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Abstract
Nguyen et al. (2016) introduced altruistic hedonic games in which agents’ utilities depend
not only on their own preferences but also on those of their friends in the same coalition.
We propose to extend their model to coalition formation games in general, considering also
the friends in other coalitions. Comparing our model to altruistic hedonic games, we argue
that excluding some friends from the altruistic behavior of an agent is a major disadvantage
that comes with the restriction to hedonic games. After introducing our model and showing
some desirable properties, we additionally study some common stability notions and provide
a computational analysis of the associated verification and existence problems.

Keywords Coalition formation · Hedonic game · Altruism · Cooperative game theory

1 Introduction

We consider coalition formation games where agents have to form coalitions based on their
preferences. Among other compact representations of hedonic coalition formation games,
Dimitrov et al. [2] in particular proposed the friends-and-enemies encoding with friend-
oriented preferenceswhich involves a network of friends: a (simple) undirected graph whose
vertices are the players and where two players are connected by an edge exactly if they
are friends of each other. Players not connected by an edge consider each other as enemies.
Under friend-oriented preferences, player i prefers a coalitionC to a coalition D ifC contains
more of i’s friends than D, or C and D have the same number of i’s friends but C contains
fewer enemies of i’s than D. This is a special case of the additive encoding [3]. For more

Missing Open Access funding information has been added in the Funding Note.

B Anna Maria Kerkmann
anna.kerkmann@uni-duesseldorf.de

Simon Cramer
simon.cramer@hhu.de

Jörg Rothe
rothe@hhu.de

1 Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1,
Düsseldorf 40225, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-023-09881-y&domain=pdf
http://orcid.org/0000-0002-0311-7330


602 A.M. Kerkmann et al.

background on these two compact representations, see Section 2 and the book chapter by
Aziz and Savani [4].

Based on friend-oriented preferences, Nguyen et al. [1] introduced altruistic hedonic
games (AHGs) where agents gain utility not only from their own satisfaction but also from
their friends’ satisfaction. However, Nguyen et al. [1] specifically considered hedonic games
only, which require that an agent’s utility only depends on her own coalition. In their inter-
pretation of altruism, the utility of an agent is composed of the agent’s own valuation of
her coalition and the valuation of all this agent’s friends in this coalition. While Nguyen et
al. [1] used the average when aggregating some agents’ valuations, Wiechers and Rothe [5]
proposed a variant of altruistic hedonic games where some agents’ valuations are aggregated
by taking the minimum.

Inspired by the idea of altruism, we extend the model of altruism in hedonic games to
coalition formation games in general. That is, we propose a model where agents behave
altruistically to all their friends, not only to the friends in the same coalition. Not restricting
to hedonic games, we aim to capture a more natural notion of altruism where none of an
agent’s friends is excluded from her altruistic behavior.

Example 1 To become acquainted with this idea of altruism, consider the coalition formation
game that is represented by the network of friends in Fig. 1. For the coalition structures
� = {{1, 2, 3}, {4}} and � = {{1, 2, 4}, {3}}, it is clear that player 1 is indifferent between
coalitions {1, 2, 3} and {1, 2, 4} under friend-oriented preferences, as both coalitions contain
1’s only friend (player 2) and one of 1’s enemies (either 3 or 4). Under altruistic hedonic
preferences [1], however, player 1 behaves altruistically to her friend 2 (who is friends with 3
but not with 4) and therefore prefers {1, 2, 3} to {1, 2, 4}. Now, consider the slightly modified
coalition structures �′ = {{1}, {2, 3}, {4}} and �′ = {{1}, {2, 4}, {3}}. Intuitively, one would
still expect 1 to behave altruistically to her friend 2. However, under any hedonic preference
(which requires the players’ preferences to depend only on their own coalitions), player 1
(being in the same coalition for both �′ and �′) must be indifferent between �′ and �′.

In order to model altruism globally, we release the restriction to hedonic games and
introduce altruistic coalition formation games where agents behave altruistically to all their
friends, independently of their current coalition.

1.1 Related work

Coalition formation games, as considered here, are closely related to the subclass of hedonic
games which has been broadly studied in the literature, addressing the issue of compactly
representing preferences, conducting axiomatic analyses, dealing with different notions of
stability, and investigating the computational complexity of the associated problems (see,
e.g., the book chapter by Aziz and Savani [4]) and the survey of Woeginger [6]).

Closest related to our work are the altruistic hedonic games by Nguyen et al. [1] (see
also the related minimization-based variant byWiechers and Rothe [5] and the recent journal
version of these two papers [7]), which wemodify to obtain our more general models of altru-
ism. Kerkmann and Rothe [8] continued the study of altruistic hedonic games, considering
the notions of popularity and strict popularity. Based on the model due to Nguyen et al. [1],

Fig. 1 Network of friends for Example 1
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Altruism in coalition formation games 603

Schlueter and Goldsmith [9] defined super altruistic hedonic games where friends have a
different impact on an agent based on their distances in the underlying network of friends.
More recently, Bullinger and Kober [10] introduced loyalty in cardinal hedonic gameswhere
agents are loyal to all agents in their so-called loyalty set. In their model, the utilities of the
agents in the loyalty set are aggregated by taking the minimum. They then study the loyal
variants of common classes of cardinal hedonic games such as additively separable and
friend-oriented hedonic games.1

Altruism has also been studied for noncooperative games. Most prominently, Ashlagi et
al. [11] introduced social context games where a social context is applied to a strategic game
and the costs in the resulting game depend on the original costs and a graph of neighborhood.
Their so-calledMin-Max collaborations (where players seek tominimize themaximal cost of
their own and their neighbors) are related to our minimization-based equal-treatment model.
Still, the model of Ashlagi et al. [11] differs from ours in that they consider noncooperative
games. While Ashlagi et al. [11] focus on resource selection games as underlying strategic
games, Bilò et al. [12] study social context games for linear congestion games and Shapley
cost sharing games. Hoefer et al. [13] study considerate equilibria in strategic games, where
players perform group deviations in a considerate way to not decrease the utility of their
neighbors. Anagnostopoulos et al. [14] study altruism and spite in strategic games. In these
games, every agent assigns a real value to any other agent expressing the (altruistic or spiteful)
attitude that she has towards the other agent. In the same context, Bilò [15] studies the
existence and inefficiency of pure Nash equilibria in linear congestion games.

There is further workmodeling altruism in noncooperative games without social networks
but with some altruistic component that is incorporated into the agents’ payoff functions.
For example, Hoefer and Skopalik [16] study altruism in atomic congestion games and
Chen et al. [17] study altruism in nonatomic congestion games. Both use so-called altruistic
levels, real values between zero and one that indicate the degree to which the agents are
altruistic. Apt and Schäfer [18] introduce selfishness levels for strategic games. Their model
is equivalent to the model by Chen et al. [17] and a model by Caragiannis et al. [19]. Kleer
and Schäfer [20] generalize these settings to a more general framework that can also model
spiteful agents. They study the price of anarchy and the price of stability for this generalized
setting; Schröder [21] continues their study. Furthermore, Rahn and Schäfer [22] introduce
social contribution games which take account of the costs that agents induce on society. For
more background on altruism in game theory, see, e.g., the survey by Rothe [23].

Concerning the concepts of stability that we consider here, there exists a lot of related
work in the context of coalition formation games, including hedonic games.2 For example,
Bogomolnaia and Jackson [25] introduced some stability notions for hedonic games that deal
with single player deviations. These notions include Nash stability and individual stability.

1 Note that their loyal variant of symmetric friend-oriented hedonic games is equivalent to the minimization-
based altruistic hedonic games under equal treatment introduced by Wiechers and Rothe [5].
2 In fact, stability in coalition formation has also been studied for nonhedonic cooperative games. For example,
Magaña and Carreras [24] studied the stability of coalition formation in cooperative games with transferrable
utility (unlike hedonic games, which are cooperative games with nontransferrable utility) by combining the
Shapley value with notions such as strong Nash equilibrium from noncooperative game theory. However, our
model of altruistic coalition formation games is very close to the model of altruism originally proposed by
Nguyen et al. [1] (see also [7]) for hedonic games. Therefore, the stability notions we consider are essentially
those common in the study of hedonic games, like (strict) core stability, Nash stability, perfectness, etc. Still,
as we drop the requirement of hedonism that players only care about the members of their own coalition, we
study nonhedonic coalition formation, even if very closely related to its hedonic counterpart.
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Also, core stability has been studied extensively in the literature, e.g., by Banerjee et al. [26],
Dimitrov et al. [2], Alcade and Romero-Medina [27], Woeginger [28], Peters [29], and Ota et
al. [30]. Karakaya [31] and Aziz and Brandl [32] defined some more complicated notions of
group stability that they call strong Nash stability, strictly strong Nash stability, and strong
individually stability. Popularity was first introduced by Gärdenfors [33] in the context of
marriage games and was later formulated by Aziz et al. [3] and Lang et al. [34] for hedonic
games.

1.2 Our contribution

Conceptually, we extend the models of altruism proposed by Nguyen et al. [1] and Wiechers
and Rothe [5] from hedonic games to general coalition formation games. We argue how this
captures a more global notion of altruism and show that our models fulfill some desirable
properties that are violated by the previous models. We then study the common stability
concepts in this model and analyze the associated verification and existence problems in
terms of their computational complexity.

This work extends a preliminary version that appeared in the proceedings of the 29th
International Joint Conference on Artificial Intelligence (IJCAI’20) [35]. Parts of this work
were also presented at the 16th and 17th International Symposium on Artificial Intelligence
andMathematics (ISAIM’20 and ISAIM’22) and at the 8th International Workshop on Com-
putational Social Choice (COMSOC’21), each with nonarchival proceedings.

2 Themodel

In coalition formation games, players divide into groups based on their preferences. Before
introducing altruism, we now give some foundations of such games.

