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Abstract

Weighted voting games are a well-studied class of succinct simple games that can be used to
model collective decision-making in, e.g., legislative bodies such as parliaments and share-
holder voting. Power indices [1-4] are used to measure the influence of players in weighted
voting games. In such games, it has been studied how a distinguished player’s power can be
changed, e.g., by merging or splitting players (the latter is a.k.a. false-name manipulation) [S5,
6], by changing the quota [7], or via structural control by adding or deleting players [8]. We
continue the work on the structural control initiated by Rey and Rothe [8] by solving some
of their open problems. In addition, we also modify their model to a more realistic setting in
which the quota is indirectly changed during the addition or deletion of players (in a different
sense than that of Zuckerman et al. [7] who manipulate the quota directly without changing
the set of players), and we study the corresponding problems in terms of their computational
complexity.

Keywords Cooperative game theory - Weigthed voting game - Computational complexity

Mathematics Subject Classification (2010) 91A12 - 68Q17

1 Introduction

Weighted voting games are an important class of compactly representable simple games and
have been thoroughly studied in cooperative game theory (see, e.g., the textbooks [9-11] and
the book chapter [12]). Most crucially, WVGs have been analyzed in terms of power indices
that describe how much influence a player has in a game. Well-known power indices are
the normalized Penrose-Banzhaf index due to Penrose [3] and Banzhaf [1], the probabilistic
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Penrose-Banzhaf index due to Dubey and Shubik [2], and the Shapley-Shubik index due to
Shapley and Shubik [4]. We will focus on the latter two.

There are many applications of WVGs. They can be used for collective decision-making
in legislative bodies (e.g., in parliamentary voting), in order to analyze the voting structures
of the European Union Council of Ministers and the International Monetary Fund [13, 14],
they are applied in joint stock companies where each shareholder gets votes in proportion to
the ownership of a stock and in automated stock-trading systems [15, 16], and widely used
in many practical application areas beyond social choice theory and game theory.

Just as for voting rules in computational social choice [17-19], for judgment aggregation
procedures [20], and for algorithms and protocols in fair division [21, 22], strategic behavior
has attracted much attention for WVGs. Bachrach and Elkind [23] were the first to study the
complexity of false-name manipulation, i.e., changing the players’ power indices by splitting
a player into several players (distributing the weight among them), or by merging several
players into one (adding up their weights). These problems have been further analyzed by
Azizetal. [5, 24], Faliszewski and Hemaspaandra [25], and Rey and Rothe [6]. Zuckerman et
al. [7] studied the problem of influencing power indices in WVGs by directly manipulating the
quota. Inspired by electoral control of voting rules [26, 27], Rey and Rothe [8] introduced
problems of structural control by adding players to and by deleting players from WVGs
and studied them in terms of their computational complexity. Continuing their analysis, in
Section 3 we solve some of their open problems regarding control by deleting players from
WVGs, also fixing a minor flaw in their paper [8] for bounds of how much the Shapley-Shubik
index can change by deleting players.

In Section 4, we modify the model presented by Rey and Rothe [8] in a natural way: While
they assume that the quota remains the same even though players have been added to or
deleted from a weighted voting game, we will assume that the quota will change accordingly
in the modified game, i.e., the quota will be a fraction of the players’ total weight. This
way of modifying the quota, however, differs from the model of Zuckerman et al. [7] who
manipulate the quota directly. We define the corresponding problems of control by adding or
deleting players with changing the quota, with the goal to increase, to decrease, or to maintain
a distinguished player’s power index. We study these problems for the probabilistic Penrose-
Banzhaf index and the Shapley-Shubik index in terms of their computational complexity.

We conclude in Section 5 and mention some open problems for future work.

This work extends a preliminary version that appeared in the proceedings of the 33rd
International Workshop on Combinatorial Algorithms (IWOCA’22) [28] and has previously
also been presented at the 17th International Symposium on Artificial Intelligence and Math-
ematics (ISAIM’22).

2 Preliminaries

In this section, we provide the needed notions from cooperative game theory and computa-
tional complexity theory.

Definition 2.1 A coalitional game is a pair G = (N, v), where N = {1, 2, ..., n} is a set of
players and v : 2V — R, with v(#) = 0, is a characteristic function that assigns a payoff to
every coalition of players (i.e., subset of N). G = (N, v) is called simple if v(C) € {0, 1} for

every coalition C € N and v is monotonic, i.e., v(A) < v(B) whenever A € B C N.

We focus on a special class of simple coalitional games: weighted voting games.
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Controlling weighted voting games by deleting or adding players 633

Definition 2.2 A weighted voting game (WVG, for short) G = (wq, ..., wy; q) is a simple
coalitional game that consists of a quota ¢ € Rxp and weights w; € Rx(, where w; is the
i-th player’s weight, i € N, and Rx( denotes the set of nonnegative real numbers. For each
coalition S C N, letting wg = ZieS wi, S wins if wg > ¢, and loses otherwise:

lifws > gq,
v($) = { 0 otherwise.

In Section 4, we will use the quota depending on the players’ total weight as ¢ =
r Y ey wi for a parameter r € [0, 1].

‘We now define two of the most popular power indices that can be used to measure a player’s
significance in a simple game, the probabilistic Penrose-Banzhaf index (introduced by Dubey
and Shapley [2] as an alternative to the normalized Penrose-Banzhaf index that was originally
introduced by Penrose [3] and later re-invented by Banzhaf [1]) and the Shapley-Shubik index
due to Shapley and Shubik [4].

Definition 2.3 Let n be the number of players in a simple game G = (N, v) and leti € N
be a player. The probabilistic Penrose-Banzhaf index of player i in G is defined by

2osemyip WS U{ih) —v(S))
2}171 :

BG, i) =
The Shapley-Shubik index of player i in G is defined by

Ysemyiy IS = 1= [ISIDI (S U {i}h) — v(S))
n! ’

(G, i) =

If v(S U {i}) — v(S) = 1, we say that i is pivotal for S. If a player is pivotal for all
coalitions, we call it a dictator, and if it is not pivotal for any set, we call it a dummy player.

We will study structural control by adding and deleting players in WVGs, and we adopt the
notation of Rey and Rothe [8] who introduced these concepts. For control by adding players,
letG = (wy, ..., wy; q)beagiven WVGand N = {1, ... ,n}andletM = {n+1, ..., n+m}
be a set of m unregistered players with weights w41, ..., Wy4m. Adding M to G yields a
new WVG that is denoted by Guy = (wi, ..., Wypm; g). Similarly, if M C N, deleting M
from G yields a new WVG G\yy = (wj, ..., wj,_,:q), where {ji, ..., ju—m} = N\ M.
For more background on cooperative game theory, we refer to the books by Chalkiadakis et
al. [9], Peleg and Sudhélter [10], and Taylor and Zwicker [11], and to the chapter by Elkind
and Rothe [12].

We assume familiarity with the most fundamental notions of computational complexity, in
particular with the complexity classes P (deterministic polynomial time), NP (nondetermin-
istic polynomial time), and PP (probabilistic polynomial time). Moreover, we will also use
the well-known complexity classes DP (consisting of differences of NP sets, as introduced
by Papadimitriou and Yannakakis [29]) and G)g (ak.a. PNPlog] the class of sets accepted by
a P algorithm accessing its NP oracle logarithmically often, see [30]). The notion of hard-
ness for these classes is based on the polynomial-time many-one reducibility: X <b, v if
there is a polynomial-time computable, total function f such that for each input x, x € X
if and only if f(x) € Y. We refer the reader to the textbooks by Garey and Johnson [31],
Papadimitriou [32], and Rothe [33] for more background on complexity theory.

We use the following two well-known NP-complete problems (see, e.g., [31]).
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634 J. Kaczmarek and J. Rothe

PARTITION
Given: Asetl ={1,...,n},afunctiona : I — N\ {0}, 7 — a;, such that Zl’-‘:l a; is even.
Question: Does there exist a partition of / into two subsets of equal weight, that is, does there exist a

subset /" C I suchthat 3-;cpra; = ey p @i?

SUBSETSUM

Given: Asetl ={1,...,n},afunctiona : I — N\ {0}, — a;, and a positive integer g.
Question:  Does there exist a subset I’ € I such that ", _ ;s a; = q?

We also use the following two PP-complete problems that Rey and Rothe [6] used in their
work on false-name manipulation in WVGs.

COMPARE- #SUBSETSUM- RR

Given: Asetl ={1,...,n},afunctiona : I - N\ {0},i > a;, wherea = ) ", ;.

Question: Is the number of subsets of / with values summing up to % — 2 greater than the number of
subsets of 7 with values summing up to % —1,i.e.,is
#SUBSETSUM((ay, ..., an), § — 2) > #SUBSETSUM((ay, ..., an), § —1)?

COMPARE- #SUBSETSUM- 5151

Given: Asetl ={1,...,n},afunctiona : I — N\ {0}, i — a;, where « = er'l:l a;.

Question:  Is the number of subsets of / with values summing up to % — 2 smaller than the number of
subsets of / with values summing up to % —1,1i.e.,1is
#SUBSETSUM((ay, ..., an), % —2) < #SUBSETSUM((ay, ..., ap), % —1)?

We also use the fact that there exists a reduction to SUBSETSUM from the following NP-
complete problem (see, e.g., [31]).

X3C
Given: A set of elements B, | B]| = 3k for some k € N, and a family S of three-element subsets of 3.
Question: Does there exist a subfamily S* of S such that each element from B is contained in exactly

one set in S*?

Faliszewski and Hemaspaandra [25] proved the following useful property about X3C
applied by them and by Rey and Rothe [6] and to be applied here as well later on.

Lemma 2.1 Every X3C instance (B, S") can be transformed into an X3C instance (B, S),
where ||B|| = 3k and ||S|| = n, such that % = % without changing the number of solutions.
Consequently, we can assume that the size of each solution in a SUBSETSUM instance is
%’1, that is, each subsequence summing up to the given quota contains the same number of
elements.

In our proofs, we will apply the following two lemmas due to Wagner [34].

Lemma 2.2 Let A be some NP-complete problem and let B be an arbitrary problem. If there
exists a polynomial-time computable function f such that, for all input strings x| and x> for
which x, € A implies x| € A, we have

(x1 €AAX ¢ A) & f(x1,x2) €B,
then B is DP-hard.
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Controlling weighted voting games by deleting or adding players 635

Lemma 2.3 Let A be some NP-complete problem and let B be an arbitrary problem. If
there exists a polynomial-time computable function g such that, for all k > 1 and all input
Strings Xxi, ..., X satisfying xa(x1) > --- > xa(xor) (Where xa(x;) = 1 ifx; € A, and
xa(x;) =0ifx; ¢ A), it holds that

I{i | x; € A}|| isodd <— g(x1,...,x2%) € B,
then B is @g—hard.

3 Deleting players without changing the quota

Let us start with an example of deleting players from a weighted voting game without chang-
ing its quota and let us see how power indices can change due to this operation.

Example 3.1 Consider the weighted voting game without changing quota G = (3, 3, 2, 1; 6).

The players have the following Penrose-Banzhaf indices: 8(G,1) = B(G,2) = % and

B(G,3) =B(G,4) = %; and the following Shapley-Shubik indices: (G, 1) = ¢(G, 2) = %
and ¢(G,3) = ¢(G,4) = %. If we remove player 4, we obtain the new game G\4y =
(3, 3,2; 6) with the players” Penrose-Banzhaf indices (G, 1) = B(G,2) = 4 and B(G, 3) =
0; and the players’ Shapley-Shubik indices ¢(G, 1) = ¢(G,2) = % and ¢(G, 3) = 0. So,
the Shapley-Shubik indices of players 1 and 2 have increased while their Penrose-Banzhaf
indices have not changed. At the same time, both power indices of player 3 have decreased
to 0, so 3 has become a dummy player.

