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A B S T R A C T

This study evaluates the risk associated with capital allocation in cryptocurrencies (CCs) using
a basket of 27 CCs and the CC index EWCI-. We apply basic statistical tests to model the body
distribution of CC returns. Consistent with prior research, the stable distribution (SDI) is the
most suitable model for the body distribution. However, due to less favorable properties in the
tail area for high quantiles, the generalized Pareto distribution is employed. A combination of
both distributions is utilized to calculate Value at Risk and Conditional Value at Risk, revealing
distinct risk characteristics in two subgroups of CCs.

1. Introduction

Following the financial crisis of 2007 and the following period of extreme uncertainty and volatility, trust in the financial system
and its institutions, such as central banks and their monetary policies, were shattered (Kaya Soylu et al., 2020; Bouri et al., 2017a).

Against this background, the market for cryptocurrencies (CCs) started to emerge in 2009 with the development of Bitcoin
by Nakamoto (2008). This innovative peer-to-peer electronic cash system is not accountable to any subordinating institution, but
is managed and controlled by its own community using the blockchain technology. Furthermore, the anonymity and security of
transactions represent another noteworthy feature Bitcoin promises its users (Kakinaka and Umeno, 2020), resulting in increasing
trading volumes and prices (Corbet et al., 2019). This development raises questions for both investors and regulators alike regarding
the CC market’s characteristics and risk profile, which need to be answered for CCs to become an investable asset class for a wide
range of investors (Gkillas and Katsiampa, 2018; Majoros and Zempléni, 2018; Osterrieder et al., 2017) and to provide guidance for
risk management in general (Kakinaka and Umeno, 2020). In this context, this study investigates the question of which family of
distribution functions suitably and most accurately models the returns of CCs. We answer this question using a novel approach to
separate a distribution’s body from its tail proposed by Hoffmann and Börner (2021). By doing so, we are able determine the risk
and statistical properties associated with CCs and provide valuable implications for portfolio management and regulators alike.

Although the technical properties of CCs are well understood, CCs’ behavior remains to be fully comprehended and analyzed. Thus
far, many economic studies have focused on Bitcoin and other prominent CCs such as Ethereum and Ripple since they dominate the
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CC market due to their high proportion of total market capitalization (Glas, 2019). In this regard, Baur et al. (2018) and Glas (2019)
find Bitcoin and other CCs to be uncorrelated with traditional assets in times of financial distress. Additionally, Gkillas et al. (2018),
demonstrate that CC’s behavior also differs from that of fiat currencies. Furthermore, various studies analyze certain characteristics of

Cs, e.g., volatility (Polasik et al., 2015; Balcilar et al., 2017), diversification issues (see, i.a., Brière et al., 2015; Selgin, 2015; Corbet
t al., 2018; Schmitz and Hoffmann, 2020) and safe haven properties (Bouri et al., 2017b; Urquhart, 2018).1 However, to evaluate

the corresponding market risk and to completely understand the whole CC market (with its typical features), we follow a literature
strand of studies analyzing return distributions of different selected CCs. As numerous studies observe nongaussian behavior and
heavy tails in return distributions (Osterrieder et al., 2017; Gkillas et al., 2018; Gkillas and Katsiampa, 2018), a distribution model
accounting for these observed characteristics ought to be implemented. To account for such characteristics (Majoros and Zempléni,
2018; Kakinaka and Umeno, 2020) use stable distributions (SDIs) in their recent studies. This paper is based on these results.
The findings there are reproduced here in an expanded database and possibilities are shown to mitigate the weaknesses of the
concept in the risk assessment, especially in the tail area. However, Kakinaka and Umeno (2020) observe the SDI to be unable to
efficiently grasp the heavy tails of the analyzed return distributions in all scenarios in comparison to other possible distributions.
Given this background, the generalized Pareto distribution (GPD), a statistical distribution that appears to more accurately model
eavy tail properties, is used in further studies (Gkillas et al., 2018; Gkillas and Katsiampa, 2018). Following the approach presented

in Hoffmann and Börner (2021), we therefore attempt to use a combination of both described distributions. Analytically discovering
he beginning of the tail of the analyzed return distributions enables us to divide the given data into a body and a tail, and we

implement a different distribution for each. For the first sample, containing the tail of potential losses, we implement the GPD,
since the literature and our tests show its goodness of fit for estimating tail values. For the remaining body of our data, we apply
the SDI because its fit outperforms that of other possible distributions.

The aim of our study is to add to the existing literature by implementing a novel approach intended to achieve higher quality
modeling of the return distributions observed in the CC market. Furthermore, thus far, most studies have merely been concerned
with analyzing characteristics of Bitcoin or the most prominent CCs, e.g., Ethereum, Ripple and Litecoin (Baur et al., 2018; Bouri
et al., 2017b; Osterrieder et al., 2017; Gkillas et al., 2018; Gkillas and Katsiampa, 2018; Majoros and Zempléni, 2018; Kakinaka
and Umeno, 2020). Therefore, most studies do not consider the entirety of the CC market, which, as Glas (2019) notes, might lead
o potential bias. Hence, we join (Glas, 2019; ElBahrawy et al., 2017; Schmitz and Hoffmann, 2020) in an attempt to provide a

broader overview of the CC market. By doing so, we address two existing gaps in literature identified by Corbet et al. (2019) in
heir extensive literature review. Namely, we extend the number and size of the analyzed data in an attempt to analyze CCs as
n asset class. Furthermore, our research provides practical relevance in the form of an improved risk assessment. By analytically
eparating a distribution’s body from its tail and implementing different distributions, we are able to more precisely estimate risk
easures in form of the value at risk and the conditional value at risk, both of which are important for regulators and investors

like.
The remainder of this paper is structured as follows: In Section 2, we present and describe the data used in our following analysis.

In Section 3, we perform a series of statistical analyses and tests that lead us to the family of SDIs as the best model choice for the
body of the CC return distribution. Based on these findings, Section 4 is concerned with the assessment of the tail risk inherent in an
nvestment in a single CC or the basket aggregated in the EWCI−. We compare both methods of risk assessment at high quantiles. We
irst use the body model and then adapt the GPD as a tail model for risk assessment in terms of the value at risk and the conditional
alue at risk. The last section summarizes our most import results and provides an overview of future research topics.

2. Data

As a starting point of our data collection, we follow different studies in the literature by extracting daily prices of selected CCs.
Central studies were, e.g., Fry and Cheah (2016), Hayes (2017), Brauneis and Mestel (2018), Caporale et al. (2018), Gandal et al.
(2018) and Glas (2019). The relevant data originates from the website coinmarketcap.com (URL: https://coinmarketcap.com) and
is downloaded for each of the 𝑛 = 66 CCs from the Coinmarketcap Market Cap Ranking (reference date: 2014-01-01), see Table 1,
assuming an observation period from 2014-01-01 to 2019-06-01, as it was originally done by Schmitz and Hoffmann (2020) and –
based on this study – also in later derivative works (e.g. by Börner et al. (2022)). We follow both studies and replicate their way
of sample selection (as described above) and data editing (as described below) and thus end up with a replicated version of their
original dataset:

We aim to consider as many CCs as possible from this original sample for our final analyses in order to illustrate a preferably
igh share of the CC market. Nonetheless, we need to exclude all those CCs in the dataset with longer data gaps (here: with five
r more consecutive missing observations). By using a Last Observation Carried Forward (LOCF) procedure, as in Trimborn et al.

(2020) and Schmitz and Hoffmann (2020), we are then able to consider all the remaining CCs (means: those CCs with smaller data
gaps) in our final dataset.