2.1 Coalition formation games

Let N = {1, . . . , n} be a set of agents (or players). Each subset of N is called a coalition.
A coalition structure � is a partition of N , and we denote the set of all possible coalition
structures for N byCN . For a player i ∈ N and a coalition structure� ∈ CN ,�(i) denotes the
unique coalition in � containing i . Now, a coalition formation game (CFG) is a pair (N ,�),
where N = {1, . . . , n} is a set of agents, � = (�1, . . . ,�n) is a profile of preferences,
and every preference �i ∈ CN × CN is a complete weak order over all possible coalition
structures. Given two coalition structures �, � ∈ CN , we say that i weakly prefers � to � if
� �i �. When � �i � but not � �i �, we say that i prefers � to � (denoted by � �i �),
and we say that i is indifferent between� and� (denoted by� ∼i �) if� �i � and� �i �.

Note that hedonic games are a special case of coalition formation games where the agents’
preference relations only depend on the coalitions containing themselves. In a hedonic
game (N ,�), agent i ∈ N is indifferent between any two coalition structures � and �

as long as her coalition is the same, i.e., �(i) = �(i) �⇒ � ∼i �. Therefore, the preference
order of any agent i ∈ N in a hedonic game (N ,�) is usually represented by a complete
weak order over the set of coalitions containing i .
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Altruism in coalition formation games 605

2.2 The“friends and enemies” encoding

Since |CN |, the number of all possible coalition structures, is super-exponential in the number
of agents,3 it is not reasonable to ask every agent for her complete preference overCN . Instead,
we are looking for a way to compactly represent the agents’ preferences. In the literature,
many such representations have been proposed for hedonic games, such as the additive
encoding due to Bogomolnaia and Jackson [25], the singleton encoding due to Cechlárová
and Romero-Medina [38] which was further studied by Cechlárová and Hajduková [39], the
friends-and-enemies encoding due to Dimitrov et al. [2], and FEN-hedonic games due to
Kerkmann et al. [40]. Here, we use the friends-and-enemies encoding due to Dimitrov et
al. [2]. We focus on their friend-oriented model and will later adapt it to our altruistic model.

In the friend-oriented model, the preferences of the agents in N are given by a network
of friends, i.e., a (simple) undirected graph G = (N , A) whose vertices are the players and
where two players i, j ∈ N are connected by an edge {i, j} ∈ A exactly if they are each
other’s friends. Agents not connected by an edge consider each other as enemies. For an
agent i ∈ N , we denote the set of i’s friends by Fi = { j ∈ N | {i, j} ∈ A} and the set of i’s
enemies by Ei = N \ (Fi ∪{i}).Under friend-oriented preferences as defined by Dimitrov et
al. [2], between any two coalitions players prefer the coalition with more friends, and if there
are equally many friends in both coalitions, they prefer the coalition with fewer enemies:

C �F
i D ⇐⇒ |C ∩ Fi | > |D ∩ Fi | or (|C ∩ Fi | = |D ∩ Fi | and |C ∩ Ei | ≤ |D ∩ Ei |).

This can also be represented additively. Assigning a value of n to each friend and a value
of −1 to each enemy, agent i ∈ N values coalition C containing herself with vi (C) =
n|C ∩ Fi | − |C ∩ Ei |. Note that −(n − 1) ≤ vi (C) ≤ n(n − 1), and vi (C) > 0 if and only if
there is at least one friend of i’s in C . For a given coalition structure � ∈ CN , we also write
vi (�) for player i’s value of �(i).

Furthermore, we denote the sum of the values of i’s friends by sumF
i (�) = ∑

f ∈Fi v f (�).

Analogously, we also define sumF+
i (�) = ∑

f ∈Fi∪{i} v f (�), minFi (�) = min f ∈Fi v f (�),

and minF+
i (�) = min f ∈Fi∪{i} v f (�).

2.3 Three degrees of altruism

Whenwe now define altruistic coalition formation games based on the friend-oriented prefer-
ence model, we consider the same three degrees of altruism that Nguyen et al. [1] introduced
for altruistic hedonic games. However, we adapt them to our model, extending the agents’
altruism to all their friends, not only to their friends in the same coalition.

• Selfish First (SF): Agents first rank coalition structures based on their own valuations.
Only in the case of a tie between two coalition structures, their friends’ valuations are
considered as well.

• Equal Treatment (EQ):Agents treat themselves and their friends the same. That means
that an agent i ∈ N and all of i’s friends have the same impact on i’s utility for a coalition
structure.

• Altruistic Treatment (AL):Agents first rank coalition structures based on their friends’
valuations. They only consider their own valuations in the case of a tie.

3 The number of possible partitions of a set with n elements equals the n-th Bell number [36, 37], defined as
Bn = ∑n−1

k=0

(n−1
k

)
Bk with B0 = B1 = 1. For example, for n = 10 agents, we have B10 = 115, 975 possible

coalition structures.
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606 A.M. Kerkmann et al.

We further distinguish between a sum-based and a min-based aggregation of some agents’
valuations. Formally, for an agent i ∈ N and a coalition structure � ∈ CN , we denote i’s
sum-based utility for � under SF by usumSFi (�), under EQ by usumEQi (�), and under AL by

usumALi (�), and her min-based utility for � under SF by uminSFi (�), under EQ by uminEQi (�),
and under AL by uminALi (�).For a constant M ≥ n3, they are defined as

usumSFi (�) = M · vi (�) + sumF
i (�); uminSFi (�) = M · vi (�) + minFi (�);

usumEQi (�) = sumF+
i (�); uminEQi (�) = minF+

i (�);
usumALi (�) = vi (�) + M · sumF

i (�); uminALi (�) = vi (�) + M · minFi (�).

In the case of Fi = ∅, we define the minimum of the empty set to be zero.
For any coalition structures �,� ∈ CN , agent i’s sum-based SF preference is then defined

by � �sumSF
i � ⇐⇒ usumSFi (�) ≥ usumSFi (�). Her other altruistic preferences (�sumEQ

i ;

�sumAL
i ; �minSF

i ; �minEQ
i ; and �minAL

i ) are defined analogously, using the respective utility
functions. The factor M , which is used for the SF and AL models, ensures that an agent’s
utility is first determined by the agent’s own valuation in the SFmodel and first determined by
the friends’ valuations in theALmodel. Similarly asNguyen et al. [1] prove the corresponding
properties in hedonic games, we can show that forM ≥ n3, vi (�) > vi (�) implies� �sumSF

i
� and � �minSF

i �, and for M ≥ n2, sumF
i (�) > sumF

i (�) implies � �sumAL
i � while

minFi (�) > minFi (�) implies � �minAL
i �. An altruistic coalition formation game (ACFG)

is a coalition formation game where the agents’ preferences were obtained by a network of
friends via one of these cases of altruism. Hence, we distinguish between sum-based SF,
sum-based EQ, sum-based AL, min-based SF, min-based EQ, and min-based AL ACFGs.
For any ACFG, the players’ utilities can obviously be computed in polynomial time.

3 Axiomatic analysis of ACFGs

Nguyen et al. [1] focus on altruism in hedonic games where an agent’s utility only depends on
her own coalition. As we have already seen in Example 1, there are some aspects of altruistic
behavior that cannot be realized by hedonic games. The following example shows that our
model crucially differs from the models due to Nguyen et al. [1] andWiechers and Rothe [5].

Example 2 Consider an ACFG (N ,�) with the network of friends shown in Fig. 2 with
the the coalition structures � = {{1, 2}, {3}, {4}, . . . , {10}} (shown in Fig. 2a) and � =
{{1, 5, . . . , 10}, {2, 3, 4}} (shown in Fig. 2b). We will now compare agent 1’s preferences
for these two coalition structures under our altruistic models to 1’s preferences under the
altruistic hedonic models [1, 5]. Table 1 shows all relevant values that are needed to compute
the utilities of agent 1.

Fig. 2 Network of friends for Example 2 with the two coalition structures � and � marked by dashed lines
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Altruism in coalition formation games 607

Table 1 Friend-oriented
valuations of agent 1 and her
friends and her aggregated
valuations for the game in
Example 2 with the network of
friends in Fig. 2

v_1 v_2 v_5 v_6 sumF
1 sumF+

1 minF1 minF+
1

� 10 10 0 0 10 20 0 0

� 16 20 5 5 30 46 5 5

One can observe that agent 1 and all her friends assign a greater value to � than to �.
Consequently, also the aggregations of the friends’ values (sumF

1 , sum
F+
1 , minF1 , minF+

1 )
are greater for �. Hence, 1 prefers � to � under all our sum-based and min-based altruistic
preferences.

The hedonic models due to Nguyen et al. [1] and Wiechers and Rothe [5], however,
are blind to the fact that agent 1 and all her friends are better off in � than in �. Under
their altruistic hedonic preferences, player 1 compares the two coalition structures � and �

only based on her own coalitions �(1) = {1, 2} and �(1) = {1, 5, . . . , 10}. She then only
considers her friends that are in the same coalition, i.e., player 2 for � and players 5 and 6 for
�. This leads to 1 preferring �(1) to �(1) under altruistic hedonic EQ and AL preferences.
In particular, the average (and minimum) valuation of 1’s friends in �(1) is 10 while the
average (and minimum) valuation of 1’s friends in �(1) is 5. Also considering 1’s own value
for EQ, the average (and minimum) in �(1) is 10 while the average (respectively, minimum)
value in �(1) is 8.6 (respectively, 5).

3.1 Some basic properties

As we have seen in Example 2, altruistic hedonic games [1, 5] allow for players that prefer
coalition structures that make themselves and all their friends worse off. To avoid this kind
of unreasonable behavior, we focus on general coalition formation games. In fact, all our
altruistic coalition-formation preferences fulfill unanimity: For anACFG (N ,�) and a player
i ∈ N , we say that �i is unanimous if, for any two coalition structures �,� ∈ CN , va(�) >

va(�) for each a ∈ Fi ∪ {i} implies � �i �. Informally, this means that if i and all her
friends assign a higher value to � than to � in an altruistic coalition formation game, then
i will prefer � to �. This intuitively makes sense since the unanimous opinion of all agents
that i cares about (namely herself and her friends) is then represented by her preference.