In this section, we consider the model of structural control by deleting players where
the goal is to increase, to decrease, to nonincrease, to nondecrease, or to maintain a power
index, as proposed by Rey and Rothe [8]. Specifically, we consider the following decision
problem for a given power index PI (which will be either the Penrose-Banzhaf index S or
the Shapley-Shubik index ¢):

CONTROL BY DELETING PLAYERS TO INCREASE PI

Given: A WVG G with players N = {1, ..., n}, a distinguished player i € N, and a positive integer
k < n.

Question: Can at most k players M C N \ {i} be deleted from G such that for the new game g\ M it
holds that PI(G\ p7, i) > PI(G, i)?

Like Rey and Rothe [8], we will also study its analogous variants where the goal is to
decrease a power index PI € {8, ¢} by deleting players (replacing “PI(G\y, i) > PI(G, i)”
by “PI(G\m,i) < PI(G,i)”), to nonincrease it (replacing by “PI(G\y,i) < PI(G,1)”),
to nondecrease it (replacing by “PI(G\p, 1) > PI(G,7)”), or to maintain it (replacing by
“PI(G\m, i) = PI(G, i)”). Note that when the goal is to nonincrease, nondecrease, or maintain
a player’s power index, these three problems would actually be always trivial to solve if we
would merely ask whether at most k players can be deleted from the given WVG to reach
these goals; deleting no players would always reach these goals. Therefore, we instead ask
whether at least one player and at most k players can be deleted from the given WVG to
reach these goals when defining these three problems. In fact, in our proofs we will always
consider the special problem variants where only one player can be deleted, i.e., the deletion
limit is always k = 1; this is justified since we only prove lower bounds of the computational
complexity of these problems, which thus immediately transfer to the more general problem
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636 J. Kaczmarek and J. Rothe

variants. We focus on deleting players here; the analogous problems for adding players have
also been studied by Rey and Rothe [8].

First, we will show upper and lower bounds of how much the Penrose-Banzhaf index
and the Shapley-Shubik index can change when players are deleted. Then we will study the
problems CONTROL BY DELETING PLAYERS TO INCREASE PI, CONTROL BY DELETING
PLAYERS TO DECREASE PI, etc. in terms of their complexity, solving open problems of Rey
and Rothe [8].

3.1 Change of power indices by deleting players

Rey and Rothe [8] analyzed how deleting players can change the Penrose-Banzhaf and
the Shapley-Shubik index, by providing upper and lower bounds for both power indices.
Unfortunately, their result on the lower bound of the Shapley-Shubik index is not correct!
and we fix it in Theorem 3.2 below (which, for completeness, also contains the correct upper
bound for the Shapley-Shubik index and both bounds for the Penrose-Banzhaf index due to
Rey and Rothe [8]).

Theorem 3.2 After deleting the players of a subset M C N \ {i} of size m > 1 from a WVG
G with n = ||N|| players, the difference between player i’s old and new

1. Penrose-Banzhaf index is at most 1 — 27" and at least —1 + 27 (as shown by Rey and
Rothe [8]);
1
2. Shapley-Shubik index is at most 1 — "=t "H'l)' (see [8]) and at least —1 + =1t m'H) )

Proof Consider playeri € N \ M. We have

ICI — 1 = [CDI(C U {i}) — v(C))
oG 1) — 9@y, i) = ZCENW) :

n'

_ Leemanny I€1K0 =m = 1= [CIDIW(C U (i) = v(©))

(n—m)!
1
= —| X Icna-1-jenie uin - vey

CCON\{i}

CNM £
n!

S D Lo e e e <]

CEN\(MULi})
— = 1=l (v U in = v(©O)].
The proof of the correct lower bound of the Shapley-Shubik index is analogous to the proof

of the upper bound from the original proof by Rey and Rothe [8], we just need to change the
signs and inequalities as follows:

. ) 1 n!

0@ =@ Dz —— > ICI( e (r=m—1=[CI)i=(n = 1=[C])!)
n! ) (n—m)!
CEN\(MU{i})
n—m+1)!
2n!

! Under the assumptions of Theorem 3.2, their incorrect lower bound of the Shapley-Shubik index [8] is

(n=m—1)!
—l+ s
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Controlling weighted voting games by deleting or adding players 637

This completes the proof. O

Let us look at a counterexample for the wrong lower bound from [8, Theorem 7] for the
difference between a player’s old and new Shapley-Shubik power index.

Example 3.3 Consider the game G = (2, 2, 2;2) with distinguished player 1. Obviously,
0@G, 1) = % and if we remove the other two players from the game, 1’s Shapley-Shubik

index will increase to 1, s0 ¢(G, 1) —@(G\(2,3), 1) = — % This fits the lower bound according
to Theorem 3.2 because —1 + % = —% < —%, but contradicts the wrong lower bound
of [8, Theorem 7] (here stated in Footnote 1) because —1 + (;(732:2;,)' = —% > —%.

Let us now consider the game ‘H = (4, 1, 1; 5), again with distinguished player 1. Then

o(H, 1) = %, and if we remove the other players, player 1’s Shapley-Shubik index will
decrease to 0,s0 9(H, 1) —p(H\(2,3), 1) = % If we consider the upper bound 1 — %;1)' =
% from Theorem 3.2, we have % < %, so this value belongs to the stated range. But if we

assumed that 1 — (;@2_3;?' = % were the correct upper bound, we would get a contradiction
2 1

because 5> 5.

The previous theorem gives the bounds of how much the power indices can change depend-
ing only on the number of deleted players. In the next theorems, we will see the bounds of
changes for a given player which depend not only on the number of deleted players but also
on the power indices of the given player and of the deleted players from the initial game. We
start with the lower bounds.

Theorem3.4 Let G = (wy, ..., wy; q) be a WVG with the set of players N and leti € N.
Let M C N\ {i} be the set of players to be deleted and m = | M ||.

1. B(G. D) =BG, i) = max((1 —2M)B(G, i), B(G, i) — ).
2. 9(G, 1) — (G, D) = max((1 = (")(G, i), ¢(G, i) — 1).

Proof Consideri € N \ M. Let x be the number of coalitions for which player i is pivotal
(i.e., B(G,i) = 2,1{, ). After deleting M, the Penrose-Benzhaf index of i increases maximally
if i is still pivotal for the same x coalitions or if i’s index achieves the maximal value of 1,

ie.

G i) = 357 =2"B@G.1) or BGun.i) = 1.

Therefore, (G, i) — B(G\m, i) = max((1 —2")B(G, i), B(G,i) — 1).
Now, let

e IS — 1= [ISIN(S U {i}) — v(S))
go(g,i):ZS—N\{}” [I'(n INDEC {ih—v _x

n! n!

Similarly to the Penrose-Banzhaf index, the Shapley-Shubik index of i increases the most
if i is still pivotal for the same coalitions as in the old game (notice that each of these coalitions
does not contain more than n — m — 1 players):
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638 J. Kaczmarek and J. Rothe

2 semmugp 181 —m = 1T —[ISIDI(S U {i}) — v($)

G\, 1) = )
 Ysemauiy 181 —m — 1= IS5 (0(S U (i) — v(S)
(n —m)!
 Ysemonui ampr 181 = 1= ISID!@(S U (i) = v(s))
(n —m)!
< m—-—m—-—1—m—-—m—1))!

m—1—m—m—1))!
' >senmmugp 1811 = 1T —[ISIDI(S U {i}) — v(S))

(n —m)!
1 n! 2senmugp ISIHm = 1= SIS U {i}h) — v($))
~ ominl (n —m)!
_ n! ZSgN\(MU{i}) IS — 1 = [ISIDI(S U {i}) — v(S))
m!(n —m)! n!

<n><p(9,i)
m

or if its index achieves the maximal value:

. n .
©(G\m, 1) < min ((m)qo(g, i), 1) ,
and therefore,

@(G,i) — ¢(G\pm, 1) > max <<1 - (Z)) (G, i), 9(G,i) — 1) .

This completes the proof. O

The following theorem shows the corresponding upper bounds, i.e., how much smaller
the power indices can be in new games after deleting players.

Theorem 3.5 Let G = (wy, ..., wy; q) be a WVG with the set of players N and leti € N.
Let M C N \ {i} be the set of players to be deleted and m = ||M||.

. . . m__1\2
1. BG.1) =BG, D) < min (BG. 1), e BG. )+ F=").
2. 9(G.1) = 9@, D) = min (9T, 1), X jeps 9T ) + 5 ).
Proof Consider again our given playeri € N \ M, and let x be the number of coalitions i is
pivotal for. Consider two players k1, kp with weights wy, > wg,. Let

Gk =5 and BG.ko) = 55

Let S € N\ {ky, kp}. If

ije[q—wkz,q) (1)

jes
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Controlling weighted voting games by deleting or adding players 639

then both k; and k; are pivotal for S. If

ije[q—wk,,q—wkz) ()
jes

then k; is pivotal for S and S U {k»}, and k; is not pivotal for any of them. If

ije[q—wk.—wk2,q—wk]) 3)
jes

then k& is pivotal for S U {k>} and &, is pivotal for S U {k;}. Otherwise, neither k| nor k; is
pivotal.

All coalitions that meet conditions (1)—(3) are counted in z; but only the coalitions meeting
(1) and (3) are counted in z,. However, the coalitions whose total weight falls into the interval
(2) are counted twice in z7.

If we delete player k», player k; will still be pivotal in the new game for all coalitions
S € N\ {ky, ko} meeting the condition (1). If the value wg is from the interval (2), k1 will
be pivotal for S but will not be pivotal for S U {k;} anymore because this coalition will not
exist in the new game. Finally, player k; is pivotal for all coalitions S U {k2} if S meets the
condition (3), so they will not matter for k| in the game without the player k.

If we delete the player ki, the situation will be analogously to the previous one, the
difference is we do not have to consider the coalitions whose total weight falls into the
interval (2).

Recall that | M| = m > 1 players are deleted and consider yi, ..., y;, where y; is the
number of coalitions the j-th player from M is pivotal for. We assume that our given player i
shares as many coalitions as possible with the players from M, i.e., we assume that yy, ..., y,
also count different coalitions. Let us assume next that all these sets for which the players
from M are pivotal contain the player i and i is also pivotal for them. If x — > jemYj > 0,
there can be still coalitions for which 7 is pivotal and they can contain the players from M
(and these players are not pivotal for them at the same time). Let S be some such coalition.
The maximal number of possible coalitions containing a set S \ M is 2", and only one of
them does not contain any player from M—and this coalition can be counted by player i’s
new power indices. Hence,

1 2m — 1
IB(g\M,l)ZW max X—Zyj— o x_zyj+2m_1 .0
JEM jeM
. @ —1)?
=max | fG, 1) = Y BG )= 0],

jeM

and therefore,

. o . -1y
BG.i) =BG, i) <min | BG.0). Y BG. )+ ——
jeM
Now, let yi, ..., ¥, be the numerators of the Shapley-Shubik indices of the players from
M and assume, without loss of generality, that wj, < --- < w;,.If x — Z?:l yj >0, we
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have

IA

X =Yy 3 Z(’Z)(||Sn+k>!(n— L= ISI = k!
j=1 ), k=0

SSN\(MU{i}),
ws€Elg—wi,g—wj,)
= > ISIt e —m — 1= |[S|)!

SCN\(MU{i}),
ws€Elg—wi,g—wj;)

i <m> IS+t (n =1 -S| = K)!
i \k ISt (n—m—1—1S!
> [SIt G —m — 1 — [ S]])!

