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Bounded cohomology is not a profinite
invariant
Daniel Echtler and Holger Kammeyer

Abstract. We construct pairs of residually finite groups with isomorphic profinite completions such
that one has non-vanishing and the other has vanishing real second bounded cohomology. The
examples are lattices in different higher-rank simple Lie groups. Using Galois cohomology, we actually
show that SO0(n, 2) for n ≥ 6 and the exceptional groups E6(−14) and E7(−25) constitute the complete
list of higher-rank Lie groups admitting such examples.

1 Introduction

A group invariant is called profinite if it agrees for any two finitely generated residually
finite groups �, Λ with isomorphic profinite completions. A standard example is
the abelianization H1(�); a more sophisticated example is largeness [20]. It seems,
however, that more often than not, group invariants fail to be profinite. Kazhdan’s
property (T) [2], higher �2-Betti numbers [15], Euler characteristic and �2-torsion
[14], amenability [17], finiteness properties [22], and most recently Serre’s Property FA
[6] are all known not to be profinite. This list is by no means exhaustive and bounded
cohomology is another item.

Lemma 1 Let �= Spin(7, 2)(Z) and Λ= Spin(3, 6)(Z). Then �̂≅ Λ̂, but H2
b(�;R)≅

R, while H2
b(Λ;R) ≅ 0.

For an ad hoc definition of the spinor group Spin(q)(O) of a quadratic form q
over an integral domain O, we refer to [15, Section 3]. The profinite completion �̂ of
a group � is the projective limit of the inverse system of finite quotient groups of �.
The bounded cohomology H∗b (�;R)with real coefficients of a discrete group � is the
cohomology of the cochain complex �∞(�∗+1 ,R)�, of bounded functions �∗+1 → R

which are constant on the orbits of the diagonal �-action on �∗+1, with the usual
differential. The reader may consult [7] for further details.

Let us quickly prove the lemma. If the Witt index of an integral quadratic form q is
at least 2, then Spin(q)(Z) has the congruence subgroup property (CSP). This implies
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380 D. Echtler and H. Kammeyer

that
̂Spin(q)(Z) ≅ Spin(q)(Ẑ) ≅ Spin(q)(∏p Zp) ≅ ∏p Spin(q)(Zp).

The standard forms of signature (7, 2) and (3, 6) are isometric over Zp for all (finite)
primes p because standard quadratic form theory shows

x2
1 + x2

2 + x2
3 + x2

4 ≅Zp −x2
1 − x2

2 − x2
3 − x2

4 .

Since Spin(q)(O) is functorial in isometries q ≅O q′[15, Lemma 7], we conclude
�̂ ≅ Λ̂. But the second bounded cohomology of higher-rank lattices was computed by
Monod and Shalom [24, Theorem 1.4], and it turns out that H2

b(�,R) ≅ R, whereas
H2

b(Λ,R) ≅ 0.
This counterexample to the profiniteness of bounded cohomology is similar in

spirit to Aka’s counterexamples to the profiniteness of Property (T) in [2]. Experts
might have been aware of it, but we could not find a reference. In any case, it has
prompted us to investigate thoroughly how often or rare such pairs of groups occur
among higher-rank lattices. The purpose of this article is to give the complete picture.

To state the result, let us agree that by a higher-rank Lie group, we mean the group
of real points G = G(R) of a connected almost R-simple linear algebraic R-group G
with rankR G ≥ 2. We say that G exhibits non-profinite second bounded cohomology if
there exist a lattice � ≤ G and another lattice Λ ≤ H in some other higher-rank Lie
group H such that �̂ ≅ Λ̂ and such that H2

b(�;R) /≅ 0 while H2
b(Λ;R) ≅ 0.

Theorem 2 Let G be a higher-rank Lie group. Then G exhibits non-profinite second
bounded cohomology if and only if it is isogenous to

SO0(n, 2) for n ≥ 6, or to E6(−14) , or to E7(−25) .

Here, we call two simple Lie groups isogenous if they have isomorphic Lie algebras.
Note that a finite index subgroup of the group � from Lemma 1 is a lattice in SO0(7, 2).
The lemma actually provides the easiest possible example because the examples of
lattices that we construct in SO0(6, 2) come from triality forms of type D4, as we will
see.