This property crucially distinguishes our preference models from the corresponding altru-
istichedonic preferences,which are not unanimousunderEQorALpreferences, asExample 2
shows. Note that Nguyen et al. [1] define a restricted version of unanimity in altruistic hedo-
nic games by considering only the agents’ own coalitions. Other desirable properties that
were studied by Nguyen et al. [1] for altruistic hedonic preferences can be generalized to
coalition formation games. We show that these desirable properties also hold for our models
and summarize our findings in Table 2. First, we collect some basic observations:

Observation 1 Consider any ACFG (N ,�) with an underlying network of friends G.

1 All preferences �i , i ∈ N , are reflexive and transitive.
2 For any player i ∈ N and any two coalition structures �,� ∈ CN , it can be decided in

polynomial time (in the number of agents) whether � �i �.
3 The preferences �i , i ∈ N , only depend on the structure of G.

Note that the third statement of Observation 1 implies that the properties that Nguyen et
al. [1] call anonymity and symmetry are both satisfied in ACFGs. Another desirable prop-
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Table 2 Axiomatic properties of our altruistic preferences in comparison to the altruistic hedonic preferences
by Nguyen et al. [1]

Property ACFGs AHGs

Reflexivity & Transitivity ✓ ✓

Relations are decidable in polynomial time ✓ ✓

Relations only dependent on graph structure ✓ ✓

Unanimity ✓ ✗ (EQ or AL)

Sovereignty of players ✓ ✓

Type-I-monotonicity ✗ (min-based) ✗ (min-based or sum-based EQ or AL)

Type-II-monotonicity ✓ ✗ (EQ or AL)

“✓” means that the property is fulfilled for all degrees of altruism and both aggregation methods.“✗ (. . .)”
means that the property is not satisfied for the models listed in brackets but for all other models considered
here

erty they consider is called sovereignty of players and inspired by the axiom of “citizens’
sovereignty” from social choice theory:4 Given a set of agents N , a coalition structure
� ∈ CN , and an agent i ∈ N , we say that an altruistic preference extension satisfies
sovereignty of players if there is a network of friendsG on N such that � is i’s most preferred
coalition structure in the ACFG induced by G under this extension.

Proposition 1 ACFGs satisfy sovereignty of players under all sum-based and min-based SF,
EQ, and AL altruistic preferences.

Proof Sovereignty of players in ACFGs can be shown with an analogous construction as
in the proof of Nguyen et al. [1, Theorem 5]: For a given set of players N , player i ∈ N ,
and coalition structure � ∈ CN , we construct a network of friends where all players in
�(i) are friends of each other while there are no other friendship relations. Then � is i’s
(nonunique) most preferred coalition structure under all sum-based and min-based SF, EQ,
and AL altruistic preferences. ��

3.2 Monotonicity

The next property describes the monotonicity of preferences and further distinguishes our
models from altruistic hedonic games. In fact, Nguyen et al. [1] define two types of mono-
tonicity, which we here adapt to our setting. Intuitively, we say that a preference relation of
an agent i is monotonic if her preference between two coalition structures cannot be altered
by turning an enemy (who has the same opinion as i about the two coalition structures) into
a friend. The two types of monotonicity differ in whether the enemy is part of i’s coalition in
both coalition structures (type-I) or only in the more preferred one (type-II). These notions
are motivated by the idea that adding a friend that agrees with i’s preference should only
strengthen i’s preference and should not reverse it.

Definition 1 Consider any ACFG (N ,�), agents i, j ∈ N with j ∈ Ei , and coalition
structures �,� ∈ CN . Let further �′

i be the preference relation resulting from �i when j
turns from being i’s enemy to being i’s friend (all else remaining equal). We say that �i is

4 Informally stated, a voting rule satisfies citizens’ sovereignty if every candidate can be made a winner of an
election for a suitably chosen preference profile.
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Altruism in coalition formation games 609

• type-I-monotonic if (1) � �i �, j ∈ �(i) ∩ �(i), and v j (�) ≥ v j (�) implies � �′
i �,

and (2) � ∼i �, j ∈ �(i) ∩ �(i), and v j (�) ≥ v j (�) implies � �′
i �;

• type-II-monotonic if (1) � �i �, j ∈ �(i) \ �(i), and v j (�) ≥ v j (�) implies � �′
i �,

and (2) � ∼i �, j ∈ �(i) \ �(i), and v j (�) ≥ v j (�) implies � �′
i �.

Theorem 1 Let (N ,�) be an ACFG.

1. If (N ,�) is sum-based, its preferences satisfy type-I- and type-II-monotonicity.
2. If (N ,�) is min-based, its preferences satisfy type-II- but not type-I-monotonicity.

Proof Let (N ,�) be an ACFGwith an underlying network of friendsG = (N , H). Consider
i ∈ N , �,� ∈ CN , and j ∈ Ei and denote with G ′ = (N , H ∪ {{i, j}}) the network of
friends resulting from G when j turns from being i’s enemy to being i’s friend (all else
being equal). Let (N ,�′) be the ACFG induced by G ′. For any agent a ∈ N and coalition
structure � ∈ CN , denote a’s value for � in G ′ by v′

a(�), a’s preference relation in (N ,�′)
by �′

a , and a’s friends and enemies in (N ,�′) by F ′
a and E ′

a , respectively. That is, we have
F ′
i = Fi ∪ { j}, E ′

i = Ei \ { j}, F ′
j = Fj ∪ {i}, and E ′

j = E j \ {i}. Further, v′
i , v

′
j , and �′

i
might differ from vi , v j , and �i , while the friends, enemies, and values of all other players
stay the same, i.e., F ′

a = Fa , E ′
a = Ea , and v′

a = va for all a ∈ N \ {i, j}.
Type-I-monotonicity under sum-based preferences.
Let j ∈ �(i) ∩ �(i) and v j (�) ≥ v j (�). It then holds that

v′
i (�) = n|�(i) ∩ F ′

i | − |�(i) ∩ E ′
i | = n|�(i) ∩ Fi | + n − |�(i) ∩ Ei | + 1 = vi (�) + n + 1.

Equivalently, v′
i (�) = vi (�)+ n+ 1, v′

j (�) = v j (�)+ n+ 1, and v′
j (�) = v j (�)+ n+ 1.

Furthermore,

sumF ′
i (�) =

∑

a∈F ′
i

v′
a(�) =

∑

a∈Fi∪{ j}
v′
a(�) =

∑

a∈Fi
va(�) + v′

j (�)

= sumF
i (�) + v j (�) + n + 1 and (1)

sumF ′
i (�) = sumF

i (�) + v j (�) + n + 1. (2)

(1) sumSF: If � �sumSF
i � then either (i) vi (�) = vi (�) and sumF

i (�) > sumF
i (�), or

(ii) vi (�) > vi (�).
In case (i), vi (�) = vi (�) implies v′

i (�) = v′
i (�). Applying sumF

i (�) > sumF
i (�)

and v j (�) ≥ v j (�) to (1) and (2), we get sumF ′
i (�) > sumF ′

i (�). This together with

v′
i (�) = v′

i (�) implies � �sumSF′
i �.

In case (ii), vi (�) > vi (�) implies v′
i (�) > v′

i (�). Hence, � �sumSF′
i �.

If � ∼sumSF
i � then vi (�) = vi (�) and sumF

i (�) = sumF
i (�). vi (�) = vi (�) implies

v′
i (�) = v′

i (�). Applying sumF
i (�) = sumF

i (�) and v j (�) ≥ v j (�) to (1) and (2), we get

sumF ′
i (�) ≥ sumF ′

i (�). This together with v′
i (�) = v′

i (�) implies � �sumSF′
i �.

(2) sumEQ: If � �sumEQ
i � then sumF

i (�) + vi (�) > sumF
i (�) + vi (�). Using (1),

(2), v′
i (�) = vi (�) + n + 1, v′

i (�) = vi (�) + n + 1, and v j (�) ≥ v j (�), this implies

sumF ′
i (�) + v′

i (�) > sumF ′
i (�) + v′

i (�). Hence, � �sumEQ′
i �.

If � ∼sumEQ
i �, using the same equations, � �sumEQ′

i � is implied.
(3) sumAL: If � �sumAL

i � then either (i) sumF
i (�) = sumF

i (�) and vi (�) > vi (�), or
(ii) sumF

i (�) > sumF
i (�).
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610 A.M. Kerkmann et al.

In case (i), sumF
i (�) = sumF

i (�) together with (1), (2), and v j (�) ≥ v j (�) implies

sumF ′
i (�) ≥ sumF ′

i (�). Further, vi (�) > vi (�) together with v′
i (�) = vi (�) + n + 1 and

v′
i (�) = vi (�) + n + 1 implies v′

i (�) > v′
i (�). Altogether, this implies � �sumAL′

i �.

In case (ii), sumF ′
i (�) > sumF ′

i (�) is implied and � �sumAL′
i � follows.

If � ∼sumAL
i � then sumF

i (�) = sumF
i (�) and vi (�) = vi (�). Using the same equations

as before, � �sumAL′
i � is implied.

Type-II-monotonicity under sum-based and min-based preferences.
Let j ∈ �(i)\�(i) and v j (�) ≥ v j (�). It follows that v′

i (�) = vi (�)+n+1, v′
i (�) = vi (�),

v′
j (�) = v j (�) + n + 1, and v′

j (�) = v j (�). Furthermore,

sumF ′
i (�) = sumF

i (�) + v j (�) + n + 1, (3)

sumF ′
i (�) = sumF

i (�) + v j (�), (4)

minF
′

i (�) = min
(
minFi (�), v j (�) + n + 1

)
, (5)

minF
′

i (�) = min
(
minFi (�), v j (�)

)
, (6)

minF+′
i (�) = min

(
minFi (�), v j (�) + n + 1, vi (�) + n + 1

)
, and (7)

minF+′
i (�) = min

(
minFi (�), v j (�), vi (�)

)
. (8)

(1) sumSF andminSF: If� �SF
i � then vi (�) ≥ vi (�). Hence, v′

i (�) = vi (�)+n+1 ≥
vi (�) + n + 1 > vi (�) = v′

i (�), which implies � �SF′
i �.

