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Abstract
The sequential tail empirical process is analyzed in a stochastic model allowing for 
serially dependent observations and heteroscedasticity of extremes in the sense of 
Einmahl et al. (J. R. Stat. Soc. Ser. B. Stat. Methodol. 78(1), 31–51, 2016). Weighted 
weak convergence of the sequential tail empirical process is established. As an appli-
cation, a central limit theorem for an estimator of the extreme value index is proven.

Keywords Sequential tail empirical process · Weighted weak convergence · Extreme 
value index · Non-stationary extremes · Regular varying time series

AMS 2000 Subject Classifications 62G32 · 62M10 · 62G20

1 Introduction

Classical extreme value statistics focuses on analyzing the extreme behavior of a set 
of independent and identically distributed (i.i.d.) random variables. However, this 
assumption is often not valid in practical situations where data are collected over 
time. In such cases, the observations may show serial dependence or they may be 
drawn from a distribution that changes continuously as time progresses.

The model developed by Einmahl et  al. (2016) and extended in Bücher and 
Jennessen (2022) to the case of serially dependent observations allows for the 
consideration of non-stationary time series observations. In the latter reference, 
selected statistical procedures for various target parameters of interest were pro-
posed and analyzed asymptotically. For that purpose, the authors have shown, 
as a crucial intermediate step, weak convergence of the sequential tail empiri-
cal process (STEP) �n to some Gaussian limit �  , see Sections 2 and 3 below for 
details. While this result may be useful for the asymptotic analysis of various 
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statistical procedures, it may not be sufficiently informative for some others. For 
instance, in the serially independent case considered in Einmahl et al. (2016), the 
analysis of the Hill estimator required a result on weighted weak convergence of 
the STEP; see also Drees (2000) for similar results and discussions in the non-
sequential, stationary time series case. Weighted weak convergence is indeed 
more informative than non-weighted convergence: since both the STEP �n and its 
weak limit �  are close to zero in a neighbourhood of zero, convergence of �n∕q to 
�∕q for some suitable weight function q with limx↓0 q(x) = 0 entails more infor-
mation on the behavior of �n in that neighbourhood (which essentially concerns 
the most extreme observations). It is the main purpose of this paper to derive 
such a weighted weak convergence result in the serially dependent heteroscedas-
tic case, thereby extending Einmahl et  al. (2016) to the serially dependent case 
and Drees (2000) to the sequential, heteroscedastic case. As an application, we 
illustrate how the result can be used to deduce asymptotic normality of the Hill 
estimator for the extreme value index.

The remaining parts of this paper are organized as follows: in Section 2, the model 
assumptions needed to prove the asymptotic results are summarized and discussed, 
and a location-scale model meeting these assumptions is introduced. Section 3 is con-
cerned with the weighted weak convergence of the (simple) STEP. In Section 4, a 
central limit theorem for the Hill estimator of the extreme value index is presented. 
The quality of the normal approximation is illustrated by means of Monte Carlo sim-
ulation in Section 5. Finally, all proofs are postponed to Section 6.

Throughout, all convergences are for n → ∞ if not mentioned otherwise. Weak 
convergence is denoted by ⇝ . The left-continuous generalized inverse of some 
increasing function H is denoted by H−1(p) = inf{x ∈ ℝ ∶ H(x) > p}.

2  Model assumptions

We work under the following model from Bücher and Jennessen (2022), which is 
an extension of the model from Einmahl et al. (2016) to the serially dependent case: 
for sample size n and at time points i ∈ {1,… , n} , we observe possibly dependent 
random variables X(n)

1
,… ,X(n)

n
 with continuous cumulative distribution functions 

(c.d.f.s) Fn,1,… ,Fn,n . We assume that all these distribution functions share a com-
mon right endpoint x∗ = sup{x ∈ ℝ ∶ Fn,i(x) < 1} , and that there exists some con-
tinuous reference c.d.f. F with the same right endpoint x∗ that is strictly increasing 
on its support and some positive function c on [0, 1] such that

The function c is referred to as the scedasis function, which we additionally assume 
to be a bounded and continuous probability density function. The case where c ≡ 1 
corresponds to homogeneous extremes, while the opposite is referred to as hetero-
scedastic extremes. The integrated scedasis function is denoted by

(2.1)lim
x↑x∗

1 − Fn,i(x)

1 − F(x)
= c

(
i

n

)
.
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Serial dependence is allowed for as follows: for each n ∈ ℕ , the unobservable sam-
ple U(n)

1
,… ,U(n)

n
 with U(n)

i
= Fn,i(X

(n)

i
) is assumed to be an excerpt from a strictly sta-

tionary time series (U(n)

t )t∈ℤ whose distribution does not depend on n. The dynamics 
of the extremes of the latter series will later be captured by the concept of regular 
variation (Basrak and Segers, 2009), see Condition (B1) below for details.

The simple sequential tail empirical process (simple STEP) �n and the sequen-
tial tail empirical process (STEP) �n with parameter k ∈ ℕ are defined, for 
(s, x) ∈ [0, 1] × [0,∞) , as

where V = (
1

1−F
)−1 . As usual when discussing asymptotics for extremes, k = kn is 

assumed to be an increasing integer sequence satisfying k → ∞ and k = o(n) as n → ∞.
Our main result, which is Proposition 3.4 below, claims weighted weak conver-

gence of �n , thereby extending Proposition 6.2 in Bücher and Jennessen (2022). For 
that purpose, we need several additional regularity conditions. Let L ≥ 1 be some 
arbitrary but fixed constant (we will consider weak convergence uniformly for 
x ∈ [0, L] ). Set c∞(L) = 1 + L‖c‖∞ , where ‖ ⋅ ‖∞ denotes the sup norm of a real-
valued function. 

 (B0) Basic assumptions. The model assumptions formulated at the beginning of 
this section are met.

 (B1) Multivariate regular variation. For each n ∈ ℕ , U(n)

1
,… ,U(n)

n
 is an excerpt from 

a strictly stationary time series (U(n)

t )t∈ℤ whose marginal stationary distribu-
tion is standard uniform on (0, 1). The processes (U(n)

t )t∈ℤ are all equal in law; 
denote a generic version by (Ut)t∈ℤ . The process Zt = 1∕(1 − Ut) (note that Zt 
is standard Pareto) is stationary and regularly varying, necessarily with index 
� = 1 (Basrak and Segers, 2009).

 (B2) Regularity of c. The function c is Hölder-continuous of order 1/2, that is, there 
exists Kc > 0 such that 

 (B3) Blocking sequences and Beta-mixing. There exist sequences 1 < �
n
< r = 

r
n
< n , both converging to infinity as n → ∞ and satisfying �

n
= o(r), r =

o(
√
k ∨

n

k

), such that the beta-mixing coefficients of (Ut)t∈ℤ satisfy 

C(s) ∶= ∫
s

0

c(x) dx, s ∈ [0, 1].