SSN\(MU{i}),
ws€Elg—wi.g—wj;)

IA

k=0 k

= E IS —m —1 =[S
SSN\(MU{i}),
wse[qfw,-,qfwjl)

m! m—m—1+k)! (m—k)!
e k'm—k)! (nm—m—1)! 0!

m

k

= > mlUSHe—m—1— sy (" -

SCN\(MULi}), k=0
ws€Elg—wi.g—wj;)

=m!<’:;> Z IS —m — 1 — ||SIDL.

SSN\(MU{i}),
ws€Elg—wi,g—w;;)

Now, define the shorthand
z= o S —m—1— S|

SSN\(MULi}).
wselg—wi.g—wj,)

and note that Zm
X =2 i 1Yj
TZ T Sl

m(m)

Thus we get

) max(z,0) ~ max(x — ZT:I Yi— (nfiin)!’ 0)
0@ i) = T S = (n—m)m!(")

1
max(x — 2?21 yj— ﬁ’ 0)
n!

=max | ¢(G,i) — Z (G, j)—

jeM

1
)
(n —m)!
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Table 1 Overview of complexity Goal

C lexity f C lexity f
results for control by deleting omplexity for # ompenty fore
players from weighted voting Decrease ©P -hard * NP-hard
games with respect to various . 2
goals for the Shapley-Shubik (p) ~ Nonincrease coNP-hard [8] NP-hard
and the probabilistic Increase DP-hard NP-hard [8]
Penrose-Banzhaf index (f) Nondecrease coNP-hard ?

Maintain coNP-hard [8] coNP-hard [8]

*coNP-hardness was proven by Rey and Rothe [8]

and finally,

. . . 1
(G, 1) — ¢(Gyu. i) < min ‘P(g,l%j%;[ﬁo(g,j)-f-m :

completing the proof. O

Example3.6 Let G = (4,2,1,1,1;4) be a WVG. We are going to remove player 5 with
weight 1 (i.e., the subset M = {5}) from the set of players. Let us consider player 2 having
weight 2 in G, with old and new Penrose-Banzhaf indices of (G, 2) = % and B(G\u,2) = é,
so the index decreases by %. The upper bound from Theorem 3.2 is (G, 2) — B(G\m,2) <
1 — 1 = 1 and that from Theorem 3.5 is $(G,2) — B(G\y,2) < min(}, § + 1) = 1. 50
both upper bounds are greater than the actual difference but the second one is more exact.
Now, consider player 2’s old and new Shapley-Shubik index: ¢(G,2) = % and
0(G\m,2) = %, so it decreases by ﬁ The upper bound from Theorem 3.2 is ¢(G, 2) —

9Gwm.2) < 1 — G520 — L and that from Theorem 3.5 is ¢(G,2) — ¢(G\y,2) <

min(%, % + %) = %, which are greater again, but the second one is much closer to the
true difference.

3.2 Control by deleting players

Rey and Rothe [8] analyzed the problems of control by adding and by deleting players in
WVGs in terms of their complexity. While they obtained many results for the case of control
by adding players, they left many problems open for control by deleting players. In the next
two theorems, we solve all their open problems but one.

All currently known results about the lower bounds of these problems are summarized in
Table 1. As already noted by Rey and Rothe [8], the best known upper bound for each of
these problems is the complexity class NPPY, which belongs to the second level of Wagner’s
counting hierarchy [35] and is defined as the class of problems that can be solved by an NP
oracle machine accessing a PP oracle. Not many natural problems are known to be complete
for this class: Some are related to finite-horizon Markov decision processes [36] and others to
a variant of the satisfiability problem and certain tasks involving probabilistic planning [37].
Of course, there is a large gap between each lower bound listed in Table 1—note that each
complexity class in this table is contained in PP—and the upper bound of NP"P. Closing
these gaps would be an interesting task for future research.

Our first result provides DP-hardness for increasing a player’s Penrose-Banzhaf index
by deleting players. Rey and Rothe [8] showed that the corresponding control problem is
NP-hard for the Shapley-Shubik index.
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642 J. Kaczmarek and J. Rothe

Theorem 3.7 Control by deleting players to increase a distinguished player’s Penrose-
Banzhaf index in a WVG is DP-hard.

Proof To apply Lemma 2.2, let us define a reduction from the NP-complete problem
PARTITION (which we will call A, just as the problem from Lemma 2.2). Let x; =
(ai,...,an,) and xo = (b1, ..., by,) be two instances of PARTITION, let a = 7;1 a;
and b = Z;’il b;, and let £ be the number of x{’s solutions for PARTITION and let &, be the
number x,’s solutions for PARTITION. Consider the weighted voting game

¢ ¢ boa
G= (1,a1 10y, 10 b by, 25 10 +b+1),
where ¢ € N and 10¢ > %b. Let 1 be the distinguished player and let the deletion limit be
k = 1. Assume that y4(x1) > xa(x2) (recall that this means that x; € A implies x| € A).
We will now prove that

@iel2....n+m+2)[BG. 1)~ BGyy 1) <0] & (x1€AAx ¢ A).

Ifx; ¢ AAxy ¢ A thenforalli € (2,...,n1 +ny+2}, B(G, 1) = B(G\(i}, 1) =0, so the
index does not increase.

Ifx; € Anxy ¢ A, then B(G, 1) = Z,llfﬁ and B(G\(n;4np+2), D) = znfilnz > B(G, 1),
so it is possible to increase the index of player 1 by deleting player ny + ny + 2.

If x| € AAx; € A, then B(G, 1) = =520 If we delete the player with weight 5, then

BG\(n+np+2), D) = 2,,15%,2 < B(G, 1). If we remove a player j with any weight b;, then

&
BG\(), D = 251173,,2 < B(G, 1). Finally, if we delete a player j with any weight a; - 10,

.48
then B(G\(j), D) = 22,:73,,52 = B(G, 1). So, the index decreases or stays unchanged. O

Next, we show coNP-hardness for the goal of nondecreasing a distinguished player’s
Penrose-Banzhaf index by deleting players. The complexity of the corresponding control
problem for the Shapley-Shubik index remains open.

Theorem 3.8 Control by deleting players to nondecrease a distinguished player’s Penrose-
Banzhaf index in a WVG is coNP-hard.

Proof We provide a reduction from the complement of the NP-complete problem PARTITION.
Letx = (ay, ..., a,) be a given instance of PARTITION, let « = Z?:l aj, and let £ be the
number of x’s solutions for PARTITION. Consider the weighted voting game

o
gz(l,al,...,an,g;aJrl)

with the distinguished player 1 and the deletion limit k = 1.
We will show that

@i e2....n+2D[B@G. D)~ PG 1) <0] < &=0.
Let & = 0. Then

BG. 1) =

on+l’

and if we remove the player n + 2 with weight 7, the Penrose-Banzhaf index of player 1
will increase (i.e., also nondecrease), since the player is not in any coalition for which 1 is
pivotal.
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Controlling weighted voting games by deleting or adding players 643

Let & > 0. Then
1+§
2n+1 :

BG. 1) =

Now, if we delete the player n 4 2 with weight , the Penrose-Banzhaf index of player 1
will change to

12 1+¢
PG\t ) = 0 = 207 < 5

=BG, 1

because the number of solutions £ is even, so £ > 2. Finally, if we remove any one of the
other players, say i, then we have

1
BG\iy, D = %f = Zfﬂ < B@G, 1),

which completes the proof. O

For the Shapley-Shubik index, we show NP-hardness for the goals of decreasing or non-
increasing a player’s power by deleting players.

Theorem 3.9 Control by deleting players to decrease or to nonincrease a player’s Shapley-
Shubik index in a WVG is NP-hard.

Proof We show NP-hardness for the Shapley-Shubik power index by means of a reduction
from the SUBSETSUM problem. Let (ay, ..., a,; q) be a SUBSETSUM instance with o =
Z?: | ai, denote by & the number of its solutions and note that, due to Lemma 2.1, we can
assume that each of these solutions has its size equal to %n

Construct the control problem instance consisting of a game

G = (La-10°...,4,-10°,1 —q - 10° — x, 1 = 2ny1, ..., 1 — 2ny,43.
Viseoos Vloeons Ynd3s ooy Yng3s t+ 1)
~—— ——
2n 2n

with 2n2 + 8n + 5 players, where

X=y1+: -+
n+3
vi >2n Z yj foriefl,...,n+2},
j=i+l
n+3
10° > 2n ) "y;, and
j=1

n+3
t > 2a-10° +4n2yj.
j=1
Finally, let 1 be the distinguished player and the deletion limit be k = 1.
We will now show that the following three statements are pairwise equivalent:

[u—

. (a1, ...,ay; q) is a yes-instance of SUBSETSUM, i.e., £ > 0.

2. There is a player j > 1 whose deletion decreases the Shapley-Shubik index of player 1:
3je{2,....2n> +8n+5)) [go(g\{j}, 1) -G, 1) < O]‘

3. There is a player j > 1 whose deletion nonincreases the Shapley-Shubik index of

player 1: (3j € {2,...,2n> + 8n + 5)) [p(G\(j1. D — @(G, 1) <0].
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644 J. Kaczmarek and J. Rothe

(1) implies (2): Suppose that £ > 0. Then

@2n + 1)!(2n% + 61 + 3)! T Eny” (Gn+ DI2n% + Bn+3)!
n
(2n% +8n +5)! (2n? 4+ 8n + 5)!
If we delete the player n 4 2 with weight t — g — x, then

G, ) =mn+3)

n + 1)!2n?* + 6n + 2)!
(2n2 + 8n + 4)!
@n+D!'2n%*+6n+3)2n2+8n+5
(2n2 4 8n +5)! 2n2 +6n+3

©G\(ny2), 1) = (n +3)

=(n+3)

and thus

PG \nt2), 1) —0(G. 1) = (n+3)

(2n + DI(2n* + 6n + 3)! 2n 42
(2n? 4 8n +5)! ( 2n2 + 6n +3)
(2n + D!(2n? + 6n + 3)!
(2n? 4+ 8n + 5)!
, Gn+ D% + 20+ 3)1
—&(@2n)
2n% +8n +5)!
(2n 4+ 2)!(2n? + 6n + 2)!
(2n? 4 8n +5)!
Gn+ DI2n% + Bn+3)
(2n? + 8n + 5)!
so the Shapley-Shubik index of player 1 decreases.
(2) implies (3): is obvious.
(3) implies (1): To prove the contrapositive, suppose that & = 0. Then

—(n+3)

= (n+3)

—£Q2n)" < 0,

n + 1!(2n? + 6n + 3)!
(2n2 + 8n + 5)! '
If we delete any player that is not a part of any coalition for which player 1 is pivotal
(i.e., any of the players 2, ...,n + 2), then the Shapley-Shubik index of 1 will increase.

Considering the other players, each player is in exactly one coalition counted in the index,
ie., foreachi € {n+3,...,2n% + 81 + 5}, we have

G, 1) =(@n+3)

2n + D!'2n?% + 6n +2)!
(2n2 + 8n + 4)!
Qn+ D2n% +6n+3) 202 +8n+5

eG\(iy, 1) = +2)

= 2 .
(r+2) (2n? + 8n + 5)! 2n2 +6n+3
Because
2n% +8n+5 2n+2 2n% +6n+4
)———— = 2 )————— = 24 ———— 3
v i I v Sy it L o S
the new Shapley-Shubik index of player 1 increases. O

Rey and Rothe [8] also showed that the problem of control by deleting a single player
to decrease a distinguished player’s Penrose-Banzhaf index is coNP-hard. We improve this
lower bound to @g -hardness.
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Controlling weighted voting games by deleting or adding players 645

Theorem 3.10 Control by deleting players to decrease a distinguished player’s Penrose-
Banzhaf index in a WVG is @g -hard.