Let us outline the proof of Theorem 2. The key result is the aforementioned theorem
due to Monod and Shalom [24, Theorem 1.4], which extends a previous result of
Burger and Monod [4, Corollary 1.6]: for a lattice � ≤ G in a higher-rank Lie group, we
have H2

b(�;R) ≅ R if π1G is infinite and H2
b(�;R) ≅ 0 otherwise. It is well known that

π1G is infinite if and only if the symmetric space G/K associated with G is Hermitian
[11, Theorem VIII.6.1, p. 381]. The classification of Hermitian symmetric spaces is
long-established [11, Section X.6.3, p. 518]. The irreducible Hermitian symmetric
spaces of higher rank are precisely the symmetric spaces of the simple Lie groups

SU(n, m) for n, m ≥ 2, SO0(n, 2) for n ≥ 3, SO∗(2n) for n ≥ 4,
Sp(n,R) for n ≥ 2, E6(−14) , and E7(−25) .

Here, SO0(n, 2) is the identity component of the determinant one matrices that
preserve the standard quadratic form of signature (n, 2). The group SO∗(2n) is the
quaternionic special orthogonal group as defined, for instance, in [25, Example A2.4.2,
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p. 430]. Using the symbol “≈” for isogenous groups, we have the accidental isogenies
SO0(3, 2) ≈ Sp(2;R), SO0(4, 2) ≈ SU(2, 2), and SO0(6, 2) ≈ SO∗(8). Let G be one
of the groups in the list, and let � ≤ G be any lattice. By Margulis arithmeticity, we
may assume � is an arithmetic subgroup of a simply-connected simple algebraic
group G over some totally real number field k such that G ≈ G(kv) for some real
place v of k and such that G is anisotropic at all other infinite places of k. The CSP
translates the question whether there exists Λ ≤ H as in the theorem to whether there
exists a simply-connected simple l-group H, an isomorphism A

f
k ≅ A

f
l of topological

rings between the finite adele rings of k and l, and a corresponding isomorphism
G(A f

k) ≅ H(A f
l ) such that H is anisotropic at all but one infinite place where it should

be isogenous to a higher-rank Lie group outside the list. The technical achievement
of this paper, beside filling in the details of the arguments thus far, is to solve this
problem by Galois cohomological methods.

We conclude the introduction with some comments on related work and
open questions. By definition, bounded cohomology comes with a comparison
map H∗b (�;R) �→ H∗(�;R). The kernel of this homomorphism is denoted by
EH∗b (�;R) and is called exact bounded cohomology. In degree two, we have the
well-known interpretation that EH2

b(�;R) detects non-trivial quasimorphisms: maps
f ∶�→ R for which there exists D > 0 with

∣ f (gh) − f (g) − f (h)∣ ≤ D

for all g , h ∈ � such that f is not at bounded distance from an honest homomorphism
[7, Section 2.3]. For lattices in higher-rank linear Lie groups, it was verified by Burger
and Monod [5, Theorem 21] that the comparison map in degree 2 is injective. So the
question whether the existence of non-trivial quasimorphisms is a profinite property
remains open for now.

However, for lattices in rank one groups, the situation is different. On the one
hand, a result of Fujiwara shows that such lattices admit many quasimorphisms [8].
On the other hand, Serre conjectured that these lattices should not have the CSP, so
an important ingredient to construct groups with isomorphic profinite completions
would be missing. Yet lattices in the rank one groups Sp(n, 1) and F4(−20) share many
properties with higher-rank lattices which might suggest that they in fact do have CSP
[21, Section 4].

If F4(−20) has CSP, then having non-trivial exact second bounded cohomology, or
equivalently having non-trivial quasimorphisms, is not a profinite property. Indeed,
let F4 be the unique simply-connected absolutely almost simple Q-split linear alge-
braicQ-group of type F4. Since the Dynkin diagram of type F4 has no symmetries and
the center of F4 is trivial, we have F4 ≅ Ad F4 ≅ Aut F4. Therefore, the Hasse principle
for simply-connected groups gives H1(Q, Aut F4) ≅ H1(R, Aut F4), meaning that
every real form of type F4 comes with a unique Q-structure. Moreover, any two
Q-groups of type F4 are Qp-split and hence Qp-isomorphic for all finite primes p
by Kneser’s theorem [19]. Therefore, if F4(−20) has CSP, we can find arithmetic lattices
� ≤ F4(−20) and Λ ≤ F4(4) with �̂ ≅ Λ̂, but EH2

b(�;R) ≠ 0, while EH2
b(Λ;R) = 0.