�n(s, x) =
√
k

�
1

k

[ns]�

i=1

1
�
U

(n)

i
> 1 −

k

n
c(

i

n
)x
�
− xC(s)

�
,

�n(s, x) =
√
k

�
1

k

[ns]�

i=1

1

�
X
(n)

i
> V

�
n

kx

��
− xC(s)

�
,

|c(s) − c(s�)| ≤ Kc|s − s�|1∕2 ∀ s, s� ∈ [0, 1].
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 Moreover, the sequence r satisfies 

 (B4) Moment bound on the number of extreme observations. There exists 𝛿 > 0 
such that 

 (B5) Moment bound on extreme increments. There exists a constant K, such that, 
for all sufficiently large n, 

 for all j = 1,… , ⌊n∕r⌋ and 0 ≤ x ≤ y ≤ c∞(L).
 (B6) Second order condition. There exists a positive, eventually decreasing function 

A with limt→∞ A(t) = 0 such that, as x ↑ x∗ , 

Note that Conditions  (B0)–(B4), (B6) and a weaker version of (B5) have also been 
imposed in Bücher and Jennessen (2022). It is worth noting that Conditions (B4) and 
(B5) (and only these) depend on the constant L ≥ 1.

Condition  (B1) allows to control the serial dependence within the observed time 
series via tail processes (Basrak and Segers, 2009). More precisely, by Theorem 2.1 in 
Basrak and Segers (2009), regular variation of (Zt)t∈ℤ is equivalent to the fact that there 
exists a process (Yt)t∈ℕ0

 (the tail process) with Y0 standard Pareto such that, for every 
� ∈ ℕ and as x → ∞,

where, necessarily, Yj ≥ 0 for j ≥ 1 . Further, by Theorem 2 and its subsequent dis-
cussion in Segers (2003), Yj is absolutely continuous on (0,∞) and may have an 
atom at 0.

Condition (B2) has also been imposed in Einmahl et al. (2016). Since k = o(n) , it 
implies that

�(n) = o(1),
n

r
�(�n) = o(1).

(2.2)r = o(k1∕2 log−5∕2(k)).

E
[{ r∑

s=1

1(Us > 1 −
k

n
c∞(L))

}2+𝛿]
= O(r

k

n
).

E

[{ r∑

s=1

1
(
1 −

k

n
c(

(j−1)r+s

n
)x ≥ Us > 1 −

k

n
c(

(j−1)r+s

n
)y
)}2]

≤ K
rk

n
(y − x)

sup
n∈ℕ

max
1≤i≤n

|||||

1 − Fn,i(x)

1 − F(x)
− c

(
i

n

)|||||
= O

(
A
(

1

1 − F(x)

))
.

(2.3)P(x−1(Z0,… , Z
𝓁
) ∈ ⋅ ∣ Z0 > x) ⇝ P((Y0,… , Y

𝓁
) ∈ ⋅),
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which will imply that there is no asymptotic bias in our main result below.
The conditions in (B3) and (B4) are essentially conditions imposed in Example 3.8 

in Drees and Rootzén (2010) for deriving weak convergence of the standard non-
sequential univariate tail empirical process. The assumption (2.2) on r is very similar 
to the one in Drees (2000). Note that the sequence �n in (B3) plays the role of a small-
block length in a big-block-small-block technique, while r − �n is the length of a cor-
responding big-block.

In the case of a constant scedasis function, Condition (B5) has also been made in 
Drees (2000) and is further discussed in Rootzén (2009), see, e.g., Drees (2000) for 
solutions of stochastic recurrence equations. In the current heteroscedastic case, a 
slightly weaker version has been imposed in Bücher and Jennessen (2022). The condi-
tion can for instance be shown to hold for M-dependent sequences for any M ∈ ℕ.

Finally, Condition (B6) is a second-order condition on the speed of convergence in 
(2.1); it was also used in Einmahl et al. (2016).

Example 2.1 Consider the location-scale model defined by

where (Wt)t∈ℤ is a strictly stationary time series (see below for an explicit example) 
with c.d.f. F and where � ∶ [0, 1] → (0,∞) is Hölder-continuous of order 1/2 and 
� ∶ [0, 1] → ℝ is arbitrary. We then have

and U(n)

i
= Fn,i(X

(n)

i
) = F(Wi) , i = 1,… , n , such that U(n)

1
,… ,U(n)

n
 is an excerpt from 

a strictly stationary time series, with marginal distribution given by the uniform dis-
tribution on [0, 1].

Next, as a special case, let (Wt)t∈ℤ be an M-dependent process for some M ∈ ℕ , 
i.e., {Wt ∶ t ≤ s} and {Wt ∶ t > s +M} are independent for all s ∈ ℤ , with c.d.f. 
F(x) = exp(−1∕x) . Then Condition (B1) follows from Example 5.2.7 in Kulik and 
Soulier (2020) and Lemma 2.1 in Drees et al. (2015), and (B6) was shown in Bücher 
and Jennessen (2022). Further, one can easily show that Conditions (B3)–(B5) are 
fulfilled. In particular, this model includes moving-maximum processes of the form

where aj > 0 and Vt, t ∈ ℤ , are independent and Frechét-distributed. General mov-
ing-maximum models have been studied and applied in Zhang and Smith (2001, 
2010), Hall et al. (2002), Ferreira (2012), among others.

lim
n→∞

sup
s∈[0,1]

√
k
����
1

n

⌊ns⌋�

i=1

c(
i

n
) − C(s)

����
= 0,

X
(n)

i
= �

(
i

n

)
Wi + �

(
i

n

)
, i = 1,… , n,

Fn,i(x) = F
(x − �(

i

n
)

�(
i

n
)

)
, x ∈ ℝ,

Wt = max
j=0,…,q

ajVt−j, t ∈ ℤ,
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3  Weighted weak convergence of the STEP

The subsequent two propositions have been shown in Bücher and Jennessen (2022).

Proposition 3.1 (Proposition 6.1 in Bücher and Jennessen 2022). Suppose that Con-
ditions (B0)–(B3) hold. Fix some constant L ≥ 1 and suppose that Conditions (B4) 
and (B5) hold for L. Then, as n → ∞,

where � denotes a tight, centered Gaussian process on [0, 1] × [0, L] with covariance 
given by

where

with, recalling the tail process (Yt)t∈ℕ0
 associated with (Zt)t∈ℤ from (2.3),

It is part of the assertion that the above series is convergent.

Proposition 3.2 (Proposition 6.2 in Bücher and Jennessen 2022). Suppose that Con-
ditions (B0)–(B3) and (B6) hold. Fix some constant L ≥ 1 and suppose that Condi-
tions (B4) and (B5) hold for L. If k satisfies 

√
kA(

n

Lk
) → 0 as n → ∞ , then

As a consequence,

In the following, the above results are extended to allow for weighted weak con-
vergence. The respective proofs are presented in Section 6.

