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Abstract
Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase 
signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 
95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we 
used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and 
mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we 
uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated 
in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-
free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis 
(GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while 
Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-
related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, 
integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve 
risk stratification of this single pathway driven tumor type.

Keywords Pilocytic astrocytoma · Intertumoral heterogeneity · Integrative multi-omics

Introduction

Pilocytic astrocytomas (PAs) are the most common pri-
mary brain tumors in children [29]. The majority of tumors 
develop in the cerebellum, followed by less common loca-
tions in other midline structures, such as the optic nerve 
and chiasm, the hypothalamus and the spinal cord, and by 
locations in the cerebral cortex [40]. PAs are typically slowly 
growing, and, if well-circumscribed, can be successfully 
treated by surgery [28], with 5-year overall survival rates 
exceeding 95%. Subtotally resected or unresectable tumors 
due to tumor location, e.g., tumors located in the optic tract 

and hypothalamus, tend to recur and may require adjuvant 
therapy by local irradiation or systemic chemotherapy [9]. 
However, approximately 55% of these tumors progress fol-
lowing current standard of care treatment, and novel treat-
ment strategies are thus urgently needed [24].

Concerning pathogenesis, PAs are considered as a single 
pathway disease driven by genetic alterations of genes encod-
ing members of the mitogen-activated protein kinase (MAPK) 
signaling cascade, with the majority of tumors, in particular 
among the cerebellar PAs, carrying KIAA1549:: B-Raf proto-
oncogene, serine/threonine kinase (BRAF) fusions that lead 
to aberrant MAPK pathway activation [16]. Less common 
genetic alterations in PAs include activating BRAF codon 600 
mutations, inactivating neurofibromin 1 (NF1) mutations or 
rarely alterations in the fibroblast growth factor receptor 1/2 
(FGFR1/2), protein tyrosine phosphatase non-receptor type 
11 (PTPN11) or neurotrophic receptor tyrosine kinase (NTRK) 
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genes [16]. Based on these molecular findings, individual case 
observations as well as early clinical trials have been focus-
ing on pharmacological inhibition of MAPK signaling using 
BRAF and/or MAPK/ERK kinase (MEK) inhibitors as a 
molecularly guided strategy for targeted therapy (for review 
see Ruda et al. [37]). Thus far, available data suggest that 
this targeted strategy may improve outcome of patients with 
recurrent, refractory or progressive disease. For example, sev-
eral studies on pediatric patients with BRAF- or NF1-altered 
progressive or recurrent low-grade gliomas (LGG), includ-
ing PAs, reported on promising clinical signals for targeted 
treatments with BRAF or MEK inhibitors when compared to 
control patients receiving the standard-of-care [4, 10, 13]. It 
is also interesting to note that patients who stopped treatment 
had rapid tumor re-growth [27].

Several molecular profiling studies have been conducted 
that aimed to stratify PA patients based on large-scale gene 
expression and/or DNA methylation profiling data [1, 18, 20, 
38, 48]. In particular, studies have analyzed epigenetic data to 
define molecular groups [20, 38]. However, upon clustering of 
these cohorts, the tumors largely separated according to their 
anatomical location. Thus, there is no current consensus on 
subgrouping of PAs based on molecular markers or signatures, 
indicating a low degree of biological heterogeneity among 
these tumors. Notably, however, previous molecular profiling 
studies have been restricted to single layers of molecular data 
sets, i.e., comprising either gene expression or DNA methyla-
tion analyses [20, 32, 51].

In the present study, we employed similarity network fusion 
(SNF) analysis, which allows for the integration of multiple 
layers of large-scale molecular data sets [8]. We performed 
SNF analyses based on RNA sequencing transcriptomic and 
mass spectrometry (MS)-based proteomic profiling data of a 
large cohort of PAs to discern the biological heterogeneity 
of these tumors. As there is a known discordance between 
mRNA and protein expression [12, 23, 52], it was important 
to integrate the data to gain a better overview of potential inter-
tumoral biological differences in PAs. Indeed, with pathways 
such as “Interferon Signaling” and “T Cell Receptor Sign-
aling”, these data led us to the discovery that the profile of 
immune cells, which are part of the tumor microenvironment, 
may discriminate PAs into two biologically and clinically 
distinct groups, with Group 1 tumors being more frequently 
located in the supratentorial compartment, manifesting at 
younger age and being associated with less favorable progres-
sion-free survival.

