
Algorithmic designs for reference-based polyploid

haplotype phasing

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Sven Dominik Schrinner

aus Dortmund

Düsseldorf, Juni 2024

ii

aus dem Institut für Algorithmische Bioinformatik

der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Gunnar W. Klau

2. Prof. Dr. Tobias Marschall

Tag der mündlichen Prüfung: 10.02.2025

Statement

I declare under oath that I have produced my thesis independently and without any undue

assistance by third parties under consideration of the “Principles for the Safeguarding of Good

Scientific Practice at Heinrich Heine University Düsseldorf”.

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige

fremde Hilfe unter Beachtung der “Grundsätze zur Sicherung guter wissenschaftlicher Praxis

an der Heinrich-Heine-Universität Düsseldorf” erstellt worden ist.

Düsseldorf, Juni 2024 ____________________________

Sven Dominik Schrinner

iii

iv

Abstract

The DNA of complex organisms like animals or plants is organized in multiple chromosomes,

each carrying a part of the hereditary information. Most organisms carry more than one copy

of each chromosome, which we call haplotypes. While humans are diploid and thus carry two

copies, many plant species are polyploid with more copies. The process of determining the

exact haplotype sequences for each chromosome is called phasing and has a wide range of

applications in clinical research, genome analysis, or plant breeding.

In this thesis, we propose two new algorithms for polyploid phasing: The first algorithm

aims at inferring the haplotypes of a single individual for which it uses (i) short DNA sequences

– called reads – that have been obtained by sequencing machines from a sample of cells and

(ii) a reference genome of the target species that has to exist prior to the phasing. We give

an in-depth description of our method and compare it to other state-of-the-art methods in the

polyploid field. We show that our algorithm is competitive on a variety of different data and

is – to our knowledge – the only one that can track uncertainty in the output.

The second algorithm also requires a reference genome but uses genotype information

from two parents and a large panel of offspring samples to infer the parental haplotypes.

Computing long contiguous haplotypes is challenging due to the limited length of available

reads. In contrast, the transmission of parental haplotypes to common offspring samples via

Mendelian segregation provides more reliable long-range information on genetic variants co-

occurring on the same parental haplotype. We provide a proof-of-concept for our method

by showing its accuracy on a few selected regions of the potato genome for which we were

able to derive a high-quality phasing from a HiFi assembly. Additionally, we describe a hybrid

approach that utilizes both sequencing data and genetic information to combine the strengths

of both methods and give an outlook for further research in this area.

Lastly, we present a heuristic for the existing diploid phasing algorithm WHATSHAP that also

combines read and genotype information from related individuals but needs to downsample

the read data if it is too large. We show that our heuristic is competitive with the exact model in

terms of runtime and phasing quality and can slightly outperform it on one out of two datasets

when avoiding the strict downsampling.

v

vi

Kurzfassung

Die DNA von komplexen Organismen wie Tieren und Pflanzen ist über mehrere Chromo-

some verteilt, von denen jedes einen Teil des Erbguts in sich trägt. Viele Organismen besitzen

mehrere Kopien jedes Chromosoms, sogenannte Haplotypen. Während Menschen diploid sind

und somit zwei Kopien besitzen, sind viele Pflanzen polyploid und besitzen mehr Kopien. Das

Verfahren, um die genauen Haplotyp-Sequenzen zu bestimmen, heißt Phasing und findet bre-

ite Anwendung in der klinischen Forschung, der Genomanalyse und der Pflanzenzucht.

In dieser Dissertation stellen wir zwei Algorithmen für polyploides Phasing vor: Das Ziel

des ersten Algorithmus ist die Berechnung der Haplotypen eines einzigen Individuums, für

die wir zum einen kurze DNA-Fragmente (Reads) verwenden, die von Sequenziermaschinen

aus Zellproben gewonnen werden, und zum anderen ein Referenzgenom der betrachteten

Spezies, welches zuvor durch andere Methoden bestimmt werden muss. Wir beschreiben un-

sere entwickelte Methode ausführlich und vergleichen sie mit anderen Referenzalgorithmen

für polyploides Phasing. Wir zeigen, dass unser Algorithmus auf einer Reihe von verschiede-

nen Datensätzen kompetitiv ist und zudem als – nach unserem Wissen – einzige Methode die

Angabe von Unsicherheiten im Ergebnis erlaubt.

Der zweite Algorithmus basiert ebenfalls auf einem Referenzgenom, aber benutzt Genotyp-

Informationen von zwei Eltern und einer großen Population direkter Nachkommen anstelle

von Reads, um die Haplotypen der Eltern zu bestimmen. Während es wegen der begrenzten

Länge der Reads schwierig ist, lange und durchgehende Haplotypen zu berechnen, erlauben

die Mendel’schen Vererbungsregeln die Identifikation von genetischen Varianten (die auf dem

gleichen Eltern-Haplotypen vorkommen) auch über wesentlich größere Entfernungen. Wir

zeigen, dass unsere Methode grundsätzlich akkurate Ergebnisse produzieren kann, indem wir

sie für einige ausgewählte Regionen des Kartoffelgenoms mit einem Assembly aus HiFi-Reads

validieren. Darüber hinaus beschreiben wir, wie beide Algorithmen zu einem hybriden Ansatz

kombiniert werden, welcher die jeweiligen Stärken vereint, und erörtern Möglichkeiten für

weitere Forschung in diesem Bereich.

Abschließend präsentieren wir eine Heuristik für den existierenden diploiden Algorithmus

WHATSHAP, der ebenfalls Reads und Genotyp-Informationen von verwandten Individuen kom-

biniert, aber nur einen Teil der Read-Daten verarbeiten kann, wenn diese zu groß sind. Wir

zeigen, dass die Heuristik kompetitiv bezüglich Laufzeit und Phasing-Qualität ist und den exak-

ten Algorithmus in einem von zwei Datensätzen leicht übertreffen kann, wenn alle Read-Daten

genutzt werden.

vii

viii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Gunnar Klau, who guided me

through my journey with his knowledge and experience. Without his encouragement, espe-

cially in stressful times, my scientific work would not have been possible. In that regard, I

would like to extend my gratitude to Prof. Tobias Marschall for sparking my research project

and providing invaluable ideas and discussions. Next, I would like to thank all my colleagues

that I met during my time at the AlBi group. In chronological order, this includes Martin En-

gler, Eline van Mantgem, Philipp Spohr, Nguyen Khoa Tran, Max Ried, Laura Kühle, Daniel

Schmidt, Sarah Schweier, and Sara Schulte. Next to the scientific discussions, there was al-

ways some time for nerdy or fun stuff, which created a great atmosphere to work in. I am also

very grateful to Prof. Petra Mutzel, who supervised my Master’s thesis at my old university in

Dortmund, encouraged me to stay in academia, and put me in touch with my future supervisor.

Without her advice, I might not even have applied for my PhD project. Lastly, I would like to

thank Jens Quedenfeld, John Maleki, Henning Stute, Nguyen Khoa Tran, Philipp Spohr, and

especially Laura Kühle for proofreading my thesis and offering helpful suggestions.

ix

x

Contents

Statement iii

Abstract v

Kurzfassung vii

Acknowledgements ix

Introduction 1

1 Preliminaries 5

1.1 DNA sequencing and mapping . 5

1.1.1 Sequencing technologies . 6

1.1.2 Read mapping . 7

1.2 Genetic variation . 8

1.2.1 Types of variation . 8

1.2.2 Genotypes . 9

1.2.3 Reproduction . 11

1.3 Haplotype phasing . 11

1.3.1 Read-based phasing . 11

1.3.2 Pedigree-based phasing . 13

1.3.3 Population-based phasing . 13

1.3.4 Haplotype assembly . 14

1.4 Terminology and notation . 14

1.4.1 Problem formulation . 16

1.5 Evaluation metrics . 17

1.6 Input and output . 20

2 Trio-phasing on human data 23

2.1 Diploid phasing . 23

2.1.1 Properties of diploid genomes . 24

2.1.2 The (w)MEC model . 24

xi

xii CONTENTS

2.1.3 The PedMEC model . 25

2.2 Algorithm of WHATSHAP . 27

2.2.1 Solving MEC with dynamic programming . 27

2.2.2 Extending MEC solvers to PedMEC . 34

2.3 Experiments . 39

2.3.1 Single-sample phasing on HG002 . 41

2.3.2 Trio-phasing on Ashkenazim trio . 44

2.4 Discussion . 47

2.4.1 Limitations and issues . 47

2.4.2 Future work . 48

3 WhatsHap Polyphase 49

3.1 Polyploid phasing . 49

3.1.1 Caveats of polyploid in comparison to diploid phasing 50

3.1.2 Overview of existing methods . 51

3.1.3 Outline of WHATSHAP POLYPHASE . 54

3.2 Read clustering . 56

3.2.1 Cluster editing . 56

3.2.2 Pairwise scoring . 58

3.2.3 Clustering algorithm . 60

3.2.4 Cluster refinement . 64

3.3 Haplotype threading . 66

3.3.1 Characterizing haplotypes as threads . 66

3.3.2 Threading model . 67

3.3.3 Solving techniques . 68

3.3.4 Further optimizations . 70

3.3.5 Breakpoints . 71

3.4 Refining results . 74

3.4.1 Genotype conformity . 74

3.4.2 Resolving collapsed regions . 76

3.4.3 Reordering phase blocks . 77

3.4.4 Detecting cut positions . 80

3.5 Experiments . 81

3.5.1 Artificial polyploid human data . 82

3.5.2 Simulated Solanum tuberosum data . 90

3.5.3 High-confidence regions from Altus cultivar 93

3.6 Discussion . 94

3.6.1 Limitations . 95

3.6.2 Ideas for future work . 96

CONTENTS xiii

4 WhatsHap Polyphase Genetic 97

4.1 Heredity in polyploid genomes . 97

4.1.1 Previous work . 98

4.2 WhatsHap Polyphase Genetic . 99

4.2.1 Identifying and scoring phasable variants . 101

4.2.2 Clustering variants based on Bayesian scores 104

4.2.3 Assigning haplotypes: Interval scheduling 108

4.3 Experiments . 110

4.3.1 Evaluation on HiFi-assembled regions . 110

4.3.2 WH-PPG scales to whole chromosomes . 113

4.4 Integrating genetic and read-based phasing . 114

4.5 Discussion . 118

4.5.1 Limitations . 118

4.5.2 Future work . 119

Conclusions 121

Bibliography 125

A Additional results for the (Ped)MEC heuristic 137

A.1 Additional benchmarks for the single-sample datasets 137

A.2 Additional benchmarks for trio-phasing datasets . 137

B Additional results for WHATSHAP POLYPHASE 139

B.1 Benchmarks on artificial polyploid human data . 139

B.2 Benchmarks on simulated Solanum tuberosum data 143

B.3 Benchmarks on Altus cultivar data . 144

C Additional results for WHATSHAP POLYPHASE-GENETIC 145

C.1 Detailed benchmarks on selected regions . 145

D Code and data availability 147

E Published articles contributing to this thesis 149

E.1 Haplotype Threading: Accurate Polyploid Phasing from Long Reads 149

E.1.1 Authors . 149

E.1.2 Contributions . 149

E.1.3 License and copyright . 149

E.2 Genetic polyploid phasing from low-depth progeny samples 150

E.2.1 Authors . 150

E.2.2 Contributions . 150

xiv CONTENTS

E.2.3 License and copyright . 150

E.3 Haplotype-resolved assembly of a tetraploid potato genome 151

E.3.1 Authors . 151

E.3.2 Contributions . 151

E.3.3 License and copyright . 151

List of tables 154

List of figures 156

List of variables and symbols 158

Introduction

The deoxyribonucleic acid or DNA is a large molecular structure that is present in almost all

life forms. It carries the hereditary information that is necessary for the function and repro-

duction of organisms [1]. Each DNA molecule is formed by two parallel strands of nucleotides

that are intertwined to form a double helix structure. The nucleotides of each strand encode

the genetic information of the DNA through one of four nucleobases – adenine (A), cytosine

(C), guanine (G), or thymine (T) – residing on each of the nucleotides. The strands are con-

nected through hydrogen bonds between the nucleobases, where adenine and thymine form

one possible binding pair and cytosine and guanine form the other. Since each base in one

strand only has one binding partner, the two strands are complementary and both contain the

entire genetic information.

The DNA of eukaryotes (i.e. animals, plants and fungi) is arranged in multiple packages

that we call chromosomes. Each chromosome encodes a different part of the DNA and might

consist of multiple homologous copies that are referred to as haplotypes. The exact number of

haplotypes per chromosome – also called ploidy – depends on the species. Humans and most

mammals, for instance, are diploid, i.e., every chromosome consists of two haplotypes, while

many plant species carry more haplotypes, making them polyploid organisms. Individuals

of the same species usually possess the same number of chromosomes and exhibit a high

similarity in their DNA sequences which separates them from individuals of other species but

still allows for different properties and appearances among individuals of the same species.

Genetic variations and their consequences are the subject of many research fields, as they

can be the cause of many diseases, especially hereditary ones and cancer. However, genetic

variation is not only observed between different individuals but also between the haplotypes

within the same individual. This variation arises from reproduction, where each haplotype

inherits different traits from each of the two parents, and from mutations that can randomly

occur in the heredity process, from DNA replication or from external events. Determining

which genetic variation exists at a particular locus of the DNA among all haplotypes is called

genotyping.

A key step to accomplish genotyping is DNA sequencing, the extraction of the nucleobase

sequences from DNA molecules through sequencing machines. Over the last decades, a va-

riety of sequencing technologies with different properties has been established. All of them

fragment the DNA molecules from a provided sample into smaller pieces to produce short

1

2 CONTENTS

subsequences of the contained DNA, known as reads. Their length and accuracy greatly de-

pends on the used sequencing technique, making different techniques preferable for different

applications.

One of those applications is the reconstruction of the homologous DNA copies, known as

haplotype phasing. It poses a more advanced step than genotyping, because it does not only

aim to determine the present variation on each locus, but also resolves which variation co-

occurs on the same haplotype. This information is essential for a complete understanding of

the connection between the genetics and observable traits and characteristics of an individual,

also called phenotype. The interaction of genetic variations depends on their distribution

among the haplotypes and can lead to vastly different phenotypes even when the genotype is

identical [2]. This makes haplotype phasing an important tool for genome analysis and clinical

research [2, 3]. In addition, knowledge of haplotypes also enables research in population

genetics, like demographic history [4], selection in human population [5] or finding founder

sets [6, 7] to which all genetic sequences of a population can be traced back through a series

of crossovers.

Next to human genetics, plant genomics also gained more attention over the past few

years [8]; the genomes of many important food crops like potato (Solanum tuberosum), bread

wheat (Triticum aestivum) and durum wheat (Triticum durum) are polyploid, which makes

their reconstruction more challenging, especially since they also prove to contain much more

genetic diversity than found in human genomes. Still, resolving polyploid genomes at hap-

lotype level is crucial for understanding the evolutionary history of polyploid species: Evolu-

tionary events, such as whole genome duplications, can be traced back and reveal the ancestry

of polyploid organisms [9]. Beyond that, knowledge of haplotypes is key for advanced breed-

ing strategies or genome engineering, especially for improving yield quality in important crop

species [9, 10, 11]. Independent from applications, ongoing advances in sequencing tech-

nologies regularly create the need of novel or adapted phasing methods, keeping this field of

research active.

This thesis introduces two phasing methods for polyploid organisms; the first method fol-

lows the paradigm of using reads to infer the haplotype sequences of a single individual. We

point out challenges of polyploid phasing, as well as possible shortcomings of existing meth-

ods in this field. In contrast, the second method relies on short reads and instead uses a large

cohort of offspring samples, bred from the same pair of cultivars; utilizing Mendelian segrega-

tion enables the method to identify co-occurrences of genetic variants on the same haplotype

over much larger distances than would be possible by sequencing data from one individual

alone. The drawback is that the approach is limited to certain types of genetic variants. These

properties complement those of the first method and hence we discuss how these ideas can be

combined to harness the strengths of both approaches.

CONTENTS 3

Outline

Our work is divided into four chapters: Chapter 1 introduces the relevant biological back-

ground, basic concepts, and terminology that is used throughout the rest of the thesis.

In Chapter 2, we review an existing diploid phasing method for single individuals, called

WHATSHAP [12], that is based on the commonly used Minimum Error Correction (MEC) model.

Since this model is not applicable for data with high read coverage, and thus relies on down-

sampling input data, we propose a heuristic version that is able to utilize larger datasets at the

cost of losing optimality with respect to the underlying MEC model. Analogously to the work

of Garg et al. [13], we also present an extension to phase multiple related individuals. Both

heuristics have not been published before.

The first of two novel polyploid phasing methods is introduced in Chapter 3. We origi-

nally published this method in 2020, where we discussed caveats of polyploid phasing and

compared our method to existing state-of-the-art ones [14]. Since the development of this

method continued afterwards, we will present the most recent version that features some key

differences to the original one. It is based on read clustering and a novel approach that we

call haplotype threading. We reproduced our original evaluation and added both new datasets

and an additional phasing tool that has been released in the meantime [15]. Our original

work, on which I share first authorship with Jana Ebler and Rebecca Serra Mari, was pub-

lished in Genome Biology. My main contribution was the development and implementation of

the read clustering. I was the main contributor to all consequent development that has not

been published separately.

In Chapter 4, we present a second polyploid phasing method with a different scope of

applications: Instead of processing single independent samples, its purpose is to phase two

parental samples (of the same species), for which we have access to a large panel of progeny

sequencing data. Combining data from related individuals facilitates the use of long-range

information, induced by Mendelian heredity rules. In the context of plant breeding, it is rel-

atively easy to create many offspring samples from the same two parents. Sequencing such a

large offspring pool offers more statistical power than working with trios of two parents and

a child, like it is done for humans. Thus, our genetic polyploid phaser is centered around a

statistical model to find co-occurrences of certain marker alleles on the parents’ haplotypes by

using low-depth sequencing data from a large offspring population. We show in a proof-of-

concept that our method is able to compute sparse phasing based on short-read data and a

reference genome only. The work has been published in iScience [16].

4 CONTENTS

Chapter 1

Preliminaries

This chapter introduces the biological background that is needed to understand the concepts presented in

this thesis. It establishes a theoretical framework shared by all haplotype phasing methods described in

Chapters 2, 3, and 4. If not stated otherwise, each section has been newly compiled for this thesis.

The goal of this thesis is to present novel techniques for haplotype phasing and discuss the

challenges of polyploid genomes for this field. We already introduced DNA as the carrier of

hereditary information in organisms and the importance of studying its structure and func-

tion. In this chapter, we will define and explain basic concepts and terminology on which our

presented methods are based. First, we will discuss properties of DNA and how we can extract

the genetic information from a given sample such that we can process it using computational

methods. Second, we will review different types of haplotype phasing to embed our methods

in this field of research. And finally, we will formulate haplotype phasing as a mathematical

problem that can be solved computationally.

1.1 DNA sequencing and mapping

In order to analyze the DNA of specific samples, we need to extract the genetic information

from its cells. On an abstract level, this information is encoded as long sequences over the four

nucleobases (A, C, G, and T), with one sequence for every copy of each chromosome. The pro-

cess of extracting sequences of nucleobases directly from DNA molecules is called sequencing.

Many downstream analyses – including haplotype phasing – require a digital representation

of DNA and DNA fragments for processing and visualization. Therefore, we consider the DNA

(or parts of it) as a long string over the nucleobase alphabet. Since the two strands of a DNA

molecule contain complementary base pairs, it is sufficient to encode one of the strands as a

string.

5

6 CHAPTER 1. PRELIMINARIES

Figure 1.1: Read sequencing and alignment. The process starts with a double-stranded DNA molecule that
contains two complementary sequences of nucleobases (indicated by colors). This molecule is fragmented into
single-stranded segments, from which reads are randomly sampled. All reads are then aligned against a (previously
obtained) reference genome. The bottom two reads have been sequenced from the complementary strand, and
are thus aligned as reverse complements with base order reversed and each base replaced with its complement.

1.1.1 Sequencing technologies

DNA sequencing is a technique with numerous applications that has been evolving over many

decades by now. Sanger sequencing [17] and the Maxam-Gilbert chemical cleavage method [18]

are considered the first generation of sequencing methods and were published around 1976.

In the late 1990s to early 2000s, followed so called next-generation sequencing technologies,

while third-generation sequencing describes the technologies introduced from the mid-2010s

until today. Still, until today none of the available sequencing technologies is able to extract

genetic information on a chromosome level. Instead, all technologies produce small DNA frag-

ments, called reads, each of which contains a short subsequence of one of the chromosomal

copies inside a sampled cell. Additionally, reading the actual bases from the DNA fragments is

error-prone. Thus, each read has a chance to contain sequencing errors, which can be wrongly

called bases, missing bases, or wrongly inserted bases, e.g., reading a single base twice. In

this thesis, we only give a very short overview of sequencing technologies that are relevant to

our presented methods. For a more detailed survey of the history of sequencing [19, 20, 21]

or the functionality of different technologies [22, 23], we refer the reader to more specialized

literature in this field.

Short-read sequencing

Today, we generally differentiate between two kinds of sequencing data: short- and long-read

sequencing. The former is often used as a synonym for next-generation sequencing. Its key

difference to previously existing technologies is the ability to parallelize the steps for sequence

synthesis on a large scale to achieve significantly higher throughput. A prominent example

of this technology is Illumina sequencing, which produces reads of length 75–300bp (base

pairs, i.e., the number of consecutive bases), depending on the exact type of used sequencing

machine [24]. The accuracy of these reads is very high with a per-base error rate of <1% in

1.1. DNA SEQUENCING AND MAPPING 7

practice [25, 26]. Illumina sequencing also offers paired-end reads, i.e., a single piece of a

DNA strand is sequenced from both ends, resulting in a pair of short reads that is guaranteed

to stem from the same chromosomal copy with a rough estimate of the gap length between

them (usually less than 1000bp).

Before the sequencing procedure, the DNA molecules are randomly fragmented into small

pieces of single strands, from which the final reads are extracted. The steps from a full DNA

molecule to sampled reads are illustrated in Figure 1.1. Since the DNA fragmentation is ran-

dom, each read can either be sampled from the forward strand or the backward strand, which

has to be accounted for in all following steps, like read mapping.

Long-read sequencing

More recent sequencing technologies like Pacific Biosciences CLR (PacBio) and Oxford Nano-

pore Technologies (ONT) use different biochemical approaches and produce much longer

reads than next-generation sequencing. This distinction led to the term long-read sequenc-

ing or third-generation sequencing. PacBio reads typically have a length between 10–60kbp

(1kb = 1000bp) with an average of about 15kbp and an error rate of 8–15% [23, 27]. ONT

reads are slightly longer with 10–100kbp and an error rate between 2–13% [23]. In 2019,

PacBio presented an improved technique based on their single-molecule technology using Cir-

cular Consensus Sequencing (CCS) [28]. It sequences the same isolated DNA fragment multiple

times in a circular manner to eliminate errors by forming a consensus over all runs. The reads

are comparable in length to the original PacBio reads with about 10–30kbp, but feature short-

read-like error rates of <1% (0.2% on average).

1.1.2 Read mapping

To ensure that all genome positions are covered and to compensate for possible sequencing

errors, a sequencing run typically produces many more total bases than the target genome has.

This means that every genome position is covered by more than one read and that some of the

reads overlap in terms of genome position. The number of reads covering each position on

average is called the coverage of the readset. Typical coverages when sequencing an organism

are around 30× to 60×, depending on sequencing technology and species, but can also greatly

deviate from this range if required by the application.

The original position of each read within the genome is unknown after sequencing. One

possibility to determine their position is to compute genome assemblies from the reads: Read

pairs with a sufficiently large overlap can be merged into longer continuous sequences, called

contigs, to eventually span larger parts of the chromosome. However, read-based genome

assembly is computationally expensive and often fails to fully reconstruct entire chromosomes

due to repetitive regions in the genome.

An alternative to finding read positions inside the genome is to use a reference genome for

the target species. A reference genome is a set of DNA sequences – one for each chromosome

8 CHAPTER 1. PRELIMINARIES

– that acts as a blueprint for the genome of a specific species. It usually does not represent a

single individual but rather an ensemble of multiple ones. Since the number of chromosomes

is identical between all individuals of the same species (except for genomic disorders) and the

placement and shape of all genes only differ slightly, a reference genome is a useful pivot for

locating most of the reads on the genome, even though a single reference sequence is unable

to capture genetic diversity.

Mapping reads to their most likely position in the genome is done through sequence align-

ment. Since reads contain both sequencing errors as well as genetic variation, they cannot be

mapped with an exact string search over the reference genome. Most approaches are based

on the Needleman-Wunsch [29] or Smith-Waterman algorithm [30] for global and local se-

quence alignment, respectively. Some tools use seeding strategies based on k-mers (substrings

of length k) or exact matches of small parts of the reads to first find approximate candidate

positions for each read before applying a costly alignment. Examples of commonly used tools

are BWA-MEM [31] for short reads and Minimap2 [32] for long reads.

1.2 Genetic variation

After the sequencing data has been aligned against a reference genome, we want to identify

genetic variation among the sequenced individual. We provide a classification of possible

genetic variants in this section and describe how they can be detected based on the aligned

reads. Diploid and polyploid organisms possess multiple haplotypes per chromosome, so we

additionally want to quantify how often each detected variant occurs among the haplotypes.

This process is called genotyping.

1.2.1 Types of variation

The most common type of variants are single nucleotide polymorphisms (SNPs) [33]. They

describe the alteration of a single base in the genome of an individual (compared to a given

reference genome). In human genomes, there is more than one SNP per 1000bp on aver-

age [33]. Plant genomes can be much more diverse with some potato cultivars reaching more

than one SNP per 25bp on average [34].

In deletion and insertion variants, short sequences of bases are either missing in an individ-

ual genome or newly inserted, i.e., the individual contains an additional sequence that is not

present in the reference. These two variant types are often summarized as indels. The classifi-

cation as indel is restricted to deleted or inserted sequences of limited size, usually 50bp. If a

longer sequence is deleted or inserted, such variants are rather classified as structural variants

or long indels. This distinction follows from the fact that large variants are much harder to

detect than short ones because reads become harder to map to a reference genome if they

contain many or large variants.

1.2. GENETIC VARIATION 9

Figure 1.2: Variant types. The figure shows six types of genetic variants: SNPs, deletions, insertions, duplications,
translocations, and inversions. In each example, the top sequence is the reference and the bottom one the sequence
containing the variant. Left: A single base is mutated or a short sequence of bases is either deleted or inserted with
respect to the upper sequence that acts as a reference here. The gray part highlights the changes between each pair
of sequences. Right: For structural variants, different homologous genome parts are depicted as segments of the
same color. Segments can be translocated or duplicated or a sequence of segments can be inverted. For inversions,
the segments have a tipped end to indicate their orientation.

The three small variant types are depicted in Figure 1.2. In addition, it shows three types

of structural variants that describe large-scale differences between two genomes: Duplications

occur when a part of a chromosome is copied and inserted again in the genome. If the copies

are adjacent to each other, this variation is also called tandem duplication, otherwise, it is

an interspersed duplication. In case of a translocation, a segment of the genome is removed

from one locus and re-inserted at a different one. This can even take place between different

chromosomes. An inversion event flips a genome segment in place, such that the affected

sequence is reversed and re-connected to its adjacent segments with both endpoints switched.

All these types of structural variants can be combined in numerous ways, e.g., as an inverted

duplication, where the duplicated sequence is inserted in reverse order.

Reference-based methods usually omit structural variants because they are difficult to be

assigned to a distinct position on a linear reference genome and overlap with many other

variants. A more suitable way to represent structural variation is genome graphs that carry

genome sequences on each of their nodes and insert directed edges between two sequences

when they are adjacent in any of the underlying input genomes or reads on which the graph

was built [35]. For this thesis, however, genome graphs are out of scope and we will only focus

on reference-based methods.

1.2.2 Genotypes

Genotyping requires an already computed set of variants for the used reference genome. In

this context, a variant consists of a genome position and a set of possible alleles, i.e., a set

of possible sequences an individual may possess at the corresponding genome position. In

Figure 1.3a, we see an example consisting of a reference genome and four distinct variant

positions; the first variant is a SNP with possible alleles C and G, while the third variant is a

SNP with three alleles (G, T, and A). The second variant shows a deletion with alleles C and

-, indicating that individuals might either have a C at the respective genome position or no

10 CHAPTER 1. PRELIMINARIES

(a) Variant calling (b) Genotyping

Figure 1.3: Variant calling and genotyping. (a) A set of reads is aligned against a reference genome. The
vertical gray stripes indicate variant positions, on which significant variation between the reads and the reference
is present. The bottom ends of these stripes show the present alleles. Dashes stand for the absence of a base. Rare
variations among the reads are considered to be sequencing errors. (b) This figure shows the same four variants
as in (a), but with a different set of aligned reads. For each read and variant, the index of the most likely allele is
noted down; if the read does not support any of the alleles we denote this as “-”. The bottom part states the most
likely genotypes for the diploid individual.

base at all. Analogously, the fourth variant is an insertion that considers individuals to have

an optional AT-sequence at the respective genome position.

The set of variants is either computed from the reads of the individual to be genotyped or

might be based on previous computations from possibly multiple individuals. For the so-called

variant calling, we utilize aligned reads to detect statistically significant deviations from the

reference genome. The challenge is to differentiate between sequencing errors on the reads

and true genetic variation. The former are distributed randomly (with certain technology-

specific biases), while the latter result in a systematic deviation between a subset of reads and

the reference. Therefore, a sufficiently high coverage is needed to reliably identify variant

positions and existing alleles. There exist several tools for variant calling, like FreeBayes [36],

GATK [37], or Varlociraptor [38], each of which is based on different computational models.

In genotyping, the variant positions and alleles are known and the goal is to find the most

likely combination of alleles among the haplotypes of an individual for each variant. These

combinations are called genotypes. The number of alleles per variant is given by the ploidy of

the genotyped organism. Genotypes are usually represented as integer lists, separated by a “/”

and sorted in ascending order. The integers encode indices of existing alleles for each variant.

By convention, the allele following the reference genome (also called reference allele) is given

the index 0, while the alternative alleles are continuously indexed as 1,2, 3, Figure 1.3b

shows an example of a diploid individual with four genotypes for the four existing variants.

If all alleles of a genotype are identical, it is called homozygous (like the second and fourth

variants); otherwise it is called heterozygous.

1.3. HAPLOTYPE PHASING 11

Figure 1.4: Recombination. Each of the two diploid parents produces a total of four gametes during meiosis. The
color distributions inside the gametes indicate the recombination events between different haplotypes. The diploid
child genome is formed by one gamete from each parent, which are selected at random.

1.2.3 Reproduction

The process of sexual reproduction involves a special type of cell division, called meiosis [1].

While regular cell division results in two identical cells with the same number of haplotypes,

meiosis produces four gametes with only half as many haplotypes. It replicates the genetic

material inside a cell but additionally includes a recombination step in which haplotype frag-

ments are exchanged between the two chromosomal copies. After division into two cells with

a full set of (recombined) haplotypes each, these sets are again divided into four gametes that

contain unique mosaics of the individual’s original haplotypes. The fusion of one maternal

and one paternal gamete results in a complete genome with each half of its haplotypes con-

taining genetic material from the mother and father, respectively. In Figure 1.4, the process is

illustrated for a diploid organism. The recombination events inside the gametes are indicated

by color shifts.

1.3 Haplotype phasing

Haplotype phasing describes the process of reconstructing the individual sequences for each

chromosomal copy. That means that the genome of a target individual is resolved to a haplo-

type level. There exist multiple approaches for haplotype phasing, each using different kinds

of data and methods. These approaches mainly fall into three categories: Read-based phasing

(also called molecular phasing), pedigree-based phasing, and population-based phasing [3,

39]. All of these methods rely on a reference genome as a pivot for their computation. If a

reference genome is not available or one wants to avoid any bias induced by such, there are

also so-called genome assembly methods that reconstruct genomes without a given reference.

Thus, one could refer to reference-free approaches as a fourth category of haplotype phasing,

if the assemblies are resolved on a haplotype level.

1.3.1 Read-based phasing

A widely used reference-based approach is read-based phasing, which requires sequencing

data from the phased individual, as well as a (linear) reference genome for the target species.

12 CHAPTER 1. PRELIMINARIES

(a) Read-based phasing (b) Pedigree-based phasing

(c) Population-based phasing (d) Assembly-based phasing

Figure 1.5: Categories of haplotyping methods. (a) Read-based phasing with reads aligned to the reference
genome. All reads are reduced to their allele indices for each variant position (vertical dashed lines): Haplotype
sequences are inferred from read-induced connections between alleles. (b) Pedigree-based phasing with a trio of
mother, father, and child: From genotypes and Mendel’s law, inherited alleles can be tracked down (magenta and
blue fonts), as a parent cannot pass on an allele to the child if it does not possess it. Assuming no recombination,
parent haplotypes can be phased alongside the child haplotypes. (c) Population-based phasing, based on a hap-
lotype panel and genotypes of a new sample: For haplotype inference, the set of paths best explaining the input
genotypes is computed. (d) Reference-free assembly of haplotypes by building contigs of overlapping reads.

In a preceding step, all sequenced reads are aligned against the reference genome to identify

heterozygous sites and their genotypes. Each read that covers at least two heterozygous sites

is considered informative for the phasing process, while all other reads are discarded. Consid-

ering that every read originates from a single DNA molecule, the kept reads carry information

on which alleles co-occur on the same haplotype. Figure 1.5a depicts these steps with the addi-

tion of representing reads and haplotypes as sequences of integers over variant positions only.

This is a common way in haplotype phasing to reduce input and output data to its relevant

core. We will introduce this notation more formally in Section 1.4.

While short and accurate reads are often preferred for variant calling or genotyping, read-

based phasing greatly benefits from long reads. The reason is that the main challenge is to

provide a contiguous, accurate prediction of the underlying haplotypes that does not contain

wrongly joined haplotype fragments (misassemblies) or is broken into many small pieces be-

cause of missing connections between certain variant sites. These errors are usually caused by

long gaps between heterozygous variants or difficult genomic regions (e.g. repeats) aggravat-

1.3. HAPLOTYPE PHASING 13

ing read alignment. Therefore, read length is considered the main bottleneck, whereas high

error rates rather lead to isolated mistyped alleles with low impact on overall correctness.

There exists a variety of phasing algorithms, each of them using the read information in

different ways and solving different optimization models. Some notable mentions are WHATS-

HAP [12] for diploid phasing and H-POP-G [40], WHATSHAP POLYPHASE [14], and FLOPP [15]

for polyploid phasing. A more comprehensive list of available methods and their concepts will

be given in Chapters 2 and 3.

1.3.2 Pedigree-based phasing

Pedigree-based phasing utilizes the hereditary relationship between haplotypes of parents and

children. This approach can be combined with sequencing data, although this is not manda-

tory. The prerequisites are again a linear reference genome for which the heterozygous sites

of an entire family of individuals and their respective genotypes are known. Even without

reads, it is possible to reconstruct large parts of the individual’s haplotypes when provided

with a sufficiently large family tree [41]. Since recombinations are considered rare events, a

proper phasing model should be parsimonious, i.e. explain the observed genotypes with the

least amount of recombination events (and the least amount of germline mutations). A small

example of read-less phasing of three related samples is shown in Figure 1.5b.

When using reads, pedigree-based phasing works like an extension to read-based phasing,

where all related individuals are phased simultaneously. The difference to independent phas-

ing is the hereditary constraints between the computed haplotypes. The advantage of pedigree-

based phasing over (pure) read-based phasing is the long-range information provided by the

biological process of heredity. Even when using just trios (mother, father, and a single child),

complementing sequencing data with hereditary information leads to greatly superior phas-

ing performance compared to read-based phasing alone [13]. The read-based phasing tool

WHATSHAP [12] is also able to work on pedigree data. Pedigree-phasing on polyploid organ-

isms has been done by TriPoly [42], PopPoy [43], and WHATSHAP POLYPHASE-GENETIC [16],

which we will introduce in Chapter 4.

1.3.3 Population-based phasing

In population-based phasing, also called statistical phasing, a large reference panel of hap-

lotypes is used as a template for inferring a sample’s haplotypes. The rationale is that long

haplotype pieces are shared between a cohort of common ancestry, even if the individuals be-

hind it are not directly related to each other [44]. Therefore, a new individual’s haplotypes

might be formed by recombining previously computed haplotypes based on additional data

(e.g. sequencing or genotype data of the new individual). Despite working well for common

genomic variants, the drawbacks of this method are that such reference panels only exist for

a few species and that rare variants not present in the panel cannot be correctly predicted.

Examples of population-based phasing tools are Beagle [45], Eagle [46], and SHAPEIT [47].

14 CHAPTER 1. PRELIMINARIES

1.3.4 Haplotype assembly

The three formerly presented categories rely on a linear reference genome because they need

a well-defined set of heterozygous variant sites that is shared between different samples. This

linearity reduces haplotype phasing to the problem of selecting the correct alleles for each of

the defined variant sites. Aside from requiring a high-quality reference genome in the first

place, the major limitation here is that the methods following this paradigm are only applica-

ble to short-range variants, like SNPs and short indels. Haplotypes with too much structural

divergence from the reference genome cannot be represented by the scheme of succinctly de-

fined variant positions in a sensible way. Structural variants or rearrangements in the human

genome are an important field of study and even identifying large-scale variants is a chal-

lenging task [48, 49]. In polyploid organisms, structural variants are even more prevalent as

shown by various assemblies for potato cultivars [34, 50, 51, 52].

To overcome the dependency on reference genomes, one might consider assembly-based

approaches as an additional category for haplotype phasing [53]. Genome assembly aims to

construct genomic sequences of an individual directly from sequencing data, without the help

and the bias of an existing reference. This is usually accomplished by identifying overlaps

between reads or k-mer-based methods, like Canu [54], Flye [55], or Hifiasm [56]. While

classic genome assembly seeks to obtain a single sequence representing the sample’s genome,

it can also be done on a haplotype level, where each of the chromosomal copies is repro-

duced individually. Examples of such haplotype assembly approaches are trio binning [57] and

FALCON-Phase [58] for diploid assemblies, and a polyploid method by Serra Mari et al. [52].

Assembling haplotypes without a reference genome as a pivot is considerably harder and usu-

ally requires additional data, like Hi-C data [58] or sequencing data from related samples [52,

57].

1.4 Terminology and notation

At the beginning of this chapter, we noted that many applications for read sequencing are

computational methods that require a formal representation of DNA, reads, and genomic vari-

ations. Thus, we will use various terms and notations to present our phasing methods. While

some of them are specific to certain steps, a large portion is shared between all of them and

we will introduce them throughout this and the following sections. We also refer to the list of

variables and symbols in the appendix, where we collect all commonly used variables.