Another notion from this circle of ideas is Ulam stability. Here, instead of
R, we consider unitary groups U(n) = {A ∈ GLn(C)∶A∗ = A−1} and define an
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ε-homomorphism as a map f ∶�→ U(n) such that ∥ f (gh) − f (g) f (h)∥ ≤ ε holds
for all g , h ∈ � where ∥ ⋅ ∥ denotes the operator norm in Mn(C). We say that � is
uniformly U(n)-stable if there exists a function δ = δ(ε) with limε→0 δ(ε) = 0 such
that for all ε-homomorphisms f ∶�→ U(n), there exists an honest homomorphism
F∶�→ U(n) such that for all g ∈ �, we have ∥ f (g) − F(g)∥ ≤ δ(ε). We say that � is
Ulam stable if it is U(n)-stable for all n ≥ 1.

It is a straightforward consequence of the Burger–Monod theorem that lattices
in higher-rank linear Lie groups are uniformly U(1)-stable [10, Theorem 1.0.11].
Most recently, Glebsky, Lubotzky, Monod, and Rangarajan proved the far-reaching
generalization that lattices in many higher-rank semisimple Lie groups G are Ulam
stable [10, Theorem 0.0.5]. In fact, they are even uniformly stable with respect to more
general metrics on U(n). Interestingly, the technical condition “property-G(Q1 ,Q2)”
that G needs to satisfy to conclude this stability of lattices fails for SO0(n, 2), E6(−14),
and E7(−25) by [10, Theorem 0.0.6], but it holds true for E6(2) and E7(7) [10, Proof of
Proposition 6.3.6]. (It seems to be open whether it holds for groups of type SO0(p, q)
with p, q ≥ 3.) We will see below that E6(2) and E7(7) contain lattices which are
profinitely isomorphic to lattices in E6(−14) and E7(−25), respectively. The authors
actually entertain the idea that property-G(Q1 ,Q2) might be necessary for Ulam
stability [10, Section 7]. If that was true, our theorem would thus have the corollary
that Ulam stability is not a profinite property.

In Section 2, we prove the “if part” of Theorem 2, and in Section 3, we prove the
“only if ” part.

2 Proof of Theorem 2 – “if part”

In this section, we show that higher-rank Lie groups isogenous to SO0(n, 2) for n ≥ 6,
E6(−14), or E7(−25) exhibit non-profinite second bounded cohomology. We start with
the group E7(−25).

Fix a prime number p0. Let E7 be the unique simply-connected absolutely almost
simple Q-split linear algebraic Q-group of type E7. The center Z(E7) ≅ μ2 is isomor-
phic to the algebraic group of “second roots of unity” [27, Table on p. 332], so that
μ2(K) = {±1} for any field extension K/Q. By [34, Section I.5.7], the corresponding
equivariant short exact sequence of Gal(Q)-groups

1�→ μ2 �→ E7 �→ Ad E7 �→ 1

and functoriality yield a commuting diagram of Galois cohomology sets

⊕
p≠p0

H1(Qp , E7) ⊕
p≠p0

H1(Qp , Ad E7) ⊕
p≠p0

H2(Qp , μ2)

H1(Q, E7) H1(Q, Ad E7) H2(Q, μ2)

H1(Qp0 , E7) H1(Qp0 , Ad E7) H2(Qp0 , μ2)

⊕ π p ⊕ Δ p

π Δ

f

f p0

b

b p0

π p0 Δ p0
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which is exact at the middle term of each row. The direct sums in the upper row denote
the subsets of the Cartesian products consisting of elements with all but finitely many
coordinates equal to the unit class. We agree that the infinite prime∞ with Q∞ = R
is included. Let us collect some information on this diagram.

Proposition 3 The map f is surjective and Δp0 has trivial kernel.

Proof The surjectivity of f is implicit in the work of Borel and Harder [3] but can
be cited explicitly from Prasad and Rapinchuk [29, Proposition 1]. The map Δp0 has
trivial kernel by exactness of the lower sequence and because H1(Qp0 , E7) = 0 by a
result of Kneser [19]. ∎

Proposition 4 The image of πR∶H1(R, E7) �→ H1(R, Ad E7) consists of two ele-
ments, corresponding to the real forms E7(7) and E7(−25).