Materials and methods

Patient samples

Tumor tissue samples from PA patients were obtained from 
the CNS tumor tissue bank Düsseldorf at the Institute of 
Neuropathology, University Hospital Düsseldorf, Germany, 
and from the Hospital de Santa Maria, Centro Hospitalar 
Universitário Lisboa Norte, in Lisbon, Portugal. Patients or 
parents provided their written informed consent for the use 
of the tissue samples for research purposes, in accordance 
with the requirements of the internal review boards. The 
study was approved by the Ethics Committee of the Medical 
Faculty, Heinrich Heine University Düsseldorf (study num-
ber: 5604). All samples analyzed in this study were collected 
from newly diagnosed patients and were flash-frozen directly 
after surgical resection. Each specimen used for protein and 
RNA extraction was histologically assessed to assure the 
presence of cellular tumor tissue with an estimated tumor 
cell content of > 70%. All tumors were histologically clas-
sified as PAs according to the criteria of the World Health 
Organization (WHO) classification of CNS tumors [21].

Detection of BRAF gene alterations

Structural alterations in BRAF, i.e., KIAA1549::BRAF 
fusions were demonstrated in the diagnostic setting either 
by reverse transcription PCR or by in situ hybridization. 
Briefly, fusions were detected using the primers for the most 
common fusion products (KIAA1549::BRAF exons 15::9 or 
16::9) and visualized using gel electrophoresis. Fusions were 
confirmed using Arriba v2.4.0 algorithm for samples with 
RNA sequencing [43]. Arriba was run with default settings 
against the hg38 reference genome with the GENECODE 
annotation. For BRAF V600 missense mutations, droplet 
digital PCR (ddPCR) was performed as previously published 
[47].

RNA sequencing

Total RNA was isolated from the fresh frozen PA tissue 
samples using the Maxwell® RSC simply RNA Tissue Kit 
(AS1340, Promega, Walldorf, Germany). To prepare the 
barcoded libraries, 500 ng total RNA was processed using 
the TruSeq RNA Sample Preparation v2 kit (low-throughput 
protocol; Illumina, San Diego, CA, USA). Libraries were 
validated and quantified using either DNA 1000 or high-
sensitivity chips on a Bioanalyzer (Agilent, Santa Clara, 
CA, USA). 7.5 pM denatured libraries were input into cBot 
(Illumina), followed by deep sequencing using the HiSeq 
2500 (Illumina) for 101 cycles, with an additional seven 
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cycles for index reading. Fastq files were imported into 
Partek Flow (Partek Incorporated, St. Louis, MO, USA). 
Quality analysis and quality control were performed on all 
reads to assess read quality and to determine the amount of 
trimming required (both ends: 13 bases 5´ and 1 base 3´). 
Trimmed reads were aligned against the hg38 genome using 
the STAR v2.4.1d aligner. Unaligned reads were further pro-
cessed using Bowtie 2 v2.2.5 aligner. Finally, aligned reads 
were combined before quantifying the expression against the 
ENSEMBL (release 84) database using the Partek Expecta-
tion–Maximization algorithm. Partek Flow default settings 
were used in all analyses. RNA sequencing data have been 
deposited in the European Genome–Phenome Archive under 
the identifier EGAD00001009053 (https:// web3. ega- archi ve. 
org/).

Mass spectrometry

For MS-based proteome analyses, proteins were extracted 
from fresh frozen PA tissue. Tissues were homogenized in 
urea buffer with a TissueLyser (Qiagen, Hilden, Germany) 
and subsequent sonication. After centrifugation for 15 min 
at 14,000×g and 4 °C, supernatants were collected. Protein 
concentration was determined via Pierce 660 nm Protein 
Assay (Thermo Fischer Scientific) and 10 µg protein per 
sample were desalted through short electrophoretic migra-
tion at 50 V for 10 min on a 4–12% Bis–Tris polyacrylamide 
gel (#EC62352BOX, Novex NuPAGE, Thermo Fischer Sci-
entific). After silver staining, the resulting protein band for 
each sample was cut out, destained, reduced, alkylated and 
digested with trypsin before peptide extraction via sonica-
tion. Peptides were dissolved and diluted with 0.1% TFA 
(v/v).

MS-based proteome analyses were performed as previ-
ously described [33]. In brief, 15 µL peptide solution per 
sample were analyzed on a nano-high-performance liquid-
chromatography electrospray ionization mass spectrom-
eter. The analytical system was composed of an RSLCnano 
U3000 HPLC coupled to a QExactive Plus mass spectrom-
eter via a nano-electrospray ion source (Thermo Fischer Sci-
entific). Injected peptides were concentrated and desalted at 
a flow rate of 6 µL/min using a trapping column (Acclaim 
PepMao C18, 2 cm × 100 µm × 3 µm particle size, 100 Å 
pore size, Thermo Fischer Scientific) with 0.1% TFA (v/v) 
for 10 min. Subsequently, peptides were separated at a 
constant flowrate of 300 nL/min over a 120 min gradient 
using an analytical column (Acclaim PepMap RSLC C18, 
25 cm × 75 µm × 2 µm particle size, 100 Å pore size, Thermo 
Fischer Scientific) at 60 °C. Separation was achieved through 
a gradient from 4% to 40% solvent B [solvent A: 0.1% (v/v) 
formic acid in water, solvent B: 0.1% (v/v) formic acid, 84% 
(v/v) acetonitrile in water]. Afterwards, peptides were ion-
ized at a voltage of 1,400 V and introduced into the mass 

