to mitigate these artifacts [8]. Combined with an expanded encoding

model, even higher order eddy current effects can be corrected in the image reconstruc-

tion [9].

In this work we used a custom 2D multi-band spiral sequence combined with field

monitoring for the quantification of in vivo MR axon radius estimates. We compared this

approach to an established EPI-based axon radius mapping approach using a protocol,

which previously showed high repeatability[111]. SNR measures for both sequences were

investigated and the variability of the derived axon radius estimates was compared both

within one measurement and across two measurements using a test–retest design.

4.2 Methods

A single-compartment model for the diffusion-weighted signal representing only the intra-

axonal space was used to derive axon radius estimates [106]. Diffusion-weighted images

were acquired at two different high b-value shells as proposed in Veraart et. al.[111].

The lower b-value was set to 6000 s/mm2 to fully suppress the extra-axonal signal, while

keeping the sensitivity to the axon radius at a minimum. The higher b-value was set

to 30450 s/mm2 to maximize the sensitivity to the axon radius, while not exceeding the

hardware limits of the scanner and maintaining sufficient SNR.

4.2.1 Data Acquisition

A multi-band single-shot spiral sequence was implemented as part of a pipeline [112]

shown in Figure 4.1. The sequence was created with PyPulseq [87] and exported to the

Pulseq file format [78]. A spiral k-space trajectory with two interleaves was designed for

a nominal resolution of 2.5mm and accelerated by a factor of R = 2 by using only the

first interleave. The spiral trajectory was implemented with time-optimized gradients

[88]. The sampling dwell time was 2.2 µs with an oversampling factor of two and 8364

samples per shot. The multi-band pulses (acceleration factor MB = 2) were created

from single-band Shinnar–Le Roux RF pulses from the vendor’s pulse library, applying

a minimum-time VERSE algorithm to reduce peak RF power [66].

The spiral sequence included a dual-echo GRE prescan at 1× 1× 2.5mm3 resolution

with an acquisition time of TA = 1:40 min. Data were acquired at echo times TE1 =

2.42ms and TE2 = 4.84ms, where the water and fat signals are in phase at a field

strength of 3T. This prescan was used for mapping of the static off-resonance fields and

estimation of coil sensitivities. The spiral data were acquired straight axial, with no tilt
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Figure 4.1: Spiral sequence development and image reconstruction pipeline [112]. The spiral
sequence was designed using PyPulseq and Pulseq. The sequence includes a dual-echo gradient
echo (GRE) prescan for coil sensitivity calibration and mapping of static off-resonance. Image
reconstruction with an expanded encoding model was implemented in the PowerGrid toolbox
using k-space phase coefficients of up to third spatial order. An example set of phase coefficients
measured with a field camera (Skope) is shown on the left.

applied.

A multi-band EPI sequence with blipped-CAIPI (MB = 2) and in-plane GRAPPA

acceleration (R = 2) [4] was used as a reference method, as it gave repeatable results

in a previous study [111]. In contrast to that study, we only used one instead of two

repetitions of the diffusion protocol. The phase-encoding resolution was 88 % of the

nominal resolution of 2.5mm, resulting in 77 phase-encoding lines and 13552 samples

per shot (no partial Fourier). The missing phase-encoding lines were zero-filled in the

reconstruction. The EPI sequence uses ramp sampling and the sampling dwell time was

2.5 µs with an oversampling factor of two. The EPI data were acquired with anterior-

posterior phase-encoding with a slight tilt along the bottom of the corpus callosum,

approximately along the anterior commissure – posterior commissure line.

The following parameters were kept constant for both sequences: TR = 3.5 s, FOV =

220 × 220 × 135mm3, 2.5mm isotropic voxels. Data were acquired with interleaved b-

values b = 0 s/mm2 (b0; ten volumes), b = 6000 s/mm2 (60 non-colinear directions

on the sphere) and b = 30450 s/mm2 (120 non-colinear directions on the sphere) with

diffusion gradient parameters Gmax = 280mT/m (maximum amplitude), ∆ = 29.25ms

(spacing between diffusion gradients) and ¶ = 15ms (diffusion gradient duration). For

the EPI sequence, ten b0 volumes were acquired with inverted phase-encoding direction

(posterior-anterior) for susceptibility-induced distortion correction.

The respective echo times of the spiral (TE = 52ms) and EPI sequences (TE =

66ms) were minimized for the given parameters. The readout durations were 18.4ms
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for the spiral and 22.8ms for the EPI sequence, and the total acquisition times were

TA = 13:07 min (spiral) and TA = 13:27 min (EPI) including all prescans and the

inverted phase-encoding b0 acquisition.

In addition to the diffusion data, T1-weighted anatomical images were acquired with

an MPRAGE sequence. These images were used for registration and segmentation of

white matter. MPRAGE data were acquired at 1mm isotropic resolution with a FOV

of 256× 256× 192mm3.

Data were acquired from ten healthy volunteers (five male, five female, age between

19–36) after giving informed consent on a 3T Connectom scanner with a maximum

gradient strength of 300mT/m using a 32 channel RF-receive coil (Siemens Healthcare,

Erlangen). For each volunteer, test and retest data were collected in two scanning sessions

with a short break of 10-20 min in-between using the same imaging protocol. The subject

was removed from the scanner and then repositioned during the break. For one subject

(subject 7), the test–retest acquisition was repeated twice to investigate the source of a

bias in the repeatability metrics observed during the analysis in three of the subjects.

The initial scan for this participant had been in the afternoon after several subjects had

already been scanned, and so the second acquisition was performed first thing in the

morning to investigate the effect of scanner load on the repeatability.

4.2.2 Field Monitoring and Image Reconstruction

For the spiral sequence only, the dynamic field evolution was monitored using a field

camera (Skope Magnetic Resonance Technologies AG, Zurich) with 16 19F-based NMR

field probes. The spatially-varying field was estimated with spherical harmonic basis

functions up to third order and second order concomitant field functions [8].

The field monitoring data were acquired in a separate scan session with the field

probes placed inside the RF coil mounted on a plastic frame in optimized positions [113]

to allow for third spatial order spherical harmonic fitting. Field data were captured

for every second spiral shot as the shot-TR of 130ms was too low to allow for proper

relaxation of the field probes. The field probe data of the missing shots were acquired in

a second scan, which was performed after a break to regain the initial state of the MR

scanner. The field data collected in this separate scan session was used for reconstruction

of spiral data from all subjects.

Image reconstruction was done with an iterative sensitivity encoding (SENSE) re-

construction [67] using the PowerGrid toolbox [96]. Image reconstruction was based on

an expanded signal model [9]:

Ãγ(t) =

∫

Ä(r)sγ(r)e
−i[

∑
j kj(t)hj(r)+∆ω(r)t]. (4.1)

Here, Ãγ(t) is the signal of receive coil µ at time point t, Ä(r) is the transverse mag-

netization at voxel position r and sγ(r) is the sensitivity of the respective receiver coil
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at that position. The phase term includes the phase coefficients kj(t), measured with

the field camera, multiplied by the respective spatial basis function hj(r) [8]. A zeroth

order phase shift k0(t) is already applied to the data by the vendor’s eddy current com-

pensation (ECC) at the acquisition stage. As the vendor does not allow this ECC to

be disabled, this additional global phase shift had to be reversed before image recon-

struction. Otherwise, this phase would be corrected twice by the ECC and the field

probe data. During conversion of the raw data to the MRD format [81], the global phase

k0(t) applied by the ECC is calculated using the nominal gradient time courses of the

sequence and the vendor’s eddy current model. Afterwards, the raw data is multiplied

by the conjugate of these values to reverse the ECC 1.

The signal model additionally considers the phase evolution due to the spatially-

dependent static off-resonance field ∆É(r). For the calculation of static off-resonance

field maps, phase difference maps between the first and second echo were calculated

channel-wise from the GRE prescan using the Hermitian product. After phase-unwrapping,

the lowest and highest quartile of phase difference values in a voxel across channels was

removed [40]. Off-resonance maps were calculated by combining channel-wise maps with

a weighted sum, where the weights represent the magnitudes of the respective channels,

and dividing by the echo-time difference. Coil sensitivity maps were determined from

the first echo of the prescan using the ESPIRiT algorithm [58]. The conjugate-gradient

algorithm was used to solve the signal model for the image Ä(r) [67]. Iteration was

stopped after a maximum number of 20 iterations or when the relative change of the

iteration error norm fell below a threshold of 0.01%.

4.2.3 Image Preprocessing

Preprocessing of the images included Gibbs-Ringing correction [114], susceptibility-induced

distortion correction, motion correction, eddy current correction up to 3rd order with

“FSL eddy" [110], [115], [116] and gradient nonlinearity correction [117]. In the spiral

data, “eddy" was only used for motion correction as eddy currents and distortions were

already addressed during the reconstruction. The diffusion-weighted images were nor-

malized to the mean non diffusion-weighted (mean b0) image and spherical-harmonic

coefficients of up to sixth order were calculated for both b-value shells using a maximum-

likelihood estimator [118]. In order to account for the Rician distribution of the data, a

noise map was calculated [119] using only the lower b-value (b = 6000 s/mm2) shell and

the non diffusion-weighted images. This noise map was used to improve the precision of

the spherical-harmonic fit.

Although, in “eddy" an alignment of the shells is performed, we observed a shift

between the two shells in the EPI data after spherical-harmonic fitting. Therefore,

in the EPI data an additional registration of the higher b-value shell to the lower b-

value shell was done using “FSL FLIRT" [120]. The warp fields of “eddy", the gradient

1https://github.com/SkopeMagneticResonanceTechnologies/siemens_to_ismrmrd
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nonlinearity correction and the additional alignment with FLIRT were concatenated to

avoid repeated interpolation.

The T1-weighted anatomical images were brain-extracted, denoised and bias field

corrected using ANTsPy and ANTsPyNet [121].

The exact parameters used in each image (pre)processing step can be found in the

Github repository included in the Data Availability Statement.

4.2.4 MR Axon Radius Quantification

The powder-averaged signals S̄(b) of both shells were computed from the zeroth order

spherical harmonic coefficients [122]. In the absence of extra-axonal signal, the intra-

axonal radial diffusivity, D§
a can be estimated from the powder-averaged signals using

the relation[111]:

S̄(b) =
´√
b
e−beffD

⊥
a , (4.2)

where ´ is a signal scaling factor. An effective b-value was calculated for each voxel to

account for gradient nonlinearities [123], [124]:

beff =
1

n

n
∑

i=1

Tr(Bi,eff), (4.3)

where n is the number of directions for the respective b-value and Beff is the effective

B-tensor in each voxel. The effective B-tensor was calculated for each direction using

the spatial deviations from the nominal magnetic field gradients, which were determined

in the gradient nonlinearity correction. The radial diffusivity D§
a was then estimated

together with the prefactor ´ by non-linear least squares fitting. The MR estimate of

the axon radius rMR was calculated with the relation [106]:

rMR =

(

48

7
¶(∆− ¶/3)D0D

§
a

)1/4

, (4.4)

where D0 is the diffusivity of the axoplasm, which was set to D0 = 2500 µm2/s [111].

All axon radius maps were registered to T1-weighted MPRAGE images using FSL

FLIRT [120]. Afterwards, white matter was segmented based on the T1-weighted images

with FSL FAST [125]. A white matter mask was calculated from white matter partial

volume maps using a threshold of > 0.85. Masks of the corpus callosum were generated

using the “Hammersmith n30r95" atlas [126]. The corpus callosum was extracted from

the atlas and registered from MNI to T1 space with ANTsPy using the “MNI152-T1

1mm" template. The resulting masks were slightly eroded to avoid including voxels

containing CSF.

The axon radius was additionally estimated along the left corticospinal tract (left

CST) by applying along-fibre quantification [127] using Dipy [128] and pyAFQ [129].

In a first step, 3000 tract-specific streamlines were generated for the left CST using
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MRTrix3 [130]–[132]. Streamline outliers were removed by a cleaning process described

in Ref. [127]. The ends of the fibre bundle were clipped to a compact bundle without

strongly diverging streamlines. Fibre bundles were calculated only once for each subject

based on the first spiral dataset after it was registered to the halfway space of the first and

second session. Prior to along-fibre quantification, individual datasets were registered to

this halfway space.

The bundle was divided into 100 equidistant segments of equal length and the powder-

averaged signals of both shells and the effective b-values were averaged in each segment.

Gaussian weights were applied in the averaging to suppress contribution from streamlines

that diverge strongly from the center line of the bundle [127]. The axon radius was then

estimated for each segment along the tract in the same way as in the voxel-wise analysis.

4.2.5 Statistics

SNR measures were generated by dividing the mean b0 images and the mean images

of both shells by the noise map from the denoising step. The ratio of the mean SNR

measure between spiral and EPI data in white matter voxels was calculated for all shells

across all subjects and both sessions.

In order to investigate the repeatability, the test–retest variability (TRV) of axon

radius estimates in the white matter and in segments of the left CST was calculated by

[111]

TRV =

√
Ã

2N

N
∑

i=1

|∆r(i)|
µr(i)

, (4.5)

where ∆r(i) is the difference and µr(i) the mean axon radius estimate of test and retest

for the i-th voxel or segment respectively.

4.3 Results

4.3.1 SNR Comparison

Maps of the SNR measure for the first subject are shown in Figure 4.2 for the mean

images of all shells. The SNR was higher in spiral images compared to EPI in all shells

for all white matter regions. The SNR was overall higher in the periphery and in superior

parts compared to the center and inferior parts of the brain.