(2) sumEQ: If � �sumEQ
i � then sumF

i (�) + vi (�) ≥ sumF
i (�) + vi (�). Together with

(3), (4), and v j (�) ≥ v j (�) this implies sumF ′
i (�) + v′

j (�) > sumF ′
i (�) + v′

j (�). Hence,

� �sumEQ′
i �.

(3) sumAL: If � �sumAL
i � then sumF

i (�) ≥ sumF
i (�). Together with (3), (4), and

v j (�) ≥ v j (�) this implies sumF ′
i (�) > sumF ′

i (�), so � �sumAL′
i �.

(4) minEQ: First, assume that � �minEQ
i �. We then have min

(
minFi (�), vi (�)

)
>

min
(
minFi (�), vi (�)

)
. It follows that � �minEQ′

i � because

minF+′
i (�) = min

(
minFi (�), v j (�) + n + 1, vi (�) + n + 1

)
(9)

> min
(
minFi (�), v j (�), vi (�)

) ≥ min
(
minFi (�), v j (�), vi (�)

) = minF+′
i (�).

Second, assume � ∼minEQ
i �. Then min

(
minFi (�), vi (�)

) = min
(
minFi (�), vi (�)

)
.

Similarly as in (9), it follows that minF+′
i (�) ≥ minF+′

i (�). Hence, � �minEQ′
i �.

(5) minAL: First, assume � �minAL
i �. Then either (i) minFi (�) > minFi (�), or

(ii) minFi (�) = minFi (�) and vi (�) > vi (�).

In case of (i), we get � �minAL′
i � because

minF
′

i (�) = min
(
minFi (�), v j (�) + n + 1

) ≥ min
(
minFi (�), v j (�) + n + 1

)
(10)

> min
(
minFi (�), v j (�)

) = minF
′

i (�).

In case of (ii), similarly as in (10), we get minF
′

i (�) ≥ minF
′

i (�). Furthermore, vi (�) >

vi (�) implies v′
i (�) > v′

i (�). Hence, � �minAL′
i �.
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Altruism in coalition formation games 611

Second, assume that � ∼minAL
i �. Then minFi (�) = minFi (�) and vi (�) = vi (�).

Similarly as in (10), we get minF
′

i (�) ≥ minF
′

i (�). Furthermore, vi (�) = vi (�) implies

v′
i (�) > v′

i (�). Hence, � �minAL′
i �.

Type-I-monotonicity under min-based preferences.
To see that �minSF , �minEQ, and �minAL are not type-I-monotonic, consider the game G
with the network of friends in Fig. 3a. Furthermore, consider the coalition structures � =
{{1, 2, 3, 4, 5}, {6}} and � = {{1, 2, 3, 4, 6}, {5}} and players i = 1 and j = 2 with 2 ∈
�(1) ∩ �(1) and v2(�) = −4 = v2(�). It holds that v1(�) = v1(�) = 10,minF1 (�) =
minF+

1 (�) = 10, and minF1 (�) = minF+
1 (�) = 3. Hence, � �minSF

1 �, � �minEQ
1 �, and

� �minAL
1 �.

Now, making 2 a friend of 1’s leads to the game G ′ with the network of friends in Fig. 3b.
For this game, we have v′

1(�) = v′
1(�) = 17 and minF

′
1 (�) = minF+′

1 (�) = minF
′

1 (�) =
minF+′

1 (�) = 3. This implies � ∼minSF′
1 �, � ∼minEQ′

1 �, and � ∼minAL′
1 �, which

contradicts type-I-monotonicity. This completes the proof. ��
Note that the hedonic models of altruism [1, 5] violate both type-I- and type-II-

monotonicity for EQ and AL. Hence, it is quite remarkable that all three degrees of our
extended sum-based model of altruism satisfy both types of monotonicity.

4 Stability in ACFGs

The main question in coalition formation games is which coalition structures might form.
There are several stability concepts that are well-studied for hedonic games, each indicating
whether a given coalition structure would be accepted by the agents or if there are other
coalition structures that are more likely to form. Althoughwe consider more general coalition
formation games, we can easily adapt these definitions to our framework.

Let (N ,�) be an ACFG with preferences � = (�1, . . . ,�n) obtained from a network
of friends via one of the three degrees of altruism and with either sum-based or min-based
aggregation of the agents’ valuations. We use the following notation. For a coalition struc-
ture � ∈ CN , a player i ∈ N , and a coalition C ∈ � ∪ {∅}, �i→C denotes the coalition
structure that arises from � when moving i to C , i.e.,

�i→C = � \ {�(i),C} ∪ {�(i) \ {i},C ∪ {i}}.
In addition, we use �C→∅, with C ⊆ N , to denote the coalition structure that arises from

� when all players in C leave their respective coalition and form a new one, i.e.,

�C→∅ = � \ {�( j) | j ∈ C} ∪ {�( j) \ C | j ∈ C} ∪ {C}.
Finally, for any two coalition structures �,� ∈ CN , let #��� = |{i ∈ N | � �i �}| be

the number of players that prefer � to �. Now, we are ready to define the common stability
notions.

Fig. 3 Networks of friends in the
proof of Theorem 1
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612 A.M. Kerkmann et al.

Definition 2 A coalition structure � is said to be

• Nash stable (NS) if no player prefers moving to another coalition:

(∀i ∈ N )(∀C ∈ � ∪ {∅})[� �i �i→C ];
• individually rational (IR) if no player would prefer being alone:

(∀i ∈ N )[� �i �i→∅];
• core stable (CS) if no nonempty coalition blocks �:

(∀C ⊆ N ,C �= ∅)(∃i ∈ C)[� �i �C→∅];
• strictly core stable (SCS) if no coalition weakly blocks �:

(∀C ⊆ N )
[
(∃i ∈ C)[� �i �C→∅] ∨ (∀i ∈ C)[� ∼i �C→∅]

];
• popular (POP) if for every other coalition structure �, at least as many players prefer �

to � as there are players who prefer � to �:

(∀� ∈ CN ,� �= �)
[
#��� ≥ #���

];
• strictly popular (SPOP) if for every other coalition structure �, more players prefer � to

� than there are players who prefer � to �:

(∀� ∈ CN ,� �= �)
[
#��� > #���

];
• perfect (PF) if no player prefers any coalition structure to �:

(∀i ∈ N )(∀� ∈ CN )[� �i �].

We now study the associated verification and existence problems in terms of their com-
putational complexity. We assume the reader to be familiar with the complexity classes P
(deterministic polynomial time), NP (nondeterministic polynomial time) and coNP (the class
of complements of NP sets). For more background on computational complexity, we refer
to, e.g., the textbooks by Garey and Johnson [41] and Rothe [42]. Given a stability concept
α, we define:

• α- Verification: Given an ACFG (N ,�) and a coalition structure � ∈ CN , does �

satisfy α?
• α- Existence: Given an ACFG (N ,�), does there exist a coalition structure � ∈ CN

that satisfies α?

Table 3 summarizes our results for these problems.

4.1 Individual rationality

Verifying individual rationality is easy:We just need to iterate over all agents and compare two
coalition structures in each iteration. Since players’ utilities can be computed in polynomial
time, individual rationality can be verified in time polynomial in the number of agents.
The existence problem is trivial, since � = {{1}, . . . , {n}} is always individually rational.
Furthermore, we give the following characterizations.
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614 A.M. Kerkmann et al.

Theorem 2 Given an ACFG (N ,�), a coalition structure � ∈ CN is individually rational

1 under sum-based SF, sum-based EQ, sum-based AL, min-based SF, or min-based AL
preferences if and only if it holds for all players i ∈ N that �(i) contains a friend of i’s
or i is alone, formally: (∀i ∈ N )[�(i) ∩ Fi �= ∅ ∨ �(i) = {i}];

2 under min-based EQ preferences if and only if for all players i ∈ N, �(i) contains a
friend of i’s or i is alone or there is a friend of i’s whose valuation of � is less than or
equal to i’s valuation of �, formally: (∀i ∈ N )[�(i) ∩ Fi �= ∅ ∨ �(i) = {i} ∨ (∃ j ∈
Fi )[v j (�) ≤ vi (�)]].5

Proof 1. To show the implication from left to right, if � is individually rational, we assume
for the sake of contradiction that �(i) ∩ Fi = ∅ and �(i) �= {i}for some player i ∈ N .
First, we observe that for all j ∈ Fi we have v j (�) = v j (�i→∅), as their respective
coalition is not affected by i’s move. It directly follows that, for all considered models of
altruism, player i’s utilities for � and �i→∅ only depend on her own valuation, which is
greater for �i→∅ than for � (since there are enemies in �(i) but not in �i→∅(i)). Hence,
i prefers �i→∅ to �, so � is not individually rational. This is a contradiction.
From right to left, assume that �(i) ∩ Fi �= ∅ or �(i) = {i} for all players i ∈ N .
We will now show that all players weakly prefer � to �i→∅ which means that � is
individually rational. For all players i ∈ N with �(i) = {i}, it holds that � = �i→∅
which obviously implies that i is indifferent between � and �i→∅. For all players i ∈ N
with �(i) ∩ Fi �= ∅, we know that i and all her friends assign to � a value greater than
or equal to the valuethey assign to �i→∅: Specifically, vi (�i→∅) = 0 < vi (�) because i
has a friend in �(i); for all f ∈ �(i) ∩ Fi , v f (�i→∅) = v f (�) − n < v f (�) since they
lose i as a friend; and for all f ∈ Fi \ �(i), v f (�i→∅) = v f (�) since their coalitions
stay the same if i deviates. This directly implies that i’s utility for � is greater than or
equal to her utility for �i→∅, and she thus weakly prefers � to �i→∅. In total, we have
shown that all players weakly prefer � to �i→∅. Hence, � is individually rational.