Proof To apply Lemma 2.3, we provide a reduction from the NP-complete problem PAR-
TITION (again called A but this time playing the role of the problem from Lemma 2.3). Let

x; = (ai1,...,a;m ) be aninstance of PARTITION fori € {1, ..., 2n}, leta; = Z'j"’:l a;j,
and let &; be the number of x;’s solutions for PARTITION.
Let ¢y, ..., ¢, € Nbe chosen such that foralli € {1, ...,2n — 1}, we have
2n—i
loli > Z (XQ,H,],J' . IOH_I,
j=1

lety; =1,y =2,and foralli € {3, ..., 2n}, let

i—1
yi = ij—l y2j if 7 is Odd,
;= =

Yi—1 if i is even.

Furthermore, choose z € N so that yy,, - z < 100, and define

o] V) [0%) y a2pn ¢
=— 10 4+ =.102 4 ... 4 == . 10" 1
q ) -|-2 + + > +z+

and ¢’ = g — 1. Consider the weighted voting game

G = (1,a1,1 109, g 109, L age g 10,z - 1000,
x,rl,rz,}’z,r3,...,}’3,...,r2n71,...,}’2,17],}"2”,...,}’zn;q>
—_——
¥3 Yon—1 Yon

withn = leil (m; + yi) + 2 players, where x € N, x < z,and foralli € {1, ..., 2n},

- Cin F 100 —xifiis odd,
l q' - lezl aj’ -10% if i is even.

Let the first player be the distinguished player and let the deletion limit be k = 1. Assume
that x4 (x1) > xa(x2) > --- > xa(x2,). We will now prove that

@i €2,....aD [BG. 1) =BGy, 1) > 0] <= |I{i | xaxi) = 1}]l is odd.

First, suppose that ||[{i | xa(x;) = 1}|| is even. If ||{i | xa(x;) = 1}|| = O, then for all
ie{2,...,n}, (G, 1) =BGy, D) =0.1f[[{i | xa(x;) = 1}|| > 0, then there exists some
i such that x4 (x2;) = 1 and x4 (x2;41) = 0 (ori = 2n) and

E1+2856 + -+ i1 - &

BG. 1) = 5

If we delete any player j with weight a,{ -10% orr j for j > 2i, then the index will increase:

El+28516 + -+ vk &
2%—2 :

BG\jy, D =
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646 J. Kaczmarek and J. Rothe

If we delete any player j with weight a,{ - 10% for j < 2i, then

B Eld 4y Tty Dby
B -2

=2 2i—1
If we remove any player j with weight r; for j < 2i, then

El+ o+ —DE &+ ikl 6
=2

BG\jy. D

2> B@G, 1.

PGy, D =

’

so the index does not decrease because 2y; —2 > y; for j > 2,as y; > 2 and 2§,&, > &;.
Finally, if we delete the player with weight x, we have
@ = 2818 + ya&1828384 + - -+ y2ib1 - 6o
B\ 52 sy D = 2i—2
2515 +255 4 -+ yubi b + b6
- -1

Summing up, if ||{i | xa(x;) = 1}] is even, the Penrose-Banzhaf power index of the first
player increases or stays the same after removing a player from the game.

Let us assume now that |[{i | xa(x;) = 1}| is odd. If ||[{i | xa(x;) = 1}|| = 1, then
BG., 1) = 2511 , and after removing the player with weight x, the index decreases to 0. If
II{i | xa(x;) = 1}|| > 1, there exists some i such that x4 (x2;—1) = 1 and x4 (x2;) = 0 and
&1+ 2616 + -+ yoi—181 - E2i

2i—1 :
After removing the player with weight x, we have

2816 + yab1628384 + -+ yi261 &2

LS B@G, ).

BG. 1) =

BG\ 52 mvap D = 22
and
FG 1) =BG\ iy sy V)
& 2816 + 6165 — - — 081 Ei—a + y2i—161 - i
- -1
4+ yicibr b1 — Zi;ll v2j€1--- €2y
> - > 0,
2n—1
since yyi—1 = Zi/._:l] v2;j. Therefore, if [[{i | xa(x;) = 1}|| is odd, it is possible to decrease
the Penrose-Banzhaf index of the first player. O

4 Deleting or adding players with changing the quota

From now on, we define the quota of a WVG depending on the players’ total weight. With
this assumption, we modify the model of Rey and Rothe [8] in a natural way: While they
assume that the quota remains the same after players have been added or deleted, we now
assume that the quota will change accordingly in the modified game. That way, games can
keep important properties. For example, in the case of adding new players to a WVG, suppose
we want to have at most one winning coalition in each partition of the players; if the quota
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Controlling weighted voting games by deleting or adding players 647

would stay unchanged after the manipulation, however, it will be easy to get a game with
two or more winning coalitions at a time, so we would lose the desired property. In the case
of deleting players from a WVG, it can happen that it is impossible for any coalition to win
in the new game after the manipulation because the unchanged quota could be greater than
the total sum of the players’ weights, i.e., the weight of the grant coalition.

Example 4.1 Let us consider the weighted voting game with changing quota G = (3, 3, 2; 6),
so the parameter for the quota is %. The power indices of the players are as follows: 8(G, 1) =
B(G.2) =¢(G,1) = ¢(G,2) = 5 and B(G,3) = ¢(G,3) = 0.

Now, let us add to this game one new player with weight 1. Then we get the new game
Guy = (3,3,2, 1; ﬁ). Since all the players have nonnegative integer weights, all coalitions
formed by them also have nonnegative integer weights and the new quota is equivalent> to 7.
The power indices of players 1, 2, and 3 in the new game are as follows: B(Gu4y, 1) =
B(Guay.2) = 3 and B(Guy.3) = § for the Penrose-Banzhaf index and ¢(Gugay, 1) =
0(Guia),2) = % and ¢(Guy, 3) = 11—2 for the Shapley-Shubik. So, both power indices of
players 1 and 2 have decreased and player 3 no longer is a dummy player.

On the other hand, if we delete player 2 from the game G instead of adding a new player,
we get the new game G\2) = (3,2; %) in which both power indices of both players are %, SO
they are unchanged for player 1 but have increased for the other player. Note that if we had
not changed the quota, there would be no winning coalitions in the game after the deletion.

4.1 Change of power by adding or deleting players with changing the quota

As we have already mentioned in the introduction, Zuckerman et al. [7] studied manipulation
of the quota in WVGs without any structural changes in the set of players. They presented
upper and lower bounds for how much the power index of a single player can change when
the quota is manipulated.

Our next two theorems present the bounds in situations where quotas are changed not
directly but they change as a consequence of adding or deleting players: Recall that from
now on, ina WVG G = (wy, ..., wy; q), the quota will depend on the players’ total weight
asq =r Y i, w; for a parameter r € [0, 1], thus changing the quota by adding or deleting
players. In these cases, the power of a player can change much more extremely than in the
games where quota remains the same after our manipulation—for example, a player with no
power at all can become the most powerful one and the other way around.

We start with the case when we add some new players to a WVG. Theorem 4.2 shows
how the power indices can change depending on the number of added players.

Theorem4.2 Let G = (wy, ..., wy; q1) be a WVG with set N of players and quota q =
r Z?:l w; for somer € [0, 1]. Let M, m = ||M||, be a set of players that are to be added to
the game G. Let Gy be the new game with players N U M and quota g3 = r ZjeNUM wj.
Then, fori € N:

1. —1 +2""1§| B(G. 1) — B(Gum, 1) =1,

2. =14 s <0G, i) — ¢(Gum, i) < 1.

Proof Let us start with the upper bounds. The power indices of a player can differ by 1 before
and after adding new players only if

B(G. i) =¢(G.i)=1 and B(Gum.i) =¢(Gum.i) =0.

2 By “equivalent” we mean that we have the same winning and losing coalitions for the quota 7 and the
quota %.
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That means, player i was a so-called dictator in the old game, i.e., i was pivotal for each
coalition, so v({i}) = 1 implies that w; > q; = rw; +r ZjeN\m wj and v(N \ {i}) =0.

A dictator can become a dummy (i.e., has no power at all) when a new dictator is added
to the game. Let » € (0, 1). If there is a new dictator k, then

1
w; < q2=q)+rwg = wg > ;(wi_ﬂh)

and

Wi = g2 =q1 +rwg = wg =

- l—rql’

It follows that if we add a player with weight greater than max(% (wi —q1), ﬁql ), player
i will become a dummy.
Player i is pivotal for a coalition S € N \ {i} in G if and only if

D wi€ | wi—wir ) w;

jes JjeN JEN

Analogously, i is pivotal for S € (N U M) \ {i} in Guy if and only if

ije rZwi,‘+rij—wi,rij+rij

jes JjeN JjeM JEN jeM
Let S € N\ {i}.

o Ifw;, > rzngwj,then

ije rij,rij+rij

JjES JEN JEN jeM
So i is not pivotal for S in G but i is pivotal for S in Gyps. For SU M:
Doowit T wir Y witr Yy w;
jeSumM jeN jeN jeM

o If w; Srzjeij,then

ije rij—i-rij—w,',rij—i-rij )

jes JjeN jeM JEN jeM
so i is not pivotal for S in G but i is pivotal for S in Gyp. For S U M:
Doowig |y wir Y wi—wir Y witr Y w;
jeSum JjeN JjeM JjeN JjeM

Therefore, i cannot be pivotal for S U M in Gy
Let v be the characteristic function for G and v’ that for Gy (because these games
have different quotas, their characteristic functions can also differ from each other). For the
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Penrose-Banzhaf index, we have

ey ((C UL —v(C))
B(G, i) — B(Gum. i) = 2oy {ih —v

2n—1
2 ccvumnipy W' (C U LD —v'(C))
o 2n+m71
Y cemiy@W(C U{ih) —v(0)
= 2n71
chv\{i}(v/(c Ui} —v'(C))
- 2n+m—1
Y-ccvumpiin W' (C U {i}) —v'(0))
CNM#)
2n+m—l
2n—l 2n+m—1 _2. zn—l .
= 0_2”_;’_”1_] - 2n+m_1 =—1+2 .

For the Shapley-Shubik index, we have
>cem ICI@m = 1= ICHI(C U{i}) —v'(0)

(G, i) —oGum,i) = 0
(n +m)!
Y_ccvumpniip ICN1Nm =1 = [ICINI(C U {i}) —v'(C))
CNM £
(n+m)!
_ S (Re A m — 1 b
- (n +m)!
B Z:(ry—l (n+r]:1—1)k!(n +m—1- k)!
(n +m)!
XS (KA m =1 =R 4 G m)l =1 =R
(n +m)!
ST (R m =1 = k!
N (n +m)!
XS () K+ me — 1= k!
(n +m)!
B 1 n—1 (k+m)! n+m—1
= m ((”—1)!k§m— kg(:) n+m-—1)!
1 n—1
S ((n - 1)!;@ +m)—(n +m)!)
_ nm—D!'n(n+2m-—1) - (n+1)!
T+ m)! 2 T2+ m)!
which completes the proof. O

Interestingly, it is possible for the strongest player to become a dummy by adding even
one new player but it is impossible to turn a dummy into a dictator. The following example
shows an extreme change of a player’s power in a game.