spectrometer operating in positive mode. Mass spectrometry 
scans were recorded in profile mode at a range from 350 to 
2000 m/z at a resolution of 70,000, while tandem mass spec-
tra were recorded at a resolution of 17,500. Tandem mass 
spectra were recorded with a data-dependent Top10 method 
and 30% normalized collision energy. Dynamic exclusion 
was activated with a repeat count of 1 for 100 s.

Proteome Discoverer (version 1.4.1.14, Thermo Fisher 
Scientific) was applied for peptide/protein identification 
using Mascot (version 2.4, Matrix Science, London, UK) 
as a search engine employing the UniProt database (human; 
including isoforms; date 2016–03-01). A false discovery rate 
of 1% (p ≤ 0.01) at the peptide level was set as the iden-
tification threshold. Proteins were quantified with Progen-
esis QI for Proteomics (Version 2.0, Nonlinear Dynamics, 
Waters Corporation, Newcastle upon Tyne, UK). The mass 
spectrometry proteomics data have been deposited with 
the ProteomeXchange Consortium via the PRIDE partner 
repository (https:// www. ebi. ac. uk/ pride/) with the data set 
identifier PXD035773.

DNA methylation profiling

Global DNA methylation data of 52 samples presented 
in this study were generated using tumor DNA extracted 
either from formalin-fixed paraffin-embedded tissue samples 
(FFPE, 32 tumors) or from flash-frozen tissue samples (FF, 
20 tumors). Tumor DNA was hybridized to Illumina Infin-
ium EPIC Methylation BeadChip Arrays. Methylation profil-
ing was performed according to the manufacturer’s instruc-
tions at the DKFZ Genomics and Proteomics Core Facility 
(Heidelberg, Germany). All analyses were performed in 
Partek Genomic Suite (Partek Incorporated, St. Louis, MO, 
USA). FFPE and FF samples were processed individually 
and then combined following beta-value determination. The 
complete CpG methylation values have been deposited in 
NCBI’s GEO under accession number GSE210353. Nor-
malization and generation of beta values were performed 
after NOOB background normalization. DNA methylation 
analysis using the CNS tumor methylation profiling classi-
fier [7] confirmed the diagnosis of PA in 44 patients. In the 
remaining 8 patients, DNA methylation analysis revealed 4 
control tissue samples, 3 samples with no matching methyla-
tion class and 1 sonic hedgehog medulloblastoma (histologi-
cally a PA with a BRAF-fusion).

Similarity network fusion

This method has been described by Wang et al. [45]. Briefly, 
patient similarity matrices were constructed for each data 
type using Euclidean distance on samples that shared col-
lected data for mRNA expression (48 samples, 13,498 fea-
tures), proteome expression (43 samples, 2457 features) 

https://web3.ega-archive.org/
https://web3.ega-archive.org/
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and methylation beta value (52 samples, 865,860 features) 
data sets. SNF was performed using 28 samples overlap-
ping between mRNA and protein expression, 25 samples 
overlapping between mRNA and protein expression and 
methylation beta values, or individual data sets. SNF was 
run setting the number of nearest sample neighbors K = 10, 
the hyperparameter alpha = 0.5 and the number of iterations 
for the diffusion process T = 10. To obtain network clusters, 
spectral clustering was performed on networks representing 
each of the data types independently, as well as on the fused 
network to which the SNF process had converged. Analysis 
was visualized with Cytoscape (www. cytos cape. org) using 
the minimum number of entries that contained all samples 
based on the highest degree of relatedness.

Hierarchical clustering and group extension

SNF group extension was conducted using genes with sig-
nificant differential expression (p ≤ 0.05 and fold change ± 2) 
ranked by p value. The top 100, 50 and 25 up- and down-
differentially regulated genes and proteins were used to gen-
erate signatures (Supplementary Tables 2 and 3). Gene and 
protein signatures were visualized using hierarchical clus-
tering (HCL) after normalizing mean expression to 0 with 
a standard deviation of 1 and using Pearson’s dissimilarity 
algorithm and average linkage in Partek Genomics Suite. 
HCL was first performed with SNF-overlapping samples and 
then with all samples. Signatures with the lowest number of 
genes capable of maintaining accurate group associations 
(50 genes or proteins) were used for subsequent analyses.