2. From left to right, we have that� is individually rational and, for the sake of contradiction,
we assume that there is a player i ∈ N with �(i) ∩ Fi = ∅ and �(i) �= {i} and for
all j ∈ Fi we have v j (�) > vi (�). Since i is the least satisfied player in Fi ∪ {i},
we have uminEQi (�) = vi (�). With v j (�i→∅) = v j (�) > vi (�) for all j ∈ Fi and

vi (�i→∅) = 0 > vi (�), we immediately obtain uminEQi (�i→∅) > uminEQi (�) and thus

�i→∅ �minEQ
i �. This is a contradiction to � being individually rational.

From right to left, we have to consider two cases. First, if �(i) ∩ Fi �= ∅ or �(i) = {i}
for some i ∈ N , we obviously have � �minEQ

i �i→∅. Second, if �(i) ∩ Fi = ∅ and
�(i) �= {i}, we know that there is at least one j ∈ Fi with v j (�) ≤ vi (�) < 0. Let j ′
denote a least satisfied friend of i’s in � (pick one randomly if there are more than one).
Since �(i) ∩ Fi = ∅, it holds that �( j) = �i→∅( j) for all j ∈ Fi . Consequently, j ′ is
i’s least satisfied friend in both coalition structures and we have uminEQi (�) = v j ′(�) =
v j ′(�i→∅) = uminEQi (�i→∅). Hence, � ∼minEQ

i �i→∅, so � is individually rational. ��

5 Note that the last part of the disjunction is only necessary for min-based EQ preferences and not for the other
preference models: In the other models, increasing the valuation of player i while not altering her friends’
valuations will certainly increase i’s altruistic utility. Yet, under min-based EQ, it might be the case that the
increase of i’s valuation has no impact on her utility since there can be another friend who represents the
minimum in her utility function. Thus it can happen that i has no inventive to deviate to a singleton coalition
when one of her friends has a valuation that is less than or equal to hers.
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4.2 Nash stability

Since there are at most |N | coalitions in a coalition structure � ∈ CN , we can verify Nash
stability in polynomial time: We just iterate over all agents i ∈ N and all the (at most
|N | + 1) coalitions C ∈ � ∪ {∅} and check whether � �i �i→C . Since we can check a
player’s altruistic preferences over any two coalition structures in polynomial time and since
we have at most a quadratic number ofiterations (|N | · (|N | + 1)), Nash stability verification
is in P for any ACFG.

Nash stability existence is trivially in P for any ACFG; indeed, the same example that
Nguyen et al. [1] gave for altruistic hedonic games works here as well. Specifically, for
C = {i ∈ N | Fi = ∅} = {c1, . . . , ck}, the coalition structure {{c1}, . . . , {ck}, N \ C} is
Nash stable as no player has an incentive to deviate to another coalition. Interestingly, the
same coalition structure is alsoNash stable under friend-oriented preferences. This intuitively
makes sense because, under all these preferencemodels, no agent wants to leave some friends
and deviate to a coalition that only contains enemies.

Note that Nash stability implies several other common stability notions such as individual
stability [25], contractually individual stability [25], and contractual Nash stability [43].
The above existence result naturally transfers to these weaker notions. Also, similar to Nash
stability, these notions can be verified in polynomial time for any ACFG.

4.3 Core stability and strict core stability

We now turn to core stability and state some results for sum-based andmin-based SFACFGs.
We first show that (strict) core stability existence is trivial for SF ACFGs.

Theorem 3 Let (N ,�SF ) be a (sum-based or min-based) SF ACFG with the underlying
network of friends G. Let further C1, . . . ,Ck be the vertex sets of the connected components
of G. Then � = {C1, . . . ,Ck} is strictly core stable (and thus core stable).

Proof For the sake of contradiction, assume that � were not strictly core stable, i.e., that
there is a coalition D �= ∅ that weakly blocks �. Consider some player i ∈ D. Since i
weakly prefers deviating from �(i) to D, there have to be at least as many friends of i’s in
D as in �(i). Since �(i) contains all of i’s friends, D also has to contain all friends of i’s.
Then all these friends of i’s also have all their friends in D for the same reason, and so on.
Consequently, D contains all players from the connected component �(i), i.e., �(i) ⊆ D.

Since D weakly blocks �, D cannot be equal to �(i) and thus needs to contain some
� /∈ �(i). Yet, this is a contradiction, as � is an enemy of i’s and i would prefer � to �D→∅
if D contains the same number of friends as �(i) but more enemies than �(i). ��

However, the coalition structure from Theorem 3 is not necessarily core stable under EQ
and AL preferences.

Example 3 Let N = {1, . . . , 10} and consider the network of friends G shown in Fig. 4.
Consider the coalition structure consisting of the connected component of G (i.e., of only
the grand coalition: � = {N }) and the coalition C = {8, 9, 10}. C blocks � under sum-based

Fig. 4 Networks of friends for Example 3
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and min-based EQ and AL preferences. To see this, consider how players 7, 8, 9, and 10
value � and �C→∅:

v7(�) = v8(�) = 30 − 6 = 24, v7(�C→∅) = 20 − 4 = 16,

v9(�) = v10(�) = 20 − 7 = 13, v8(�C→∅) = v9(�C→∅) = v10(�C→∅) = 20.

We then obtain

• sumF+
8 (�) = 74 < 76 = sumF+

8 (�C→∅) and sumF+
9 (�) = sumF+

10 (�) = 50 < 60 =
sumF+

9 (�C→∅) = sumF+
10 (�C→∅), so �C→∅ �sumEQ

i � for all i ∈ C ;
• sumF

8 (�) = 50 < 56 = sumF
8 (�C→∅) and sumF

9 (�) = sumF
10(�) = 37 < 40 =

sumF
9 (�C→∅) = sumF

10(�C→∅),so �C→∅ �sumAL
i � for all i ∈ C ;

• minF+
8 (�) = minF8 (�) = 13 < 16 = minF+

8 (�C→∅) = minF8 (�C→∅) and
minF+

9 (�) = minF9 (�) = minF+
10 (�) = minF10(�) = 13 < 20 = minF+

9 (�C→∅) =
minF9 (�C→∅) = minF+

10 (�C→∅) = minF10(�C→∅), which implies �C→∅ �minEQ
i � and

�C→∅ �minAL
i � for all i ∈ C .

Thus C blocks � under sum-based and min-based EQ and AL preferences.

Turning to core stability verification, we can show that this problem is hard under SF
preferences, and we strongly suspect that this hardness also extends to EQ and AL. Note
that even though we have shown in Theorem 3 that the ‘connected components coalition
structure’ is core stable for any SF ACFG, verifying core stability in general (for other
coalition structures) is a coNP-complete problem.

Proposition 2 Strict core stability and core stability verification are in coNP for any ACFG.

Proof To see that strict core stability verification and core stability verification are in coNP,
consider any coalition structure � ∈ CN in an ACFG (N ,�). � is not (strictly) core stable if
there is a coalition C ⊆ N that (weakly) blocks �. Hence, we nondeterministically guess a
coalition C ⊆ N and check whether C (weakly) blocks �. This can be done in polynomial
time since the preferences of the agents in C for the coalition structures � and �C→∅ can be
verified in polynomial time for all our altruistic models. ��

We start with showing that core stability verification is coNP-complete for min-based SF
ACFGs and will then continue with sum-based SF ACFGs in Theorem 5.

Theorem 4 For min-based SF ACFGs, core stability verification is coNP-complete.

Proof To show coNP-hardness of core stability verification under min-based SF ACFGs,
we use RX3C, which is a restricted variant of Exact Cover by 3- Sets and known to be
NP-complete [41, 44]. We provide a polynomial-time many-one reduction fromRX3C to the
complement of our verification problem. Let (B,S ) be an instance of RX3C, consisting of
a set B = {1, . . . , 3k} and a collectionS = {S1, . . . , S3k} of 3-element subsets of B, where
each element of B occurs in exactly three sets in S . The question is whether there exists an
exact cover for B inS , i.e., a subsetS ′ ⊆ S with |S ′| = k and

⋃
S∈S ′ S = B. We assume

that k > 4.
From (B,S ) we now construct the following ACFG. The set of players is N = {βb | b ∈

B} ∪ {ζS, αS,1, αS,2, αS,3, δS,1, . . . , δS,4k−3 | S ∈ S } and we define the sets

Beta = {βb | b ∈ B},
Zeta = {ζS | S ∈ S }, and

QS = {ζS, αS,1, αS,2, αS,3, δS,1, . . . , δS,4k−3} for each S ∈ S .
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Figure 5 shows the network of friends, where a dashed rectangle around a group of players
means that all these players are friends of each other:

• All players in Beta are friends of each other.
• For every S ∈ S , ζS is friend with every βb with b ∈ S and with αS,1, αS,2, and αS,3.
• For every S ∈ S , αS,1, αS,2, αS,3, and δS,1 are friends of each other.
• For every S ∈ S , all players in {δS,1, . . . , δS,4k−3} are friends of each other.
Furthermore, consider the coalition structure � = {Beta, QS1 , . . . , QS3k }. We will now

show that S contains an exact cover for B if and only if � is not core stable under the min-
based SF model. The idea of this proof is that a group of players from Zeta who represents
an exact cover for B will always have an incentive to deviate together with the players from
Beta. But this is the only possible deviating group: For any group of players from Zetawho do
not represent an exact cover (because there are more than k players or they do not completely
cover B), there will always be a player not preferring the deviation.

Only if: Assume that there is an exact cover S ′ ⊆ S for B. Then |S ′| = k. Consider
coalition C = Beta∪ {ζS | S ∈ S ′}. C blocks �, i.e., �C→∅ �minSF

i � for all i ∈ C , because
(a) every βb ∈ Beta has 3k friends in C but only 3k − 1 friends in Beta and (b) every ζS with
S ∈ S ′ has 3 friends and 4k − 4 enemies in C but 3 friends and 4k − 3 enemies in QS .