Proposition 3.3 Suppose that Conditions (B0)–(B3) hold. Fix some constant L ≥ 1 
and suppose that Conditions (B4) and (B5) hold for L. Then, for any � ∈ [0, 1∕4],

in (𝓁∞([0, 1] × [0, L]), ‖ ⋅ ‖∞) , where q(x) = x� . The above convergence also holds for 
� ∈ (1∕4, 1∕2) provided the sequence r additionally satisfies r = o(k(3−6�)∕{4(1−�)}).

�n ⇝ � in (𝓁∞([0, 1] × [0, L]), ‖ ⋅ ‖∞),

�((s, x), (s�, x�)) = C(s ∧ s�)�2(x, x�),

�2(x, x�) = d0(x, x
�) +

∞∑

h=1

(
dh(x, x

�) + dh(x
�, x)

)

dh(x, x
�) = P

(
Y0 >

1

x
, Yh >

1

x�

)
.

sup
(s,x)∈[0,1]×[0,L]

|�n(s, x) − �n(s, x)| = oP(1).

�n ⇝ � in (𝓁∞([0, 1] × [0, L]), ‖ ⋅ ‖∞).

{
�n(s, x)

q(x)

}

(s,x)∈[0,1]×[0,L]

⇝

{
�(s, x)

q(x)

}

(s,x)∈[0,1]×[0,L]

168



Weighted weak convergence of the sequential tail empirical…

1 3

Proposition 3.4 Suppose that Conditions  (B0)–(B3) and (B6) hold. Fix some con-
stant L ≥ 1 and suppose that Conditions (B4) and (B5) hold for some L′ > L . Let k 
satisfy 

√
kA(

n

Lk
) → 0 as n → ∞ . Then, for any � ∈ [0, 1∕4],

where q(x) = x� . As a consequence,

in (𝓁∞([0, 1] × [0, L]), ‖ ⋅ ‖∞) . The above convergences also hold for � ∈ (1∕4, 1∕2) 
provided the sequence r additionally satisfies r = o(k(3−6�)∕{4(1−�)}).

The additional assumption on the sequence r in the case � ∈ (1∕4, 1∕2) has also 
been used in Drees (2000, condition (2.3)). It also implies our condition (2.2) in (B3).

4  Estimation of the extreme value index

The results from the previous section can be used to derive weak convergence of 
the Hill estimator, see also Einmahl et al. (2016) for a similar result in the serially 
independent case. For that purpose, we must additionally assume that F belongs to 
the domain of attraction of a generalized extreme value distribution. Thus, there is a 
real number � , called the extreme value index, and a positive scale function � such 
that, for all x > 0,

where again V = (
1

1−F
)−1 . Setting Vn,i = (

1

1−Fn,i

)−1 it can further be shown by (2.1) that

such that all Fn,i have the same extreme value index � (Einmahl et al. 2016, page 32).
We only consider the heavy-tailed case 𝛾 > 0 , which implies that x∗ = ∞ and that 

the above limit relations can be simplified to

Our aim is to consistently estimate the extreme value index 𝛾 > 0 . To this end, we 
will show that the classical Hill estimator can be applied and prove a corresponding 
central limit theorem. The proof will be based on the weighted weak convergence 
result of the STEP in Proposition 3.4.

sup
(s,x)∈[0,1]×[0,L]

|||
�n(s, x)

q(x)
−

�n(s, x)

q(x)

||| = oP(1),

{
�n(s, x)

q(x)

}

(s,x)∈[0,1]×[0,L]

⇝

{
�(s, x)

q(x)

}

(s,x)∈[0,1]×[0,L]

lim
t→∞

V(tx) − V(t)

�(t)
=

x� − 1

�
,

lim
t→∞

Vn,i(tx) − Vn,i(t)

�(t)c� (i∕n)
=

x� − 1

�

lim
t→∞

V(tx)

V(t)
= x� and lim

t→∞

Vn,i(tx)

V(t)c� (i∕n)
= x� .

169



T. Jennessen, A. Bücher

1 3

Consider the order statistic Xn,1 ≤ … ≤ Xn,n of X(n)

1
,… ,X(n)

n
 . The classical Hill 

estimator is given by

For our asymptotic result, we need the subsequent second-order condition, which 
has also been used in Einmahl et al. (2016). 

 (B7) There exists a function B, eventually being positive or negative, and some 𝜌 < 0 
such that limt→∞ B(t) = 0 and for any x > 0 , 

Theorem 4.1 Suppose that Conditions (B0)–(B3), (B6) and (B7) hold. Further, sup-
pose that Conditions (B4) and (B5) hold for some L > 2 . If k satisfies

then, as n → ∞,

where �2 is defined in Proposition 3.1.

Example 4.2 Let us continue with the location-scale model in Example 2.1. In par-
ticular, we now assume (Wt)t∈ℤ to be a max-autoregressive process (ARMAX) 
defined by the recursion

where � ∈ [0, 1) and (Vt)t∈ℤ is an i.i.d. sequence of Fréchet(1)-distributed random vari-
ables with c.d.f. F(x) = exp(−1∕x) for x > 0 . The corresponding stationary solution is

which is again Fréchet(1)-distributed. It was shown in Bücher and Jennessen (2022) 
that the scedasis function c is given by � . Further note that � = 1 and

such that Condition (B7) is satisfied.
We are going to calculate the asymptotic variance in Theorem  4.1 explicitly. 

By Theorem 13.5.5 in Kulik and Soulier (2020) the spectral tail process (Θ̃t)t of 
(Wt)t exists and for t ∈ ℕ0 it is of the form Θ̃t = 𝜆t . Recall that (Yt)t denotes the 

�̂�n =
1

k

k∑

j=1

logXn,n−j+1 − logXn,n−k.

lim
t→∞

V(tx)∕V(t) − x�

B(t)
= x�

x� − 1

�
.

√
kA(

n

Lk
) → 0 and

√
kB(

n

k
) → 0,

√
k(�̂�n − 𝛾) ⇝ N(0, 𝛾2𝜎2(1, 1)),

(4.1)Wt = max{�Wt−1, (1 − �)Vt}, t ∈ ℤ,

Wt = max
j≥0 (1 − �)�jVt−j

lim
t→∞

t
(
V(tx)∕V(t) − x

)
=

x − 1

2
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tail process of (Zt)t where Zt = 1∕{1 − F(Wt)} . Lemma 2.1 in Drees et al. (2015) 
implies that Yt = �tY0 , t ∈ ℕ0 , where Y0 is standard Pareto-distributed. As a conse-
quence, we obtain

such that

According to Theorem 4.1 we arrive at 
√
k(�̂�n − 1) ⇝ N(0,

1+𝜆

1−𝜆
) where the limiting 

variance equals 1 in the case of independent variables, i.e. for � = 0 , and is strictly 
greater than 1 for 𝜆 > 0.