Variants

For all phasing problems, we assume that we are given a specific chromosome that is to be

phased. We also assume that a reference genome for this chromosome is available that acts as

a coordinate system: It maps every observed genomic variant to a distinct position. A variant

v is defined as a tuple (p, A), where p is its start position on the reference genome and A is a list

1.4. TERMINOLOGY AND NOTATION 15

of possible alleles, i.e., eligible sequences that may occur among any read, starting at position

p. As already explained in Section 1.2.2, the first allele in the list is associated with the index

0 and represents the reference allele. All following alleles are referred to as having indices

1,2, 3, . . . and are called alternative alleles. Let V = {v1, . . . , vm} be the set of m variants on

the given chromosome with vi = (pi , Ai). For convenience, we assume that all variants are

indexed and sorted by position, i.e., p1 < p2 < . . . < pm. Let amax := max
1≤i≤m

|Ai | − 1 be the

highest number of alternative alleles for all variants in varset. If V only contains two alleles

for each variant, then V is called bi-allelic with amax = 1, otherwise it is multi-allelic with

amax > 1.

Reads

The original reads that are aligned against a reference genome are sequences of bases. For

haplotype phasing, we are only interested in their alleles at variant positions. Therefore we

redefine reads to be sequences of alleles, given by their local index: A read r is a sequence

of length m over the alphabet {−, 0, 1, . . . , amax} with r[i] being the i-th character of r. Each

character of r represents the supported allele for each of the m variants, i.e., r[i] = a, if r

contains the allele with index a at the genomic position of the i-th variant. If r does not cover

the i-th variant or contains an invalid allele, we set r[i] = −.

For simplicity, we assume that all reads are well-defined, i.e., all their characters are either

gaps or refer to valid allele indices. The first non-gap position of r is denoted as s(r) and the

last non-gap position as e(r). A read r spans a variant vi if s(r) ≤ i ≤ e(r) and it covers vi

if r[i] 6= −. A set of n reads forms an allele matrix A ∈ {−, 0, . . . , amax}n×m, where each row

contains the allele information of a single read and each column contains the allele indices for

a specific variant. The set of all input reads without the matrix structure is referred to as R.

Haplotypes and genotypes

Similarly to reads, we redefine haplotypes to be sequences of length m over the alphabet

{−, 0, 1, . . . , amax}. Thus, each haplotype represents a combination of alleles over all m vari-

ants. The ploidy is the number of chromosomal copies for the species to phase and is de-

noted as p. The set H = {H1, . . . , Hp} represents the true haplotypes that are unknown to the

phasing algorithm but used in evaluation metrics. The predicted haplotypes are denoted as

H̃ = {H̃1, . . . , H̃ p}. Haplotype sets possess no order and are only indexed for convenience.

For a variant vi = (pi , Ai), the genotype G(vi) of vi (abbreviated as Gi) is a multiset of size p

over the values 0, . . . , |A|−1. It represents the multiset of present alleles for each variant, usu-

ally in concordance with the sequences given by the haplotypes, i.e., Gi := {H1[i], . . . , Hp[i]}.
Let fa(Gi) = |{b ∈ Gi | b = a}| be the number of times allele a occurs in Gi . If V is bi-allelic, ev-

ery genotype Gi can be characterized as an integer number between 0 and p, which represents

the absolute frequency of the 1-allele in Gi (or simply f1(Gi)).

16 CHAPTER 1. PRELIMINARIES

Some phasing models deal with multiple input samples simultaneously. Here we have

true haplotypes, predicated haplotypes, and genotypes for every sample s. We use the same

notation as for single-sample phasing, but add the sample index to the superscript, i.e., Hs, H̃s

and Gs
i , respectively.

1.4.1 Problem formulation

As stated before, the goal of haplotype phasing is to predict the true haplotypes for an indi-

vidual with ploidy p. Since we are only given information that is based on sequencing data

(including errors), we cannot directly check how close a computed solution is to the true one.

Instead, we can only compute a solution that explains the given input data in the best possible

way with respect to some previously defined phasing model. For reference-based phasing, a

generic problem formulation is given by Problem 1.4.1.

Problem 1 (Simple version of reference-based phasing). Given an allele matrix A over m

variants and a ploidy p, find a set of p haplotypes H̃ = {H̃1, . . . , H̃ p} of length m, such that H̃
maximizes a model-specific objective function.

Defining a suitable phasing model is part of the algorithmic design and we will introduce

multiple models for different applications throughout this thesis. We note here that no model

can guarantee finding the true haplotypes even when solved to optimality because the input

data is based on random sampling. Moreover, parts of the true haplotypes might not be re-

constructible from the input due to ambiguities, e.g. if two consecutive variant positions are

so far apart that no read covers both of them.

To account for ambiguities, we add a set P of cut positions as an additional output to our

generic phasing problem. A cut position c ∈ P indicates that the predicted haplotypes are cut

between variants vc−1 and vc because there is a lack of confidence in joining the left and right

parts of the predicted haplotypes at this locus. The intervals between two cut positions are

called phasing blocks and represent coherent sections of the predicted phasing. By convention,

position 1 is always contained in P .

Since many variant callers also invoke genotyping, we define a sequence of genotypes

Gi , . . . , Gm for the corresponding variants as optional input. The phasing model may constrain

its predicted haplotypes to conform to the provided genotypes are only use them as hints.

A second optional input is a pre-phasing. Like an actual phasing, a pre-phasing H con-

sists of p haplotypes H1, . . . , H p that contain gaps. Its purpose is to encode already existing

phasing information that might be incomplete but can still be used as guidance when inferring

complete haplotypes from reads. Most of the presented models in this thesis do not use this

type of optional input, but we present it as part of the generic problem formulation because

such information might be available for some applications. Problem 1.4.1 shows the extended

problem formulation with optional inputs and both types of output.

1.5. EVALUATION METRICS 17

Problem 2 (Extended version of reference-based phasing). Given an allele matrix A over

m variants, a ploidy p, and optionally m predicted genotypes Gi , . . . , Gm or a pre-phasing H.

Compute a set of p haplotypes H̃ = {H̃1, . . . , H̃ p} of length m and a set of cut positions P , such

that H̃ maximizes a model-specific objective function.

1.5 Evaluation metrics

The description of evaluation metrics is mostly taken from [14]. It was rephrased and some terms were

clarified or supplemented by additional formulas. The switch flip rate and the wrong genotype rate were

newly added. Some adjustments were made to cover diploid cases as well.

For all of our developed methods, we will provide performance benchmarks throughout this

thesis to compare them to other methods or to show a proof of concept. This section serves as

an overview of all performance metrics used in our benchmarks. We use the examples from

Figure 1.6 to illustrate the different metrics.

Hamming rate

For ploidy p, a set of ground truth haplotypes H = {H1, ..., Hp} and predicted haplotypes

H̃ = {H̃1, ..., H̃ p}, we compute the number of Hamming errors (HE) as

HE(H, H̃) = min
π∈Sp

1
p

p∑
i=1

dH(Hi , H̃π(i)) = min
π∈Sp

1
p

p∑
i=1

m∑
j=1

[[Hi[j] 6= H̃π(i)[j]]] (1.1)

where Sp represents the permutation group on {1, ..., p} and dH the Hamming distance be-

tween two sequences that counts the number of position-wise differences. The Iverson bracket

[[x]] evaluates to 1 if the boolean expression x is true and to 0 otherwise. The Hamming rate

(HR) is then defined as the sum of Hamming errors divided by the total number of all phased

variants. If subtracted from 1, the Hamming rate is equivalent to the reconstruction rate and

the correct phasing rate presented in [40] and [59], respectively.

HR(H, H̃) = HE(H, H̃)
p ·m (1.2)

In Figure 1.6a we can see a total of four Hamming errors when aligning H1 with H̃2 and H2

with H̃1. This results in a Hamming rate of 4
2m , because the phasing consists of 2m alleles. In

Figure 1.6b, the two predicted haplotypes are recombined in the middle of the chromosome.

This results in a total of m Hamming errors (and an HR of 1
2), because we either have to count

the left halves of both predicted haplotypes as errors or the right halves. This is an extreme

case, where a single switch event in the phasing results in a worst-case phasing regarding the

HR metric. Since switches are a common type of error in phasings, we will see this in many

experiments. We call such switch events critical switches.

18 CHAPTER 1. PRELIMINARIES

(a) Four allele errors (b) One switch event, counted as two switch errors

(c) Two switch events, counted as five switch errors (d) Visualization of N50 block size

Figure 1.6: Visualization of evaluation metrics. The examples (a), (b), and (c) visualize several types of errors
between true and predicted haplotypes. (d) shows a graphical explanation of the N50 block size metric.

Switch error rate

A well-established evaluation metric for diploid phasing is the switch error rate (SER), for

which we introduce a polyploid version. Instead of counting the number of incorrect alleles

on each haplotype, the SER counts the minimum number of switches, i.e., how often the

assignment between predicted and true haplotypes must be changed in order to reconstruct

the true haplotypes from the predicted ones. The polyploid extension of the switch error was

already introduced as the vector error rate in [60].

To compute the SER, we assign a (possibly different) permutation on the predicted haplo-

types for every variant position, such that the permuted predicted haplotypes match the true

ones. For the SER we seek a sequence of permutations, such that the total number of changes

between each two consecutive permutations is minimized. More formally, for every variant

position j let Π j ⊆ Sp be the set of one-to-one mappings between H and H̃, such that for each

π ∈ Π j it holds that Hi[j] = H̃π(i)[j] for all haplotypes Hi . The number of switch errors is

then defined as:

SE(H, H̃) = min
(π1,...,πm)∈Π1×...×Πm

1
p

m−1∑
i=1

dS (πi ,πi+1) (1.3)

where m is again the number of variants and dS (πi ,πi+1) is the number of different mappings

between πi and πi+1 – similar to the Hamming distance dH . The SER is normalized by the

factor 1
(m−1) because there are m− 1 consecutive pairs of permutations:

1.5. EVALUATION METRICS 19

SER(H, H̃) = 1
m− 1

SE(H, H̃). (1.4)

If the genotypes of H̃ are not equal to the genotypes of H for all positions, then the set

Π1 × . . . × Πm is empty and the vector error cannot be computed. Therefore we compare

only those positions, on which the predicted genotype is correct. To account for genotype ac-

curacy, we measure the wrong genotype rate (WGR). It is defined as the fraction of variants,

where H̃ induces a different genotype than H. The implementation of all evaluation metrics

in WHATSHAP only considers variants that are heterozygous on both true and predicted hap-

lotypes. Therefore, a heterozygous variant that is wrongly phased as homozygous does not

count into the WGR. As compensation, we provide the absolute number of phased variants to

reveal dropouts in the variant count.

The example in Figure 1.6b resulted in a very high HR but can be resolved with just two

switches or a SER of 2
2·(m−1) . Figure 1.6c shows the reason why we count the number of

involved haplotypes in every switch event, instead of just counting the number of such events:

The first switch event affects two haplotypes, while the second event affects all three. The SER

metric accounts for this and penalizes the first event as a “2
3 -switch” only.

Switch flip rate

As an alternative to the SER, one could additionally allow single allele changes, called flips,

as corrections to H̃. This covers the case of divergent genotypes, as we can always spend (up

to) p flips to transform any present genotype in H̃ into any target genotype in H. Flips and

switches are incomparable, leaving us with a bi-objective metric in the most general case. We

decided to weigh both types of errors equally and call the minimum number of combined flips

and switches in relation to the total number of phased variants as the switch flip rate (SFR). It

can be expressed as finding the best genotype-concordant set of haplotypes H′ = (H ′1, . . . , H ′p),
such that the number of (i) Hamming errors betweenH andH′, and (ii) the number of switches

between H′ and H̃ is minimized:

SFR=
1

p ·m min
H′∈H

�
HE(H,H′) + SE(H′, H̃)

�
, (1.5)

whereH is the set of genotype-concordant haplotype sets for H. The difference between

SER and SFR can be seen in Figure 1.6a. While the SER omits the two errors on the left and

right due to a genotype mismatch between the phasings, the SFR counts these as two flips.

Additionally, the error in the middle can be resolved with two flips for the SFR, while the SER

needs a total of four switches. This results in an SER of 4
4·(m−3) and an SFR of 4

4·m .

N50 block size

Phasing tools may not phase the entire input region as one set of haplotypes. If the phasing be-

tween two consecutive variants is too uncertain (e.g., if not enough reads cover both variants),

20 CHAPTER 1. PRELIMINARIES

the phasing might be split into blocks. In our evaluation, we applied the HR, SER, and SFR on

all reported phasing blocks separately and aggregated them. More precisely, we summed up

the number of respective errors and divided them by the total number of variants (HR, WGR)

or by the total number of variants excluding the first variant in every block (SER, SFR). Since

this favors shorter blocks, we also included the N50 block length in our evaluation, which is

the smallest block length needed to cover 50% of the considered genomic region when using

only blocks of that size and larger. Figure 1.6d visualizes this by sorting all phasing blocks

by size in descending order and taking the length of the first block that passes 50% of the

chromosome size. Please note, that the N50 block size is calculated on base pair count, not on

the variant counts of the blocks.

1.6 Input and output

Following the theoretical framework, we will now discuss how the input and output are repre-

sented in a practical implementation. There are three relevant file formats for our developed

software, which are described in detail below. We also explain the purpose of these file formats

and in which steps they are used or produced.

FASTA and FASTQ files

The FASTA format is used to store plain sequence data. It is segmented into blocks that consist

of a description line and an arbitrary number of data lines [61]. The description line always

starts with a “>”-symbol and gives a unique identifier for the block. The data lines may contain

either nucleic or amino acid sequences following the IUB/IUPAC encoding [62]. Haplotype

phasing is usually done on a nucleotide level, which only covers the four bases A, C, G, and T,

and N for an unknown base. The reference sequence for the target species is stored in a FASTA

file.

As mentioned in Section 1.1, the first step in haplotyping is to generate sequencing data

from an individual in the form of reads. These reads could be stored in a FASTA file as well,

but in practice, the FASTQ format is the standard option [61, 63]. It is organized in blocks

as well, with a description line starting with “@”, followed by several data lines containing

raw sequences. In addition, there is a separator line (consisting of just a “+”-symbol) after the

data lines, followed by position-wise Phred-scaled quality scores. The purpose is to provide an

estimate of measuring error for each base in a sequence.

SAM and BAM files

SAM files contain alignment records for a set of reads, consisting of an alignment position

(inside the reference sequence), a so-called CIGAR string to describe the alignment, and auxil-

iary information like alignment quality, alignment type, strand, and more [61]. These files are

produced by alignment tools like BWA-MEM [31] or Minimap2 [32], using an input FASTQ

file with sequencing data and a FASTA file containing a reference genome. Each read can have

1.6. INPUT AND OUTPUT 21

Figure 1.7: This example shows the header and some alignment records of a SAM file. The header defines a single
chromosome chr1 with length 300 and lists executed commands to generate this file. Alignment records contain
(from left to right) a read name, alignment flags (e.g. primary or secondary alignment, strand, etc.), chromosome
name, position inside the chromosome, alignment score, CIGAR string, three values used for linked or paired-end
reads, the read sequence and the base qualities.

multiple alignment records, one of which is tagged as primary alignment. This is either used

to provide multiple alignment positions (if the read could not be mapped to a unique reference

location) or to track a fragmented alignment (if a read contained long indels and could thus

not be aligned in one piece).

The beginning of the file contains several header lines, starting with “@” to provide addi-

tional information, e.g. what chromosomes exist in the alignment file or what read groups are

present. Each alignment can be assigned to one read group, which allows to store reads from

multiple sources (e.g. multiple individuals) in one file. Figure 1.7 contains a small example

to visualize the basic fields of a SAM file. The bitwise alignment flag allows to store various

binary properties per alignment. In our case, it is always 0 which stands for a primary align-

ment in forward direction. BAM files are binarized SAM files, which are compressed in BGZF

format.

VCF files

VCF files store information about genetic variation of one or multiple individuals. The variant

records contain a chromosome identifier, a position (inside the referenced chromosome), a

reference allele, at least one alternative allele, and some optional fields, which are defined in

the header of the file [64]. The most important optional field for our purpose is the genotype

field (“GT”), which is used by convention to store the genotype information for each variant

and for each individual. The genotype is a list of integers, separated by “/” or “|”, where

each integer stands for an allele index as explained in Section 1.2.2. The “/”-symbol is used

for unphased genotypes, which by convention are sorted in ascending order (for example,

1/2/0 would be written as 0/1/2). Phased variants are indicated by the “|”-separated alleles,

inducing an order on the alleles. Each haplotype Hi˜ can be read by always taking the i-th entry

in each “|”-separated field. Homozygous variants are always stored with “/”-symbols because

there is nothing to phase.

A reference-based phasing algorithm takes a VCF file as input, as it defines which vari-

ants and which alleles exist. The present unphased genotypes are then to be converted into

22 CHAPTER 1. PRELIMINARIES

Figure 1.8: This example shows the header of a VCF file and five variant records. All but the second variant are
phased. The four phased variants are distributed over two phasings blocks with IDs “17” and “89”. The second
variant is an insertion of two G-bases, the other variants are SNPs, with the fourth one being multi-allelic. Allele
depths are given as a comma-separated list of integers.

phased genotypes, representing the output of the algorithm. Cut positions are usually ex-

pressed through a phase set field (“PS”) that assigns an identifier to each phased genotype.

All genotypes with the same identifier are assumed to form one coherent phasing block. For

WHATSHAP, the PS field contains the position of the first variant inside a phasing block as an

identifier. In Chapter 4 we will also use allele depth information from the VCF file. That is,

the corresponding AD field contains a comma-separated list of absolute frequencies on how

often each of the defined alleles has been observed inside a read set of each individual. This

information can be derived from a BAM file as well but is sometimes directly stored inside the

corresponding VCF file for convenience. An example for all the described fields is presented in

Figure 1.8. VCF files are created by variant callers for which we already mentioned example

tools in Section 1.2.2. Variant calling is a separate computational problem and will not be

covered in this thesis.

Allele matrices

To our knowledge, there is no standardized file format to represent allele matrices that are

required for our theoretical framework. Thus, the translation of read alignments into such al-

lele matrices is handled by the phasing tool itself. This includes the search of spanned variants

for each read based on the records of both the VCF file and the BAM file. While this process

is straightforward for SNPs, it can become tricky and ambiguous for insertions and deletions.

Since all our presented methods are implemented as part of the WHATSHAP software, they use

the same allele detection routine as the originally published tool. In short, WHATSHAP can use

a provided reference genome to re-align each input read to (i) the reference sequence itself

and (ii) to a modified sequence where a single reference allele is replaced by an alternative.

For each read, the best-scoring allele is determined for each spanned variant. If no reference

genome is provided, each read’s alleles are estimated from the CIGAR string. Since this thesis

does not contribute to the existing detection routine, we refer to [12] for further reading.

Chapter 2

Trio-phasing on human data

The first method we want to present in this thesis is designed for diploid phasing problems.

Diploid phasing is the most commonly-used application for haplotyping because humans are

diploid organisms and human genetics is – due to its many medical applications – likely the

largest field of research in computational genomics. Thus, diploid phasing is far better explored

than polyploid phasing with a variety of solving algorithms having been proposed over the

years.

In this chapter, we will review one of these methods, namely WHATSHAP, a widely-used

and maintained tool that was first presented in 2015 by Patterson et al. [12] for phasing single

individuals and later extended by Garg et al. [13] to process related individuals. One drawback

of the used model is the poor scaling with sequencing depth as the runtime of the algorithm

grows exponentially with the highest read coverage within the input data. In practice, the

algorithm has been shown to yield good results by downsampling the input data to a feasible

read coverage. We want to investigate whether the procedure can be improved by keeping all

the input data but instead not solving the model to optimality.

We implemented a heuristic for both the single-sample and related-sample methods and

compared its performance to the existing implementation on sequencing data from a real hu-

man sample for which a gold-standard assembly is available. Although our implementation

is available in WHATSHAP since version v2.2, it is still considered experimental because there

have been no tests on real-world data prior to this thesis.

2.1 Diploid phasing

Diploid phasing is a special case of haplotype phasing that allows for a few simplifications

compared to the more general polyploid phasing. We will give a short introduction to diploid

phasing in general, the widely-used MEC model, and the generalized PedMEC model, which

extends the MEC model to multiple related individuals.

23

24 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

2.1.1 Properties of diploid genomes

In Section 1.2.2, we introduced genotypes to express the abundance of different alleles for

each variant position. In haplotype phasing, homozygous variants are usually omitted as the

haplotype sequences are identical at these positions, and thus there is nothing to compute.

Only if one does not have genotype information or does not trust them, homozygous variants

are considered for phasing. In this thesis, however, we will always omit variants that have

been marked as homozygous.

In addition, we assume all variants to be bi-allelic, i.e., for each variant there only exist two

eligible alleles with indices 0 and 1, respectively. We justify the second assumption with the

fact that multiple different mutations from the reference genome at the same position are very

rare, given the overall low mutation density on human genomes; SNPs occur about once every

1000bp as the most frequent variant type. Therefore, only three different genotype patterns –

0/0, 0/1, and 1/1 – exist for our diploid scenario, out of which two are homozygous.

If we restrict computed phasings to follow the given genotypes, the two computed haplo-

types will always be complementary to each other: For every variant, exactly one haplotype

contains the reference allele, while the other one contains the alternative allele. Thus, it is suf-

ficient to only know one haplotype as the other can be easily derived by replacing each allele a

from the first haplotype with 1− a. The assumption of both haplotypes being complementary

is commonly used among phasing tools and is called the all-heterozygous assumption.

2.1.2 The (w)MEC model

There are a couple of computational models to solve the diploid phasing problem. We will focus

on the Minimum Error Correction (MEC) model that is widely used among diploid and even

some polyploid phasing algorithms. Based on the idea that every read originates from either of

the two haplotypes and contains randomly sampled sequencing errors, the MEC model seeks

to compute a bipartition of all reads in a parsimonious way.

For a formal definition, let A be an allele matrix with n rows and m columns. A row Ri of A
(representing a read) conforms with a haplotype H̃ if either Ri[j] = H̃[j] or Ri[j] = − for every

j ∈ {1, . . . , m}. An allele matrix A is conflict-free if there exist two haplotypes H0̃ and H1̃ such

that every row in A either conforms with H0̃ or H1̃. For the all-heterozygous assumption, H0̃

and H1̃ additionally need to be complementary, i.e. H1̃[j] 6= H2̃[j] for every j ∈ {1, . . . , m}. We

state the weighted form of MEC – also called wMEC – as the following optimization problem:

Problem 3 (wMEC). Given an allele matrix A and a non-negative weight matrix W ∈ Rn×m,

Wi j ≥ 0, find a set F of entries such that A becomes conflict-free if we switch all entries in F

from 0 to 1 and vice versa. Over all such sets, we want to find the set F with minimum cost, i.e.∑
(i, j)∈F

Wi, j is minimized.

We call each switch-operation induced by the set F a flip. Another way to characterize the

wMEC problem is a partitioning problem, where the goal is to find a bipartition of the rows

2.1. DIPLOID PHASING 25

of A such that all rows within a partition are conform to one another (in the same manner as

reads conform to haplotypes) using a minimum-weighted set of flips. The weight matrix W
can be used to express the confidence for each called allele, i.e., how well a read was mapped

against the reference genome for a certain locus. For the unweighted version of wMEC – just

called MEC –, one can set all weights of W to 1 to effectively count the number of flips.

The MEC model was introduced by Lippert et al. [65] among other theoretical models to

infer haplotypes. Cilibrasi et al. [66] later showed that the MEC problem is NP-hard, even with-

out weights and read gaps, i.e., gaps may only occur at the beginning or end of each read but

not between two defined alleles. In the following, we will use reads and rows interchangeably;

the same holds for variants and columns.

Related work

In the context of haplotype phasing, several algorithms for solving the MEC model have been

proposed. For the sake of highlighting different approaches we will list a selection of algo-

rithms, as the focus of this chapter lies on our developed heuristic of the WHATSHAP algorithm.

One of the earliest exact solvers of the MEC model in terms of haplotype phasing is a branch-

and-bound approach by R.-S. Wang et al. [67]. This method, however, only scaled to a small

number of columns and the authors additionally proposed a heuristic for larger instances.

In 2008, V. Bansal and Bafna presented the tool HapCUT, which transforms the allele matrix

into a graph and minimizes the MEC score by iteratively computing max-cuts on the derived

graph [68]. Although it outperformed other heuristics and yielded good results in practice, it

is not guaranteed to find the optimal solution. He et al. used dynamic programming to provide

another exact solver [69]. The benefit was a runtime of O(n ·m · 2k), where k is the length

of the longest read, i.e., the range between the first and last non-gap position. In contrast to

previous exact approaches, it scales well with large allele matrices but is only applicable to

short-read technologies. Other approaches that were published afterwards use integer linear

programming to find optimal solutions for given MEC instances [70, 71]. This works well if the

sequencing data is divided into smaller disconnected sub-matrices beforehand such that these

sub-matrices can be solved independently without losing global optimality. However, some of

these sub-matrices proved to hard to solve within a reasonable time limit, since solving integer

linear programs is an NP-complete problem itself.

2.1.3 The PedMEC model

In this section I summarize and present a previously existing phasing model introduced in [13].

The mentioned separation of the allele matrix into independent sub-matrices also points

to a major limitation occurring in haplotype phasing: A contiguous phasing of an individuals

chromosome is only possible if all variants are connected by the input reads. With read length

26 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

being limited by the sequencing technology and the long homozyguous regions being present

on the human genome, this prerequisite is rarely given, independent from the used phasing

model.

In Section 1.3 we already introduced pedigree-based phasing as a means to use genetic

information from related individuals to overcome the limitations of pure read-based phasing.

Garg et al. proposed an extension of MEC – called PedMEC – to process multiple sets of se-

quencing data simultaneously [13]. The related individuals are given as a set of indices I
with trio relationships T ⊆ I3 to model the mother-father-child relations. Every individual

may occur at most once as a child among all trios and T must form a proper family tree with-

out circular relationships. Instead of having a single allele matrix A, we are now given one

matrix Ai for each individual i ∈ I. All matrices share the same set of variants, and thus con-

tain m columns. This means that we consider all variants for our phasing problem, for which

at least one individual is heterozygous. In reverse, the all-heterozygous assumption does not

hold anymore for every individual. The goal is to compute one pair of haplotypes H̃ i
0, H̃ i

1 for

each individual i, such that the MEC model is optimized accordingly.

At this point, we have |I| independent instances of MEC, which we could solve separately.

Thus, we introduce additional constraints between these instances that are derived from the

biological reproduction process we described in Section 1.2.3. Let (im, i f , ic) ∈ T be a trio from

family I. The child ic possesses one maternal haplotype (say H̃ ic
0) and one parental haplotype

(say H̃ ic
1). The maternal haplotype is a mosaic of two haplotypes H̃ im

0 and H̃ im
1 from im, i.e.,

for every variant position 1 ≤ j ≤ m either H̃ ic
0 [j] = H̃ im

0 [j] or H̃ ic
0 [j] = H̃ im

1 [j] or both must

hold. The same holds for the paternal haplotype of c and the two haplotypes of father f .

We define two transmission vectors t im→ic , t i f→ic ∈ {0,1}m to describe which haplotypes of the

parents were passed to the child for each position j: The haplotypes H̃ im
0 , H̃ im

1 , H̃
i f

0 , H̃
i f

1 , H̃ ic
0 , H̃ ic

1

are compatible with t im→ic and t i f→ic , if

H̃ ic
0 [j] = H̃ im

t im→ic [j]
[j] ∧ H̃ ic

1 [j] = H̃
i f

t i f →ic [j]
[j] (2.1)

for every variant j. In other words, if t ip→ic [j] = 0, child ic inherits the allele from the first

haplotype of parent ip, and otherwise the allele from the second haplotype.

Every time a transmission vector contains different values for two consecutive variants j

and j+1, our solution contains a recombination event. Since these are only very few recombi-

nation events per chromosome per individual, we have to restrict their use via some penalty

in our model. Let X ∈ Rm−1,X [j] ≥ 0 be a vector of non-negative recombination cost, which

is provided as additional input. Every recombination event between variants j and j + 1 on

any of the transmission vectors adds a cost of X [j] to the model. Garg et al. formulate the

additional constraints and objectives as the PedMEC model:

Problem 4 (PedMEC). Given a family of individuals I, a set of trio relationships T , a vector of

recombination costs X and an allele matrix Ai for every i ∈ I, find (i) sets Fi of flips for every

Ai such that Ai becomes conflict-free yielding haplotypes H̃ i
0, H̃ i

1 and (ii) a pair of transmission

2.2. ALGORITHM OF WHATSHAP 27

vectors t im→ic , t i f→ic ∈ {0,1}m for every (im, i f , ic) ∈ T such that H̃ im
0 , H̃ im

1 , H̃
i f

0 , H̃
i f

1 , H̃ ic
0 , H̃ ic

1 are

compatible with them. The objective is to minimize the following function:

∑
i∈I
|Fi |+

∑
(im,i f ,ic)∈T

m−1∑
j=1

X [j] ·
 ∑

ip∈{im,i f }
[[t ip→ic [j] 6= t ip→ic [j + 1]]]

 (2.2)

For the sake of simplicity, we stated the unweighted version, which can be generalized to

weighted flips like the wMEC model. For a full description of the weighted problem and more

formal details, we refer to the original publication.

2.2 Algorithm of WHATSHAP

I summarized and rephrased the explanations from [12] for the exact algorithm. The heuristic is a novel

work and has not been presented before in any publication.

In 2015, Patterson et al. presented WHATSHAP, a fixed-parameter-tractable approach to op-

timally solve the wMEC problem depending on only one parameter, the maximum coverage

among the reads. Thus, the runtime grows exponentially with the maximum coverage on

any variant position. However, in contrast to previous methods, the approach scales linearly

in the number of variants and does not depend on the length of the longest read, enabling

full-chromosome phasing on long reads.

In practice, WHATSHAP performs a read selection on the input allele matrix to crop the

maximum coverage to some parameter c while maintaining as much connectivity information

as possible. In this section, we will introduce a heuristic for the exact algorithm that is able

to process much higher coverages. For that purpose, we will briefly summarize the existing

algorithm using an adapted notation while omitting some implementation details.

2.2.1 Solving MEC with dynamic programming

The basis of WHATSHAP is a dynamic program (DP) that computes optimal partial solutions for

subsets of the columns in A. It considers all possible bipartitions of rows in A, which would

be 2n candidate solutions without any optimization. The heuristic solves the same dynamic

program but only memorizes a small portion of the partial solutions when advancing to the

next variant, which effectively loses the guarantee for optimality.

Exact algorithm

We borrow some of the notation introduced by Patterson et al. and adapt it to our existing

framework; for every variant v j , let A j ⊆ {1, . . . , n} be the set of row indices i, such that

s(Ri)≤ j ≤ e(Ri). We call A j the active set for variant (or column) j because all associated reads

28 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

are either defined on v j itself or possess a non-gap allele before and after v j . Furthermore, let

N j := A j \ A j−1 (with A0 = ;) be the set of new reads that start at column j.

A bipartition of a set A is a pair (P,Q) with P ∪Q = A and P ∩Q = ;. We say that (P ′,Q′)
extends (P,Q) if P ⊆ P ′ and Q ⊆ Q′. Let B(A) be the set of all bipartitions over the set A and

– for a given partition (P,Q) over set A – let B(A′ | (P,Q)) be the set of all bipartitions over A′

that extend (P,Q). Finally, let D(B, j) be the optimal cost for rendering the first j columns of

A conflict-free such that the resulting bipartition extends B.

We interpret D as a large table with a total of m columns – one for each variant – and one

row for every considered bipartition B ∈B(A j) in each of the columns. The individual entries

D(B, j) represent partial solutions and the principle of the dynamic program is to compute

them bottom-up, i.e., using solutions for small sub-problems to derive solutions for larger

sub-problems. In their work, Patterson et al. describe how D can be efficiently computed in

total time O(2c · m), where c is the maximum coverage, i.e., c = max
1≤ j≤m

|A j |. The idea is to

compute D column-wise by considering all bipartitions from B(A1) for the first column and

then extending bipartitions from one column j by all reads N j+1 starting at column j + 1.

The optimal global bipartition can then be computed by starting at the minimum score in the

last column D(· , m) and using backtracking pointers to combine all local bipartitions on the

optimal path into a global one. For the rest of this section, we will use the running example

illustrated in Figure 2.1. The columns of D for the example allele matrix and the associated

bipartitions can be seen below the labelsB(A1),B(A2), andB(A3).

For every column j, the algorithm only memorizes D(B, j) for every B ∈ B(A j) instead of

every B ∈B({1, . . . , n}). The reason is that a read Ri with s(i)> j does not induce any conflicts

in the first j columns of A and does not need to be tracked for the first j columns of D. Each

read only enters the scope of the algorithm at its first defined position s(i). Likewise, a read

Ri with e(i) < j leaves the scope of the algorithm for column j because it does not contribute

anymore to the scores D(B, j).

For their DP recursion, Patterson et al. introduced intermediate projection columns D∩, de-

fined as

D∩(B, j) = min
B′∈B(A j |B)

D(B′, j) (2.3)

for all B ∈ B(A j ∩ A j+1). It collapses all bipartitions from B(A j) that only differ in reads

ending at column j into a single intermediate solution. When computing column j + 1, every

intermediate bipartition B ∈ B(A j ∩ A j+1) is effectively expanded into 2N j+1 new ones that

represent all possible extensions of B using new active reads from A j+1 (that were not active

before).

This collapse-and-expand procedure is illustrated in Figure 2.1 for a small example with

four reads and three variants. For the first column, we see all possible bipartitionsB(A1) over

A1, out of which two have a score of 0 and the other two have a score of 1. Since the first

read moves out of scope for the second column, all bipartitions that only differ in that read are

2.2. ALGORITHM OF WHATSHAP 29

Figure 2.1: Example for the WHATSHAP algorithm. This overview shows the principle of the WHATSHAP algorithm
on a small example with four reads and three variants. Local bipartitions (or solutions) are represented by small
matrices with their rows colored in magenta for the first partition, blue for the second partition, and gray for
inactive reads. For each bipartition, the score below each matrix shows the D-values for the main columns and the
auxiliary D∩-scores for intermediate projection columns. The black arrows show which bipartitions from the main
columns are considered for the auxiliary scores, where dashed lines stand for suboptimal predecessors. In reverse,
curly brackets show which bipartition from an intermediate projection column is extended to which bipartitions in
the main column. The optimal solution and the backtracking over all columns are highlighted in green.

collapsed. The second column B(A2) introduces two new reads and the algorithm extends

each bipartition from the intermediate column into four new bipartitions and computes their

respective scores. Once all columns are processed, the bipartition with the lowest score (or one

of them if multiple exist) in that column is picked and the resulting global bipartition is con-

structed by following the backtracking pointers and inserting each read into the corresponding

partition.

Heuristic

The major limitation of the dynamic program is the exponential scaling with read coverage:

For variant j, the DP has to keep track of all 2|A j | bipartitions over these reads. This even holds

if some reads contain gaps at variant position j because a read counts as active between its first

and last non-gap position. To maintain practical runtimes, the implementation of WHATSHAP

performs a read selection to only keep a subset of reads such that there are no more than K

active reads at any variant for some user-defined threshold K . The default threshold is set to

15, while values above 20 quickly become impractical.

In this section, we propose a heuristic for the original algorithm that aims to limit the

number of memorized bipartitions at any point in time to some threshold L, and thus avoid

combinatorial explosion in areas of high coverage. Since we cannot ensure that the optimal

solution will always be preserved by the selection of L bipartitions, this approach represents

a heuristic for the underlying MEC problem with no performance guarantees. Our heuristic is

30 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

inspired by the polyploid phasing tool H-POP-G by M. Xie et al. [40]. Their algorithm solves a

generalized version of the MEC problem for polyploid genomes but only does so heuristically

due to the huge solution space. In the following, we will use the terms bipartition and solution

interchangeably because every bipartition B in column j can be interpreted as a partial solution

with a MEC score of D(B, j).

The first major difference between our heuristic and the exact algorithm is how columns

are handled; the latter enumerates all bipartitions B(A j) over the active reads A j , finds the

(optimal) predecessor from B(A j−1 ∩ A j) – we called this intermediate projection column – ,

and computes the induced flip cost for the new column j. Every bipartition fromB(A j−1∩A j) is

extended by |N j | new elements (i.e. the number of reads newly starting at column j), resulting

in 2|N j | possible extensions.

For the heuristic, it is impractical to generate all 2|N j | extensions for the intermediate pro-

jection column because 2|N j | can potentially be a large number itself. In real-world sequencing

data, one can observe that there are positions where many read alignments start simultane-

ously. This can, for example, be caused by a large insertion in the sequenced individual. Since

the insertion is not part of the reference genome, the affected parts of some reads cannot be

aligned and their alignments start at the first position that is present in the reference again.

Therefore, it is a realistic scenario that N j can be too large for some columns j to enumerate

all possible bipartitions over it.

We tackle this problem by processing all columns read-wise: We duplicate the previous set

of bipartitions and insert the new read into the first or second partition, respectively. After-

ward, we order the resulting bipartitions by their score D(B, j) and discard the worst elements

until at most L bipartitions are left. To reduce random choices inside our heuristic, we always

discard all equally good solutions as a whole, which might result in less than L remaining

solutions if the L-th and (L + 1)-th best solutions (and possibly more) have the same score.

However, we always keep all best solutions, even if there are more than L of them. We also

copy the concept of intermediate projection columns from the exact algorithm to collapse so-

lutions that only differ in reads that become inactive in the next column.

We reuse the input matrix from Figure 2.1 to illustrate the principle of our heuristic: Fig-

ure 2.2 shows all performed steps for a solution limit of L = 2. We initially start with an

empty bipartition and a score of 0. In the first column, the first read can be either inserted into

the first (magenta) or second (blue) partition, yielding two different solutions with a score of

0. Both solutions can be extended with the second read by inserting it into either partition.

The algorithm keeps the best L = 2 solutions and prunes the rest. With all reads of the first

column being processed, we compute the intermediate projection column by collapsing bipar-

titions that only differ in the first read. Since we discarded two out of four solutions, we do not

collapse multiple bipartitions and instead just keep the two with the first read now marked as

inactive. In the second column, we extend the two kept solutions into four solutions by insert-

ing the third read into either partition. However, the algorithm now keeps all four solutions –

despite the limit of L = 2 – because all solutions are equally good. After processing the fourth

2.2. ALGORITHM OF WHATSHAP 31

Figure 2.2: Example for the wMEC heuristic. This overview shows the heuristic for the WHATSHAP algorithm.
Bipartitions are represented as in Figure 2.1. The algorithm starts with an empty bipartition and a score of 0.
Black arrows indicate the extension of a previous bipartition into two new ones that are framed by a dashed box.
Solutions that are discarded by the algorithm due to the solution limit L = 2 are depicted with lower opacity.
Dashed arrows indicate a collapsing step for the intermediate projection columns. In the third column, there is
no extension, hence only one bipartition inside each of the dashed boxes. The bipartitions on the optimal path
are highlighted with a green border around the score. The X -values indicate allele balances for each solution with
the top row belonging to the magenta partition and the bottom row to the blue one. The arguments for X are the
same as for D′ but are not depicted for better visual clarity.

read, we can finally discard six out of eight solutions. The second intermediate projection

column does not involve any collapsing and only copies the two remaining solutions with the

second read marked as inactive. Since no read starts in the third column, there is nothing to do

and the algorithm constructs an optimal solution via backtracking from the lowest score in the

last column in the same manner as the original WHATSHAP algorithm. Note that the X -values

in Figure 2.2 indicate the allele balances for each intermediate solution; we will introduce

these values throughout this section and refer back to this figure.