If: Assume that � is not core stable and let C ⊆ N be a coalition that blocks �. Then
�C→∅ �minSF

i � for all i ∈ C . First, observe that every i ∈ C needs to have at least as many
friends in C as in �(i). So, if any αS, j or δS, j is in C , it follows quite directly that QS ⊆ C .
However, since QS is a coalition in� and since every other player (from N \QS) is an enemy
of all δ-players, any coalition C with QS ⊆ C cannot be a blocking coalition for �. This
contradiction implies that no αS, j or δS, j is in C .

We now have C ⊆ Beta ∪ Zeta. Since any βb ∈ C has 3k − 1 friends and no enemies
in �(βb) and prefers �C→∅ to �, one of the following holds: (a) βb has at least 3k friends in
C or (b) βb has 3k − 1 friends and no enemies in C and βb’s friends assign a higher value to
�C→∅ than to �. For a contradiction, assume that (b) holds for some βb ∈ C . First, observe
that there are exactly 3k players inC (namely,βb and βb’s 3k−1 friends).We now distinguish
two cases:

Case 1: All the 3k−1 friends of βb’s are β-players. Then C consists of all β-players, i.e.,
C = Beta. This is a contradiction, as Beta is already a coalition in �.

Case 2: There are some ζ -players in C that are βb’s friends. Since βb has three ζ -friends
in total and no enemies in C , there are between one and three ζ -players in C . Hence, there
are between 3k − 3 and 3k − 1 β-players in C . Then one of the β-players has no ζ -friend
in C . (The at most three ζ -players are friends with at most nine β-players, but 3k−3 > 9 for

Fig. 5 Network of friends in the proof of Theorem 4 that is used to show coNP-hardness of core stability
verification in min-based SF ACFGs. A dashed rectangle around a group of players indicates that all these
players are friends of each other
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618 A.M. Kerkmann et al.

k > 4.) Consequently, this β-player has only the other (at most 3k − 2) β-players as friends
in C and does not prefer �C→∅ to �. This is a contradiction.

Hence, option (a) holds for each βb ∈ C . In total, each βb has exactly three ζ -friends and
3k − 1 β-friends. Thus at least 3k − 3 of βb’s friends in C are β-players and at least one of
βb’s friends in C is a ζ -player. Also counting βb herself, there are at least 3k − 2 β-players
in C . Since all of these 3k − 2 β-players have at least one ζ -friend in C , there are at least k
ζ -players in C . (Note that k − 1 ζ -players are friends with at most 3k − 3 β-players.)

Consider some ζS ∈ C . Since ζS has three friends and 4k − 3 enemies in QS , at most
three friends in C , and prefers �C→∅ to �, ζS has exactly three friends and at most 4k − 3
enemies in C . Hence, C contains at most 4k − 3 + 3 + 1 = 4k + 1 players.

So far we know that there are at least 3k − 2 β-players in C . If C contains exactly 3k − 2
(or 3k − 1) β-players then each of this players has only 3k − 3 (or 3k − 2) β-friends in
C and additionally needs at least three (or two) ζ -friends in C . Hence, we have at least
(3k − 2) · 3 = 9k − 6 (or 6k − 2) edges between the β- and ζ -players in C . Then there are at
least 3k − 2 (or 2k) ζ -players in C . Thus there are at least (3k − 2) + (3k − 2) = 6k − 4 (or
5k − 1) players in C which is a contradiction because there are at most 4k + 1 players in C .
Hence, there are exactly 3k β-players in C .

Summing up, there are exactly 3k β-players, at least k ζ -players, and atmost 4k+1 players
in C . Hence, there are k or k + 1 ζ -players in C . For the sake of contradiction, assume that
there are k + 1 ζ -players in C . Then each ζS ∈ C has 4k − 3 enemies in C . Since ζS prefers
�C→∅ to �, this implies that ζS has exactly three friends and 4k − 3 enemies in C and the
minimal value assigned to �C→∅ by ζS’s friends is higher than the minimal value assigned
to � by ζS’s friends. In both coalition structures, the minimal value is given by ζS’s α-friends.
However, since these α-players lose ζS as a friend when ζS deviates to C , the minimal value
assigned to � is higher than for �C→∅. This is a contradiction. Hence, there are exactly k
ζ -players in C . Finally, since every of the 3k βb ∈ C has one of the k ζS ∈ C as a friend, it
holds that {S | ζS ∈ C} is an exact cover for B. This completes the proof. ��
Theorem 5 For sum-based SF ACFGs, core stability verification is coNP-complete.

Proof For sum-based SF ACFGs, coNP-hardness of core stability verification can be
shown by a similar construction as in the proof of Theorem 4. Again, given an
instance (B,S ) of RX3C, with B = {1, . . . , 3k}, S = {S1, . . . , S3k}, and k >

8, we construct the following ACFG. The set of players is N = {βb | b ∈ B} ∪
{ζS, αS,1, αS,2, αS,3, δS,1, . . . , δS,4k−3 | S ∈ S }. We define the sets Beta = {βb | b ∈ B}
and QS = {ζS, αS,1, αS,2, αS,3, δS,1, . . . , δS,4k−3} for each S ∈ S . The network of friends
is given in Fig. 6, where a dashed rectangle around a group of players means that all these
players are friends of each other:

• All players in Beta are friends of each other.
• For every S ∈ S , all players in QS are friends of each other.
• For every S ∈ S , ζS is friend with αS,1, αS,2, and αS,3 and with every βb with b ∈ S.

Similar arguments as in the proof of Theorem 4 show that the coalition structure � =
{Beta} ∪ {{ζS} ∪ QS | S ∈ S } is not core stable under sum-based SF preferences if and only
if S contains an exact cover for B. ��

4.4 Popularity and strict popularity

Nowwe take a look at popularity and strict popularity. For all considered models of altruism,
there are games for which no (strictly) popular coalition structure exists.
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Fig. 6 Network of friends in the proof of Theorem 4 that is used to show coNP-hardness of core stability
verification in sum-based SF ACFGs. A dashed rectangle around a group of players indicates that all these
players are friends of each other

Example 4 Let N = {1, . . . , 10} and consider the network of friends shown in Fig. 7. Then
there is no strictly popular and no popular coalition structure for any of the sum-based or
min-based degrees of altruism. Since perfectness implies popularity, there is also no perfect
coalition structure for this ACFG. Recall from Footnote 3 that there are 115, 975 possible
coalition structures for this gamewith ten players.We checked this example using brute force
by iterating over all these coalition structures and checking whether one of them is popular.

As Example 4 shows, the (strict) popularity and perfectness existence problems are not
trivial. In Theorem 9, we will give a simple characterization of when perfect coalition struc-
tures exist for SF ACFGs. But before turning to perfectness, we will show that deciding
whether there exists a strictly popular coalition structure for a given SF ACFG is coNP-hard.
Also, it is coNP-complete to verify if a given coalition structure is (strictly) popular for SF
ACFGs.

First, we establish the following upper bound for (strict) popularity verification.

Proposition 3 For any ACFG, (strict) popularity verification is in coNP.

Proof We observe that the verification problems are in coNP: To verify that a given coalition
structure� is not (strictly) popular, we can nondeterministically guess a coalition structure�,
compare both coalition structures in polynomial time, and accept exactly if� is more popular
than (or at least as popular as) �. ��

In Theorem 6, we show that strict popularity verification is also coNP-hard for
min-based SF ACFGs. For this, we use a polynomial-time many-one reduction from
Exact Cover by 3- Sets. In Theorem 7, we will show (by means of a similar construc-
tion) that the same result also holds for sum-based SF ACFGs.

Theorem 6 For min-based SF ACFGs, strict popularity verification is coNP-complete.

Proof To show coNP-hardness of strict popularity verification for min-based SF ACFGs,
we again employ a polynomial-time many-one reduction from RX3C. Let (B,S ) be an

Fig. 7 Network of friends for Example 4
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instance of RX3C, consisting of a set B = {1, . . . , 3k} and a collection S = {S1, · · · , S3k}
of 3-element subsets of B. Recall that every element of B occurs in exactly three sets in S
and the question is whether there is an exact cover S ′ ⊆ S of B.

We now construct a network of friends based on this instance. The set of players is given
by N = {α1, . . . , α2k} ∪ {βb | b ∈ B} ∪ {ζS, ηS,1, ηS,2 | S ∈ S }, so in total we have n = 14k
players. For convenience, we define Alpha = {α1, . . . , α2k}, Beta = {βb | b ∈ B}, and
QS = {ζS, ηS,1, ηS,2 | S ∈ S } for S ∈ S . The network of friends is shown in Fig. 8, where
a dashed square around a group of players means that all these players are friends of each
other: All players in Alpha ∪ Beta are friends of each other; for every S ∈ S , all players in
QS are friends of each other; and ζS is a friend of every βb with b ∈ S.

We consider the coalition structure � = {Alpha ∪ Beta} ∪ {QS | S ∈ S } and will now
show that S contains an exact cover for B if and only if � is not strictly popular under
min-based SF preferences.

Only if: Assuming that there is an exact cover S ′ ⊂ S for B, we define the coalition
structure � = {Alpha ∪ Beta ∪ ⋃

S∈S ′ QS} ∪ {QS | S ∈ S \ S ′}. We will now show that
� is as popular as � under min-based SF preferences.