Submap analysis

Submap analysis was used to determine similarities between 
different data sets and was performed using the GenePattern 
analysis platform (https:// cloud. genep attern. org/ gp/ pages/ 
index. jsf). Data set files were ordered based on groups and 
class files provided group information. Defaults were used, 
except for the number of genes used to determine similarities 
(10,000 markers for transcriptome analysis or 2000 markers 
for proteome analysis and subclass association (SA) matrix 
was adjusted using the False Discovery Rate (FDR)).

Calculating correlation and ratio between mRNA 
and protein expression

For each gene product, we calculated Pearson correlation 
coefficients between its normalized, centered, and log-trans-
formed transcript and protein levels. The statistical signifi-
cance of the correlation was assessed by p value. In addi-
tion, the divergence of protein and mRNA expression was 
measured by the protein/mRNA ratio. For all 2107 products, 

protein/mRNA ratios within each group were computed by 
dividing the median of the log protein and mRNA levels.

Pathway analysis

Ingenuity pathway analysis (IPA, Qiagen) was conducted 
using genes with significant differential expression (p ≤ 0.05 
and fold change ± 2). The significance cutoff for IPA was set 
to p ≤ 0.05 and an activation z score of ± 1.5. In addition, 
for upstream regulators, we filtered out biological drugs, all 
chemicals and miRNA entries.

Gene Set Enrichment Analysis (GSEA) was performed 
using the t values from the unpaired t tests for both mRNA 
and protein expression data. Gene sets were comprised of 
curated pathways from several databases, including GO, 
Reactome, KEGG (April_01_2019 version; http:// downl 
oad. bader lab. org/ EM_ Genes ets/ curre nt_ relea se/ Human/
symbol/), and visualized using Cytoscape (www. cytos cape. 
org; main figure: p ≤ 0.0005, q ≤ 0.03, similarity cutoff 0.5; 
supplementary figure: p ≤ 0.001, q ≤ 0.05, similarity cutoff 
0.5).

Deconvolution analyses

ESTIMATE was carried out in R (version 4.0) using 
default parameters [50]. Briefly, data files were loaded 
and processed using the estimate package, identifiers were 
gene symbols and platforms were “illumina” for the RNA 
sequencing data sets and “affymetrix” for the microarray. 
Data were then visualized using GraphPad Prism (version 
5.0) (https:// www. graph pad. com/ scien tific- softw are/ prism. 
Single-cell RNA sequencing data signatures were gener-
ated by Reitman et al. [34] and imported into CIBERSORT 
(https:// ciber sort. stanf ord. edu/) as a “signature matrix”. 
CIBERSORT was performed for each data set using default 
settings. Data were visualized using GraphPad Prism.

Multiplex immunofluorescence

FFPE sections of PA patients were stained using Opal Pola-
ris 7 colour kit (NEL861001KT, Akoya Biosciences, Inc.) 
based on thyramide signal amplification fluorescent immu-
nohistochemistry. The staining targeting anti-human CD4 
(1:50, MA5-16,338, Thermo Fisher Scientific), CD8 (1:150, 
M7103, DAKO), PD-1 (1:300, ab137132, Abcam), FoxP3 
(1:200, DIA-FX3, Dianova), Iba-1 (1:450, 019-19741, 
WAKO) and vWF (1:120, A0082, DAKO) was performed 
on LabSat™ Research Automated Staining Instrument 
(Lunaphore Technologies SA). Whole slide multispectral 
scans were acquired at 0,5 µm/pixel on Vectra Polaris Imag-
ing System using MOTiF™ technology (Akoya Biosciences, 
Inc.) and analyzed using HALO™ image analysis software 
(Indica Labs).

http://www.cytoscape.org
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
http://download.baderlab.org/EM_Genesets/current_release/
http://download.baderlab.org/EM_Genesets/current_release/
http://www.cytoscape.org
http://www.cytoscape.org
https://www.graphpad.com/scientific-software/prism
https://cibersort.stanford.edu/
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Bioinformatic and statistical analyses

For validation purposes, ICGC data of 73 PAs [17] were 
downloaded from the European Genome–Phenome Archive 
(https:// www. ebi. ac. uk/ ega/ datas ets/ EGAD0 00010 00617) 
and processed in the same way as described for the discovery 
cohort. The processed and  log2-transformed validation data 
from a further cohort of 191 PAs published by Kool et al. 
[5] were downloaded from the R2 Genomics Analysis and 
Visualization Platform (https:// hgser ver1. amc. nl/ cgi- bin/ 
r2/ main. cgi). PA log ratio proteomic profiling data (n = 39) 
from PDC000180 was downloaded directly from the CPTAC 
data portal (https:// cptac- data- portal. georg etown. edu/ cptac 
Public/). Statistical analyses were performed using Partek 
Genomic Suite or GraphPad Prism. T tests or Mann–Whit-
ney tests (non-parametric t tests) were used for compari-
sons between two groups for statistical analysis. χ2 tests were 
performed to analyze clinicopathological traits. Differences 
between groups were considered statistically significant at 
p < 0.05. Kaplan Meier progression-free survival analyses 
were calculated using the log-rank method and multivariate 
analysis was calculated using the Cox regression method.