During development, we realized that pruning solutions based on the D-values is not effec-

tive: If for some bipartition B two reads Ri and Rk reside in the same partition, they also will

for all extensions of B and all following columns. The score D(B, j), however, only considers

the alleles of Ri and Rk up to column j. If Ri and Rk have no conflicts before and up to column

j but many conflicts thereafter, bipartitions having Ri and Rk in the same partition are pre-

ferred, although a globally good solution would separate them. Figure 2.3 shows an example

where the D-scores could lead to a bad pruning choice: Inserting the fourth read into the blue

partition (solution B1) yields a better D-score on the second column than inserting it into the

magenta one (solution B2). Thus, B2 would be pruned before B1. Among all extensions of B1

and B2, however, the best solution is found when extending B2 instead of B1. In practice, such

cases are realistic because a read starting in column j might contain a sequencing error on its

32 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

Figure 2.3: Difference between DP scoring schemes. On the left side, there are two bipartitions B1, B2 for the
first four reads and their scores for Column 2 according to D and D′. B1 and B2 differ in their assignment of the
fourth read; this results in B1 to achieve a better score for the D-scheme than B2, while the opposite holds for
D′-scheme. On the right side, we can see the two extensions of B1 and B2 (by including the last read) and their
scores for Column 4. Both D and D′ are identical for of the four final bipartitions.

first non-gap position, and could thus be sorted into the wrong partition based on this single

erroneous allele.

To circumvent this issue, we introduce a slightly different DP score D′(B, j) that indicates

the optimal cost for rendering the rows P ∪Q ∪⋃ j−1
k=1 Ak conflict-free such that the resulting

bipartition extends B := (P,Q). In other words, the score considers all active reads from the

first j − 1 columns and those reads from A j that are already assigned a partition by B. The

difference to the definition by Patterson et al. is that our score is not strictly limited to the

first j columns but rather includes rows of A as a whole once they move into the scope of the

algorithm.

Note that D′(B, m) = D(B, m) for all B ∈ B(Am); thus, computing a DP matrix with our

score definition would lead to the same solution as the algorithm by Patterson et al. but with a

different calculation for each entry and possibly different results for each but the last column.

We emphasize that the purpose of the D′-scheme is not to compute a different solution than

the original one but to provide a better indicator which intermediate solutions to discard. We

found that our scheme yields vastly better results than the D-scheme, especially for low values

of L. Therefore, we will omit the former scheme and only discuss the latter from now on.

Strictly speaking, our heuristic actually solves a slightly different DP than WHATSHAP but since

the overall MEC model and the solving principle remain the same, we still call it a heuristic

for the WHATSHAP algorithm.

To efficiently compute D′(B, j), we introduce an auxiliary table X with X (B, j) containing

the allele balances for the (intermediate) solution associated with D′(B, j). Each entry consists

of two so-called balance vectors of length m, one for each partition. The k-th component

indicates a single allele balance, i.e., the number of reads with 1-alleles minus the number of

reads with 0-alleles in the respective partition for column k. For the weighted version, we

2.2. ALGORITHM OF WHATSHAP 33

add and subtract allele weights instead of counting the number of allele occurrences. We

denote balance vectors as X (B, j)q for q ∈ {1,2} and single allele balances as X (B, j)q[k] for

k ∈ {1, . . . , m}. For the example in Figure 2.2, the corresponding allele balances are given

below each D′-entry. The initial empty solution starts with allele balances that consist only of

0s for both partitions. Every time a solution B = (P,Q) is extended by read Ri , the balance

vector for the extended partition – say P – is updated according to the read’s alleles (and their

weights), which can be done in time O(e(Ri)− s(Ri)).

The update of the D′-scores is simpler without the all-heterozygous assumption because

we only have to consider the updated balance vector. Incrementing a positive allele balance or

decrementing a negative allele balance means that Ri follows the present consensus in P and

does not induce additional flip costs for the affected column. In reverse, we have to raise the

D′-score each time Ri[k] deviates from the consensus of the other reads in P for all variants

s(Ri) ≤ k ≤ e(Ri). If the weight Wi,k for read Ri at column k is lower than the absolute allele

balance |X (B, j)1[k]| of P for column k, the consensus changes by inserting Ri and we need to

pay Wi,k flipping cost, i.e., increment the current D′-entry by Wi,k. Otherwise, the consensus

changes due to the insertion of Ri in P and we only pay costs |X (B, j)1[k]|. Formally, the

updated score can be computed with

D′((P ∪ {Ri},Q), j) = D′(B, j) +
e(Ri)∑

k=s(Ri)

min
�
Wi,k, |X (B)1[k]|

� · [[d(Ri[k], X (B)1[k])]], (2.4)

where B = (P,Q), Ri is inserted into the first partition P, and d(a, x) is true if and only if

allele a ∈ {0,1} does not follow the consensus implied by the allele balance x , i.e.,

d(a, x) = (a = 1∧ x < 0)∨ (a = 0∧ x > 0) . (2.5)

If both haplotypes have to be complementary, we have to consider both balance vectors of

X (B, j) because an allele of the inserted read Ri can cause costs, even if it conforms with the

consensus of the target partition P. This happens if both partitions have a positive balance for

column k alongside Wi,k but P possesses the lower balance value and would be selected to be

the 0-allele to satisfy the all-heterozygous assumption. Analogously, if both partitions have a

negative score with P possessing the greater balance, the latter would be assigned to carry the

1-allele. Thus, a read induces additional flip cost for column k if Ri[k] = 0 and X (B, j)1[k] >

X (B, j)2[k] or if Ri[k] = 1 and X (B, j)1[k] < X (B, j)2[k], i.e., the effective consensus after

the all-heterozygous assumption does not match the read allele. Using X̄ (B, j, k) as a short

notation for X (B, j)2[k]−X (B, j)1[k], Equation (2.6) summarizes the score computation based

on balance vectors for this assumption:

34 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

D′((P∪{Ri},Q), j) = D′(B, j)+
e(Ri)∑

k=s(Ri)

(
min

�
Wi,k,max

�
0, X̄ (B, j, k)

��
if Ri[k] = 1,

min
�
Wi,k,max

�
0,−X̄ (B, j, k)

��
otherwise.

(2.6)

Note that the exact algorithm would not profit from the more complex definition of D′ over

D because it enumerates all possible solutions for each column anyway, and thus never has to

rank and select partial solutions.

2.2.2 Extending MEC solvers to PedMEC

The exact algorithm for PedMEC is existing work by Garg et al. [13] and restated here as a basis for our

newly developed heuristic. All aspects of the heuristic and its documentation here are novel.

In Section 2.1.3, we introduced the PedMEC model defined by Garg et al. [13]. In the same

publication, the authors also extend the existing WHATSHAP algorithm to process multiple

individuals simultaneously and solve the PedMEC problem to optimality. The extension follows

the same DP approach as the original algorithm, where we consider all possible bipartitions

over the set of active reads A j for every column j. The first key difference is that the reads

are now scattered over multiple input allele matrices A1, . . . ,A|I|. Since each read still needs

to be assigned to either the first or second haplotype within its corresponding individual, we

can characterize an assignment for all reads as a single bipartition. Note that we treat the

reads from A1, . . . ,A|I| as a combined set of reads. Thus, the sets A1, . . . , Am contain the sets

of active reads from all input matrices combined. The second key difference is that we now

also consider the transmissions of all trios, i.e., which haplotype from each of the parents is

passed on to the respective child. A single transmission is characterized by a binary vector of

length 2 · |T |, where each pair of binary numbers stands for a single trio and indicates which

haplotype – 0 for the first and 1 for the second – the child inherited from mother and father,

respectively.

The authors extended the DP table by a third dimension to cover the present transmission.

More formally, each DP entry D(B, t, j) represents an optimal solution according to the PedMEC

model to render the first j columns in all input allele matrices conflict-free, such that the

solution extends the bipartition B and uses transmission t for column j. While we considered

bipartitions as (partial) solutions in Section 2.2.1 and used the two terms interchangeably, we

now characterize a solution as a pair of one bipartition and one transmission. We still consider

the last index j of each DP entry D(B, t, j) to be the column index of a solution but the row

index is now determined by (B, t) ∈ B(A j)× {0,1}2|T |, i.e., one of the possible combinations

of bipartitions over A j and transmissions for the |T | trios. This increases the total size of the

DP table to O
�
m · 2c+2|T |�, where c := max

1≤ j≤m
|A j | is again the maximum coverage over all

columns. The global optimal solution can be retrieved via backtracking from a lowest-score

2.2. ALGORITHM OF WHATSHAP 35

entry in the last column. The total asymptotic runtime of the exact algorithm is reported as

O
�
m · 2c+2|T |+|I| · |I|+ 24|T |+c

�
.

The DP recursion works similar to the MEC version: First, we use intermediate projection

columns D∩ to collapse solutions that only differ in reads ending at the previous column j.

Analogously to Equation (2.3), these columns are defined as

D∩(B, t, j) = min
B′∈B(A j |B)

D(B′, t, j) (2.7)

for all B ∈ B(A j ∩ A j+1). The second step of the recursion is to compute all extensions of

the remaining solutions using the read indices N j+1 (i.e. all reads starting in column j + 1).

In addition to the MEC algorithm, we need to account for possible changes in transmission.

When computing entry D(B, t, j + 1), we do not only consider all entries D∩(B′, t, j) with B

extending B′ as predecessors, but also entries D∩(B′, t ′, j) with a different transmission t ′ 6= t.

For the latter, we consider the corresponding recombination cost X [j] · dH(t, t ′) with dH(t, t ′)
being the Hamming distance between the t and t ′. For further formal details on the exact

PedMEC algorithm, we refer the reader to the original publication and instead focus on our

developed heuristic.

Heuristic

The exact PedMEC algorithm possesses the same exponential runtime scaling as its MEC ver-

sion regarding read coverage. However, this coverage does not refer to each individual sep-

arately but to all individuals at once because the sets of active reads are shared between all

individuals. Thus, the average coverage per individual is downsampled to c
|I| with c being

the global coverage threshold for each variant position. This only yields a coverage of 5× per

individual (and a haploid coverage of 2.5×) for a single trio and the default coverage thresh-

old of 15. Garg et al. showed that the benefits of the heredity information outweigh the loss

in coverage per individual by a great margin but the high loss of information still raises the

question to what extend the phasings could profit from the large amount of discarded reads.

To answer this question, we will extend our MEC heuristic, which is able to handle higher

coverages, to also solve the PedMEC problem. Similarly to the exact algorithm, we con-

sider combinations of bipartitions and transmissions as (intermediate) solutions and proceed

column-wise through the given input matrices. We again use a solution limit L as an upper

bound for how many solutions we memorize throughout the computation. Since solutions

now also contain a transmission, it is possible that we memorize the same bipartition multiple

times but with different transmissions. This implies that the PedMEC heuristic might require

higher values of L for proper results compared to the MEC heuristic. We will investigate this

in the experimental section.

For the heuristic itself, we borrow the new definition of the intermediate projection columns,

which was introduced by the exact PedMEC algorithm. This includes the adjusted DP recursion

that considers predecessors with different transmissions by adding the corresponding recom-

36 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

(a) Read insertion with required flips (b) Read insertion without required flips

Figure 2.4: Look-ahead scoring for transmission. The shown matrices represent combined input allele matrices
for a trio of mother, father and child. The first six rows show a bipartition with the magenta, orange, and violet
rows being associated with the first haplotypes (of mother, father, and child respectively) and the blue, green, and
brown rows being associated with the second haplotypes. The transmission is shown to the right of the matrix.
The next read (highlighted with a red border) belongs to the child individual. (a) The next read is inserted into
the brown partition. It does not contradict the present consensus of this partition on any position, and thus does
not induce any flip costs directly. According to the given transmission, however, the brown haplotype inherits its
alleles from the father’s green haplotype. Since the green and brown haplotypes would become different in the
fourth column after the read’s insertion, we would have to pay a flip cost of 1 in the future to change either of
the two haplotype’s allele in the affected column and restore the transmission constraint. (b) The next is inserted
into the violet partition. While this decision does not induce direct flip costs either, it avoids conflicts with the
transmission because alleles from the violet haplotype agree with those from the mother’s magenta one.

bination costs (see the explanations of Equation (2.7)). In addition to the recursion, the exact

PedMEC algorithm also modified how solutions are extended in each column: When process-

ing a new column, the algorithm enumerates all possible bipartitions over active reads and all

possible transmissions. Our MEC heuristic avoids a full enumeration of bipartitions by insert-

ing new reads one at a time and only keeping the L best solutions after each insertion until

all new reads of the new column are processed. To account for the increased solution space

of the PedMEC model we need two adjustments to our heuristic: (i) a mechanism to generate

alternative transmissions and (ii) adjusted criteria to rank solutions for the solution limit L.

The first addition is necessary because the extension step of the MEC heuristic only extends

existing bipartitions but not the transmissions. We proceed similarly to the exact algorithm:

After all new reads of a column j – possibly none – are processed, we take the bipartitions of all

up to L remaining solutions and create one copy of them for every possible transmission. This

yields up to L ·22|T | solutions, from which we again select the best L. This ensures that possible

recombination events between columns j − 1 and j are covered by some of the solutions. We

also change the initialization of the heuristic (see Figure 2.2) to not use the empty bipartition

as the only start solution but rather one copy of the empty bipartition for each of the 22|T |

possible transmissions.

The second addition aids in efficiently identifying solutions whose transmissions will lead

to conflicts induced by the inheritance constraints of the PedMEC model. For the MEC heuristic,

we use a different definition for our DP table compared to the exact algorithm. This allows

us to use all alleles of a newly inserted read for the solution ranking and not only all alleles

up to the current column j. When we add inheritance constraints to the model, just using

the values from the DP table D′ might overlook certain errors induced by a read insertion. In

Figure 2.4 we demonstrate this issue for a small example with one trio (mother, father, and

child). All reads from A1 are assigned a partition and the next read belonging to the child

2.2. ALGORITHM OF WHATSHAP 37

is to be inserted into either of the two partitions. Note that we used six different colors to

differentiate between individuals and their two haplotypes. Subfigures 2.4a and 2.4b show

the same combined allele matrix and the same transmission but with the new read inserted

into different partitions. In both cases, the new read does not induce flip errors according

to the allele balance concept because it has no conflicts with either the previous violet or the

previous brown reads. However, if we take the transmission into consideration, putting the

new read into the brown partition will potentially violate the inheritance rule between the

green and brown haplotypes in the fourth column. We would then need to flip either the

alleles of the green or the brown haplotype to restore a proper inheritance. It is still not an

actual cost we already have to pay because we do not know yet what the set of solutions will

be once we advance to the fourth column. It rather is a hint to potential costs or look-ahead

costs that we could use for solution ranking. Inserting the new read into the violet partition

does not induce look-ahead costs because the violet haplotype inherits from the magenta one,

whose consensus is concordant with the new read. Since the look-ahead costs have to be

recalculated for every column due to possible changes in transmissions, we limit the scope of

the computation to the following five columns.

Homozygosity

In the introduction of this chapter, we explained the all-heterozygous assumption and that

it usually is reasonable for diploid phasing. When phasing multiple individuals simultane-

ously we say that a variant is heterozygous if any of the phased individuals is heterozygous.

This means that the individual allele matrices may contain columns where the corresponding

individual is homozygous, even when using the all-heterozygous assumption.

Homozygous columns in one of the allele matrices become problematic if the latter con-

tains reads that only cover such homozygous columns, which we call homozygous reads. Since

the two haplotypes are identical on these positions, both read partitions should have the same

consensus for the associated columns. Thus, a homozygous read should fit equally well into

both partitions. According to how our heuristic works, a homozygous read effectively dupli-

cates the previous set of (up to) L solutions by inserting the homozygous read once into the

first and once into the second partition of each of the previous solutions. When shrinking the

new solution set to at most L solutions, the duplicates will either both be taken or both be

discarded because they will have the same D′-score (they might still differ in the look-ahead

score in some cases). This means that the new solution set only contains L
2 different solu-

tions if we do not count the homozygous read that does not contribute any information to the

phasing. If the next reads are homozygous as well, the solution diversity is further decreased.

Figure 2.5 shows an example of an allele matrix with three homozygous columns and three

homozygous reads. It shows four different partitions that are equally good and only differ in

the assignments of the homozygous reads.

38 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

Figure 2.5: Duplicated PedMEC solutions. The allele matrix in this figure depicts the (error-free) reads of an
individual, where the three variants in the middle are homozygous on the 0-allele. Thus, the third, forth, and fifth
read (highlighted by the red box) only cover homozygous positions. The four copies of the matrix show different
bipartitions of the readset (indicated by magenta or blue background), although only the three highlighted reads
are shuffled between partitions. Since they only represent homozygous variants, the resulting haplotypes are
identical for all eight (or 23) possible bipartitions.

During our experiments, we encountered the worst case several times, where more than

log2 L homozygous reads occurred in very close proximity. Not only did this reduce the effec-

tive solution diversity to 1, it even prevented the heuristic from terminating in time because

it always keeps all optimal intermediate solutions. Since homozygous reads lead to a duplica-

tion of solutions, the number of equally good solutions grows exponentially with the number

of homozygous reads until other reads diversify the solution set again. The exact algorithm

does not suffer from this problem because it enumerates all bipartitions anyway and makes

sure that this enumeration is always feasible by limiting the maximum coverage.

We added a detection for homozygous reads to prevent the solution duplication: If we fully

trust the provided genotype information from the VCF file, we know in advance which columns

are homozygous for which sample and can easily identify homozygous reads. We then add the

read (randomly) to either the first or second partition but do not create two new solutions. If

we do not trust the provided genotypes, we iterate over all covered columns j of a new read

and check (i) whether the consensus of the first and second partition differs for column j or

(ii) whether the insertion of the new read would change the consensus for both partitions. If

either of the two conditions holds for any covered column, we consider the read informative

and create two new solutions from this read. Otherwise, we treat it as a homozygous read.

De-novo mutations

The PedMEC model demands that a child allele always matches the corresponding parent

allele determined by the transmission vector. However, genetic variation not only arises from

genetic recombination but also from spontaneous mutations in the child’s germline, called de-

novo mutations. As the name suggests, these mutations are exclusive to the child genome, and

thus do not fit the PedMEC model. In many cases, de-novo mutations can already be detected

beforehand because the genotypes of the child and its parents are incompatible to Mendel’s law.

Examples for incompatible patterns – also called Mendelian conflicts – are 0/0 for both parents

and 0/1 for the child or 0/0, 0/1 for the parents and 1/1 for the child. WHATSHAP filters all

Mendelian conflicts before the phasing because they cannot be handled by the PedMEC model.

2.3. EXPERIMENTS 39

Figure 2.6: De-novo mutation. The colored stripes show the true haplotypes of a trio. The child contains a de-
novo mutation on the third variant of the first haplotype, which does not result in a Mendelian conflict. The colors
of the child haplotypes indicate the optimal transmissions according to the PedMEC model.

De-novo mutation that do not result in Mendelian conflicts will cause small artifacts in

the phasing. To ensure compatibility of inherited haplotypes, the algorithm will either resolve

mutations by inserting two recombination events directly before and after the affected variant

or by flipping all alleles of one partition at the column of the mutation. The first case is

depicted by Figure 2.6: The first child haplotype contains only 1-alleles but the closest mother

haplotype contains a 0-allele on the third column. The cheapest solution could be to let the

child inherit this single allele from the magenta instead of the blue haplotype, for the cost of

two recombinations. Alternatively, one could report the mutated allele as 0 – the child would

entirely inherit the blue haplotype – for the cost of flipping all reads in the first child partition

from 1 to 0 on the third column.

To resolve mutations more elegantly, we introduced mutation cost Y as a third cost com-

ponent for the phasing model and optionally allow our heuristic to insert mutations into the

phasing if this leads to a reduction in total cost. Formally, we relax the inheritance constraints

of the PedMEC model but add a penalty of Y[j] for violation of this constraint for column

j. On the algorithmic side, we do not need to explicitly add mutations as events but rather

change the cost calculation at the end of a column when we generate alternative transmissions

for the remaining solutions. If the transmission of a solution connects two read partitions with

mismatching consensus alleles (for some variant), we previously had to flip many alleles in ei-

ther of the partitions (see Figure 2.4). With mutations being allowed in the phasing, we could

instead pay the mutation cost once and prevent the possibly more expensive set of flips. Note

that the option to allow mutations only has an effect if multiple related samples are phased;

it is not applicable for single-individual phasing.

2.3 Experiments

All described experiments in this section were conducted by me and are unpublished. I took advice from my

second supervisor Tobias Marschall on how to generate a proper ground-truth phasing for sample HG002.

We compared the existing implementation for the wMEC and PedMEC models with our pro-

posed heuristic on the human Ashkenazi trio, consisting of a child (HG002) and its father

(HG003) and mother (HG004). The three samples have been extensively sequenced and ana-

40 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

lyzed by the Genome in a Bottle (GIAB) Consortium [72]. Originally, we planned to reproduce

the experiments from Garg et al. [13] that also use sequencing data from the Ashkenazi trio but

found that the exact datasets were not available anymore. We instead used newer sequencing

data, namely PacBio1 2 3 reads and PacBio HiFi4 5 6 reads, which were aligned to the GRCh38

reference genome7 by Minimap2 [32].

The crucial part of the benchmark is to find a suitable ground-truth phasing to evalu-

ate the output of the different phasers. Garg et al. ran the population-based phasing tool

SHAPEIT2 [73] on a reference panel from the 1000 Genomes project [33] and unphased geno-

types from the trio to construct phasings for all three samples. Since the used inputs were not

available under the provided hyperlinks and all the computations were done on an older ref-

erence genome, we decided to instead use existing high-quality phasings for HG002 as ground

truth. The phasings of the two parents were not evaluated.

One high-quality phasing 8 is provided by the GIAB Consortium itself [74]. It was created

by combining PacBio HiFi reads and StrandSeq data using the existing PedMEC implementa-

tion of WHATSHAP. The other phasing was computed by the Telomere-to-Telomere Consor-

tium [75]. It is available as a FASTA file with two base-level haplotype sequences9. In order

to convert it into a phased VCF file with the same reference coordinates as the aligned reads,

we used the Phased Assembly Variant Caller (PAV) [49], which was originally created for the

Human Genome Structural Variation Consortium (HGSVC). A comparison between both phas-

ings revealed a minimal deviation of less <0.03% in both SER and HR. In the following, we

will use the second phasing as ground truth for our evaluation.

All metrics were measured using the compare-subcommand of WHATSHAP. It requires both

true and computed phasing in VCF format (see Section 1.6). Since version v2.2, our heuristic

is accessible through the additional parameter -algorithm heuristic, when running the

1https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/
PacBio_minimap2_bam/HG002_PacBio_GRCh38.bam

2https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/data/AshkenazimTrio/HG003_NA24149_father/PacBio_MtSinai_
NIST/PacBio_minimap2_bam/HG003_PacBio_GRCh38.bam

3https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/data/AshkenazimTrio/HG004_NA24143_mother/PacBio_MtSinai_
NIST/PacBio_minimap2_bam/HG004_PacBio_GRCh38.bam

4https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_
20kb_chemistry2/GRCh38/HG002.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam

5https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_
20kb_chemistry2/GRCh38/HG003.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam

6https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/data/AshkenazimTrio/HG004_NA24143_mother/PacBio_CCS_15kb_
20kb_chemistry2/GRCh38/HG004.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam

7https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/ release/ references/GRCh38/GCA_000001405.15_GRCh38_no_alt_
analysis_set.fasta.gz

8https:// ftp-trace.ncbi.nlm.nih.gov/giab/ ftp/ release/AshkenazimTrio/HG002_NA24385_son/NISTv4.
2.1/GRCh38/SupplementaryFiles/HG002_GRCh38_1_22_v4.2.1_benchmark_phased_MHCassembly_
StrandSeqANDTrio.vcf.gz

9https://github.com/marbl/HG002

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/PacBio_minimap2_bam/HG002_PacBio_GRCh38.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/PacBio_minimap2_bam/HG002_PacBio_GRCh38.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG003_NA24149_father/PacBio_MtSinai_NIST/PacBio_minimap2_bam/HG003_PacBio_GRCh38.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG003_NA24149_father/PacBio_MtSinai_NIST/PacBio_minimap2_bam/HG003_PacBio_GRCh38.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother/PacBio_MtSinai_NIST/PacBio_minimap2_bam/HG004_PacBio_GRCh38.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother/PacBio_MtSinai_NIST/PacBio_minimap2_bam/HG004_PacBio_GRCh38.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/GRCh38/HG002.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/GRCh38/HG002.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/GRCh38/HG003.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/GRCh38/HG003.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother/PacBio_CCS_15kb_20kb_chemistry2/GRCh38/HG004.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother/PacBio_CCS_15kb_20kb_chemistry2/GRCh38/HG004.SequelII.merged_15kb_20kb.pbmm2.GRCh38.haplotag.10x.bam
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/references/GRCh38/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/references/GRCh38/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/SupplementaryFiles/HG002_GRCh38_1_22_v4.2.1_benchmark_phased_MHCassembly_StrandSeqANDTrio.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/SupplementaryFiles/HG002_GRCh38_1_22_v4.2.1_benchmark_phased_MHCassembly_StrandSeqANDTrio.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/SupplementaryFiles/HG002_GRCh38_1_22_v4.2.1_benchmark_phased_MHCassembly_StrandSeqANDTrio.vcf.gz
https://github.com/marbl/HG002

2.3. EXPERIMENTS 41

phase-subcommand of WHATSHAP. However, for the following experiments we used a version

from an experimental branch because we fixed a couple of smaller errors that we encountered

during our evaluation. The instructions how to retrieve the applied state of the code can be

found in Appendix D.

All experiments were run on an AMD Epyc 7742 64-core processor with 1 TB of RAM and

Debian Kernel. They were organized as a Snakemake pipeline [76] with jobs being executed

in parallel, when possible. All jobs involving the phasing tools were run on a single core to

maximize comparability regarding runtime and peak memory consumption.

2.3.1 Single-sample phasing on HG002

The first set of benchmarks exclusively tests the single-sample phasing capabilities of the in-

troduced heuristic. Since we only have a ground truth for sample HG002, we ignore the

sequencing data for the other two samples in this section. We tested the exact algorithm of

WHATSHAP for the downsampled coverages 5×, 10×, and 15× with the last being the default

value. We applied the same downsampling for the heuristic to directly measure the impact

of the loss of optimality. In addition, the heuristic was run on the full dataset (about 48× for

the PacBio and 80× for the HiFi reads) without any downsampling. For the exact algorithm,

this was not possible because of the exponential runtime scaling with coverage. As a second

parameter, we varied the solution limit L for all heuristic runs. The chosen thresholds were

16, 64, 256, and 1024.

We retrieved the peak memory consumption and the runtimes from the command line

output of WHATSHAP. It utilizes the integrated functions of Python to query the highest mem-

ory occupation during the process and the standard timer from the “time”-package. For the

runtime measures, we only state the time spent inside the MEC solvers instead of the total

runtime of the process. We decided to omit the other steps of the tool to emphasize the run-

time differences between the two algorithms and the solution limit thresholds. Otherwise,

the configurations with low coverage or low values for L would be dominated by the input

processing steps.

In Figure 2.7, we see the results for the PacBio sequencing data: The two top plots show

the switch flip rate (SFR) and Hamming rate (HR) phasing metrics and the two bottom plots

indicate the required computational resources. The heuristic yields a 10–20% higher SFR

than the exact algorithm among the three downsampled coverages. For the full dataset, the

heuristic is slightly more accurate than the exact algorithm with coverage 15×. The solution

limit only has a negligible effect on the error rate; the phasing quality is dominated by the

amount of used data. The HR follows a similar pattern, although the exact algorithm is about

25% ahead for the lowest coverage of 5×. The values for L show some differences here with

the tendency that higher values result in a higher HR.

For lower coverages, both results do not match our expectations: No column should contain

more than 32 solutions for a coverage of 5× and the heuristic should compute the same result

42 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

(a) Switch flip rate (b) Hamming rate

(c) Peak memory consumption (d) Runtime (phasing algorithm only)

Figure 2.7: Evaluation of MEC heuristic (PacBio). Each of the bar plots compares the exact algorithm of WHATS-
HAP to the heuristic on the PacBio sequencing data. The shown metrics are SFR (a), HR (b), peak memory con-
sumption (c), and runtime (d). The heuristic was run with different values of the solution limit L, which are given
in parentheses behind heuristic’s name. The bar plots are grouped by the used downsample threshold; the thresh-
old “unlimited” means that the heuristic was run without downsampling. Missing bars indicate that the affected
configuration was unable to finish within 24 hours or ran out of memory. The runtime only includes the phasing
algorithm itself as reported by the command line output of WHATSHAP.

as the exact algorithm if L ≥ 32. However, we noticed that our heuristic phases slightly more

variants on the provided dataset for each coverage level, as shown in Table 2.1. The lower the

coverage the larger the gap in phased variants and the larger the discrepancy in error rates. We

did not resolve this issue in time but the data suggests that the heuristic might report some low-

confidence variants (e.g. with ambiguous consensus), while the exact algorithm avoids those

until it gains more evidence through higher coverage. The solution limit did not influence the

number of phased variants.

algorithm 5× 10× 15× unlimited
exact 236599 237502 239260 n/a
heuristic 240740 240909 240975 241062

Table 2.1: Number of phased variants for both algorithms, depending on the supplied coverage.

2.3. EXPERIMENTS 43

(a) Switch flip rate (b) Hamming rate

Figure 2.8: Evaluation of MEC heuristic (HiFi). These plots show the SFR (a) and the HR (b) for the exact
algorithm and the heuristic on the HiFi sequencing data. They follow the same format as described in Figure 2.4.

The memory consumption is very similar on all tested runs, which shows that the VCF table

and the unfiltered readset (before the downsampling) dominate the memory footprints. Only

for the 15× coverage on the exact algorithm and for the highest solution limit of 1024, the

size of the DP tables starts to impact the memory consumption.

As expected, the exact algorithm shows an exponential runtime scaling with increasing

coverage. The heuristic also requires more time for more data but the scaling is very flat

compared to the exact algorithm and also compared to the solution limit L. For coverage 15×,

the heuristic is always faster than the exact algorithm. However, when the heuristic memorizes

the same number of solutions per column (or slightly less), e.g., for L = 1024 and coverage

10× or for L = 16 and coverage 5×, the exact algorithm is significantly faster. The reason for

this discrepancy is likely that the exact algorithm uses a gray-code enumeration of all solutions

in each step to minimize the computation time of the DP values. The heuristic cannot make

use of such optimizations and rather focuses on sparsely storing and processing large solution

spaces.

We decided to omit the switch error rate (SER) because it was closely correlated with the

SFR in all experiments, and thus provided no additional insights.

For the HiFi data, we summarized the phasing quality results in Figure 2.8. In contrast

to the PacBio reads, the SFR stabilizes much faster with growing coverage and at only about

half of the error rate. The heuristic is not able to match the accuracy of the exact algorithm,

even when using the full data set. Like for the other dataset, raising the solution limit does not

improve the accuracy of the heuristic. All of this holds for the HR, except for a downsampled

coverage of 5×, which results in about 35% more Hamming errors for both the exact algorithm

and heuristic. Runtime and memory consumption are very similar to the PacBio dataset. The

individual results can be found in Supplementary Figure A.1.

44 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

2.3.2 Trio-phasing on Ashkenazim trio

Our setup for trio-phasing is close to the setup for single-sampling phasing with a few dif-

ferences: First, we use 9×, 12×, 15×, 30×, 60×, and 90× as downsampling thresholds. We

extended the set of tested solution limits by L = 4096 because increasing the limit above 1024

proved to impact the results, as opposed to the single-sample phasing, where the solution limit

parameter only had minimal effect. In the absence of a ground truth for the parental samples

HG003 and HG004, all reported error metrics only refer to the phasing accuracy of the child

sample HG002. The feature of allowing de-novo mutations in the phasing was still experimen-

tal at submission time, and thus disabled for most of our benchmarks. We only enabled for a

set of experiments at the end of this section.

Figure 2.9 shows the SFR, the HR, and the phasing runtime for the PacBio readsets. Exact

algorithm and heuristic are much closer with up to 11% for L = 16 and around 3–5% for L ≥
64. While a deeper coverage benefits the results for up to 15×, we can see some regressions

when increasing the coverage further. For 30×, the lowest solution limit of 16 shows both

higher SFR and HR than for 15×, while larger limits of 256 or higher see a decline in errors.

Going to 60× and 90×, the larger solution limits also fall behind in accuracy, until L = 4096

is the only configuration to still have an advantage over downsampling the reads to 15× and

to slightly beat the exact algorithm on its highest tested coverage. We keep this observation in

mind for now and further investigate this in the discussion.

The runtime follows the same pattern as for the single-sample experiments with the exact

algorithm scaling exponentially with coverage, while the heuristic runtime mainly scales with

the used solution limit. Except for the lowest coverage setting, using L = 4096 is always

slower than running the exact algorithm with coverage 15× by a substantial margin. Using

a coverage of 30×, the default setting of L = 256 offers a similar performance as the exact

algorithm on coverage 10× with a 30% lower runtime, while the higher parameter L = 1024

matches the exact algorithm on coverage 15× with a 50% lower runtime. We also planned to

run the heuristic without downsampling again but the heuristic was not able to finish any of

the tested configurations within the time limit of 24 hours. The reason for that are vast peaks in

local coverage, on which the heuristic gets stuck if no downsampling is applied. We previously

claimed an average coverage of 48× for the PacBio reads of HG002 but the median coverage

is noticeably lower with just 37×. On the other end of the spectrum, the 99th percentile

reaches 64× and the maximum even higher than 14,000×. In practice, it is advisable to limit

the coverage to a reasonably high value, as the mentioned peaks are the result of mapping

artifacts and should therefore be excluded from the phasing. Given the observed regressions,

we did not expect to gain any more insights for testing coverage thresholds beyond 90× and

therefore omitted further tests in this direction.

We repeated these experiments for the HiFi reads but omit a detailed description here, as

the findings are the same as for the PacBio reads. The corresponding plots can be found in

2.3. EXPERIMENTS 45

(a) Switch flip rate

(b) Hamming rate

(c) Runtime (phasing algorithm only)

Figure 2.9: Evaluation of PedMEC heuristic (PacBio). These plots show the SFR (a), the HR (b), and the runtime
(c) for the exact algorithm and the heuristic on the PacBio sequencing data. In contrast to the previous figures,
all algorithms used the PedMEC model and the reads from all three samples. The plots follow the same format as
described in Figure 2.4.

46 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

(a) Switch flip rate

(b) Hamming rate

Figure 2.10: Evaluation of PedMEC heuristic with de-novo mutations. Analogously to Figure 2.9, these plots
show the SFR (a) the HR (b) for the trio-phasing on the PacBio data but the heuristic was allowed here to add
de-novo mutations to its phasing.

Supplementary Figure A.3. The peak memory consumption for trio-phasing on PacBio reads

is given in Supplementary Figure A.2.

In Section 2.2.2 we explained that the exact algorithm does not allow for de-novo mu-

tations in its output, while our heuristic can optionally do so if this contributes to a lower

PedMEC score. We re-ran the trio-phasing on the PacBio reads with de-novo mutation output

enabled to evaluate the effect of this additional option. We see from Figure 2.10 that the SFR

indeed slightly decreases and now scales much more consistently with higher coverages. The

same holds for HR on coverages up to 15× but beyond that the error rates drastically shoot up

and even surpass those from the test without de-novo mutations allowed. In the introductory

example for the error metrics (see Figure 1.6) we pointed out that few switch errors in critical

places can lead to disproportionally high Hamming rates, which might be the case here for

the values above 20%. Since the detection of de-novo mutations is still a highly experimental

feature, we did not investigate any further in that matter; we rather wanted to show that this

feature can positively impact the phasing quality in certain cases.

2.4. DISCUSSION 47

2.4 Discussion

Our goal in this chapter was to present a heuristic for the exact wMEC and PedMEC solver

used in the tool WHATSHAP. The heuristic should be able to process deeper read coverages,

while providing near-optimal solutions and, ultimately, outperform the exact model through

the use of more data. Our experiments show that the heuristic finds reasonable phasings for

both single-sample and trio phasing, which are close to the optimally computed solutions in

terms of SFR and HR. For the single-sample instance on the PacBio reads, the heuristic scales

very well with higher coverage and slightly outperforms the exact algorithm. The heuristic is

very fast for the single-sample instances because it already reaches its peak accuracy with the

lowest tested solution limit of 16. For the trio-phasing instances, the solution space becomes

larger and the heuristic needs benefits from 256 or 1024 memorized solutions, especially for

higher coverages. The runtime is still competitive with the exact algorithm when comparing

settings with equally good phasing quality.

2.4.1 Limitations and issues

However, we also discovered a couple of issues that would need to be resolved to offer con-

sistent behavior and noticeable benefit over the existing solution. First, the heuristic does not

find equally good solutions for very low coverages, even when the solution limit is sufficient

to store all bipartitions for each column. When describing the functionality of our heuristic,

we claimed that our DP should result in the same phasing (or one with the same wMEC score)

if all solutions can be memorized. However, this is not reflected in the experiments. We al-

ready pointed out that the heuristic reproducibly reports more phased variants than the exact

algorithm and therefore suffers from more errors if these additional variants cannot be phased

confidently with the given data.

The second issue is the performance regression for higher coverages on the PedMEC model.

While the regular wMEC model experiences an uplift in phasing quality with more provided

coverage, the opposite holds true for PedMEC, unless the solution limit is set to very high

values. The fact that this issue only occurred for multiple samples indicates that homozygous

regions on some of the samples could be the problem here. We illustrated in Section 2.2.2

that if a read only covers homozygous variants, it can always be inserted into either of the

two partitions when extending an existing solution. This results in a duplication of solutions

and finally in a loss of diversity among the L memorized solutions. The higher the coverage,

the more reads are enclosed in a single homozygous stretch and the more solution diversity

is lost through excessive solution duplication. Increasing the solution limit compensates this

problem to some degree and we can indeed observe that larger solution limits suffered less

from an increase in coverage.