First, all 2k α-players prefer � to �, since they only add enemies to their coalition in �.
Second, the 3k β-players prefer � to �, as each β-player gains a ζ -friend and then has 5k
friends instead of 5k − 1. Next, we consider the QS-groups for S ∈ S ′, i.e., the groups that
were added to Alpha∪Beta in�. We observe that every ζS-player in these QS-groups prefers
� to�, since ζS gains three additional β-friends. For the η-players, on the other hand, the new
coalition only containsmore enemies, so the η-players prefer� to�. Sincewe have |S ′| = k,
this means k ζ -players prefer� to�, and 2k η-players prefer� to�. Finally, we consider the
remaining QS-groups with S ∈ S \ S ′. Here, the coalition containing these players is the
same in � and�. Hence, for each player p ∈ QS , we have vp(�) = vp(�). Thus the players
have to ask their friends for their valuations. For ζS ∈ QS with S ∈ S \ S ′, the minimum
value of her friends is in both structures given by an η-friend, since ηS,1 and ηS,2 value � and
� both with n ·2, while the β-friends of ζS assign values n ·(5k−1) to � and n ·5k−(3k−1)
to�. Sowehave uminSFζS

(�) = uminSFζS
(�) and, therefore, 2k ζ -players that are indifferent. The

η-players in QS , S ∈ S \S ′, are also indifferent, as all their friends value � and� the same.
In total, #��� = |Beta ∪ {ζS | S ∈ S ′}| = 4k = |Alpha ∪ {ηS,1, ηS,2 | S ∈ S ′}| = #���

and, therefore, � is exactly as popular as �, so � is not strictly popular.
If: Assuming that � is not strictly popular, there is some coalition structure � ∈ CN with

� �= � such that � is at least as popular as � under min-based SF preferences. We will now
show that this implies the existence of an exact cover for B in S .

Fig. 8 Network of friends in the proof of Theorem 6 that is used to show coNP-hardness of strict popularity
verification in min-based SF ACFGs. A dashed rectangle around a group of players indicates that all these
players are friends of each other
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First of all, we observe that all α-players’ most preferred coalition is Alpha ∪ Beta, as it
contains all their friends and no enemies. Thus we have � �minSF

α � if Alpha ∪ Beta /∈ �

and � ∼minSF
α � if Alpha ∪ Beta ∈ �.

For the sake of contradiction, we assume that Alpha ∪ Beta ∈ �. As � �= �, the players
in the QS-groups have to be partitioned differently. However, that would not increase any
player’s valuation since every player in QS can only lose friends and gain enemies. That
means that no β-player prefers � to �, as they are in the same coalition as in � and their
friends are not more satisfied. We also have at least three players of a QS-group that are no
longer in the same coalition, so they prefer � to �. This is a contradiction, as we assumed
that � is at least as popular as �. Thus we have Alpha ∪ Beta /∈ �.

Nowconsider the η-players. For every S ∈ S , we know that QS is the best valued coalition
for ηS,1 and ηS,2. So again, ηS,1 and ηS,2 prefer � to � if and only if QS /∈ �, and they are
indifferent otherwise. Define k′ = |{S ∈ S | QS /∈ �}|. So 2k′ is the number of η-players
that prefer � to �, and the remaining 6k − 2k′ η-players are indifferent between � and �.
We first collect some observations:

1. All 2k α-players prefer � to �.
2. 2k′ η-players prefer � to �, and 6k − 2k′ η-players are indifferent.
3. 3k − k′ ζ -players are in the same coalition in both coalition structures, so their utilities

depend on their friends’ valuations. In �, the minimum value of their friends is given by
an η-player. Since this η-player is also in the same coalition in � and thus assigns the
same value, it is not possible that the minimum value of the friends is higher in � than
in �. So 3k − k′ ζ -players are indifferent or prefer � to �.

4. We have 14k players in total, so we can have at most 14k − 2k − 2k′ − (6k − 2k′) −
(3k − k′) = 3k + k′ players that prefer � to �.

Next, we show that k′ = k. First, assume that k′ > k: We have #��� ≥ 2k + 2k′, and
since k′ > k, we have 2k + 2k′ > 3k + k′ ≥ #��� . This is a contradiction to #��� ≤ #��� ,
so we obtain k′ ≤ k.

Second, let us assume k′ < k: Since every ζ -player has three β-friends and there are
k′ ζ -players that are not in their respective QS coalition in �, there are at most 3k′ β-
players that gain a ζ -friend in �. The 3k − 3k′ other β-players have at most 5k − 1 friends
in �, namely all other α- and β-players. But as Alpha ∪ Beta /∈ �, they would also gain
at least one enemy, so we have 3k − 3k′ β-players that prefer �. That means we have
#��� ≥ 2k + 2k′ + 3k − 3k′ = 5k − k′ and #��� ≤ 3k + k′ − (3k − 3k′) = 4k′. Since
k′ < k, we have 5k − k′ > 5k − k = 4k > 4k′, and therefore, #��� > #��� , which again
is a contradiction. Thus we conclude that k′ ≥ k and, in total, k′ = k.

Consequently, we know that 4k players prefer � to �, namely all α-players and the 2k
η-players that are not in QS anymore. Subtracting all the indifferent players, we observe that
all other players have to prefer � to � in order to ensure #��� ≤ #��� . These other players
are the 3k β-players and the k ζ -players that are not in QS anymore. Finally, that is only
possible if every β-player gains a ζ -friend in �. Hence each one of those k ζ -players has to
be friends with three different β-players. Therefore, the set {S ∈ S | QS /∈ �} is an exact
cover for B. ��
Theorem 7 For sum-based SF ACFGs, strict popularity verification is coNP-complete.

Proof To show coNP-hardness of strict popularity verification for sum-based SF ACFGs, we
use a similar construction as in the proof of Theorem 6.

For an instance (B,S ) of RX3C with B = {1, . . . , 3k} and S = {S1, . . . , S3k}, where
each element of B occurs in exactly three sets in S , we construct the following ACFG.
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The set of players is given by N = {α1, . . . , α5k} ∪ {βb | b ∈ B} ∪ {ζS, ηS | S ∈ S }. Let
Alpha = {α1, . . . , α5k}, Beta = {βb | b ∈ B}, and QS = {ζS, ηS} for each S ∈ S . The
network of friends is given in Fig. 9, where a dashed rectangle around a group of players
means that all these players are friends of each other: All players in Alpha∪Beta are friends
of each other and, for every S ∈ S , ζS is friends with ηS and every βb with b ∈ S.

Consider the coalition structure � = {Alpha ∪ Beta, QS1 , . . . , QS3k }. We show that S
contains an exact cover for B if and only if � is not strictly popular.

Only if: Assuming that there is an exact cover S ′ ⊆ S for B and considering coalition
structure� = {Alpha∪Beta∪⋃

S∈S ′ QS}∪{QS |S ∈ S \S ′}, it can be shownwith similar
arguments as before that #��� = |{β1, . . . , β3k, ζS1 , . . . , ζS3k }| = 6k = |{α1, . . . , α5k} ∪
{ηS | S ∈ S ′}| = #���. Hence, � and � are equally popular.

If: Assuming that � is not strictly popular, i.e., that there is a coalition structure � ∈ CN ,
� �= �, with #��� ≤ #��� , it can be shown similarly as before (as in the proof of Theorem6)
that the set {S ∈ S | QS /∈ �} is an exact cover for B. ��

Extending the proofs of Theorems 6 and 7, we now also show that strict popularity exis-
tence and popularity verification are coNP-hard for min-based and sum-based SF ACFGs.

Theorem 8 For (sum-based and min-based) SF ACFGs, strict popularity existence is coNP-
hard and popularity verification is coNP-complete.

Proof To show that strict popularity existence is coNP-hard for min-based and sum-based
SF ACFGs, we consider the same two reductions as in the proofs of Theorems 6 and 7 but
the coalition structures � are not given as a part of the problem instances. Then, there is an
exact cover for B if and only if there is no strictly popular coalition structure. In particular,
if there is an exact cover for B, � and � as defined in the proofs above are in a tie and every
other coalition structure is beaten by �. And if there is no exact cover for B then � beats
every other coalition structure and thus is strictly popular.

Popularity verification for min-based and sum-based SF ACFGs can be shown to be
coNP-complete by using the same constructions as for strict popularity verification (see
Figs. 8 and 9) but reducing the numbers of α-players to 2k−1 and 5k−1, respectively. Then
there is an exact cover for B if and only if �, as defined above, is not popular. ��

Summing up, we have shown that (strict) popularity verification is coNP-complete for
both sum-based and min-based SF ACFGs. For EQ and AL ACFGs, the exact complexity
of (strict) popularity verification remains an open problem but we are confident that the
coNP-completeness also extends to these problems.We leave the (strict) popularity existence
problems open and think that their study is an important direction for future research.

Fig. 9 Network of friends in the proof of Theorem 7 that is used to show coNP-hardness of strict popularity
verification in sum-based SF ACFGs. A dashed rectangle around a group of players indicates that all these
players are friends of each other
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4.5 Perfectness

Turning now to perfectness, we start with the SF model. We give the following simple
characterization of when a coalition structure is perfect.

Theorem 9 For any sum-based or min-based SF ACFG (N ,�) with an underlying network
of friends G, a coalition structure � ∈ CN is perfect if and only if it consists of the connected
components of G and all of them are cliques.

Proof From left to right, assume that the coalition structure � ∈ CN is perfect. It then holds
for all agents i ∈ N and all coalition structures � ∈ CN , � �= �, that i weakly prefers �

to �. It follows that vi (�) ≥ vi (�) for all � ∈ CN , � �= �, and i ∈ N . Hence, every agent
i ∈ N has the maximal valuation vi (�) = n · |Fi | and is together with all of her friends and
none of her enemies. This implies that each coalition in � is a connected component and a
clique.

The implication from right to left is obvious. ��
Since it is easy to check this characterization, perfect coalition structures can be verified in

polynomial time for sum-based andmin-based SFACFGs. It follows directly fromTheorem9
that the corresponding existence problem is also in P.

Corollary 1 For any sum-based or min-based SF ACFG (N ,�) with an underlying network
of friends G, there exists a perfect coalition structure if and only if all connected components
of G are cliques.

Furthermore, we get the following upper bound for general ACFGs.

Proposition 4 For any ACFG, perfectness verification is in coNP.