@ Springer



650 J. Kaczmarek and J. Rothe

Example 4.3 Let G = (5,1, 1;4) be a WVG with r = % It is easy to see that player 1 with
weight 5 is a dictator, so (G, 1) = ¢(G, 1) = 1. Let us add to the game a new player with
weight 10. In this way, we get a new game: Gy = (5, 1, 1, 10; 6—8) and the new quota is
equivalent to 10. Therefore, the new player becomes the new dictator in the game Gyy4y and
player 1’s power indices decrease to 0.

Similarly, in the game H = (2, 1;2) with r = %, B(H,1) = ¢(H,1) = 1 and after
adding two new players 3 and 4 with wz = w4 = 4, we get the new quota equivalent to 8.
Then, in the game Hy3,4;, player 1’s power indices decrease to 0, too.

The changes of the power indices by deletion of players were presented by Rey and
Rothe [8]. Those changes were derived for the case of the structural manipulation without
changing the quota of a game. As we can see in Theorem 4.4, the Penrose-Banzhaf index
and the Shapley-Shubik index can decrease by at most the same value with and without the
change of quotas while the indices can increase more when the quota changes.

Theorem4.4 Let G = (wy, ..., wy; q1) be a WVG with set N of players and quota q1 =

r Z'}:] w; for somer € [0, 1]. Let M € N\ {i}, m = |[M]||, be a set of players that are to be

deleted from G. Let G\ p be the new game with players N\ M and quota q; = r ZjeN\M w;.
Then, fori € N:

1. =1 <BG,i) = BGm, i) <1—-27",
2. =1 <9@G.0) — G, i) <1 — CgD

Proof Both the Penrose-Banzhaf and the Shapley-Shubik index can differ before and after
deleting players by —1 for a player i only if

B(G. i) =¢(G.i)=0 and B(G\m.0) =¢G\m.i) =1,

which is possible for any game after deleting a set M = N \ {i} (then ¢q» € (%wi, w;]). Of
course, since both the Penrose-Banzhaf and the Shaplay-Shubik index have values from the
interval [0, 1], the maximal difference is reached when the player’s index increases.

Letg =r}) jcyw;bethequotain Gand then gz =71} ;cy\y Wj =72 jeny W) —
r ZjeM w; is the quota in G\ y. Player i is pivotal for a coalition § € N \ {i} in G if and
only if

ij S rij—w,-,rZw_/
jes JjeN JjeEN

Similarly, i is pivotal for § € N \ (M U {i}) in G\ if and only if

E w;j € rE wj—rg wj—w,-,rg w_,'—rg w;

jes JeN jeM JEN jeM
Let S € N\ (M U{i}).

If w; > ijeM w;, then ZjeS w; € [r ZjeN w; —ijGM wj,rZJ-EN wj). Soiis
pivotal for S in G and i is not pivotal for § in G\ p7. On the other hand, for S U M, we have

ZjeSUM wj ¢ [V ZjeN wj _ijeM wj’ijEN wj)-
If w; < ijeM w;, then we have ZjeS w; € [r ZjeN wj — wi’ijeN wj) and we

have ZjESUM wj ¢ [V ZjeN wj — wi’ijeN wj)-
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Controlling weighted voting games by deleting or adding players 651

Therefore, i cannot be pivotal for S U M in G.

If i is pivotal for S and S N M = J, then i is not pivotal for S U M in G. Let v be the
characteristic function of G and v’ that of G\ (again, because these games have different
quotas, their characteristic functions can also differ from each other).

For the Penrose-Banzhaf index, we have

Ycemn@W(C U{i}) —v(0)

BG. 1) —B(G\m. i) =

2n—1
>_cenmmuiip V' (C U LiH —v'(0)
- 211—m—1
2n—1 _ 2n—m—1 Co—1_om

= n—1
For the Shapley-Shubik index, we have
©(G, 1) —p(G\m, i)
2cemyip €I =1 = 1ICID! = X cemmupy ICINE =1 = IICIDY 0

<
- n!
S (R = 1=t =Y (TR ki — 1= k)
N n!

1 (”Z‘i " -1k
= = n=Dl==-m=-1! >

n! Pt = n—m—1-k)!

1 ( n—m—1 (m+k)'
= —(nl—@m-m-11 Y ——

| !

n! Pt k!

—m—1
mn=—m—-1n"Z
<1- T Z (m+k)
k=0
_ 1 m—m—D)'n—m)((n+m-—1)
B n! 2
< 1_(n—m)!(n—m+1) :1_(n—m+l)!.
2n! 2n!
This completes the proof. O

We give two simple examples of games that meet the upper bounds for how much the
Penrose-Banzhaf power index can change by deleting players, the first one without changing
the quota (recall Theorem 3.2) and the second one with changing the quota (as provided by
the previous theorem). Note that in both cases we have the same upper bound, 1 —27"*, when
m players are deleted.

Example 4.5 Consider the two-player game G = (2, 2; 3). The players have the same Penrose-
Banzhaf power index of % and after removing one of them, the other player’s power decreases
to 0 if the quota does not change. That means that the difference between this player’s old
and new index is % which equals the upper bound from Theorem 3.2 for the number m = 1
of deleted players.

Now, let H = (1,2,2;3) withr = % be a WVG with changing quota. Player 1 has a
Penrose-Banzhaf index of S(H, 1) = % If we delete one of the players with weight 2, the
quota changes to %, which is equivalent to 2 since all players’ weights are integers. In that

@ Springer



652 J. Kaczmarek and J. Rothe

case, the other weight-2 player becomes a dictator and player 1’s power decreases to 0. Thus
the difference between the old and the new Penrose-Banzhaf index of player 1 equals the
upper bound of % stated in Theorem 4.4.

Analogously to control by adding new players to a WVG, it is possible for a dummy
player to become a dictator when we delete some other players from a game. We now give
an example that illustrates how the power indices can change when we delete some players
from a game and the new game has an accordingly changed quota.

Example 4.6 Let G = (5,5,3,3,1,1;10) be a WVG with r = g. Let us start with the
Penrose-Banzhaf indices of the players: (G, 1) = B(G,2) = %, B(G,3) = B(G,4) = %,
and B(G,5) = B(G,6) = %. Now, we are going to create a new game by deleting one
player with weight 5 and one player with weight 3, so G\(13; = (5,3, 1, 1; E) with the
new quota equivalent to 6. The Penrose-Banzhaf indices in the new game are as follows:
B3 1) =%, B(G\1.3).2) = §.and B(G\(1.3}. 3) = B(Gy(1.3). 4) = §. The index of the
player with weight 5 has increased by % and at the same time the index of the player with
weight 3 has decreased by % <1-27?%= %. Finally, although the new quota is smaller than
the old one, the Penrose-Banzhaf index of the players with weight 1 is unchanged.

Let us now analyze the Shapley-Shubik indices in these two games. The indices in G
are: 9(G, 1) = 9(G,2) = 75, 9(G,3) = ¢(G.4) = &, and ¢(G,5) = ¢(G,6) = ; and
in G\1.3): @(G\1.3). 1) = 3 and 9(G\(1.3).2) = @(G\13).3) = ¢(G\(1.3).4) = 75. The
Shapley-Shubik indices of the player with weight 5 and of the players with weight 1 have
increased, whereas the index of the player with weight 3 has decreased.

4.2 Control by adding or deleting players with changing the quota

We start by defining our problems of control by adding or by deleting players with changing
the quota in WVGs, where the goals again are to increase, to decrease, to nonincrease,
to nondecrease, or to maintain a distinguished player’s power. Specifically, for the goal of
increasing a player’s power index PI with changing the quota, we consider the following
decision problems that slightly modify the problems introduced and studied by Rey and
Rothe [8]:

CONTROL BY ADDING PLAYERS WITH CHANGING QUOTA TO INCREASE PI

Given: A WVG @G with players N = {1, ..., n}, aquotar Z?:l w; for some real parameter
r € [0, 1], a set M of unregistered players with weights w11, ..., Wy, a distinguished
playeri € N, and a positive integer k.

Question:  Can at most k players M’ € M be added to G such that for the new game Gy with the new
quota r ZjeNuM’ w, it holds that PI(G,),/, i) > PI(G, i)?

CONTROL BY DELETING PLAYERS WITH CHANGING QUOTA TO INCREASE PI

Given: A WVG G with players N = {1, ...,n},aquotar Z?:l w; for some real parameter
r € [0, 1], a distinguished player i € N, and a positive integer k.

Question: ~ Can at most k players M C N \ {i} be deleted from G such that for the new game G\ )y with
the new quota r Z_ieN\M wj, it holds that PI(G\ 57, i) > PI(G, i)?

The problems for the goals of decreasing, nonincreasing, nondecreasing, and maintaining
a distinguished player’s power by adding or deleting players with changing the quota, in
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Controlling weighted voting games by deleting or adding players 653

Table2 Overview of complexity results for control problems in WVGs with changing the quota with respect
to various goals for the Shapley-Shubik (¢) and the probabilistic Penrose-Banzhaf index (8)

Goal Control by adding Control by deleting Control by deleting
players for 8 and ¢ players for 8 players for ¢

Decrease PP-hard DP-hard NP-hard

Nonincrease PP-hard NP-hard NP-hard

Increase PP-hard DP-hard NP-hard

Nondecrease PP-hard coNP-hard NP-hard

Maintain coNP-hard coNP-hard coNP-hard

relation to the original game, are defined analogously. Again, when the goal is to nonincrease,
nondecrease, or maintain a player’s power index, we require that at least one player must be
added or deleted, so as to avoid that the problem becomes trivial.

In fact, in our proofs we will always consider the special problem variants where only
one player can be added or deleted, i.e., the addition or deletion limit is always k = 1; this is
again justified since we only prove lower bounds of the computational complexity of these
problems, which thus immediately transfer to the more general problem variants. The best
known upper bound for the computational complexity of our problems will only briefly be
mentioned at the end of this section.

As one may guess, an additionally varying parameter will not make the decision problems
easier: The problems with changing quotas caused by structural control remain hard when
the original problems were hard. However, the problems without changing the quota defined
and studied in Section 3 are not simply special cases of the corresponding problems with
changing the quota defined above: While the former problems consider WVGs whose quota
is fixed at will, the latter problems always have a quota that depends on the parameter r and
the total weight of the players in the game. Therefore, there is no obvious reduction from
the problems without changing the quota to the corresponding problems with changing the
quota, and lower bounds for the former do not straightforwardly transfer to the lower bounds
for the latter.

Table 2 presents a summary of our complexity results. Note that we list only lower bounds
of these problems, i.e., we will prove only hardness results for them. As to their best known
upper bounds, again, all these problems belong to the complexity class NPPP. It would be
an interesting task for future research to close these gaps by providing matching upper and
lower bounds.

4.2.1 Control by adding players with changing the quota

We start with control by adding players with changing the quota. Just as Rey and Rothe [8] do
for the corresponding control problems without changing the quota, we obtain PP-hardness
for four of our goals.

Theorem 4.7 For both the Penrose-Banzhaf and the Shapley-Shubik index, control by adding
players to decrease, to nonincrease, to increase, or to nondecrease a distinguished player’s
power index in a WVG with changing the quota is PP-hard.

Proof We only show PP-hardness of control by adding players to decrease the two power
indices by reducing from the PP-complete COMPARE- #SUBSETSUM- RR problem. PP-
hardness for the goal of nondecreasing either of the two power indices, which give rise

@ Springer



654 J. Kaczmarek and J. Rothe

to the complementary problems, follows immediately since PP is closed under comple-
mentation. PP-hardness for the goals of increasing or nonincreasing either of these two
indices can be proven analogously with exactly the same reduction but starting from
COMPARE- #SUBSETSUM- 41 instead.