Another observation we should be critical of is the overall scaling with the solution size

parameter. For the two single-sampled datasets, a solution limit of 16 yields the same phasing

quality as a limit of 1024. This could mean that the global optimal solution is always very close

48 CHAPTER 2. TRIO-PHASING ON HUMAN DATA

to the local optimal solution in every column and the problem can indeed be solved with such

little resources. Since the heuristic is slightly behind the exact algorithm regarding the quality

metrics, an alternative explanation could be an ineffective use of larger solution limits, such

that the globally optimal solution is often times lost even when memorizing many solutions.

The final issue concerns the acquired test data. Although we ensured that the ground

truth phasing is valid, the overall error rates of both phasing methods ended up surprisingly

high. In the work of Garg et al., the exact PedMEC reached switch flip rates of less than

1% for a coverage of 15×, which is closer to our expectations – especially when using the

high-quality HiFi reads. Both algorithms show consistent behavior, i.e. the quality becomes

better with higher read coverages and solution limits (except for the aforementioned issues in

the heuristic). We were unable to clarify where these discrepancies to tests from Garg et al.

originate from.

2.4.2 Future work

The described issues regarding the experimental results of the heuristic should be resolved

in future releases, for which additional testing and engineering are required. In addition to

the solving capabilities of the wMEC and PedMEC models, the inclusion of de-novo mutations

should receive more attention in the future. We demonstrated that the option to insert such

mutations into the computed phasing can lead to an uplift in phasing quality for the PacBio

reads of the tested trio. However, we did not discuss the amount of inserted mutations and

how plausible it is, given that such mutations only rarely occur in reality. We should also men-

tion that WHATSHAP filters out all variants with Mendelian conflicts beforehand, i.e. variants

on which the child genotype cannot be produced from the parental genotypes through the

Mendelian inheritance rules with any of the four possible transmissions. This is a useful filter,

as the exact PedMEC solver cannot deal with de-novo variants. For the heuristic, these vari-

ants do not need to be filtered but could rather provide more input data. As a summary, the

feature of handling de-novo mutations is still in an experimental state and could be improved

and validated in a follow-up project.

Chapter 3

WhatsHap Polyphase

In this chapter, we introduce WHATSHAP POLYPHASE, an algorithm we developed to solve the

polyploid phasing problem. To put it into context, we will first discuss the differences between

diploid and polyploid phasing, what methods have been proposed in the past, and which

caveats should be considered when dealing with polyploid genomes (Section 3.1). The main

part of this chapter will explain the underlying steps and models used in our algorithm. This

part is divided into three sections that reflect the structure of the algorithm: read clustering

(Section 3.2), haplotype threading (Section 3.3), and refinement (Section 3.4). Finally, we will

present experimental results, in which we benchmarked our new algorithm against existing

methods (Section 3.5).

This work is based on [14], which was published in Genome Biology. I share first authorship with Jana

Ebler and Rebecca Serra Mari. My main contribution to this work was the development of the clustering

stage (presented in Section 3.2). The majority of this chapter was rewritten for this thesis and some aspects

of the algorithm extended compared to the original work. Sections that re-use passages or content from

[14] are marked.

3.1 Polyploid phasing

For the design of a polyploid phasing model, it is crucial to understand the differences between

diploid and polyploid genomes and their implications for the phasing problem. The immedi-

ate observation is the higher number of homologous haplotypes. This greatly increases the

solution space, and thus makes haplotype reconstruction considerably harder. Additionally,

polyploidy raises new problems: allele dosage, sequence multiplicity (or collapsed regions),

and unresolvable connections, which we further explain in the next section. Because the na-

ture of these issues is novel compared to diploid phasing, they require further methodological

engineering.

49

50 CHAPTER 3. WHATSHAP POLYPHASE

3.1.1 Caveats of polyploid in comparison to diploid phasing

This section uses ideas already presented in [14].

Allele dosage involves the presence of more possible genotypes per variant. A common as-

sumption in diploid phasing is that all phasable variants are heterozygous since they can

usually be well discriminated from homozygous ones during variant calling. It immediately

follows that the genotype 0/1 is assumed by all (correctly called) phased variants. By con-

trast, there are several levels of heterozygosity in polyploid genomes because not only the

presence of an alternative allele has to be determined, but also its dosage, i.e. the number of

occurrences on the sequenced genome. In a tetraploid genome, for instance, the genotypes

0/0/0/1, 0/0/1/1, and 0/1/1/1 are all heterozygous but imply different haplotype configura-

tions. While the detection of correct allele dosages has to be done outside the phasing routine,

we have to anticipate that the input genotypes for our methods might contain dosage shifts

and should not trust them to the same degree as in the diploid case.

The second issue is the occurrence of high local similarity between different haplotypes,

which we call collapsed regions. The term describes the phenomenon of two or more haplotypes

sharing (almost) the same alleles over a long interval of variants. In diploid genomes, this

would simply result in a region without heterozygosity, sometimes called variation deserts.

With more than two haplotypes being present, however, it is possible to have two (or more)

duplicated sequences while still retaining heterozygosity through the unaffected haplotypes.

This can be problematic for MEC-based phasing models, which seek to partition all reads into

p partitions in a parsimonious way without respecting that read coverage should be evenly

split among the partitions. Inside a collapsed region, reads from multiple affected haplotypes

become indistinguishable and could be assigned to the same partition in the MEC model.

Since every read has to be assigned to one partition, the MEC model might be inclined to use

the vacant partitions over the collapsed regions to “dispose” of noisy reads that did not fit

into other partitions with little correction cost. As a result, only one affected haplotype in a

collapsed region is reconstructed by the shared sequence, while the other haplotype(s) could be

potentially reconstructed arbitrarily. Figure 3.1 illustrates such a case for a tetraploid example,

where an optimal MEC solution squashes reads from two haplotypes into a single partition.

We conclude that a suitable model for polyploid phasing should encourage a uniform coverage

distribution among the haplotypes to detect locally duplicated sequences and correctly assign

them.

The final issue is a consequence of collapsed regions: If a collapsed region is substantially

longer than the average read, it creates ambiguity when joining the phased haplotypes on the

left and right sides of the region. Even if we can perfectly phase every variant outside of the

collapsed region, we could be left without reads spanning the entire region, and thus be unable

to uniquely identify the correct way of joining the haplotype pieces. Figure 3.2 illustrates the

issue for a triploid case. The magenta and blue sequences are identical on the four central

3.1. POLYPLOID PHASING 51

Figure 3.1: Example of uneven MEC partitions. Given are four haplotypes (indicated by color) with the magenta
and orange ones being mostly identical. Reads are sampled with a few errors (red rectangles), resulting in a MEC
score of 4 for the true read partitioning. Ignoring the expected uniform coverage distribution, the optimal MEC
solution has only one error by collapsing the magenta and orange partitions into one and collecting the remaining
erroneous reads into the vacant cluster. The result only contains one copy of the two identical haplotypes.

Figure 3.2: Example of an unresolvable region. Reads are sampled from three haplotypes (indicated by different
colors) without errors. There exist two different phasings, into which all reads align perfectly and with uniform
coverage. The four variants in the middle form a collapsed region of the magenta and blue haplotype and – without
reads bridging the region – the phasing becomes ambiguous.

positions but no magenta or blue read is long enough the cover alleles on both left and right

sides of the duplicated region. Even with error-free reads, we end up with two different but

equally good options to join the magenta and blue haplotype pieces outside of the affected

region. The correct strategy would be to split the phasing at the collapsed region (e.g. at the

end) and report the pieces on the left and right as separate phasing blocks, even though all

variants in this example are connected by reads. To our knowledge, however, most if not all

existing phasing methods do not explicitly treat collapsed regions as potential cut positions.

3.1.2 Overview of existing methods

The review of existing methods up until 2019 was taken from [14]. I extended this section with more recent

algorithms.

Over the last years, several polyploid phasing methods have already been proposed: In 2013,

Aguiar et al. were the first to introduce a theoretical framework for polyploid haplotype as-

sembly with the model HapCompass [77, 78], which is based on spanning trees and uses the

52 CHAPTER 3. WHATSHAP POLYPHASE

Minimum Weighted Edge Removal (MWER) criterion. In 2014, Berger et al. introduced Hap-

Tree [60], a maximum likelihood approach to discover the most likely haplotypes given aligned

read data. To address the problem of computational complexity, HapTree assembles the most

likely haplotypes for a small set of SNP positions first and then iteratively extends them while

only keeping the most likely sub-solutions in each step. HapTree was shown to outperform

HapCompass in terms of both accuracy and runtime [59, 60]. Together with SDhaP [79], a

semi-definite programming approach based on an approximate MEC criterion, HapCompass

and HapTree were evaluated and compared to each other in a simulation study conducted

by Motazedi et al. [59] in 2017. The study, where simulated data of the tetraploid potato

genome as model organism was used, revealed that - out of the compared methods - HapTree

provided the best precision. However, it also had the highest time and memory requirements

and often suffered from low recall. SDhaP showed low performance in regions of locally sim-

ilar haplotypes, which is probably related to the underlying MEC model. For ploidies above

6, HapCompass was the only implementation to remain stable, although it showed an overall

poor performance. As a result, none of the methods were deemed to be applicable for practical

use due to computational inefficiency that prohibits scaling to large genomic regions as well

as frequent failures and low overall accuracy [59].

H-PoP [40] was shown to outperform these previous approaches both in accuracy and

runtime and – since then – has been considered as the state-of-the-art method. It consists

of a model called Polyploid Balanced Optimal Partition (PBOP), which creates p partitions of

sequence reads to minimize two measures: (i) Reads from one partition are supposed to be

equal on as many variant loci as possible, whereas (ii) reads from different partitions should

contain as many differences as possible. For p = 2, this equals the diploid MEC model, and

can thus be seen as a polyploid generalization of MEC. When genotype information is present,

these constraints are added to the model. The appropriate extension is then referred to as

H-POP-G.

Further advances have not proven to be useful for whole-genome single-individual haplo-

typing, like PolyHarsh [80], a Gibbs sampling method that is also based on the MEC model

and has only been shown to work on very small artificial examples, and SDA [81]. The lat-

ter provides two algorithms based on a discrete matrix completion approach and correlation

clustering, respectively, and is used to resolve segmental duplications of higher ploidy during

genome assembly. However, it is not designed to scale to the whole genome.

Other matrix-based models are SCGD-hap [82], a structurally constrained gradient descent

approach, and AltHap [83], which builds on SCGD-hap and aims to solve an iterative sparse

tensor decomposition problem. The latter yielded results similar to those of H-PoP but also

relies on MEC.

Two additional tools have been proposed that do not work well with long-read data. The

work by Siragusa et al. [84] is based on minimum fragment removal which would lead to the

removal of too much data considering the usually high error rates in long reads. Ranbow [85]

uses allele co-occurrences on small sets of sampled positions in overlapping short reads. This

3.1. POLYPLOID PHASING 53

approach is susceptible to high error rates found in long reads as well because it seeds the

phasing on local partitions of reads based on their allele combination on the small position

samples. Thus, a large portion of the reads are clustered incorrectly and a lot of overlapping

position samples are required to correct these mistakes.

A different approach to infer haplotypes is pursued by PolyCluster [86]: The idea is to

convert the readset into a graph, where each node represents one read and the edge weights

between two nodes are derived from the similarities of the associated read pairs. Similarly to

MEC, the goal is to find a p-partition of the nodes such that a certain objective is optimized. As

a metric, the authors propose the Minimum Fragment Disagreement (MFD), which maximizes

the intra-cluster similarity and minimizes the inter-cluster similarity in a single function. They

point out that their optimization problem is similar to correlation clustering [87] and cluster

editing [88, 89] with a fixed number of clusters, both of which are NP-hard problems [87,

89, 90]. Besides an integer linear program, they also developed an approximation algorithm

that first computes small local clusters to assign all nodes to a cluster, and then merges these

clusters until the target number p is reached.

In 2020, we published the first version of our polyploid phasing tool, called WHATSHAP

POLYPHASE [14]. Like PolyCluster, it uses local read similarity to partition a read graph, but also

contains consequent steps to obtain the final haplotypes. We refer to Section 3.1.3 here, where

we will elaborate further on the design choices of our method. The concept of read graphs

is also adapted in FLOPP [15], in which Shaw and Yu present a different clustering objective

and statistical models for similarity estimation between reads to refine local clusterings for a

more even coverage distribution. This circumvents the issues of the MEC model when dealing

with collapsed regions. The objective for their algorithm FLOPP is called min-sum max tree

partition, seeking a p-partition of the nodes, such that all partitions are connected and the

total weight of all partitions’ maximum-weighted minimum spanning trees is minimized. In

their experiments, the authors show that FLOPP outperformed H-POP-G and the first version

of WHATSHAP POLYPHASE. The latter achieved surprisingly bad results, which motivated us to

continue the development of our method and improve its consistency over a wider range of

input data. We will further discuss the findings of Shaw and Yu in Section 3.5.

Two other recent methods utilize both short and long reads in their computations to com-

bine the strengths of both technologies: nPhase [91] and HAT [92]. The former aligns both

read sets to a common reference and uses the short reads to identify possible variant sites. This

step can be omitted if one has no short read data available but an existing variant call with

genotype information instead. The long reads are then clustered in an agglomerative manner:

The two most similar reads are merged at a time to form a new longer read with the consensus

of the underlying reads as its new allele sequence. This process terminates when the similarity

of the next merge falls below a certain threshold to avoid all reads always ending up in one

large cluster. A notable property of this method is that it is ploidy-agnostic, i.e. no step requires

knowledge of the target ploidy. The second tool performs a seeding step on the short reads

54 CHAPTER 3. WHATSHAP POLYPHASE

resulting in very short but accurate phasing blocks. The long reads are consequently threaded

through these blocks to identify the best linkage between them.

Saada et al. [93] assembled an overview and classification of polyploid phasing methods.

They defined four categories of reference-based algorithms: (i) population inference, (ii) ob-

jective function optimization, (iii) graph partitioning, and (iv) cluster building. The second

category covers the MEC-based methods described above, while the third category is repre-

sented by PolyCluster, FLOPP, and WHATSHAP POLYPHASE. HAT and nPhase fall into the last

category, as they compute partitions without utilizing global graph models.

To our knowledge, none of the previously existing methods give reliable information about

the accuracy of the resulting haplotypes since they are either output in one consecutive se-

quence or in very long blocks. In particular, this means that there is no information about

the likely positions of switch errors. Thus, large regions of the resulting haplotypes might be

incorrect, but it is not possible to identify these regions, which makes the results very difficult

to use in practice.

3.1.3 Outline of WHATSHAP POLYPHASE

The observation that collapsed regions are an exclusive phenomenon in polyploid genomes

motivated us to design a model that explicitly allows shared sequences between haplotypes.

We decided to depart from the commonly used MEC model and moved towards a graph clus-

tering model, similar to PolyCluster [86]. The full algorithm itself evolved over time and the

most recent version deviates from the original algorithm described in [14]. This overview will

focus on the latest state of the algorithm as it is implemented in the WhatsHap software pack-

age. While presenting the individual steps, we will point out major differences to the original

algorithm as well as the motivations behind them.

WHATSHAP POLYPHASE is organized as a pipeline that consists of three consecutive stages:

the clustering stage, the threading stage, and the reordering stage. As described in Section 1.4,

the input for the phasing problem is an allele matrix A, a ploidy p, and genotypes G1, . . . Gm.

The output is primarily the p sequences that encode the taken alleles for each haplotype, but

as pointed out in Section 1.4.1, the secondary output is a set of cut positions that divide the

phasing into blocks. Ideally, there would be only one block for the entire input region but, in

practice, the input reads usually do not allow for a contiguous phasing over long distances.

Especially the before-mentioned collapsed regions are a great source of uncertainty in the

polyploid case.

Figure 3.3 illustrates the different steps of our method: From the input allele matrix, we

create a graph with one node for each read and a weighted edge for each overlap between

two reads. The weight depends on the similarity of the two associated reads to encode how

likely these reads should be assigned to the same haplotype. Using the cluster editing model

[88], we cluster all reads according to their supposed haplotype origin to form “puzzle pieces”

that are assembled in the threading stage (Section 3.2). Given an input ploidy p, we obtain

3.1. POLYPLOID PHASING 55

Figure 3.3: Overview of WHATSHAP POLYPHASE. Reads are represented as rows of an input allele matrix and
pass three stages. Stage I: Statistical scoring of each read pair classifies them into belonging to the same (blue
pair) or different haplotypes (magenta pair). Associated reads are indicated by drawn edges, while dissociation
and absence of overlap are both indicated by missing edges for better visual distinction. Stage II: Clusters (colored
shapes) are aligned to their spanned genomic regions and receive a position-wise height that is proportional to their
relative coverage among all clusters. Computed threads (three black lines with different dash patterns) represent
mosaics of clusters to explain cluster location and coverage. Cluster switches give hints to possible cut positions
(two vertical dashed lines). Stage III: Resolves alleles inside collapsed regions by creating sub-instances that are
solved recursively. Read information from the input facilitates the reordering of haplotype blocks between the cut
positions.

p paths (called threads) through the computed read clusters, which induce p allele sequences

when adding the position-wise consensus of each cluster (Section 3.3). In the reordering stage,

we resolve genomic variation inside collapsed regions (if present) by applying our algorithm

recursively on just the affected region and corresponding reads. After several refinement steps,

the p allele sequences are cut alongside any uncertain position and reported as final output

56 CHAPTER 3. WHATSHAP POLYPHASE

(Section 3.4). Throughout the following sections, we will describe each of the three stages in

detail.

3.2 Read clustering

The clustering idea is based on [14]. The read scoring method is new and differs from the previously

published one. The methods are presented in more detail here compared to [14].

The first step in our phasing pipeline is to compute a clustering of all reads intending to identify

groups of reads that likely originate from the same haplotype. Each of the p original haplotypes

carries some characteristic genetic variation that is passed on to the sampled reads, allowing

us to estimate the likelihood of two reads being sampled from the same haplotype or not.

Ideally, the read set is separable into p partitions that correspond to the original haplotypes.

This rationale of computing a p-partition based on pairwise comparisons between reads

has been quite common among other polyploid phasers in the past few years [15, 86, 91].

However, the presence of collapsed regions impedes the success of finding a global p-partition,

as we have already seen in the example from Figure 3.2. We believe that a dynamic number

of clusters is more suited to capture the nature of polyploid genomes for two reasons: First,

reads from multiple haplotypes can be clustered together inside a collapsed region; this is a

more accurate representation than forcing those reads to be split because of a fixed target

cluster count. Second, if two clusters of reads are dissimilar from each other, we should retain

this information and not forcibly join the clusters to achieve a fixed cluster count. Instead, we

perform a separate step, namely the threading stage, that computes haplotype sequences based

on read clusters. This separation allows us to identify unresolvable sites in collapsed regions

and insert appropriate cut positions.

3.2.1 Cluster editing

We chose cluster editing as the underlying clustering model [88, 89, 94]. It takes an undirected

graph G = (V, E) as input and computes a minimum-cost set of edge modifications to transform

G into a clique graph. That is all connected components in the transformed graph are fully

connected subgraphs and represent the clusters.

More formally, let V be a set of nodes and
�V

2

�
be the set of node pairs over V . We denote

node pairs {u, v} as uv with uv = vu. Let further c :
�V

2

�→ R be a function that assigns a weight

to each node pair and let G = (V, E) be an undirected graph with E = {uv ∈ �V
2

�
: c(uv) > 0}

containing all node pairs with a positive weight, the so-called existing edges. The cost of

removing an existing edge from G equals its weight. On the contrary, all node pairs
�V

2

�\E form

the missing edges, where each missing edge uv can be inserted into G for cost −c(uv) = |c(uv)|.
Note that we treat edges with weight 0 – so-called zero-edges – as missing edges in G that can

be inserted for free if needed. We will use the edges and node pairs as interchangeable terms.

3.2. READ CLUSTERING 57

Figure 3.4: Example for cluster editing. Left: Input graph for cluster editing. Present edges with deletion cost
are drawn in black and missing edges with insertion cost are drawn in red. The gray edge is a zero-edge. Right:
Two possible solutions for cluster editing. Dashed lines indicate edge modifications with the numbers showing the
actual paid cost for each change. The bottom graph is the optimal transformation with a cost of 9, while the top
graph is suboptimal with a cost of 15.

A node triple u, v, w ∈ V is called a conflict triple if edge transitivity between these nodes

does not hold, i.e. uv, vw ∈ E but uw 6∈ E. G is called a clique graph, if it does not contain any

conflict triples. This definition is equivalent to the more intuitive description of G consisting

of only disjoint cliques: For any node triple u, v, w, the nodes inside the same clique are always

fully connected, while nodes from different cliques are never connected, effectively forbidding

the conflicting structure uv, vw ∈ E but uw 6∈ E. Cluster editing can finally be described as the

following combinatorial optimization problem:

Problem 5 (Cluster editing). Given an undirected graph G = (V, E) and a weight function

c :
�V

2

� → R, find a minimum-cost transformation of G into a clique graph G′ = (V, E′) by

deleting edges from E or inserting edges not in E. The transformation cost c(G, G′) is defined as

the sum of the absolute weights of all modified edges, i.e.

c(G, G′) =
∑

e∈E\E′
c(e)︸ ︷︷ ︸

deletion cost

− ∑
e∈E′\E

c(e)︸ ︷︷ ︸
insertion cost

. (3.1)

An example of a cluster editing instance is given in Figure 3.4. It shows a graph with five

nodes and ten potential edges: six existing edges, three missing edges, and one zero-edge. The

latter can act as an existing or missing edge without causing modification costs. The conflict

triples abd, abe, ade, bcd, bce, bde and cde have to be resolved. The example gives two

possible solutions. The first inserts all missing edges to form a single clique for modification

cost 15, while the second solution splits the graph into two cliques for a total cost of 9.

In order to apply the clustering model to the given allele matrix (and thus clustering the

reads therein), we first have to transform the matrix into a suitable graph with a weight func-

tion over all pairs of nodes. For the transformation, edge weights have to correlate with haplo-

58 CHAPTER 3. WHATSHAP POLYPHASE

type co-occurrence of their respective endpoints, i.e., a positive weight for reads rather belong-

ing to the same haplotypes and a negative weight for the opposite case. For two reads with

sufficiently many common variants, their allele similarity gives evidence for either of these two

cases. As a result, we expect the graph to form almost-cliques of positively connected nodes

(i.e. nodes connected by actual edges or edges with positive weight) for those reads belonging

to the same haplotype, while these almost-cliques themselves are mostly disconnected from

each other (or have negative edge weights between them). Since we cannot expect clusters to

be perfectly separated due to sequencing errors, mapping errors, or local similarities between

different haplotypes, we apply the weighted cluster editing model to find the cheapest way of

resolving all conflicts in terms of modification cost.

3.2.2 Pairwise scoring

The goal of defining a proper cost function for cluster editing is not only to decide whether two

reads should be clustered together but also to determine the strength of the evidence. In [14],

the two key elements of the model are the allele error rate, which is the probability of wrongly

calling a single allele for a single read, and the dissimilarities between the original haplotypes.

First, we compute a sorted list of all dissimilarities between read pairs, i.e. the fraction of

different alleles between two reads in relation to the total number of common variants (not

counting the gap positions for any of the two reads). Second, we use two observations: (i)

All haplotypes are equally abundant among the reads, which means that 1
p of all read pairs

are expected to contain two reads of the same haplotype origin, and (ii) the dissimilarity

of read pairs belonging to the same haplotype is expected to be significantly lower than for

those belonging to different haplotypes because the latter are affected by differences between

haplotypes.

We then assume that the lowest 1
p dissimilarities from the sorted list correspond to read

pairs with both reads stemming from the same haplotype. We use the average dissimilarity

dsame over this group as an estimator of the allele error rate. In reverse, the upper p−1
p -fraction

of dissimilarities represents the opposite case of different haplotype origins within the read

pairs. These dissimilarities are a combination of the allele error rate and the average dissimi-

larity between different haplotypes. We call the average over these dissimilarities ddiff.

To determine the edge weight between two reads Ri and R j we first count the number of

shared variables and the number of different alleles – which we already did to compute all the

dissimilarity values. After that, we compute the likelihoods of observing these counts when

assuming dsame and ddiff as the probability of position-wise allele disagreement. Using two

binomial distributions with the respective probabilities as parameters, we obtain one likelihood

for the read pair belonging to the same haplotype and one likelihood for the opposite case.

Finally, the weight is defined as the logarithm over the first likelihood divided by the second

one. A positive weight then means that the common haplotype is more likely, while a negative

weight is the result of different haplotypes being more likely.

3.2. READ CLUSTERING 59

A weakness of this model is the assumption that all
�V

2

�
pairs of haplotypes exhibit the

same degree of dissimilarity, which is rather unlikely. In fact, it would have been more ac-

curate to estimate dissimilarities for all pairs of haplotypes and interpret the list of read pair

dissimilarities as an aggregation over
�V

2

�
distributions.

In an attempt to improve the phasing quality of the method in [14], we present a more

rigorous approach following Bayesian statistics: Let Ri , R j ∈R and let h : R→ {1, . . . , p} be a

function that maps a read to its true haplotype. We define the score s(Ri , R j) of Ri and R j as

s(Ri , R j) := log

�
P
�
h(Ri) = h(R j) | Ri , R j

�
P
�
h(Ri) 6= h(R j) | Ri , R j

�� . (3.2)

For each hypothesis (that Ri and R j are from the same or different haplotypes) we want to

compute the likelihood given the read sequences themselves. If Ri and R j are more likely to

share a haplotype, the likelihood ratio will be greater than 1 and, through the logarithm, result

in a positive score. Analogously, if Ri and R j rather belong to different haplotypes, the ratio

will be less than 1 and lead to a negative score. A score of zero would be interpreted as both

hypotheses having the same likelihood, and thus total insecurity about the reads’ relationship.

This is in line with the cluster editing model, where positive weights describe costs to remove

an existing edge and negative values describe costs to insert a missing edge. A weight of zero

therefore allows us to interpret an edge both ways without any costs.

Next, we use the Bayesian theorem to compute the likelihood of the reads given their

haplotype origin:

P
�
h(Ri) = h(R j) | Ri , R j

�
P
�
h(Ri) 6= h(R j) | Ri , R j

� = P(Ri ,R j |h(Ri)=h(R j))·P(h(Ri)=h(R j))
P(Ri ,R j)

P(Ri ,R j |h(Ri) 6=h(R j))·P(h(Ri) 6=h(R j))
P(Ri ,R j)

(3.3)

The prior probabilities P(h(Ri) = h(R j)) and P(h(Ri) 6= h(R j)) do not depend on the reads’

alleles. For a given read, we assume that every haplotype is equally likely to be its origin.

Thus, we derive 1
p and 1− 1

p as prior probabilities and gain

P
�
h(Ri) = h(R j) | Ri , R j

�
P
�
h(Ri) 6= h(R j) | Ri , R j

� = P(Ri , R j | h(Ri) = h(R j))

P(Ri , R j | h(Ri) 6= h(R j))
· p

1− 1
p

. (3.4)

It remains to be shown how to compute the reverse likelihoods P(Ri , R j | h(Ri) = h(R j))

and P(Ri , R j | h(Ri) 6= h(R j)). If given the true haplotypes and an estimate on the allele error

rate (i.e. the probability for a single allele on a single read to be detected wrongly such that

it looks like another allele), we could enumerate all combinations of haplotype origins for

both reads, compute the likelihood to sample each of the reads from the selected haplotypes

(respecting the allele error rate), and aggregate them in a sum.

Since the original haplotypes are not available, however, we would rather have to enu-

merate all possible haplotype configurations (constrained by the given genotypes) and repeat

the procedure for all these configurations. This would be computationally infeasible because

60 CHAPTER 3. WHATSHAP POLYPHASE

a region of length k would have Ω(pk) many possible phasings, given that any heterozygous

genotype allows for at least p different phasings for one variant and we got k independent

variants in our region.

As relaxation of our proposed model, we assume all variants of the overlap region Ov(Ri , R j)

of Ri and R j to be independent, even though this is generally not the case. This allows us to

decompose the reverse likelihood into a product over all variants in Ov(Ri , R j) as shown in

Equations 3.5 to 3.10.

P(Ri , R j | h(Ri) = h(R j)) (3.5)

' ∏
l∈Ov(Ri ,R j)

P(Ri[l], R j[l] | h(Ri) = h(R j)) (3.6)

=
∏

l∈Ov(Ri ,R j)

 ∑
a∈Gl

fa(Gl)
p
· P(Ri[l], R j[l] | Hh(Ri)[l] = Hh(R j)[l] = a)

!
(3.7)

P(Ri , R j | h(Ri) 6= h(R j)) (3.8)

' ∏
l∈Ov(Ri ,R j)

P(Ri[l], R j[l] | h(Ri) 6= h(R j)) (3.9)

=
∏

l∈Ov(Ri ,R j)

 ∑
a,b∈Gl ,a 6=b

fa(Gl) · fb(Gl)
p(p− 1)

· P(Ri[l], R j[l] | Hh(Ri)[l] = a, Hh(R j)[l] = b)

!
(3.10)

Finally, we derive the input graph for cluster editing by taking the read set R as the node

set V and adding edges for any positively-scored read pair, i.e. E := {RiR j | s(Ri , R j) > 0}.
As a cost function, we use the values of the scoring scheme s, i.e., c(Ri , R j) := s(Ri , R j). All

non-overlapping pairs of reads are assigned a score of 0. We interpret these pairs as missing

edges in the graph that can be inserted for no cost. Note that zero-edges are still added to

the modified edge set E′ upon insertion, even if they do not influence the total transformation

cost.

3.2.3 Clustering algorithm

Cluster editing has been shown to be NP-hard in general, even for the unweighted version [88].

In previous publications, there have been several proposals on how to solve this model [94,

95]. These include specifically engineered algorithms as well as Integer Linear Programming

formulations. Additionally, a variety of reduction rules has been developed to shrink down in-

stances without altering their effective solution. Experiments on generated and real instances

have shown that these exact strategies were able to cluster graphs with up to a few thousand

nodes [95, 96]. For clustering an entire chromosome, however, the instance sizes are many

orders of magnitudes higher, ranging from tens of thousands of reads up to millions of reads.

It became clear quite quickly that solving such huge instances to optimality is not feasible.

In fact, even our heuristic approach required a lot of tuning to reach practically acceptable

3.2. READ CLUSTERING 61

runtimes. We therefore abandoned further research on faster exact methods and focused on

scalability to larger instances instead.

The backbone of the final heuristic is a greedy algorithm that selects one edge from the

graph at a time and makes a decision whether the two endpoints should end up on the same

or different clusters. Depending on this decision, the edge is then either taken for or excluded

from the final graph G′. For consistency with the edge selection process, we set the weight of

a taken edge to∞ and call this edge permanent, as it can never be removed from the solution

again. In reverse, we set the weight of an excluded edge to −∞ and call this edge forbidden.

The greedy algorithm proceeds, until all edges in the graph are either permanent or forbidden.

Induced costs for edge selections

As criteria for selecting edges and choosing their role, we introduce induced costs for each edge

uv, stating the immediate cost for the clustering model if uv is made permanent or forbidden.

These costs are called icp(uv) and icf(uv) respectively and were originally defined in [95].

For a node triple u, v and w (short: uvw), the induced cost of adding uv to the solution

depends on whether c(uv) is negative and whether either exactly one out of c(uw) and c(vw)

is negative. If c(uv) is negative, we obviously have to pay for inserting uv. If c(uw) and c(vw)

are both negative or both positive, there is no conflict triple after inserting uv. Otherwise,

we have to either insert the missing edge or remove the present edge (out of uw and vw),

whatever is cheaper. Mathematically, this can be written as:

icpw(uv) =max(0,−c(uv)) +

min(|c(uw)|, |c(vw)|) if c(uw) · c(vw)< 0,

0 otherwise.
(3.11)

The induced costs of excluding uv from the solution functions similarly, but costs arise from

c(uv) being positive and from c(uw) and c(vw) being both positive to form a conflict triple:

icfw(uv) =max(0, c(uv)) +

min(c(uw), c(vw)) if c(uw), c(vw)> 0,

0 otherwise.
(3.12)

The total induced costs for an edge uv is the sum over all triple-based induced costs:

icp(uv) =
∑

w∈V\{u,v}
icpw(uv) (3.13)

icf(uv) =
∑

w∈V\{u,v}
icfw(uv) (3.14)

The runtime for computing all induced costs is O(n3) with n being the number of nodes

because there are n·(n−1)
2 many edges in the graph and we need to consider (n− 2) triangles

for each edge. Since zero-edges can never be part of a conflict triple, the computation time for

62 CHAPTER 3. WHATSHAP POLYPHASE

induced costs can be drastically reduced by only considering neighbors w with c(uw) 6= 0 6=
c(vw), because their contribution to the total induced cost will always be 0. Zero-edges are

used for non-overlapping read pairs, which, considering that reads are very short compared

to a chromosome, comprise the vast majority of read pairs. Let k be the number of non-zero-

edges in G. Each non-zero-edge uv is part of (n− 2) triangles in the graph, so it is considered

at most (n− 2) times for the icpw and icfw computation (in practice even much less because

many of these triangles will contain another zero-edge and thus be omitted). This reduces the

worst-case runtime to O(n · k).
When updating an edge’s weight – say of edge uv – we do not need to re-compute all

induced costs for the graph because every edge is part of at most n−2 triangles, and can thus

only influence the induced cost of at most 2 ·(n−2) other edges (namely edges uw, vw for each

w ∈ V \ {u, v}). Moreover, for each influenced edge uw (or vw) we do not need to repeat the

entire computation for icp(uw) and icf(uw), but only for icpv(uw) and icfv(uw). We subtract

the old contributions of icpv(uw) and icfv(uw) from icp(uw) and icf(uw), respectively, and add

the new contribution based on the updated weight of uv. In total, the update of induced costs

can be done in O(n) time. In practice, it is usually much less, as we do not need to update

triangles with a zero-edge after updating uv’s weight.

Algorithmic outline

For simplicity, we assume that the original graph only contains real-valued weights, i.e., no

“∞” or “−∞”. Thus, all induced costs are real-valued as well. As a first step, we identify the

highest induced cost and the associated edge uv. If icp(uv)> icf(uv), this means that including

uv into the solution would be the most expensive operation, accounting for the immediate cost

only. Therefore, we choose to exclude uv, that is, we make uv forbidden by setting c(uv) to

−∞. Analogously, if icf(uv) > icf(uv), we make uv permanent and set c(uv) to +∞. If both

costs are identical, we exclude uv. This process is repeated until all edges are either permanent

or forbidden.

Our implementation utilizes two heaps to store all icf and icp values, so we can always

extract its maximum in constant time. Once an edge becomes permanent or forbidden, we

remove it from both heaps to not process the same edge a second time. For the initial compu-

tation, we need O(n2 · log n) time for sorting and building the heap. The update cost for a

single edge modification is increased to O(n · log n) to account for sifting operations inside

the heap.

Algorithm 1 summarizes the described procedure. The runtime is dominated by the while-

loop, as it loops over all O(n2) potential edges with a worst-case running time of O(n · log n)

for each iteration and O(n3 · log n) in total. Regarding correctness, we still have to prove that

our heuristic computes a valid clique graph, i.e. all conflict triples in G are eliminated. We will

prove the following lemma by induction and then conclude the validity of the heuristic output:

3.2. READ CLUSTERING 63

Algorithm 1 Cluster editing heuristic

Input: Graph G = (V, E) with cost function c for all edges
Output: G clustered into cliques

compute initial icf and icp values
create heaps over icf and icp values
while heapicf is not empty do

uv← argmax(heapicp)
u′v′← argmax(heapicf)
if icp(uv)≥ icf(u′v′) then

c(uv)←−∞
Remove uv from both heaps

else
c(u′v′)←∞
Remove u′v′ from both heaps

end if
update induced costs

end while
report connected components as clusters

Lemma 1. At the beginning of each while-loop iteration of Algorithm 1, there exists no node triple

u, v, w, such that uv and vw are permanent and uw is forbidden. That means that there is no

conflict triple induced by already-processed edges.

For a direct proof of this lemma, we need some auxiliary statements first. Let C1, . . . , Cq ⊆ V

be the connected components of G induced by only the permanent edges, and let C(u) be

the connected component that contains node u. For the first iteration, each node is its own

component and larger components are formed once the algorithm inserts permanent edges.

We will first show that the algorithm prioritizes the completion of connected components into

cliques of permanent edges.

Lemma 2. Let u, v ∈ V with C(u) 6= C(v) and uv being unprocessed. If the algorithm makes

uv permanent in the next iteration (i.e. C(u) and C(v) are merged) and all edges within C(u)

and C(v) already are permanent, the algorithm will consequently make all node pairs wx with

w ∈ C(u) and x ∈ C(v) permanent as well. The merged component C(u)∪ C(v) will thus form a

clique of permanent edges.

Proof. Since the algorithm decided to make uv permanent, we know that icf(uv) > icp(uv).

From C(u) 6= C(v), we conclude that icf(uv) <∞ because this could only happen if u and v

had a common neighbor w with c(uw) = c(vw) =∞, contradicting the prerequisite.

Let Eu = {uw ∈ {u}×(C(v) \ {v})}. No node pair uw ∈ Eu can be forbidden because with vw

being permanent the induced cost icp(uv) would be infinite in such a case – a contradiction

to the algorithm’s choice. After uv becomes permanent, the induced cost icf(uw) becomes

infinite, resulting in the algorithm making all node pairs in Eu permanent as an immediate

reaction. The same holds for the symmetric set Ev = {wv ∈ (C(u) \ {u}) × {v}}. Thus, all

potential edges incident to uv become permanent.

64 CHAPTER 3. WHATSHAP POLYPHASE

Let Er = {wx ∈ (C(u) \ {u})×(C(v) \ {v})} be the remaining node pairs between C(u) and

C(v). For every wx ∈ Er the node pairs uw and ux are already permanent. Thus, the induced

cost icf(wx) would be infinite and the algorithm will consequently set all node pairs from Euv

to permanent as well in the following iterations. As a result, all edges between C(u) and C(v)

become permanent after uv such that C(u)∩ C(v) forms a clique of permanent edges.

Similarly, the algorithm consequently forbids all edges between two connected components

Ci , C j if one edge between Ci and C j is set to forbidden.

Lemma 3. Let u, v ∈ V with C(u) 6= C(v) and uv being unprocessed. If the algorithm makes uv

forbidden in the next iteration, it will forbid all node pairs wx with w ∈ C(u), x ∈ C(v).