Results

Integrative multi‑omic analysis of PA tissue samples

Our cohort consisted of a total of 62 flash-frozen primary 
PA tissue samples that were annotated with various clini-
cal features (see clinical information in Supplementary 
Table 1). We employed an integrative multi-omics approach 
and performed DNA methylation, transcriptomic and pro-
teomic measurements on 52, 48 and 43 partially overlap-
ping samples, respectively (Supplementary Fig. 1). For 

proteomic analysis, we retained only proteins with at least 
three detected peptide ratios and with no missing values. 
Together, these stringent criteria led to the unambiguous 
quantification of 2456 proteins.

To uncover potential intertumoral heterogeneity in the 
investigated PA samples, we integrated transcriptomic and 
proteomic data sets (constituting 28 overlapping samples) 
using SNF [8, 12]. Strikingly, this efficiently identified two 
distinct tumor clusters that were designated as Group 1 and 
Group 2 (Fig. 1, Supplementary Fig. 2a). By contrast, sepa-
rated SNF-based integrative clustering of each of the single 
omic layers, transcriptomics or proteomics, only poorly seg-
regated groups (Supplementary Fig. 2b, c), highlighting the 
importance of combining multiple omics data. Moreover, 
integrating DNA methylation data to transcriptomic and pro-
teomic data (for a total of 25 overlapping samples) did not 
further refine the SNF-based identification of patient groups 
(Supplementary Fig. 2d, e). On the contrary, this disrupted 
the initial group segregation obtained by transcriptomics and 
proteomics (Supplementary Fig. 2d, e, as compared to Fig. 1 
and Supplementary Fig. 2a), arguing against the discrimi-
natory power of DNA methylation to discern PA groups. 
Together, our integrative analyses of transcriptomics and 
proteomics revealed two PA groups.

Validation of PA classification and clinical features 
of the PA groups

To further extend our findings to the non-overlapping 
samples of our cohort and validate these in independent 
cohorts, we generated a gene and a protein signature capa-
ble of distinguishing between the two identified PA groups, 
as calculated by SNF clustering. These signatures were 
determined by extracting the most differentially expressed 
genes or proteins between Group 1 and Group 2, Resulting 

Fig. 1  Similarity network fusion identifies two pilocytic astrocytoma groups using integrative multi-omics data. Similarity network fusion (SNF) 
representation clearly segregates two PA groups. Shorter edge length and greater thickness between samples (nodes) indicate more similarity

https://www.ebi.ac.uk/ega/datasets/EGAD00001000617
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
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in 100 validated gene and 100 validated protein signatures 
(see Supplementary Tables 2 and 3). These allowed us to 
recapitulate our PA classification using only single omics 
data. We first assessed the validity of the PA classification 
using 20 additional PA samples that were subjected to RNA 
sequencing and 15 additional PA samples profiled by prot-
eomic analysis from the same original cohort, but that had 
not been used in the integrative multi-omics analysis. Semi-
unsupervised clustering analysis of transcriptomic data of 
this extended PA cohort (48 samples total) segregated the 
same groups as originally identified (Fig. 2a), further rein-
forcing these PA groups. Applying the same type of analysis 
to proteomic data of the extended cohort similarly led to 
the identification of the same PA groups (Fig. 2b), showing 
that using either a gene or a protein signature alone was suf-
ficient to stratify PAs in an extended patient cohort. We next 
determined whether the patient stratification could be vali-
dated in non-overlapping PA cohorts. To this aim, we used 
RNA expression data from the International Cancer Genome 
Consortium (ICGC) (n = 73) [17] and Kool et al. (n = 191) 
[5] cohorts and protein expression from the Clinical Prot-
eomic Tumor Analysis Consortium (CPTAC) (n = 65) [31]. 
A semi-unsupervised clustering analysis of these data using 
the same 100-gene or protein signature was conducted which 
led to the segregation of two groups in all cohorts (Fig. 2c, 
d, Supplementary Fig. 3). These were highly similar to the 
ones originally defined in our discovery cohort as Group 1 
and Group 2, as measured by submap analysis (Fig. 2c, d, 
Supplementary Fig. 3).