After conducting these steps, we also end up with 27 remaining CCs, (e.g. as in Börner et al. (2022) and Schmitz and Hoffmann
(2020)). These CCs are depicted in Table 1. In the next steps, we are again guided by the procedure described in Schmitz and
Hoffmann (2020): Using the daily USD–EUR exchange rates collected from Thomson Reuters Eikon, the CC price data (originally
denoted in USD) is converted to EUR. Furthermore, the resulting daily prices are converted to weekly prices in a subsequent step to

1 For a more extensive literature review, see Corbet et al. (2019).
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Table 1
Derivation of the dataset under study.
Source: The table is based on an original table by Schmitz and Hoffmann (2020) for an identical market snapshot (full sample and
reduced subsamples), which was also created with cryptocurrency market data by CoinMarketCap.com. The subsampled version
of this original dataset by Schmitz and Hoffmann (2020) was also used in the derivative work of Börner et al. (2022).
Cryptocurrency Sample at 2014-01-01: 𝑛 = 66 CCs
(as in: Schmitz and Hoffmann (2020))

→ Thereof: 𝑛 = 27 CCs considered in the final dataset (printed bold)
(as in: Schmitz and Hoffmann (2020) and Börner et al. (2022))

CC ID CC ID CC ID

Anoncoin ANC FLO FLO Omni OMNI
BitBar BTB Freicoin FRC Peercoin PPC
Bitcoin BTC GoldCoin GLC Primecoin XPM
CasinoCoin CSC Infinitecoin IFC Quark QRK
Deutsche
e-Mark

DEM Litecoin LTC Ripple XRP

Diamond DMD Megacoin MEC TagCoin TAG
Digitalcoin DGC Namecoin NMC Terracoin TRC
Dogecoin DOGE Novacoin NVC WorldCoin WDC
Feathercoin FTC Nxt NXT Zetacoin ZET

→ Thereof: 𝑛 = 39 CCs excluded from the final dataset due to the data gap critereon
(as in: Schmitz and Hoffmann (2020) and Börner et al. (2022))

CC ID CC ID CC ID

Argentum ARG Elacoin ELC Luckycoin LKY
AsicCoin ASC EZCoin EZC MemoryCoin MMC
BBQCoin BQC FastCoin FST MinCoin MNC
BetaCoin BET Fedoracoin TIPS NetCoin NET
BitShares PTS PTS Franko FRK Noirbits NRB
Bullion CBX Globalcoin GLC Orbitcoin ORB
ByteCoin BTE GrandCoin GDC Philosopher

Stones
PHS

CatCoin CAT HoboNickels HBN Phoenixcoin PXC
Copperlark CLR I0Coin IOC SexCoin SXC
CraftCoin CRC Ixcoin IXC Spots SPT
Datacoin DTC Joulecoin XJO StableCoin SBC
Devcoin DVC Junkcoin JKC Tickets TIX
Earthcoin EAC LottoCoin LOT TigerCoin TGC

avoid any possible weekday biases. Moreover, we do not only use our weekly CC prices on an individual CC level, but also calculate
n equally weighted CC index (EWCI), following Schmitz and Hoffmann (2020) to get an aggregated perspective. As we exclude
ore CCs than the beforementioned study, we will call this index EWCI− for a more precise distinction.

Using their respective price data, we follow Börner et al. (2022) and finally calculate logarithmic returns (simply abbreviated as
‘returns’ in the remainder of this study) for all the considered individual CCs and the aggregated 𝐸 𝑊 𝐶 𝐼− index.

3. The return distribution of cryptocurrencies

For an initial classification of CCs, key simple statistics from the standard repertoire of empirical statistics are used below. The
escription and evaluation of additional statistical properties of CCs, for example value at risk or lower partial moments, are carried

out using a suitable distribution function.
Our results show that the family of SDIs is a suitable model for the examined returns of CCs. Hence, this family of distributions

is used in Section 4 for a more in-depth analysis of the statistical properties of CCs.

3.1. Determination of basic key statistical figures of the cryptocurrencies

Standard procedures lead us to estimates of the set of basic key statistical figures: mean 𝜇̂, variance 𝜎̂2 and bandwidth (Table 2).
The returns scatter strongly around a center close to zero. While the variance and thus the standard deviation indicate leptokurtic
behavior and therefore a concentration of returns, the sometimes considerable bandwidth indicates a strong blur of returns over
a wide measurement range. This leads to the preliminary conclusion that the returns of CCs in the middle value range follow a
concentrated distribution that has pronounced fat tails in the outer areas. In particular, the large variance (∼7%) and the bandwidth
(∼300%) of CCs clearly show the completely different character of CCs compared to traditional asset classes. Comparable values
on a weekly basis for the traditional asset classes (stocks, bonds, real estate, etc.) fall in the range of ∼0.02% (variance) or ∼0.1%
(bandwidth) on average. Hence, in comparison there is considerable risk associated with CCs.

Additionally, in this step, we use the Hartigan dip test (Hartigan and Hartigan, 1985) to test the null hypothesis H0 that the
mpirical distribution is unimodal and symmetric. Thus, for each dataset, the Hartigan dip statistics (HDS) are calculated and
3 
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Table 2
Basic key statistical figures and tests on unimodality and symmetry. Units in percent and boolean; see text. Note: Although
Schmitz and Hoffmann (2020) calculate similar descriptive statistics for the same cryptocurrency sample, different results occur
due to the usage logarithmic returns in this work.
Crypto 𝑀 𝑒𝑎𝑛 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐 𝑒 Bandwidth HDS test SIG test

ID 𝜇̂ 𝜎̂2 min max H0 𝑝-value H0 𝑝-value

EWCI− 0.3 1.6 −40.8 37.7 0 79.2 0 10.8
ANC −1.0 14.3 −241.4 162.9 0 99.0 0 17.1
BTB −0.7 11.7 −201.2 150.4 0 97.4 0 37.2
BTC 0.9 1.0 −30.4 42.2 0 99.8 0 59.2
CSC −1.2 30.5 −697.9 169.0 0 92.2 0 51.2
DEM −1.4 9.3 −100.8 145.8 0 99.6 0 85.8
DMD 0.0 4.1 −84.7 102.1 0 99.0 0 43.9
DGC −1.7 9.0 −217.4 116.2 0 96.6 0 31.1
DOGE 0.9 3.7 −60.8 144.9 0 97.6 1 0.1
FTC −0.9 7.6 −144.7 171.7 0 83.2 0 10.8
FLO 0.7 6.8 −67.9 162.2 0 84.8 0 43.9
FRC −0.5 21.3 −332.1 338.9 0 100.0 0 95.3
GLC 0.2 5.6 −74.1 91.0 0 100.0 0 51.2
IFC −0.6 10.6 −126.4 296.1 0 50.0 0 51.2
LTC 0.6 2.1 −34.2 87.5 0 99.0 0 21.1
MEC −1.6 5.6 −112.9 133.1 0 96.6 0 85.8
NMC −0.9 3.0 −110.2 82.4 0 100.0 0 25.8
NVC −1.0 5.5 −235.7 128.2 0 99.6 0 8.4
NXT −0.1 4.2 −83.9 106.5 0 93.8 0 8.4
OMNI −1.4 5.4 −73.1 116.9 0 82.6 0 43.9
PPC −0.9 2.7 −60.2 73.8 0 86.8 0 21.1
XPM −1.0 4.1 −67.7 117.7 0 91.2 1 4.9
ORK −1.1 7.2 −94.1 137.9 0 96.8 0 37.2
XRP 1.1 3.8 −72.9 109.7 0 100.0 1 0.0
TAG −1.1 5.3 −63.6 136.3 0 100.0 0 59.2
TRC −1.0 6.7 −72.7 162.6 0 94.6 0 17.1
WDC −1.6 6.8 −121.7 110.3 0 99.8 0 51.2
ZET −1.0 6.6 −97.7 131.4 0 94.8 0 95.3

evaluated. To test for symmetry, the simple sign test, cf., e.g., Gibbons and Chakraborti (2011), is carried out for each dataset.
The last four columns in Table 2 show the results of both tests.2

The results and especially the high 𝑝-values of the HDS test strongly suggest that all datasets obey a unimodal distribution.
The CC Infinitecoin (IFC) shows the lowest 𝑝-value. This indicates that the empirical distribution could be multimodal. In fact, the
histogram of returns for the IFC suggests a multipeaked nature. There are no indications of a fundamental structural break, and
hence, this tends to be more of a random nature and is due to insufficient statistics (cf. the theorem of Glivenko (1933) and Cantelli
(1933)), which might occur with short samples in particular. When adjusting a unimodal distribution function later in Section 3.3,
we expect a lower quality of the distribution model for the returns of this currency.

Apart from three exceptions, a clear result can also be seen in the SIG test for symmetry of the empirical distribution of returns.
For the vast majority of CCs, the assumption of a symmetrical distribution of returns at a moderately high level of significance
cannot be rejected. While the assumption of a symmetrical distribution of the returns is narrowly rejected for the CC Primecoin
(XPM), the rejection for the CCs Dogecoin (DOGE) and Ripple (XRP) is almost clear. We therefore assume that the distributions are
slightly skewed. Going forward, we assume the returns of the CCs to be concentrated around zero and the empirical distribution to
have a fat tail due to the large bandwidth. Furthermore, we expect the empirical distribution to have a unimodal and essentially
symmetrical shape. We cannot rule out that the datasets in question may be (slightly) skewed. We will take this into account when
selecting and adapting a suitable distribution function in Section 3.3.