Let (ay, ..., a,) be a COMPARE- #SUBSETSUM- RR instance with o = Z?:l a;. Let &;
and &, respectively, be the number of SUBSETSUM solutions for ((ay, ..., a,), % — 1) and
ay, ..., ay), % — 2), respectively. Now, construct the control problem instance consisting
of a game

o
G=U,a1,...,ay; E_ 1)

+]1 , and the distinguished player 1. Its power indices

are (G, 1) = g—% = z%ﬁfl and (G, 1) = ‘52['?(:;_1[)),', the latter because, using Lemma 2.1,
we can assume that each coalition for which player 1 is pivotal has the same size ¢. Let the
addition limit be k = 1, and let n 4 2 be the new player with weight w,42 = 1. So, the quota
in the new game after adding the player n + 2 is equivalent to 7, since all players’ weights
are integers.

For PI € {B, ¢}, we will show that

with n + 1 players, the parameter r = 2

PI(Gu(n+2), D) —PI(G, 1) <0 & § < &.
Assume that &1 < &. Then, after adding the new player, the indices will change to

&1+& 28

BGuiniy, ) = = < 5o

=pG. 1

and

L+ DI —1)! tln—1+11)
¢Guin+2), D) =& n+2)! o (n+2)!
t!(n —1)!
<g2m(z+1+n—t+l)=w(g,l),

so they both decrease.
Conversely, assume now that & > &. Then we have B(Gujnt2), 1) > B(G, 1) and
©(Guint2), 1) = @(G, 1). So both power indices do not decrease. m]

Next, we turn to the goal of maintaining the two power indices.

Theorem 4.8 For both the Penrose-Banzhaf and the Shapley-Shubik index, control by adding
players to maintain a distinguished player’s power index in a WVG with changing the quota
is coNP-hard.

Proof We show coNP-hardness by means of a reduction from the complement of the PAR-
TITION problem. Let (ay, . .., a,) be a PARTITION instance withn > 1,lete = Y 7_, a;, and
let £ denote the number of its solutions. Construct the control problem instance consisting
of a game

Gg=(~1,2ay,...,2a,;a)

with n + 1 players and the distinguished player 1. Note that & = 557 > .,y wi. Let us add
anew player with weight 1. The quota in the new game will be gun+2) = o + 557 <o +1
and is equivalent to o + 1.
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For PI € {B, ¢}, we will prove that
PI(Guina2), 1) = PI(G, 1) =0 <= & =0.

From right to left, suppose that £ = 0. Then (G, 1) = ¢(G, 1) = 0. When we add player
n+2, player 1 is pivotal for coalitions with weight ¢, which is an even number and therefore
the power indices in the new game remain equal to 0. So, if £ = 0 then both power indices
remain the same.

From left to right, we show the contrapositive. Suppose that £ > 0. Note that player 1
is pivotal for the coalitions with weight « — 1, which is an odd number, and each player
j € {2,...,n + 1} has an even weight, so there exists no such coalition and (G, 1) =
©(G, 1) = 0. In the new game Gu,+2), player 1 is pivotal for the coalitions with weight «, so
BGuin+2y, ) = 2,,% > B(G, 1) and ¢(Gugn+2), 1) > 0 = ¢(G, 1), so both indices increase
and, therefore, our statement is true and control by adding players to maintain a distinguished
player’s power index is coNP-hard.

4.2.2 Control by deleting players with changing the quota

‘We now turn to control by deleting players with changing the quota, starting with the Penrose-
Banzhaf index. The first goal we consider is to decrease this power index.

Theorem 4.9 Control by deleting players to decrease a distinguished player’s Penrose-
Banzhaf index in a WVG with changing the quota is DP-hard.

Proof As in Theorem 3.7, we again apply Lemma 2.2 to show DP-hardness and we again
use the NP-complete PARTITION problem (which we again will call A as in that lemma). Let
x1=(ai,...,an) and xy = (by, ..., by,) be two instances of PARTITION, leta = Y ! | g
and b = Z?il b;, and let &; be the number of x;’s solutions for PARTITION, j € {1, 2}.

Let Wg be the players’ total weight in a given game G. Choose £ € N so that 10t > 22b,
and let

3a - 10" +6b + 1
"= 213 55 a
21a% - 1026 + (10 + 552b) a - 10° + 1290 + 3 b + 1

21 3 213 129
Wiax = 7612 2107 + (5 + Tb) a-10¢ + 7172 + 3b.

nd

Consider the weighted voting game

G= (Lal 104 . ap, - 105, by, - By Winax, Wmax. @ - 107,
5

5 111 3
2a-10% 2a - 10%, 6b, —b, —b, b, b, 2b; ng).
2 2 272 2

Let player 1 be our distinguished player and let the deletion limit be k = 1.
The quota before deleting a player is ¢(G) = 3a - 10° 4 6b + 1.
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Now, let j be a player with largest weight, wmax; deleting j from G changes the quota to

3a - 10° +6b + 1
21a? - 1026 + (10 + Z2b) a - 10¢ + 12962 + 3 b + 1
-(%az-10%—1-<L27+24£b>a-1()£+1§79b2+%b+1)
843103 + (% + %b)az 102!
T 2022 102+ (10+ 2By a- 106+ 12957 + Sb + 1
n Fab* - 10° + Hlab - 10 4 3a - 10°
21a? - 1026 + (10 + 2B2b) a - 10¢ + 12962 + Fb + 1
63a%b - 10%* + (51 + 82b) ab - 10¢ + 387b° + 1476% + 6b
21a2 - 10% + (10 + 23b) a - 10¢ + 12962 + Fb + 1
Ja2 10” + (F + 2Pb)a 10°+ 20 + Db+ 1
21a? - 1020 + (10 + 22b) a - 10¢ + 12962 + 3 b + 1
_ 843 10% + (36 + ¥b) a2 - 102
2162102 4 (10 4 23p) a - 100 + 12962 + b + 1

q(g\{j}) = ng\m =

(8 + Lo +513b%) a - 10° +3876° + 423p% + Sb + 1
21a% - 1026 + (10 + 2Bb) a - 10¢ + 12962 + Fb + 1
3a-10° (2102 102 + (10 + 22b) @ 10° + 12957 + $b + 1)
21a% - 1026 + (10 + 282b) a - 10¢ + 12962 + Fb + 1
(21 +63b)a® - 102 + (10 + Z2p + 32p?) 0 - 10¢
21a% - 1026 + (10 + 222b) a - 10 + 12962 + Fb + 1
N 3876% + 22 4 8p + 1
21a% - 102 + (10 + 2Bb) a - 100 + 12962 + Fb + 1
T (210210 + 10+ 22b) a - 10° + 12962 + Fb + 1)
2 21a? - 102 + (10 4+ 22b) a - 10 + 12962 + b + 1
21a* - 102 + (10 + 222b) a - 10° + 1296 + Fb + 1
21a% - 10% + (10 + 27b) a - 10° 4 1296% + b + 1

3 (4
= Ja-10°+3b+ 1.

The next largest weight is 3 - 10¢, so for a player j with this weight, we have

_ (3a-10° +6b + 1) 3a - 10¢

2162102+ (10 + 23p) a - 106 + 12962 4+ Db + 1
Ba?10% + (§ + 15b) a - 10¢

T 202102 + (10 + 23b)a - 100 + 12962 + Sh + 1

rw;

< 1.
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Thus, for any player j’ whose weight s different from wax, the quotag (G j1y) = q(G)—rw
of the game resulting from G by deleting j’ must belong to the interval (¢(G) — 1, ¢(G)).

Letn = n1 + ny 4 12 be the number of players in G, and assume that x4 (x1) > x4 (x2).
We will now show that there exists some i € {2, ..., n} such that

BG, 1) = B(G\i;, 1) >0 & x; € AAX & A.

Ifx; ¢ Anxy ¢ A, thenforalli € {2,...,n}, B(G, 1) = B(G\(i}, 1) = 0, so the index
does not decrease.

Ifx; €e AAxy ¢ A then B(G, 1) = 2%5‘1 , and after removing the player j with weight 6b,

we have B(G\j}, 1) = 0, so the index indeed can decrease by deleting a player in this case.

Finally, if x; € A A x; € A, then B(G,1) = 251;& If we delete any player j
with weight a - 104, b, or %b, then B(G\(j}, 1) = M so the index increases. If we
remove the player j with weight %b, then B(G\yj}. 1) = 2§'+%S‘52 = #HED 56 the

on=2 on—
index also increases. The index increases again when we delete player j with weight 6b:
BG\y, D = % = %ﬁ If we delete any player j with weight %a - 10%, the index
)= $1+2$1€2 — 2:§|+4§|$2
on=

on=2

stays unchanged: B(G\{), . The same will happen if we delete any

1 51
player j € {2,...,n1 +1}: G\, D = 2 ;42 2 _ 25124"_‘5“£’:2.It"we remove a player j €
&
{ni+2,...,n1+n2+ 1}, then B(G\(j}, 1) = ZE';‘E; 2 451“5‘&2 , so the index increases.

Finally, if we delete a player j with weight wax, then B(G\(;)
so the index does not decrease either in this case.

Summing up, in this case (where we have two yes-instances of PARTITION) the Penrose-
Banzhaf index of our distinguished player 1 does not decrease, no matter which player is
deleted.

By Lemma 2.2, DP-hardness of our control problem follows. O

1) = §14281&6 _ 251+461&6
’ - on—2 - on—1 ’

Next, we consider the goal of nonincreasing the Penrose-Banzhaf index.

Theorem 4.10 Control by deleting players to nonincrease a distinguished player’s Penrose-
Banzhaf index in a WVG with changing the quota is NP-hard.

Proof We provide a reduction from the NP-complete SUBSETSUM problem. Let x =
(ay, ..., ay; q) be an instance of SUBSETSUM, let ¢ = Z?:l a;, and let £ be the num-
ber of x’s solutions for SUBSETSUM. Consider the weighted voting game (with changing the
quota) defined by

g =(1,4ay,...,4a,, 5,50, 5a, 1, 1, 1, 4q + Sa, 4q + S, 4qg + S,
8502 4+ 98¢ - o + 24q° + 2q; 50+ 4q + 1)
. _ Sa+4g+1
withn+11 players, the parameter r = 85077 (3471 98q a1 2497 14 14°

and the deletion limit £ = 1. After removing any one of the playersi € {2, ..., n+ 10} from
G, we get the following quota:

the distinguished player 1,

q(G\iiy) = Sa +4q + 1 —r(Sa +4q)

250% + (54 409)a + 169> + 4q

—Sat+4g+1— :
O M T RS (34 + 98q)a + 2447 + 14q + 4
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so ¢ (G\iy) is in the range (Sa 4 4q; 5o + 4q + 1), and by deleting the last player, we obtain

q(G\n+11)) =r(Bda + 12 +4)
17002 + (54 + 196¢)o + 48¢2 + 28 + 4
T 8502 + (34 + 98q) + 24¢% + 14g + 4
8502 + (20 + 98¢9)a + 2442 + 14g
85a2 + (34 + 98q)a + 24q% + 14q + 4’

s0 ¢(G\(n+11}) is in the range (1, 2).
Suppose & = 0. Then

3
BG. 1) = pYESTR

If we delete one of the players from {2, ..., n + 7}, the index will increase because player 1
will stay pivotal for the same coalitions and will not become pivotal for any other one. If we
remove one of the players n + 8, n + 9 or n + 10, then

2 4
BG\in+81> 1) = B(G\(n+9), 1) = B(G\(n+10), 1) = 049 = urio’

so the index increases also in this case. Finally, if we delete the player n + 11, the quota will
change to almost 2 (and since all the weights are integers, the quota is then equivalent to 2)
and

3 6
,B(g\{n—Hl}’ 1) = W = W,

so the index has increased again.