Proof This was already observed as part of the investigation in [16], but let us give
a direct argument for the convenience of the reader. By [34, Section I.5.7], the map
πR sits in the exact sequence

E7(R)
p
�→ Ad E7(R)

δ
�→ H1(R, μ2) �→ H1(R, E7)

πR�→ H1(R, Ad E7).

By [34, Corollary 2, Section I.5.6], the map δ is a group homomorphism, hence
im δ ≅ Ad E7(R)/p(E7(R)) by exactness. But the R-points of a simply-connected
semisimple R-group form a connected Lie group [23, Remark (2), p. 52], whereas
Ad E7(R) has two connected components according to [1, Table 5, p. 1095]. Since
H1(R, μ2) ≅ Z/2, it follows that δ is surjective, so ker πR = 1 by exactness. By [1, Table
3, p. 1094], the set H1(R, E7) has two elements, so πR is injective. If [a] ∈ H1(R, E7)
denotes the nontrivial class, we conclude from [34, Corollary 2, Section I.5.5] that
the a Ad E7(R)-action on H1(R, μ2) ≅ Z/2 is transitive; hence, a Ad E7(R) must be
disconnected. By [1, Table 5, p. 1095], the Hermitian form E7(−25) is the only non-
split disconnected form, so a Ad E7(R) is of type E7(−25). This shows that πR([a]) ∈
H1(R, Ad E7) corresponds to the real form E7(−25). Of course, the unit class 1 ∈
H1(R, Ad E7) corresponds to the split form E7(7). ∎

The surjectivity of f according to Proposition 3 lets us find classes α, β ∈
H1(Q, Ad E7) such that both α and β split at all finite primes p except possibly at
p0 and such that α corresponds to the real form E7(−25) at∞, whereas β corresponds
to the real form E7(7) at∞.

Proposition 5 Both α and β also split at p0.

Proof Proposition 4 and exactness of the upper sequence in the above diagram
show that ⊕Δp( f (α)) = ⊕Δp( f (β)) = 1. By commutativity, we have b(Δ(α)) =
b(Δ(β)) = 1. The map b is injective as a special case of [29, Theorem 3.(2)]. In fact,
the injectivity is an immediate consequence of the extended Albert–Brauer–Hasse–
Noether theorem from global class field theory, stating that we have a short exact
sequence
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384 D. Echtler and H. Kammeyer

1�→ Br(Q) �→⊕
p

Br(Qp)
s
�→ Q/Z�→ 1(6)

where s sums up local invariants. Indeed, H2(Q, μ2) is the subgroup Br2(Q) of
the Brauer group Br(Q) = H2(Q, GL1) consisting of order two elements. It follows
that Δ(α) = Δ(β) = 1, so bp0(Δ(α)) = bp0(Δ(β)) = 1. Since Δp0 has trivial kernel by
Proposition 3, commutativity of the right lower square gives fp0(α) = fp0(β) = 1. ∎

As the Dynkin diagram of type E7 comes with no symmetries, the set H1(Q, Ad E7)
classifies all Q-forms of type E7. The upshot of Proposition 5 is that the simply-
connected Q-forms G1 and G2 defined by α and β, respectively, are split and thus
isomorphic over Qp for all finite primes p. It then follows from [13, Lemmas 2.5 and
2.6] that we also have an isomorphism G1 ≅ G2 of group schemes over the finite adele
ringA f

Q
. Moreover, neither G1 nor G2 is topologically simply-connected at the infinite

place. Indeed, we have Z(G1(R)) ≅ Z(G2(R)) ≅ {±1}. But according to [26, Table
10, p. 321], the simply-connected real Lie group of type E7(7) has cyclic center of
order four, while the simply-connected real Lie group of type E7(−25) has infinite
cyclic center. (The latter is actually a consequence of E7(−25) giving rise to a Hermitian
symmetric space.) By [28, Main Theorem], this implies that the metaplectic kernels
of G1 and G2 are trivial. The surjectivity result for the map f comes with an additional
statement on the existence of isotropic preimages [29, Theorem 1 (iii)] which allows
us to assume that rankQ G1 = 3 and rankQ G2 = 7. Therefore, the centrality of the
congruence kernels of G1 and G2 follows from [30]. Together with [27, Theorems
9.1 and 9.15], we conclude that the congruence kernels of G1 and G2 are in fact trivial.