5  Simulation study

A small simulation study is carried out to analyze the normal approximation of the 
Hill estimator �̂�n for the extreme value index in finite samples. Results are presented 
for the scale model considered in Examples 2.1 and 4.2. Precisely, consider

where (Wt)t∈ℤ is an ARMAX process with model parameter � ∈ [0, 1) as defined in 
(4.1). Set

Note that the ARMAX model with � = 0 corresponds to the case that the obser-
vations are independent. We call this case simply the independent model.

In the subsequent simulation study, the parameter � of the ARMAX process is set 
to � = 0, 0.25, 0.5 . In each case, different sample sizes n ∈ {2000, 4000, 8000} are 
considered and the performance of the Hill estimator is assessed based on N = 1000 
simulation runs each. Recall that k denotes the parameter of the Hill estimator.

By Example 4.2 we know that ( 1−𝜆
1+𝜆

k)1∕2(�̂�n − 1) ≈ N(0, 1) in distribution for 
large n. Figures 1, 2, and 3 present histograms of ( 1−𝜆

1+𝜆
k)1∕2(�̂�n − 1) for values of 

k ∈ {50, 100, 200} , respectively. One can see that the approximation of the nor-
mal distribution seems to become more accurate as both n and k increase. Fur-
ther, the approximation gets better for smaller values of � which is to be expected 
since the temporal dependence of the underlying ARMAX-process decreases 
with decreasing �.

dh(1, 1) = P(Y0 > 1, Yh > 1) = P(Y0 > 1, 𝜆hY0 > 1) = 𝜆h, h ∈ ℕ0,

�2(1, 1) = d0(1, 1) + 2

∞∑

h=1

dh(1, 1) =
1 + �

1 − �
.

X
(n)

i
= c

(
i

n

)
Wi, i = 1,… , n,

c(s) = (0.5 + 2s)1(s ∈ [0, 0.5]) + (2.5 − 2s)1(s ∈ (0.5, 1]).
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6  Proofs

Proof of Proposition 3.3 The finite-dimensional distributions converge by Proposition 
3.1. It remains to show asymptotic tightness. First, let us rewrite �n as in the proof of 
Proposition 6.1 in Bücher and Jennessen (2022). For i ∈ {1,… , n} and n ∈ ℕ , define

k = 50 k = 100 k = 200
n = 2000

n = 4000
n = 8000

−2 0 2 −2 0 2 −2 0 2

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Fig. 1  Histograms of 
√

1−𝜆

1+𝜆
k(�̂�

n
− 1) for � = 0 and for values of k ∈ {50, 100, 200} and n ∈ {2000,

4000, 8000} , compared to the density of the standard normal distribution

k = 50 k = 100 k = 200

n = 2000
n = 4000

n = 8000

−2 0 2 −2 0 2 −2 0 2

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 2  Histograms of 
√

1−𝜆

1+𝜆
k(�̂�

n
− 1) for � = 0.25 and for values of k ∈ {50, 100, 200} and n ∈ {2000,

4000, 8000} , compared to the density of the standard normal distribution
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Recall that 1 < r < n denotes an integer sequence converging to infinity such 
that r = o(n) as n → ∞ . Let Yn,j denote the jth block of r consecutive values of 
X�
n,1
,… ,X�

n,n
 , i.e.,

The proof of Proposition 6.1 in Bücher and Jennessen (2022) (leading to equation 
(8.5)) reveals that

where

and

X�
n,i

=

(
U

(n)

i
− (1 −

k

n
c∞(L))

k

n

)

+

= max

(
U

(n)

i
− (1 −

k

n
c∞(L))

k

n

, 0

)
.

Yn,j = (X�
n,i
)i∈Ij , Ij = {(j − 1)r + 1,… , jr}, j = 1,… ,m = ⌊n∕r⌋.

(6.1)

{
𝕊n(s, x)

q(x)

}

(s,x)
=
{
ℤn(s, x)

q(x)

}

(s,x)
+ oP(1) in (𝓁∞([0, 1] × [0, L]), || ⋅ ||∞),

ℤn(s, x) =
1√
k

m�

j=1

�
fj,n,s,x(Yn,j) − E[fj,n,s,x(Yn,j)]

�

fj,n,s,x(y1,… , y
�
) = 1(j ≤ ⌊sm⌋)gj,n,x(y1,… , y

�
)
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n = 8000
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Fig. 3  Histograms of 
√

1−𝜆

1+𝜆
k(�̂�

n
− 1) for � = 0.5 and for values of k ∈ {50, 100, 200} and n ∈ {2000,

4000, 8000} , compared to the density of the standard normal distribution
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with

As a consequence, it suffices to show asymptotic tightness of ℤn∕q . For this pur-
pose, let (Y∗

n,j
)1≤j≤m denote an i.i.d. sequence with Y∗

n,1
 being equal in distribution to 

Yn,1 and let ℤ∗
n
 be defined as ℤn but in terms of Y∗

n,j
 . Decomposing ℤ∗

n
= ℤ

even,∗

n
+ ℤ

odd,∗

n
 

into sums over even and odd numbered blocks, the same arguments as in the proof 
in the above reference imply that asymptotic tightness of ℤn∕q follows from asymp-
totic tightness of ℤeven,∗

n
∕q and ℤodd,∗

n
∕q . Instead of these two processes, we consider 

ℤ
∗
n
∕q to reduce the notational complexity.

Clearly, it is sufficient to prove weak convergence of ℤ∗
n
∕q on [0, 1] × [0, L] . In view 

of the functional weak convergence of ℤ∗
n
∕q on any fixed interval [0, 1] × [�, L] (a con-

sequence of the proof of Proposition 6.1 in Bücher and Jennessen, 2022) and by Theo-
rem 25.5 in Billingsley (1995), it is sufficient to show that, for any 𝜀 > 0,

Viewing ℤ∗
n
(s, x)∕q(x) as an element of the complete and separable space D([0, 1]2) 

equipped with the Skorohod-metric, it is in fact sufficient to prove only (6.2) (see 
Theorem 2 in Dehling et al., 2009). In order to show (6.2) we first prove that

and we show later that (6.3) implies (6.2). For the proof of (6.3) we follow ideas 
from Drees (2000) and Shao and Yu (1996). Let �j = �q(�2−j) = �(�2−j)� . Then

Split the above sum according to whether j ∈ Gn or j ∈ Hn , where

gj,n,x(y1,… , y
�
) =

�∑

i=1

1(yi > c∞(L) − c(
(j−1)r+i

n
)x), � ∈ ℕ.