The average SNR gain across all subjects and sessions is shown below the SNR maps

as a ratio of spiral and EPI mean SNR values. The SNR gain was higher in the mean

b0 images (30%) and the lower b-value shell (29%) compared to the high b-value shell

with 19% SNR gain. The SNR ratio was consistent with a standard deviation of around

Ã = 0.02 across all subjects and sessions for all three cases.
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Figure 4.2: Maps of the SNR measure of the first subject for the mean signal of both shells and
the mean b0 signal for spiral (top row) and EPI (bottom row) acquisitions. The last column
shows the mean b0 images. Below the maps, the ratios of the mean SNR measure across all
subjects and sessions in the white matter (WM) are displayed.

4.3.2 MR Axon Radius Mapping

Whole-brain maps of the axon radius estimates for the first subject are shown in Figure

4.3. In the white matter, the axon radius estimates varied mostly between 2 µm and

3.5 µm. The EPI data showed more voids in the axon radius maps, especially in the

frontal lobe and in inferior brain regions, indicating regions where no reasonable axon

radius was estimated in the fitting procedure.

Figure 4.4 shows an overlay of the MR axon radius estimates in the white matter on

T1-weighted volumes for the first two subjects. Lower spatial variation of axon radius

estimates across the white matter was observed in the spiral maps compared to EPI

maps. Axon radius estimates dropped close to zero especially in inferior regions of the

EPI maps, while this was not the case in spiral maps.

The lower variability of axon radius estimates in the spiral data was also reflected in

the histograms of these estimates in the white matter (Figure 4.5), where the standard

deviations were lower for the spiral data in both subjects by around a factor of 1.5. For

EPI datasets, the distribution of axon radius estimates had a longer tail towards zero

compared to the spiral datasets. Comparing data from all subjects (Appendix Figure

A1), in almost all cases both the mean and the median of the estimated MR radius were

higher in spiral datasets compared to EPI, while the standard deviation was lower in all

cases. The histograms in Appendix Figure A2 show a direct comparison of spiral and

EPI data. The peaks of the axon radius distributions were similar in almost all cases, but

the longer tail of EPI distributions led to overall smaller median and mean values. Mean

and median values of axon radius estimates in the corpus callosum (Appendix Figure

A3) differed in some cases from the whole white matter and the standard deviations

tended to be slightly higher.

Profiles of the axon radius along segments of the left CST are shown in Figure 4.6.
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The mean axon radius estimates across subjects (solid line) were relatively constant

across the whole tract in the spiral datasets for both test and retest, while in the EPI

datasets, the mean radius increased from inferior towards superior positions. The vari-

ability of individual subjects (shaded lines) was also higher in the EPI data compared

to spiral data, as indicated by a narrower 95% confidence interval (dashed lines).
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Figure 4.3: Axon radius maps estimated from spiral (top row) and EPI (bottom row) data of
the first subject. The maps are thresholded at 5µm, which was the upper bound used in the
axon radius fitting procedure.
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Figure 4.4: Overlay of estimated MR axon radius distributions in the white matter onto anatom-
ical MPRAGE volumes for the first two subjects.

4.3.3 Test–Retest Reliability

The Bland-Altman plots in Figure 4.7 show the agreement between test and retest mea-

surements. A low absolute mean difference (bias) was observed for most subjects, while

for some subjects (e.g. subjects 7 and 10) there was a significant bias of up to 10% of
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Figure 4.5: Histograms of the MR axon radius (rMR) distributions in white matter of both
test and retest measurements for the first two subjects. Mean (µ), median (M) and standard
deviation (Ã) of the distributions are shown in the legend.

the mean axon radius estimate. In the histograms of MR axon radius estimates in white

matter voxels (Appendix Figure A1) this bias is observable as a shift in the axon radius

distributions. The sign of the bias was consistent across spiral and EPI data, while the

absolute amount of bias was similar in most cases. The variability between test and

retest, indicated by the limits of agreement (outer solid lines), was lower by a factor of

1.5–2 in all spiral datasets compared to EPI.

Results for the TRV in the white matter, the corpus callosum and the left CST are

shown in Table 4.1. The TRV in the white matter was approximately 1.5–2 times lower

in spiral compared to EPI data. It was relatively consistent across all subjects, except for

subjects with a high bias, where the TRV was significantly higher. These observations

also hold for the corpus callosum, where however, the TRV is higher compared to the

whole white matter. In segments of the left CST, the TRV was lower than for the white

matter in all cases and lower for spiral data compared to EPI except for subject 6.

Figure 4.8 shows Bland-Altman plots of both repetitions of the test–retest study

for subject 7, who was re-scanned to investigate the high bias in the first test–retest

measurement. Variability, bias and TRV (Table 4.1) were significantly reduced for both

spiral and EPI data in the repeated measurement.

79



4.3.3 Test–Retest Reliability

0 20 40 60 80 100

Left CST position (inf to sup)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

r M
R 

[¿
m

]

Te
st

Spiral

0 20 40 60 80 100

Left CST position (inf to sup)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

r M
R 

[¿
m

]

EPI

0 20 40 60 80 100

Left CST position (inf to sup)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

r M
R 

[¿
m

]

R
et

es
t

0 20 40 60 80 100

Left CST position (inf to sup)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

r M
R 

[¿
m

]

Figure 4.6: Profiles of the estimated axon radius in segments of the left CST from inferior
(0) to superior (100) positions. The solid lines represent the mean over all subjects. Dashed
lines indicate 95% confidence intervals, calculated as ±1.96 × Ã/

√
N , where Ã is the standard

deviation and N the number of subjects. Individual tract profiles are shown as shaded lines.

Subject: 1 2 3 4 5 6 7* 8 9 10

WM Spiral 4.00 4.48 5.23 4.50 5.65 4.41 10.38/5.34 6.07 4.48 7.77
WM EPI 8.83 6.61 11.72 12.00 15.92 9.74 17.67/7.72 9.72 8.92 13.60

CC Spiral 6.06 5.92 9.79 5.88 7.06 6.03 11.98/8.22 5.93 7.31 10.87
CC EPI 14.50 8.70 21.62 12.43 22.39 14.93 23.04/12.11 10.77 14.52 13.41

CST Spiral 1.89 2.16 2.66 2.43 4.71 2.55 4.62/2.72 2.12 3.11 4.04
CST EPI 2.82 3.64 3.74 4.77 6.48 2.05 6.74/3.38 3.32 4.52 4.67

Table 4.1: Test–retest variability [%] in white matter, the corpus callosum (CC) and the left
CST of spiral and EPI datasets. The TRV values in white matter voxels obtained for EPI data
agree with previously reported values, while the TRV in the left CST is slightly higher than
in Ref. [111]. *The test–retest measurement for subject 7 was repeated to investigate the low
repeatability in the first measurement.
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Figure 4.7: Bland–Altman plots of five subjects for all white matter voxels comparing test
and retest measurements. Solid lines represent the absolute mean difference and the limits of
agreement, calculated as ±1.96× Ã, where Ã is the standard deviation. Bland–Altman plots of
all subjects can be found in Appendix Figure A4.
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Figure 4.8: Bland-Altman plot of subject 7. The test–retest study for this subject was repeated
in a second scan to investigate the large bias in the first scan.
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4.4 Discussion

The results presented in the previous section show, that the spiral acquisition leads to

more repeatable results compared to the state-of-the-art EPI-based approach. Reduced

variability across the brain is observed in both white matter voxels and streamlines along

the left CST. This is mainly attributed to the higher SNR due to the lower TE of the

spiral readout and reduced artifacts by using field monitoring.

The theoretical SNR gain of the spiral acquisition due to shorter TE and therefore

reduced T2 decay would be around 20%, assuming an intra-axonal T2 = 75ms [133],

[134]. This value was exceeded for both the mean b0 images and the low b-value shell

(b = 6000 s/mm2). The reduced SNR improvement observed in the high b-value data

(b = 30450 s/mm2) compared to the lower b-value data could be a result of a subopti-

mal image reconstruction of the spiral data. The conjugate-gradient method with least

squares regularization adds noise to the reconstructed images at each iteration step. It

is therefore important to find the optimal stopping point especially under low-SNR con-

ditions [135]. SNR might additionally be affected by the 20% lower readout time of the

spirals compared to the EPI readout. Although it is possible to increase the readout

time of the spirals, that would result in increased susceptibility-induced artifacts such as

blurring. Partial volume effects can be ruled out as a cause of the higher SNR ratio in

the mean b0 and lower b-value shell, as similar SNR ratios were observed using a tighter

white matter mask (Appendix Table A2).

Spiral and EPI trajectories were designed for the same nominal resolution, but are

affected differently by T ∗

2 decay. The effective resolution is reduced by T ∗

2 blurring,

which has a stronger effect on spirals as outer k-space is acquired later than in EPI

[6]. In this study, this is partly compensated by the reduced nominal resolution of the

EPI sequence in the phase-encoding direction. Matching the effective resolution would

require increasing the nominal resolution of the spirals and therefore a longer readout,

resulting in a smaller voxel size and therefore decreased SNR.

EPI based axon radius maps showed more artifacts compared to spiral data, which

we mainly attribute to lower SNR and insufficient correction of eddy currents. The eddy

current correction with the image-based data-driven approach in “eddy" is limited in the

presence of strong diffusion gradients, where low SNR makes registration of diffusion

volumes challenging and higher order eddy currents become more significant. The direct

measurement of higher order fields leads to improved correction of eddy current induced

artifacts [136], [137]. Insufficient correction of eddy currents results in local distortions

of the images. The amount of distortion varies with different b-values and diffusion

gradient directions. We observed submillimeter spatial shifts between the two shells in

powder-averaged images, resulting in voids in the axon radius maps. Less distortion and

a higher SNR in spiral images led to lower spatial variation in the estimation of the

axon radius. This is especially observable in inferior regions of the brain, where the SNR

is lower and the axon radius from EPI data is underestimated compared to that from
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spiral data. Existing comparisons in the literature between EPI with and without field

monitoring [138], as well as EPI and spiral readouts [6], [139] have shown that while

using field monitoring for EPI data does reduce geometric distortions and ghosting, the

spiral data shows higher SNR.

Mean axon radius estimates in the white matter (Appendix Figure A1) tended to be

higher than previously published results both in the whole white matter and the corpus

callosum [111], [140]. Axon radius estimates from spiral data were also on average higher

compared to EPI. Two possible confounding factors could have led to these results. First,

the Gaussian noise is estimated from strongly diffusion-weighted images with relatively

low SNR, which leads to an underestimation of the noise level [141]. This may have

resulted in an insufficient correction of Rician bias during spherical averaging. Insufficient

bias correction leads to an overestimation of the spherically-averaged signal of the high

b-value shell and consequently to lower estimates of the axon radius. This effect is

stronger in EPI images, as they have lower SNR. Acquisition of additional data at lower

b-value as in Ref. [111] solely used for noise mapping could improve noise estimation,

as potential Rician bias in the noise map would be avoided, but also increase scan time.

We found only small differences when estimating axon radii from the data acquired in

Ref. [111] with noise maps based on lower and higher b-value data, though. The second

confounding factor could be insufficient decay of the extra-axonal signal in spiral images

due to the lower TE compared to EPI. This effect would lead to an overestimation of

the spherically-averaged signal in the lower b-value shell and therefore to higher radius

estimates.

Along-tract profiles of the axon radius estimates in the left CST showed lower vari-

ability between subjects in the spiral data. The TRV was lower for spiral data compared

to EPI, in agreement with the results in the white matter. The EPI data showed a

decreasing trend towards inferior regions, which could be caused by the low SNR in this

region. The decreasing trend towards superior regions reported in a previous study [111]

was not observed in the data. Instead, we observed a decreasing trend towards inferior

positions in the EPI data, which we relate to low SNR and artifacts in inferior areas

in the EPI data. A possible confounding factor could be the difference in b-value along

the tract due to gradient nonlinearities (Appendix Figure A5). A lower b-value at the

edges of the tracts could have an impact on the suppression of the extra-axonal com-

partment. However, the observed difference of the b-value along the tract of less than

3% was relatively small and did not match the pattern of the along-tract profiles.

The test–retest study showed a lower variability in axon radius maps based on spiral

data compared to EPI. TRV values were significantly lower for spiral data in white

matter voxels, the corpus callosum and the segments along the left CST. The TRV

values obtained for the EPI data in white matter agreed with previously reported values,

while the TRV in the left CST tended to be slightly higher [111]. The study in Ref. [111]

averaged over two repetitions, while we only acquired one repetition, which could explain
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the higher TRV.

The lower TRV in white matter of spirals (mean TRV including the repeated par-

ticipant: 5.66%) compared to EPI (mean TRV: 11.13%) results in smaller sample sizes

needed to distinguish between cohorts. An example power analysis (significance level

³ = 5%, power 1− ´ = 0.95) assuming a percentage difference in axon radius estimates

of 10% (effect size spiral/EPI: 1.77/0.90) yields sample sizes of 8 (spiral) and 28 (EPI)

samples per group (one-sided t-test) [142], [143].

While good repeatability was observed for most subjects, significant bias was ap-

parent in some subjects, indicating a systematic error in the measurement. This bias

could potentially arise from the subject, from the data acquisition, or from the image

(pre)processing.