Let �0 and Λ0 be arithmetic subgroups of G1 and G2, respectively, which we
may assume intersect the center trivially. Since the congruence kernel of G1 is
trivial, the profinite completion �̂0 agrees with the congruence completion �0. The
latter is an open subgroup of G1(A

f
Q
) by strong approximation. Similarly, under the

isomorphism G1(A
f
Q
) ≅ G2(A

f
Q
), the group Λ̂0 = Λ0 is embedded as another open

subgroup in G1(A
f
Q
). We denote the open intersection of these two open subgroups

by U ≤ G1(A
f
Q
). Then, by [32, Proposition 3.2.2, p. 80, and Lemma 3.1.4, p. 77], the

groups � = �0 ∩U and Λ = Λ0 ∩U have finite index in �0 and Λ0, respectively, and
�̂ ≅ U ≅ Λ̂.

By the Borel–Harish-Chandra theorem [23, Theorem I.3.2.7, p. 63], � is a lattice
in the Lie group G1(R), while Λ is a lattice in G2(R). Since � does not meet the
center of G1, � is also a lattice in any central quotient of G1(R). As we explained
in the introduction, the Burger–Monod–Shalom theorem gives H2

b(�;R) ≅ R and
H2

b(Λ;R) ≅ 0 because G1(R) has type E7(−25), whereas G2(R) has type E7(7). This
completes the proof that Lie groups of type E7(−25) exhibit non-profinite second
bounded cohomology.

Remark 7 We are grateful to the anonymous referee who suggested to us the
following alternative way to construct a Q-form G1 of type E7 which has type E7(−25)
at the real place and splits at all finite places. Consider the standard quadratic form
q = x2

1 +⋯+ x2
8 of rank eight. It corresponds to an element αq ∈ H1(Q, SO(4, 4))
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because the discriminant of q and the standard form of signature (4, 4) are both
trivial. The boundary map δ2∶H1(Q, SO(4, 4)) �→ Br2(Q) associated with the short
exact sequence

1�→ μ2 �→ Spin(4, 4) �→ SO(4, 4) �→ 1

is given by the Hasse–Witt invariant [34, III.3.2.b, p. 141] so that δ2(αq) = w2(q) = 1.
Thus, αq has a preimage βq ∈ H1(Q, Spin(4, 4)). Via the obvious Dynkin diagram
inclusion D4 ⊂ E7, the class βq maps to a class in H1(Q, E7). The image in
H1(Q, Ad E7) thus defines a Q-form G1 of type E7 which splits at every finite place
and has the Satake–Tits index

at the real place by construction. This shows that G1(R) is the Lie group E7(−25).

We now turn our attention to the group E6(−14). Again, we fix a rational prime p0.
Let 2E6 be any simply-connected absolutely almost simple quasisplit Q-group which
splits neither at p0 nor at∞. Such a form exists according to [3, Proposition, p. 58]. The
Hasse principle for adjoint groups [27, Theorem 6.22, p. 336] shows that the diagonal
map

f ∶H1(Q, Ad 2E6) �→ ⊕
p≤∞

H1(Qp , Ad 2E6)

is injective. But f is also surjective by [29, Proposition 1] because at p0, the group 2E6
has no inner twist, meaning that the set H1(Qp0 , Ad 2E6) is trivial [27, Proposition
6.15(1), p. 334].

The set H1(R, Ad 2E6) has three elements corresponding to the quasisplit form
E6(2), the Hermitian form E6(−14), and the compact form E6(−78) as we infer one more
time from [1, Table 3, p. 1094 and Remark in 10.3]. Let α, β ∈ H1(Q, Ad 2E6) be the
unique classes corresponding to E6(−14) and E6(2) at the infinite place, respectively,
and which are trivial at all finite places. We denote the simply-connected Q-forms
of 2E6 corresponding to α and β by G1 and G2. By construction, G1 and G2 are
isomorphic over Qp for all finite primes p. From the tables [27, p. 332] and [26, Table
10, p. 321], we infer that the centers of G1(R) and G2(R) have order three, whereas the
centers of the simply-connected real Lie groups of types E6(−14) and E6(2) are infinite
cyclic and of order six, respectively. So again, the metaplectic kernels of G1 and G2 are
trivial. It follows anew from [29, Theorem 1(iii)] that rankQ G1 = 2 and rankQ G2 = 4
so that both congruence kernels are central by [30]. Finally, the case of type 2E6, which
was still excluded in [27, Theorem 9.1, p. 512], was meanwhile settled by Gille [9]. So
[27, Theorem 9.15] shows that both G1 and G2 have trivial congruence kernel. With
these remarks, the rest of the argument goes through as before and we conclude that
E6(−14) exhibits non-profinite second bounded cohomology.