(6.2)lim
�↓0

lim sup
n→∞

P
(

sup
s∈[0,1]

sup
0≤x≤�

|ℤ∗
n
(s, x)|
q(x)

≥ �

)
= 0

lim
�↓0

P
(

sup
s∈[0,1]

sup
0≤x≤�

|ℤ∗(s, x)|
q(x)

≥ �

)
= 0

(6.3)lim
�↓0

lim sup
n→∞

sup
s∈[0,1]

P
(

sup
0≤x≤�

|ℤ∗
n
(s, x)|
q(x)

≥ �

)
= 0

P
(

sup
0≤x≤𝛿

|ℤ∗
n
(s, x)|
q(x)

≥ 𝜀

) ≤
∞∑

j=1

P
(

sup
𝛿2−j<x≤𝛿2−j+1

|ℤ∗
n
(s, x)|
q(x)

≥ 𝜀

)

≤
∞∑

j=1

P
(

sup
𝛿2−j<x≤𝛿2−j+1

|ℤ∗
n
(s, x)| ≥ 𝜀q(𝛿2−j)

)

≤
∞∑

j=1

P
(

sup
0<x≤𝛿2−j+1

|ℤ∗
n
(s, x)| ≥ 𝜀j

)
.
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To prove (6.3), it suffices to show that

Let us start by showing (6.4). For j ∈ Gn , by (6.10) and (6.8) in Lemma 6.1 
below and Markov’s inequality,

for sufficiently large n. Note that the upper bound is uniform in s ∈ [0, 1] . Hence,

and this expression goes to zero for � ↓ 0 . We have shown (6.4).
It remains to prove (6.5). For that purpose, let

and start by observing the bound

By (6.10) in Lemma 6.1, the second probability on the right-hand side may be fur-
ther bounded by

Gn = {j ∈ ℕ ∶
√
k�2−j+1 ≤ �j∕2},

Hn = {j ∈ ℕ ∶
√
k𝛿2−j+1 > 𝜀j∕2}.

(6.4)lim
𝛿↓0

lim sup
n→∞

sup
s∈[0,1]

∑

j∈Gn

P
(

sup
0<x≤𝛿2−j+1

|ℤ∗
n
(s, x)| ≥ 𝜀j

)
= 0,

(6.5)lim
𝛿↓0

lim sup
n→∞

sup
s∈[0,1]

∑

j∈Hn

P
(

sup
0<x≤𝛿2−j+1

|ℤ∗
n
(s, x)| ≥ 𝜀j

)
= 0.

P
�

sup
0<x≤𝛿2−j+1

�ℤ∗
n
(s, x)� ≥ 2𝜀j

� ≤ P
�
�ℤ∗

n
(s, 𝛿2−j+1)� +

√
k𝛿2−j+2 ≥ 2𝜀j

�

≤ P
�
�ℤ∗

n
(s, 𝛿2−j+1)� ≥ 𝜀j

�

≤ 𝛿2−j+1

𝜀2
j

=
2

𝜀2
(𝛿2−j)1−2𝜇

lim sup
n→∞

sup
s∈[0,1]

∑

j∈Gn

P
(

sup
0<x≤𝛿2−j+1

|ℤ∗
n
(s, x)| ≥ 2𝜀j

)
≲ 𝛿1−2𝜇

∞∑

j=1

(21−2𝜇)−j,

Δn,j =
�j

8
√
k

P
(

sup
0<x≤𝛿2−j+1

|ℤ∗
n
(s, x)| ≥ 𝜀j

) ≤ P
(

max
1≤i≤Δ−1

n,j
𝛿2−j+1

|ℤ∗
n
(s, iΔn,j)| ≥ 𝜀j∕2

)

+ P
(

max
0≤i≤Δ−1

n,j
𝛿2−j+1

sup
x�∈(iΔn,j,(i+1)Δn,j]

|ℤ∗
n
(s, iΔn,j) − ℤ

∗
n
(s, x�)| ≥ 𝜀j∕2

)
.
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for sufficiently large n. Hence, each summand in (6.5) can be bounded by

Now, for any 1 ≤ i� < i ≤ Δ−1
n,j
𝛿2−j+2 , by (6.9) in Lemma 6.1 below,

Next, apply the main result in Móricz (1982), with � = 4, f (b,m) = mΔn,j and 
�(t,m) = (mΔn,j + r2∕k)1∕4 , which can be applied since

We obtain that

where we used subadditivity of x ↦ x1∕4 . Then, by Markov’s inequality we obtain

Now, by the definition of �j = �(�2−j)�,

P
�

max
0≤i≤Δ−1

n,j
�2−j+1

�ℤ∗
n
(s, iΔn,j) − ℤ

∗
n
(s, (i + 1)Δn,j)� + 2

√
kΔn,j ≥ �j∕2

�

= P
�

max
0≤i≤Δ−1

n,j
�2−j+1

�ℤ∗
n
(s, iΔn,j) − ℤ

∗
n
(s, (i + 1)Δn,j)� ≥ �j∕4

�

≤ P
�

max
1≤i≤Δ−1

n,j
�2−j+2

�ℤ∗
n
(s, iΔn,j)� ≥ �j∕8

�

P
(

sup
0<x≤𝛿2−j+1

|ℤ∗
n
(s, x)| ≥ 𝜀j

) ≤ 2P
(

max
1≤i≤Δ−1

n,j
𝛿2−j+2

|ℤ∗
n
(s, iΔn,j)| ≥ 𝜀j∕8

)
.

sup
s∈[0,1]

E|ℤ∗
n
(s, iΔn,j) − ℤ

∗
n
(s, i�Δn,j)|4 ≲

(
|i − i�|Δn,j

)2
+

r2

k

(
|i − i�|Δn,j

)
.

ℤ
∗
n
(s, iΔn,j) =

i∑

�=1

ℤ
∗
n
(s,�Δn,j) − ℤ

∗
n
(s, (� − 1)Δn,j).

sup
s∈[0,1]

E
�

max
1≤i≤Δ−1

n,j
𝛿2−j+2

�ℤ∗
n
(s, iΔn,j)�4

�

≲ 𝛿2−j+2
�⌊log2(⌊Δ−1

n,j
𝛿2−j+2⌋)⌋−1�

l=0

�
𝛿2−j−l+1 +

r2

k

�1∕4
�4

≤ 𝛿2−j+2
�
𝛿2−j+1

� ∞�

l=0

2−l∕4
�4

+
r2

k
log4

2
(Δ−1

n,j
𝛿2−j+2)

�

≲ 𝛿22−2j + 𝛿2−j
r2

k
log4

2
(Δ−1

n,j
𝛿2−j+2),

sup
s∈[0,1]

P
(

max
1≤i≤Δ−1

n,j
𝛿2−j+2

|ℤ∗
n
(1, iΔn,j)| > 𝜀j∕8

)
≲ 𝜀−4

j
𝛿22−2j

+ 𝜀−4
j
𝛿2−j

r2

k
log4

2
(Δ−1

n,j
𝛿2−j+2).