Regarding subjects, we found no larger motion in subjects with high bias compared to

subjects with low bias. We also observed similar bias in spiral and EPI scans, suggesting

a limited impact of subject motion. We found no apparent drift of the diffusion signal

intensity during one axon radius measurement (data not shown) [144] and no relation

between the bias and the average SNR over the white matter mask. We also investigated

whether the off-isocenter position of the subject could be a cause, as gradient nonlineari-

ties of the Connectom scanner increase strongly with increasing distance to the isocenter

[145]. The absolute distance from the center of the FOV to the isocenter is shown in

Appendix Table A3 for both test and retest, along with the distance between test and

retest positions and the observed bias for each subject. However, no relation between the

bias and the absolute off-center position or the difference in position between test and

retest was found. Repetition of the acquisition for one of the subjects showing strong

bias gave a much smaller bias, suggesting that the bias is not inherent to a given subject.

Regarding image processing, different parameter settings for the eddy current and

motion correction procedures were tested, none of them having an impact on the bias.

We also tried denoising of complex spiral data [119] to reduce the Rician bias before

spherical-harmonic calculations, which also did not change the bias. To rule out the

possibility that differences in pipeline could cause the bias, the whole image processing

pipeline was also tested on a dataset acquired in a previous study [111], where low bias

was reported for all subjects studied. The same low bias was obtained using our own

pipeline for that data.

Regarding the acquisition, strong bias was seen in both EPI and spiral when it was

seen at all. There also seemed to be a connection between strong bias and multiple

subjects scanned in one day (but not a connection with just time of day). Together,

this suggests that the bias might be due to usage-induced scanner drift. To investigate

this, we calculated the percentage difference of the powder-averaged signals between the

two sessions for subjects with small, moderate and large bias of the MR axon radius

estimates (Appendix Figure A6) and found that the bias mainly resided in the high

b-value shell. Gradient instabilities might cause such deviations, as the actual b-value
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would then differ from the nominal b-value. Therefore, the test–retest study for subject

7 was repeated in the morning without any prior scanning giving improved results. The

bias observed in the first test–retest study would be equivalent to a deviation of the

high b-value of around 15%, corresponding to a 7.2% or 20 mT/m difference in gradient

amplitude. Such strong instabilities of the gradients would typically not be expected,

and may reflect as yet unknown limitations of the scanner hardware when it is pushed

to its limits over long durations in the course of a day. It is relevant to note that in

the study in Ref. [111], only one or two participants were recorded in a day, and always

in the morning (personal communication from Jelle Veraart), which is in line with our

observations.

4.5 Conclusions

Combining spiral k-space trajectories with field monitoring improved axon radius map-

ping in the white matter compared to a state-of-the-art EPI-based approach. The pro-

posed approach both increased SNR and reduced artifacts in the strongly diffusion-

weighted images, leading to reduced variability in resulting maps of the effective axon

radius.

While the test–retest repeatability was good in most subjects, limited repeatability

due to significant bias was found for some subjects after running the protocol multiple

times in a day, suggesting that scanner stability could be an issue. This represents a pre-

viously unknown limitation of the axon radius mapping protocol which was independent

of the readout method used. However, the precise origin of the observed bias requires

further investigation.

4.6 Data Availability

The complete image processing and analysis pipeline, as well as the sequence source code

and the Pulseq sequence file are available in the Github repository https://github.com/

mrphysics-bonn/AxonDiameter (DOI: 10.5281/zenodo.10797780). A Docker container

including the pipeline as well as example datasets are available in the Github repository.

The source code of the spiral reconstruction pipeline is available at https://github.

com/mrphysics-bonn/python-ismrmrd-reco.
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5.1 Introduction

5.1 Introduction

The measurement of the applied RF field (B+
1 ) is important for different MRI applica-

tions, including accurate scaling of RF power to achieve the desired flip angle [146] and,

particularly, quantitative MR imaging [147]. B+
1 maps are also used on parallel transmit

systems for static RF shimming or the calculation of dynamic pTx pulses [148].

The different approaches for the measurement of RF fields can be divided into

magnitude- and phase-based methods. Magnitude-based methods include the (satu-

rated) dual-angle B+
1 mapping method based on a GRE acquisition [149], [150], the

actual flip-angle-imaging (AFI) method [49], and the RF-prepared 3D FLASH acquisi-

tion [151]. The phase-sensitive method developed by Morell [152] and B+
1 mapping based

on the Bloch-Siegert shift (BSS) [48] are examples for phase-based methods. Several ap-

proaches for flip angle mapping are based on a stimulated echo (STE) signal [153]–[157].

One of these approaches is the dual refocusing echo acquisition mode (DREAM) sequence

[157], which consists of a STEAM preparation, followed by a low-angle imaging pulse

train acquiring two signals - the free induction decay (FID) and the virtual stimulated

echo (STE*). Separating B+
1 and spatial encoding weakens the specific absorption rate

(SAR) burden and the quasi-simultaneously measurement of the two signals accelerates

the scan and allows for volumetric B+
1 mapping [50], [157]. The volumetric DREAM

sequence [50] uses slice-selective pulses both for the STEAM preparation and for the

imaging train and an interleaved slice acquisition order. Recently, DREAM has been ex-

tended to the 3DREAM sequence with a 3D readout [158] allowing for rapid whole-brain

B+
1 mapping. In the 3DREAM sequence, a single STEAM preparation with non-selective

block pulses is applied before the 3D Cartesian imaging train. As a result, the STE*

signal decreases as it is ’consumed’ with each excitation, whereas the FID signal evolves

towards a steady state [158]. The STE* decay is mainly determined by the excitation

flip angle, the number of total excitations (echo train length - ETL), T1 and TR [158]

and can result in strong blurring leading to artifacts in resulting flip angle maps. One

solution to compensate for the different evolution of FID and STE* signals, is to apply

a filter on the FID images to align blurring levels [158], however decreasing the effective

resolution.

The approach used in this work is based on the 3DREAM sequence and differs in

terms of k-space acquisition in the imaging train. Instead of a Cartesian two phase en-

coding order, a non-Cartesian 3D stack-of-spirals readout is used to acquire the STE*

and FID signals. Non-Cartesian k-space acquisition with spiral k-space trajectories ben-

efits from short scan duration compared to conventional spin-warp sequences [159]. This

advantage is used for the 3DREAM sequence to decrease the ETL and counteract the

fast decay of the STE* signal [158] for reduced blurring and a higher effective resolution

of B+
1 maps.
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Figure 5.1: The spiral 3DREAM sequence starts with a STEAM preparation sequence with
non-selective block pulses (flip angle ³) followed by a spiral imaging train. Here, TS is the
STEAM preparation pulse interval and TM is the mixing time. Fat saturation before the STEAM
preparation (not shown) and binomial (1-1) pulses (flip angle ´) at the beginning of the spiral
imaging train are used to suppress fat signal. The gradients GM and G-M have equal absolute
gradient moments with opposite sign leading to a separation of the two signals in k-space. In the
sequence utilized at the scanner, the phase encoding gradient, the second slab selection rephaser
and the gradient G-M were merged into one gradient.

5.2 Methods

5.2.1 Implementation of Spiral 3DREAM

Figure 5.1 shows the spiral 3DREAM sequence. The STEAM preparation is the same

as in the original Cartesian 3DREAM [158] using two non-selective block pulses. Fat

saturation before the first STEAM preparation pulse (not shown) and two slab-selective

binomial pulses for water-specific excitation [160] are used to reduce chemical shift arti-

facts.

The STE* signal is dephased by the first gradient GM on the slice axis. The gradient

G-M has the same absolute gradient moment with opposite sign and thus rephases the

STE* signal, while dephasing the FID signal:

∫
GM dt = −

∫
G-M dt. (5.1)

The FID signal is rephased with the second gradient GM. GM and G-M are further

referred to as ‘signal separation gradients’. In contrast to the original 3DREAM, these

gradients were applied along the slice direction to reduce eddy current effects on the
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spiral trajectory.

The STE* and FID signals were acquired with an accelerated 3D stack-of-spirals

readout. Since the STE* and FID had the same effective TE, the flip angle quantification

was T2 compensated [50]. A dual-echo GRE reference scan was acquired before the

spiral 3DREAM to calculate coil sensitivity and B0 field maps. The spiral 3DREAM

was implemented in Pulseq [78], [87].

5.2.2 Reconstruction

Reconstruction was done with an iterative SENSE reconstruction [67] using the Power-

Grid toolbox [96]. The reconstruction included a time-segmented B0 correction [73] with

the B0 map calculated from the dual-echo GRE reference scan. Coil sensitivity maps

were calculated from the first echo of the reference scan with the ESPIRiT algorithm

[58]. Image reconstruction was implemented as part of an open-source imaging workflow

[112].

To equalize blurring due to different signal evolution of STE* and FID, the FID

images were filtered after reconstruction using a global filter as proposed in Ref. [158].

5.2.3 Phantom Experiments

All measurements were performed on a MAGNETOM 7T Plus scanner (Siemens Health-

ineers AG, Forchheim, Germany) with a 32-channel receive, single-channel transmit coil

(Nova Medical) on a homogeneous phantom [161] (Appendix Table A4). Flip angle maps

were acquired with the spiral and Cartesian 3DREAM at an isotropic resolution of 5mm

(FOV: 200 × 200 × 200mm3). The dual-angle method (DAM) [149], the BSS method

[48] and an AFI sequence [49] were used as reference methods.

The spiral 3DREAM data were acquired in transversal orientation with flip angles

³ = 50 ◦ and ´ = 5 ◦ (TESTE∗ = 0.72ms, TEFID = 4.28ms). The spiral readout

consisted of one interleaf per partition with an in-plane acceleration of Rint = 5 and

without additional acceleration in phase-encoding direction (RPh = 1). A controlled

aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-shift of ¶ = 4

was applied [162] by using different sets of spiral interleaves in subsequent partitions

(partition 1: first interleaf, partition 2: fifth interleaf, etc.). The ETL was 40 and the

acquisition time (TA) excluding the reference scan was 0.33 s. The reference scan was

acquired at the same FOV and resolution as the spiral scan. All sequence parameters

can be found in Appendix Table A5.

The Cartesian 3DREAM data was acquired in sagittal orientation with non-selective

pulses in the imaging train (TESTE∗ = 1.06ms, TEFID = 2.26ms). An acceleration

factor of R = 2× 2 in phase encoding directions led to an ETL of 400 and TA of 1.33 s.

A CAIPIRINHA-shift of ¶ = 1 was applied (implemented as in Ref. [158]). Flip angles ³

and ´ were the same as in the spiral sequence. Compared to the original 3DREAM [158],
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a spoiling moment was added to the signal separation gradients in readout direction to

better separate STE* and FID signals (Appendix Figure A7).

AFI flip angle maps were obtained using a flip angle of 50 ◦, an acceleration factor of

R = 2, TR1 = 20ms, TR2 = 100ms, TE = 0.97ms and TA = 80 s. The BSS sequence

acquired two images with ±5 kHz offresonant Fermi pulses (peak B+
1 = 7.72 µT), an

imaging flip angle of 20 ◦, TE = 6.25ms and TR = 100ms. For the DAM, two 3D-GRE

scans with flip angles 60 ◦ and 120 ◦ were acquired. TE = 0.95ms and TR = 4 s were

chosen to allow for almost full relaxation considering T1 = 840ms of the phantom. Both

scans resulted in TA = 42min.

Flip angle maps of both 3DREAM sequences were compared with the reference meth-

ods using scatterplots, Pearson correlation coefficients and a linear fit for which the root-

mean-square error (RMSE) was calculated. A centrally located sphere with a radius of

ten voxels was selected as the region of interest, as signal dropouts were observed outside

this sphere due to the high dynamic range of B+
1 in the phantom [161]. All flip angle

maps were registered to the magnitude image of the AFI sequence using FSL FLIRT

[120] and a brain mask [163] followed by an eroding kernel, which was applied onto the

maps.

To investigate the impact of acceleration on the flip angle maps obtained from the

spiral 3DREAM, a non-accelerated spiral scan was acquired (ETL: 200). The non-

accelerated scan was additionally executed with a segmented acquisition to keep the ETL

per segment the same as in the accelerated scan. The segmented version consisted of

five segments each with an own STEAM preparation and a waiting time of 3 s inbetween

segments to allow for relaxation.

The repeatability of B+
1 mapping with the accelerated spiral 3DREAM sequence

was investigated by repeating the measurement in a second scan session on a different

day (test–retest). The intraclass correlation coefficient (ICC) [164] for two-way mixed

effects, single raters, was calculated and a Bland-Altman plot along with the repro-

ducibility coefficient (RC) and the coefficient of variation (CV) was created to evaluate

the repeatability of flip angle maps in test and retest measurements.

5.2.4 In Vivo Experiments

In vivo data were acquired with both 3DREAM sequences and the AFI sequence from

five healthy volunteers (three male, two female, age between 24–48) after giving informed

consent. The DAM and BSS were not performed in vivo. For the DAM the acquisition

time was too high, making it susceptible to motion, and for the BSS the energy of the

offresonant pulses was too low for accurate flip angle mapping due to SAR constraints.