For the group SO0(6, 2), we can actually argue similarly. We let 3D4 be a simply-
connected absolutely almost simple quasisplit Q-group that localizes to the quasisplit
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triality form of type 3D4 at a fixed prime p0 and that splits at ∞. Note that the Q-
group 3D4 can either have outer type 3D4 or 6D4. Since again H1(Qp0 , Ad 3D4) is
trivial according to [27, Proposition 6.15(1), p. 334], we have a pointed bijection

f ∶H1(Q, Ad 3D4) �→ ⊕
p≤∞

H1(Qp , Ad 3D4).

Hence, there exist Q-forms G1 and G2 of 3D4 that localize to the inner forms
SO0(6, 2) and SO0(4, 4) at the real place, respectively, and to the trivial inner twist
of 3D4 at all finite places so that they are isomorphic over Qp for all p. We have
rankQ G1 = 1 and rankQ G2 = 2, so both groups have central congruence kernel, this
time by [31]. The tables [27, p. 332] and [26, Table 10, p. 320] show that G1(R) and
G2(R) have trivial center, whereas the corresponding topological universal coverings
have center isomorphic to Z⊕Z/2 and (Z/2)3, respectively. This implies that the
metaplectic kernels of G1 and G2 are trivial and so are the congruence kernels. Hence,
we can once more construct profinitely isomorphic lattices in G1(R) and G2(R) as
we did in type E7 and we conclude that SO0(6, 2) ≈ SO∗(8) exhibits non-profinite
second bounded cohomology.

Finally, we observe that Lemma 1 generalizes effortlessly to the groups
� = Spin(n, 2)(Z) and Λ = Spin(n − 4, 6)(Z) for n ≥ 7. Let �0 ≤ � be a finite
index subgroup which intersects the center of Spin(n, 2)(R) trivially. Setting
Λ0 = Λ ∩ �0 ⊂ �̂ ≅ Λ̂, we have �̂0 ≅ Λ̂0. The group �0 is a lattice in every quotient
group of Spin(n, 2)(R) by a central subgroup so that all Lie groups isogenous to
SO0(n, 2) exhibit non-profinite second bounded cohomology for n ≥ 7.

3 Proof of Theorem 2 – “only if part”

In this section, we show that the remaining higher-rank Lie groups defining Hermi-
tian symmetric spaces

SU(n, m) (n, m ≥ 2), SO0(5, 2), SO∗(2n) (n ≥ 5), Sp(n,R) (n ≥ 2)

do not exhibit non-profinite second bounded cohomology. Recall that the group
SO0(3, 2) is isogenous to Sp(2,R) and the group SO0(4, 2) is isogenous to SU(2, 2).

As preparation, let k and l be totally real number fields and let G and H be
simply-connected absolutely almost simple groups defined over k and l, respectively.
Assume that G is anisotropic at all infinite places of k except one which we call
v and that H is anisotropic at all infinite places of l except one which we call w.
Suppose moreover that rankkv G ≥ 2 and rank lw H ≥ 2 and that there exist arithmetic
subgroups � ≤ G(k) and Λ ≤ H(l) such that �̂ ≅ Λ̂. By adelic superrigidity [13,
Theorem 3.4], we have an isomorphism j∶A f

l → A
f
k of topological rings and a group

scheme isomorphism η∶G ×k A
f
k �→ H ×l A

f
l over j. By the proof of [18, Proposition

2.5(a), p. 238], the isomorphism j induces a bijection u ↦ u′ of the finite places of k
and l and isomorphisms ku ≅ lu′ . Correspondingly, the isomorphism η over j splits
into a family of isomorphisms G(ku) ≅ H(lu′). In particular, G and H have the same
Cartan Killing type.