After combining all four PA cohorts for a total of 365 
PA samples, differences in relevant clinical parameters were 
analyzed between Group 1 and Group 2. This did not reveal 
any differences in gender distribution, BRAF mutation rate 
or KIAA1549::BRAF fusion occurrence between the two 
groups (Supplementary Fig. 4a, b). However, tumor location 
was different between groups, with more tumors in Group 
1 being located in the supratentorial compartment, as com-
pared to the preference of infratentorial tumors in Group 2 (p 
value = 0.0027; Fig. 2e). A more detailed analysis revealed 

that Group 1 tumors were either exclusively observed in 
optic pathway system and that Group 2 tumors were pref-
erentially observed in the posterior fossa (p value = 0.0011; 
Supplementary Fig. 4c). In addition, the age of patients was 
significantly different between the two groups, with Group 
1 patients being younger than Group 2 patients (mean ages 
were 7 years versus 12 years, respectively; p value < 0.0001; 
Fig. 2f), potentially corresponding to a younger and an older 
PA group. Remarkably, Group 1 patients exhibited reduced 
progression-free survival compared to Group 2 patients, 
highlighting the clinical significance of the identified groups 
(p value = 0.0142; Fig. 2g). This association was independ-
ent of age or tumor location, as determined by multivariate 
analysis (Supplementary Fig. 4d). Indeed, when we analyzed 
progression-free survival differences of the two subgroups, 
we observed no significant survival differences depending 
on the detailed tumor location. (Supplementary Fig. 5). 
Altogether, our analyses in additional cohorts confirmed 
the identification of two PA groups, and highlight that these 
likely discriminate younger versus older PA patients with 
distinct progression-free survival.

Posttranscriptional regulation and pathway analysis 
of PA groups

Given that transcript and protein expression levels are poorly 
correlated in primary tumors [12, 23, 52], we assessed 
their level of correlation in PAs and checked whether this 
level is group-specific. To this end, we computed pairwise 
Pearson test correlations for 2102 matched mRNA–protein 
pairs extracted from the original 28 samples of our discov-
ery cohort. In line with previous studies, we uncovered a 
median Pearson correlation coefficient of 0.168, suggesting 
the occurrence of posttranscriptional mechanisms regulating 
gene expression in PA. To further explore such discrepan-
cies between transcript and protein levels in this disease, 
we calculated the ratio of relative expression of protein and 
mRNA for each individual pair in each group. We observed 
that Group 1 and Group 2 displayed remarkably distinct dis-
tributions of such a ratio. While the protein/mRNA ratio is 
mainly distributed towards transcript expression in Group 1, 
it is the opposite in Group 2, for which protein expression is 
prevalent (Fig. 3a). This highlights that posttranscriptional 
regulation is group-related, suggesting different modes of 
control of gene expression in Group 1 versus Group 2 PA.

To address the biological heterogeneity of PAs, we ana-
lyzed biological pathways that are active in each of the two 
groups. This was achieved by performing two types of com-
plementary analyses: Ingenuity pathways analysis (IPA) and 
gene set enrichment analysis (GSEA). Using our transcrip-
tomic data, we uncovered that Group 1 and Group 2 are 
characterized by distinct biological pathways. In particu-
lar, IPA showed that “interferon signaling”, “dendritic cell 

Fig. 2  SNF groups are recapitulated in an extended PA and PA 
validation cohorts. a, b Hierarchical clustering of 100 gene/pro-
tein signatures based on p value allows for the expansion of groups 
to non-overlapping RNA sequencing (a) and mass spectrometry (b) 
samples. c, d 100-gene/protein signature applied to non-overlapping 
transcriptomic (ICGC) [17], c and proteomic (CPTAC) [31], d vali-
dation cohorts segregate samples into two groups. Lower panel, sub-
map analyses show close relatedness between discovery and both 
validation cohorts. e–g Combined data set analysis of clinical fea-
tures shows that the majority of younger patients belong to Group 1 
and adults belong to Group 2. (p < 0.0001, Mann Whitney test, e), 
location shows an enrichment of infratentorial regions for Group 
2 (p = 0.0024, Fisher’s Exact test, f), and Kaplan–Meier plot shows 
patients in Group 1 are more likely to develop recurrent tumors 
(p = 0.0142, log rank method, g)

◂
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Fig. 3  Ingenuity pathway analysis identifies differential canonical 
pathway activation between PA groups. a Distribution of protein/
mRNA ratios in PA groups. Both groups display a non-centric ratio 
distribution (Mann Whitney test; p value = 0.0144), with an imbal-
ance in favor of mRNA for Group 1 and protein for Group 2. Dot-
plots show the median protein/mRNA ratios for individual samples. 

b, c Group 1 PA were compared to Group 2 PA for both transcrip-
tome (b) and proteome (c). Significant genes (fold change ± 2 and 
False Discovery rate q value < 0.05) were processed using IPA and 
significantly activated canonical pathways are shown. (Activation 
z-score ± 2, –  log10 (p value) > 1.30.)