Now, suppose & > 0. Then

3+3¢
BO. D= Zo

and after removing the player n 4+ 11, we have

3 6 34 3¢
BG\(n+11), 1) = m+9 T ontlo = 10

Therefore, it is possible to nonincrease player 1’s Penrose-Banzhaf power index by deleting
a player when we have a yes-instance of SUBSETSUM. O

We now turn to the goal of increasing the Penrose-Banzhaf index.

Theorem 4.11 Control by deleting players to increase a distinguished player’s Penrose-
Banzhaf index in a WVG with changing the quota is DP-hard.

Proof Once more, we apply Lemma 2.2 with the NP-complete PARTITION problem (which
we again will call A as in that lemma). Let x; = (a1, ..., a,,) and xo = (b, ..., by,) be
two instances of PARTITION, leta = )/, a; and b = "2, b;, and let &; be the number of
x;’s solutions for PARTITION, j € {1, 2}.

Letn =n; +no

and choose ¢ € N so that 10¢ > 3b. Let

4108 +2b+1
@102 4+ (2b + Da - 10 +6b2 +5b+ 1

r =

@ Springer



Controlling weighted voting games by deleting or adding players 659

Consider the weighted voting game

2
G= (1,a1-10‘,.. S10¢,2b1, ..., 2bp, . b, ‘; ~102£+2ab-10[+6b2+2b;ng),

where Wg again denotes the players’ total weight in G. Let player 1 be our distinguished
player and let the deletion limit be k = 1. The quotas before and after removing either the
last or the second-to-last player are as follows:
q(G) = g 2108426+ 1,
q(G\in43)) = VWG\ n+3}
(510" +2b+1) (a- 10" +3b+1)
% 1026 + 2b+ 1) a - 10¢ + 6b2 + 5b + 1
@102 +2ab - 10¢ +a - 10 4 42 . 10t
@102+ (2b + 1 a- 108 +6b2 +5b + 1
6b> +3b+ 4 - 10° +2b + 1
@102+ (2b+ 1 a- 108 + 6b2 +5b + 1
L 10% + (2 +3)a- 10+ 6b% +5b + 1
@102+ b+ Da- 108 +6b2+5b+ 1
q(G\(n+2y) = q(G) —rb

b ¢, b2
@900+ 5 4 b |
@102 + (2b + 1a - 10¢ 4+ 6b% + 5b + 1

Note that g (G\(r+3}) is in the range (1, 2) and g (G\(n+2}) in the range (g(G) — 1, ¢(G)). Also,
note that after removing any other player, the new quota is equivalent to g (G\ {42)), i.€., it is
greater than g(G) — 1 as well.

Assume that x4(x1) > xa(x2). We now show that there exists some i € {2,...,n + 3}
such that

=q(9) —

BG, 1) =BG}, 1) <0 & x1 € AAXy & A.

Ifx; ¢ AAxy ¢ A thenforalli € {2,...,n+ 3}, B(G,1) = B(G\i}, 1) = 0, so the
index does not increase.

Ifx; € AAXy ¢ A then B(G. 1) = 55 and B(G\(n12). 1) = 547, s0 the index indeed
can increase in this case.

Ifx; € AAxy € A then (G, 1) = E';ﬁ'fz On the other hand, we have B(G\ n43), 1) = 0;

BG\niy, 1) = W = 2l < 5D (since & > 2); for j € {ng +2.....n+ 1},

2)1
B(G\j), 1) = iflfl = 15 < B(G. 1), and finally, for j € {2,....ny + 1}, B(G(j). 1) =
R
2; o 2 _ B(G, 1). So, no matter which player is deleted, the index of player 1 does not
increase.

By Lemma 2.2, DP-hardness of our control problem follows.
The next goal we consider is to nondecrease the Penrose-Banzhaf index.

Theorem 4.12 Control by deleting players to nondecrease a distinguished player’s Penrose-
Banzhaf index in a WVG with changing the quota is coNP-hard.

@ Springer



660 J. Kaczmarek and J. Rothe

Proof We show coNP-hardness by means of a reduction from the complement of the NP-
complete PARTITION problem. Let (ay, ..., a,) be a PARTITION instance, let ¢ = Zle a;,
and let & denote the number of its solutions.

Construct the control problem instance consisting of a game

G=(,2ay,..., 2, a 60% 20+ 1)
with n + 3 players, parameter r = %, the distinguished player 1, and the deletion
limit £ = 1.
The quotas after removing one player from the game are as follows: Fori € {2, ...,n+2},
we have
Guin) > 20+ 1 5 41 4a® + 2a
i o —r- 20 =2« -,
) = 602 + 30 + 1
s0 g(G\(i}) € (2o, 2a + 1); and when we delete the player n + 3, we obtain
60 + S + 1 2a
9G\ns3)) = rGor+1) 602 + 3 + 1 602 + 3o + 1

0 q(G\(n+3}) is in the range (1, 2).
Suppose & = 0. Then

1
ﬂ(g! 1) = W’

and after removing the player n + 2, the index will increase (therefore, will also nondecrease).
Conversely, suppose & > 0. Then

1+¢&
PG = s
If we remove a player i € {2, ..., n + 1}, the index will change to
5€ 3

PGy, =557 = 557 < B 1.

If we delete the player n + 2, then
1 2
BG\ins2y, D = oTES — T

so the index will decrease, since £ > 2. Finally, if we remove the player n 4 3, the quota will
change to almost 2, and there will be no coalition for which player 1 will be pivotal, so the
index will decrease to 0.

Finally, we consider the goal of maintaining the Penrose-Banzhaf index.

Theorem 4.13 Control by deleting players to maintain a distinguished player’s Penrose-
Banzhaf index in a WVG with changing the quota is coNP-hard.

Proof We again show coNP-hardness by means of a reduction from the complement of the
NP-complete PARTITION problem. Let (ay, ..., a,) be a PARTITION instance with n > 1, let
o« = > " a,andlet & denote the number of its solutions. Construct the control problem
instance consisting of a game

G=(13a,....3a, 30, 30,30 (3a — 1) = 1; 3 + 1)
with n 4 4 players, the distinguished player 1, and the deletion limit k = 1. Note that

3 —_ 1L .
s+ 1= ey wi.
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The quota’s values in the possible new games are as follows. If we delete a player j €
{2,...,n+ 1}, then
Gy ) +1 ! 3 )
) = -« — —3a; > -«
q \{Jj} 2 3 J 2
so the new quota does not change the coalitions for which player 1 is pivotal. If we delete

player n + 2 or n + 3, then

3
= = — 1 —_—— —_ — -,
q(G\(n+2)) = q(G\(n+3}) 7% + 302% = 2% + 5

and again the new quota does not change the situation of player 1. Finally, if we delete player
n + 4, then

3 1 3 1
n = — l—-—Q@Ba(=a—1)—1)=2+ —,
q(G\(n+4}) 5 + 3a( oz(zoz y—1) + o

which is equivalent to 3.
‘We will now show that

@jef2,....n+4)[BG\j}. D = BG. 1) =0] & £=0.

From right to left, suppose that £ = 0. Then there are only two coalitions for which
player 1 is pivotal: the coalition with player n + 2 and the coalition with player n + 3.
Therefore, B(G, 1) = 2,1% = 2”%, and if we delete one of these players, player 1’s new
Penrose-Banzhaf index is B(G\(n+2), 1) = B(G\(n43), 1) = 2,1% = (G, 1). So,if & =0,
it can be ensured that the Penrose-Banzhaf index of player 1 will not change even when a

player is deleted.
From left to right, suppose that & > 0. Then
E+2
B =

If we delete a player j € {2,...,n + 1}, player 1 will be pivotal for half of the coalitions
from the old game, so

1
sE+2 E+4
BG\» D =5 = Sy = G D

If player n 4 2 or player n + 3 is deleted, then

+1 26 +2
BGna D = BGuay. D = Sy = 2 > G,

Finally, if we delete player n + 4, player 1 will be pivotal for the coalitions with their value
equal 2 and there is no such a coalition in the new game (as in the old game) and

BG\in+4y, ) =0 < B(G, D).

Summing up, there is no possibility to maintain player 1’s Penrose-Banzhaf index if £ > 0
and some player has to be deleted. Therefore, control by deleting players with changing the
quota to increase a distinguished player’s Penrose-Banzhaf index is coNP-hard. O

It remains to show our complexity results for the Shapley-Shubik index when players are

deleted from a game. We start with the goals of either decreasing or nonincreasing this power
index. This time, we merely obtain NP-hardness (instead of DP-hardness).
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662 J. Kaczmarek and J. Rothe

Theorem 4.14 Control by deleting players to decrease or to nonincrease a distinguished
player’s Shapley-Shubik index in a weighted voting game with changing the quota is NP-
hard.

Proof We show NP-hardness by means of a reduction from the SUBSETSUM problem. Let

(ay, ..., ay; m)beagiven instance of SUBSETSUM and leto = Z:‘l:l a;.Let & be the number
of SUBSETSUM solutions for (ay, ..., a,; m). By Lemma 2.1, we can assume that each of
the solutions has the same size, namely %n, and therefore, that n > 3.
Let y1, ..., Yn+4, 5, g, x € N be chosen such that:
Ynta =1,
n+4
vi>2n—1) Z y; foreachi e{l,...,n+3},
Jj=i+l
n+4
10° > @2n =1 yj,
j=1
n+4
G>40-10°+22n—1)) y;,
j=1

X =Y+ + .
Consider the following weighted voting game with changing quota:

G=(1,2a; -10°, ..., 2a, - 10°, G—2m - 10° — x, (n + 5)§*+Qa - 10° — 2m - 10° — x)q,

g—Cn—=Dyi, 1oy, q = 2n = Dynsd, Yntds oo, Yngai ¢+ 1)

—— —
2n—1 2n—1

with 212 + 9n 4 3 players, the parameter

r= g+l

T M+ +5+Qa—2m)- 105 —x)§ + Qo —2m) - 105 —x + 1’

the distinguished player 1, and the deletion limit k = 1.
Let us calculate the new quotas: Fori € {2,...,n+2}U{n+4,..., 2n% +9n + 3}, we
have

q@G\i) =2g+1—-rg
B (@)*+q
n+9§2+m +5+ Qa —2m) - 105 — x)§+Qa — 2m) - 105—x + 1

=G+1
> q,
so0 g (G\(;)) is in the range (g, g + 1), and
q(G\ny3) =r((n +5G +2a-10° = 2m - 10° —x + 1)
_(n+ 5)(@)*+(n + 642 - 10°—=2m - 10° — x)G+20 - 10°—2m - 10° —x + 1
(n+5)3q%+(n+5+2a-105—2m - 10° — x)g+2a - 10°—2m - 105—x + 1

q
= 1 )
+(n +5)G24+m + 54+ Qo —2m) - 105 — x)G+QRa —2m) - 105—x + 1

s0 q(G\(n+3}) is in the range (1, 2).
We now show that the following three statements are pairwise equivalent:
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1. (ai,...,ay; m)is ayes-instance of SUBSETSUM, i.e., £ > 0.

2. There is a player j > 1 whose deletion decreases the Shapley-Shubik index of player 1:
@jef2,....2n2 + 9 + 3D [@G\j}. D) — 9(G, 1) < 0].

3. There is a player j > 1 whose deletion nonincreases the Shapley-Shubik index of
player 1: (3j € {2,...,2n* + 9 + 3} [¢(G\(j}. ) — (G, 1) < 0].

(1) implies (2): Suppose that & > 0. Then

Gn+ D12n? + Zn + 1)
(2n? +9n + 3)!