Proof. Using Lemma 2, we know that C(u) and C(v) form cliques of permanent edges because

whenever two components are permanently connected, the algorithm immediately adds all

missing permanent edges to restore transitivity. We use a similar technique as for Lemma 2:

Let Eu = {uw ∈ {u}× (C(v) \ {v})}. After uv becomes forbidden, the induced costs icp(uw) for

every uw ∈ Eu becomes infinite because vw already is permanent. Therefore, the algorithm

will immediately forbid all node pairs from Eu. Following the same pattern as the proof for

Lemma 2, all node pairs from Ev = {wv ∈ (C(u) \ {u})× {v}} and Er = {wx ∈ (C(u) \ {u})×
(C(v) \ {v})} become forbidden as well in the following iterations, concluding the proof.

Using Lemma 2 and 3, we can finally prove Lemma 1: Starting without permanent or

forbidden edges with all nodes in their own connected component, the algorithm selects one

edge, leading to either the situation in Lemma 2 (permanent edge) or the one in Lemma 3

(forbidden edge). Separating or connecting two components does not introduce new conflict

triples. With the algorithm immediately restoring transitivity concerning permanent or forbid-

den edges, there can never be a situation where a conflict triple among permanent or forbidden

edges is formed. In summary, Algorithm 1 computes a consistent clustering, although without

quality guarantees. We denote the clustering as C and the clusters as C1, . . . , Cq.

3.2.4 Cluster refinement

The presented cluster refinement was part of the old WHATSHAP POLYPHASE algorithm presented in [14],

but this step was not explained there. I added a description and illustration of how the refinement works.

The new version of WHATSHAP POLYPHASE performs a single pass of Algorithm 1 to obtain a

read clustering. The old version, however, uses multiple passes to refine the results from this

stage. We will briefly sketch this refinement step because it will be relevant for the performance

analysis of the old and new versions.

One reason to allow an arbitrary cluster count was to collect reads of multiple haplotypes

in one cluster within a collapsed region. However, the haplotype sequences are not necessarily

3.2. READ CLUSTERING 65

Figure 3.5: Cluster refinement. The five sequences correspond to a cluster of five reads with two variants showing
significant allele disagreement. For both variants, the spanning reads can be split into two partitions (blue and
magenta). The graph below the sequences represents the read subgraph for just these five reads. Initially, all reads
were connected by positive weights (straight black lines), but alongside the detected allele splits, subsets of nodes
are separated from each other by defining the weight as forbidden (dashed red lines).

identical within such a region but might contain very few differences, which allows us to split

a cluster by haplotype origin after the cluster editing model was solved. Figure 3.5 shows an

example of a read cluster containing reads from two different haplotypes. This is indicated by

two variants with an allele split of about 1:1 within the cluster. For each of both variants, we

can split a subset of the reads by their supported allele, resulting in two partitions (blue and

magenta) each.

The idea of the cluster refinement is to scan each cluster for variants with a significant

allele disagreement, i.e. a p-value of less than 0.02 for the hypothesis that the disagreement

was caused by random allele errors, assuming a fixed allele error rate of 0.05. For every

selected variant, we split the spanning reads into two partitions and modify the original read

graph G such that the two partitions are fully disconnected by forbidden edges (weight set

to −∞). Finally, we rerun Algorithm 1 with the updated node pair weights, until no further

variants with significant allele disagreement are found or until a certain number of iterations

(default: 5) has been executed.

In every pass, the algorithm is forced to split clusters previously containing reads from mul-

tiple haplotypes if differences between those haplotypes exist on some pivot variants. Reads

containing allele errors on these pivot variants might be wrongly forced out of their correct

cluster. When designing this procedure, we expected that the majority of reads would remain

error-free on the pivot variants and result in a clean split with only a few dropouts. As a con-

sequence, some collapsed regions would already be resolved on a cluster level before the clus-

tering was passed on to the threading stage. This refinement step was removed from the new

version of WHATSHAP POLYPHASE because we introduced a separate step to resolve collapsed

regions. As a side effect, we avoided repetitions of the already time-consuming clustering step

and could noticeably reduce the runtime of our phasing algorithm.

66 CHAPTER 3. WHATSHAP POLYPHASE

3.3 Haplotype threading

The original idea of the threading model was proposed by Rebecca Serra Mari [14]. I later removed the

genotype constraints, re-implemented it in C++, and added symmetry elimination to improve the runtime.

For the second part of the algorithm, we developed a novel approach called haplotype thread-

ing to find p allele sequences that optimally represent the read clusters from the first stage.

This step is necessary because the reads are not necessarily split into exactly p clusters and the

clustering model does also not promote a uniform position-wise coverage among the clusters.

A single haplotype can rather be fragmented over many clusters and single clusters may hold

reads from multiple haplotypes inside collapsed regions. The idea behind haplotype threading

is that every haplotype is expressed as a sequence of read clusters, i.e., for every variant posi-

tion, a haplotype is assigned to a single read cluster. If the clusters are plotted as “clouds” in the

two-dimensional space with the x-axis as genome position and the y-axis as the position-wise

coverage like in Figure 3.3, the haplotypes look like threads traversing the entire phased re-

gion, hence the name haplotype threading. We will explain this idea more formally throughout

the following subsections.

3.3.1 Characterizing haplotypes as threads

Following the illustration of read clusters as clouds, we say that a cluster C ∈ C spans an

interval of variants, defined by the first and last non-gap position of any read in C , which we

call s(C) := min
R∈C

s(R) and e(C) := max
R∈C

e(R). For each variant vi this gives us the set span(vi)

of clusters spanning vi . Let furthermore cov(C , i) be the absolute coverage of C for variant vi .

That is the number of reads r in C for which r[i] 6= −. The relative coverage covr(C , i) :=
cov(C ,i)∑

C′∈span(vi)
cov(C ′,i) for cluster C and variant vi indicates the fraction of total coverage contributed

by C for vi . The before-mentioned clouds in Figure 3.3 show the span of each cluster on the

x-axis and its relative coverage for every position on the y-axis.

We intend to represent haplotypes as threads through the clustering. Therefore, a thread

T is a sequence of length m over the cluster indices 1, . . . , q, where q is the number of clusters

in C and we assume the contained clusters C1, . . . Cq to be indexed in some fixed manner. With

T[i] we denote the selected cluster index for the i-th variant position. The goal is to compute

a threading T = (T1, . . . , Tp) containing as many threads as our target ploidy. For a single

variant vi , the cluster indices (T1[i], . . . , Tp[i]) form a p-tuple, which we call cluster tuple.

Thus, a threading can also be characterized as a sequence of m cluster tuples. We denote the

i-th cluster tuple of T as T(i). Note that a cluster index j may occur multiple times in a cluster

tuple. We call this number of occurrences the multiplicity of a cluster index inside a cluster

tuple and write it as mult(T(i), j).

3.3. HAPLOTYPE THREADING 67

3.3.2 Threading model

The computed threading must represent the clusters (and thus the reads) appropriately. We

formulate two objectives the optimal threading has to maximize: (i) representative read cover-

age and (ii) haplotype contiguity. The first criterion ensures that the relative coverage for each

cluster is reflected in its multiplicity among the cluster tuples. The expected multiplicity of a

cluster C j at vi is given by multexp(i, j) =

p · covr((, C), i)− 1

2p

£
, while the selected multiplic-

ity mult(T(i), j) of C j is given by the number of appearances of C j in T(i). Deviations between

expected and selected cluster multiplicities are penalized by a constant pcov per cluster so that

a cluster tuple T(i) is evaluated by the cost function

costcov

�
T(i), i

�
=

p∑
j=1

pcov[[multexp(i, j) 6=mult(T(i), j)]].

The second criterion encourages threads to stay inside the same cluster for as long as

possible. Since clusters represent coherent fragments of haplotypes, we not only want the

local coverage of each cluster to be considered but each cluster should be covered by as few

distinct threads as possible. For two consecutive cluster tuples T(i) and T(i+1), we define the

penalty of a cluster switch by pswitch, which results in the cost function

costswitch

�
T(i), T(i+1)

�
=

p∑
j=1

pswitch[[T j[i] 6= T j[i + 1]]] + paffine · [[T(i) 6= T(i+1)].

In other words, we penalize the switch from one cluster to another on two consecutive

variants inside each thread by some constant pswitch and every variant that contains switches

in general by some affine switch cost paffine. The affine cost encourages the model to co-locate

switches on multiple threads if they occur in close proximity. Such events will later be used to

identify candidates for cut positions in our phasing.

Problem 6 (Haplotype threading). Given a clustering C of reads and the position-wise relative

coverages for each cluster, find a threading T =
�
T(1), . . . , T(m)

�
with minimum total penalty

according to the following penalty function

costtotal(T) =
m∑

i=1

costcov

�
T(i), i

�
︸ ︷︷ ︸

coverage cost

+
m−1∑
i=1

costswitch

�
T(i), T(i+1)

�
︸ ︷︷ ︸

switch cost

. (3.15)

The best possible switch score would be achieved by binding each thread to some fixed

cluster index, which could obviously lead to a very poor score for the coverage representation.

In reverse, one could easily minimize the coverage penalties by assigning the expected cluster

multiplicities at each variant for the price of losing all haplotype contiguity. Our goal was to

tune the model such that it includes necessary switches (e.g. when the span of a cluster ends

or its expected multiplicity changes) while accurately explaining the cluster coverages. The

68 CHAPTER 3. WHATSHAP POLYPHASE

choice of pswitch and paffine on one hand and pcov on the other hand controls which aspect the

model prioritizes over the other.

We realized that the variant density on the genome has a great influence on this choice. The

lengths of clusters mostly depend on average read length (in terms of covered variants). For

fixed pswitch and pcov and a fixed average read length, the impact of costcov grows with higher

variant density because multiplicity deviations are counted separately for each variant. Based

on this observation, we use the average number of covered variants per read as a pivot and set

paffine to the next rounded-up integer, while setting pswitch to 4 ·paffine and pcov = 1. There is no

specific calculation behind the exact ratios, but, empirically, they produced reasonable results

and shifting the ratios slightly up and down (e.g. by a factor of 2) did not lead to significant

changes in phasing performance. In the original publication, we did not use variant density as

a pivot, which led to noticeably worse performance for variant densities differing much from

those exhibited by the test datasets from development.

At this point, we want to note that the original threading model contained a third compo-

nent named genotype conformity. In addition to the expected cluster multiplicities, one could

also use the cluster consensi – the most abundant allele among all reads for each variant in-

side a cluster – to infer a genotype from a cluster tuple. If this genotype is not conform to

the input genotypes for the current variant, the non-conform tuple would be pruned to speed

up calculations. This worked great for the artificial polyploid human data with known gold-

standard phasing (see Section 3.5.1) as the provided input genotypes steered the threading

in the right direction. In the aftermath, we realized, though, that genotyping native polyploid

organisms is more challenging and that genotype errors could even lead to correct solutions

being replaced by incorrect ones. The most common problem was that genotype conformity as

a hard constraint enforced switches on one thread, but on the next variant, where one would

expect the evicted thread to revert to its old position, it was another thread taking its place.

This led to a very jagged threading with many switch errors (see Figure 3.14 for an example).

We thought about ways to circumvent this problem but finally decided to postpone genotype

conformity to some post-processing step. We will further discuss this matter in Section 3.4.1.

3.3.3 Solving techniques

The dynamic program matches the one presented in [14]. For the new version of WHATSHAP POLYPHASE,

I added the concept of consensus lists.

We developed a dynamic programming approach to rapidly find the optimal sequence of tuples

that minimizes all costs. We compute a two-dimensional matrix S with one column for every

variant position 1, . . . , m and one row for every possible cluster tuple at vi . Since the number of

eligible cluster tuples can differ between variant positions, the columns of S do not necessarily

have the same lengths. We denote the length of column i with li and the individual cluster

tuples with t1,i , . . . , t li ,i . Using the cost functions defined above, S(i, j) is then computed as

3.3. HAPLOTYPE THREADING 69

(a) Example of tetraploid threading (b) Critical switching positions

Figure 3.6: Visualization of the threading. (a) Clusters of reads are represented as grey shapes with their hori-
zontal span indicating the covered variants and the height being the respective coverage. The p = 4 threads are
shown as colored lines passing through the clusters. Multiple threads can co-enter the same cluster if the coverage
is suited. (b) Alternative threading with the same score in our model. Two positions cause ambiguity and allow
switches in the threading compared to (a). These are candidate cut positions to prevent switch errors in the final
phasing.

S(j, 1) = costcov

�
t j,1, 1

�
, (3.16)

S(j, i) = costcov

�
t j,i , i

�
+ min

k∈{1,...,li−1}
�
S(k, i − 1) + costswitch

�
tk,i−1, t j,i

��
for i > 1 . (3.17)

The optimal threading score is then given by the minimum value in the last column. Start-

ing at this position, we assemble the sequence of clusters with minimum costs via backtracking.

The threading process is illustrated in Figure 3.6 for p = 4. The clusters from the first step

are drawn as gray clouds in a two-dimensional space, as explained in the previous subsection.

The position on the y-axis has no numerical meaning and is just used for illustration purposes.

Starting from the left, a 4-tuple of the five present clusters needs to be chosen as the first clus-

ter tuple. According to the coverage, the best choice is to thread one haplotype through each

of the four clusters with the highest coverage and ignore the smallest one, as this probably

collected only erroneous reads. From thereon, the threads change clusters whenever a cluster

ends or undergoes a drastic change in relative coverage (like the green thread joining the blue

thread).

From the optimal threading, we now derive a set of intermediate haplotypes H1̃, . . . , H p̃.

That is, we transform the cluster indices of each thread into a sequence of alleles. The most

straightforward way would be to compute the consensus allele for each cluster and variant

position and replace every cluster index with the corresponding allele. Problems arise from

collapsed regions, where a cluster occurring twice in some cluster tuple should not necessarily

be replaced by the same consensus allele twice, as the two represented haplotypes could con-

tain different alleles for a few variant positions. We will consult the allele depths of each cluster

instead and compute consensus lists for each cluster and variant to pick replacing alleles from.

Let DC j ,i(a) be the allele depth of allele a for cluster C j ∈ C and variant vi , i.e. the number

of reads in C j supporting a for variant position i. The corresponding consensus list is denoted

as LC j ,i . The first element in this list is always the most frequent allele among C j for vi . Each

70 CHAPTER 3. WHATSHAP POLYPHASE

consequent element is the allele with the highest absolute frequency divided by the number

of occurrences in the list, up until the current position. If, for example, allele 0 occurs 30

times and allele 1 occurs 25 times, then allele 0 is picked for the first position. For the second

position, we can either pick allele 0 a second time or allele 1 for the first time. Since 30
2 <

25
1 ,

the second element would be allele 1. The third element is again allele 0 because 30
2 >

25
2 .

This is continued until all consensus lists have p elements to always provide enough alleles to

pick from when replacing the cluster indices in our computed threading. If different alleles

are to be selected for a cluster with multiplicity 2 or higher, it is not clear how to arrange these

alleles on the different haplotypes. We will discuss this issue in Section 3.4.2 and for now,

replace cluster indices with alleles from the allele lists in some arbitrary order.

3.3.4 Further optimizations

The following optimizations were not mentioned in [14], but the pre-selection of eligible cluster tuples

existed before. I newly developed and implemented the symmetry elimination for this thesis.

For ploidy p the number of possible cluster tuples over l different clusters is lp, rendering

the threading model intractable if the selectable clusters are not restricted. In the original

publication, only the 2 · p clusters with the highest coverage were kept for the model on each

variant position because any further clusters would drop below 1
2p in relative coverage, and

thus always have an expected multiplicity of 0.

In the current version, this filter is more strict by (i) only keeping at most p + 2 clusters

and (ii) always pruning clusters for a variant vi , if it has less than 1
8p relative coverage on all

variants in a small window (of size 10) around vi . The first change was a compromise towards

to otherwise unacceptably high running time for ploidies above 4, while the second change

was an optimization for the average case, where the p+ 1-th cluster (in descending coverage

order) usually has a negligibly low coverage and does not significantly contribute to better

solutions. Moreover, there exists a global row limit of 2p+4 for the DP for ploidies above 6,

where only the 2p+4 best-scored entries are kept after computing each column.

All of the mentioned restrictions imply a loss of optimality in the original sense of the

threading model, where there is no limit for the selectable clusters and rows in the DP table.

The implementation rather poses a compromise between acceptable running time in practice

and mathematical interpretability with minimal losses.

For practical implementation, we included elimination of symmetric solutions. Since hap-

lotypes do not have a specific order, there is no need to enumerate all permutations of optimal

haplotypes. Therefore, it is sufficient to only store the best representative of every group of

permuted cluster tuples in each column. Two cluster tuples are permutations of each other

if they contain the same multiplicities for every cluster but not necessarily the same order of

cluster indices.

3.3. HAPLOTYPE THREADING 71

In every new column, we initially generate a canonical representative for every group of

permuted tuples with its cluster indices in ascending order. For the first column, we can directly

use this set as the final tuples because we only need to compute coverage costs, which do not

depend on the order of the indices inside a tuple. For every candidate tuple in the following

columns, however, we additionally need to find a predecessor tuple with minimal switch cost.

These costs depend on the order of cluster indices inside the tuples; thus, it is not sufficient to

just consider the canonical representatives.

The old implementation of WHATSHAP POLYPHASE solved this issue by generating all per-

mutations and computing the switch costs for all pairs of tuples between the previous and the

current column. To avoid these highly redundant computations, the new implementation uses

a different routine for the switch cost, which considers all permutations of cluster tuples si-

multaneously. We temporarily generate canonical representatives for all tuples in the previous

column (for the current one we already have them). Two canonical tuples T and T ′ are then

compared as follows: Starting with i = j = 1, the routine checks whether T[i] = T ′[j]. If

yes, this counts as a match and both i and j are incremented by 1. If T[i] > T ′[j], only j is

incremented and likewise, i is incremented if T[i] < T ′[j]. The lowest number of switches

between any permutation of T and any permutation of T ′ is then given by p minus the number

of matches.

The described routine allows the new implementation of WHATSHAP POLYPHASE to effi-

ciently find the optimal predecessor P for every canonical representative T in the current

column. Finally, we permute T such that the switch cost between P and T is minimized and

store the permutation as the final cluster tuple for the current column.

3.3.5 Breakpoints

The concept of breakpoints was already proposed in [14], but they were not named as such. I formalized

breakpoints and collapsed regions for this thesis.

In Section 1.4.1 we introduced the concept of cut positions, a means to express discontinuity

within the phasing output. The most obvious source of discontinuity is the absence of con-

necting reads for two consecutive variant positions. Even if the haplotypes could be resolved

perfectly on both ends, it is impossible to link these sets of partial haplotypes correctly with-

out additional long-range data. The shorter the reads and the lower the heterozygosity, the

more fragmented the final phasing becomes due to this problem. Collapsed regions occurring

exclusively in polyploid phasing are another obstacle to contiguity as these regions act like an

absence of variation for a subset of haplotypes. In Figure 3.2 we already saw an illustration of

this problem, where a region could not be uniquely phased, even with long, error-free reads.

Formally, we describe a collapsed region as a tuple (vfirst, vlast, cid, Tcoll), where vfirst and

vlast are the first and last contained variant (inclusively), cid is the associated read cluster

index – for shortness, we will use the terms cluster and cluster index interchangeably in this

72 CHAPTER 3. WHATSHAP POLYPHASE

Figure 3.7: Example for collapsed regions. Left: The colored shapes represent read clusters. Their horizontal
position and width determine their covered variants and their height shows their positional coverage. Four lines
with different dash patterns are drawn over the clusters to represent the computed threading. Center: The four
threads are shown here as colored bars to indicate on which cluster they reside for each of the variant positions.
Right: Four collapsed regions are indicated by the gray transparent rectangles. Note that the green cluster contains
two collapsed regions because of two different multiplicities (2 and 3). The magenta and the first green collapsed
region share variants, but affect different threads.

section – and Tcoll ⊆ {1, . . . , p} is the index set of affected threads in T . By definition, the

multiplicity of cid inside T has to be at least 2. We additionally demand that the multiplicity

of cid has to be constant over the entire collapsed region and that the size of the collapsed

region is maximal, i.e., it cannot be extended before vfirst or beyond vlast without violating the

constraint of constant multiplicity of cid. In Figure 3.7, we see an example of four computed

threads in the center and the corresponding collapsed regions on the right. Each thread is

shown as a colored bar, where the colors indicate the position-wise cluster indices. Whenever

a color is present on more than one thread for the same position, the latter must be part of

a collapsed region. There are two collapsed regions containing the green cluster because the

multiplicity of green is 2 from positions vi to v j and 3 from v j+1 to vk. These two regions are

neither allowed to be merged into one region nor are they allowed to be split because the

latter would result in non-maximal collapsed regions. The definition allows collapsed regions

to overlap in positions (like the magenta and the first green region), as long as they do not

overlap in affected threads.

Finally, we introduce the concept of breakpoints to describe candidates for cut positions.

Breakpoints are 2-tuples, consisting of a variant position – the one before the breakpoint –

and a set of affected thread indices. Every time a collapsed region (vfirst, vlast, cid, Tcoll) ends

because of a decrease in multiplicity for cid, we add the breakpoint (vlast, Tcoll) to the set B of all

breakpoints. On the contrary, we do not create a breakpoint if the multiplicity of cid increases

or when a collapsed region starts.

The reason why increases and decreases in multiplicities are treated differently, is that two

or more threads only become indistinguishable after they have resided on the same cluster. If

one of the threads switches to a different cluster, it is ambiguous which thread to pick from

the perspective of our threading model. In Figure 3.7, the green cluster holds three threads

at some point before two of them switch to the yellow and blue clusters because of a drop in

coverage. However, any other configuration (e.g. moving the first thread to the yellow cluster

and the third one to the blue cluster) would be equally good for the threading model, as it

does not track the history of the threads. It just decides when a thread has to switch based on

3.3. HAPLOTYPE THREADING 73

Figure 3.8: Breakpoints. Continues the example from Figure 3.7. Left: Collapsed regions marked on four threads
with colors representing assigned clusters. Right: Inserted breakpoints according to the presented rules.

coverage penalties. If a thread enters a cluster that already holds a thread (i.e. the multiplicity

of this cluster increases beyond 1), the history of the newly entering thread is still clear and

we do not need to add a breakpoint.

In addition to collapsed regions, there is a more rare case, where the threading model faces

ambiguity and forces us to define more breakpoints. Whenever two consecutive cluster tuples

T(i) and T(i+1) are different, it is usually just one differing component and we can conclude that

one cluster index was just replaced by another one, like for the purple cluster in Figure 3.7.

However, if two or more components differ between T(i) and T(i+1) (e.g. the green and blue

cluster switching to brown and cyan), the switch becomes ambiguous and we consider this

position to be a breakpoint as well. We continue the example from Figure 3.7 in Figure 3.8 to

show the resulting breakpoints from the previously determined collapsed regions. At the end

of the magenta and the larger green region, we insert a breakpoint for the affected threads. We

insert another breakpoint at the transition from the blue and green clusters to the brown and

cyan clusters because more than one thread switches to a new cluster at the same position. All

threads that are unaffected by the breakpoints are drawn as continuous stripes. The transition

from the small green collapsed region to the larger one, for instance, is not affected by the

breakpoint because the multiplicity of the green cluster increases.

In principle, the phasing pipeline is fully functional at this point: First, T defines p se-

quences of clusters, which can be translated into p sequences of alleles based on the clusters’

consensi. Second, B can be considered as a set of cut positions, as they cover all sites of known

ambiguity. However, there is still some remaining information we can use to further refine the

current results: We can re-use the read information itself to act as a tiebreaker for some of the

breakpoints and we can use the input genotypes explicitly to correct our predicted haplotype

sequences for variants where the latter induce a different genotype (than the input ones). We

will discuss these possibilities in the next section.

74 CHAPTER 3. WHATSHAP POLYPHASE

3.4 Refining results

Genotype conformity and cut position policies were present in the original algorithm [14] but this section

as a whole has been newly written and includes different implementations of the two mentioned ideas.

As mentioned at the end of the previous section, the third stage of WHATSHAP POLYPHASE aims

at refining the previously computed output. In the original publication, this stage was not pre-

sented as a dedicated step and also did not exist inside the code as such. In fact, the measures

to find tiebreakers for ambiguities in the computed threading (explained in Section 3.3.5),

which were used in the implementation then, were not even described in the original paper.

Genotype conformity was originally enforced during the threading stage, but was later decou-

pled from it, as it caused artifacts in the phasing (see Section 3.6). This separation motivated

us to summarize all refinement steps in their own stage. We recall again, that all follow-up

work on the pipeline was never published, so this is the first documentation of the reorder-

ing stage. The stage itself is divided into three smaller steps: (i) enforcing the intermediate

haplotypes to match the input genotypes for each variant, (ii) reordering the segments be-

tween breakpoints using read information, and (iii) selecting breakpoints as cut positions if

the segments on each side could not be confidently linked via read information.

3.4.1 Genotype conformity

Genotypes are an optional input for haplotype phasing that provides a multiset of present alle-

les for each variant. Many phasing tools offer to explicitly use this information to refine their

phasings, like H-POP-G [40], FLOPP [15], and the diploid WHATSHAP [12]. The original ver-

sion of WHATSHAP POLYPHASE added genotype conformity as a hard constraint to the threading

stage, i.e., cluster tuples could only be candidates if they resulted in the correct genotype.

We note here that the provided genotypes might be based on different or additional read

data than what is given as input for the phasing problem itself. In case of different sequencing

technologies, this might be a conscious choice: Short reads, for instance, are usually quite

uninformative for phasing but their low error rate makes them very suitable to accurately esti-

mate allele dosages of each variant site, assuming the short reads have been mapped correctly.

Thus, following the given input genotypes can lead to more accurate results.

On the other hand, the intermediate haplotypes from the threading stage contain connec-

tivity information of alleles over multiple variants that might not have been considered or

available to the method used for creating the input genotypes. Figure 3.9 shows an example

from an IGV [97] screenshot, where a local phasing could have prevented a wrong genotype

call. The genotypes for positions 71,615,591 and 71,615,643 are both reported as 0/0/1/1

by the genotype caller GATK [37]. However, if we look at the reads below (gray horizontal

stripes), we can see that the alternative alleles on the first position (red rectangles) are only

present on a subset of reads that contain the alternative allele on the second position (blue

3.4. REFINING RESULTS 75

Figure 3.9: Genotyping error. Example screenshot from IGV, showing the genotype calls for two positions
71,615,591 and 71,615,643, (marked by red arrows. The vertical bars below the arrows the allele distribution
among the reads. Each of the gray stripes below represents one read and each deviation from the reference allele
is marked by some color (red for T, blue for C).

rectangles). This implies that the second must have more alternative alleles, which makes

0/0/0/1 a more likely choice for the first position.

Since the quality of the input genotypes can greatly vary, the question of whether they

should be preferred over the induced genotypes from the intermediate haplotypes cannot be

answered in general. From practical experience, the phased organism also plays an important

role. While genotype callings on human data (diploid) turned out to be very accurate during

testing, called genotypes on potato samples (tetraploid) seemed to contain more inconsisten-

cies, especially when mixing different datasets from different sequencing technologies.

The new version of WHATSHAP POLYPHASE performs the genotype enforcement indepen-

dently for each variant. We therefore describe the process from the perspective of a single

variant vi . Let t = (c1, . . . cp) be the tuple of cluster indices computed by the threading algo-

rithm with consensi alleles a1, . . . , ap ∈ {0, . . . , l − 1} and induced genotype G′i . Finally, let Gi

be the input genotype for vi . As a reminder, the absolute frequency of allele a in genotype G

is defined as fa(G).

If Gi = G′i , all alleles already occur in the requested dosage and the phasing is left un-

touched. Otherwise, some excess alleles have to be replaced with underrepresented ones. Let

A+ := {a | fa(G′i)> fa(Gi)} and A− := {a | fa(G′i)< fa(Gi)} be the set of alleles with excess and

shortage among the intermediate haplotypes, respectively. Furthermore, let A := A+ ∪ A− be

the union of both sets and I := {i ∈ {1, . . . , p} | ai ∈ A+} be the haplotype indices containing an

76 CHAPTER 3. WHATSHAP POLYPHASE

excess allele (for variant vi). For the redistribution, we take each allele a ∈ A+ exactly fa(Gi)

times (i.e. the required amount of times) and each a ∈ A− exactly fa(Gi)− fa(G′i) times (i.e.

the number of missing occurrences) and insert them in a multiset Aplace. Note that |Aplace|= |I |
because the number of required occurrences of alleles a ∈ A+ is represented by both sets, while

the number of missing allele occurrences (accounted for in Aplace) must be equal to the number

of excess occurrences (accounted for in I). To balance out the allele occurrences we take all

unique permutations over the alleles in Aplace and assign them to the haplotype indices in I ,

which gives us several alternatives for how to redistribute alleles in accordance with Gi .

To determine the best allele assignment of Aplace on haplotype indices I , we look at the

allele depths of the clusters with an index in I . We determine the multiplicity of each allele for

each cluster given by the selected allele assignment and compute the likelihood of the observed

allele depths given the allele multiplicities for each cluster. This yields one likelihood value for

each possible allele assignment and we pick the one with the highest likelihood. As already

explained, this process is repeated for each variant independently.

3.4.2 Resolving collapsed regions

We previously omitted the task of resolving heterozygous variants inside collapsed regions.

Based on the consensus lists from Section 3.3 (or on the just-discussed genotype enforce-

ment), the haplotypes inside a collapsed region may be assigned differing alleles for some of

the variants, even though a collapsed region is associated with a single read cluster. This is not

a contradiction to the idea of collapsed regions because the affected haplotypes might not be

completely identical; the differences were rather too small to separate the contained reads in

the presence of other, much more divergent haplotypes. The way we aim to resolve heterozy-

gosity in collapsed regions is to view each region as a new phasing instance: The ploidy of a

collapsed region is at last 2 – otherwise it would not be collapsed –, it contains a distinct set of

heterozygous variants, and the associated read cluster provides the relevant subset of reads to

resolve the collapsed region. We make use of this observation and use WHATSHAP POLYPHASE

recursively to resolve each collapsed region independently. This idea was already illustrated

in Figure 3.3 by the selection box over the two green threads in the bottom right with almost

identical sequences. In that example, the sub-instance has ploidy 2 and two heterozygous

variants, highlighted in red.

After solving a sub-instance, we use the returned haplotype sequences to arrange just the

heterozygous positions inside the associated collapsed region. If the sub-instance yields any

new breakpoints, we add these to the running set of breakpoints accordingly because if two

variants inside the sub-instance cannot not be confidently connected, we also lack the confi-

dence to connect the heterozygous variants inside the collapsed region. If a collapsed region

contains all haplotypes, its sub-instance would have the same ploidy as the full instance and

we omit the recursive call to avoid the danger of a non-terminating recursion.

3.4. REFINING RESULTS 77

Figure 3.10: Illustration of phase block reordering. We continue the example from Figure 3.8. Left: For each
of the four phasing blocks, the haplotype blocks are indexed from 1 to 4. The gray filled lines indicate reads that
align to haplotype blocks from different phasing blocks. The dashed lines indicate connections between certain
alleles on different haplotype blocks provided by a pre-phasing. Right: The haplotype blocks are reordered with
respect to the linkage information.

The recursive solving was not done in the old algorithm, as differences inside collapsed

regions were handled by the cluster refinement. This design was slightly contradictory to the

choice of cluster editing as a base model that intentionally allows for collapsed regions.

3.4.3 Reordering phase blocks

After all collapsed regions are internally resolved, we call the interval between two consecutive

breakpoints a phasing block and each of the p individual allele sequences therein a haplotype

block. From now on, we consider all of the haplotype blocks to be fixed and only optimize the

order of haplotype blocks within the same phasing block. For this purpose, we use two inputs:

(i) the read sequences themselves and (ii) optionally a pre-phasing from the input VCF.

The purpose of reordering is to identify haplotype blocks from neighboring phasing blocks

that we can uniquely link with sufficient confidence provided by the reads or a pre-phasing. If

all haplotype blocks between two phasing blocks can be linked (i.e. we have evidence of which

pairs of haplotype blocks belong to the same haplotype), we can discard the intermediate

breakpoint later on to obtain larger phasing blocks with the p contained sequences aligned

accordingly.

The reordering process is shown in Figure 3.10, for which we again continue the example

from Figure 3.8. We index the haplotype blocks within each phasing block to track their order.

The gray lines connecting different tips of the threads represent reads from the affected clusters

(colors represent clusters) and their endpoints indicate to which haplotype blocks they fit

best. We remark that the span of the read clusters is not aligned to their occurrences in the

threading. The blue cluster, for instance, is only present on a small interval of the threading,

but the contained reads might span more variants in front or behind this interval. Thus, it is

possible to match the reads from the blue cluster to the brown or green haplotype blocks in

the neighboring phasing blocks.

The dashed lines in Figure 3.8 indicate the aforementioned pre-phasing. As a reminder,

a pre-phasing is a set of phased but incomplete haplotypes that is given as an optional input.

In this example, it connects haplotypes among several phasing blocks. With reads and pre-

phasing combined, we can reorder the haplotype blocks as shown on the right side of this

78 CHAPTER 3. WHATSHAP POLYPHASE

figure. The reads are not helpful in resolving the first and second breakpoints but give a

clear hint that the brown and cyan haplotype blocks should swap their position in relation

to the previous phasing block. In most applications, no pre-phasing is available and many

breakpoints remain unsolved. We still consider pre-phasings for our reordering model, though,

because our second polyploid phasing method of this thesis (see Chapter 4) produces sparse

phasings that we can leverage as additional information for WHATSHAP POLYPHASE.

Let l be the number of phasing blocks and B = {(pos1, T aff
1), . . . , (posl−1, T aff

l−1)} be the set

of breakpoints with their respective positions and sets of affected threads. For a breakpoint

Bb affecting |T aff
b | ≤ p many haplotypes, there are |T aff

b |! many arrangements between the

neighboring blocks. We assume that these arrangements are enumerated in some canonical

way and that we can retrieve a score lb,i , expressing the likelihood of observing the given reads

from the affected clusters when applying the i-th arrangement over Bb. We only compute such

read scores for transitions between neighboring blocks, even though reads could theoretically

cover more multiple breakpoints. For the calculation, we generate all |T aff
b |! arrangements and

compute the likelihood for each read to be sampled from any of the arranged haplotype-block

pairs with a low allele error rate of 0.7. The final score for an arrangement is the logarithm of

the product of likelihoods for all reads in the affected clusters.

A pre-phasing H1, . . . , H p provides linkage information over arbitrarily large distances.

With ab,h,t we denote a similarity score between the t-th haplotype block in phasing block

b and Hh. In case no pre-phasing is given, all ab,h,t can be set to some arbitrary number, say 0.

The block reordering problem can be characterized as a combinatorial optimization problem

with the arrangement within each block being the “choices” to make and support among reads

and pre-phasing defining the objective to maximize.

Problem 7 (Phasing block reordering). Given a set of breakpoints B inducing l phasing blocks

and a pre-phasing H. LetΠ be the set of all permutations over {1, . . . , p} and i : Π→ {1, . . . , p!} be

some canonical mapping for each permutation to a unique index. Find permutations π1, . . . ,πl ∈
Π for the l phasing blocks that maximize the following expression:

max
π1,...,πl∈Π

l−1∑
b=1

lb,i(π−1
b ◦πb+1)︸ ︷︷ ︸

linkage likelihoods

+
l∑

b=1

p∑
h=1

ab,h,πb(h)︸ ︷︷ ︸
pre-phasing likelihoods

, (3.18)

where lb,i is the likelihood for the i-th canonical permutation over breakpoint b based on read

information and ab,h,t is the likelihood that the t-th haplotype block of the b-th phasing block

belongs to the h-th haplotype of H. The ◦-operator denotes the sequential application of two

permutations and π(h) is the h-th element of permutation π.

We decided to set up an integer linear program to solve the general case of having both

read and pre-phasing information. Without pre-phasing, the blocks can be re-arranged one

after another, allowing for a polynomial-time algorithm with respect to the number of blocks

l, the number of variants m, and the maximum number p! of arrangements per block.

3.4. REFINING RESULTS 79

The ILP uses the following variables:

xb,t,h := [[haplotype block t is placed on haplotype h for block b]]

yb′,t1,t2
:= [[haplotype blocks t1 from b-th phasing block and t2 from (b+ 1)-th phasing block

are on the same haplotype]]

zb′,i := [[i-th permutation is used to connect haplotype blocks over breakpoint b′]]

with b ∈ {1, . . . , l}, b′ ∈ {1, . . . , l − 1}, i ∈ {1, . . . , |T aff
b′ |} and h, t, t1, t2 ∈ {1, . . . , p}.

While the x-variables model the final assignment of haplotype blocks onto haplotypes, the

y-variables describe which individual haplotype blocks from two neighboring phasing blocks

reside on the same haplotype in the chosen assignment. Lastly, the z-variables state the indices

of all chosen arrangements between neighboring phasing blocks. These indices follow the

same canonical enumeration as used for computing the scores lb,i for read support and ab,h,t

for the pre-phasing affiliations. The objective function contains one component for each type

of score:

max
l−1∑
b=1

|T aff
b |!∑

i=1

zb,i lb,i +
l∑

b=1

p∑
t=1

p∑
h=1

xb,t,hab,t,h (3.19)

First, we ensure a one-to-one mapping between haplotype block and haplotype for each

block:

p∑
h=1

xb,t,h = 1 ∀b ∈ {1, . . . , l},∀t ∈ {1, . . . , p} (3.20)

p∑
t=1

xb,t,h = 1 ∀b ∈ {1, . . . , l},∀h ∈ {1, . . . , p} (3.21)

In case no pre-phasing is given, we can eliminate some symmetric solutions by fixing the

haplotype blocks inside the first phasing block and only reorder the other phasing blocks, i.e.

setting x0,t,t to 1 for every t ∈ {1, . . . , p}. This is legal since haplotypes do not have a specific

order. In the same manner as the haplotype-block-to-haplotype assignments, haplotype blocks

are linked to exactly one haplotype block in the next phasing block:

p∑
t1=1

yb,t1,t2
= 1 ∀b ∈ {1, . . . , l − 1},∀t2 ∈ {1, . . . , p} (3.22)

p∑
t2=1

yb,t1,t2
= 1 ∀b ∈ {1, . . . , l − 1},∀t1 ∈ {1, . . . , p} (3.23)

For each two consecutive phasing blocks b and b+1, we only allow those haplotype blocks

to be reordered that are affected by the b-th breakpoint in between. All unaffected haplotype

blocks are just linked to their neighbors with the same index:

80 CHAPTER 3. WHATSHAP POLYPHASE

yb,t,t = 1 ∀b ∈ {1, . . . , l − 1},∀t 6∈ Tb (3.24)

When combined, Equations 3.22, 3.23, and 3.24 only allow haplotype block indices in Tb

to be reordered. The following constraint enforces consistent variable assignments between

x- and y-variables, by forcing haplotype blocks t1 and t2 to be linked into consecutive blocks

if t1 and t2 are assigned to the same haplotype.

xb,h,t1
+ xb+1,h,t2

− yb,t1,t2
≤ 1 ∀b ∈ {1, . . . , l − 1},∀h, t1, t2 ∈ {1, . . . , p} (3.25)

Finally, we model the logic of the z-variables by setting zb,i to 1 if and only if the haplotype

block linkage over breakpoint b follows the i-th arrangement over this breakpoint, given as a

function permi : T aff
b → T aff

b :

zb,i ≥
p∑

t=1

yb,t,permi(t) − |T aff
b |+ 1 ∀b ∈ {1, . . . , l − 1},∀i ∈ {1, . . . , |T aff

b |} (3.26)

zb,i ≤ yb,t,permi(t)∀b ∈ {1, . . . , l − 1},∀i ∈ {1, . . . , |T aff
b |}∀t ∈ {1, . . . , p} (3.27)

After solving the integer linear program, we are given a haplotype assignment for each of

the haplotype blocks in each phasing block. Rearranging these segments in the specified way

yields the final haplotype sequences.