3.2. Statistical tests to further reduce the variety of possible distributions

A number of mathematical models are available for the statistical description of CC returns. On the basis of some characteristic
eatures of the dataset, the family of models can be narrowed down, and a suitable family of functions for representing the

distribution can be deduced. In the following, a series of statistical tests are conducted to infer possible function families for the
description of our datasets. The same tests are also carried out for the EWCI− defined in Section 2. In total, 𝑁 = 28 time series are
considered in the tests described below.

Overall, the statistical tests in Section 3.1 and the following are used to examine whether the combined hypothesis that the
datasets have a unimodal, symmetrical and stationary distribution must be rejected. Furthermore, we assess whether the hypothesis

2 Note that for all tests performed in this paper, the following applies: The boolean ‘‘0’’ indicates that the null hypotheses cannot be rejected at the 5% level,
nd alternatively the boolean ‘‘1’’ indicates a rejection.
4 
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Fig. 1. The heatmap reflects the structure of the autoregressive model with drift coefficient 𝑐, deterministic trend coefficient 𝛿, AR(1) coefficient 𝜑 and coefficients
𝛽𝑖 for the lag terms up to ten time shifts for each CC.

of an independent, identical distribution of the individual returns must be rejected, which is an important property required to
specify a distribution function.

The augmented Dickey–Fuller (ADF) test (Dickey and Fuller, 1979; Wooldridge, 2020) is used to test a possible rejection of
the stationarity hypothesis. Finally, the autoregressive conditional heteroskedasticity (ARCH) test according to Engle (Engle, 1982,
2002) is used to check whether the hypothesis of homoskedasticity of the innovation process 𝜖𝑡 for the individual CCs and the EWCI−
must be rejected.

Augmented Dickey–Fuller test
The ADF test is performed considering the autoregressive model for the CC return time series, 𝑦𝑡, of each CC3:

𝑦𝑡 = 𝑐 + 𝛿 𝑡 + 𝜑𝑦𝑡−1 + 𝛽1𝛥𝑦𝑡−1 + 𝛽2𝛥𝑦𝑡−2 +⋯ + 𝛽𝑝𝛥𝑦𝑡−𝑝 + 𝜖𝑡. (1)

with a drift coefficient 𝑐, a deterministic trend coefficient 𝛿, an AR(1) coefficient 𝜑 and the coefficients 𝛽𝑖 for the lag terms 𝑖 = 1,… , 𝑝
up to the order 𝑝 = 10. In Eq. (1) 𝜖𝑡 denotes the innovation process. The aim of the test is to examine the hypothesis of trend
stationarity, i.e., 𝛿 = 0 is the null hypothesis, in the tables denoted by H0; see, e.g., Wooldridge (2020).

The heatmap in Fig. 1 visualizes the structure of the fitted autoregressive model Eq. (1).
We find the deterministic trend coefficient 𝛿 to be comparable to zero in all CCs considered. The results in Table 3 in the first four

columns provide deeper insight. For the vast majority of CCs, the 𝑝-values are comfortably high that a rejection of the null hypothesis
of trend stationarity is not indicated here. However, as can be seen in the table, the ADF test rejects the null hypothesis for the CCs
FLO (FLO), Quark (QRK) and Worldcoin (WDC) at the 5% confidence level. Next, we more closely examine the corresponding trend
coefficients: 𝛿FLO = 1.6e−03, 𝛿QRK = 1.5e−04 and 𝛿WDC = 1.0e−04. Since all the coefficients 𝛿 are close to zero, the influence of a
possible trend is likely to be of significantly less importance. Therefore, in the following, we assume trend stationarity (𝛿 = 0) for
the time series of CCs.

The third column in the heatmap in Fig. 1 illustrates the value of 𝜑. We find the parameter 𝜑 to be greater than 0.9 for all CCs
and, generally, clearly close to 1. The latter is an important condition to be fulfilled for the assumption of a random walk (𝜑 = 1).

The ADF test was performed for lags 𝑝 up to order ten. More complicated dynamics with serial correlation are made apparent
in the analysis by the fact that the coefficients of the terms corresponding to the lags are clearly different from zero.

We find the absolute values of the coefficients (that means |𝛽𝑖|) to be close to zero. In fact, the majority of the absolute coefficients
|𝛽𝑖| are clearly smaller than 0.2 as an upper limit4 and a basic model 𝑦𝑡 = 𝑐 + 𝑦𝑡−1 + 𝜖𝑡 can be assumed (in Table 3, third column
denoted by ‘‘G’’). Only a few single coefficients exceed the value 0.2 do so by a small margin, and in these cases, a model with a
slightly influential lag structure 𝑦𝑡 = 𝑐 + 𝑦𝑡−1 + 𝛽 × (Lag-Structure) + 𝜖𝑡 with an average coefficient 𝛽 = 0.03 could be considered. By
marking the corresponding CCs with ‘‘L’’, Table 3 shows for which CCs this is the case. Due to the observed insignificance of the

3 Note that the returns 𝑟𝑡 are calculated in this notation according to 𝑟𝑡 = 𝑦𝑡 − 𝑦𝑡−1.
4 By similar argumentation as in Wooldridge (2020, Chapter 11 therein), a repeated substitution causes the effectiveness of the corresponding terms to fall

below the 5% mark in the next time step and thus become largely insignificant.
5 
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Table 3
Results of the statistical tests. Units in percent and boolean; see text.
CC ADF test ARCH test Distribution

ID H0 Model 𝑝-value H0 𝑝-value

EWCI− 0 L 29.4 1 0.0 –
ANC 0 G 11.7 0 6.6 IID
BTB 0 L 22.9 1 0.0 –
BTC 0 G 48.7 1 3.1 ≈IID
CSC 0 G 49.2 0 50.8 IID
DEM 0 G 24.0 1 0.0 –
DMD 0 G 75.8 0 18.0 IID
DGC 0 G 11.0 1 0.0 –
DOGE 0 L 14.7 0 69.8 IID
FTC 0 L 14.9 1 0.0 –
FLO 1 L 4.0 0 63.2 ≈IID
FRC 0 L 14.3 0 71.6 IID
GLC 0 G 65.2 0 16.6 IID
IFC 0 G 6.4 0 38.3 IID
LTC 0 G 34.2 0 25.2 IID
MEC 0 G 17.7 1 1.5 ≈IID
NMC 0 G 42.0 0 38.1 IID
NVC 0 G 22.8 0 92.6 IID
NXT 0 L 50.4 1 0.0 –
OMNI 0 G 35.7 0 70.2 IID
PPC 0 G 41.5 1 0.4 ≈IID
XPM 0 G 12.7 0 11.1 IID
QRK 1 L 2.0 1 0.3 ≈IID
XRP 0 L 35.1 1 0.0 –
TAG 0 G 6.0 0 60.4 IID
TRC 0 G 46.0 1 1.9 ≈IID
WDC 1 L 2.5 1 0.0 –
ZET 0 G 22.6 0 6.0 IID

lag structure, we assume a basic model ‘‘G’’ in these cases and expect statistical inaccuracies to distort the result due to the limited
length of the time series. We therefore postulate possible serial correlation in the datasets to be of minor importance. Thus, the
detailed analysis of the results of the ADF test suggest that the model 𝑟𝑡 = 𝑐 + 𝜖𝑡 cannot not be rejected for the returns 𝑟𝑡. Here, 𝑐
denotes the individual time-constant drift term for each CC, and as above, 𝜖𝑡 denotes the innovation process.

Test of autoregressive conditional heteroskedasticity
The ARCH test is performed for time shifts 𝑞 up to the order of ten. Up to this lag, the null hypothesis that the innovation process

f returns is homoskedastic could not be rejected for most CCs (see Table 3); i.e., the basic model 𝜖𝑡 = 𝜎 𝑧𝑡 with constant volatility
𝜎 and 𝑧𝑡 being an independent and identically (IID) distributed process with mean 0 and variance 1 could not be rejected for the
majority of CCs. Note that the results found in literature show a heterogeneous picture, and we do not find ARCH effects in contrast
to other related studies (Peng et al., 2018; Dyhrberg, 2016; Avital et al., 2014). Ultimately, only 13 of 28 time series examined
how ARCH effects. The differences across studies may derive from different sampling frequencies or the differently chosen time
eriod or its length and show that the design of the data collection may influence the results. The aforementioned results would
ustify the following calculation: E[𝑟𝑡] = 𝜇 = 𝑐 and Var[𝑟𝑡] = 𝜎2 for the corresponding CCs. Estimates for the mean and the variance
of the individual returns are noted in Table 2. Their calculation is also justified with the combined consideration of the test results
described above.