Proposition 8 The R-groups Gv and Hw are inner twists of one another.
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Proof The case k = l = Q was handled in [14, Proposition 2.7] (and it is apparent
that the same arguments give the case of k = l if v = w). For the general case, we argue
as follows. Let G0 be the up to Q-isomorphism unique Q-split simply-connected
Q-group of the same Cartan Killing type as G and H. Let T ⊂ G0 be a maximal
Q-split torus, pick a set Δ of simple roots of G0 with respect to T, and let Sym Δ be
the subgroup of the permutation group of Δ given by Dynkin diagram symmetries.
Then we have a split short exact sequence

1�→ Ad G0
ι
�→ Aut G0

π
�→ Sym Δ �→ 1(9)

of Gal(Q)-groups where Gal(Q) acts trivially on Sym Δ. The group G corresponds
to a unique class α ∈ H1(k, Aut G0) and similarly H corresponds to a unique class
β ∈ H1(l , Aut G0). Since we have isomorphisms G(ku) ≅ H(lu′), it follows by func-
toriality that π∗α ∈ H1(k, Sym Δ) and π∗β ∈ H1(l , Sym Δ) map diagonally to corre-
sponding elements under the induced isomorphism

∏
u∤∞

H1(ku , Sym Δ) ≅ ∏
u′∤∞

H1(lu′ , Sym Δ).

Let us now first suppose that G and hence G0 do not have type D4. We may then
assume that Sym Δ ≅ Z/2Z because the proposition is trivial if Sym Δ is. Note that the
first Galois cohomology with coefficients inZ/2Z classifies quadratic field extensions.
So we conclude that π∗α and π∗β correspond to quadratic extensions K/k and L/l ,
respectively, such that A f

K ≅A f
Q

A
f
L (using [18, Theorem 2.3, p. 237]). This shows in

particular that K and L have the same number of real embeddings [18, Theorem 1.4(h),
p. 79]. It follows that the number of real places in k extending to complex places in K
equals the number of real places in l extending to complex places in L. Translating back
from field extensions to Galois cohomology classes, this shows that α and β localize
to outer forms at the same number of infinite places. Since α and β localize to the
compact real form (which may be inner or outer depending on the Cartan Killing
type) at all other infinite places, αv and βw must be either both outer or both inner
forms. In any case, they are inner twists of each other.

Now, if G and hence G0 does have type D4, then Sym Δ ≅ S3 ≅ Z/3 ⋊Z/2. Note
that subgroups of the same order are conjugate in this group. Therefore, the first
Galois cohomology with coefficients in the trivial Galois module S3 classifies Galois
extensions with Galois groups either Z/2, or Z/3, or S3 (or trivial). So π∗α and π∗β
correspond to Galois extensions K/k and L/l of one and the same of these types,
again such that A f

K ≅A f
Q

A
f
L . So once more, K and L have the same number of real

embeddings. As K and L are Galois over k and l, respectively, real places extend either
only to real places or only to complex places in these extensions. Correspondingly, α
and β localize to outer forms again at the same number of infinite places of k and l.
As all nontrivial homomorphisms Gal(R) → Sym Δ are conjugate, any two real outer
forms are inner twists of each other even in type D4. It follows again that αv and βw
must be inner twists of one another. ∎

Now, let G be one of the groups listed at the beginning of this section and let
� ≤ G be a lattice. Let Λ ≤ H be a lattice in another higher-rank Lie group and
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assume that �̂ ≅ Λ̂. We have to show that H also defines a Hermitian symmetric
space. By Margulis arithmeticity [23, Chapter IX, Theorem 1.11, p. 298, (∗∗), and
Remark 1.6(i), pp. 293–294], there exist a k-group G and an l-group H with k, l, G,
and H as above such that Gv is isogenous to G, Hw is isogenous to H, and G(Ok) is
commensurable with � while H(Ol) is commensurable with Λ. Since � and Λ are
profinitely isomorphic, so are suitable finite index subgroups of G(Ok) and H(Ol).
Therefore, we have the conclusion from above that there exist an isomorphism j∶A f

l →

A
f
k and an isomorphism η∶G ×k A

f
k �→ H ×l A

f
l over j and Proposition 8 holds true

for G and H.