3.4.4 Detecting cut positions

With the haplotype blocks reordered, the last remaining task is the selection of cut positions.

As stated at the end of Section 3.3, the breakpoints B already pose a suitable choice of cut

positions. In the reordering step, however, we gathered several likelihood scores for different

haplotype-block arrangements, from which we can derive confidence values for each break-

point regarding our selected reordering. Since we not only want to minimize phasing errors

but also maximize block lengths, we should only select breakpoints as cut positions if they can-

not not be resolved with high confidence. We can freely choose the corresponding confidence

threshold and thereby control the balance between block length and block correctness, which

is a key feature of WHATSHAP POLYPHASE.

As stated before, for each breakpoint b and each possible permutation i of affected threads,

we computed a likelihood lb,i expressing how well the rearrangement of threads explains the

observed reads overlapping the breakpoint. Let i′ be the actually chosen permutation. The

confidence of breakpoint b is then defined as
lb,i′∑
i

lb,i
. Ideally, the confidence is close to 1, if all

but the chosen permutation have almost no support among the reads.

Starting from the first block with a confidence of 1 for each haplotype, we multiply the

confidence of each passed breakpoint onto the confidences of all haplotypes affected by the

3.5. EXPERIMENTS 81

sensitivity q r policy in old implementation
5 1 1 any thread switches
4 0.99 2 every breakpoint
3 0.5 2 two threads switch simultaneously
2 0.5 min(3, p) two variants connected by too few reads
1* 0 p two variants completely unconnected
0* 0 p never

Table 3.1: Block cut thresholds for different sensitivity levels. For sensitivity level 1, breakpoints never introduce
cut positions but the input is split over completely unconnected reads, making the new scheme identical to the old
one. The same holds for sensitivity level 0, which completely avoids any cuts.

breakpoint. If the aggregated confidence of a haplotype drops below some threshold q with

0< q ≤ 1, we mark this haplotype as unreliable. Once at least r haplotypes became unreliable,

we mark the last seen breakpoint as a cut position, reset the aggregated confidences to 1 again,

and continue the procedure.

Historically, WHATSHAP POLYPHASE has an integer parameter called block cut sensitivity,

ranging from 0 to 5. It was used to specify which type of breakpoint should lead to a cut

position in the final phasing. We replaced this qualitative method with the above scheme, as

some breakpoints might be resolvable well enough to avoid a cut position without introducing

errors. Table 3.1 shows the associated thresholds q and r for each sensitivity level and the old

equivalent. The default sensitivity level is 4.

3.5 Experiments

This section re-used content from [14]. The setup of experiments in Section 3.5.1 is identical to the men-

tioned article. The other datasets and evaluation of the revised WHATSHAP POLYPHASE as well as FLOPP

have been newly added.

To evaluate the performance of our developed algorithm, we conducted several benchmarks

on multiple datasets. Like in the original publication of WHATSHAP POLYPHASE, we compare

the results to H-POP-G, another state-of-the-art polyploid phasing tool. We also included the

tool FLOPP, which was released in 2022 and was shown by Shaw and Yu to offer superior

performance compared to H-POP-G and the first version of WHATSHAP POLYPHASE. As bench-

marks, we first recreated the experiments from our original publication [14]. Second, we used

the data generation routine from Shaw and Yu [15] to create similar test instances as in the

respective paper. Finally, we used some real sequencing data from a potato cultivar for a set

of small genomic regions.

We ran all algorithms with default settings and compared the resulting phasings to the

ground truth haplotypes. It became obvious that different algorithms use different strate-

gies on where to cut the phasing. For instance, H-POP-G defines phased blocks based on the

connected components of the underlying reads by introducing cuts between pairs of variants

82 CHAPTER 3. WHATSHAP POLYPHASE

that are not connected by any sequencing reads. FLOPP does not divide the phasing at all,

but reports the entire chromosome as a single phasing block. As explained in Section 3.4.4,

WHATSHAP POLYPHASE uses a more sensitive approach, typically leading to much shorter but

more accurate phasing blocks. To make the results more comparable, we also ran WHATSHAP

POLYPHASE without inserting any cut positions unless there is no connection at all between

two consecutive variants (denoted as WH-PP∗). This is achieved by an additional parameter

-B 1 when running the tool from the command line. This strategy should be comparable to

the cut strategy of H-POP-G.

To highlight improvements on or changes to the original WHATSHAP POLYPHASE, we in-

cluded the old v1.0 version, which is the first release after the publish date, and compared

it to the most recent release by the time we conducted the experiments, namely version

v2.2. In some cases, we disabled the genotype enforcement by running our tool with the

--distrust-genotypes parameter. For clarity, we use the abbreviations from Table 3.2 for

different versions and configurations of WHATSHAP POLYPHASE.

abbreviation version additional parameters
WH-PP v2.2
WH-PP∗ v2.2 -B 1

WH-PPd v2.2 --distrust-genotypes

WH-PP∗d v2.2 -B 1 --distrust-genotypes

WH-PPOLD v1.0
WH-PP∗OLD v1.0 -B 1

Table 3.2: Abbreviations for different versions and configurations of WHATSHAP POLYPHASE.

Whenever available, WHATSHAP POLYPHASE was run with the --reference parameter be-

cause it is able to determine read alleles on variants more accurately by realigning reads to a

given reference genome. We used the same machine and workflows to execute the experiments

as in the previous chapter.

3.5.1 Artificial polyploid human data

The experiments were run as in [14]. The data generation pipeline was created by Jana Ebler.

We generated a tetraploid, pentaploid, and hexaploid version of human Chromosome 1 by

combining sequencing data of three individuals (NA19240, HG00514, and HG00733), for

which high-quality trio-based haplotype information is available [48]. We refer to these haplo-

types as ground truth haplotypes. We merged PacBio sequencing data for the first two samples

to produce tetraploid data at coverages 40X and 80X . For hexaploid datasets, we added PacBio

data from the third sample, again generating coverages 40× and 80×. Using the read simu-

lator PBSIM [98], we additionally generated equivalent simulated tetraploid, pentaploid, and

hexaploid data sets with the same coverages and known read origin. The pentaploid datasets

3.5. EXPERIMENTS 83

coverage method SFR (%) SER (%) HR (%) N50 (bp)

40×

WH-PP 0.83 1.01 3.75 33455
WH-PPOLD 0.40 0.47 1.40 35649
WH-PP∗ 1.49 1.77 28.94 2108824
WH-PP∗OLD 1.04 1.19 27.87 2108824
H-POP-G 1.36 1.78 28.35 2195085
FLOPP 4.49 2.60 39.85 248898070

80×

WH-PP 0.57 0.69 3.26 46003
WH-PPOLD 0.28 0.32 1.45 54467
WH-PP∗ 1.09 1.28 28.97 2417376
WH-PP∗OLD 0.74 0.83 27.69 2587104
H-POP-G 0.99 1.24 27.70 2587104
FLOPP 5.63 2.07 40.31 248898070

(a) real tetraploid read data

coverage method SFR (%) SER (%) HR (%) N50 (bp)

40×

WH-PP 0.71 0.88 3.34 39393
WH-PPOLD 0.37 0.44 1.76 49778
WH-PP∗ 1.27 1.53 27.84 1908549
WH-PP∗OLD 0.88 1.00 26.02 1908549
H-POP-G 1.25 1.69 26.62 2017098
FLOPP 4.16 2.18 39.19 248898070

80×

WH-PP 0.31 0.35 2.29 53055
WH-PPOLD 0.27 0.29 2.94 81829
WH-PP∗ 0.75 0.84 26.57 2172622
WH-PP∗OLD 0.64 0.70 25.61 2172622
H-POP-G 0.82 1.02 25.71 2153145
FLOPP 5.51 1.70 40.11 248898070

(b) simulated tetraploid read data

Table 3.3: Comparison of WHATSHAP POLYPHASE, H-POP-G and FLOPP on tetraploid real (a) and simulated (b)
datasets. Performances are based on the switch flip rate (SFR), switch error rate (SER), block-wise Hamming rate
(HR) and N50 for the block size. The total length of the chromosome is 249 Mb.

were created by first generating hexaploid datasets with 20% higher coverage (i.e. 48× and

96×) and then filtering out all reads belonging to the second haplotype of sample HG00733.

Tetraploid data

The results for the tetraploid datasets are summarized in Table 3.3. In terms of N50 block

size, there is a clear separation between WH-PP and WH-PPOLD with less than 100kb on the

one hand and WH-PP∗, WH-PP∗OLD, and H-POP-G with about 2Mb and more on the other hand.

Likewise, the Hamming rate is in the low single-digit range for the first two configurations and

around 25–30% for the other three. FLOPP is the only algorithm to not output multiple blocks,

resulting in an N50 block size of 250Mb and a Hamming rate of about 40%.

Throughout all tests, the switch flip rate (SFR) is always slightly lower than the switch

error rate (SER), except for FLOPP which exhibits a substantially higher SFR than the other

84 CHAPTER 3. WHATSHAP POLYPHASE

104 105 106 107 108 109
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N50 block length

sw
it

ch
er

ro
r

ra
te

(%
)

N50 vs block-wise SER (real)

104 105 106 107 108 109
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N50 block length

sw
it

ch
er

ro
r

ra
te

(%
)

N50 vs block-wise SER (simulated)

WH-PP (40×) WH-PP (old, 40×) H-POP-G (40×) WH-PP (80×) WH-PP (old, 80×) H-POP-G (80×)

Figure 3.11: N50 block lengths vs lock-wise switch error rates. N50 block lengths and the respective
block-wise switch error rates for different block cut strategies of WHATSHAP POLYPHASE on the real
tetraploid read dataset (top) and the simulated tetraploid dataset (bottom) with 40× and 80× coverage.

methods. The former behavior is to be expected because using flips and switches to transform

a computed phasing into the true one should at most require as many operations as using

switches only. The only exception is if the computed phasing contains many wrong genotypes,

which we will investigate in a separate test.

Compared to H-POP-G, WH-PP∗OLD achieves about 30% lower switch flip rates on compara-

ble N50 block sizes, matching the findings in [14]. With smaller blocks, the switch flip rates

are about three times lower than for H-POP-G, again confirming the published results. Since

we re-sampled and re-simulated the reads, the exact numbers deviate slightly from the ones

in the article. Interestingly, the new version of WHATSHAP POLYPHASE falls slightly behind

H-POP-G in terms of SFR and SER, so we can observe a performance regression compared to

the old version.

Including the HR again, as well as the configurations with short phasing blocks, we can

even see that the old version of WHATSHAP POLYPHASE outperforms the new one in every

performed test. This is also visible in another reproduced experiment from the original publi-

cation, where we plot the N50 block sizes against the switch flip rate for all available block cut

strategies of WHATSHAP POLYPHASE (see Figure 3.11). Since we have two versions of the al-

gorithm, there are two sets of data points per dataset. As a comparison, we included H-POP-G

as well in the plot.

Each method is represented by a different shape, while the color stands for the coverage.

Comparing again H-POP-G and WH-PPOLD, we see that H-POP-G is above the Pareto-curve of

WH-PPOLD (triangle-shaped dots) for the same coverage, as was reported in the article. A

comparison between the triangle-shaped and the x-shaped dots reveals that the old algorithm

indeed outperforms the new one by a noticeable margin. For the simulated reads, the new

algorithm almost catches up when using the full 80× coverage. We also plotted the N50 block

size against the Hamming rate (see Supplementary Figure B.1). It shows the same tendencies

3.5. EXPERIMENTS 85

cut strategy version refinement SFR (%) SER (%) HR (%) N50 (bp)

-B 1

new yes 0.97 1.12 28.46 2587104
old yes 0.74 0.83 27.69 2587104
new no 1.09 1.28 28.97 2417376
old no 1.07 1.30 29.38 2587104

-B 4

new yes 0.51 0.62 3.76 61928
old yes 0.28 0.32 1.45 54467
new no 0.57 0.69 3.26 46003
old no 0.44 0.58 1.10 35355

(a) real tetraploid read data

cut strategy version refinement SFR (%) SER (%) HR (%) N50 (bp)

-B 1

new yes 0.68 0.76 25.93 2172622
old yes 0.64 0.70 25.61 2172622
new no 0.75 0.84 26.57 2172622
old no 1.00 1.20 27.50 2172622

-B 4

new yes 0.34 0.37 3.47 90118
old yes 0.27 0.29 2.94 81829
new no 0.31 0.35 2.29 53055
old no 0.40 0.52 1.30 43364

(b) simulated tetraploid read data

Table 3.4: Comparison of WHATSHAP POLYPHASE with and without cluster refinement on tetraploid datasets with
coverage 80×.

as the switch flip rate, although the curves of both WHATSHAP POLYPHASE versions are closer

together.

Special test: Cluster refinements

The performance regression in WH-PP must be linked to the various changes in the algorithm.

Since the code structure changed substantially between the two versions, it was not feasible

to replace single modules to trace back the regressions. However, the cluster refinement of

the old implementation could be easily ported to the new one. During the development of the

initial algorithm, this feature turned out to reduce the number of switch errors by a noticeable

amount and was always run by default. The backport is not available in a regular version of

WHATSHAP but only accessible from an experimental branch that is based on version v2.2. The

instructions how to retrieve the applied state of the code can be found in Appendix D.

We reran the tetraploid benchmarks for the new algorithm with cluster refinement enabled

and for the old one with cluster refinement disabled, to see if this feature explains the discrep-

ancies. Table 3.4 summarizes the results for coverage 80×. Enabling the refinement benefits

the new algorithm in almost every case, but the old one stays ahead in all tests with only the

N50 block size being slightly better for the new algorithm and short phasing blocks. However,

without cluster refinement old algorithm’s performance deteriorates significantly in switch flip

86 CHAPTER 3. WHATSHAP POLYPHASE

coverage method SFR (%) SER (%) HR (%) WGR (%) variants N50 (bp)

40×
WH-PP∗ 1.49 1.77 28.94 0 245798 2108824
WH-PP∗d 2.81 0.99 29.62 7.28 240066 2108824
FLOPP 4.49 2.60 39.85 8.34 223931 248898070

80×
WH-PP∗ 1.09 1.28 28.97 0 246583 2417376
WH-PP∗d 1.97 0.78 29.64 4.76 242455 2587104
FLOPP 5.63 2.07 40.31 12.13 231668 248898070

(a) real tetraploid read data

coverage method SFR (%) SER (%) HR (%) WGR (%) variants N50 (bp)

40×
WH-PP∗ 1.27 1.53 27.84 0 245727 1908549
WH-PP∗d 2.60 0.84 28.94 7.10 240173 1908549
FLOPP 4.16 2.18 39.19 8.62 223256 248898070

80×
WH-PP∗ 0.75 0.84 26.57 0 246846 2172622
WH-PP∗d 1.36 0.65 26.60 2.87 244520 2170280
FLOPP 5.51 1.70 40.11 12.19 233031 248898070

(b) simulated tetraploid read data

Table 3.5: Comparison of WHATSHAP POLYPHASE and FLOPP, with and without trusting genotypes.

rate and N50 block size. While it still outperforms the new algorithm on the real dataset, it

falls behind on the simulated dataset.

As a conclusion, the refinement is an integral part of the old algorithm to boost phasing

quality. The new algorithm only benefits slightly, as it possesses other mechanisms to deal

with collapsed regions. As we did not replace or re-implement other parts, the cause of the

performance regressions remains unknown as of now.

Special test: Distrust genotypes

In Table 3.3 we saw that FLOPP reached significantly higher switch flip rates than the other

methods and was also the only method, where this rate was higher than the switch error

rate. Further investigation revealed that FLOPP is the only method to diverge from the input

genotypes, even though the tested parameters (-v) are supposed to make the phasing follow

the input genotypes, according to the documentation1. We also noticed that it was missing a

noticeable fraction of variants compared to the output of other methods. The new version of

WHATSHAP POLYPHASE is able to diverge from input genotypes as well when run with the flag

--distrust-genotypes. We repeated the experiment from before, but this time also reported

the fraction of wrong genotypes in the phasing, as well as the number of phased variants.

As we can see in Table 3.5, the behavior of WHATSHAP POLYPHASE follows that of FLOPP

when allowing genotype divergence. The switch flip rate goes up and surpasses the switch

error rate. The explanation is that in order to transform the computed haplotypes into the

1https://github.com/bluenote-1577/flopp

https://github.com/bluenote-1577/flopp

3.5. EXPERIMENTS 87

true ones, all genotype deviations have to be repaired using flips. For instance, if 7% of all

phased variants contain a wrong genotype, then for a tetraploid sample, this causes at least
0.07

4 = 1.75% of all reported alleles to be wrong as well. Indeed, subtracting a quarter of the

wrong genotype rate from the switch flip rate brings the latter very close to or slightly below

the respective switch error rate.

We observe a slight drop in phased variant count of about 2% for WH-PP∗d and a notice-

able drop of 6 to 10% for FLOPP. There are several reasons why a phaser might decide to not

phase a specific variant. Since the only difference between WH-PP∗ and WH-PP∗d is the geno-

type handling, the missing variants are likely variants that have been wrongly predicted to be

homozygous by the latter. The evaluation routine only considers common heterozygous vari-

ants between the output and the ground truth VCF files, as homozygous variants are always

considered to be unphased. This explanation probably also holds true for FLOPP, although the

genotyping gets worse for 80× coverage (as opposed to WH-PP∗d and the expectation that

more coverage makes genotyping more accurate), while the variant count increases from 40×
to 80×.

Interestingly, the genotype divergence causes the switch error rate for WH-PP∗d to drop

below the level of the old implementation. By definition, the switch error rate can only be

computed for variants with conforming genotypes. Thus, variants with wrong genotypes are

excluded from this metric. We conclude that these variants are more erroneous on WHATSHAP

POLYPHASE and there is room for improvement regarding genotype preservation. This obser-

vation might also be related to the general performance regression of the new algorithm, as

genotype conformity is handled in a completely different way compared to before.

Hexaploid data

The hexaploid datasets behave similarly to the tetraploid ones (see Table 3.6). The Ham-

ming rate, switch error rate, and N50 block size are close to the results from [14]. That is,

H-POP-G shows 40 to 60% higher SER than the WH-PP∗OLD. The new implementation falls

even further behind the old one for hexaploid data, reaching almost twice the SFR and SER

for long blocks and a bit more than twice the error rates for short blocks. A quick test using

the --distrust-genotypes parameter resulted in a significantly lower SER, on par with the

old implementation (see Supplementary Table B.2). This further confirms the hypothesis of

genotype enforcement being a significant source of errors. As expected, phasing quality gen-

erally deteriorates with increased ploidy for all tested methods. This is due to lower haploid

coverage and an exponentially larger solution space.

Pentaploid data

The simulated pentaploid data (see Supplementary Table B.1) offers no novel observations

and was mostly done for the sake of reproducing old results. Interestingly, the phasing quality

88 CHAPTER 3. WHATSHAP POLYPHASE

coverage method SFR (%) SER (%) HR (%) N50 (bp)

40×
WH-PP 1.98 2.43 3.60 8758
WH-PPOLD 0.84 1.00 1.67 16028
WH-PP∗ 3.42 4.10 27.79 4265325
WH-PP∗OLD 1.96 2.27 27.30 4265325
H-POP-G 2.77 3.66 26.99 4846407
FLOPP 6.28 3.63 32.86 248889649

80×
WH-PP 1.27 1.52 2.83 15162
WH-PPOLD 0.48 0.53 1.14 25429
WH-PP∗ 2.30 2.70 27.94 6412111
WH-PP∗OLD 1.27 1.41 25.68 6412111
H-POP-G 1.80 2.29 26.68 6412111
FLOPP 7.65 2.58 34.20 248898070

(a) real hexaploid read data

coverage method SFR (%) SER (%) HR (%) N50 (bp)

40×

WH-PP 2.07 2.64 3.45 8947
WH-PPOLD 0.88 1.06 1.83 16882
WH-PP∗ 3.43 4.24 27.52 3754960
WH-PP∗OLD 1.99 2.31 26.96 3754960
H-POP-G 2.79 3.85 26.10 3847617
FLOPP 6.85 3.48 33.08 248848964

80×

WH-PP 1.03 1.25 2.12 14656
WH-PPOLD 0.43 0.48 0.96 26251
WH-PP∗ 2.04 2.40 26.55 4490129
WH-PP∗OLD 1.23 1.36 26.08 4607645
H-POP-G 1.80 2.31 25.84 4945599
FLOPP 7.52 2.46 34.15 248848964

(b) simulated hexaploid read data

Table 3.6: Comparison of WHATSHAP POLYPHASE, H-POP-G and FLOPP on hexaploid real (a) and simulated (b)
datasets. Performances are based on the switch flip rate (SFR), switch error rate (SER), block-wise Hamming rate
(HR) and N50 for the block size. The total length of the chromosome is 249 Mb.

was overall even lower than for the hexaploid data, which contradicts the previous results,

where the pentaploid numbers ended up in between the tetraploid and hexaploid ones.

Runtime and memory consumption

Another aspect of implemented tools is the required computational resources. To measure

the runtime, we repeated a selection of tests but made sure that at most two instances were

running simultaneously on our machine with multithreading disabled if a tool had this option.

This ensured that the CPU was constantly operating at its highest frequency (3400 Mhz) and

reduced competing memory and disk accesses to a reasonable minimum. We used the time-

command with flag -v to measure the determine the total runtime and reported the “Maximum

resident set size” as peak memory consumption for each run.

3.5. EXPERIMENTS 89

(a) Runtime in seconds for different datasets.

(b) Peak memory consumption in GiB for the same datasets.

Figure 3.12: Runtime and memory consumption. Each bar plot represents one dataset, which is given below
the x-axis. The top row (a) shows the runtime in seconds for each algorithm. The bottom row (b) shows the peak
memory consumption in GiB. WHATSHAP POLYPHASE was run with block cut sensitivity -B 1.

Figure 3.12 summarizes the resources used by each algorithm. For the simulated reads we

tested two ploidy levels (4 and 6) as well as both coverage levels (40× and 80×). For the real

reads we only used the high-coverage sets to outline differences to the simulated reads. We

ran WHATSHAP POLYPHASE with block cut sensitivity -B 1 because these settings are closer to

the competing algorithms H-POP-G and FLOPP. Using the default block cut sensitivity resulted

in only 5–10% lower runtimes but a noticeably lower memory footprint because the readset

is split more aggressively, and thus the algorithm has to keep less data in memory at a time

during execution.

We see that the new version of WHATSHAP POLYPHASE is substantially faster than the old

one in out tests. On the tetraploid datasets, this is mainly caused by a more optimized im-

plementation of the cluster editing solver and the avoidance of cluster refinement iterations.

On the hexaploid datasets, the threading stage gains a great speedup as well due to improved

symmetry elimination. A more detailed runtime profile for both implementations is given in

90 CHAPTER 3. WHATSHAP POLYPHASE

Supplementary Figure B.2. Interestingly, the slowest step for the new version is the input

processing.

The fastest algorithm in all instances is FLOPP. While it takes about half the time of

WHATSHAP POLYPHASE on tetraploid data, the speedup on hexaploid data is up to 7. Compar-

ing absolute numbers, we can see that WHATSHAP POLYPHASE takes significantly more time

to phase higher ploidies, while FLOPP scales better for this parameter. H-POP-G is about 40%

slower than WHATSHAP POLYPHASE on average.

The memory consumption of WHATSHAP POLYPHASE slightly grew for the newer version

by about 15%. On the simulated datasets, H-POP-G has the largest memory footprint by a

fair margin, while FLOPP uses slightly less memory than our algorithm. For the real data, the

ordering is rather chaotic. In general, all algorithms are quite memory-efficient and could have

executed all conducted experiments on a regular up-to-date PC or laptop.

3.5.2 Simulated Solanum tuberosum data

The article by Shaw and Yu [15] – introducing FLOPP as a novel phasing method – con-

tained a variety of benchmarks, where FLOPP was compared to H-POP-G and the old version of

WHATSHAP POLYPHASE. While FLOPP was shown to outperform the other tools in the selected

benchmarks, WHATSHAP POLYPHASE severely struggled on the tested datasets. We were able

to reproduce these issues with a small triploid test dataset provided on the author’s GitHub

repository2.

Test dataset

To get an idea of where the old WHATSHAP POLYPHASE fails and to exclude any implemen-

tation errors, we analyzed all intermediate steps. The read clustering turned out to be very

fragmented as illustrated in Figure 3.13a. Each cluster only contained a tiny amount of reads,

which makes it impossible for the downstream steps to produce a coherent phasing. The culprit

turned out to be the clustering refinement because the reads were almost perfectly separated

when disabling this feature.

This did not resolve all issues, however, as the computed threading based on the high-

quality clustering still contained lots of switch errors. Since one could almost trivially assign

the threads to the four clusters, this behavior was unexpected. A visualization of the computed

threading revealed many undesired thread switches, shown in Figure 3.14. Even though the

three visible clusters (gray horizontal shapes) are present over the entire viewed window of

variants and the coverage is reasonably split among them, threads tend to switch to another

cluster for a single variant and back again. In some cases, this only impacted the result min-

imally, e.g. for the red arrow, marked with a “1”, in other cases the switching thread did not

2https://github.com/bluenote-1577/flopp

https://github.com/bluenote-1577/flopp

3.5. EXPERIMENTS 91

(a) Read clusters with refinement.

(b) Read clusters without refinement.

Figure 3.13: Visualization of the read clusters. Each read is represented as a black horizontal bar, where the
horizontal reach stands for the covered variants. Clusters of reads are separated by gray horizontal lines. All
clusters are stacked vertically. (a) Shows the clustering of original WHATSHAP POLYPHASE with default parameters.
The lower part is a zoomed-in picture of the red circle in the upper part. (b) Shows the clustering when running
the same algorithm without cluster refinement.

return to its original cluster but instead switched places with another thread, e.g. for the red

arrow, marked with a “2”. These “jumps” are initiated by the genotype constraints of the

old threading model because genotype deviations are completely forbidden. This forces the

threading model to choose expensive adjustments against the intuition of the whole model.

Since the genotype conformity cannot be disabled in the old version of WHATSHAP POLYPHASE,

this issue cannot be fixed by a different choice of command line parameters.

Figure 3.14: Visualization of the haplotype threading. This figure shows a small section of a computed haplotype
threading by the original WHATSHAP POLYPHASE algorithm. Each horizontal shape (in this case three) represents
a cluster. The height of the gray shape indicates the read coverage of the corresponding cluster for each variant
position. The orange, green and blue lines represent the optimal threading. The vertical bars below indicate flip
errors (yellow) and switch errors (dark blue). Vertical gray bars mark affected haplotypes for a switch errors, black
dots indicate haplotypes affected by flip errors.

Nevertheless, we ran all algorithms on the test dataset and summarized the results in

Table 3.7. Indeed, the old WHATSHAP POLYPHASE implementation offers very poor phasing

quality for both long and short phasing blocks. H-POP-G and the WH-PP are very close in

92 CHAPTER 3. WHATSHAP POLYPHASE

method SFR (%) SER (%) HR (%) WGR (%) variants N50 (bp)
WH-PP 0.48 0.77 0.52 0 67190 3009993
WH-PPOLD 7.84 9.64 9.14 0 39083 279
WH-PP∗ 0.50 0.80 0.54 0 67291 3019741
WH-PP∗OLD 11.83 15.18 44.28 0 49726 3018718
H-POP-G 0.46 0.74 0.46 0 67378 3019643
FLOPP 0.97 0.01 0.97 2.88 64236 3016025

Table 3.7: Comparison between WHATSHAP POLYPHASE, H-POP-G and FLOPP on simulated Solanum tuberosum
data, provided as test data by Shaw and Yu.

every evaluated metric, showing that the changes offer a great improvement over the old

algorithm. Switch flip rates and Hamming rates are about twice as high for FLOPP compared

to the previous two methods, but the switch error rate is excellent. This means that FLOPP is

able to almost perfectly phase this dataset, except for the 2.88% of positions containing wrong

genotypes.

The issues found with this kind of data triggered further algorithmic engineering on WHATS-

HAP POLYPHASE and led to the revised version presented in this thesis. The new version of

WHATSHAP POLYPHASE does not run into these issues because the clustering is not followed

by a refinement step and the updated threading model is oblivious to genotypes and cluster

consensi.

Newly simulated data

For further validation of our findings, we used the instructions provided by the supplementary

GitHub repository3 of FLOPP to reproduce some of the performed benchmarks in [15]. These

are based on the first 3.5Mb on the first chromosome of the v4.04 assembly of S. tuberosum

[99]. The authors used the HaploSim tool from Motazedi et al. [59] to generate haplotypes for

ploidies 3, 4, 5, and 6, the read simulator PaSS [100] to simulate PacBio reads and NanoSim

[101] for Oxford Nanopore reads with 10, 15, and 20× coverage per haplotype. We limited

the scope of our tests to PacBio reads and the lowest level of coverage because these settings

seem to be closest to the supplied test dataset.

In contrast to the test data, the used reference sequence is now available as well. For the

old WHATSHAP POLYPHASE algorithm this makes a surprisingly huge difference, as we can see

for the triploid experiments in Table 3.8a. The switch flip and switch error rates improved by

a factor of 50 compared to the triploid test data, while the new implementation also gained an

improvement of about factor 5 in these two metrics. Since H-POP-G and FLOPP do not use the

reference sequence, there was no significant deviation from the numbers of the test dataset.

This puts WHATSHAP POLYPHASE in front of H-POP-G regarding the two metrics, also for

the hexaploid experiments shown in Table 3.8b. FLOPP shows excellent switch error rates for

3https://github.com/bluenote-1577/flopp_test

https://github.com/bluenote-1577/flopp_test

3.5. EXPERIMENTS 93

method SFR (%) SER (%) HR (%) WGR (%) variants N50 (bp)
WH-PP∗ 0.08 0.13 9.47 0 67469 3019845
WH-PP∗d 0.26 0.01 0.26 0.75 63707 3017396
WH-PP∗OLD 0.36 0.50 39.82 0 67020 3018904
H-POP-G 0.41 0.69 0.43 0 67657 3019580
FLOPP 0.95 0.01 0.95 2.82 64545 3016166

(a) simulated triploid PacBio reads

method SFR (%) SER (%) HR (%) WGR (%) variants N50 (bp)
WH-PP∗ 0.21 0.34 24.99 0 66729 3020108
WH-PP∗d 0.70 0.02 14.83 4.06 66171 3019140
WH-PP∗OLD 0.33 0.44 32.95 0 66764 3019399
H-POP-G 0.40 0.69 0.40 0 67026 3019941
FLOPP 1.11 0.02 3.01 5.68 64606 3016166

(b) simulated hexaploid PacBio reads

Table 3.8: Comparison between WHATSHAP POLYPHASE, H-POP-G and FLOPP on simulated Solanum tuberosum
data.

the price of having about 3 to 6% wrongly genotyped variants. As a comparison, we again

included the setting WH-PP∗d . This puts WHATSHAP POLYPHASE on the same level as FLOPP

in terms of switch error rate, with a noticeable advantage in switch flip rate due to fewer

genotyping errors.

The Hamming rate turns out to be the weak spot for WHATSHAP POLYPHASE in all settings.

For the test data, WH-PP∗ achieved competitive Hamming rates, as well as WH-PP∗d for the

newly simulated triploid data. This proves that WHATSHAP POLYPHASE is generally able to

produce coherent phasings, but the few remaining switch errors are often in critical spots,

where large parts of the predicted phasing block get switched. These observations also hold

for tetraploid and pentaploid experiments (see Supplementary Table B.4).

Since H-POP-G and FLOPP are able to phase all the datasets in one large block without

critical switches, we omitted the short block settings for WHATSHAP POLYPHASE. Despite most

of the problems being solved by the availability of a reference genome, the new implemen-

tation outperforms the old one in every aspect for this set of experiments. In Supplementary

Figure B.3, we added measures for runtime and memory consumption.

3.5.3 High-confidence regions from Altus cultivar

In Chapter 4, we will present another polyploid phasing method that combines sequencing

data with genotype information for a large offspring panel from a pair of parental plant sam-

ples. The evaluation of this method was based on sequencing and genotype data for a potato

cultivar, named “Altus”. We use the HiFi sequencing data from Altus with about 96× cov-

erage to benchmark the methods discussed in the current chapter. The variant calling and

genotyping were done using high-depth short-read data, and might thus be incongruent with

94 CHAPTER 3. WHATSHAP POLYPHASE

method SFR (%) SER (%) HR (%) WGR (%) variants
WH-PP∗ 6.94 0.49 21.83 23.84 6654
WH-PP∗OLD 8.27 1.81 37.77 23.86 6732
WH-PP∗d 1.84 0.12 8.36 6.91 6509
FLOPP 0.69 0.03 22.24 2.47 6567

Table 3.9: Benchmarks for Hifi reads from Altus cultivar on the region ch04:71,586,000-71,947,000.

the ground truth data obtained from a HiFi assembly. For further details about the data, see

Section 4.3.

Since the tested regions were quite short, we omitted the short block configurations of

WHATSHAP POLYPHASE. Also, H-POP-G was unable to process the input files because the VCF

contains several multi-allelic variants. We again included the genotype-oblivious setting WH-

PP∗d , as the genotyping was not done on different data than the input reads in this case. From

Table 3.9 and Supplementary Table B.5, we can see that genotype divergence is very high for

all tests. WH-PP∗ performs consistently better than WH-PP∗OLD, with more than 50% fewer

switch errors. The switch flip rate is mostly dominated by the wrong genotypes, but still lower

for the new implementation.

The genotype-oblivious methods WH-PP∗d and FLOPP again show a very small switch error

rate, but also a much lower fraction of wrong genotypes. Over all three regions, FLOPP is able

to predict the correct genotype from the input reads much better than WHATSHAP POLYPHASE.

This leads to about 50% fewer genotype errors and proportionally lower switch flip rates.

Regarding the Hamming rate, none of the methods show convincing results here with WH-PP∗d

taking the lead in two out of three regions. The runtime and memory consumption tests in

Supplementary Figure B.3 show little differences between old and new versions of WHATSHAP

POLYPHASE. As in previous tests, FLOPP is about twice as fast as WH-PP∗ (and WH-PP∗d) but

this time also uses significantly less memory. The reason for the latter is not clear to us, as

FLOPP has been on par with our algorithm on larger datasets regarding memory consumption.

We did not investigate any further why this behavior changes for smaller datasets.

3.6 Discussion

Throughout this chapter, we presented WHATSHAP POLYPHASE, a novel approach for polyploid

haplotype phasing. Its design choices are based on observations regarding the arising chal-

lenges for generalizing the phasing problem to polyploid genomes. Compared to the original

version of WHATSHAP POLYPHASE, we presented a revised version with new ideas and described

the underlying methods in much more detail than the original publication. While the intention

of the new read pair scoring scheme was mostly to have a more rigorous model with fewer

assumptions and a clearer objective, the extraction of genotype conformity from the threading

model was rather motivated by the reproduced issues reported by Shaw and Yu.

3.6. DISCUSSION 95

We compared both the old and new versions of WHATSHAP POLYPHASE to other state-of-

the-art tools, namely H-POP-G and FLOPP, on three different kinds of data. To our surprise, the

old algorithm produced considerably better results than the new one on the artificial polyploid

human data, especially for higher ploidies. On the contrary, the new algorithm consistently

outperformed the old one on the simulated Solanum tuberosum data and on the selected

genome regions of the Altus cultivar. One explanation could be overfitting because, for the

original publication, we only tested the first version of WHATSHAP POLYPHASE on the artificial

polyploid human dataset and tuned all parameters with this data in mind. The cluster refine-

ment improved phasing quality remarkably on this dataset but also inhibited a proper result

for the test dataset from [15], where no reference genome was provided. Our conclusion is

that the algorithmic changes represent an improvement to our method, as it became more

robust to a wider variety of data.

It is quite difficult to determine a clear winner among the tested methods, as all of them

exhibit different strengths. H-POP-G shows consistent performance over all tests, except for

the lack of support for multi-allelic variants. FLOPP is very good at minimizing the number of

switch errors, although it drastically fell behind the other methods on the polyploid human

data. When combining the different configurations of WHATSHAP POLYPHASE (i.e. always take

the best-performing one), they produce the lowest switch flip and switch error rate. However,

these few switch errors are often critical, resulting in bad global haplotype reconstructions

compared to the other methods. Especially the results of FLOPP and H-POP-G in Section 3.5.2

for higher ploidies show, that the input data allows for continuous and correct phasings. One

advantage of WHATSHAP POLYPHASE is the configurable block cut strategy, which no other

method offers, to the best of our knowledge.

3.6.1 Limitations

Looking at the experimental results from a broad angle, the overall phasing quality of the

presented methods is still far away from what one usually expects in the diploid field. While

this is mostly attributed to the computational complexity of polyploid phasing, there are two

concerns arising from the data itself. We discussed the challenge of collapsed regions and

the practice of cutting phasings into blocks to communicate the uncertainty here. WHATSHAP

POLYPHASE tackles this by applying different cut strategies based on the computed threading.

The results from Section 3.5.1 show that reasonably low block-wise Hamming rates induce very

small blocks, which limits the usability of the output. Since WHATSHAP POLYPHASE showed

susceptibility to critical switch errors in Sections 3.5.2 and 3.5.3, it is unclear whether this is

an algorithmic weakness or whether the long-read sequencing data in general is not sufficient

to provide better results for complex genomes.

The second concern is the limitation of linear reference genomes. Polyploid phasing grew

from the existing research field of diploid phasing, where the assumption of such a reference

genome is reasonable. Plant genomes, however, tend to contain much more structural varia-

96 CHAPTER 3. WHATSHAP POLYPHASE

tion, and are thus very hard to be projected onto a linear reference. This can lead to wrong

or fragmented read alignments, wrong genotyping, and other artifacts. For instance, if one

haplotype contains a large deletion, this effectively induces a local drop in ploidy that is not

trivial to detect and requires awareness within genotyping and phasing tools. In Section 3.5.3

we observed a huge discrepancy between called genotypes of two different read data sets in

the same genomic region. Such issues are usually not well represented in simulation studies,

as the respective tools rarely include structural variation.