Proof Consider any ACFG (N ,�). A coalition structure � ∈ CN is not perfect if and only if
there is an agent i ∈ N and a coalition structure � ∈ CN such that � �i �. Hence, we can
nondeterministically guess an agent i ∈ N and a coalition structure � ∈ CN and verify in
polynomial time whether � �i �. ��

Turning to EQ ACFGs, we initiate the characterization of perfectness with the following
implication. (The diameter of a connected graph component is the greatest distance between
any two of its vertices.)

Proposition 5 For any sum-basedEQACFGwith an underlying network of friends G, it holds
that if a coalition structure � is perfect for it, then � consists of the connected components
of G and all these components have a diameter of at most two.

Proof We first show that, in a perfect coalition structure, all agents have to be together with
all their friends. For the sake of contradiction, assume that � is perfect but there are i, j ∈ N
with j ∈ Fi and j /∈ �(i). We distinguish two cases.

Case 1: All f ∈ Fi ∩ �(i) have a friend in �( j). Consider the coalition structure � that
results from the union of �(i) and �( j), i.e., � = � \ {�(i), �( j)} ∪ {�(i) ∪ �( j)}. It holds
that i and all friends of i’s either gain an additional friend in � or their coalition stays the
same: First, i keeps all friends from �(i) and gets j as an additional friend. Hence, i has
at least one friend more in � than in � and we have vi (�) > vi (�). Second, all friends
f ∈ Fi ∩ �(i) have a friend in �( j) and therefore also gain at least one additional friend
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from the union of the two coalitions. Hence, v f (�) > v f (�) for all f ∈ Fi ∩ �(i). Third,
all friends f ∈ Fi ∩ �( j) have i as friend. Hence, they also gain one friend from the union.
Thus v f (�) > v f (�) for all f ∈ Fi ∩ �( j). Finally, all f ∈ Fi who are not in �(i) or
�( j) value � and � the same because their coalition is the same in both coalition structures.
Hence, v f (�) = v f (�) for all f ∈ Fi with f /∈ �( j) and f /∈ �(i). Summing up, we have

usumEQi (�) > usumEQi (�), so i prefers � to �, which is a contradiction to � being perfect.
Case 2: There is an f ∈ Fi ∩ �(i) who has no friends in �( j). Consider the coalition

structure � that results from j moving to �(i), i.e., � = � j→�(i). Let k ∈ Fi ∩ �(i) be one
of the agents who have no friends in �( j). Then vk(�) = vk(�) − 1; vi (�) = vi (�) + n;
for all f ∈ Fk ∩ �(i), f �= i , we have v f (�) ≥ v f (�) − 1; and for all f ∈ Fk, f /∈ �(i)
(and f /∈ �( j)), we have v f (�) = v f (�). Hence,

usumEQk (�) =
∑

a∈Fk∪{k}
va(�) =

∑

a∈Fk∩�(i),a �=i

va(�) +
∑

a∈Fk\�(i)

va(�) + vk(�) + vi (�)

≥
∑

a∈Fk∩�(i),a �=i

va(�) − 1 +
∑

a∈Fk\�(i)

va(�) + vk(�) − 1 + vi (�) + n

=
∑

a∈Fk∪{k}
va(�) − (|Fk ∩ �(i)| − 1) − 1 + n

= usumEQk (�) − |Fk ∩ �(i)|
︸ ︷︷ ︸

<n

+n > usumEQk (�).

Therefore, k prefers � to �, which again is a contradiction to � being perfect.
Next, assume that � is perfect but there is a coalition C in � that has a diameter greater

than two. Then there are agents i, j ∈ C with a distance greater than two. Thus j is an enemy
of i’s and an enemy of all of i’s friends. It follows that i prefers coalition structure � j→∅ to
�, which is a contradiction to � being perfect.

Summing up, in a perfect coalition structure � for a sum-based EQ ACFG every agent is
together with all her friends and every coalition in � has a diameter of at most two. Together
this implies that � consists of the connected components of G and all these components have
a diameter of at most two. ��

By Proposition 5, we know that there is only one candidate partition that might be perfect
in a sum-based EQACFG: the partition consisting of the connected components of the under-
lying network of friends. Furthermore, we identified a necessary condition for its perfectness:
All the components need to have a diameter of at most two. However, this is not a sufficient
condition: The partition consisting of the connected components might be not perfect even
if all components have a diameter of at most two. The following example shows that the
condition is not sufficient and, thus, that Proposition 5 is not an equivalence.

Example 5 Consider the sum-based EQ ACFG (N ,�sumEQ) with the network of friends G
in Fig. 10. The coalition structure � = {N } consists of the only connected component of

Fig. 10 Network of friends for Example 5
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G, which has a diameter of two. However, agent 1 prefers � = {{1, . . . , 6}, {7, 8, 9}} to �

because

usumEQ1 (�) = v1(�) + · · · + v5(�) + v9(�) = (9 · 5 − 3) + 4 · (9 · 2 − 6) + (9 · 3 − 5) = 112

< 113 = (9 · 4 − 1) + 4 · (9 · 2 − 3) + (9 · 2 − 0) = v1(�) + · · · + v5(�) + v9(�)

= usumEQ1 (�).

Hence, � is not perfect.

Still, from Propositions 4 and 5, we get the following corollary.

Corollary 2 For sum-based EQ ACFGs, perfectness existence is in coNP.

We believe that the further investigation of perfectness is important work for the future.
So far, we can, in most cases, easily verify that a partition is not perfect or check that there
is no perfect partition. But in the case that the connected components partition has diameters
of at most two, we don’t know yet how to verify the perfectness of this partition efficiently.

5 Conclusions and open problems

We have proposed to extend the models of altruistic hedonic games due to Nguyen et al. [1]
andWiechers and Rothe [5] to coalition formation games in general. Our extension results in
six types of altruistic coalition formation games (ACFGs):Wedistinguish between sum-based
and min-based aggregation of the friends’ valuations and between three degrees of altruism,
namely selfish first (SF), equal treatment (EQ), and altruistic treatment (AL). We have com-
pared our models to altruistic hedonic games and havemotivated our work by removing some
crucial disadvantages that come with the restriction to hedonic games. In particular, we have
shown that all degrees of our altruistic preferences are unanimouswhile this is not the case for
all altruistic hedonic preferences. Furthermore, all our sum-based degrees of altruism fulfill
two types of monotonicity that are violated by the corresponding hedonic equal-treatment
and altruistic-treatment preferences. For an overview of all properties that we studied, see
Table 2.

Furthermore, we have investigated some common stability notions and have initiated a
computational analysis of the associated verification and existence problems (see Table 3 for
an overview of our results). First, we have studied individual rationality. As for any reasonable
coalition formation game, the individual rationality existence problem is trivial for ACFGs
since the coalition structure consisting of singletons is always individually rational. We have
then provided simple characterizations of individual rationality for all our variants of ACFGs.

Turning to Nash stability, we have shown that Nash stable partitions do always exist for
ACFGs and can be found efficiently. Interestingly, the same coalition structure that is Nash
stable under friend-oriented preferences is also Nash stable under any degree of altruistic
preference. Furthermore, verifying Nash stability is possible in polynomial time for any
ACFG.

We have then studied the notions of core stability and strict core stability. For SF ACFGs,
the coalition structure consisting of the connected components of the underlying network of
friends is always strictly core stable. Yet, this existence result (which, again, also holds for
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friend-oriented preferences) does not carry over to EQ andALACFGs. Indeed, as some of the
most interesting open challenges of our work, we propose to determine the complexity of the
existence problems for core stability and strict core stability for EQ andALACFGs.We know
that these problems are in �

p
2 but it would be interesting to see whether they are even �

p
2 -

complete (as it is the case, e.g., for additively separable hedonic games [28–30]). Concerning
the verification problems, we showed that verifying core stability is coNP-complete for
SF ACFGs. We strongly suspect that these results also carry over to EQ and AL ACFGs.
Potentially, our proofs can be modified to also work for these models but might require some
more involved constructions.

We have also stated several hardness results for (strict) popularity verification and exis-
tence.While our results so far are limited to SFACFGs, we assume that the coNP-hardness of
(strict) popularity verification and existence also carries over to EQ andALACFGs.Wiechers
and Rothe [5] have shown that strict popularity verification is coNP-complete for min-based
AHGs and, recently, Kerkmann and Rothe [8] have shown that popularity and strict popu-
larity verification are actually coNP-complete for all types of AHGs. They also show that
strict popularity existence is coNP-hard for all types of AHGs. These results suggest that
coNP-hardness could also hold for the corresponding verification and existence problems in
EQ and AL ACFGs. We view it as important future work to find out if and to what extent
these results carry over to ACFGs.

Finally, we have investigated perfectness inACFGs.We have pinpointed the complexity of
the verification and existence problem forSFACFGsbut only provided coNPupper bounds on
the complexity of these problems for EQandALACFGs.Wehave provided a characterization
of perfect coalition structures in SF ACFGs that is based on graph-theoretical properties of
the underlying network of friends. Furthermore, we have given some necessary (though not
sufficient) conditions for perfect coalition structures to exist in sum-based EQ ACFGs. For
future work, we propose to find characterizations of perfectness for all altruistic models. An
interesting related result was established by Bullinger and Kober [10]: They have shown that
it is an NP-complete problem to determine an agent’s most preferred coalition in the loyal
variant of a symmetric friend-oriented hedonic game. Since these games are equivalent to
the min-based EQ AHGs by Wiechers and Rothe [5], this result directly transfers to these
AHGs. As determining an agent’s most preferred coalition is closely related to the notion of
perfectness, it would be interesting to see whether the result by Bullinger and Kober [10] can
be modified to also transfer to min-based EQ ACFGs (or to other models of ACFGs).

Summing up, we have introducedACFGs and have pinpointed some axiomatic advantages
in comparison to AHGs. We have initiated the study of several notions of stability, such as
Nash stability, core stability, popularity, and perfectness. Some very interesting questions
for future work are concerned with the existence of (strictly) core stable or (strictly) popular
coalition structures in EQ and AL ACFGs.
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