Data were acquired at 5mm and 3mm isotropic resolution. The parameters of the

scan at 5mm resolution were the same as for the phantom experiments, but one interleaf

with Rint = 6, RPh = 1 and ¶ = 5 were chosen (TESTE∗ = 0.72ms, TEFID = 3.96ms,

ETL = 40, TA = 0.30 s). The scan at 3mm resolution had a FOV of 216×216×216mm3.
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The spiral sequence parameters were: TESTE∗ = 0.88ms, TEFID = 6.28ms, ETL = 72,

TA = 0.87 s. The resolution of the spiral reference scan was limited to 4.32mm to not

excessively increase scan time. The acceleration of the Cartesian 3DREAM was increased

to R = 2× 4 with ¶ = 2 to decrease the ETL (TESTE∗ = 1.25ms, TEFID = 2.5ms, ETL

= 648, TA = 2.39 s). All other parameters of both 3DREAM sequences were kept the

same as for the 5mm in vivo scan. The parameters of the AFI sequence were kept the

same as in the phantom experiments except for TE = 1.10ms, resulting in TA = 4min for

the scan with 3mm resolution. To investigate the effect of blurring in the STE* image,

FID images of both 3DREAM sequences were reconstructed with and without the global

filter and the high frequency error norm (HFEN) was calculated [165]. The global filter

was applied onto synthesized k-space data as it describes the STE* decay and blurring

of both 3DREAM sequences was compared with the FWHM of the reconstructed point

object for 3mm and 5mm.

We observed different artifacts especially in the STE* images of the Cartesian and

spiral 3DREAM depending on the moment and orientation of the signal separation gra-

dients. Therefore, we acquired (a) the spiral 3DREAM with these gradients either in

slice (Gz) or in one of the readout directions (Gx) and (b) the Cartesian 3DREAM with

and without the spoiling moment added to the gradients (Appendix Figure A7). Chang-

ing the signal separation gradients, required a slight adjustment of the timing parame-

ters (spiral 3DREAM: label ’5mm (RO)’ in Appendix Table A5; Cartesian 3DREAM:

TESTE∗ = 1.37ms, TEFID = 2.46ms).

Flip angle maps of the 3DREAM sequences and the AFI were compared as in the

phantom experiments.

5.3 Results

Figure 5.2 shows flip angle maps of one coronal and transversal slice in the phantom’s

center. The Pearson correlation coefficients and the linear fits indicate high agreement

of both 3DREAM sequences with the reference methods. The slope of the linear fits of

the spiral 3DREAM was higher compared to the Cartesian 3DREAM for all compar-

isons, however, in the AFI comparison, the RMSE was slightly increased for the spiral

3DREAM. For both 3DREAM sequences, but enhanced for the spiral 3DREAM, the

coronal image contained a region with increased blurring at the bottom of the phantom,

where low flip angles were observed.

Appendix Figure A8 shows the results for the non-accelerated, accelerated and non-

accelerated segmented spiral scans. The accelerated scan had a similar Pearson corre-

lation coefficient and RMSE, but higher slope in the comparison with the AFI as the

non-accelerated segmented scan. An artifact (white arrow) was observed at the bot-

tom of the phantom in the accelerated scan. The non-accelerated non-segmented scan

showed significantly stronger blurring compared to the accelerated and segmented scans

and underestimated high flip angles when compared to the AFI. The results of the spi-
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Figure 5.2: Left: Flip angle maps of the 3DREAM sequences, the AFI, the DAM and the BSS
with an isotropic resolution of 5mm for one coronal and one transversal slice. Right: Scatterplots
comparing flip angle maps of the 3DREAM sequences to the three reference methods. The linear
fit is shown as a red line alongside with the fit parameters and correlation coefficients Ä. The
black line is the identity. A sphere, centered in the middle of the phantom and with a radius of
ten voxels is selected for the comparison. The selected region for the comparison is shown in the
inset of the first scatterplot.

ral 3DREAM test-retest measurements are shown in a Bland-Altman plot (Appendix

Figure A9). The plot demonstrates larger differences at lower angles and an absolute

mean difference close to zero. The ICC (0.993), RC (3.139 ◦), and CV (5.426%) imply

excellent test-retest reliability.

Figure 5.3 shows flip angle maps of one subject at 3mm and 5mm resolution acquired

with the AFI and both 3DREAM sequences and the corresponding scatterplots. Overall,

the flip angle distribution was similar for all three sequences with larger flip angles in

the center of the brain and lower flip angles present in peripheral parts of the brain.

3DREAM flip angle maps at both resolutions showed some ventricular contrast, which

was more pronounced in the Cartesian 3DREAM and stronger at 3mm resolution com-

pared to 5mm resolution. The high agreement of both 3DREAM sequences with the AFI

was reflected in high correlation coefficients and low RMSE (Table 5.1). Both 3DREAM

sequences performed similarly, however the spiral 3DREAM had a slope closer to one

and lower intercepts. A slight systematic underestimation at high flip angles (> 50 ◦,

dashed line) was most visible for the Cartesian 3DREAM at 5mm resolution.

Figure 5.4(I) shows in vivo STE* and FID images of both 3DREAM sequences, ac-

quired at an isotropic resolution of 3mm. The contrast of both STE* and FID was

different between the two 3DREAM sequences due to the difference in TE. In the spiral

data the white to gray matter contrast was higher in FID images compared to the Carte-

sian sequence. Blurring in spiral STE* images was less pronounced than in Cartesian

STE* images. This becomes apparent comparing the filtered FID images, where the

blurring levels were aligned to the STE* images and comparing the HFEN: (Cartesian:

0.805, spiral: 0.386). The global filter did not alter the spiral FID signal as strong as the
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# age gender
slope intercept Ä RMSE

C-A S-A C-A S-A C-A S-A C-A S-A

1 24 f
0.91 0.96 0.09 0.03 0.98 0.97 0.03 0.04
0.87 0.91 0.10 0.07 0.98 0.98 0.03 0.03

2 28 m
0.86 0.91 0.09 0.03 0.97 0.96 0.03 0.03
0.84 0.84 0.12 0.12 0.96 0.96 0.03 0.04

3 26 m
0.86 0.87 0.10 0.08 0.97 0.97 0.03 0.03
0.81 0.84 0.17 0.16 0.97 0.97 0.03 0.03

4 48 f
0.85 0.86 0.10 0.07 0.98 0.97 0.03 0.03
0.83 0.84 0.14 0.12 0.97 0.97 0.03 0.03

5 41 m
0.96 0.98 0.03 -0.02 0.98 0.97 0.03 0.03
0.86 0.94 0.13 0.05 0.98 0.98 0.03 0.03

Table 5.1: Subject information including the subject number (#), age, gender (f: female, m:
male) and the results of the linear fit for the comparison of Cartesian 3DREAM and AFI (C-A)
and spiral 3DREAM and AFI (S-A) are shown for all five subjects. Listed are the slope and the
intercept of the fit, the Pearson correlation coefficient Ä and the RMSE for 3mm resolution in
the first row of each subject and 5mm resolution in the second row accordingly.

Cartesian FID. At 5mm resolution the blurring was decreased (Appendix Figure A10,

HFEN: Cartesian: 0.639, spiral: 0.100). These observations meet the lower FWHM of a

global filtered point object for the spiral 3DREAM compared to the Cartesian 3DREAM

(Appendix Figure A11(c)).

Figure 5.4(II) presents results with and without modified signal separation gradients

at 5mm resolution. Ring-shaped artifacts (red arrows) in readout direction (yellow

arrows) appeared in the STE* images without modification of the signal separation

gradients. For the Cartesian 3DREAM, the artifact was located at the top of the head

(a) and for the spiral 3DREAM, it was located near the ear region (b). These artifacts

were not visible in the FID images, but translated to the flip angle maps.
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Figure 5.3: Top row: Normalized flip angle maps of subject 5 at (a) 3mm and (b) 5mm
resolution from the Cartesian 3DREAM at the top, the spiral 3DREAM in the middle and the
AFI in the bottom row. One central slice for each view (sagittal, coronal and transversal) is
presented. Bottom row: Linear fits for the comparison of the masked flip angle maps with
normalized axes for 3mm (c-d) and 5mm (e-f) resolution. The linear fit is shown as a red line
alongside with the fit parameters and correlation coefficients Ä. The black line is the identity. In
addition, the dashed line marks the flip angle 50 ◦ and thus the beginning of the underestimation
at higher flip angles.
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Figure 5.4: (I) One sagittal, coronal and transversal slice of the STE* at 3mm resolution is
shown for both Cartesian (top) and spiral (bottom) 3DREAM sequences. Additionally, the
transversal slice of the FID is displayed on the right, with and without the FID filter applied.
(II) (a) Sagittal STE* and FID images at 5mm resolution as well as normalized flip angle maps
of the Cartesian 3DREAM sequence without (w/o) and with (w) modified signal separation
gradients. The red arrows point to the ring-shaped artifacts in the STE* images and in the flip
angle maps. The yellow arrow indicates the readout direction. (b) The same results are shown
for the spiral sequence, but a transversal slice is displayed as the readout direction differs from
the Cartesian sequence. All images were obtained from subject 5.
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5.4 Discussion

The results demonstrate accurate B+
1 quantification with the spiral 3DREAM sequence

with high statistical agreement to reference sequences, here the AFI, DAM and BSS. In

phantom experiments, the reduction of the ETL in the spiral 3DREAM compared to the

Cartesian 3DREAM, combined with one spiral interleave in-plane, led to an increased

slope of the fit, indicating less underestimated flip angles due to less filtering of STE* near

the k-space center [50]. As demonstrated in Appendix Figure A11(b), the trajectory led

to reduced blurring. The small RMSE differences of the 3DREAM sequences originate

mostly from voxels with lower flip angles. As demonstrated in the Bland-Altman plot, the

computation precision decreases at low STE* signal. The registration partly smoothes

these regions leading to small RMSE differences of the 3DREAM sequences.

The results from the phantom experiment with the accelerated, non-accelerated and

non-accelerated segmented version of the spiral sequence justify the choice of the ac-

celeration factor. Results from the accelerated scan were close to results of the non-

accelerated segmented version, except for an artifact in a low-SNR region. Additionally,

TA of the segmented scan increases due to waiting time between segments [158]. The

long ETL combined with five in-plane interleaves of the non-accelerated non-segmented

scan resulted in significantly increased blurring and underestimated high flip angles as

less signal was present in k-space. The test-retest demonstrated high repeatability and

a lack of systematic errors.

The flip angle maps of the 3DREAM and AFI were in high agreement in vivo as

well. In Ref. [50] and [158], the observed ventricular contrast is attributed partly to

tissue properties, but also to an increased T1 and T2 decay of the STE*. As can be seen

in Appendix Figure A11(c), the spiral 3DREAM leads to less STE* decay compared

to the Cartesian 3DREAM, explaining the reduced ventricular contrast, especially at

3mm resolution. Due to the lower ETL, the 5mm flip angle maps suffered less from the

STE* decay, but both 3DREAM sequences performed well also at 3mm resolution. Due

to less STE* signal filtering near the k-space center, the slope of the spiral 3DREAM

fit is increased, indicating a lower flip angle underestimation [50]. As in the phantom

experiments, the spiral 3DREAM shows a slightly higher RMSE than the Cartesian

3DREAM after registration. Despite using six interleaves, the higher TE of the spiral

3DREAM increases the RMSE in regions with lower T∗

2, but only to a small extent.

Using more interleaves would decrease TE, but increases ETL leading to more STE*

blurring. Higher acceleration decreases blurring, but is limited by coil sensitivities and

decreased SNR.

As demonstrated in Ref. [158], applying the correct global filter on the FID eliminates

erroneous flip angles at the edge of the brain. The flip angle maps demonstrate equalized

blurring for both contrasts using the global filter for the spiral 3DREAM as presented

for the Cartesian 3DREAM in Ref. [158]. As the ETL was significantly shorter in spiral

acquisitions, a much weaker filter was needed, which increased the effective resolution of
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the flip angle maps. Both the TR and the ETL are essential parameters determining the

blurring in the images, however as can be seen in Appendix Figure A11(c), the impact

of the shorter ETL of the spiral 3DREAM leads to a stronger blurring reduction than

the reduced TR of the Cartesian 3DREAM.

The observed ring-shaped artifacts in STE* images and flip angle maps, are at-

tributed to folding of FID and STE* signals in k-space. Particularly, the dominant FID

signal folds into the STE* signal. Applying the signal separation gradients of the spiral

3DREAM in slice direction instead of in readout direction led to a better separation of

the FID and STE* k-spaces. This also reduced eddy current effects of the spoilers on the

spiral readout, as cross-responses from other gradient axes are typically small [166]. The

improved separation of k-spaces with an additional spoiling moment in the Cartesian

3DREAM reduced artifacts in a similar way.

The RF-prepared 3D FLASH method [151] has a wider dynamic range and includes

correction for ventricular contrast. Similar to 3DREAM it acquires whole brain flip angle

maps in seconds, however, it requires two shots, which increases motion sensitivity. In

contrast, 3DREAM acquires both contrasts in one shot.

5.5 Conclusions

An extension of the 3DREAM sequence with a stack-of-spirals readout was presented.

The spiral 3DREAM produced comparable B+
1 mapping results to the existing Cartesian

3DREAM and to other established methods such as AFI. Comparing the 3DREAM

sequences, the Cartesian 3DREAM with its shorter TE is more robust against low T∗

2

regions than the spiral 3DREAM. However, the reduced ETL of the spiral 3DREAM

leads to less filtering of high k-space frequencies, reducing the blurring in all encoding

directions and the ventricular contrast. This allows for a higher effective resolution

and also reduces filtering near the k-space center, reducing underestimation of high flip

angles.

5.6 Data Availibility

The sequence designed with Pulseq can be found in the following openly available Github

repository: https://github.com/mrphysics-bonn/spiral3dream/tree/mrm_v3 (DOI:

10.5281/zenodo.13304406).
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Chapter 6

Whole-brain Diffusion-Weighted

Imaging at 7T with Multiband pTx

Pulses and Field Monitoring

This chapter presents preliminary results and is partly based on abstracts presented at

the ESMRMB 2023 and ESMRMB 2024 conferences. The GRAPE pulse design, the kT-

Spokes pulse design (except for the VERSE gradients) and the pulse simulations presented

in section 6.2.1 of this chapter were done by the co-author of these abstracts D. Löwen.