lim sup
n→∞

∑

j∈Hn

𝜀−4
j
𝛿22−2j = 𝛿2−4𝜇𝜀−4 lim sup

n→∞

∑

j∈Hn

2−j(2−4𝜇) ≲ 𝛿2−4𝜇𝜀−4,
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which converges to zero for � ↓ 0 , since 𝜇 < 1∕2 . Hence, in order to prove (6.5), it is 
sufficient to show that

for any 𝛿 > 0.
For that purpose let jn = max(Hn) = max{j ∈ ℕ ∶

√
k𝛿2−j+1 > 𝜀j∕2} be the 

maximum of Hn and note that

Further, by the definition of Δn,j = �j∕(8
√
k) = �(�2−j)�∕(8

√
k),

for all j ∈ Hn . As a consequence, since (a + b)4 ≲ a4 + b4,

For � ∈ [0, 1∕4] we obtain that the last expression can be bounded by

which converges to zero by (2.2) from Condition (B3). Now consider � ∈ (1∕4, 1∕2) , 
such that 4𝜇 − 1 > 0 . Then, the sum on the right-hand side of (6.7) can be written as

which converges to zero by assumption, eventually proving (6.6), and thus also (6.3).
Now, to prove (6.2), we invoke Ottaviani’s inequality, see Proposition A.1.1 in 

van der Vaart and Wellner (1996) (note that ℤ∗
n
 is based on independent blocks). 

We obtain,

(6.6)lim
n→∞

r2

k

∑

j∈Hn

�−4
j
�2−j log4

2
(Δ−1

n,j
�2−j+2) = 0

jn = ⌈log2(4�1−��−1
√
k)∕(1 − �)⌉ − 1 ≤ log2(4�

1−��−1
√
k)∕(1 − �).

log2(Δ
−1
n,j
�2−j+2) = log2(32�

−1�1−�
√
k2−j(1−�))

= log2(32�
−1�1−�

√
k2(jn−j)(1−�)2−jn(1−�))

≤ log2(32�
−1�1−�

√
k2(jn−j)(1−�)2− log2(4�

1−��−1
√
k))

= log2(32�
−1�1−�

√
k2(jn−j)(1−�)(4�1−��−1

√
k)−1)

= 3 + (jn − j)(1 − �)

(6.7)

r2

k

∑

j∈Hn

𝜀−4
j
𝛿2−j log4

2
(Δ−1

n,j
𝛿2−j+2) ≲

r2

k

∑

j∈Hn

𝜀−4
j
𝛿2−j{1 + (jn − j)4}

≲
r2

k

jn∑

j=1

2−j(1−4𝜇){1 + (jn − j)4}.

r2

k
j5
n
= O

(
r2

k
log5

2
(k)

)
.

r2

k
2(4𝜇−1)jn

jn−1∑

j=0

2−(4𝜇−1)j(1 + j4) ≲
r2

k
2(4𝜇−1)jn = O

(
r2

k
k

4𝜇−1

2(1−𝜇)

)
= O

(
r2k

6𝜇−3

2(1−𝜇)

)
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The denominator is bounded below by

By (6.3), we may choose 𝛿0 > 0 such that the limes inferior of this expression for 
n → ∞ is larger than 1/2, for all 𝛿 < 𝛿0 . Hence, (6.2) is an immediate consequence 
of (6.3).

Lemma 6.1 Suppose the assumptions of Proposition  3.3 are met. Then, for all 
x, x� ∈ [0, 1],

Furthermore, there exists n0 ∈ ℕ such that for all n ≥ n0 , s ∈ [0, 1], � ∈ [0, 1] , 
0 ≤ x ≤ x� ≤ x + � ≤ 1,

Proof Note that E|X − EX|� ≲ E|X|� for any � ≥ 1 and any random variable 
X ∈ L� , whence it is sufficient to bound the non-centred increments of ℤ∗

n
 . Recall 

the notation

Without loss of generality, let x ≤ x′ . Then, by Condition (B5),

This implies (6.8):

P
(

sup
s∈[0,1]

sup
0≤x≤�

|ℤ∗
n
(s, x)|
q(x)

≥ 2�
)
= P

(
m

max
j=1

sup
0≤x≤�

|ℤ∗
n
(j∕m, x)|
q(x)

≥ 2�
)

≤ P
(
sup0≤x≤�

|ℤ∗
n
(1,x)|
q(x)

≥ �

)

1 −maxm
j=1

P
(
sup0≤x≤�

|ℤ∗
n
(1,x)−ℤ∗

n
(j∕m,x)|

q(x)
≥ �

) .

1 − P
(

sup
0≤x≤�

|ℤ∗
n
(1, x)|
q(x)

≥ �∕2
)
−

m
max
j=1

P
(

sup
0≤x≤�

|ℤ∗
n
(j∕m, x)|
q(x)

≥ �∕2
)
.

(6.8)sup
s∈[0,1]

E{ℤ∗
n
(s, x) − ℤ

∗
n
(s, x�)}2 ≲ |x − x�|,

(6.9)sup
s∈[0,1]

E{ℤ∗
n
(s, x) − ℤ

∗
n
(s, x�)}4 ≲ |x − x�|2 + r2

k
|x − x�|.

(6.10)�ℤ∗
n
(s, x) − ℤ

∗
n
(s, x�)� ≤ �ℤ∗

n
(s, x + �) − ℤ

∗
n
(s, x)� + 2

√
k�.

Gj(x) = gj,n,x(Yn,j) =
∑

i∈Jn,j
1(X�

n,i
> c∞ − c(

i

n
)x).

(6.11)

E||Gj(x) − Gj(x
�)||

2
= E

{ ∑

i∈Jn,j

1(c∞ − c(
i

n
)x ≥ X�

n,i
> c∞ − c(

i

n
)x�)

}2

≲
k

n
(x� − x)

∑

i∈Jn,j

c(
i

n
) ≲

rk

n
(x� − x).

E{ℤ∗
n
(s, x) − ℤ

∗
n
(s, x�)}2 ≲

m

k

rk

n
|x − x�| ≤ |x − x�|,
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where ‘ ≲ ’ is uniform in s ∈ [0, 1].
For the proof of (6.9) note that

Then, again by inequality (6.11) and by Rosenthal’s inequality, see, e.g., Ibragimov 
and Sharakhmetov (2001),

which implies (6.9) since m ≤ n∕r.
Finally, for sufficiently large n, and for 0 ≤ x < x� ≤ x + 𝛿 ≤ 1 , we may write

A similar inequality from below proves (6.10).