3.6.2 Ideas for future work

Following up on the example of local ploidy drops, support for dynamic ploidy could be an

interesting feature in practice. The first challenge would be to predict a local ploidy, based on

read coverage and alignment artifacts, like large non-reference sequences between two aligned

read segments. This is a bit out of scope for a haplotype phaser and could rather be treated

as a separate problem. The second challenge is to incorporate such local ploidy information

into the phasing model of WHATSHAP POLYPHASE. The major changes would be located in the

threading stage, where the model explicitly computes a fixed amount of intermediate haplo-

type sequences. We had the idea to introduce a residual cluster that is supposed to “absorb”

threads on regions with reduced ploidy. The model would still compute p sequences but with

the additional constraint of using the residual cluster for unnecessary threads. However, this

idea was never implemented, mostly due to the lack of appropriate data for benchmarking

such a feature.

Moving further away from a linear reference, one might even think of graph-based align-

ments as input for a phasing algorithm. Each read then covers a sequence of nodes in a

reference graph instead of a sequence of alleles. The basis of our read clustering model is the

ability to measure the similarity of two reads. With a proper similarity model, cluster editing

could be applied without adjustments to the underlying alignment structure. For haplotype

threading, however, we would again need some definition of where the front and back of the

chromosome are located in the graph and which nodes are considered to be co-linear to each

other. Thus, an extension of WHATSHAP POLYPHASE to graph-based alignments would only be

possible on graphs with a linear coordinate system, where all nodes are traversed in forward

order with respect to the coordinates.

Within the bounds of linear reference genomes, the experiments showed potential for im-

provement on genotype conformity. Allowing WHATSHAP POLYPHASE to deviate from the input

genotype resulted in much lower switch error rates and negated the observed regressions of

the new algorithm in this metric. This implies that variants, where the WHATSHAP POLYPHASE

disagrees with input genotypes, are hotspots for errors and should receive more attention in

algorithmic improvements.

Chapter 4

WhatsHap Polyphase Genetic

This chapter is based on [16], which was published in iScience. I was involved in most of the steps but

was the main contributor to the algorithmic concept and its implementation. For this thesis, I added more

details to the methodology and the context of the method.

In Chapter 2, we saw how reference-based diploid phasing can be enhanced by combining se-

quencing data from related individuals and applying Mendel’s law. This raises the question, of

whether this also holds for polyploid phasing and how the additional information can be em-

bedded into existing approaches. In the following, we will revisit our previous work, describing

a phasing method for datasets with two autopolyploid parental samples and a large popula-

tion of progeny samples that were bred from the parental ones, also called F1 population [16].

First, we will discuss possible challenges of generalizing the concepts from diploid pedigree

phasing to polyploid genomes. Second, we will present the developed method and discuss its

applicability and its relationship to pure read-based methods, like WHATSHAP POLYPHASE.

4.1 Heredity in polyploid genomes

In the diploid reproduction process, we assume both copies of each chromosome to be ho-

mologous, i.e. sharing the same overall structure and most of the present genes. In polyploid

genetics, however, we have to differentiate between allopolyploidy and autopolyploidy. Au-

topolyploid genomes are formed from genome duplications, resulting in more than two ho-

mologous chromosomal copies per cell. In case of an even ploidy p = 2q, the offspring inherits

q chromosomal copies from each of its parents. A prominent example of this category is the

potato (Solanum tuberosum), from which most cultivars are known to be autotetraploid [34,

102].

On the opposite, allopolyploid genomes occur after hybridization of different taxa, possibly

from different species. As a result, the chromosomal copies are diverged from each other and

their differentiation on a sequence level becomes easier. In some cases, the genome can be

separated into its diploid progenitor species – and thus be assembled or phased like a diploid

97

98 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

genome – as has been shown for wheat [103], strawberry [104, 105], and peanut [106]. Since

duplication and hybridization events can occur independently from each other, some species

have accumulated both traits during evolution. One example is the hexaploid sweet potato,

consisting of a diploid and a tetraploid progenitor genome [9].

What sets the hereditary process apart from the already visited diploid case is the huge

number of possible transmissions. At each locus in an autotetraploid genome, there are
�4

2

�
= 6

possibilities to select two haplotypes from each of the parents, resulting in a total of 6 ·6= 36

possible transmissions. Compared to the four possibilities given in diploid species, it shows

that tracking all combinations, like in [13], becomes intractable very quickly.

4.1.1 Previous work

The inclusion of pedigree information into polyploid phasing has been explored by previously

existing tools. TriPoly [42] follows a similar idea as HapTree [60], where a statistical model

is used to infer the most likely set of haplotypes, given the observed input reads. Since the

number of haplotypes grows exponentially with the number of heterozygous variants, both

methods implement a heuristic that constructs the haplotypes by one variant at a time. TriPoly

extends the model to support two parental samples and an arbitrary number of shared offspring

samples. Similar to the findings of Garg et al. [13], the pedigree-based model outperforms

other tested polyploid phasers, which only support a single sample [42].

In Section 3.1, we already discussed that estimating the right dosage of alleles is much

harder in polyploid genomes and usually requires high coverages. As deep sequencing with

long reads is costly, there is a demand for methods working on short-read data. However,

even considering the high SNP density of many plant genomes, short reads still provide very

sparse connectivity and usually result in very short phasing blocks. For plant species, one way

to overcome this problem is to breed many offspring samples from a single pair of parents.

Since every part of a parental autopolyploid genome is, on average, transmitted to half of its

descendants, correctly phased parent sequences should be shared by about half of the bred

population. Recombinations lead to chimeric sequences among the offspring, but can in most

cases be considered rare enough to not skew this relationship.

The research was continued by many of the authors of TriPoly and resulted in a follow-up

tool, named PopPoly [43]. Instead of sequencing a single or few trios with with long reads,

PopPoly shifts the focus towards larger F1 populations, sequenced with short-read technology.

In their experimental study, the authors used population sizes of up to 30 samples and were

able to achieve superior phasing performance over existing approaches, including TriPoly, with

populations of five or more offspring samples.

4.2. WHATSHAP POLYPHASE GENETIC 99

4.2 WhatsHap Polyphase Genetic

We pick up the idea of a large offspring population with low sequencing depth and present

a novel approach to use the population data for haplotype phasing. As opposed to the exist-

ing method, we do not construct haplotype sequences directly from reads but rather use the

genotype information of parents and offspring population to identify so-called marker alleles

within the parent samples and which of them reside on the same haplotypes.

More technically, we designed our algorithm for the following scenario: We are given

genotype data for two parental input samples s′ and s′′, and allele depths for q progeny samples

s1, . . . , sq. The aim is to phase one of the parents, say s′. The other parent s′′ can be phased in

the same way, by switching the roles of s′ and s′′ and re-running the algorithm. We intentionally

do not aim at phasing the progeny because in our setting only low-depth sequencing data is

available for these samples.

In contrast to the previous definitions, let m here be the number of bi-allelic variants that

are heterozygous on s′; all other variants are omitted for now. For a single variant, we call the

more frequent allele among s′ and s′′ the majority allele and the other one the minority allele.

Without loss of generality, we assume that the majority allele is labeled as 0 and the minority

allele as 1. We recall that in the bi-allelic case, genotypes can be expressed as integer numbers

between 0 and p, effectively counting the occurrences of minority alleles. Let Gs
i denote the

genotype of sample s at variant vi . If Gs′
i = 1 and Gs′′

i = 0, we call vi a simplex-nulliplex variant.

Similarly, we call it a simplex-simplex variant if Gs′
i = Gs′′

i = 1 and a duplex-nulliplex variant

if Gs′
i = 2 and Gs′′

i = 0. For each progeny sample s and variant vi , let Di
s(0) and Di

s(1) be the

number of occurrences of the major and minor allele among all reads of s, respectively. The

genotypes and allele depths form the input of our phasing algorithm.

Figure 4.1 shows the pipeline of WHATSHAP POLYPHASE-GENETIC. We start by identify-

ing variant types that are most informative for Mendelian inference rules – usually simplex-

nulliplex variants because they contain a unique and easy-to-trace minority allele (see Sec-

tion 4.2.1 for further reasoning). Each pair (vi , v j) of picked variants is scored by a Bayesian

model, where we compute the support for co-locating the minority alleles on the same hap-

lotype or for placing them on different ones. Every offspring sample s votes for either of two

cases based on the observed allele depths Di
s(0), Di

s(1), D j
s (0), and D j

s (1) for the two variants.

This results in a graph with one vertex per minority allele and a log-likelihood score as edge

weights. Using the same cluster editing model as in Section 3.2, we obtain clusters of alleles

that should be placed on the same haplotype for parent sample s′. This is very similar to the

clustering stage in WHATSHAP POLYPHASE, but here we cluster alleles rather than reads. Like

before, the resulting clustering does not necessarily match the ploidy. Thus, the final step is to

assign clusters to haplotypes in a conflict-minimizing way, using an interval scheduling model

(Section 4.2.3).

We emphasize that WHATSHAP POLYPHASE-GENETIC does not phase all kinds of variants, as

it explicitly selects easy-to-phase variant types in the first step. This is a design choice, as the

100 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

Figure 4.1: Method overview. A: Genotypes of both parent samples are scanned for informative variants. For
illustration purposes, we focus on simplex-nulliplex variant pairs in this overview. B: Based on progeny allele
depths (here we just show progeny genotypes for the sake of simplicity) every variant pair is either classified as
having their minority alleles placed on the same haplotype (green check mark) or not (red cross). We compute a
log-likelihood score for each considered pair of variants. C: We construct a graph with variants as nodes and insert
a weighted edge for every previously computed score between two variants. D: A cluster editing model determines
groups of variants whose minority alleles co-occur on the same haplotype. E: The clusters are embedded into the
variant space to form (padded) intervals from the first to the last covered variant. F: We use an interval scheduling
approach to select a maximum conflict-free subset that corresponds to p haplotypes (here p = 4).

omitted variants would introduce a lot of complexity into our model and only carry very weak

signals. Earlier studies reported a relatively low fraction of multi-allelic variants among SNPs

of less than 6% [34] and in our experiments, 40% of the bi-allelic variants turned out to be

simplex-nulliplex. Our phasing method intends to compute a sparse phasing with gaps instead

of resolving every variant position. The advantage of a genetic phasing method like WHATSHAP

POLYPHASE-GENETIC is that it does not rely on reads providing sufficient connectivity between

variants but instead utilizes the fact that offspring individuals share long coherent pieces of

their DNA with their parents. The distance between variants, for which one can still find

evidence on the co-occurrence of alleles on the same haplotype, is thus limited by the distance

between recombination events and not by the lengths of the input reads.

In the evaluation of WHATSHAP POLYPHASE, we saw that the limited connectivity between

variants eventually causes switch errors in the resulting haplotypes. Ideally, the herein pre-

4.2. WHATSHAP POLYPHASE GENETIC 101

(a) Markers on same haplotype (b) Markers on different haplotype

Figure 4.2: Tetraploid heritage probabilities. Example for L= and L 6= on tetraploid samples and two simplex-
nulliplex variants. Each of the six possible haplotype pairs from the first parent leads to one of four possible
genotype patterns (the other parent is homozygous). For parents, numbers indicate alleles. For offspring, numbers
indicate genotypes, i.e. number of minority alleles.

sented genotype-based phasing would be complemented with a read-based method to combine

the best of both worlds: Long accurate phasing blocks and the ability to resolve all types of

variants in between. This idea will be further discussed in Section 4.4.

4.2.1 Identifying and scoring phasable variants

Following the Mendelian rules, a progeny sample with even ploidy p inherits p
2 of its haplotypes

from each of the two parents. Apart from recombination events, the two inherited haplotypes

from one parent stay the same. This allows us to infer the co-occurrence of certain alleles on

the parental haplotypes without directly incorporating sequencing information. Since we have

to trace the origin of observed alleles among the progeny samples, only certain variant types

can be phased with sufficient statistical evidence. We cover three different pairs of variant

types that WHATSHAP POLYPHASE-GENETIC is able to process. All variant types not covered by

any of these pairs remain unphased.

Two simplex-nulliplex variants

The easiest case is given by two simplex-nulliplex variants vi and v j , where s′ has exactly one

occurrence of the minority allele on any haplotype for each variant. We call these occurrences

markers and denote the indices of the true haplotypes containing the markers (i.e. the minority

alleles) with hi and h j , respectively. Every offspring sample either inherited both minority

alleles, exactly one of them, or none of them with different probabilities, depending on whether

hi = h j or hi 6= h j . Let L=(ni , n j) and L 6=(ni , n j) be the probability for a progeny sample to

inherit ni and n j minor alleles for variants vi and v j , given hi = h j and hi 6= h j respectively.

If there are no recombination events between vi and v j , then L= and L 6= can be computed as

102 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

(a) Markers on same haplotype (b) Markers on different haplotype

Figure 4.3: Tetraploid heritage probabilities. Example for LS
= and LS

6= on tetraploid samples. With the co-parent
being heterozygous on the simplex-simplex variant, there are now six possible offspring genotype patterns. The
striped circles indicate that the first haplotype from the co-parent was inherited.

follows:

L=(1,1) =
(11)·(p−1

p/2−1)
(p

p/2)
= 1

2 L 6=(1,1) =
(22)·(p−2

p/2−2)
(p

p/2)
=

p
2−1

2(p−1)

L=(0,1) = L=(1,0) = 0 L 6=(0,1) = L 6=(1,0) =
(21)·(p−2

p/2−1)
2·(p

p/2)
= p

4(p−1)

L=(0,0) =
(10)·(p−1

p/2)
(p

p/2)
= 1

2 L 6=(0,0) =
(20)·(p−2

p/2)
(p

p/2)
=

p
2−1

2(p−1)

Figure 4.2 illustrates the probabilities L= and L 6= for two simplex-nulliplex variants in the

tetraploid case, depending on whether hi = h j or hi 6= h j .

Simplex-simplex and simplex-nulliplex variant

For the second case, we assume vi to be a simplex-simplex variant, while v j stays simplex-

nulliplex. For vi , each offspring has a 50%-chance to inherit a minority allele from s′′ indepen-

dently from what it inherited from s′. Therefore, it is now possible for an offspring to attain

two minority alleles at vi , even though both parents only possess one minority allele each. We

modify the introduced functions L= and L 6= for the simplex-simplex case and call them LS
= and

LS6=. They are then defined as

LS
=(q, r) =

L=(q, r) + L=(q− 1, r)
2

LS6=(q, r) =
L 6=(q, r) + L 6=(q− 1, r)

2
,

where q ∈ {0,1,2}, r ∈ {0,1}. For consistency, we set L=(q, r) = L 6=(q, r) = 0 for q /∈ {0,1}
because it is not possible to inherit two minority alleles from a simplex-nulliplex variant. The

tetraploid example has been updated accordingly in Figure 4.3.

4.2. WHATSHAP POLYPHASE GENETIC 103

Comparing the two cases that the marker alleles for the parent sample reside on either the

same or on different haplotypes, we can see that the likelihood margins for the same genotype

patterns are strongly reduced compared to Figure 4.2. While before there was a margin of 1
3

for all patterns, it is now at most 1
6 and even 0 for two of the six genotype patterns.

Duplex-nulliplex and simplex-nulliplex variant

As a final case, we consider vi to be a duplex-nulliplex variant, while v j again remains a

simplex-nulliplex variant. This combination is comparable in complexity to the second case,

hence we implemented it for our model. For the sake of completeness, we state the corre-

sponding likelihood functions LD
= and LD6= but do not continue the tetraploid example.

LD
=(2,1) =

(p−2
p/2−2)
(p

p/2)
= p/2−1

2(p−1) LD6=(2,1) = 0

LD
=(2,0) = 0 LD6=(2,0) =

(22)·(p−3
p/2−2)
(p

p/2)
= (p/2)(p/2−1))

2(p−1)(p−2)

LD
=(1,1) =

(11)·(p−2
p/2−1)
(p

p/2)
= p

4(p−1) LD6=(1,1) =
(21)·(p−3

p/2−2)
(p

p/2)
= (p/2)(p/2−1))

(p−1)(p−2)

LD
=(1,0) =

(11)·(p−2
p/2−1)
(p

p/2)
= p

4(p−1) LD6=(1,0) =
(21)·(p−3

p/2−1)
(p

p/2)
= (p/2)(p/2−1))

(p−1)(p−2)

LD
=(0,1) = 0 LD6=(0,1) =

(11)·(p−3
p/2−1)
(p

p/2)
= (p/2)(p/2−1))

2(p−1)(p−2)

LD
=(0,0) =

(p−2
p/2)
(p

p/2)
= p/2−1

2(p−1) LD6=(0,0) =
(p−3

p/2)
(p

p/2)
= (p/2−1)(p/2−2)

2(p−1)(p−2)

We argue that including more complex combinations of variant types would add very little

additional signal to our computation, as the likelihood margins for the resulting genotype pat-

terns diminish further and further. We refer to all variants of type simplex-nulliplex, simplex-

simplex, or duplex-nulliplex as phasable variants and to all pairs of phasable variants that

match one of the three presented cases as phasable variant pair. Note that two variables can

be phasable but not be considered a phasable pair, e.g. two simplex-simplex variants.

Assigning scores

For each phasable pair of variants vi , v j we want to compute the likelihood for two hypotheses:

(i) hi = h j , i.e., the marker alleles for vi and v j reside on the same haplotype, and (ii) hi 6= h j ,

i.e., the marker alleles do not share haplotypes. Duplex-nulliplex variables are a special case,

because we get two marker alleles for a single variant, say vi . In that case, the hypothesis

hi = h j is interpreted as the marker allele for v j to co-occur on the same haplotype as any of

the two marker alleles for vi (or co-occur with none of them for hi 6= h j).

To achieve this, we determine how well the observed allele depth Di
s and D j

s for each

offspring sample s is explained by either of the two hypotheses. The low coverage of the

offspring samples yields inaccurate genotype estimations which incentivizes us to rather work

104 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

on the allele depths directly. We can see the necessary computation for the first hypothesis and

a single offspring s in Equation (4.1). For each possible genotype pair gi , g j for s on variants

vi , v j , we take the likelihood of observing the allele depths of s, assuming that gi and g j are

the true genotypes. Because not all genotype pairs are equally likely, we use L=(gi , g j) as prior

probabilities for each genotype pair (or LS
=(gi , g j) or LD

=(gi , g j), depending on the variant type

of vi). The likelihood of observing certain allele depths only depends on the genotype for the

respective variant position. Therefore, we can split the first factor in each summand into a

product covering both variants vi and v j independently.

P(Di
s , D j

s | hi = h j) =
∑

gi ,g j∈{0,...,p}
P(Di

s , D j
s | Gs

i = gi , Gs
j = g j) · L=(gi , g j)

=
∑

gi ,g j∈{0,...,p}
P(Di

s | Gs
i = gi) · P(D j

s | Gs
j = gi) · L=(gi , g j)

(4.1)

The likelihood to observe Di
s given a genotype gi ∈ {0, . . . , p} follows a binomial distri-

bution as shown in Equation (4.2) where Bpmf(n, k, p) denotes the binomial probability mass

function:

P(Di
s | Gs

i = gi) = Bpmf

Di
s(0) + Di

s(1)︸ ︷︷ ︸
coverage

, Di
s(1)︸ ︷︷ ︸

number of min. alleles

,
gi

p︸︷︷︸
prob. of min. allele

 (4.2)

The analogous case for hi 6= h j uses L 6= instead of L=, but follows the same scheme.

Influence of recombination

When introducing the functions L= and L 6=, we ignored the presence of recombination events.

A single recombination event causes one of the haplotypes of an offspring sample s to inherit

from different parental haplotypes on either side of the event location. Thus, the proposed

probabilities for L= and L 6= (and likewise for the other functions) only hold under the assump-

tion that no recombination event occurred between the two considered variants. However,

without knowledge about recombination rates (that might even differ locally), it is not possi-

ble to correct the probabilities accordingly. Usually, recombination events are quite rare with

less than 10 events per chromosome. If we apply L= and L 6= only to variants with moderate

distance on the genome, the results have a high probability of being correct. We will keep this

issue in mind and discuss it after introducing the clustering stage of the algorithm.

4.2.2 Clustering variants based on Bayesian scores

After all phasable variant pairs are known, the next step is to create an allele graph that con-

tains one node for each marker allele. For every phasable variant pair vi , v j , we connect all

4.2. WHATSHAP POLYPHASE GENETIC 105

marker alleles for vi with all marker alleles for v j by a weighted edge. For duplex-nulliplex vari-

ants, we insert an edge with weight −∞ for the two corresponding marker alleles. All other

pairs of nodes are connected with a zero-weighted edge. We recall here that this method only

phases one of the parents. Thus, we only have a single node for simplex-simplex variants,

while duplex-nulliplex variants induce two nodes.

The idea is very similar to the read clustering in Section 3.2: We want to identify clusters of

marker alleles that are likely to co-occur on the same haplotype. As before, we use the cluster

editing model to transform the graph into a clique graph over the non-negative edges. The

result is a clustering with possibly more than p clusters, which we process in the next stage

of the algorithm. Duplex-nulliplex variants contain two indistinguishable marker alleles that

need to be assigned to one cluster each. For that reason, we insert one node for each marker

allele instead of each variant; this allows a duplex-nulliplex variant to be associated with two

haplotypes while keeping our graph construction compatible with cluster editing. Two alleles

from the same variant can obviously not reside on the same haplotype, hence the forbidden

edges between all node pairs of this kind.

Scoring scheme

In order to complete the graph modeling, we now define how the edge weights are computed

to provide the intended property of scoring co-occurrence likelihoods between allele pairs.

At the top level, the weight s(i, j) of an edge between nodes i and j can be expressed as a

logarithm over the ratio of two likelihoods. We already presented this technique for the read

scoring scheme in Section 3.2.2. The two likelihoods refer to the hypotheses that (i) the marker

alleles of a variant vi share any haplotypes with the marker alleles of variant v j (denoted as

hi = h j) and (ii) that the two sets of marker alleles are disjoint regarding haplotype assignment

(denoted as hi 6= h j); both depend on the observed allele depth among the offspring. If vi has

two marker alleles (and thus is associated with two nodes i1 and i2), both nodes will have the

same neighborhood, i.e., s(i1, j) = s(i2, j) for all other nodes j.

s(i, j) := log

 P(hi = h j | Di
s1

, . . . , Di
sp

, D j
s1

, . . . , D j
sp
)

P(hi 6= h j | Di
s1

, . . . , Di
sp

, D j
s1

, . . . , D j
sp
)



= log


P(Di

s1
,...,Di

sp
,D j

s1 ,...,D j
sp |hi=h j)·P(hi=h j)

P(Di
s1

,...,Di
sp

,D j
s1 ,...,D j

sp)

P(Di
s1

,...,Di
sp

,D j
s1 ,...,D j

sp |hi 6=h j)·P(hi 6=h j)

P(Di
s1

,...,Di
sp

,D j
s1 ,...,D j

sp)


= P(Di

s1
, . . . , Di

sp
, D j

s1
, . . . , D j

sp
| hi = h j)

− P(Di
s1

, . . . , Di
sp

, D j
s1

, . . . , D j
sp
| hi 6= h j) + log

�
1

p− 1

�
(4.3)

The full scoring equation is given in Equation (4.3). Each hypothesis is expressed as a

conditional probability with the observed allele depths over all offspring samples as conditions.

106 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

We apply Bayes’ theorem to express the probabilities as likelihoods of allele depths depending

on either hi = h j or hi 6= h j and resolve both the fraction and the logarithm. The prior

probabilities P(hi = h j) and P(hi 6= h j) are 1
p and p−1

p , respectively.

Since the allele depths of different offspring samples are independent of each other, we can

decompose the conditioned probabilities into products of probabilities over a single offspring

sample each (see Equations (4.4) and (4.5)). These factors are identical to the probabilities

we already computed in Equation (4.1).

P(Di
s1

, . . . , Di
sp

, D j
s1

, . . . , D j
sp
| hi = h j) =

p∏
l=1

P(Di
sl

, D j
sl
| hi = h j) (4.4)

P(Di
s1

, . . . , Di
sp

, D j
s1

, . . . , D j
sp
| hi 6= h j) =

p∏
l=1

P(Di
sl

, D j
sl
| hi 6= h j) (4.5)

This concludes the construction of the allele graph. For solving techniques of the underly-

ing cluster editing model, we refer to the explanations in Section 3.2.

Windowed scoring

A full pair-wise scoring between all phasable variants requires a quadratically growing num-

ber of computations, rendering this process intractable for chromosome-scale phasing. We

therefore use a scoring window W as the maximal distance between two variants, for which

we compute a score between the associated marker alleles. The distance is counted in inter-

mediate phasable variants, i.e. the marker alleles of two variants will only be scored if at most

W − 1 other phasable variants are in between. Otherwise, we apply a neutral score of 0.

The downside of windowed scoring is the loss of connectivity information for distant vari-

ant pairs, which increases the risk of switch errors due to locally (but not globally) optimal

clustering. To keep the window size as large as possible, we introduce a compromise between

maximum variant distance and computational efficiency: Instead of computing a score for all

neighboring variants inside the window, we use a sparse scoring pattern. On average, our

pattern scores every 6th possible variant pair: For every phasable variant vi , we consider the�W
24

�
next and previous phasable variants (regarding their ordered positions on the genome).

From there on, we select every third variant until another
�W

24

�
phasable variants are taken on

each side. We proceed with every seventh variant for the next
�W

24

�
variants on each side and

then select every 13th variant until the bounds of the window are reached. This allows us to

increase W six-fold with the same number of scoring computations.

The sparse pattern consistently improved the phasing quality during our tests. We conclude

that connecting a few distant variants via scoring adds more valuable information to the graph

than fully connecting all variants in a smaller window. The effect of a spread-out scoring

window is visualized in Figures 4.4a and 4.4b with the former displaying a phased region

computed with a filled, short scoring window and the latter the same region but computed with

a sparse window. The spatially more confined window results in a switch error (e.g. due to

4.2. WHATSHAP POLYPHASE GENETIC 107

(a) Switch error inside the genetic phasing.

(b) Same region without switch error.

(c) Combination of two switch errors canceling each other.

Figure 4.4: Switch errors in genetic phasing. This figure shows example regions from three different phasings.
Each variant is drawn as a column, stating its genome position and its four ground-truth alleles as four rectangles
in different shades of gray. The four colored lines represent the predicted haplotypes with the circles on the lines
being the alleles of the respective haplotypes. When the tone of a circle matches the tone of the rectangle behind
it, the predicted haplotype matches the ground truth, other the phasing contains a (flip) error. When colored lines
switch their rows, this means that the cheapest switch-flip transformation (i.e. the transformation that is computed
to determine the SFR) contains switch errors between the respective variant positions. (a) The predicted phasing
was computed with a consecutive scoring window of size 250. When computing the SFR between predicted and
true phasing, the blue and orange haplotypes switch positions, indicating a switch error in the phasing. (b) Here,
a sparse scoring window of size 1500 was used with the same number of scoring computations as the previous
example. The switch error was avoided through the longer scoring range. Note that the haplotype order might be
different and that the variant positions are not congruent, because the differences in scoring resulted in a different
set of phased variants in the results. (c) This again shows the phasing with a sparse window but at a different
location, on which two switch errors cancel each other out.

collapsed regions), while the sparse window prevents this error, despite using the same number

of scoring partners for each variant. However, even large score windows do not prevent all

switch errors, as shown in Figure 4.4c. We can see that the phasing contains two switch errors

that cancel each other out. Even though introducing one of the switches might locally be the

most likely solution to the phaser, it recovers from this mistake through long-range scores in

its allele graph. As default, we choose W = 1500 with 250 scoring partners for each variant

in both directions, because it proved to be a good compromise between speed and accuracy in

practice.

108 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

Influence of recombination

We still have to discuss the influence of recombination events on our scoring scheme. Consid-

ering that the average distance between two consecutive simplex-nulliplex is in the dimension

of 100bp, the distances between scored variants are around hundreds of kb for the default

window size. The exact recombination rate of potato cultivars highly depends on the exact

breed, the chromosome, and the position therein but a rough estimate is that it does not exceed

a rate of 2cM/Mb (centimorgan per million bases) in most cases [107, 108]. This is equiva-

lent to about one recombination every 50Mb, which is more than 100 times larger than the

average distance between scored variants. Thus, when aggregating the score of one variant

pair over all offspring samples, we can expect about 1% of them to yield a false calculation

due to a recombination event between the two variants. We argue that the influence of these

recombination events is low enough for our model to function in the intended way. It would

be beneficial to incorporate information about local recombination rates, but since such infor-

mation was not available to use by the time we developed WHATSHAP POLYPHASE-GENETIC,

we left this issue open for further research.

4.2.3 Assigning haplotypes: Interval scheduling

Cluster editing does not necessarily yield exactly p clusters, which would directly result in

a phasing of all phasable variant pairs. In practice, the number of clusters is much higher

with many small and even singleton clusters due to different sorts of errors and noise in the

data. There are two ways to deal with this issue: We could either find an assignment for all

clusters to the p haplotypes, such that the contradiction to the scores is minimized or we could

find a maximum conflict-free subset of clusters which explains the highest possible number

of variants. To be consistent with the previous design choices of specifically selecting variant

types that fit our statistical model, we decided to implement the second solution.

Let C := {C1, . . . Cq} be the set of computed clusters from the previous step and let min(Ci)

and max(Ci) be the lowest and highest index for all variant indices in Ci for 1≤ i ≤ q, respec-

tively. If two clusters Ci , C j do not overlap and there is at least a full scoring window W of

phasable variants between them, i.e. either max(Ci)+W ≤min(C j) or max(C j)+W ≤min(Ci)

holds, these clusters are compatible and can be assigned to the same haplotype. If Ci and C j do

not overlap but the gap between them is smaller than W phasable variants, then variants from

both clusters have been scored against each other but the clustering model still determined a

split into two clusters as the best solution. In this case, we assume that the variants from Ci

and C j have to be assigned to different haplotypes.

As an illustration, Figure 4.5 shows an example of four haplotypes. The clusters at the

top have been computed by the clustering stage and contain sets of marker alleles with a

certain (horizontal) position inside the variant space. For the haplotype assignment, a subset

of clusters is selected such that there is no overlap and at least a distance of W between all

clusters on the same haplotype. The goal is to find an assignment of each cluster to either

4.2. WHATSHAP POLYPHASE GENETIC 109

(a) Allele clusters embedded into the variant space

(b) Clusters assigned to haplotypes with at least distance W to one another

Figure 4.5: Example for cluster scheduling. (a) Clusters are drawn as colored bars with contained marker alleles
as black stripes. The horizontal position indicates the position of each allele in the variant space. (b) For a ploidy
of 4, a subset of clusters is assigned to the four haplotypes. Clusters must not overlap and leave a horizontal space
of at least W between them. The selection maximizes the number of contained marker alleles.

one of the k haplotypes or to remain unphased, such that the total number of assigned marker

alleles is maximized. For instance, the orange cluster with four marker alleles in the fourth row

is not placed on the first haplotype because it is too close to the purple and turquoise clusters.

The turquoise cluster on the first haplotype could be replaced by the magenta cluster on the

right side which has a larger horizontal span. However, since we optimize for the number of

assigned marker alleles, this replacement would result in an overall worse solution.

In scheduling theory, the described optimization problem is known as weighted interval

scheduling on p identical machines. Each cluster Ci corresponds to a job with fixed start time

min(Ci), fixed end time max(Ci), and profit wi , representing the number of contained marker

alleles. Arkin and Silverberg developed both a formulation as an Integer Linear Program (ILP)

and as a minimum cost flow [109]. They also point out that the matrix of the constraint

coefficients is unimodular, such that the ILP is solvable in polynomial time.

Here, we use an alternative and easy-to-implement ILP formulation, which can still be

solved efficiently in practice. It contains a set of binary variables x j
i for 1 ≤ i ≤ q, 1 ≤ j ≤ p,

where q is the number of clusters. If cluster i is assigned to haplotype j, x j
i is set to 1 and

0 otherwise. Let X := {(i, l) | Ci incompatible to Cl}. Then an optimal cluster assignment is

found by solving the following ILP:

max
q∑

i=1

p∑
j=1

x j
i wi (4.6)

subject to x j
i + x j

l ≤ 1 ∀1≤ j ≤ p, ∀ (i, l) ∈ X (4.7)
p∑

j=1

x j
i ≤ 1 ∀1≤ i ≤ q (4.8)

x j
i ∈ {0,1} ∀1≤ i ≤ q, ∀1≤ j ≤ p (4.9)

110 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

After the optimal haplotype assignment is computed, we report all assigned alleles as

phased in the output VCF file. Our method does not offer any routine to determine cut positions

because we assume the entire chromosome to be connected through heredity information.

4.3 Experiments

The structure of this section and some of the phrasing are taken from [16].

We conducted our benchmarks on two parent samples of Solanum tuberosum, named “Altus”

and “Colomba”, and 193 offspring samples. Each of the samples has been sequenced using

Illumina sequencing technology with 250bp paired-end reads. The average sequencing depth

is ∼6× for each offspring sample and more than 300× for each parental sample. We aligned

all reads to the Solyntus V1.1 reference genome [50] and performed a variant calling using

GATK [37]. In addition, we have a library of HiFi reads for Altus with an average coverage of

24× per haplotype.

In order to evaluate the accuracy of our method, we used the HiFi reads to create four

ground truth haplotypes for small stretches of the genome. We computed an assembly graph

over these reads using hifiasm v0.13 [56] with standard settings, aligned the node sequences

to the reference genome, and selected three regions on chromosomes 3, 4, and 5 that were

continuously covered by four contigs each. Despite their relatively small size of about 300kb,

they were among the largest of their kind, as it proved quite difficult to find long regions with

four clearly visible haplotypes based on the assembly alone. We extracted these regions from

the VCF files and both the HiFi and Illumina BAM files. In the following, we will refer to these

regions by just stating the chromosome number, i.e., chromosome 3, 4 or 5.

To our knowledge, there is no other method that utilizes the same type of input as WHATSHAP

POLYPHASE-GENETIC. The variety of existing phasing algorithms we mentioned in Chapter 3 is

designed to compute phasings from reads of a single individual. The genetic polyploid algo-

rithms TriPoly [42] and PopPoly [43] are closest to our method in terms of input data but still

require input reads for all offspring samples, and are thus not directly applicable to our data.

We used the same machine and workflows to execute the experiments as in the previous

chapters.

4.3.1 Evaluation on HiFi-assembled regions

I repeated the experiments from [16] for the full population runs and newly created plots for this. I added

one setting without retyping and an explanation of what the retyping does.

We ran WHATSHAP POLYPHASE-GENETIC on all three regions with the default scoring window

of 250 (or 1500 if one counts the gaps as well) and three different variant selections: (i)

only simplex-nulliplex variants, (ii) additional simplex-simplex variants and (iii) additional

4.3. EXPERIMENTS 111

duplex-nulliplex variants, i.e., all three implemented types. We refer to these selections by

their indices 1, 2, and 3. We only included SNPs in our experiments because they can be most

reliably called from short reads.

Like the read-based version, WHATSHAP POLYPHASE-GENETIC has an optional flag that al-

lows overriding the genotypes provided by the VCF but does not consider any variants marked

as homozygous in the VCF. Since the genotypes impact the selection of phasable variants,

the optional flag also triggers a retyping of genotypes before variants are classified for the

actual phasing. The retyping selects the most likely genotype configuration for the parents

regarding how well the configuration explains the observed allele depths among the offspring

samples. Only the variants that are retyped into a suitable genotype configuration (depending

on whether variant type subsets 1, 2, or 3 were chosen) will be kept for further computations.

All other variants remain unchanged in the VCF.

We used the --distrust-genotypes option for most of our experiments, as it improved

the results for all three test regions. We included one set of experiments with the flag disabled

to show the impact of the retyping. As error metrics, we use the Hamming rate (HR), switch

error rate (SER), and wrong genotype rate (WGR) that we defined in Section 1.5. Additionally,

we also report the number of phased variants.

The results for all three regions are summarized in Figure 4.6. The sets of phasable variant

types are indicated by numbers 1, 2, and 3, as explained above. As expected, including more

variant types increases the number of phased variants. However, the more complex variant

types also result in higher error rates. Especially the inclusion of duplex-nulliplex variants (on

top of simplex-simplex variants) causes a three-fold increase in the HR on all three regions.

This can be mostly explained by the even larger increase in wrong genotypes among the phased

variants. In comparison, the addition of only simplex-simplex variants shows a moderate but

still noticeable increase in error rates. On chromosomes 3 and 5, the error rates are very close

to the setting with simplex-nulliplex variants only, but the increase in additionally phased is

also only minimal. On chromosome 4, there are a lot more simplex-simplex variants, but

therefore all error metrics degrade substantially with this variant type included.

In general, the Hamming rates can be considered quite low for simplex-nulliplex variants

with less than 1% on chromosomes 4 and 5. This proves the overall correctness of the com-

puted phasing. For chromosome 3, the HR grows to almost 3% which can be explained by the

elevated genotype divergence compared to the other two regions. Depending on the chromo-

some, WHATSHAP POLYPHASE-GENETIC is able to phase about 25-40% of the biallelic variants

with these settings. The variant retyping improves all tested metrics substantially for simplex-

nulliplex variants except for the HR for chromosome 4 and a slight loss of phased variants in

chromosomes 3 and 4. Therefore, we enabled the retyping for all other conducted tests. The

exact numbers underlying the plots are provided in Supplementary Tables C.1, C.2, and C.3.

As the parental coverage was relatively high in the initial runs, we repeated the experiments

for the simplex-nulliplex instances, but only used 50% and 25% of the parental reads for

genotyping, respectively. That is, we used GATK to downsample the parental read data to

112 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

(a) Results for chromosome 3 (region ch03:60,269,000-60,504,000) with 9549 bi-allelic
and 10286 total variants.

(b) Results for chromosome 4 (region ch04:71,586,000-71,947,000) with 12378 bi-allelic
and 14500 total variants.

(c) Results for chromosome 5 (region ch05:56,711,000-57,066,000) with 13030 bi-allelic
and 15810 total variants.

Figure 4.6: Evaluation of WHATSHAP POLYPHASE-GENETIC. The algorithm was run on three selected regions
using various different configurations. The numbers indicate the phasable variant set (1: only simplex-nulliplex
variants, 2: additionally simplex-simplex variants, 3: all three implemented types). The first set was tested without
retyped variants and with genotype calls from only 50% and 25% of the Illumina reads, respectively.