6.1 Introduction

6.1 Introduction

Diffusion-Weighted Imaging (DWI) plays a crucial role in characterizing tissue microstruc-

ture, particularly in neuroscientific research. Diffusion-weighted images are the basis for

signal representations as the diffusion tensor in Diffusion Tensor Imaging (DTI) [18]

enabling voxel-wise quantification of diffusion anisotropy. Moreover, diffusion-weighted

images serve as the foundation for advanced techniques such as fiber tractography [26],

[167] and the development of specific tissue models [168].

DWI has intrinsically low signal-to-noise ratio (SNR), as its contrast mechanism is

based on signal cancellation due to the diffusion of water molecules. One way to increase

SNR is to acquire DWI data at ultra-high field strengths [7]. Nevertheless, 3T remains the

preferred field strength for DWI in neuroscientific research, largely due to the challenges

posed by ultra-high field strengths [53]. These challenges include increased B0 and B1

inhomogeneity as well as shorter T2 and T ∗

2 relaxation times.

Lower T2 relaxation times in white matter, which is the most investigated region

in DWI, from 3T (T2 ≈ 77ms) to 7T (T2 ≈ 50ms) [169] decrease SNR gains due to

the higher field strength depending on the echo time. Therefore, at ultra-high field it

is beneficial to use k-space trajectories with short echo times such as spirals that can

improve SNR compared to typically used EPI trajectories [6], [139]. Lower T ∗

2 relaxation

times lead to faster signal decay during readout, which mostly affects outer k-space and

therefore results in lower effective resolutions.

Inhomogeneity of the B1 transmit field causes signal dropouts especially in lower

brain areas as the cerebellum. At ultra-high fields, B1 inhomogeneity is typically tackled

by using parallel transmit (pTx) techniques. Both static B1 shimming and dynamic

pTx pulse design have been shown to improve B1 homogeneity in DWI acquisitions

[170], [171]. However, application of these techniques has not been shown for multiband

acquisitions yet, which is crucial for time-efficient whole-brain DWI. Multiband pTx

pulse design for spin-echo DWI is challenging, as typically large flip-angle slice-selective

excitation and refocusing pulses are used. In this chapter, first results with multiband

pTx pulses are shown. PTx pulses were designed with the kT-spokes [172], [173] and

Gradient Ascent Pulse Engineering (GRAPE) [174], [175] concepts. The optimized pTx

pulses are compared to standard circularly polarized (CP) mode pulses.

Increased static B0 inhomogeneity at ultra-high field strengths leads to increased sig-

nal dropout, image distortion and blurring. Static inhomogeneity together with dynamic

field inhomogeneities stemming from strong diffusion gradients causes significant degra-

dation of DWI images. Image-based [110], [115] as well as k-space based corrections [9]

based on magnetic field monitoring [8] have been proposed to mitigate these effects. In

this chapter, EPI and spiral data reconstructed with field monitoring data and a higher

order image reconstruction algorithm [9] are compared to standard image reconstruction

with image-based off-resonance and eddy current correction.
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Figure 6.1: Left: Multiband kT-spokes excitation and refocusing pulses of one slice group. The
magnitude of the first RF channel is displayed in the top row. Below, the slice-selective VERSE-
gradients (on Gz axis) and the kT-point blips (on all axes) are shown. Gx and Gy axes are scaled
down for improved visibility. Right: Multiband GRAPE excitation and refocusing pulses of the
same slice group. The magnitude of the first RF channel and the optimized GRAPE gradients
are shown. Note the different scaling of the Gz axis as the slice gradient is superimposed on the
GRAPE gradients.

6.2 Methods

6.2.1 PTx Pulse Design

All pulses were optimized on a database of B1 and B0 maps using the universal pulse

concept [51] rather than using subject-specific optimization during the scan session.

Universal pulses do not require additional computation time or dedicated calibration

sequences in the scan session, which makes them advantageous especially for computa-

tionally intensive slice-individual pulse optimization.

6.2.1.1 kT-Spokes Pulses

In the first step of kT-spokes pulse design [172], an asymmetric non-selective kT-points

pulse (three kT-points) was optimized for homogeneous excitation (and refocusing) of

the whole head across a database of 10 subjects. Based on this, specific pulses per

slice position were further optimized through weights, that exponentially decreased with

distance d to the slice center by a factor of e−d/10mm. In this second optimization stage,

the kT-points gradient blips were kept unchanged and the result was still a non-selective

pulse per slice [172]. Since every pulse is finally optimized for a certain slice within the
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6.2.1.2 GRAPE Pulses

head, the top of each head in the database was taken as a reference point to align the

slice positions across different subjects.

The two-stage optimized non-selective pulses were then converted to slice-selective

bipolar kT-spokes pulses by replacing the rectangular RF shape with a sinc shape yielding

the same flip angle and adding slice-selection gradients [173]. Minimum-time variable-

rate selective excitation (VERSE) [66] was applied to the pulses to decrease SAR. The

total duration of the pulses was kept approximately constant before and after the appli-

cation of VERSE.

In the last step, multiband pulses were created by superposition of the single-band

pulses. Examples for resulting multiband excitation and refocusing pulses are shown in

Figure 6.1. The time-bandwidth products (tbp) of the three sub-pulses were 3.0 with

sub-pulse durations of 1.5ms (excitation) and 2.3ms (refocusing) before VERSE was

applied. The total durations of the pulses after VERSE were 5.65ms (excitation) and

7.52ms (refocusing).

6.2.1.2 GRAPE Pulses

In a first step, a spectral selective pulse was optimized for the whole brain with the

GRAPE algorithm [174] on a database of 15 subjects. The optimization was initialized

with a sinc shaped pulse with target bandwidth ∆fT . In order to maintain spectral

selectivity, B0 maps from all subjects were duplicated five times and a random frequency

shift ∆f(r⃗) was added to each voxel following a Gaussian distribution with a standard

deviation of 10∆fT . Then, the optimization target was set to the target flip angle for

voxels within the target bandwidth – the passband (|∆f(r⃗)| ≤ ∆fT /2) – and to a flip

angle of zero degrees for voxels outside the passband. A complex least-squares cost-

function with a flat target phase in the passband was used to achieve a constant phase

in slice-selection direction. A weighting term was added to the cost-function, which

decreased at the borders of the passband to reduce constraints on the target slice profile.

In a second step, slice-specific pTx pulses were optimized by adjusting the weights

inside the passband, such that they exponentially decreased with distance d to the slice

center by a factor of e−d/10mm, as in the kT-spokes design. Only the RF pulse shapes from

the first step were further optimized for each slice, while the gradients were kept constant

to allow for multiband excitation. Finally, a constant slice gradient corresponding to

the target slice thickness was added and the pulses were superimposed for multiband

excitation and refocusing.

The random frequency shifts cause a phase evolution, which corresponds to the effect

of the slice selection gradient and prevents a flat phase throughout the target. This

unwanted phase evolution is typically reversed by a slice rewinder gradient, which is not

part of the optimization. Therefore, the phase evolution due to the random frequency

shifts was removed by subtracting a free precession rotation from the Bloch simulation

results of each voxel. The GRAPE excitation pulse had a duration of 6ms (tbp: 3.6)
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and the refocusing pulse had a duration of 8ms (tbp: 3.2). The final pulses are shown

in Figure 6.1.

6.2.1.3 Pulse Simulation

Bloch simulations were conducted for kT-spokes, GRAPE and default CP pulses using B0

and B1 maps of the first measured subject (see below). The CP pulses were SLR pulses

from the vendors’ pulse library with pulse durations of 6ms (tbp: 4.8) and 12ms (tbp:

6.0) for excitation and refocusing, respectively. Whole-brain signal maps were simulated

for all excitation pulses, refocusing pulses (assuming ideal excitation – M0 = Mxy) and

for successive application of both pulses. At each voxel position (4mm isotropic voxels)

the transverse magnetization was simulated for each pulse that excites magnetization in

the respective voxel. This was done for 20 samples with equidistant positions along a

3mm line in slice direction and 30 spins per sample.

Averaging all spins in each sample yielded the transverse magnetization per sample

such that “slice profiles” of the transverse magnetization were determined for each pulse.

The total number of simulated pulses was 110, which all had a nominal slice thickness

of 1.5mm. The signal per voxel was then calculated as the sum of the integrals over

all slice profiles that belonged to the respective voxel. Crusher gradients were added

to the refocusing pulses to consider dephasing. Additionally, the same simulation was

repeated at three distinct positions in the frontal lobe, brainstem and cerebellum with

100 equidistant samples along a 6mm line in slice direction and 300 spins per sample to

determine higher resolution slice profiles of the magnitude and phase of the transverse

magnetization.

6.2.2 MRI Sequences and Data Acquisition

Data were acquired on a Siemens MAGNETOM 7T Plus scanner with a 32RX/8TX

RF head coil (Nova Medical) from a male subject (47 years - subject 1). The protocol

for Diffusion-Weighted Imaging (DWI) consisted of 30 uniformly distributed b-vectors,

calculated with the ’dirgen’ command of MrTrix3 [132], [176], with a b-value of b = 1000

s/mm2. T2-weighted volumes (b = 0 s/mm2) were obtained with the same (5 volumes)

and with inverted phase encoding direction (3 volumes).

The multiband pTx pulses were implemented in diffusion-weighted EPI and spiral se-

quences. The EPI sequence was a vendor-provided single-shot blipped-CAIPI diffusion-

weighted EPI sequence with GRAPPA acceleration. The sequence was extended to

incorporate pTx pulses and trigger for field monitoring. The spiral sequence was imple-

mented with Pulseq and used a time-optimized [88] single-shot spiral-out trajectory. A

sine-wave gradient was applied in slice direction during readout to reduce the g-factor

penalty [177], [178]. Both EPI and spiral sequences included a fat saturation pulse before

each excitation.
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The diffusion protocol was measured with the EPI sequence using multiband (accel-

eration factor MB = 2) GRAPE, kT-spokes and default CP mode pulses. The EPI se-

quence used in-plane GRAPPA acceleration (factor R = 2) and partial Fourier sampling

(PF = 6/8) resulting in an echo time of TE = 62ms and a readout duration of 29.12ms.

Additionally, the EPI scan with GRAPE pulses was repeated including triggers for field

monitoring. In this scan, FOV shifts were disabled in the sequence, as they were applied

in image reconstruction by using field monitoring data. The same diffusion protocol

was also measured with the spiral sequence using GRAPE multiband pulses (MB = 2)

and field monitoring. The spiral readout was accelerated by a factor of R = 3 resulting

in an echo time of TE = 44ms and a readout duration of 21.45ms. A low resolution

GRE scan (32 phase-encoding lines) was acquired for coil sensitivity calibration. Other

sequence parameters were: Slices= 110, FOV = 210× 210× 165mm3, 1.5mm isotropic

resolution, TR = 6.4 s. This resulted in a total acquisition time of TA = 4:13min for the

EPI sequence and TA = 4:20min for the spiral sequence. In addition, a B0 field map

was acquired with a multi-echo GRE scan at 1.5mm isotropic resolution with echo times

TE = 3.06/5.10/7.14ms and a total acquisition time of TA = 2:38min. Field monitoring

of both the EPI and spiral sequences was done with a field camera (Skope Magnetic Res-

onance Technologies, Zürich) in a separate session with optimized field probe positions

to allow for full third spatial order monitoring.

Slice profiles of all three multiband pulses were measured with the spiral sequence. An

additional phase encoding gradient was used to encode a FOV of 3.2mm with a resolution

of 0.2mm along the slice direction (16 phase encoding steps). The in-plane resolution

was 5mm and two spiral shots were used. Other parameters were kept the same as

in the spiral diffusion protocol resulting in a total acquisition time of TA = 3:56min.

The CP slice profiles were measured for pulses without VERSE gradients, as the vendor

implementation of VERSE was not available for the spiral sequence.

Additional data were acquired from a second subject (male, 28 years - subject 2)

with both single- and multiband CP, kT-spokes and GRAPE pulses. VERSE was not

applied to singleband CP and kT-spokes pulses, as the pulses had lower energy and

SAR constraints were not violated. The diffusion protocol was slightly changed to 20

b-vectors (b = 1000 s/mm2) and three T2-weighted volumes to reduce total scan time of

the multiband scans to TA = 2:57min, while the singleband scans had a repetition time

of TR = 10.8 s and a total acquisition time of TA = 4:42min.

6.2.3 Image Reconstruction and Processing

EPI data was reconstructed with the vendors’ implementation of the slice-GRAPPA [179]

multiband reconstruction algorithm. EPI and spiral data acquired with field monitoring

were reconstructed with a higher order image reconstruction algorithm [9] using the Pow-

erGrid [96] toolbox. Coil sensitivity maps were estimated with the ESPIRiT algorithm

[58]. The field map data was unwrapped with the ROMEO algorithm [38] and filtered
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with despiking and Gaussian filters (Ã = 0.5 voxel). Field monitoring data was synchro-

nized with the MR signal by cross-correlation of a frequency modulated sine-wave signal,

which was acquired in a calibration prescan by both the field camera and the scanners’

receive coil. The data was low-pass filtered and every second trigger of each volume

acquisition was interpolated as the slice-TR was too low for consecutive excitation of

field probes. Reconstruction of slice profile data was done with the “parallel imaging

with compressed sensing (pics)" algorithm from the Berkeley Advanced Reconstruction

Toolbox (BART) [83].