When combining the two tests, we noted a characterization of the return distribution in the last column of Table 3. For the
majority of CCs, IID returns can be assumed. Another part is approximately independent and identical distributed (≈IID), because
either the lag structure is less important in the ADF model or the rejection of homoskedasticity based on the 𝑝-value is only weakly
justified. For eight CCs, the assumption of IID returns is clearly rejected.

Note that the test for IID returns could have been performed with a turning point test (Bienaymé, 1874; Kendall and Stuart,
1977). However, as we are interested in a deeper analysis of the possible serial correlation in our datasets, we use a combination
of the ADF test and the ARCH test instead.

All tests conducted thus far do not reject the assumption that the returns obey an essentially symmetrical, unimodal distribution.
Furthermore, for the majority of CCs, the assumption of IID or nearly IID returns holds. In the first case (IID), the modeling
f the empirical distribution with a distribution function is justified. In the second case (≈IID), the model represents a coarser

approximation. In the latter case, if the assumption of IID returns were to be rejected, the distribution function could only be used
s a rough approximation and must be – as in case (≈IID) – examined more precisely and critically in individual cases, as we show
n the following section.
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3.3. Determination of the appropriate return distribution function

When modeling the empirical distribution of returns, we focus on families of unimodal distribution functions that are defined
ver the entire axis (infinite support). Hence, a more detailed investigation of the following distribution functions suggests itself:
ormal distribution (N), the generalized extreme value distribution (GED), the generalized logistic distribution type 0 and type 3
GLD0, GLD3) and the SDI.

The analysis below proves that the family of SDIs is the most suitable alternative for modeling the distributions of the CC returns
under study. The analyses performed thus confirm the results found in the literature (Majoros and Zempléni, 2018; Kakinaka and

meno, 2020). Consequently, we present this family of functions afterwards in more detail.
Following Nolan (2020, Def. 1.4 therein) the SDIs represent a family of distributions appropriate for modeling heavy-tailed

nd skewed data. In this context, it is noteworthy, that the linear combination of two IID and stably distributed random variables
ollows the same distributional characteristics as both individual variables. A random variable 𝑋 follows the SDI 𝑆(𝛼 , 𝛽 , 𝛾 , 𝛿) if its

characteristic function can be defined as follows:

E
[

exp (i𝑡𝑋)
]

=

⎧

⎪

⎨

⎪

⎩

exp
(

i𝛿 𝑡 − |𝛾 𝑡|𝛼
[

1 + i𝛽sign(𝑡) t an
(

𝜋 𝛼
2

)

(

|𝛾 𝑡|1−𝛼 − 1)
])

𝛼 ≠ 1

exp
(

i𝛿 𝑡 − |𝛾 𝑡|
[

1 + i𝛽sign(𝑡) 2
𝜋 ln (|𝛾 𝑡|)

])

𝛼 = 1
(2)

The first parameter of the distribution, 0 < 𝛼 ≤ 2 (named: shape parameter), is used to model the tail of the distribution. The
econd parameter of the distribution, −1 ≤ 𝛽 ≤ +1, is used as a skewness parameter : For 𝛽 < 0 (𝛽 > 0) the distribution is left-skewed

(right-skewed). The distribution is symmetric, if 𝛽 = 0. When 𝛼 is small, the skewness of 𝛽 is significant. As 𝛼 increases, the effect
f 𝛽 decreases. Furthermore, 𝛾 ∈ R+ is used as a scale parameter, and 𝛿 ∈ R is a location parameter.

For the special case of 𝛼 = 2, the SDI’s characteristic function, see Eq. (2), reduces to E [

exp (i𝑡𝑋)
]

= exp (i𝛿 𝑡 − (𝛾 𝑡)2) and therefore
becomes independent of 𝛽, so that the SDI becomes equal to 𝑁 with mean 𝛿 and standard deviation 𝜎 =

√

2𝛾. For a more detailed
description, compare Nolan (2020). For other applications of SDIs in the context of CCs, see, e.g., Börner et al. (2022).

Evaluation of distance measurements to compare model quality
In the following, we use standard distance measures to determine and compare the model qualities of N, GED, GLD0, GLD3

nd SDI for the individual CCs. There are several distance measures available that are suitable to measure the potential differences
etween an empirical distribution function and a modeled distribution function. The distance measures from Cramér (1928) and von
ises (1931) (𝑊 2-Distance), Anderson and Darling (1952, 1954) (𝐴2-Distance) and Kolmogorov (1933) and Smirnov (1936, 1948)

(KS-Distance) are widely used in the literature. A brief summary of the distance measures employed here is given in Appendix A.
In Table 4, we summarize the results for the Anderson–Darling (AD) distance (𝐴2). The results for the Kolmogorov–Smirnov (KS)

distance and the Cramér von Mises (CvM) distance (𝑊 2) are compiled in Tables A.10 and A.11 in Appendix A.
The values of the various distance measures show that the GED is least suitable to model the empirical distribution function.

his may derive from the fact that the GED contains a fundamental skewness, which can only be slightly influenced via parameter
selection. Furthermore, once the shape parameter becomes different from zero, a fundamental change in the distribution model
occurs, and the definition interval on the 𝑥-axis becomes restricted. Additionally, associated with a change in the sign of the shape
parameter is a fundamental change in the distribution model and an abrupt change in the sign of the upper (or lower) bound on
he 𝑥-axis; see, e.g., Embrechts et al. (1997). In the present case, these properties of the GED make it difficult to precisely adapt the

distribution to the dataset.
On closer inspection of the calculated distances, the 𝑁 also does not appear to be suitable as a model, since it is neither suitable for

he modeling of empirical distribution functions with fat tails nor for those with a slight skew. Overall, the GLD0 shows significantly
maller distances across all CCs but is also not ideally suited, as it is completely symmetrical and is therefore not able to model any

slight skewness. The best results in terms of the smallest distance can be achieved with the GLD3 and the SDI. When comparing all
CCs, the corresponding distances are very close to one another. If only the Cramér von Mises distance and KS distance are considered,
see Appendix A, we find that approximately half of the empirical distributions of CC returns can be modeled with one or the other
distribution. However, once more attention is paid to the tail, i.e., if deviations in the tail area should receive comparably higher
weightings to account for tail risks, and the AD distance 𝐴2 is considered, the share of CCs for which the SDI is the most suitable
model predominates.

This result ties in with those of Majoros and Zempléni (2018) and Kakinaka and Umeno (2020). Using intraday and daily time
series for a small sample of CCs, they show the SDI family to be the best choice for modeling the empirical distribution function of
intraday and daily returns of CCs.

For a broader sample of CCs, we found that the SDI is, on average, much better suited to model both slight skewness and
pronounced tails in the empirical distribution function. Therefore, we use the SDI for all CCs to model the distribution function of
returns.
7 
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Table 4
Anderson–Darling Distance for different body model distributions.
CC Anderson–Darling Distance 𝐴2 Best choice

ID N GED GLD0 GLD3 SDI

EWCI− 3.41 147.4 1.76 0.81 0.79 SDI
ANC 8.65 22.4 2.53 1.61 0.39 SDI
BTB 3.36 12.3 0.76 0.48 0.22 SDI
BTC 2.07 224.8 0.88 0.60 0.97 GLD3
CSC 21.80 42.6 3.90 n.d. 0.43 SDI
DEM 2.64 6.7 0.54 0.17 0.20 GLD3
DMD 3.80 23.7 1.25 0.29 0.54 GLD3
DGC 6.84 26.6 2.05 0.65 0.78 GLD3
DOGE 9.56 9.1 4.10 1.77 0.53 SDI
FTC 9.41 14.2 1.77 1.05 0.17 SDI
FLO 1.74 1.5 0.54 0.54 0.32 SDI
FRC 17.36 n.d. 5.21 1.98 0.39 SDI
GLC 1.53 16.8 0.40 0.19 0.42 GLD3
IFC n.d. n.d. 4.79 3.43 2.57 SDI
LTC 7.10 13.7 2.72 0.72 0.71 SDI
MEC 9.19 18.8 3.71 1.25 0.45 SDI
NMC 6.02 60.5 1.73 0.48 0.47 SDI
NVC 17.24 51.3 4.08 1.47 0.47 SDI
NXT 6.69 17.6 2.39 0.96 0.41 SDI
OMNI 1.25 4.4 0.25 0.24 0.24 SDI
PPC 4.93 31.9 1.63 0.61 0.48 SDI
XPM 5.66 5.0 1.53 0.67 0.27 SDI
QRK 6.32 9.5 2.12 0.53 0.52 SDI
XRP 13.90 13.0 5.71 2.79 0.62 SDI
TAG 4.85 5.4 1.23 0.30 0.64 GLD3
TRC 4.36 5.5 0.80 0.45 0.13 SDI
WDC 9.68 24.1 3.95 1.35 0.57 SDI
ZET 5.23 12.3 1.58 0.41 0.48 GLD3