Proof of Proposition 3.4 Let � ∈ [0, 1∕2) and (s, x) ∈ [0, 1] × [0, L] . In the proof of 
Proposition 6.2 in Bücher and Jennessen (2022) it was shown that under Condition 
(B6) there exists some 𝜏 > 0 such that, for n large enough,

almost surely, where �n =
�

cmin

A(
n

kL
) . Therefore,

Note that 
√
k�n = o(1) by assumption. We obtain that it suffices to show

E||Gj(x) − Gj(x
�)||

4 ≤ r2E||Gj(x) − Gj(x
�)||

2
.

sup
s∈[0,1]

E{ℤ∗
n
(s, x) − ℤ

∗
n
(s, x�)}4

≲
1

k2

{ m∑

j=1

E||Gj(x) − Gj(x
�)||

4
+
( m∑

j=1

E||Gj(x) − Gj(x
�)||

2
)2

}

≲
mr3

nk
|x − x�| + m2r2

n2
|x − x�|2,

ℤ
∗
n
(s, x�) − ℤ

∗
n
(s, x)

=
1√
k

⌊sm⌋�

j=1

�

i∈Jn,j

1(c∞ − c(
i

n
)x ≥ X∗

n,i
> c∞ − c(

i

n
)x�) −

k

n
c(

i

n
)(x� − x)

≤ ℤ
∗
n
(s, x + 𝛿) − ℤ

∗
n
(s, x) +

1√
k

⌊sm⌋�

j=1

�

i∈Jn,j

k

n
c(

i

n
)(x + 𝛿 − x�)

≤ ℤ
∗
n
(s, x + 𝛿) − ℤ

∗
n
(s, x) + 2

mrk

n
√
k
𝛿

≤ �ℤ∗
n
(s, x + 𝛿) − ℤ

∗
n
(s, x)� + 2

√
k𝛿.

�n(s, x(1 − �n)) −
√
k�nxC(s) ≤ �n(s, x) ≤ �n(s, x(1 + �n)) +

√
k�nxC(s)

���
�n(s, x)

q(x)
−

�n(s, x)

q(x)

��� ≤ ���
�n(s, x(1 + �n))

q(x)
−

�n(s, x)

q(x)

���

+
���
�n(s, x(1 − �n))

q(x)
−

�n(s, x)

q(x)

��� + 2
√
k�nx

1−�C(s).
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Let � ∈ (0, L] and set 𝜀� = (L� − L)∕L > 0 such that L� = (1 + ��)L . Then, for n large 
enough such that 𝛿n < 𝜀′ , the above term can be bounded by

The second summand is asymptotically negligible as shown in Eq. (8.19) in the 
proof of Proposition 6.2 in Bücher and Jennessen (2022). Regarding the first sum-
mand note that �n can be substituted by ℤ∗

n
 from the proof of Proposition 3.3 accord-

ing to Eq. (6.1) and the subsequent arguments. For the resulting term we have, for 
any 𝜀 > 0,

by Eq. (6.2). Together, we have shown (6.12).

Proof of Theorem 4.1 Let � ∈ (0, 1∕4] and s0 ∈ [2−� , 1) . As in Example 5.1.5 in de 
Haan and Ferreira (2006) we can write 

√
k(�̂�n − 𝛾) = An + Bn , where

and F̂n denotes the empirical cumulative distribution function of X(n)

1
,… ,X(n)

n
.

First, note that

weakly converges to

by Lemma 6.2 and the Continuous Mapping Theorem. Regarding the term An , 
decompose An = An1 + An2 with

(6.12)sup
(s,x)∈[0,1]×[0,L]

|||
�n(s, x(1 ± �n) − �n(s, x)

q(x)

||| = oP(1).

3 sup
(s,x)∈[0,1]×[0,2𝜃]

|||
�
n
(s, x)

q(x)

||| +
1

q(𝜃)
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(s,x)∈[0,1]×[𝜃,L]

|||�n
(s, x(1 ± 𝛿

n
)) − �

n
(s, x)

|||

≤ 3 sup
(s,x)∈[0,1]×[0,2𝜃]

|||
�
n
(s, x)

q(x)

||| +
1

q(𝜃)
sup

(s, x), (s, y) ∈ [0, 1] × [𝜃(1 − 𝜀�), L(1 + 𝜀�)] ∶

|x − y| < L𝛿
n

|||�n
(s, x) − �

n
(s, y)

|||.

lim
𝜃↓0

lim sup
n→∞

P
(

sup
(s,x)∈[0,1]×[0,𝜃]

|||
ℤ

∗
n
(s, x)

q(x)

||| > 𝜀

)
= 0

An = ∫ 1

Xn,n−k∕V(
n

k
)

√
k

n

k

�
1 − F̂n

�
sV(

n

k
)
��
s−1 ds,

Bn = ∫ ∞

1

√
k
�

n

k

�
1 − F̂n

�
sV(

n

k
)
��

− s−1∕𝛾
�
s−1 ds,

Bn = ∫
∞

1

s−(1+𝜇∕𝛾)s𝜇∕𝛾
√
k
�
n

k

�
1 − F̂n

�
sV(

n

k
)
��

− s−1∕𝛾
�
ds

B = ∫
∞

1

s−1�(1, s−1∕� ) ds = � ∫
1

0

x−1�(1, x) dx

An1 = ∫ 1

Xn,n−k∕V(
n

k
)

√
k s−1∕𝛾−1 ds,
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Xn,n−k∕V(
n

k
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√
k
�

n

k

�
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�
sV(

n

k
)
��
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s−1 ds.
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We start with treating An1 . Setting � = 0 and s = t−� in Lemma 6.2 implies that 
Dn(t) ∶=

√
k(En(t) − t) , t ≤ t0 ∶= s

−1∕�

0
 , where

satisfies {Dn(t)}t∈[0,t0] ⇝ {�(1, t)}t∈[0,t0] in (𝓁∞([0, t0]), ‖ ⋅ ‖∞) . Note that E−1
n
(t) =

(X
n,n−⌊kt⌋∕V(

n

k

))−1∕� such that the functional delta-method applied to the inverse map 
(Theorem 3.9.4 in van der Vaart and Wellner, 1996) implies

Thus, we obtain

By the above convergence we also know that Xn,n−k∕V(
n

k
)

ℙ

⟶1 and along with 
Lemma 6.2 we immediately obtain An2 = oP(1).

Altogether, it follows that

Since � is a centered Gaussian process the above limit is normally distributed with 
zero mean and variance (recall the definition of �2 in Proposition 3.1)

By properties of the tail process (Yt)t we further know �2(ax, ay) = a�2(x, y) for a > 0 . 
Straightforward calculations yield ∫ 1

0
∫ 1

0
x−1y−1�2(x, y) dxdy = 2 ∫ 1

0
x−1�2(x, 1) dx , 

implying �2 = �2�2(1, 1).