Reconstructed images were denoised [119], [141] and corrected for Gibbs-Ringing

[114]. EPI images were corrected for distortions, eddy-currents and motion [110], [116].

EPI and spiral images reconstructed with higher order image reconstruction were only

corrected for motion, as distortions and eddy currents were already corrected in the re-

construction by using field monitoring data. Images from all scans were corrected for gra-

dient non-linearities [117] and registered to the midway space of the EPI CP and GRAPE

acquisitions [120]. A brain mask was calculated from a T1-weighted MPRAGE scan using

ANTsPyNet [121] and registered to the DWI data using “FLIRT" from FSL [120]. White

matter voxels were segmented from the MPRAGE images using FSL “FAST" [125] in

order to determine the SNR only in white matter. Fractional anisotropy (FA) and mean

diffusivity (MD) maps were calculated with FSL’s “dtifit" command. An SNR mea-

sure was calculated by dividing the mean of the T2-weighted and the diffusion-weighted

images by the noise map obtained in the denoising step.

6.3 Results

Simulated signal maps of CP, kT-Spokes and GRAPE pulses are shown on the left

in Figure 6.2 after excitation, after refocusing (assuming ideal excitation) and after

successive application of both pulses. The signal after excitation was highest for the kT-

spokes pulse with the lowest standard deviation. The CP and GRAPE pulses showed

similar performance over the whole brain. The performance of the GRAPE refocusing

pulses was better compared to CP and kT-spokes pulses with slightly higher signal and

lower standard deviation across the brain. After application of both pulses, kT-Spokes

and GRAPE pulses showed similar signal levels with lower standard deviation of the

GRAPE signal, while CP pulses had significantly lower mean signal.

The slice profiles of the three pulses at three different positions are depicted on

the right in Figure 6.2. kT-Spokes excitation pulses had a slightly thicker slice profile

compared to CP and GRAPE pulses. All pulses showed high transverse magnetization

in the frontal lobe (voxel 1), while performance in the cerebellum (voxel 3) was strongly

reduced for CP and slightly reduced for GRAPE pulses. kT-spokes pulses showed reduced

magnetization in the brainstem (voxel 2). GRAPE and CP slices were slightly displaced

in the frontal lobe. Some phase variation across the slice was observed for kT-Spokes

and GRAPE pulses, but the phase did not differ by more than 30◦.
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Figure 6.3 shows T2-weighted and diffusion-weighted images after preprocessing. En-

hanced signal in the cerebellum and in the center of the brain was visible for both

kT-Spokes and GRAPE pTx pulses compared to CP pulses. Signal voids were present

in the frontal lobe and the brainstem using kT-Spokes, which were not visible for CP

and GRAPE pulses. Insets in the EPI GRAPE images with and without field monitor-

ing show slightly reduced blurring in images reconstructed with field monitoring data.

Enhanced signal especially in the white matter is visible in the spiral images, leading to

a slightly different contrast compared to EPI images. Remaining artifacts related to B0

inhomogeneities were visible especially in the frontal part of the brain.

SNR maps in Figure 6.4 show increased SNR in the cerebellum for both kT-Spokes

and GRAPE pulses compared to CP pulses. The mean SNR in the brain was higher

for kT-Spokes pulses compared to GRAPE pulses, while CP pulses had the lowest mean

SNR. Spiral images showed increased SNR compared to EPI images across the whole

brain. The percentage SNR gain of spiral images was higher for DWI volumes compared

to T2-weighted volumes.

Slice profiles of the three different pulses for three example slices are displayed in

Figure 6.5. In the upper slice, the slice profiles of CP and GRAPE pulses were similar,

while the kT-Spokes pulse had a slightly thicker slice profile. For the CP pulses, signal

outside the excited slice was observed, which was not present for kT-Spokes and GRAPE

pulses. In the middle slice, significant slice bending was visible for CP and GRAPE pulses

in the anterior part of the brain. Slice bending was less pronounced for the kT-Spokes

pulse, which instead showed signal voids in the anterior part of the slice. The slice

thickness of the kT-spokes pulse was higher compared to the CP and GRAPE pulses.

In the lower slice, slice bending was again present for the CP and GRAPE pulses in the

anterior part (brainstem), but less pronounced compared to the middle slice. The slice

profile of CP and kT-Spokes pulses was slightly thicker compared to GRAPE pulses and

kT-Spokes pulses showed signal loss in the brainstem.

Figure 6.6 shows FA and MD maps obtained from DTI fits done for all EPI and spiral

acquisitions. Poor DTI fits were observed in the lower part of the cerebellum in the CP

volumes and in the the frontal lobe and the brainstem of kT-Spokes volumes (yellow

arrows), corresponding to low SNR regions. Spiral FA maps appear less noisy compared

to FA maps from EPI measurements. However, an artifact in the anterior part of the

brainstem was visible in spiral FA and MD maps (red arrow).

In Figure 6.7 one coronal view of DWI images, SNR maps and FA maps is shown

for single- and multiband CP, kT-Spokes and GRAPE pulses acquired from the second

subject. Single- and multiband versions of each pulse led to similar signal patterns across

the displayed coronal slice. Mean SNR was decreased for singleband pulses compared to

multiband pulses. This resulted in more noise in FA maps, which was especially visible

in the cerebellum of the singleband CP FA map.
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Figure 6.2: Left: Simulated signal of CP, kT-Spokes and GRAPE pulses after excitation, refo-
cusing (assuming ideal excitation) and successive application of both pulses. The displayed signal
level per voxel is the integral of the simulated transverse magnetization in slice direction. Mean
and standard deviation of the signal over the whole brain after excitation were: CP: 21.8± 3.3,
Spokes: 28.6 ± 2.6, GRAPE: 23.9 ± 4.3. After refocusing: CP: 17.1 ± 3.9, Spokes: 17.4 ± 4.0,
GRAPE: 18.0± 2.3. After both pulses: CP: 13.5± 4.6, Spokes: 15.4± 4.0, GRAPE: 15.3± 2.9.
Right: Simulated transverse magnetization of CP, kT-Spokes and GRAPE pulses along the slice
direction at three distinct positions. The positions are marked in the sagittal slice of the CP sig-
nal maps. The Bloch simulations were done along a 6mm line in slice direction. The red vertical
lines show the target slice thickness of 1.5mm. The magnitude of the transverse magnetization
in percent of the initial magnetization is shown in white and the phase is shown in green.
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6.3 Results

Figure 6.3: Preprocessed T2- and diffusion-weighted (b = 1000 s/mm2) whole-brain volumes
of subject 1 acquired with EPI and spiral sequences using CP, kT-Spokes and GRAPE pulses.
“FM" denotes higher order image reconstruction with field monitoring data. Yellow arrows
mark areas, where signal loss is observed. Red arrows mark some of the artifacts related to B0

inhomogeneity.
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Figure 6.4: SNR maps of mean T2-weighted and diffusion-weighted (b = 1000 s/mm2) volumes
acquired with EPI and spiral sequences using CP, kT-Spokes and GRAPE pulses (subject 1).
“FM" denotes higher order image reconstruction with field monitoring data. Mean SNR values
across the brain for the T2-weighted volumes were: 38.23 (EPI CP), 43.62 (EPI kT-Spokes),
40.27 (EPI GRAPE), 42.97 (EPI GRAPE FM), 43.56 (Spiral GRAPE FM). For the diffusion-
weighted volumes, the mean SNR values were: 11.93 (EPI CP), 14.07 (EPI kT-Spokes), 12.75
(EPI GRAPE), 13.58 (EPI GRAPE FM), 15.36 (Spiral GRAPE FM).
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Figure 6.5: Slice profiles of CP, kT-Spokes and GRAPE pulses displayed for three example
slices in the upper, middle and lower part of the brain (subject 1). Below each slice profile, cross
sections along the anterior-posterior direction are plotted in white and the mean of all cross
sections is shown in red. The nominal slice borders are indicated by dotted red lines. In the last
column the position of the slice is shown.
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Figure 6.6: Fractional anisotropy and mean diffusivity maps obtained from DTI fits of all EPI
and spiral acquisitions (subject 1). Yellow arrows mark areas, where poor DTI fits were observed.
Red arrows mark an artifact in the anterior part of the brainstem in spiral images.

Figure 6.7: Diffusion-weighted (b = 1000 s/mm2) volumes, SNR maps and fractional anisotropy
maps acquired with the EPI sequence using singleband (SB) and multiband (MB) CP, kT-Spokes
and GRAPE pulses (subject 2). SNR maps are shown for mean DWI volumes and mean SNR
values in the brain were: 11.25 (SB CP), 12.77 (MB CP), 12.45 (SB kT-Spokes), 14.57 (MB
kT-Spokes), 11.86 (SB GRAPE), 12.67 (MB GRAPE).

111



6.4 Discussion

6.4 Discussion

The presented results demonstrate the great potential of multiband pTx pulses for whole-

brain diffusion imaging at 7T. Both kT-Spokes and GRAPE pulses increased SNR in the

cerebellum and in the center of the brain compared to CP pulses. Improved SNR in

the cerebellum translated to less noise-related artifacts in FA and MD maps. However,

signal voids were observed in areas with large off-resonances such as the brainstem and

the frontal lobe for kT-Spokes pulses. In contrast, GRAPE pulses were more robust

to off-resonances and led to better homogeneity throughout the brain, which was in

agreement with the simulations. This can be explained by the increased number of

degrees of freedom in GRAPE optimization. Pulse shapes and gradients are not only

optimized for a limited number of points in excitation k-space, but for each discretized

RF and gradient sample [174].

The simulations showed that the performance of the GRAPE excitation pulse was

suboptimal compared to the kT-Spokes excitation pulse. A combination of kT-Spokes

excitation and GRAPE refocusing pulses could improve results further. The simulation

results after refocusing (with ideal excitation) and after application of both pulses were

similar, which indicates that the final signal is mostly dependent on the performance of

the refocusing pulses.

The overall higher SNR of kT-Spokes pulses compared to GRAPE and CP pulses

matches with the slightly broader slice profile, which was observed both in simula-

tions and measurements. The slice profile measurements also showed that both CP

and GRAPE pulses suffer from slice bending in off-resonant areas of the brain such as

the frontal part of the brain. The slice bending is caused by the limited bandwidths of the

pulses, which are close to the off-resonance frequency (∼ 300 − 400Hz) in these areas.

In contrast, kT-spokes pulses consisted of shorter sub-pulses, which had considerably

higher bandwidth (> 1000Hz) per sub-pulse.

Realizing a higher bandwidth for the CP pulses would be possible by shortening

the pulses at fixed time-bandwidth product. This would also increase SAR, which is

feasible when using CP pulses, as the SAR constraints were not fully exhausted (65 %

of maximum) for the given TR. Increasing the bandwidth of the GRAPE pulses is

more challenging, as pulses with higher bandwidths do not reach the target flip angle

in the optimization at the given SAR constraints. Higher SAR constraints could be

used in GRAPE optimization, if VERSE would be applied to the final GRAPE pulses.

However, this requires further investigation as the response to B0 inhomogeneities might

be affected if the optimized gradients are altered by VERSE.

The application of VERSE in kT-Spokes design was important for SAR reduction

and to reach a reasonable TR for whole-brain imaging. We observed that it is crucial

to preserve the total duration of the kT-spokes pulses when applying VERSE. Slice

profiles were only slightly affected by the application of VERSE as shown in Appendix

Figure A12. The bipolar design of kT-spokes pulses makes them more time-efficient
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than monopolar pulses, but also more prone to off-resonances as slice bending occurs

in opposite directions for subsequent sub-pulses due to opposite slice gradient signs.

Therefore, high bandwidths are required for the sub-pulses. A comparison of bi- and

monopolar kT-spokes pulses (Appendix Figure A12) indicates that slice profiles are not

improved when using monopolar pulses.

Similar SNR would be expected for single- and multiband pulses, as multiband accel-

eration lowers SNR only by an increased g-factor, which is typically small at a multiband

factor of MB = 2. Instead, lower SNR across the whole brain was observed in all DWI

images acquired with singleband pulses compared to multiband pulses. We attribute this

to differences in the vendors’ image reconstruction algorithms (e.g. different regulariza-

tion) for single- and multiband reconstruction.

Both kT-spokes and GRAPE pulses were optimized for a transverse orientation of the

imaging volume aligned to the top of the head, which is not optimal in terms of volume

coverage. In the pulse optimization, the same weighting parameter e−d/10mm as in Gras

et al. [172] was used. The authors of that paper investigated that the perfomance of

their slice-selective pTx pulses is robust to small tilts and offsets using this weighting,

which however needs to be investigated for the proposed multiband pulses.

As kT-Spokes and GRAPE pulses were not optimized for specific subjects but were

calculated as universal pulses, further tests on different subjects are required before

these pulses can be routinely used in clinical studies. This includes tests on subjects

with different head shapes, sizes, and ages.

Higher order reconstruction with field monitoring data reduced blurring in EPI im-

ages compared to standard image reconstruction with image-based distortion correction.