Table 5
Parameters of the SDI and goodness of fit test.
CC Parameter of the SDI 𝑆(𝛼 , 𝛽 , 𝛿 , 𝛾) AD test

ID 𝛼̂ ±𝛥𝛼 𝛽 ±𝛥𝛽 𝛾̂ ±𝛥𝛾 𝛿 ±𝛥𝛿 H0 𝑝-value

EWCI− 1.62 0.18 0.46 0.39 0.07 0.01 −0.01 0.02 0 48.9
ANC 1.41 0.17 0.26 0.31 0.16 0.02 −0.03 0.03 0 85.8
BTB 1.67 0.18 0.38 0.45 0.18 0.02 −0.03 0.04 0 98.3
BTC 1.78 0.16 −0.21 0.61 0.06 0.01 0.01 0.01 0 37.5
CSC 1.45 0.18 0.27 0.32 0.16 0.02 −0.04 0.03 0 81.4
DEM 1.65 0.18 −0.04 0.45 0.17 0.02 −0.01 0.03 0 99.0
DMD 1.56 0.18 0.10 0.39 0.11 0.01 −0.01 0.02 0 70.7
DGC 1.57 0.18 0.31 0.38 0.14 0.02 −0.04 0.03 0 49.7
DOGE 1.33 0.17 0.35 0.27 0.08 0.01 −0.02 0.02 0 72.0
FTC 1.63 0.18 0.54 0.38 0.12 0.01 −0.05 0.03 0 99.7
FLO 1.88 n.d. 1.00 n.d. 0.16 n.d. −0.02 n.d. 0 92.3
FRC 1.24 0.16 0.06 0.26 0.13 0.02 −0.02 0.03 0 86.0
GLC 1.80 0.16 0.43 0.63 0.15 0.02 −0.02 0.03 0 82.5
IFC 1.47 0.18 0.25 0.33 0.12 0.01 −0.04 0.02 1 4.6
LTC 1.37 0.17 0.06 0.30 0.06 0.01 −0.01 0.01 0 55.2
MEC 1.25 0.16 −0.01 0.26 0.09 0.01 −0.02 0.02 0 79.9
NMC 1.48 0.18 0.07 0.34 0.08 0.01 −0.01 0.02 0 78.0
NVC 1.42 0.17 0.28 0.31 0.08 0.01 −0.03 0.02 0 77.5
NXT 1.48 0.18 0.37 0.32 0.10 0.01 −0.03 0.02 0 83.8
OMNI 1.82 0.16 0.26 0.71 0.14 0.01 −0.03 0.03 0 97.7
PPC 1.50 0.18 0.10 0.35 0.08 0.01 −0.02 0.02 0 76.8
XPM 1.58 0.18 0.42 0.37 0.10 0.01 −0.04 0.02 0 95.6
QRK 1.45 0.18 0.17 0.33 0.12 0.02 −0.03 0.02 0 72.6
XRP 1.33 0.17 0.35 0.27 0.07 0.01 −0.03 0.01 0 63.2
TAG 1.63 0.18 0.10 0.44 0.12 0.01 −0.02 0.02 0 61.1
TRC 1.64 0.18 0.29 0.43 0.13 0.02 −0.04 0.03 0 99.9
WDC 1.26 0.16 0.08 0.26 0.10 0.01 −0.03 0.02 0 67.2
ZET 1.53 0.18 0.15 0.36 0.13 0.02 −0.02 0.03 0 76.5

The stable distribution family as a model for cryptocurrencies

Table 5 shows the results of the parameter estimation for the SDI 𝑆(𝛼 , 𝛽 , 𝛿 , 𝛾).
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Fig. 2. The empirical densities and the results of the modeling of the distributions with the family of SDIs can be seen for the EWCI− and selected CCs.

For the individual parameters of the SDI, the 95% scatter intervals are also provided. The latter can be determined from the
covariance matrix of the estimated parameters. The covariance matrix of the parameter estimates is a matrix in which the off-
diagonal element (𝑖, 𝑗) resembles the covariance between the estimates of the 𝑖th parameter and the 𝑗th parameter. For the CC FLO,
these scatter intervals cannot be determined numerically using the dataset at hand. This is because the corresponding empirical
distribution on the far right shows a very long, pronounced tail and is strongly skewed to the right. The estimated parameter 𝛽 of
the SDI accordingly takes a value of 1; see Table 5. It may be the case that the single right tail data point, i.e., the return in period
62, represents an outlier, which is difficult to determine and correct afterwards without any further knowledge.

On average, the estimated parameter 𝛼̂ exceeds 1.5. With parameter 𝛼 increasing to its limit value of 2.0, it can be seen that
the distribution function becomes similar to the 𝑁 and the skewness parameter (𝛽 ≠ 0) becomes increasingly insignificant. The
parameters 𝛽 and 𝛼 of the SDI are mutually dependent, and as described above, the meaning of 𝛽 decreases when 𝛼 increases.
Thus, it is generally difficult to infer the skewness from the value 𝛽 alone. A relative comparison of the distributions with respect
to skewness is only possible if 𝛼 has the same value. Hence, for a more precise analysis of a distribution’s skewness, other methods
are necessary. In this manner, we used the SIG test as an example and noted the results in Table 2.

For some CCs and the EWCI− index, Fig. 2 shows the empirical densities and the density of the corresponding SDI in comparison.
In addition, the complete AD goodness-of-fit test was performed. The last two columns of Table 5 show that for almost all CCs

with very high significance (high 𝑝-values), the null hypothesis that the adjusted SDI models the dataset cannot be rejected. Only for
the CC IFC this assumption is rejected at the 5% level. This is probably because the empirical distribution suggests a slight bimodal
distribution. This peculiarity of the CC IFC is also indicated in the results of the HDS test in Table 2.

Overall, the SDI family represents a suitable framework for modeling the distribution function of CC returns. We will exploit this
finding for the assessment of tail risks and the comparison of our results with other modeling approaches.

4. Assessment of tail risks

4.1. Modeling of cryptocurrencies’ tail risks

Especially when considering high quantiles in the risk assessment process, we follow e.g. Hoffmann and Börner (2020a, 2021)
and make use of a separated modeling of the parent distribution’s tail. In practice, the GPD is used predominantly as a tail model for
such a modeling (Basel Commitee on Banking Supervision, 2009). Henceforth, we briefly discuss the main steps of the tail modeling
using the GPD in this section.

It is well known and studied that for a wide class of distribution functions, GPD is suitable as a model for the limiting distribution
in the tail region if the tail truncating threshold 𝑢 is large enough (Gnedenko, 1943; Balkema and de Haan, 1974; Pickands, 1975).