Proposition 10 The groups G ≈ SU(n, m) with n, m ≥ 2 do not exhibit non-profinite
second bounded cohomology.

Proof By Proposition 8, the group Hw is an inner twist of Gv ; hence, H is isogenous
to SU(n′ , m′) for some n′ , m′ ≥ 2 because the generalized special unitary groups are
the only outer real forms of type An in the classification of real simple Lie groups. So
H defines a Hermitian symmetric space, too. ∎

Proposition 11 The groups G ≈ Sp(n,R) with n ≥ 2 do not exhibit non-profinite
second bounded cohomology.

Proof Let G0 = Spn be the unique Q-split simply-connected Q-group of type Cn .
Then Sym Δ = 1, so Aut G0 = Ad G0 and we have Z(G0) = μ2. From the short exact
sequence of Gal(Q)-groups

1�→ Z(G0) �→ G0 �→ Ad G0 �→ 1,

we obtain a boundary map δK ∶H1(K , Ad G0) → H2(K , μ2) for any field extension
K/Q. As we saw in [16, Section 5], the kernel of δR consists of the class corresponding
to the split form Sp(n,R) only, while the other real forms of type Cn are the groups
Sp(p, q) with p + q = n and they form precisely the fiber under δR of the nontrivial
element in H2(R, μ2) ≅ Z/2Z. Let α ∈ H1(k, Ad G0) be the cohomology class cor-
responding to G, and let β ∈ H1(l , Ad G0) be the cohomology class corresponding
to H. Then δk(α) and δ l(β) map diagonally to corresponding elements under the
isomorphism

∏
u≠v

H2(ku , μ2) ≅ ∏
u′≠w

H2(lu′ , μ2).(12)

Indeed, this follows from the isomorphism η for u ∤ ∞. Additionally, we know that
at infinite places u ≠ v and u′ ≠ w, the groups Gku and Hlu′

are anisotropic hence
isomorphic to the unique anisotropic real form Sp(n) of type Cn . The number field
version of the Albert–Brauer–Hasse–Noether theorem (6) says that there is a short
exact sequence

1�→ Br(k) �→⊕
u

Br(ku) �→ Q/Z�→ 1.(13)
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Since Gv ≈ Sp(n,R) is the real split form, αv is trivial. Hence, so is δR(αv) and
therefore also δR(βw) by (12) and (13). So βw is trivial, too. This shows that H ≈
Sp(n,R) is Hermitian. ∎

Proposition 14 The groups G ≈ SO∗(2n) with n ≥ 5 do not exhibit non-profinite
second bounded cohomology.

Proof In this case, G and H have type Dn , and it is more convenient to argue in
terms of central simple algebras instead of Galois cohomology. Indeed, it is then well
known by the work of Weil and Jacobson (see, for instance, [33, Theorem 4.5.10])
that there exist central simple algebras A and B over k and l, respectively, each
endowed with an involution σ of the first kind and of orthogonal type such that the
skew symmetric Lie subalgebras of A and B consisting of the elements x satisfying
σ(x) = −x with commutator Lie bracket [x , y] = x y − yx are k- and l-isomorphic to
the Lie algebras g of G and h of H, respectively. We have isomorphisms gu ≅ hu′ for
all finite and infinite places u except possibly v. From [12, Chapter X, Theorem 12],
we conclude that these extend uniquely to isomorphisms Au ≅ Bu′ which identify the
involutions with one another. In particular, Au and Bu′ have equal Brauer classes. But
since gv ≅ so∗(2n) = so(n,H), it follows that Av has a non-trivial Brauer class, so by
the Albert–Brauer–Hasse–Noether theorem (13), the same is true for Bw . But all real
forms of type Dn except so∗(2n) are special orthogonal lie algebras of quadratic forms
over R, so the corresponding involutorial central simple algebra have trivial Brauer
classes. Hence of necessity hw ≅ so∗(2n) as well. So H is isogenous to SO∗(2n) and
hence Hermitian. ∎

This leaves the group G ≈ SO0(5, 2) as the only remaining case. The only higher-
rank real twist of G up to isogeny is the group H ≈ SO0(4, 3). However, this possibility
can be excluded because the symmetric space defined by G is 10-dimensional, whereas
the symmetric space defined by H is 12-dimensional, and the dimension mod 4 is a
profinite invariant by [14, Theorem 2.1].
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