This is especially the case for diffusion-weighted images, as eddy currents due to strong

diffusion gradients are effectively corrected [5]. Field monitoring also enables usage of

spiral readouts, which are more time-efficient in sampling k-space compared to EPI and

allow for shorter echo times resulting in higher SNR. The SNR gain of spirals compared

to EPI is higher in DWI images (13 %) compared to T2-weighted images (1.5%) as T2

is shorter in white and gray matter compared to CSF, which is suppressed in DWI im-

ages. In white matter voxels the SNR gain was 17 %, which is lower than the expected

SNR gain of 43 % when assuming T2 = 50ms in white matter. The lower SNR gain

can be explained with the higher total acceleration factor and the shorter readout time

of spirals compared to EPI. However, the shorter spiral readout is beneficial to reduce

off-resonance related artifacts and blurring due to T ∗

2 signal decay.

Off-resonance artifacts are still problematic for both EPI and spiral sequences and

were not fully corrected in both image-based distortion correction and higher order image

reconstruction. These artifacts were especially visible in the frontal part of the brain and

near the ear canals, where strong B0 gradients are present and the B0 field map is not

accurate enough. Improvements in B0 mapping might be possible by using a regularized

field map estimation of multi-echo GRE data [180].
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6.5 Conclusions

The designed multiband kT-spokes and GRAPE pulses improved whole-brain B1 ho-

mogeneity in diffusion-weighted images compared to non-pTx pulses. While kT-spokes

pulses suffered from signal dropouts in areas with large B0 inhomogeneities in the frontal

lobe and brainstem, this limitation was overcome with GRAPE pulses. Further SNR im-

provement was possible by combining pTx pulses with a time-efficient spiral readout and

field monitoring. Large B0 inhomogeneities still remain challenging for both pulse design

and image reconstruction. Limited bandwidth of GRAPE pulses due to SAR restrictions

led to bended slices, while distortions and blurring in EPI and spiral images were not

fully corrected.
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7 Conclusions

The aim of this thesis was to improve the acquisition and quality of diffusion-weighted

images at high and ultra-high field strengths. A fast spiral DWI sequence with multiband

acceleration was combined with various techniques for field inhomogeneity correction.

In order to simplify and accelerate prototyping of new MR pulse sequences for DWI,

a workflow based on open-source tools was developed. This workflow was used for the de-

velopment of a multiband spiral sequence for DWI, a stack-of-spirals 3DREAM sequence

and a multi-echo Cartesian GRE sequence for mapping of B0 field inhomogeneities.

These sequences formed the foundation for generating the results in the subsequent parts

of this thesis. Different reconstruction algorithms were integrated into this workflow, in-

cluding reconstruction of non-Cartesian data and correction for static and dynamic B0

field inhomogeneities. It was successfully demonstrated that data acquisition at different

MRI sites with the same sequence is possible by using the proposed workflow. Further

development of this workflow may focus on removing remaining manual processing steps

and reducing reconstruction times for spiral sequences in order to enable routine imaging

during clinical studies.

The developed multiband spiral sequence was successfully used for DWI measure-

ments at a 3T scanner with a high performance gradient system. From these DWI

measurements, axon radii in the white matter of the human brain were estimated. The

results were compared to those of a multiband EPI sequence and it was shown that

the higher SNR provided by the spiral readout can improve axon radius estimation by

reducing test–retest variability. It was also demonstrated that using magnetic field moni-

toring enables the usage of non-Cartesian spiral trajectories and reduces artifacts related

to eddy currents in images with strong diffusion weighting. However, a significant bias

was detected in test–retest measurements of some subjects, pointing towards a potential

issue regarding repeatability of axon radius estimation. While it was found that the

deviations between test and retest resided mainly in the images with stronger diffusion-

weighting, the reason for the bias remained unclear. A deeper investigation of this issue

might focus on the stability of the gradient system at higher gradient strengths. One pos-

sible method would be magnetic field monitoring, although this approach is challenging

at higher gradient strengths due to strong dephasing of the field probes.

Moving from high (3T) to ultra-high (7T) field, one of the main challenges is the

inhomogeneity of the B1 transmit field. Mitigating B1 inhomogeneities requires accurate

mapping of the actual B1 fields. In the third part of this thesis, an improved version

of the 3DREAM B1 mapping sequence with a stack-of-spirals readout was developed.

It was demonstrated that the spiral 3DREAM sequence can generate accurate B1 maps

within a few seconds of acquisition time. Blurring and ventricular contrast in B1 maps

were reduced when using a spiral instead of a Cartesian readout especially at higher

image resolution. A future extension of this sequence might be the implementation of

multi-channel B1 mapping for parallel transmit coils.

In the last part of this thesis, whole-brain DWI at 7T was performed using multiband
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parallel transmit (pTx) pulses in EPI and spiral DWI sequences. PTx pulses largely

mitigated the deteriorating effects of B1 inhomogeneities that led to signal loss in the

cerebellum and the center of the brain. While kT-Spokes pulses were prone to B0

inhomogeneity, this issue was resolved by using GRAPE pulses. The increased signal

in the cerebellum improved diffusion tensor fitting, which resulted in more accurate

fractional anisotropy and mean diffusivity maps. One remaining challenge is the low

bandwidth of the GRAPE pulses, which leads to bended slices in areas with large B0

inhomogeneity. It was not possible to increase bandwidths due to SAR constraints.

The application of VERSE could loosen SAR constraints, but the effect of VERSE on

gradients optimized with the GRAPE algorithm has not yet been investigated.

It was also demonstrated that the increased SNR of spiral DWI led to improved

diffusion tensor fitting compared to EPI DWI. Additionally, image reconstruction based

on the measured actual encoding fields resulted in slightly improved image quality com-

pared to image-based corrections. While dynamic B0 inhomogeneities in EPI and spiral

sequences were largely corrected by field monitoring, static B0 inhomogeneities remained

challenging due to inaccuracies in B0 maps and changing B0 fields due to subject motion.

This is especially problematic for spiral imaging, where off-resonant signal leads to strong

blurring in images. Future improvements in the accuracy of static B0 mapping meth-

ods would enhance image quality, but motion related field changes cannot be addressed

by static field mapping and are a significant challenge in single-shot diffusion-weighted

imaging.
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Supporting Figures

Figure A1: Histograms of the MR axon radius (rMR) distributions in white matter comparing
test and retest measurements for all subjects. Mean (µ), median (M) and standard deviation
(Ã) of the distributions are shown in the legend.
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Figure A2: Histograms of the MR axon radius (rMR) distributions in white matter comparing
EPI and spiral data for all subjects and sessions. Mean (µ), median (M) and standard deviation
(Ã) of the distributions are shown in the legend.

Figure A3: Histograms of the MR axon radius (rMR) distributions in the corpus callosum
comparing test and retest measurements for all subjects. Mean (µ), median (M) and standard
deviation (Ã) of the distributions are shown in the legend.
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Figure A4: Bland-Altman plots of all subjects for all white matter voxels. Solid lines represent
the absolute mean difference and the limits of agreement, calculated as 1.96× Ã, where Ã is the
standard deviation.
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Figure A5: Left: Mean b-value across all subjects along the left CST from inferior to superior
positions. Right: Corresponding mean axon radii along the left CST as shown in Figure 4.6 (top
left and right).

Figure A6: Histograms of difference [%] between test and retest of powder-averaged signals in the
white matter. The difference ∆ [%] was calculated for both shells as ∆ = (S̄test − S̄retest)/S̄test,
where S̄ is the powder-averaged signal. Three different subjects with small, moderate and large
bias of the MR axon radius are displayed.
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Figure A7: (a) The sequence diagram of the modified Cartesian 3DREAM with an additional
spoiler moment (highlighted in yellow) between the STE* and FID readouts to better separate
the signals in k-space. (b) The sequence diagram of the spiral 3DREAM sequence (Figure 1)
with signal separation gradients in slice direction.
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Figure A8: Phantom experiments with different acceleration of the spiral 3DREAM sequence.
Top row: One sagittal 5 mm slice in the phantom’s center for a non-accelerated, accelerated,
and non-accelerated segmented spiral scan. Bottom row: Scatterplots with linear fits for the
comparison of the flip angle maps to the AFI sequence with normalized axes, corresponding to
the three acceleration schemes. The selected region for the comparison is placed in the bottom-
right hand corner. A white arrow points to a region with increased blurring at the bottom of
the phantom, which is not present in the non-accelerated segmented scan.

124



Appendix

Figure A9: Bland-Altman plot for the test-retest measurement of the spiral 3DREAM sequence.
Solid lines represent the absolute mean difference of the two measurements and the limits of
agreement, calculated as ±1.96× Ã, where Ã is the standard deviation.

Figure A10: One sagittal, coronal and transversal slice of the STE* at 5mm resolution is shown
for both Cartesian (top) and spiral (bottom) 3DREAM sequences. Additionally, the transversal
slice of the FID is displayed on the right, with and without the FID filter applied.
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Figure A11: (a) To investigate the STE* decay, a fully sampled k-space of ones was synthesized
with different spiral trajectories and the global filter was applied onto each interleaf. The FWHM
of the reconstructed, zero-padded point spread function (PSF) shows the STE* blurring effect.
(b) Left: Spiral trajectories with different interleaves and accelerations and the color-matched
global filter. The abbreviations are as follows: int = accelerated spiral interleaves; Rint = in-
plane acceleration; RPh = acceleration in phase-encoding direction. More interleaves lead to a
shorter TE and TR, which results in a less significant global filter value decay with increasing
excitations. However, more interleaves relate to more excitations, which results in low filter
values at high k-space frequencies. This will be handled by using acceleration. The mean (m) and
standard deviation (std) of computed g-factor maps with 200 replica are presented. The blurring
(see FWHM) is stronger in phase-encoding direction than in readout-direction, especially for
3mm. More interleaves in-plane lead to stronger blurring in phase-encoding direction, even
though the total number of excitations (ETL) is the same (see 3mm, in vivo, FWHM of red
and yellow curves). (c) Global filter of the in vivo experiment parameters. Left: The Cartesian
3DREAM benefits from shorter TR, but the spiral 3DREAM leads to less filtering at higher
frequencies due to less excitations. Right: The spiral 3DREAM has lower blurring especially at
3mm than the Cartesian 3DREAM.
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Figure A12: Slice profiles of monopolar and bipolar kT-Spokes pulses with and without VERSE
are displayed for three example slices in the upper, middle and lower part of the brain (subject
2, male, 28 years). As a reference, slice profiles of CP pulses are plotted in the first column.
Below each slice profile, cross sections along the anterior-posterior are plotted in white and the
mean of all cross sections are shown in red. The nominal slice borders are indicated by dotted
red lines. In the last column the position of the slice is shown.
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Supporting Tables

Table A1: Pulseq sequence, raw data, metadata and image filenames in the GitHub repository
linked to the Figures in chapter 3. Additionally, the reconstruction scripts, the sequence source
code for PyPulseq sequences and XML files for JEMRIS sequences are listed.
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Shell SNR ratio - WM mask used in chapter 4 SNR ratio - Tight WM mask
b0 1.30 1.31

b6000 1.29 1.28
b30450 1.19 1.20

Table A2: Ratio of the mean SNR measure across all subjects and sessions as in Figure 4.2. The
ratios are listed for the white matter (WM) mask used in chapter 4 and a tighter white matter
mask. For the tighter mask, a higher threshold of > 0.98 and an additional binary erosion was
used to make sure only pure white matter voxels were selected.

Subject
Absolute distance to
isocenter (Test) [mm]

Absolute distance to
isocenter (Retest) [mm]

Absolute distance
Test-Retest [mm]

Bias [µm]

1 26.89 23.63 3.28 0.02
2 15.83 24.70 9.08 0.11
3 27.63 38.24 18.10 -0.04
4 28.25 28.22 1.61 0.09
5 23.67 27.91 12.15 0.10
6 23.26 23.42 5.55 0.11
7 30.19 23.49 10.11 0.34
7* 28.47 32.31 4.22 0.17
8 24.40 32.63 10.00 0.08
9 33.52 35.05 2.90 0.21
10 26.95 29.90 4.91 0.12

Table A3: Absolute distances of the center of the FOV to the scanner’s isocenter for both mea-
surements (Test & Retest) and each subject (only spiral datasets). Also, the absolute distances
between the centers of the FOV of both measurements, i.e. the difference between the two scan
positions are shown. In the last column the respective bias is shown, which is the mean of the
differences between Test and Retest for all white matter voxels as in the Bland-Altman plots in
Figure 4.7.

Table A4: Physical parameters and composition of the phantom used in the phantom experi-
ments.
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Table A5: Measurement parameters of the spiral 3DREAM sequence for different resolutions.
The abbreviations are as follows: tbp = time bandwidth product; int = accelerated spiral
interleaves; Ph = phase encoding steps; Rint = in-plane acceleration; RPh = acceleration in
phase-encoding direction; ¶ = CAIPIRINHA shift; ETL = echo train length; TM = mixing
time; TS = STEAM preparation pulse interval; TA = acquisition time. “5 mm (RO)" refers to
the spiral scan with modified signal separation gradients applied in readout direction.
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the last step, outliers were removed with a despiking filter and the field

map was smoothed with a Gaussian filter (Ã = 0.5). . . . . . . . . . . . . 34

2.7 Spatiotemporal magnetic field monitoring with an NMR field probe sys-

tem. a) Field probes mounted to a plastic frame with field probe positions

relative to the gradient isocenter shown on the right. b) Example data

from a field probe measurement of a spiral sequence. Field coefficients of

up to third order are shown along with concomitant field coefficients of

second order. At the top right of b), the two-dimensional k-space trajec-

tory of the spiral sequence is plotted. . . . . . . . . . . . . . . . . . . . . . 37

2.8 EPI and spiral k-space trajectories undersampled by an acceleration factor

of R = 2. Left: EPI trajectory with corresponding readout und phase-

encoding gradients. Middle: Same EPI trajectory accelerated with the

Partial Fourier (PF) technique. Right: Spiral out trajectory with oscil-

lating gradients. Beginning and end of the trajectories are marked with

green and red dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 The top row shows singleband, multiband and minimum-time VERSE

multiband 90◦ excitation pulses with the corresponding slice selection gra-

dients for 1.5mm slice thickness. The singleband RF shape was calculated

with the SLR algorithm. For visualization purposes, the multiband pulses

have only a small slice separation of 4.5mm. The RF pulse duration of

the minimum-time VERSE pulse is reduced, as the sidelobes of the pulse

are compressed in time. The bottom row shows the corresponding lon-

gitudinal and transverse magnetization profiles along the slice direction.