The GPD is a distribution with (typically) two input parameters and follows the distribution function (Embrechts et al., 1997;
McNeil et al., 2015):

( 𝑥)− 1
𝜉
𝐹 (𝑥) = 1 − 1 + 𝜉

𝜎
, (3)
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Table 6
Parameters of the GPD and goodness of fit test for the loss tail. Units in percent.
CC 𝑃 𝑟𝑜𝑝. GPD Parameter Goodness of Fit

ID 𝑢̂ 𝜉 𝜎̂ 𝑝-values

LT CvM AD

EWCI− 45.7 −1.7 −0.09 0.09 88.0 84.9 92.6
ANC 4.3 −52.0 −0.08 0.61 98.5 98.1 93.9
BTB 4.3 −51.0 0.63 0.13 99.0 96.1 98.1
BTC 24.1 −3.9 −0.30 0.10 93.0 97.5 98.1
CSC 9.9 −35.5 0.82 0.11 96.7 99.7 94.3
DEM 51.4 −1.3 −0.05 0.22 54.2 58.2 60.8
DMD 4.3 −32.5 0.04 0.13 94.5 89.0 93.2
DGC 10.3 −31.7 0.61 0.08 99.8 99.6 99.5
DOGE 21.6 −9.2 0.13 0.09 99.1 99.4 98.9
FTC 3.5 −37.0 0.99 0.05 99.7 99.4 93.7
FLO 16.3 −20.3 −0.25 0.17 93.9 91.5 89.2
FRC 11.0 −28.8 0.28 0.31 98.8 98.3 99.6
GLC 51.8 0.2 −0.19 0.20 99.9 99.9 100.0
IFC 20.9 −18.2 0.55 0.07 55.0 70.4 52.8
LTC 44.3 −0.7 −0.18 0.11 57.5 67.7 54.1
MEC 56.4 0.0 0.16 0.12 99.8 99.2 93.3
NMC 46.1 −1.9 0.15 0.09 78.0 95.7 94.0
NVC 9.2 −19.3 0.72 0.05 77.2 93.6 86.0
NXT 2.8 −34.6 1.27 0.03 60.1 76.7 67.7
OMNI 15.2 −23.0 −0.11 0.14 95.9 96.2 97.1
PPC 8.5 21.3 0.00 0.09 96.7 97.1 98.8
XPM 4.6 29.5 −0.08 0.12 91.4 93.1 96.7
QRK 63.5 −1.6 0.05 0.16 47.7 60.8 61.1
XRP 2.8 −25.6 0.76 0.04 99.2 98.8 99.1
TAG 53.2 −0.5 −0.13 0.17 91.2 92.7 96.8
TRC 35.5 −9.9 −0.06 0.15 64.2 70.9 81.0
WDC 62.8 0.8 0.18 0.13 94.8 94.4 88.9
ZET 20.9 −17.8 0.27 0.11 59.8 83.6 82.5

where 𝜎 > 0 is the scale parameter and 𝜉 is the shape parameter (a.k.a. tail parameter). The density function is described as

𝑓 (𝑥) = 1
𝜎

(

1 + 𝜉 𝑥
𝜎

)− 1+𝜉
𝜉 , (4)

with 0 ≤ 𝑥 < ∞ for 𝜉 ≥ 0 and 0 ≤ 𝑥 ≤ − 𝜎
𝜉 when 𝜉 < 0. The mean and variance are depicted as E[𝑥] = 𝜎

1−𝜉 and Var[𝑥] = 𝜎2

(1−𝜉)2(1−2𝜉) ,
respectively.

After the foundations of the GPD were introduced by Pickands (1975), not only theoretical advancements, but also practical
pplications were built on this work (Davison, 1984; Smith, 1984, 1985; van Montfort and Witter, 1985; Hosking and Wallis, 1987;

Davison and Smith, 1990; Embrechts et al., 1997; Choulakian and Stephens, 2001; McNeil et al., 2015; Hoffmann and Börner,
2020a,b, 2021). Besides applications in engineering, the GPD is also the most widely used and recommended distribution function
in finance for risk assessment at high quantiles (Embrechts et al., 1997; McNeil et al., 2015; Basel Commitee on Banking Supervision,
2009).

For the means of parameter estimation, the standard maximum likelihood method is the standard approach in the related
literature (Davison, 1984; Smith, 1984, 1985; Hosking and Wallis, 1987; Embrechts et al., 1997). This method is also used here
to separately estimate the parameters of the tail distributions of all CC return series under study (belonging to the 27 single CCs
and the EWCI− index). Nevertheless, a plausibility check of the results is highly recommended. As we show in Section 4.2, when
assessing tail risks, it is advisable to evaluate the results to avoid possible misinterpretations in individual cases.

In the course of a separated tail modeling, we now only need to consider data points, which belong to the tail area of the
nderlying empirical distribution function, i.e., the data that belongs to the area below a threshold 𝑢 in case of the loss tail, for
he parameter estimation of the GPD. The correct determination of the threshold 𝑢 is of crucial importance. Following Hoffmann

and Börner (2020a, 2021), the recently developed fully automated process that does not require any user intervention or additional
arameters is used, to determine the threshold 𝑢. A brief description of the procedure is given in Appendix B.

Table 6 depicts the estimated parameters of the GPD for the different CCs. The second column reports the proportion of the
hole dataset belonging to the loss tail. The proportion of the return data below the threshold 𝑢̂ is used to fit the parameters 𝜉 , 𝜎
f the GPD. The threshold value lies within the bandwidth shown in Table 2 and when considering the loss tail closer to the lower

interval limit of the bandwidth. Due to the results of different standard goodness of fit tests (here: CvM and AD), the null hypothesis
that the GPD is a suitable model for the tail of the CC return distribution cannot be rejected at any significance level. In addition,
the 𝑝-values for the lower tail (LT) statistics according to Ahmad et al. (1988) are given in Table 6. The corresponding statistic 𝐴𝐿2

is defined in Appendix B and used here to determine the threshold value 𝑢. As can be seen in column six of Table 6, the LT statistics
lso present high confidence levels.
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Table 7
Value at risk of the CCs for different confidence levels and different calculation methods. Losses with a positive sign and units
in percent.
CC Value at risk

empirical Tail model (GPD) Body model (SDI)

ID 95% 97% 99% 99.9% 95% 97% 99% 99.9% 95% 97% 99% 99.9%

EWCI- 26 29 38 41 19 23 30 43 18 22 33 116
ANC 101 133 212 241 42 73 136 252 46 60 119 582
BTB 75 91 154 201 49 56 82 251 47 55 82 276
BTC 21 24 28 30 16 19 24 31 15 18 28 91
CSC 117 166 424 698 46 58 110 595 47 61 116 535
DEM 72 84 100 101 51 61 82 122 48 60 100 367
DMD 44 52 72 85 30 37 52 85 30 38 69 280
DGC 65 82 153 217 39 46 71 229 40 49 81 314
DOGE 36 43 56 61 23 29 42 77 23 31 64 343
FTC 50 60 109 145 36 38 50 205 32 37 53 177
FLO 49 54 66 68 38 44 55 70 37 42 52 68
FRC 110 142 256 332 57 78 136 333 54 79 185 1159
GLC 49 55 68 74 38 44 56 74 36 42 56 140
IFC 61 77 114 126 34 43 75 251 35 45 82 365
LTC 27 31 34 34 20 24 31 41 21 30 62 321
MEC 59 71 99 113 37 46 70 137 38 56 128 787
NMC 42 50 92 110 27 34 51 97 25 33 63 284
NVC 47 63 141 236 23 28 46 188 24 31 59 278
NXT 42 48 78 84 33 34 42 210 27 33 59 258
OMNI 48 55 67 73 37 43 55 76 37 42 56 142
PPC 35 40 55 60 26 31 41 61 25 33 60 258
XPM 40 46 62 68 29 35 47 70 27 33 51 191
QRK 62 71 91 94 41 50 70 117 38 50 96 440
XRP 30 36 57 73 24 25 32 85 22 30 61 330
TAG 47 53 62 64 35 41 53 73 34 42 69 252
TRC 51 57 69 73 37 44 57 83 36 44 68 238
WDC 64 79 109 122 39 50 76 150 40 57 128 769
ZET 59 73 91 98 37 46 70 151 37 47 85 357

Table 8
Average deviation from the empirical value at risk and scattering.

𝛥VaR Confidence levels

95% 97% 99% 99.9%

Mean GPD ./. Emp. 0.5 −0.2 −4.6 15.5
SDI ./. Emp. −0.3 0.4 10.5 214.1

SD GPD ./. Emp. 2.4 2.1 7.3 43.1
SDI ./. Emp. 1.8 4.1 19.3 211.7

4.2. Risk assessment at high quantiles

In this section, we use the SDI as the body model and the GPD as the tail model to determine the risk parameters of value at
isk (as a quantile) and the conditional value at risk (as a weighted loss when the loss threshold is exceeded); see, i.a., Embrechts

et al. (1997) and Hull (2018). The dataset includes 𝑇 = 282 return observations for each CC, so that a comparison of the results
ith the empirically determined values is possible for moderately high confidence levels (≈99%). The corresponding values for the

confidence level of 99.9%, which is important for regulatory purposes (Basel Commitee on Banking Supervision, 2004; European
Parliament, 2009, 2013a,b), can only be estimated for data records of this length using a previously fitted body or tail model. The
calculation of the quantiles is also subject to a statistical spread, and the estimation error increases the fatter the tail is and the
higher the confidence level selected; see, e.g., Hoffmann and Börner (2020b).