559Acta Neuropathologica (2023) 146:551–564 

1 3

maturation” and “neuroinflammation signaling pathway” 
are specifically active in Group 1, while “gonadotropin-
releasing hormone (GNRH)” and “cyclin-dependent kinase 
5 (CDK5) signaling” are active in Group 2 (Fig. 3b and 
Supplementary Table 4). In keeping with the IPA, GSEA 
revealed an overrepresentation of immune response path-
ways (Fig. 4a and Supplementary Tables 6–7)—in particu-
lar of “Interferon Signaling” (top term, Fig. 4b and Sup-
plementary Table 6) and “T Cell Receptor Signaling”—in 
Group 1. This was confirmed in the ICGC [17] and Kool 
et al. [5] cohorts (Supplementary Fig. 6), further reinforcing 
the importance of such pathways in this group. In addition, 
Group 1 was enriched for cell cycle and RNA processing-
related pathways (Fig. 4a), while Group 2 was characterized 
by enrichment for action potential and neurotransmitter sign-
aling pathways, as determined by GSEA (Fig. 4a). Support-
ing the discovery analysis, enrichment for action potential 
was confirmed in Group 2 using the ICGC and Kool et al. 
cohorts (Supplementary Fig. 6).

Notably, Group 1 was enriched for immune response 
pathways and, in particular, for “Interferon Signaling”, as 
well as “RNA Processing Pathways” and “Post-Translational 
Modification” (Fig. 4a) using GSEA of our proteomic data. 
However, “TCA Cycle II (Eukaryotic)” and “Glycolysis I”, 
among others, were pathways observed in the IPA using the 
proteomic data of Group 2 samples (Fig. 3c and Supple-
mentary Table 5). These observations were verified using 
the discovery and validation—CPTAC GSEA. Specifically, 
cellular respiration (Fig. 4a and Supplementary Table 7) and 
“Oxidative Phosphorylation”, the top gene set (Fig. 4c) in 
the proteomic analysis, were verified using the validation 
proteomic data set (Supplementary Fig. 7). Therefore, inte-
gration of multiple data layers is required to observe the 
biological heterogeneity of PA.

Distinct immune cell signatures in PA groups

To further investigate our observations of increased immune 
response gene signature in Group 1, we evaluated the level 
of immune cell infiltration in Group 1 versus Group 2 
samples using the algorithm “Estimation of STromal and 
Immune cells in MAlignant Tumours using Expression data” 
(ESTIMATE) [50]. ESTIMATE scores are used to deter-
mine tumor purity; however, the ESTIMATE algorithm can 
also assess the presence of stromal and infiltrating immune 
cells. Both RNA sequencing data sets (Discovery and Vali-
dation—ICGC) showed a significantly higher immune score 
for Group 1 compared to Group 2, which was not evident 
in the microarray validation set (Validation-Kool et al. [5]) 
(Supplementary Fig. 8), possibly reflecting the limited reso-
lution of microarray-based expression profiling compared 
to RNA-sequencing. Since Reitman et al. [34] showed that 
microglia, macrophages and T cells are present along with 

the PA tumor cells using single cell RNA sequencing, we 
used this information to create a signature file for each of 
these four cell types. By processing and analyzing our dis-
covery, Validation-ICGC [17] and Validation-Kool et al. 
[5] data sets using CIBERSORT [26], we uncovered that, 
in the RNA sequencing data sets (Discovery and Valida-
tion—ICGC), T cells were specifically enriched in Group 
1 compared to Group 2, while there was no difference in 
microglia or macrophages (Supplementary Fig. 9).

To confirm the previous results, we performed multiplex 
immunofluorescence on a subset of cases (n = 24). CD4, 
CD8 or IBA-1 positive cells were similarly represented 
between PA Groups 1 and 2 (Supplementary Fig. 10a–c). 
When we analyzed the immunosuppressive T cell popu-
lations, although  FOXP3+CD4+ cells were not different 
between the two groups, exhausted T cells  (PD1+CD8+) 
cells showed a strong trend towards being able to dis-
criminate Group 1 from Group 2, Group 2 having a higher 
percentage of PD1 positive  CD8+ T cells (Supplementary 
Fig. 10d–f).

Discussion

Genome-wide profiling and next-generation-based sequenc-
ing approaches have provided profound insights into the 
pathomechanisms underlying PA development. In particu-
lar, these methods have revealed that aberrant activation of 
the MAPK pathway constitutes a hallmark feature of these 
tumors [6]. Oncogenic activation of MAPK is caused by 
alterations affecting BRAF, NF1, FGFR1 or, rarely, other 
MAPK pathway genes [17, 24, 32]. However, further biolog-
ical stratification of this disease has not evolved in the past 
decade, in contrast to other brain tumor entities in children 
and adults [8, 30, 41, 44]. Only a limited number of stud-
ies have suggested intertumoral heterogeneity of the disease 
as identified by distinct transcriptomes [20, 39, 48], DNA 
methylomes [20, 34, 36, 51], ploidy [11] or DNA copy num-
ber alterations [14, 32]. Importantly, none of these studies 
reported reproducible features of the identified subgroups. 
Furthermore, high-resolution DNA methylation profiles 
used for the molecular neuropathology classifier [7] are very 
accurate in dissecting molecular entities, with the important 
exception of LGG, including PA. At present, the algorithm 
identifies PA predominantly based on anatomic location. 
Therefore, currently available approaches fail to differentiate 
clinically relevant groups of the disease, suggesting either 
that such PA groups do not exist or that single layer omics 
approaches insufficiently discriminate the biological hetero-
geneity of the disease.