Vertical black lines indicate the nominal slice positions. . . . . . . . . . . . 44

2.10 T2-weighted images acquired with single-shot EPI and spiral trajectories

are shown with and without off-resonance correction in the reconstruction.

The corresponding B0 field map is shown on the right. Off-resonance cor-

rection removes most off-resonance related artifacts. Remaining artifacts

due to insufficient correction are visible especially in the frontal part of

the brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

146



List of Figures

2.11 Diffusion-weighted images (b = 1000 s/mm2) acquired with a single-shot

spiral trajectory. The images are reconstructed with a) the nominal k-

space trajectory and no correction of the global phase k0, b) with measured

k0 and the nominal k-space trajectory, c) with measured k0 and measured

k-space trajectory, and d) with measured phase terms up to third spatial

order. Note that in a) model based correction of the global phase via the

vendors eddy current correction was disabled. . . . . . . . . . . . . . . . . 49

3.1 Overview of the whole workflow with data acquisition at an MRI scan-

ner (light blue) or in JEMRIS simulations (light green). Pulseq sequence

and MRD metadata files are created with either PyPulseq or JEMRIS.

The sequence file is executed at the scanner using a vendor-specific in-

terpreter. Raw data are sent to the reconstruction server via the FIRE

interface, and the metadata from the MRD file are merged. Images are

reconstructed with BART and sent back to the scanner via FIRE. In an

offline reconstruction, the FIRE interface is replaced by an MRD converter

and a Python-based client. Acquired data from JEMRIS simulations is

merged with the metadata inside JEMRIS and saved in the MRD format.

The same reconstruction pipeline as for data from an MRI scanner data

is executed. BART, Berkeley Advanced Reconstruction Toolbox; FIRE,

framework for image reconstruction environments; MRD, MR raw data. . 54

3.2 Left: Sequence development and metadata file creation with PyPulseq.

The metadata file is initialized, and a header is created from global se-

quence parameters (full header function not shown). The sequence object

is created, and event blocks are added. At the same time, readout in-

formation such as k-space flags, counters, and the k-space trajectory are

added to the metadata file. Right: Dump of the sequence tree from a se-

quence developed with the JEMRIS simulation framework. The metadata

header is generated from the global parameters in JEMRIS. Acquisition-

specific k-space information is generated from the new JEMRIS loop-type

and ADC-type parameters and added to the metadata, together with the

k-space trajectory. Green color indicates new features. . . . . . . . . . . . 55

3.3 Detailed view of the reconstruction pipeline for raw data from an MRI

scanner or the JEMRIS simulation framework. Raw data from the scanner

are first converted to MRD. The data is streamed to the reconstruction

server, which is where the reconstruction pipeline is started. The pipeline

supports an optional correction of gradient imperfections with the GIRF.

Image reconstruction and optional calculation of coil sensitivity maps are

done with BART. Reconstructed images are displayed in the GUI of the

scanner, the JEMRIS GUI, or saved to a file. GIRF, gradient impulse

response function; GUI, graphical user interface. . . . . . . . . . . . . . . 57
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3.4 Reconstructed images from a T1 weighted 3D GRE sequence created with

JEMRIS, with a TE of 5 ms and 4× undersampling with a CAIPIRINHA

shift. Water images were acquired with block pulses of 1.02 ms length

suppressing fat signal (upper images), whereas fat excitation was achieved

with fat-selective sinc-pulses (lower images). CAIPIRINHA, controlled

aliasing in volumetric parallel imaging; GRE, gradient echo. . . . . . . . . 61

3.5 Images from the same 3D GRE sequence as in Figure 3.4, with a TE of

25 ms. Upper images were acquired with a CAIPIRINHA shift, whereas

lower images were acquired without this shift. The red arrow indicates

artifacts in images without CAIPIRINHA. . . . . . . . . . . . . . . . . . . 62

3.6 Reconstructed images from a B0 mapping sequence. Image (A) is the first

magnitude image with TE = 2.04 ms; (B) is the phase difference map of

the 2 echoes; and (C) shows the corresponding filtered B0 field map. . . . 62

3.7 Reconstructed images from a 2D spiral GRE sequence acquired at 7T

(A-C) and 3T (D,E) scanners from 4 different subjects. Image (A) was

acquired with a spiral sequence without fat suppression; whereas in (B) fat

suppression was added to the sequence, and GIRF trajectory correction

was done in the reconstruction. Image (C) was reconstructed from the

same raw data, but with an additional B0 correction using the field map

shown in Figure 6C. Images (D-F) were acquired at 3 different 3T scanners

with fat suppression, but without GIRF correction in the reconstruction.

Red arrows indicate artifacts from gradient imperfections and from off-

resonance due to chemical shift and magnetic susceptibility. T, Tesla. . . . 63

3.8 Images reconstructed from data simulated with the JEMRIS simulation

framework. A spiral sequence was simulated for 2 different slices either

with a clean digital phantom, with additional chemical shift from fat or

with susceptibility differences across the digital brain phantom. Artifacts

from chemical shift and susceptibility are indicated by red arrows. The

B0 maps on the right show both chemical shift (at approximately 1 kHz)

and susceptibility-induced off-resonance effects. . . . . . . . . . . . . . . . 64

4.1 Spiral sequence development and image reconstruction pipeline [112]. The

spiral sequence was designed using PyPulseq and Pulseq. The sequence

includes a dual-echo gradient echo (GRE) prescan for coil sensitivity cal-

ibration and mapping of static off-resonance. Image reconstruction with

an expanded encoding model was implemented in the PowerGrid toolbox

using k-space phase coefficients of up to third spatial order. An example

set of phase coefficients measured with a field camera (Skope) is shown on

the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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4.2 Maps of the SNR measure of the first subject for the mean signal of both

shells and the mean b0 signal for spiral (top row) and EPI (bottom row)

acquisitions. The last column shows the mean b0 images. Below the maps,

the ratios of the mean SNR measure across all subjects and sessions in

the white matter (WM) are displayed. . . . . . . . . . . . . . . . . . . . . 77

4.3 Axon radius maps estimated from spiral (top row) and EPI (bottom row)

data of the first subject. The maps are thresholded at 5µm, which was

the upper bound used in the axon radius fitting procedure. . . . . . . . . . 78

4.4 Overlay of estimated MR axon radius distributions in the white matter

onto anatomical MPRAGE volumes for the first two subjects. . . . . . . . 78

4.5 Histograms of the MR axon radius (rMR) distributions in white matter of

both test and retest measurements for the first two subjects. Mean (µ),

median (M) and standard deviation (Ã) of the distributions are shown in

the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Profiles of the estimated axon radius in segments of the left CST from

inferior (0) to superior (100) positions. The solid lines represent the mean

over all subjects. Dashed lines indicate 95% confidence intervals, calcu-

lated as ±1.96 × Ã/
√
N , where Ã is the standard deviation and N the

number of subjects. Individual tract profiles are shown as shaded lines. . . 80

4.7 Bland–Altman plots of five subjects for all white matter voxels comparing

test and retest measurements. Solid lines represent the absolute mean

difference and the limits of agreement, calculated as ±1.96×Ã, where Ã is

the standard deviation. Bland–Altman plots of all subjects can be found

in Appendix Figure A4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8 Bland-Altman plot of subject 7. The test–retest study for this subject

was repeated in a second scan to investigate the large bias in the first scan. 82

5.1 The spiral 3DREAM sequence starts with a STEAM preparation sequence

with non-selective block pulses (flip angle ³) followed by a spiral imaging

train. Here, TS is the STEAM preparation pulse interval and TM is the

mixing time. Fat saturation before the STEAM preparation (not shown)

and binomial (1-1) pulses (flip angle ´) at the beginning of the spiral

imaging train are used to suppress fat signal. The gradients GM and G-M

have equal absolute gradient moments with opposite sign leading to a

separation of the two signals in k-space. In the sequence utilized at the

scanner, the phase encoding gradient, the second slab selection rephaser

and the gradient G-M were merged into one gradient. . . . . . . . . . . . . 89
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5.2 Left: Flip angle maps of the 3DREAM sequences, the AFI, the DAM

and the BSS with an isotropic resolution of 5mm for one coronal and

one transversal slice. Right: Scatterplots comparing flip angle maps of

the 3DREAM sequences to the three reference methods. The linear fit

is shown as a red line alongside with the fit parameters and correlation

coefficients Ä. The black line is the identity. A sphere, centered in the

middle of the phantom and with a radius of ten voxels is selected for the

comparison. The selected region for the comparison is shown in the inset

of the first scatterplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Top row: Normalized flip angle maps of subject 5 at (a) 3mm and (b)

5mm resolution from the Cartesian 3DREAM at the top, the spiral 3DREAM

in the middle and the AFI in the bottom row. One central slice for each

view (sagittal, coronal and transversal) is presented. Bottom row: Linear

fits for the comparison of the masked flip angle maps with normalized axes

for 3mm (c-d) and 5mm (e-f) resolution. The linear fit is shown as a red

line alongside with the fit parameters and correlation coefficients Ä. The

black line is the identity. In addition, the dashed line marks the flip angle

50 ◦ and thus the beginning of the underestimation at higher flip angles. . 95

5.4 (I) One sagittal, coronal and transversal slice of the STE* at 3mm res-

olution is shown for both Cartesian (top) and spiral (bottom) 3DREAM

sequences. Additionally, the transversal slice of the FID is displayed on

the right, with and without the FID filter applied. (II) (a) Sagittal STE*

and FID images at 5mm resolution as well as normalized flip angle maps

of the Cartesian 3DREAM sequence without (w/o) and with (w) modi-

fied signal separation gradients. The red arrows point to the ring-shaped

artifacts in the STE* images and in the flip angle maps. The yellow arrow

indicates the readout direction. (b) The same results are shown for the

spiral sequence, but a transversal slice is displayed as the readout direc-

tion differs from the Cartesian sequence. All images were obtained from

subject 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Left: Multiband kT-spokes excitation and refocusing pulses of one slice

group. The magnitude of the first RF channel is displayed in the top row.

Below, the slice-selective VERSE-gradients (on Gz axis) and the kT-point

blips (on all axes) are shown. Gx and Gy axes are scaled down for improved

visibility. Right: Multiband GRAPE excitation and refocusing pulses of

the same slice group. The magnitude of the first RF channel and the

optimized GRAPE gradients are shown. Note the different scaling of the

Gz axis as the slice gradient is superimposed on the GRAPE gradients. . . 101
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6.2 Left: Simulated signal of CP, kT-Spokes and GRAPE pulses after exci-

tation, refocusing (assuming ideal excitation) and successive application

of both pulses. The displayed signal level per voxel is the integral of the

simulated transverse magnetization in slice direction. Mean and standard

deviation of the signal over the whole brain after excitation were: CP:

21.8± 3.3, Spokes: 28.6± 2.6, GRAPE: 23.9± 4.3. After refocusing: CP:

17.1±3.9, Spokes: 17.4±4.0, GRAPE: 18.0±2.3. After both pulses: CP:

13.5± 4.6, Spokes: 15.4± 4.0, GRAPE: 15.3± 2.9.

Right: Simulated transverse magnetization of CP, kT-Spokes and GRAPE

pulses along the slice direction at three distinct positions. The positions

are marked in the sagittal slice of the CP signal maps. The Bloch sim-

ulations were done along a 6mm line in slice direction. The red vertical

lines show the target slice thickness of 1.5mm. The magnitude of the

transverse magnetization in percent of the initial magnetization is shown

in white and the phase is shown in green. . . . . . . . . . . . . . . . . . . 107

6.3 Preprocessed T2- and diffusion-weighted (b = 1000 s/mm2) whole-brain

volumes of subject 1 acquired with EPI and spiral sequences using CP,

kT-Spokes and GRAPE pulses. “FM" denotes higher order image recon-

struction with field monitoring data. Yellow arrows mark areas, where

signal loss is observed. Red arrows mark some of the artifacts related to

B0 inhomogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 SNR maps of mean T2-weighted and diffusion-weighted (b = 1000 s/mm2)

volumes acquired with EPI and spiral sequences using CP, kT-Spokes and
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6.7 Diffusion-weighted (b = 1000 s/mm2) volumes, SNR maps and fractional
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and multiband (MB) CP, kT-Spokes and GRAPE pulses (subject 2). SNR
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A8 Phantom experiments with different acceleration of the spiral 3DREAM

sequence. Top row: One sagittal 5 mm slice in the phantom’s center for a

non-accelerated, accelerated, and non-accelerated segmented spiral scan.

Bottom row: Scatterplots with linear fits for the comparison of the flip

angle maps to the AFI sequence with normalized axes, corresponding to

the three acceleration schemes. The selected region for the comparison

is placed in the bottom-right hand corner. A white arrow points to a

region with increased blurring at the bottom of the phantom, which is not
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