Value at risk
Table 7 illustrates the results of the risk assessment for the most common confidence levels found in literature and regulatory

equirements. The value at risk for the observed CCs is shown for the various models. Overall, in the overwhelming number of
individual cases, the assessment of risk with the tail model (GPD) is closer to the empirical value at risk values. This applies to the
ower confidence levels in particular, but even a high confidence level of 99.9%, better estimates are possible in individual cases
han with the body model. This becomes apparent from the statistical parameters of the deviation analysis shown in Table 8. The

mean value and standard deviation over the set of CCs are shown. For this purpose, the deviation between the modeled variable
and the corresponding empirical value at risk was determined. On average, adopting the GPD as the tail model leads to better risk
stimates.
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Fig. 3. The empirical distribution function and the distribution function modeled with the SDI can be seen for the EWCI− and an example CC (left panels). The
right graphics focus on the loss tail. The GPD adopted as a tail model and the confidence levels that are important for the regulator are also shown.

When comparing CCs with one another, a heterogeneous picture emerges; see Table 7. If the empirical value at risk for the
99.9% confidence interval is taken as a measure, two subgroups can be defined for the cutoff value VaR99.9% ≈ 100%. One group
possesses a significant LT risk (VaR99.9% < 100%) as the corresponding 𝜉 values in Table 6 indicate. The other group (VaR99.9% >
100%) partly embodies a significantly higher tail risk. Correspondingly, large 𝜉 values can be determined for these CCs.

Fig. 3 shows the empirical distribution function for the EWCI− and Bitcoin (BTC), the SDI as a body model and the GPD as a tail
model in comparison. The graphics on the right portray an enlargement of the loss area. Particularly in this region, the GPD models
the empirical distribution function very well. Considering the analysis above, we find that the GPD is ideally suited to conduct risk
assessment at high quantiles. Therefore, we exclusively consider the GPD to estimate the conditional value at risk as a further risk
indicator in the following.

Conditional value at risk
The following Table 9 shows the conditional value at risk calculated with the tail model (see Table 6) for the individual CCs.

The calculation of the conditional value at risk can be conducted using the mean excess function of the GPD:

𝑒(𝑣) = 𝜎 + 𝜉 𝑣
1 − 𝜉

, (5)

with 𝑣 being greater than the lower bound of the definition interval of the GPD to consider the loss tail and the parameters 𝜎 , 𝜉 of
the GPD. The mean excess function is bound to the restrictions 𝜉 < 1 and 𝜎 + 𝜉 𝑣 > 0; see, e.g., Embrechts et al. (1997, Theorem
3.4.13). In Table 9, we used Eq. (5) to estimate the conditional value at risk for each CC, setting 𝑣 = VaR𝑝%.

Again, the grouping of CCs described above can be seen. A group of CCs with a fat tail and therefore higher tail risk can be
distinguished from a group with moderate risk; see Table 9. Furthermore, two peculiarities are noticeable concerning the CCs
Feathercoin (FTC) and Nxt (NXT). For both CCs, the tail is modeled on a small number of data points that have been assigned
to the tail. This individual property of the dataset deriving from the random distribution of the data in the tail area is assumed to be
given and, as noted above, is not corrected. In particular, when estimating the parameter 𝜉, small samples lead to large statistical
errors. Regrading the conspicuous CCs, the parameter is very close to 1 in one case (FTC) and even higher in the other case (NXT),
see Table 6. As a result, the calculation of the conditional value at risk for the CC NXT is not possible and must be discarded; cf.
q. (5) and the restriction 𝜉 < 1. On the other hand, the calculation of the FTC with 𝜉 ≈ 1 has to be questioned critically. Hence,
he conditional value at risk may only be a rough estimate in this case.

5. Conclusion

The aim of this study is to find a distribution that most accurately models CC returns and does not suffer from restrictions in
specific parts of the distribution. In former research, the SDI and GPD have been found to adequately model the body and the
tail of the CC return distributions, respectively. Nevertheless both distributions prove to be unsuitable to appropriately model the
12 
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Table 9
Conditional value at risk of CCs for different confidence levels calculated with the corresponding tail model
(GPD). Losses with a positive sign and units in percent.
CC Conditional value at risk
ID 95% 97% 99% 99.9%

EWCI- 25 29 35 47
ANC 96 125 184 292
BTB 169 188 258 717
BTC 20 23 26 31
CSC 308 374 655 3 294
DEM 70 79 99 138
DMD 45 52 68 102
DGC 118 136 200 600
DOGE 37 43 59 98
FTC 3219 3408 4343 16 648
FLO 44 49 58 69
FRC 122 151 231 504
GLC 49 54 64 79
IFC 91 112 181 571
LTC 26 29 35 44
MEC 59 70 99 178
NMC 43 51 71 125
NVC 99 115 180 679
NXT −134 −138 −165 −784
OMNI 46 51 62 80
PPC 35 40 49 70
XPM 38 43 55 76
QRK 59 69 90 140
XRP 114 121 147 367
TAG 46 52 62 80
TRC 49 55 68 92
WDC 63 76 107 197
ZET 66 79 112 223

entirety of the distribution. Therefore, using a novel approach to separate the distribution’s tail from its body, we model the entire
istribution by combining the model abilities of the SDI for the body and the GPD for the tail.

We select 27 CCs from the broad market of CCs according to predefined criteria and construct the representative index EWCI−.
Overall, we find independent, identical distributions such as the GPD and the SDI to be well suited for the most part and the family
of SDIs in particular to be able to model the slightly skewed empirical distributions, especially in the body region. A comparison
between different distribution functions shows that the SDI has outstanding modeling properties across the entire dataset. However,
we show that the assessment of risks associated with fat tails can be performed more precisely with the GPD. The analysis of tail
risks in the CC market using the GPD further hints at a certain internal structure of the CC market. The CC market can roughly be
divided into two sets: CCs with moderate risk and CCs with high risk. This finding provides valuable information for both investors
and regulators alike. Hence, our results are not only relevant for scientific applications and extensions but also for conceivable
future regulation if the CC asset class is to become a permanent, noteworthy component of institutional investors’ portfolios in the
financial sector in the future. In this regard, numerous future extensions and research topics are conceivable. On the one hand,
the SDI’s suitability to model CC returns in portfolio optimization remains to be investigated. On the other hand, further research
onsidering the segmentation of the CC market could enrich the understanding of CCs and improve forecasts concerned with the
undamental behavior of different CCs.
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Table A.10
Cramér von Mises Distance for different body model distributions.
CC Cramér von Mises Distance 𝑊 2 Best choice

ID N GED GLD0 GLD3 SDI

EWCI− 0.62 29.89 0.23 0.07 0.12 GLD3
ANC 1.51 4.25 0.41 0.24 0.06 SDI
BTB 0.55 2.22 0.11 0.06 0.04 SDI
BTC 0.40 41.81 0.16 0.11 0.19 GLD3
CSC 3.94 8.22 0.60 0.15 0.09 SDI
DEM 0.43 1.20 0.08 0.02 0.04 GLD3
DMD 0.70 5.19 0.22 0.05 0.10 GLD3
DGC 1.21 5.33 0.33 0.06 0.14 GLD3
DOGE 1.86 1.70 0.64 0.20 0.07 SDI
FTC 1.54 2.37 0.21 0.09 0.03 SDI
FLO 0.29 0.23 0.07 0.07 0.05 SDI
FRC 3.26 6.35 0.94 0.33 0.07 SDI
GLC 0.27 3.66 0.06 0.02 0.08 GLD3
IFC 2.92 4.43 0.91 0.72 0.58 SDI
LTC 1.35 2.98 0.46 0.11 0.12 GLD3
MEC 1.75 3.78 0.67 0.22 0.06 SDI
NMC 1.11 13.40 0.32 0.08 0.09 GLD3
NVC 3.09 10.46 0.65 0.17 0.09 SDI
NXT 1.20 3.57 0.33 0.09 0.07 SDI
OMNI 0.18 0.84 0.03 0.04 0.04 GLD0
PPC 0.88 7.07 0.26 0.09 0.08 SDI
XPM 0.99 0.86 0.20 0.05 0.05 SDI
QRK 1.15 1.74 0.36 0.08 0.10 GLD3
XRP 2.57 2.44 0.79 0.28 0.09 SDI
TAG 0.87 0.94 0.22 0.04 0.13 GLD3
TRC 0.71 0.96 0.09 0.04 0.02 SDI
WDC 1.80 5.03 0.70 0.23 0.10 SDI
ZET 0.92 2.33 0.25 0.05 0.09 GLD3

Appendix A. Distance measures – Tables of results

A.1. Distance measures

In what follows, a brief summary of the used distance measures is given.