@2n)!'2n* + Tn +2)!

i iong 3y i@

)

G H=@m+4

and after removing the player n + 2, we have

@n)!2n? 4+ Tn + 1)!
(2n? +9n + 2)!
2n)!(2n2 4+ Tn +2)! 2n> +9n 43
2n?2+9n+3)! 2n2+Tn+2
(2n)!(2n2+7n+2)!( 2n+1 )

G\t 1) =(n+4)

= (n+4)

= 4
(D= o2 T on 1 3)1 202+ Tn +2
Therefore,
9(G, 1) —9(G\(n+23, 1
5 2 22 2
2n+ DI+ En+ 1) 2n+ D)2 Tn + 1)!
—t@n— 13 )2( st DU @t )2("+"+ i3
2n* 4+ 9n + 3)! 2n* 4+ 9n + 3)!
Since
Gn+ D122+ Zn+ D! Qn+ 1)@ +Tn+ 1)
>
(2n2 +9n + 3)! (2n? +9n + 3)!
and

2n—D">n+4
for any n > 2, it follows that
(G, D) — o(G\(n423, 1) > 0.

That is, it is possible to decrease the Shapley-Shubik index of the distinguished player by
deleting a player from the game G.

(2) implies (3): is obvious.

(3) implies (1): To prove the contrapositive, suppose that £ = 0. Then

(2n)!(2n% + Tn + 2)!

0@ 1) =0+ =0 o 3

We will show that no matter which player from {2, ..., 2n% 4+ 91 + 3} we delete, this will
increase the Shapley-Shubik index of the distinguished player 1.

If we remove one of the players from {2, ..., n + 2}, player 1 will remain pivotal for
the same coalitions, so the Shapley-Shubik index of 1’s will increase. Each player i €
{n+4,...,2n% 4+ 9n + 3} belongs to exactly one coalition for which the distinguished
player 1 is pivotal and 1 will stay pivotal for the remaining coalitions. Hence, if we delete i,
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the index will change to

@m)'(2n% + Tn + 1)!

(2n% +9n +2)!
2n% +9n +3 2n)!(2n?% + Tn + 2)!
202 4+7Tn+2  (2n?2 490 +3)!

2n+1 (2n)!(2n> + Tn + 2)!

2n? 4+ 7n + 2) (2n2 +9n + 3)!
2n% + Tn + 3\ 2n)!1(2n2 + Tn + 2)!
2n2 +Tn + 2) (2n2 4 9n + 3)!
@2m)'(2n% + Tn +2)!

(2n% +9n + 3)!

eG\iiy, 1) = +3)

=(n+3)

:m+$Q+

:(n+3+

> (n+4)

=G, 1).

Finally, if we remove the player n 4 3, player 1 will be pivotal only for coalitions with
weight 2, so

1(2n2 |
0@ uia D) = 2 — 1)—(21,'1(221: o i";‘)!
2!1(2n% + 9n)!

(2n?% +9n + 3)!
(2n)!(2n% + Tn + 2)!
(2n% 4+ 9n + 3)!

3 3> (2n)!(2n% + Tn + 2)!

=(2n3+8n°>—Zn—-=
(”+" 2" T2 T 2 o+ 3)!

1
= E(2n —1)@2n* 49 +3)

L3 23,
>2(4n + 16n 3n—3)

)

and because 1 + 4 < 21> + 8n? — %n — % for any n > 1, the Shapley-Shubik index of the
distinguished player has increased also in this case. O

Next, we turn to the goals of either increasing or nondecreasing a player’s Shapley-Shubik
index.

Theorem 4.15 Control by deleting players to increase or to nondecrease a distinguished
player’s Shapley-Shubik index in a weighted voting game with changing the quota is NP-
hard.

Proof We show NP-hardness by means of a reduction from the SUBSETSUM problem. Let
(ai, ..., ay; m)beagiveninstance of SUBSETSUM and leta = Z?:l a;.Let & be the number
of SUBSETSUM solutions for (ay, ..., a,; m). By Lemma 2.1, we can assume that each of
the solutions has the same size, namely %n, and therefore, that n > 3.

Let s, y € N be chosen such that

10° > 2(n — 2)y.
Consider the following weighted voting game with changing quota:

G=(1,2a;-10°,...,2a, - 10°, 8 - 10 + 20 - 10°, 4a - 10° + 4,
QQa —2m)-10°,2m - 10° —2(n — 2)y, 2y, ..., 2y; 20 - 10° + 1)
N—— ———

n—2
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with 2n + 3 players, the parameter r = ——210+L__ ‘the distinguished player 1, and

TP 802 10%+10a-10°+5°
the deletion limit k = 1.
Let us calculate the new quotas: Fori € {2,...,n + 1} U{n +4,...,2n 4 3}, we have

q(G\iy) = 20 - 10° +1 —r - 20 - 10°
4a? - 10% +2a - 10°
822102 + 10« - 105 + 5

=20-10°+1—

> 2a - 10°,
so g(G\(}) is in the range (2o - 10°, 2« - 10° + 1). Next,

q(G\(n+2)) = r(Ba - 10° +5)
_ 160% - 10% + 18 - 10° +5
"~ 8a2-10% 4 10 - 105 +5
8a? - 10% + 8a - 10°
802 - 102 4+ 100 - 105 + 5’

0 q(G\(n+2}) is in the range (1, 2). Finally,

q(G\nt3)) = r(8a” - 10% 4 60 - 10° + 1)
1603 - 10% 4+ 2002 - 10% + 8a - 10° + 1
8a2 - 102 + 10 - 105 + 5
20 - 10° — 1
802102 4+ 10 - 105 + 5’

=2u-10° —

s0 ¢(G\(n+3)) is in the range (2o - 10° — 1, 2a - 10°).
We now show that the following three statements are pairwise equivalent:

1. (ai,...,ay; m)is ayes-instance of SUBSETSUM, i.e., £ > 0.
2. There is a player j > 1 whose deletion increases the Shapley-Shubik index of player 1:

@j €{2.....2n+3) [@Gyj}. D — (G, 1) > 0].
3. There is a player j > 1 whose deletion nondecreases the Shapley-Shubik index of

player 1: (3j € {2.....2n 43} [¢(G\(j). 1) — ¢(G. 1) = 0].
(1) implies (2): Suppose that & > 0. Then

nln+2)! _Gn+DIGn+ 1!
(2n + 3)! (2n +3)!

(G, 1) =2

)

and after removing some player i with weight 2y, we have

nln+ D! Gn+DIGn)!

¢Guin D =" 2n +2)!
B (1+ n+ 1>n!(n+2)! ( §n+2) Gn+ DG+ 1)
a n+2/ (2n+ 3)! %4—1 2n + 3)!
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Therefore,

20413 o+ 1)
©G\i. D — 0(G, 1)=€(3n+ NGm! nln+1)

@2n+3)!  @2n+3)!
_ Gn+2!Gn!  ni(n+1)!
(2n + 3)! 2n + 3)!

>0

for n > 3, so the Shapley-Shubik index of the distinguished player has increased by deleting
a player from the game G.

(2) implies (3): is obvious.

(3) implies (1): To prove the contrapositive, suppose that £ = 0. Then

n!(n + 2)!
(n+3)!"
If we remove a playeri € {2,...,n+ 1} U{n+4,...,2n + 3}, then

G 1)_n!(n+1)!_2n+3n!(n+2)!_< n+l>w
PG D) = @n+2)!  n42 @n+3) n+2/) 2n+3)!

G, 1)=2

< @G, D).

If we delete the player n 4 2, the Shapley-Shubik index of player 1 will decrease to O because
1 can be pivotal only for coalitions with total weight 2, which are impossible to form. We
will get an analogous situation if we remove the player n 4 3 because the new quota will be
equivalent to 2« - 10%%, and since all the weights (except that of player 1) are even integers,
it is impossible to form a coalition containing the player 1 with an even total weight. O

Finally, we consider the goal of maintaining a player’s Shapley-Shubik index.

Theorem 4.16 Control by deleting players to maintain a distinguished player’s Shapley-
Shubik index in a weighted voting game with changing the quota is coNP-hard.

Proof We show coNP-hardness by means of a reduction from the PARTITION problem. Let
(ay,...,a,) be a PARTITION instance with n > 1, let ¢ = Z:‘: 1 ai», and let & denote the
number of its solutions. Construct the control problem instance consisting of a game

g =(,6ay,...,6a,,60, 9%0Bax —1)—1;9% + 1)
with n + 3 players, the distinguished player 1, and the deletion limit ¥ = 1. Note that
9o+ 1= =3y wi.

The values of the quota in possible new games are as follows. If we delete a player
jef{2,...,n+ 1}, then

1
qG\j)) =% +1— 560./ > 90 — 1

and | )
GGy =9+ 1= 2-6aj <9+ 1—— <%+l

which is equivalent to 9«. If player n + 2 is deleted, then

1
q(G\(n+2)) =% + 1 — 560{ =9a — 1.
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Finally, if we delete player n + 3, then

1
q(G\(n+3)) =92 + 1 — 5(901(301 D=1

1 1
=% +1-9%+3+ — =4+ —
3a 3a

which is equivalent to 5.
We will show that

@jel2,....n+3D[e@G 1. D) — 9@, 1)=0] & &=0.

From right to left, suppose that & = 0. Then ¢(G, 1) = 0, and it does not matter which
player will be deleted, the Shapley-Shubik index of the distinguished player always remains
equal to 0, so it does not change.

From left to right, we show the contrapositive. Suppose that & > 0. Then

1
26
2o LASi T+ D = 1Si )l 4+ D+ (= (1S [+ DS+ DY
n+3)! ’
which is positive. If we delete any player j € {2,...,n + 3}, then player 1’s Shapley-
Shubik index decreases to 0. Therefore, control by deleting players with changing the quota
to maintain a distinguished player’s Shapley-Shubik index is coNP-hard. O

0@, 1) =

As mentioned before, Rey and Rothe [8] presented also an upper bound of NPP? (which,
recall, is the class of problems that can be solved by an NP oracle machine accessing a PP
oracle set) for the computational complexity of the problems they were studying. Exactly the
same argumentation? is also valid for weighted voting games with changing quota. Therefore,
we obtain the same upper bound: All our control problems regarding weighted voting games
with changing quota are contained in NPFP.

5 Conclusions and future research

We have continued the work on structural control by adding or deleting players in WVGs
initiated by Rey and Rothe [8]. In particular, we have solved most of their open problems
and have fixed a minor flaw in the proof of a lower bound for how much the Shapley-Shubik
index can change by deleting players. We have also modified their model in a natural way by
making the quota of a new WVG resulting from adding or deleting players dependent on the
total weight of the players, and we have initiated the complexity analysis in this new model.

Still, some problems remain open for future work. First, it would be interesting to study
the goal of nondecreasing a distinguished player’s Shapley-Shubik power index in the model
of Rey and Rothe [8] (see the only question mark in Table 1). Furthermore, there is still a
huge gap between the lower bounds we prove here and the upper bound of NPPP stated at
various places in the paper. Can we find better upper bounds or can we raise our lower bounds,
for example to PP-hardness (or, ideally, even to NPPP-hardness*)? Such an improvement of
lower bounds to PP-hardness was accomplished by Rey and Rothe [8] for some of their
problems, and we succeeded to do so for some of our problems in the proof of Theorem 4.7.

3 Essentially, the result comes from the fact that computing the numerator of the Penrose-Banzhaf index is #P-
parsimonious-complete and computing the numerator of the Shapley-Shubik index is #P-many-one-complete.

4 Note that NPPP is a huge complexity class that in particular contains all of the polynomial hierarchy by
Toda’s result [38].
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