Thus, we decided to apply an innovative, integrative 
multi-omics approach, which has already provided funda-
mental insights into the tumor biology of breast cancer [2, 
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19], pancreatic ductal adenocarcinoma [6], glioblastoma 
[46], and medulloblastoma [3, 12], among other entities. 
Our bioinformatics approach integrates proteomic, transcrip-
tomic, epigenomic and mutational profiles. Subsequently, 
SNF provided compelling evidence for the existence of two 
core PA groups using combined proteomic and transcrip-
tomic data in an institutional discovery cohort. Since inte-
grative multi-omics classification requires generating mul-
tiple data sets, which is difficult in the clinical setting due to 
sample quality and/or financial constraints, we established 
highly accurate classification approaches using only RNA- 
or protein-based signatures. Notably, by applying this strat-
egy to three independent non-overlapping validation cohorts, 
we confirmed the existence of the two core PA groups.

Our integrative multi-omics data show highly distinct 
pathway enrichment according to PA group. Most impor-
tantly, immune response and associated pathways, including 
“Interferon signaling”, “Antigen Processing and Presenta-
tion”, “Cellular Response to Tumor Necrosis Factor”, and 
“T Cell Receptor Signaling Pathway” (Fig. 3, Supplemen-
tary Table 6), were significantly overrepresented in Group 
1. Notably, this association could be confirmed using both 
transcriptomic validation cohorts. Furthermore, we uncov-
ered an enrichment for the T cell gene signature in Group 
1, likely pointing to a higher infiltration of T cells in Group 
1 versus Group 2 PA. This is in agreement with previous 
reports that detected T cells within PA tumor tissues using 
histology [35] or single-cell RNA sequencing [34] while 
being unable to highlight intertumoral heterogeneity for this 
parameter. PD1 is a marker of T cell exhaustion [25] and 
our data suggest an exhausted phenotype of  CD8+ T cells 
in Group 2 which is consistent with the lack of observed 
immune activation at the transcriptomic or proteomic levels 
in this group. Consistent with our bioinformatics analyses, 
we did not observe differences in other immunosuppressive 
populations including regulatory T cells and macrophages.

In our proteomic analysis, we were also able to confirm 
that Group 2 had greater enrichment of gene sets involved in 
Cellular Respiration, such as “Oxydative Phosphorylation”, 
“Mitochondrial Respiratory Chain” and “The Citric Acid 
(TCA) Cycle and Respiratory Electron Transport” using 
our discovery and validation cohorts. These data are in line 

with high rate of mitochondrial mutations detected by Leuth 
et al., where they observed that 53% of the mutations in PA 
tumors had mutations in genes involved in oxidative phos-
phorylation pathways [22]. The dysregulated oxidative phos-
phorylation pathway may enhance reactive oxygen species 
accumulation and lead to either an increase in proliferation 
rate or a decrease in apoptotic activity thereby potentially 
enhancing tumor growth.

Furthermore, “RNA processing” and associated path-
ways were remarkably divergent between the two PA 
groups. Notably, we demonstrated that, in general, pathway 
regulation was predominantly driven by RNA signatures in 
Group 1, while proteomic-based pathway regulation was 
significantly increased in Group 2, based on our integrative 
multi-omic discovery cohort. In addition, “RNA processing” 
and associated pathways were among the most consistently 
affected pathways in both transcriptomic validation cohorts.

Finally, we were able to delineate distinct clinical fea-
tures according to the PA groups using the combined dis-
covery and validation data sets. Group 1 tumors were evenly 
distributed between the supra- and infratentorial compart-
ments, while Group 2 PAs were more commonly located in 
the infratentorial region. In addition, age distribution dif-
fers significantly, as patients with Group 1 PAs were signifi-
cantly younger than those with tumors in Group 2. Finally, 
it has previously been reported that infratentorial tumors are 
associated with better progression-free survival [38]. While 
we found a difference in progression-free survival between 
Group 1 and Group 2, this was independent of tumor loca-
tion. Importantly, we observed improved progression-free 
survival in Group 2, which was unexpected, because adults 
with PA have been reported to have worse prognoses than 
children [15, 42, 49]. Taken together, our data thus provide 
novel insights into the biological heterogeneity of PA, which 
may allow for more accurate biological disease stratification.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 023- 02626-5.
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