Lemma 6.2 Let � ∈ [0, 1∕2) and s0 > 0 . Suppose that the assumptions from Propo-
sition 3.4 are satisfied for some L > ⌈s−1∕𝛾

0
⌉ , and that Condition (B7) holds. Then, as 

n → ∞,

En(t) =
1

k

n∑

j=1

1
(
X
(n)

j
> t−𝛾V(

n

k
)
)
,

�√
k
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k
)
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− t

�
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�
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= oP(1).
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√
k
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V(
n

k
)

�−1∕�

− 1

�
= −� Dn(1) + oP(1) ⇝ −� �(1, 1).

√
k(�̂�n − 𝛾) ⇝ 𝛾 ∫

1

0

x−1�(1, x) dx − 𝛾 �(1, 1).

�2 = �2
[
∫

1

0 ∫
1

0

x−1y−1Cov(�(1, x),�(1, y)) dx dy

− 2∫
1

0
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[
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1

0 ∫
1

0

x−1y−1�2(x, y) dx dy − 2∫
1

0

x−1�2(x, 1) dx + �2(1, 1)
]
.
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in 
�
𝓁
∞([s0,∞)), ‖ ⋅ ‖∞

�
 , where F̂n denotes the empirical cumulative distribution 

function of X(n)

1
,… ,X(n)

n
.

Proof Let

and note that

which implies

As shown in the proof of Corollary 3 in Einmahl et al. (2016) we have, under Condi-
tion (B7),

such that

by assumption. Consequently, by Eq. (6.13) it suffices to show that

in 
�
𝓁
∞([s0,∞)), ‖ ⋅ ‖∞

�
 . To this, bound

where

We will prove that both terms are asymptotically negligible such that Proposition 3.3 
implies the assertion in (6.15).
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√
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sup
s≥s0

|||
xn(s) − s−1∕�

B(n∕k)s−1∕�
||| = O(1),

(6.14)sup
s≥s0

√
k
���xn(s) − s−1∕�

���s
1∕� = O(

√
kB(n∕k)) = o(1),

(6.15)
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s�∕��n(1, xn(s))
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sup
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||s�∕��n(1, xn(s)) − s�∕��n(1, s
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.
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First, note that by Eq. (6.14) we know that for any 𝜀 > 0 and n large enough, 
sups≥s0 |xn(s) − s−1∕𝛾 | < 𝛿n ∶= k−1∕2𝜀 . We may then show Bn = oP(1) similar to the 
proof of Eq. (6.12). Further, for sufficiently large n,

where the first supremum is bounded by Eq. (6.14) and the second supremum is 
asymptotically negligible according to Proposition 3.4, yielding An = oP(1).

Acknowledgements The authors are grateful to Chen Zhou for helpful discussions on early stages of this 
project. The authors are also grateful to an unknown referee, an associate editor and an editor for their 
constructive comments on an earlier version of this article which helped to improve the presentation.

Author contribution The proofs of Proposition 3.3 and Lemma 6.1 were initially worked out by AB, and 
later improved by both authors. All other mathematical results are due to TJ, who is also responsible for 
the simulation study. The first draft of the manuscript was written by TJ, which was later improved by 
both authors.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The simulation study was performed in R. The code is available upon request from the 
authors.

Declarations 

Ethical approval Not applicable.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/  
licen ses/ by/4. 0/.

References

Basrak, B., Segers, J.: Regularly varying multivariate time series. Stoch. Process. Appl. 119(4), 1055–
1080 (2009)

Billingsley, P.: Probability and measure (Third ed.). Wiley series in probability and mathematical statis-
tics. John Wiley & Sons, Inc., New York. A Wiley-Interscience Publication (1995)

Bücher, A., Jennessen, T.: Statistics for heteroscedastic time series extremes. Preprint at http:// arxiv. org/ 
abs/ 2204. 09534. To appear in Bernoulli (2022)

de Haan, L., Ferreira, A.: Extreme value theory: An introduction. Springer (2006)
Dehling, H., Durieu, O., Volny, D.: New techniques for empirical processes of dependent data. Stoch. 

Process. Appl. 119(10), 3699–3718 (2009)

An ≤ sup
s≥s0

|s1∕�xn(s)|� sup
x∈[0,L]

|||
�n(1, x) − �n(1, x)

q(x)

|||

183

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2204.09534
http://arxiv.org/abs/2204.09534


T. Jennessen, A. Bücher

1 3

Drees, H.: Weighted approximations of tail processes for �-mixing random variables. Ann. Appl. Probab. 
10(4), 1274–1301 (2000)

Drees, H., Rootzén, H.: Limit theorems for empirical processes of cluster functionals. Ann. Statist. 38(4), 
2145–2186 (2010)

Drees, H., Segers, J., Warchoł, M.: Statistics for tail processes of markov chains. Extremes 18(3), 369–
402 (2015)

Einmahl, J.H.J., de Haan, L., Zhou, C.: Statistics of heteroscedastic extremes. J. R. Stat. Soc. Ser. B. Stat. 
Methodol. 78(1), 31–51 (2016)

Ferreira, M.: On the extremal behavior of a Pareto process: an alternative for ARMAX modeling. Kybernetika 
(Prague) 48(1), 31–49 (2012)

Hall, P., Peng, L., Yao, Q.: Moving-maximum models for extrema of time series. J. Statist. Plann. Infer-
ence 103(1–2), 51–63 (2002)

Ibragimov, R., Sharakhmetov, S.: The exact constant in the Rosenthal inequality for random variables 
with mean zero. Teor. Veroyatnost. i Primenen. 46(1), 134–138 (2001)

Kulik, R., Soulier, P.: Heavy-tailed time series. Springer series in operations research and financial engi-
neering, Springer, New York (2020)

Móricz, F.: A general moment inequality for the maximum of partial sums of single series. Acta Sci. 
Math. (Szeged) 44(1–2), 67–75 (1982)

Rootzén, H.: Weak convergence of the tail empirical process for dependent sequences. Stoch. Process. 
Appl. 119(2), 468–490 (2009)

Segers, J.: Functionals of clusters of extremes. Adv. Appl. Probab. 35(4), 1028–1045 (2003)
Shao, Q.-M., Yu, H.: Weak convergence for weighted empirical processes of dependent sequences. Ann. 

Probab. 24(4), 2098–2127 (1996)
van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes - Springer series in statis-

tics. Springer, New York (1996)
Zhang, Z., Smith, R.L.: Modeling financial time series data as moving maxima processes. Manuscript, 

UNC (2001)
Zhang, Z., Smith, R.L.: On the estimation and application of max-stable processes. J. Statist. Plann. Infer-

ence 140(5), 1135–1153 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

184


	Titelblatt_Bücher_final
	Bücher_Weighted
	Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation
	Abstract
	1 Introduction
	2 Model assumptions
	3 Weighted weak convergence of the STEP
	4 Estimation of the extreme value index
	5 Simulation study
	6 Proofs
	Acknowledgements 
	References