Cramér von Mises and Anderson–Darling distance measures
Following Hoffmann and Börner (2020a, 2021), our first choice to measure the distance between the empirical distribution

unctions 𝐹𝑛(𝑥) (Kolmogorov, 1933) and a model 𝐹 (𝑥), is a weighted mean square error calculated as

𝑅̂𝑛 = 𝑛∫

+∞

−∞

(

𝐹𝑛(𝑥) − 𝐹 (𝑥)
)2 𝑤(𝐹 (𝑥)) d𝐹 (𝑥) (A.1)

and originally introduced by Cramér (1928), von Mises (1931) and Smirnov (1936) in the context of statistical (hypothesis)
testing, cf. also Shorack and Wellner (2009). From a more decision-theoretical point of view (Ferguson, 1967), numerous studies
also used the weighted mean square error as an application to determine distribution parameters by using minimum distance
approaches (Wolfowitz, 1957; Blyth, 1970; Parr and Schucany, 1980; Boos, 1982). This measure of error is also used when adapting
tail models (Hoffmann and Börner, 2020a, 2021). Therefore, in Section 4.1, we applied this distance measure in connection with the
adaption of a suitable tail model for CC returns. A brief overview of the procedure to fit a suitable tail model is given in Appendix B.

Using a (non-negative) weight function 𝑤(𝑡), the formula in Eq. (A.1) is able to consider the differences between the dif-
ferent distribution functions more accentuated in those areas, where the respective distance measure should be particularly
sensitive (Hoffmann and Börner, 2020a, 2021). Usually the weight function

𝑤(𝑡) = 1
𝑡𝑎(1 − 𝑡)𝑏

(A.2)

with parameters 𝑎, 𝑏 ≥ 0 and 𝑡 ∈ [0, 1] is considered. Here, 𝑎 affects the weight at the lower tail and 𝑏 at the upper tail. For
= 𝑏 = 0, Eq. (A.1) provides the CvM distance 𝑊 2 used in the corresponding statistic (Cramér, 1928; von Mises, 1931). For the case

of 𝑎 = 𝑏 = 1 (means: a heavy weighting of the tail area), the resulting expression becomes equal to the AD distance 𝐴2, which is
used in the corresponding statistic by Anderson and Darling (1952, 1954). Thus, potential differences between the two distributions
n the upper and lower tails of the distribution 𝐹 (𝑥) have a higher weighting in the calculation of the AD distance.

The results for the AD distance are shown in Table 4 in the main text in Section 3.3.
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Table A.11
Kolmogorov–Smirnov distance for different body model distributions.
CC Kolmogorov–Smirnov Distances KS Best choice

ID N GED GLD0 GLD3 SDI

EWCI− 0.100 0.509 0.063 0.043 0.051 GLD3
ANC 0.132 0.233 0.069 0.070 0.047 SDI
BTB 0.087 0.156 0.056 0.037 0.042 GLD3
BTC 0.077 0.591 0.058 0.047 0.060 GLD3
CSC 0.179 0.296 0.085 0.053 0.047 SDI
DEM 0.071 0.127 0.048 0.027 0.039 GLD3
DMD 0.094 0.233 0.056 0.039 0.050 GLD3
DGC 0.117 0.241 0.066 0.034 0.045 GLD3
DOGE 0.159 0.132 0.099 0.053 0.042 SDI
FTC 0.134 0.141 0.061 0.045 0.031 SDI
FLO 0.069 0.060 0.036 0.035 0.038 GLD3
FRC 0.166 0.250 0.097 0.061 0.047 SDI
GLC 0.072 0.190 0.038 0.025 0.040 GLD3
IFC 0.194 0.251 0.142 0.144 0.106 SDI
LTC 0.133 0.184 0.077 0.043 0.058 GLD3
MEC 0.144 0.206 0.096 0.070 0.041 SDI
NMC 0.095 0.368 0.056 0.040 0.037 SDI
NVC 0.167 0.338 0.092 0.052 0.042 SDI
NXT 0.134 0.196 0.077 0.051 0.039 SDI
OMNI 0.052 0.113 0.028 0.031 0.036 GLD0
PPC 0.109 0.262 0.063 0.048 0.053 GLD3
XPM 0.116 0.095 0.055 0.048 0.035 SDI
QRK 0.108 0.139 0.073 0.048 0.048 SDI
XRP 0.171 0.168 0.101 0.061 0.039 SDI
TAG 0.101 0.103 0.056 0.037 0.048 GLD3
TRC 0.099 0.120 0.039 0.033 0.023 SDI
WDC 0.144 0.236 0.103 0.075 0.052 SDI
ZET 0.123 0.154 0.077 0.049 0.047 SDI

Kolmogorov–Smirnov distance measure
Furthermore, we also determine the well-known distance between the empirical distribution function and the distribution model

of Kolmogorov (1933) and Smirnov (1936, 1948). The KS distance calculates the supremum of the absolute difference between
the empirical and the estimated distribution functions. Hence, the KS distance quantifies possible differences between both the
theoretically assumed and the empirically observed distribution functions of the CC returns under study. A more theoretical overview
and comparisons to other distance measures can be found in, e.g. Stephens (1974), Shorack and Wellner (2009).

Appendix B. F indTheTail – Determining threshold 𝒖

As a foundation of our CC tail modeling application, we start with the common assumption, that there is a threshold 𝑢, which
divides the underlying (parent) distribution into a body and a tail as separately modeled areas (Embrechts et al., 1997; McNeil
et al., 2015; Hoffmann and Börner, 2021). This separation is a common approach to capture high quantiles of distributions more
accurately (European Parliament, 2009).

Various authors have proposed methods for determining the appropriate threshold 𝑢 and subsequently the GPD as a model for
he tail from empirical data. Most methods require the setting of parameters, which often requires experience and hinders full
utomation of the modeling process. We follow Hoffmann and Börner (2020a, 2021) and use their full automated process for the

determination of the threshold 𝑢 and the parametrization of the tail model.
Starting with a suitable distance measure 𝑅̂𝑛 = 𝑅̂𝑛(𝐹𝑛, 𝐹 ) as a function of the estimated GPD 𝐹 (𝑥) and the empirical

istribution function 𝐹𝑛 (Kolmogorov, 1933), an automated modeling process can be constructed using the following pseudo
algorithm (Hoffmann and Börner, 2020a, 2021):

1. We arrange the (random) sample data, which is assumed to be drawn from an unknown (parent) distribution, in a descending
order: 𝑥(1) ≥ 𝑥(2) ≥ ⋯ ≥ 𝑥(𝑛).

2. Assuming 𝑘 = 2,… , 𝑛, we now estimate the parameters of the GPD for each 𝑘. (Note: For numerical reasons, the process starts
at 𝑘 = 2).

3. We then calculate the probabilities 𝐹 (𝑥(𝑖)) for 𝑖 = 1,… , 𝑘 with the estimated GPD, and determine the distance 𝑅̂𝑘 for
𝑘 = 2,… , 𝑛.

4. At last, we identify the index 𝑘∗, which is relevant for the minimum distance 𝑅̂𝑘.

Building on this beforementioned algorithm, we can now estimate the optimal threshold (𝑢̂ = 𝑥(𝑘∗)), and finalize the tail modeling
of our unknown (parent) distribution, which is here proxied by the estimated GPD 𝐹 (𝑥) derived from the abovementioned subset
𝑥 ≥ 𝑥 ≥ ⋯ ≥ 𝑥 .
(1) (2) (𝑘∗)
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As proposed by Hoffmann and Börner (2020a, 2021) the distance measure defined by Ahmad et al. (1988) is used in the algorithm
above. This distance measure is also based on the weighted mean square error, Eq. (A.1), and can be noted in two variants. The two
variants of the distance measure of Ahmad et al. (1988) are derived from Eq. (A.1) when the integral is calculated with the weight
functions Eq. (A.2) and (𝑎, 𝑏) = (1, 0) for the lower tail (= 𝐴𝐿2) and (𝑎, 𝑏) = (0, 1) for the upper tail (= 𝐴𝑈2). With the asymmetrical

eight function defined so far the distance measure 𝑅̂𝑛 take more account of the difference between the measured and the modeled
ata, especially in the tail region.
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