50% and 25% on chromosomes 3, 4, and 5 and reran WHATSHAP POLYPHASE-GENETIC on

the newly called variants. The number of phased variants decreases consistently with lower

coverage, resulting in a total decline of about 20%. The main cause are genotype shifts during

the variant calling due to different (and less) read information. Simplex-nulliplex variants in

the full data set shift into another variant much more often than the other way around. The

error rates follow no clear pattern throughout the coverage reduction. One would expect them

to grow along with the uncertainty of the variant call like for the chromosome 4 region, but the

other two regions rather see lower error rates with lower coverage. Aside from observing this

4.3. EXPERIMENTS 113

Figure 4.7: Degradation of phasing accuracy with smaller offspring pool. Shows SER, HR, and number of
phased variants (y-axis) for different offspring pool sizes (x-axis) on the three validation regions (colors). Each
point represents the mean value of the 10 random samples for each of the sample sizes. Error rates are shown as
percentages, variant counts as thousands.

phenomenon by chance due to a single downsample experiment instead of multiple ones, one

explanation (which we could neither prove nor reject) could be that the remaining simplex-

nulliplex variants are more stable and easier to phase.

We further explored how dependent the phaser is on the number of offspring samples and

parental sequencing depth. From the 193 offspring samples, we drew 10 random subsamples

of sizes between 15 and 150 and reran the experiments for simplex-nulliplex variants only.

The results for the three regions and three selected metrics are summarized in Figure 4.7. As

expected, all error rates increase with smaller samples. Especially samples with less than 60

offspring begin to fall off from the rest.

4.3.2 WH-PPG scales to whole chromosomes

We ran WHATSHAP POLYPHASE-GENETIC on all twelve chromosomes of Solanum tuberosum to

show its scalability to full genomes. We report the runtime and memory consumption since

there exists no haplotype-resolved assembly of our sample to which we can compare the re-

sulting phasing.

Figure 4.8 shows some statistics about the whole-chromosome runs. There is, on average,

one simplex-nulliplex variant every 100bp, of which WHATSHAP POLYPHASE-GENETIC phased

about 80%. All chromosomes were phased separately in parallel, running on a single core

each. This results in a total of 300 CPU hours for the entire genome where chromosome 3

114 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

Figure 4.8: Results on whole chromosomes. Left: Length and number of simplex-nulliplex variants per chro-
mosome with smaller green bars indicate the fraction of actually phased variants. Right: Used resources per
chromosome.

had the highest running time (40 hours) and chromosome 6 had the highest peak memory

consumption (44GB).

A strength of genetic phasing is the reduced dependency on read connectivity to pro-

duce long haplotype blocks. To evaluate this, we mapped all HiFi reads against the reference

genome to get an estimate of what read-based phasers could achieve with the currently avail-

able data. We removed all intervals of size at least 10kb and with coverage less than k = 4

from the reference genome, as the HiFi reads will likely not be able to connect four haplotype

blocks on each side of these intervals but instead induce at least one cut position each. If we

order the remaining connected components by size, we can estimate the minimal block size

of a best-case phasing that covers a fraction x of the phased chromosome for 0≤ x ≤ 1. Note

that the block size is equivalent to the N50 block size for x = 0.5. These estimates are sum-

marized for each chromosome in Figure 4.9. Covering the relative size of the largest block

is always possible with the largest block itself, hence the starting point (x i , x i) for each chro-

mosome (with x i being the relative size of the largest block on chromosome i). Except for

chromosomes 7 and 10, the N50 block size would be below 20% of the chromosome size and

below 5% if 90% of the chromosome are to be covered.

4.4 Integrating genetic and read-based phasing

This section has been newly added. The discussed topic has been mentioned as future work in [16] without

any further details.

In Chapter 3 we evaluated WHATSHAP POLYPHASE and realized that many computed phasings

contained critical switch errors. On the contrary, it is not restricted in what types of vari-

ants it can phase. These complementary strengths and weaknesses of WHATSHAP POLYPHASE-

4.4. INTEGRATING GENETIC AND READ-BASED PHASING 115

Figure 4.9: Block size estimates for different chromosome coverages. The x-axis represents the fraction of the
chromosome covered by blocks and the y-axis shows the minimum block size (relative to the full chromosome)
needed to reach the corresponding chromosome coverage.

GENETIC raised the question of whether both methods can be combined if both genotype data

from offspring and sequencing data for the parents are available.

Both methods use fundamentally different models: WHATSHAP POLYPHASE clusters reads

based on their allele similarity and subsequently works with the clusters to compute a phas-

ing from left to right (with respect to genome positions). On the other side, WHATSHAP

POLYPHASE-GENETIC clusters alleles and solves a global assignment problem to form haplo-

types. Therefore, it is not obvious how to combine both methods into a single model. We

propose two ideas on how the two methods can interact, one of which is implemented in the

tool itself. Both ideas require that WHATSHAP POLYPHASE-GENETIC is run first and its output

directly used in WHATSHAP POLYPHASE.

Sparse haplotypes as pre-phasing

The first idea is to use the sparse phasing from WHATSHAP POLYPHASE-GENETIC as pre-phasing.

We defined this concept in Section 1.4 and described how it can be leveraged for reordering

phase blocks in Section 3.4.3. In short, we run the purely read-based WHATSHAP POLYPHASE

algorithm until we obtain phase blocks with ambiguous connections to their neighbors through

collapsed regions or unconnected variants. For each haplotype block within, we compute a

similarity to each of the sparse haplotypes based on common variants to find an optimal global

assignment of haplotype blocks to one of the sparse haplotypes.

To test this hybrid procedure of read-based and genetic phasing, we used the high-quality

regions from Section 4.3 and the respective pre-phasings obtained by WHATSHAP POLYPHASE-

GENETIC for (i) simplex-nulliplex variants only and for (ii) all three implemented variant

types. The pre-phasings were passed to WHATSHAP POLYPHASE as VCF input and the flag

116 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

--use-prephasing was enabled. Based on our observations from Section 3.5.3, we also added

the flag --distrust-genotypes to account for the large genotype divergence between the

variant calling from Illumina reads and the assembly-based ground-truth phasing from HiFi

reads. As read input, we both used the HiFi reads (described in Section 3.5.3) for the respec-

tive regions, as well as the Illumina reads originally used for the variant calling (described at

the beginning of Section 4.3). To avoid any intermediate cut positions introduced by discon-

nected variants, we used the lowest block cut sensitivity -B 0 on all hybrid runs. As a baseline,

we ran WHATSHAP POLYPHASE without pre-phasings (called “read-based”) once with the same

block cut sensitivity -B 0 and once with -B 1 to show how the disconnected variants affect

the overall phasing contiguity.

In Figure 4.10, we see the results for all three tested regions and two read datasets each.

The differences between read-based and hybrid phasing are rather small in general. The SER

and SFR are on par for the same block-cut policy over all datasets. Since the first two stages

of WHATSHAP POLYPHASE are identical in both read-based and hybrid phasing, the additional

information is only leveraged to eliminate switch errors between already computed phasing

blocks. This limits the room for improvements on the SER and SFR metrics. For the HR,

however, we can see much larger improvements for some datasets. The HiFi readsets on

chromosome 3 and 5 regions show the largest benefits, while the chromosome 4 region stays

almost unaffected. In general, the HR still stays on a very high level despite the small tested

regions.

Cutting the phasing on disconnected variants is a sensible choice for purely read-based

approaches and can lead to lower HR values, e.g. for HiFi chromosome 4 region and Illumina

chromosome 5 region. However, the N50 block size, which we normalized to the length of

each tested region, decreases dramatically. The reason for that is probably large indels on the

sequenced individual, which aggravate the correct read alignments and induce coverage gaps

among the variants.

Sparse haplotypes as super reads

Another idea to utilize the sparse haplotypes is to interpret them as a set of so-called super

reads that span the entire chromosome. For every phased variant, each of the p super reads

contains the corresponding allele, while unphased variants result in a gap on all super reads.

When running WHATSHAP POLYPHASE, we add the super reads to the readset R to incorporate

the contained connectivity information. For the clustering stage (see Section 3.2), we require

that all super reads have to be assigned to different clusters by manually inserting forbidden

edges into the read graph. Instead of computing a fragmented clustering, all reads should

rather be connected to their most similar super read and form much larger clusters that span

the entire chromosome.

The advantage over the first method is the earlier inclusion of pre-phasing information to

avoid errors that cannot be corrected anymore in the reordering stage. In practice, however,

4.4. INTEGRATING GENETIC AND READ-BASED PHASING 117

(a) Chromosome 3 region phased with HiFi reads (b) Chromosome 3 region phased with Illumina reads

(c) Chromosome 4 region phased with HiFi reads (d) Chromosome 4 region phased with Illumina reads

(e) Chromosome 5 region phased with HiFi reads (f) Chromosome 5 region phased with Illumina reads

Figure 4.10: Evaluation of hybrid phasing. The plots show a comparison between pure read-based phasing
and hybrid phasing that additionally uses pre-phasing information based on genetic phasing. The former was run
without cut positions (-B 0) and with cuts whenever no read connects two consecutive variants (-B 1). The latter
was run with pre-phasings containing only simplex-simplex variants and pre-phasings with all available variant
types. N50 is given as a percentage of the length of the phased region.

the idea proved to scale very poorly with large readsets. The reason lies in the way the clus-

tering algorithm works: Whenever an edge weight is updated in the read graph G, the icp and

icf values for all incident non-zero edges have to be updated as well. The average number of

non-zero neighbors for any node in G is close to the average coverage in R because only read

pairs that overlap on at least two variant positions receive a non-zero score. The super reads

represent hub nodes with degree O(|R|) in the read graph because they overlap with almost

every other read. This means that every edge update between a regular read r1 and a super

read r2 requires an icp and icf update on every other edge that is incident to r2. We ran the

118 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

cluster editing heuristic for the small selected regions defined in Section 4.3.1 but already ran

into scalability issues with a more than a hundred-fold increase in running time compared to

an instance without super reads. Since we expect the runtime increase to grow with larger

regions based on the above observation, we decided that this implementation is not tractable

to compute long-range phasings, which was its original purpose.

4.5 Discussion

Many discussion points are picked from the discussion in [16], but I added further explanations on the lim-

itations to certain variant types and included the findings about hybrid phasing (integrating both genetic

and read-based phasing) that were firstly described in this thesis. Some phrasings are borrowed from [16].

In this chapter, we presented our novel phasing algorithm WHATSHAP POLYPHASE-GENETIC

which is based on genotype (or allele depth) information from a large offspring population

of two parental samples. In contrast, the polyploid phasing method from Chapter 3 uses read

information from a single sample directly and does neither utilize nor require data from ad-

ditional individuals. The main advantage of WHATSHAP POLYPHASE-GENETIC is the ability to

coherently phase variants over longer distances without depending on read connectivity, as

we showed in our experiments in Section 4.3.1 that are only based on short reads. It can

handle multiple genotype configurations that make up a large fraction of the present variants

among the phased parents. In addition, our method is scalable to a whole chromosome using

moderate computational resources.

4.5.1 Limitations

On the contrary, WHATSHAP POLYPHASE-GENETIC also faces several limitations. Even though

we implemented support for multiple parental genotype patterns, it still has to omit a signif-

icant amount of variants compared to read-based phasers. This limitation is inherent to the

statistical approach of the allele graph: Simply adding an implementation for all remaining

genotype configurations will likely result in low phasing accuracy, as we already observed a

significant rise in error rates in our experiments when adding simplex-simplex and duplex-

nulliplex variants to the default setting of only utilizing simplex-nulliplex variants. The design

choice to compute a maximum conflict-free assignment of marker alleles to haplotypes af-

ter the clustering step over computing a conflict-minimizing but complete assignment leads

to more unphased variants. It is consistent with the choice of limiting the allele clustering

to easy-to-phase variant types, but also prevents our algorithm from producing a complete

phasing.

To circumvent the described issue, we combined the genetic phasing with our read-based

phasing from Chapter 3. Even though we observed minor improvements in phasing quality

when supporting the read-based method with the sparse haplotypes computed by WHATSHAP

4.5. DISCUSSION 119

POLYPHASE-GENETIC, the accuracy is overall much lower than for the genetic phasing alone,

especially when using the short Illumina reads. We did not investigate these results any further,

but the pre-phasing input for WHATSHAP POLYPHASE seems to only have little impact on the

final phasing and is unable to repair any mistakes that might have been made in the first two

stages of the algorithm.

Another limitation concerns our experiments themselves. We pointed out before that we

used HiFi-based genome assemblies to identify regions that exhibit four distinct homologous

contigs because there exists no gold-standard phasing for the sequenced potato samples we

worked on. Since this effort only yielded three rather small regions of about 300kb each, the

validity of our findings is quite limited.

A major issue in this context certainly is the high genetic diversity of the potato genome

which is hard to represent with a linear reference genome. In any case, aligning a contig

from hifiasm against the Solyntus reference genome produced hundreds of small alignments,

some of them even scattered over different chromosomes. This is likely the result of structural

variants, including large insertions and deletions, which have been revealed in a recent study

by Sun et al. [51]. The fact that there are large insertions or deletions on single haplotypes –

let alone more complex rearrangements – and thus not always p haplotypes present at each

site, is not accounted for by current polyploid phasers, including the method described here.

4.5.2 Future work

The stated limitations open up opportunities to improve on our research in follow-up work: On

the algorithmic side, the most interesting question is how read-based and genetic phasing can

be combined more effectively. We already described an effort to include the sparse haplotypes

from the genetic phasing as long super reads for the read-based phasing. One could either

explore other ways to include the pre-phasing into earlier stages of WHATSHAP POLYPHASE that

do not pose the same computational scalability issues or one could also develop a combined

model that performs genetic and read-based phasing simultaneously.

On the validation side, a simulation study could provide sufficient proof for the phasing

accuracy of our model over a larger distance, which is the main benefit of genetic phasing.

Since the simulation allows control over all intermediately generated data, it enables a com-

parison between WHATSHAP POLYPHASE-GENETIC and the existing genetic phasers TriPoly and

PopPoly. We note here that data simulation does not replace tests on real data, because there

are a lot of unknown parameters in the simulation process, such as how to generate structural

variants on the simulated haplotypes and what the recombination landscape looks like for the

simulated species. As an alternative, the assemblies computed in [52] on the same offspring

data but with additional HiFi reads for the parents could be translated into a phasing for the

linear reference genome to validate the sparse phasings from our method.

120 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

Conclusions

Throughout this thesis, we reviewed and discussed many different approaches for reference-

based haplotype phasing. In Chapter 2, we focused on the existing phasing tool WHATSHAP,

which infers haplotypes for either diploid individuals (either singles or related trios) using

aligned reads and an existing variant calling. Diploid haplotypes are (in most cases) comple-

mentary to each other because heterozygosity directly implies different alleles on each haplo-

type. Thus, one haplotype can be derived from the other.

For single individuals, WHATSHAP solves the commonly used MEC model to optimality. For

related individuals, it solves the generalized PedMEC model [13], which adds additional con-

straints based on the rules of Mendelian inheritance. To counteract the limitation of WHATSHAP

of exponential runtime scaling with coverage among all individuals, only a subset of the input

data can be used in the process. As a result, the average haploid coverage of each individual

becomes quite low for pedigree phasing. We attempted to tackle this problem with a heuristic

approach for the PedMEC model that is able to process higher coverages at the expense of

losing optimality. We compared the heuristic to the exact solver in terms of phasing quality

and runtime. As test dataset, we used a human sample with gold-standard haplotypes and

real reads for the sample itself and its parents available. While the heuristic was able to pro-

cess each instance and phased slightly more variants, it rarely surpassed the exact algorithm in

phasing quality using the additional data. Nevertheless, it proved to be competitive in terms of

computational resources. We also observed some anomalies in the experiments when passing

datasets with high coverage to the PedMEC solver. This issue and the fact there the heuristic

generally phases additional variants of potentially low quality over the exact algorithm leaves

room for further development in the future.

Moving from diploid to polyploid phasing, we discussed the arising challenges for poly-

ploid genomes in Chapter 3. We pointed out that the MEC model is unsuited for the polyploid

case because it does not consider collapsed regions and uniform haplotype coverage. To ad-

dress these challenges, we presented WHATSHAP POLYPHASE as a novel approach for single-

individual, read-based polyploid phasing. We have already published several of these ideas

before in a prior publication [14] but added several new ones in this thesis to improve the

model. We presented the most recent version in detail and pointed out differences to the pub-

lished version. For evaluation, we repeated our experiments on an artificial tetraploid human

from our previous work [14]with both the old and new versions of WHATSHAP POLYPHASE. We

121

122 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

again compared our work to H-POP-G [40] – in its newest version – and also included a newer

tool called FLOPP [15], which was published well after our initial publication. Surprisingly, the

changes of the new version of WHATSHAP POLYPHASE over the old one showed performance

regressions regarding phasing quality, whose specific cause we were unable to pin down fully.

However, on the datasets generated by Shaw and Yu [15] and HiFi reads from a real potato

sample, the adjustments of the revised algorithm resulted in a clear improvement over the old

one. Compared to the other algorithms, a general advantage of (both versions of) WHATSHAP

POLYPHASE remains to be the flexible cut position policy, enabling a trade-off between phase

block length and phasing accuracy.

Even though WHATSHAP POLYPHASE offers better performance in SER and SFR metrics

than H-POP-G and FLOPP when considering the better out of old and new version for each

dataset, the conducted tests revealed room for improvement in several areas. Large phasing

blocks suffer from critical switch errors that severely degrade the performance on the HR

metric, while H-POP-G and FLOPP seem less susceptible to this issue. In combination with the

adjustable block cut strategy, it would be highly desirable to identify the cause of these critical

switches and develop better criteria for phase block separation, such that the blocks become

longer but maintain their high accuracy. Another issue is the substantial decline in switch

errors when dropping the requirement to match the input genotype from the VCF file. Since

genotype enforcement is a late step in our algorithm, genotype divergences before this point

could hint at potential error hotspots and a more sophisticated enforcement model could be

an opportunity for further quality improvements.

In addition to the single-individual WHATSHAP POLYPHASE, we adapted pedigree phas-

ing for the polyploid case in Chapter 4 and presented a second method, called WHATSHAP

POLYPHASE-GENETIC. In contrast to the former, our latter method leverages genotype and al-

lele depth information instead of reads. It requires data from two parental samples and a

large offspring population, and is thus not suitable for single individuals. Moreover, it is only

able to phase variants with certain genotype patterns among the parents due to the insuffi-

cient statistical signal on the unphased patterns. For a couple of small selected regions of the

potato genome, we were able to infer four distinct homologous contigs from a HiFi assembly.

These contigs served as a ground-truth phasing for these regions and, as a proof-of-concept

for the accuracy of our method, we showed that these contig-based phasings are close to what

WHATSHAP POLYPHASE-GENETIC computes for the same regions. We also demonstrated the

ability of our method to scale to full chromosomes, although we were unable to validate its

phasing quality due to a missing reference phasing. In addition, we combined our two algo-

rithms into a hybrid method, where the sparse genetic phasing is used as a pre-phasing for

WHATSHAP POLYPHASE to reorder haplotype blocks and the accuracy for long phasing blocks.

However, the performed tests only revealed subtle improvements compared to purely read-

based phasing. We assume that the reordering stage is unable to correct errors made in the

previous stages and suggest as future research either integrating the pre-phasing already in

4.5. DISCUSSION 123

earlier stages of WHATSHAP POLYPHASE or developing a combined model that uses both reads

and pedigree information simultaneously.

Validating polyploid phasing methods proved to be a difficult task because haplotype-

resolved samples suitable as gold standards are very rare. Many published assemblies of

plant genomes are based on diploid assemblies by either using the allopolyploid nature of the

species [103, 104, 105, 106] or sequencing pollen that only contain half a haplotype set [51].

This results in many polyploid phasing algorithms (including our own) being validated on sim-

ulated data, which tends to be more benevolent to process than real data because structural

variants or repetitive regions are not well-studied enough to incorporate them in the simula-

tion process in a representative way. Since applicability to real-world datasets is an important

feature of novel phasing tools, it is difficult to judge the performance of a tool from simulated

data alone. The initial version of WHATSHAP POLYPHASE, for instance, performed well on our

artificial tetraploid human dataset but showed severe issues on unseen simulated datasets from

other studies. We, therefore, believe that the research field of polyploid phasing would greatly

benefit from high-quality, haplotype-resolved assemblies of autopolyploid samples that serve

as an accurate benchmark for existing and future tools.

On a larger note, the general approach of reference-based phasing should also be critically

discussed; in human genomics, there has been a tremendous effort to create a high-quality

linear representation of the human genome, resulting in the latest CHM13 reference by the

Telomere-to-Telomere consortium [110]. Polyploid plant genomes, however, contain much

more diversity and structural variants, as pointed out in the discussion in Section 4.5. This

considerably aggravates the construction of good reference genomes and the projection of

phased individuals to a linear genome space. In our studies of the Altus and Colomba potato

cultivars we experienced several issues that we believe are related to the limitations of linear

references.

This observation should motivate future research on polyploid phasing to shift the focus

to either non-linear references or reference-free approaches. In the discussion in Section 3.6,

we already proposed the use of reference graphs as a more powerful means to express genetic

variation. This representation has gained a lot of attention in the recent past in the context

of pangenomics and the need to store the genomic diversity of large populations in a single

structure [111]. The methods presented in this thesis are not directly applicable to such graphs

– as they require a linear coordinate system – but some of the core ideas might be adjustable

to non-linear structures for further research. Assembly-based approaches are potentially even

more powerful, as they do not rely at all on previous knowledge about the species to phase.

In a recent study by Serra Mari et al. [52], we successfully computed haplotype-resolved as-

semblies for the same Altus cultivar that we used for evaluation in Chapter 4. Instead of a

reference genome, the algorithm requires data from multiple sequencing technologies and

multiple individuals, which is a lot of effort for a single phasing.

In summary, reference-based phasing methods will likely stay more limited in what varia-

tion they can resolve on polyploid species compared to diploid phasing on human genomes.

124 CHAPTER 4. WHATSHAP POLYPHASE GENETIC

However, this does not generally render reference-based phasing methods unsuitable for poly-

ploid genomes in comparison to reference-free methods, because (i) the stored information in

the reference allows for a more cost-efficient way to generate phasings and (ii) it keeps the

compatibility to many existing tools in bioinformatics (e.g. variant callers) that are built on

reference genomes as well. As a result, we believe that the two paradigms form complemen-

tary approaches for the same problem and will both profit from one another regarding future

research advances.

Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular biology

of the cell. Volume 5. Garland Science, 2008. ISBN: 9780815341055.

[2] R. Tewhey, V. Bansal, A. Torkamani, E. J. Topol, and N. J. Schork. “The importance of

phase information for human genomics”. In: Nature Reviews Genetics 12.3 (Feb. 2011),

pages 215–223. DOI: 10.1038/nrg2950.

[3] G. Glusman, H. C. Cox, and J. C. Roach. “Whole-genome haplotyping approaches and

genomic medicine”. In: Genome Medicine 6.9 (Sept. 2014). 73. DOI: 10.1186/s13073-

014-0073-7.

[4] D. J. Lawson, G. Hellenthal, S. Myers, and D. Falush. “Inference of Population Structure

using Dense Haplotype Data”. In: PLOS Genetics 8.1 (Jan. 2012), pages 1–16. DOI:

10.1371/journal.pgen.1002453.

[5] P. C. Sabeti, P. Varilly, B. Fry, J. Lohmueller, E. Hostetter, C. Cotsapas, X. Xie, E. H.

Byrne, S. A. McCarroll, R. Gaudet, S. F. Schaffner, E. S. Lander, and T. I. H. Consortium.

“Genome-wide detection and characterization of positive selection in human popula-

tions”. In: Nature 449.7164 (Oct. 2007), pages 913–918. DOI: 10.1038/nature06250.

[6] E. Ukkonen. “Finding Founder Sequences from a Set of Recombinants”. In: Algorithms

in Bioinformatics. Edited by R. Guigó and D. Gusfield. Springer Berlin Heidelberg,

2002, pages 277–286. ISBN: 978-3-540-45784-8. DOI: 10.1007/3-540-45784-4_21.

[7] K. Bonnet, T. Marschall, and D. Doerr. “Constructing founder sets under allelic and non-

allelic homologous recombination”. In: Algorithms for Molecular Biology 18.1 (Sept.

2023), page 15. DOI: 10.1186/s13015-023-00241-3.

[8] L. Xie, X. Gong, K. Yang, Y. Huang, S. Zhang, L. Shen, Y. Sun, D. Wu, C. Ye, Q.-H. Zhu,

and L. Fan. “Technology-enabled great leap in deciphering plant genomes”. In: Nature

Plants (Mar. 2024). DOI: 10.1038/s41477-024-01655-6.

[9] J. Yang, M.-H. Moeinzadeh, H. Kuhl, J. Helmuth, P. Xiao, S. Haas, G. Liu, J. Zheng, Z.

Sun, W. Fan, G. Deng, H. Wang, F. Hu, S. Zhao, A. R. Fernie, S. Boerno, B. Timmermann,

P. Zhang, and M. Vingron. “Haplotype-resolved sweet potato genome traces back its

hexaploidization history”. In: Nature Plants (Aug. 2017). DOI: 10.1038/s41477-017-

0002-z.

125

https://doi.org/10.1038/nrg2950
https://doi.org/10.1186/s13073-014-0073-7
https://doi.org/10.1186/s13073-014-0073-7
https://doi.org/10.1371/journal.pgen.1002453
https://doi.org/10.1038/nature06250
https://doi.org/10.1007/3-540-45784-4_21
https://doi.org/10.1186/s13015-023-00241-3
https://doi.org/10.1038/s41477-024-01655-6
https://doi.org/10.1038/s41477-017-0002-z
https://doi.org/10.1038/s41477-017-0002-z

126 BIBLIOGRAPHY

[10] R. G. F. Visser, C. W. B. Bachem, T. Borm, J. de Boer, H. J. van Eck, R. Finkers, G.

van der Linden, C. A. Maliepaard, J G A M, R. Voorrips, P. Vos, and A. M. A. Wolters.

“Possibilities and Challenges of the Potato Genome Sequence”. In: Potato Res. 57.3-4

(Dec. 2014), pages 327–330. DOI: 10.1007/s11540-015-9282-8.

[11] K.-T. Li, M. Moulin, N. Mangel, M. Albersen, N. M. Verhoeven-Duif, Q. Ma, P. Zhang,

T. B. Fitzpatrick, W. Gruissem, and H. Vanderschuren. “Increased bioavailable vitamin

B6 in field-grown transgenic cassava for dietary sufficiency”. In: Nature Biotechnology

33 (Oct. 2015), pages 1029–1032. DOI: 10.1038/nbt.3318.

[12] M. Patterson, T. Marschall, N. Pisanti, L. van Iersel, L. Stougie, G. W. Klau, and A.

Schönhuth. “WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequenc-

ing Reads”. In: Journal of Computational Biology 22.6 (June 2015), pages 498–509.

DOI: 10.1089/cmb.2014.0157.

[13] S. Garg, M. Martin, and T. Marschall. “Read-based phasing of related individuals”. In:

Bioinformatics 32.12 (June 2016), pages i234–i242. DOI: 10.1093/bioinformatics/

btw276.

[14] S. Schrinner, R. Mari, J. Ebler, M. Rautiainen, L. Seillier, J. Reimer, B. Usadel, T.

Marschall, and G. Klau. “Haplotype threading: accurate polyploid phasing from long

reads”. In: Genome biology 21 (Sept. 2020). 252. DOI: 10.1186/s13059-020-02158-1.

[15] J. Shaw and Y. W. Yu. “flopp: Extremely Fast Long-Read Polyploid Haplotype Phas-

ing by Uniform Tree Partitioning”. In: Journal of Computational Biology 29.2 (2022),

pages 195–211. DOI: 10.1089/cmb.2021.0436.

[16] S. Schrinner, R. Serra Mari, R. Finkers, P. Arens, B. Usadel, T. Marschall, and G. W.

Klau. “Genetic polyploid phasing from low-depth progeny samples”. In: iScience 25.6

(2022), page 104461. DOI: 10.1016/j.isci.2022.104461.

[17] F. Sanger, S. Nicklen, and A. R. Coulson. “DNA sequencing with chain-terminating

inhibitors”. In: Proceedings of the National Academy of Sciences of the United States of

America 74.12 (Dec. 1977), pages 5463–5467. DOI: 10.1073/pnas.74.12.5463.

[18] A. M. Maxam and W. Gilbert. “A new method for sequencing DNA.” In: Proceedings

of the National Academy of Sciences of the United States of America 74.2 (Feb. 1977),

pages 560–564. DOI: 10.1073/pnas.74.2.560.

[19] J. Shendure, S. Balasubramanian, G. M. Church, W. Gilbert, J. Rogers, J. A. Schloss,

and R. H. Waterston. “DNA sequencing at 40: past, present and future”. In: Nature

550.7676 (Oct. 2017), pages 345–353. DOI: 10.1038/nature24286.

[20] W. R. McCombie, J. D. McPherson, and E. R. Mardis. “Next-generation sequencing

technologies”. In: Cold Spring Harb. Perspect. Med. 9.11 (Nov. 2019). DOI: 10.1101/

cshperspect.a036798.

https://doi.org/10.1007/s11540-015-9282-8
https://doi.org/10.1038/nbt.3318
https://doi.org/10.1089/cmb.2014.0157
https://doi.org/10.1093/bioinformatics/btw276
https://doi.org/10.1093/bioinformatics/btw276
https://doi.org/10.1186/s13059-020-02158-1
https://doi.org/10.1089/cmb.2021.0436
https://doi.org/10.1016/j.isci.2022.104461
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.74.2.560
https://doi.org/10.1038/nature24286
https://doi.org/10.1101/cshperspect.a036798
https://doi.org/10.1101/cshperspect.a036798

BIBLIOGRAPHY 127

[21] M. M. Mohammadi and O. Bavi. “DNA sequencing: an overview of solid-state and bio-

logical nanopore-based methods”. In: Biophysical Reviews 14.1 (Feb. 2022), pages 99–

110. DOI: 10.1007/s12551-021-00857-y.

[22] Illumina Inc. An introduction to Next-Generation Sequencing Technology. URL: https:

//www. illumina . com/ content/dam/ illumina - marketing/documents/products/

illumina_sequencing_introduction.pdf. Accessed: 2024-03-29.

[23] G. A. Logsdon, M. R. Vollger, and E. E. Eichler. “Long-read human genome sequencing

and its applications”. In: Nature Reviews Genetics 21.10 (Oct. 2020), pages 597–614.

DOI: 10.1038/s41576-020-0236-x.

[24] Illumina Inc. Specifications for the NextSeq 550 System. URL: https://www.illumina.

com/systems/sequencing-platforms/nextseq/specifications.html. Accessed: 2024-03-

29.

[25] F. Pfeiffer, C. Gröber, M. Blank, K. Händler, M. Beyer, J. L. Schultze, and G. Mayer.

“Systematic evaluation of error rates and causes in short samples in next-generation

sequencing”. In: Scientific Reports 8.1 (July 2018). 10950. DOI: 10.1038/s41598-018-

29325-6.

[26] N. Stoler and A. Nekrutenko. “Sequencing error profiles of Illumina sequencing instru-

ments”. In: NAR Genomics and Bioinformatics 3.1 (Mar. 2021). lqab019. DOI: 10.1093/

nargab/lqab019.

[27] J. L. Weirather, M. de Cesare, Y. Wang, P. Piazza, V. Sebastiano, X.-J. Wang, D. Buck,

and K. F. Au. “Comprehensive comparison of Pacific Biosciences and Oxford Nanopore

Technologies and their applications to transcriptome analysis [version 2; peer review:

2 approved]”. In: F1000Research 6.100 (June 2017). DOI: 10.12688/f1000research.

10571.2.

[28] A. M. Wenger, P. Peluso, W. J. Rowell, P.-C. Chang, R. J. Hall, G. T. Concepcion, J. Ebler,

A. Fungtammasan, A. Kolesnikov, N. D. Olson, A. Töpfer, M. Alonge, M. Mahmoud, Y.

Qian, C.-S. Chin, A. M. Phillippy, M. C. Schatz, G. Myers, M. A. DePristo, J. Ruan,

T. Marschall, F. J. Sedlazeck, J. M. Zook, H. Li, S. Koren, A. Carroll, D. R. Rank, and

M. W. Hunkapiller. “Accurate circular consensus long-read sequencing improves vari-

ant detection and assembly of a human genome”. In: Nature Biotechnology 37.10 (Oct.

2019), pages 1155–1162. DOI: 10.1038/s41587-019-0217-9.

[29] S. B. Needleman and C. D. Wunsch. “A general method applicable to the search for

similarities in the amino acid sequence of two proteins”. In: Journal of Molecular Biol-

ogy 48.3 (1970), pages 443–453. DOI: 10.1016/0022-2836(70)90057-4.

[30] T. Smith and M. Waterman. “Identification of common molecular subsequences”. In:

Journal of Molecular Biology 147.1 (1981), pages 195–197. DOI: 10 . 1016 /0022 -

2836(81)90087-5.

https://doi.org/10.1007/s12551-021-00857-y
https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
https://doi.org/10.1038/s41576-020-0236-x
https://www.illumina.com/systems/sequencing-platforms/nextseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/nextseq/specifications.html
https://doi.org/10.1038/s41598-018-29325-6
https://doi.org/10.1038/s41598-018-29325-6
https://doi.org/10.1093/nargab/lqab019
https://doi.org/10.1093/nargab/lqab019
https://doi.org/10.12688/f1000research.10571.2
https://doi.org/10.12688/f1000research.10571.2
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5

128 BIBLIOGRAPHY

[31] H. Li. “Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM”. In: ArXiv 1303 (Mar. 2013). DOI: 10.48550/arXiv.1303.3997.

[32] H. Li. “Minimap2: pairwise alignment for nucleotide sequences”. In: Bioinformatics

34.18 (May 2018), pages 3094–3100. DOI: 10.1093/bioinformatics/bty191.

[33] The 1000 Genomes Project Consortium. “A global reference for human genetic varia-

tion”. In: Nature 526.7571 (Oct. 2015), pages 68–74. DOI: 10.1038/nature15393.

[34] J. G. A. M. L. Uitdewilligen, A.-M. A. Wolters, B. B. Dhoop, T. J. A. Borm, R. G. F.

Visser, and H. J. van Eck. “A Next-Generation Sequencing Method for Genotyping-by-

Sequencing of Highly Heterozygous Autotetraploid Potato”. In: PLOS ONE 8.5 (May

2013), pages 1–14. DOI: 10.1371/journal.pone.0062355.

[35] B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison. “Genome graphs and the evo-

lution of genome inference”. In: Genome Research 27.5 (May 2017), pages 665–676.

DOI: 10.1101/gr.214155.116.

[36] E. Garrison and G. Marth. “Haplotype-based variant detection from short-read se-

quencing”. In: arXiv 1207 (July 2012). DOI: 10.48550/arXiv.1207.3907.

[37] R. Poplin, V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O. Carneiro, G. A. V. der Auw-

era, D. E. Kling, L. D. Gauthier, A. Levy-Moonshine, D. Roazen, K. Shakir, J. Thibault,

S. Chandran, C. Whelan, M. Lek, S. Gabriel, M. J. Daly, B. Neale, D. G. MacArthur, and

E. Banks. “Scaling accurate genetic variant discovery to tens of thousands of samples”.

In: bioRxiv (2018). DOI: 10.1101/201178.

[38] J. Köster, L. J. Dijkstra, T. Marschall, and A. Schönhuth. “Varlociraptor: enhancing

sensitivity and controlling false discovery rate in somatic indel discovery”. In: Genome

Biology 21.1 (Apr. 2020). 98. DOI: 10.1186/s13059-020-01993-6.

[39] G. W. Klau and T. Marschall. “A Guided Tour to Computational Haplotyping”. In: Un-

veiling Dynamics and Complexity. Volume 10307. Lecture Notes in Computer Science.

Cham: Springer, June 2017, pages 50–63. DOI: 10.1007/978-3-319-58741-7_6.

[40] M. Xie, Q. Wu, J. Wang, and T. Jiang. “H-PoP and H-PoPG: heuristic partitioning algo-

rithms for single individual haplotyping of polyploids”. In: Bioinformatics 32.24 (Aug.

2016), pages 3735–3744. DOI: 10.1093/bioinformatics/btw537.

[41] J. C. Roach, G. Glusman, R. Hubley, S. Z. Montsaroff, A. K. Holloway, D. E. Mauldin,

D. Srivastava, V. Garg, K. S. Pollard, D. J. Galas, L. Hood, and A. F. A. Smit. “Chromo-

somal Haplotypes by Genetic Phasing of Human Families”. In: The American Journal of

Human Genetics 89.3 (Sept. 2011), pages 382–397. DOI: 10.1016/j.ajhg.2011.07.023.

[42] E. Motazedi, D. de Ridder, R. Finkers, S. Baldwin, S. Thomson, K. Monaghan, and

C. Maliepaard. “TriPoly: haplotype estimation for polyploids using sequencing data

of related individuals”. In: Bioinformatics 34.22 (June 2018), pages 3864–3872. DOI:

10.1093/bioinformatics/bty442.

https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1038/nature15393
https://doi.org/10.1371/journal.pone.0062355
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.48550/arXiv.1207.3907
https://doi.org/10.1101/201178
https://doi.org/10.1186/s13059-020-01993-6
https://doi.org/10.1007/978-3-319-58741-7_6
https://doi.org/10.1093/bioinformatics/btw537
https://doi.org/10.1016/j.ajhg.2011.07.023
https://doi.org/10.1093/bioinformatics/bty442

BIBLIOGRAPHY 129

[43] E. Motazedi, C. Maliepaard, R. Finkers, R. Visser, and D. de Ridder. “Family-Based Hap-

lotype Estimation and Allele Dosage Correction for Polyploids Using Short Sequence

Reads”. In: Frontiers in Genetics 10 (2019). DOI: 10.3389/fgene.2019.00335.

[44] S. R. Browning and B. L. Browning. “Haplotype phasing: existing methods and new

developments”. In: Nature Reviews Genetics 12.10 (Oct. 2011), pages 703–714. DOI:

10.1038/nrg3054.

[45] B. L. Browning, X. Tian, Y. Zhou, and S. R. Browning. “Fast two-stage phasing of large-

scale sequence data”. In: The American Journal of Human Genetics 108.10 (2021),

pages 1880–1890. DOI: https://doi.org/10.1016/j.ajhg.2021.08.005.

[46] P.-R. Loh, P. Danecek, P. F. Palamara, C. Fuchsberger, Y. A Reshef, H. K Finucane, S.

Schoenherr, L. Forer, S. McCarthy, G. R. Abecasis, R. Durbin, and A. L Price. “Reference-

based phasing using the Haplotype Reference Consortium panel”. In: Nature Genetics

48.11 (Nov. 2016), pages 1443–1448. DOI: 10.1038/ng.3679.

[47] R. J. Hofmeister, D. M. Ribeiro, S. Rubinacci, and O. Delaneau. “Accurate rare vari-

ant phasing of whole-genome and whole-exome sequencing data in the UK Biobank”.

In: Nature Genetics 55.7 (July 2023), pages 1243–1249. DOI: 10.1038/s41588-023-

01415-w.

[48] M. J. P. Chaisson, A. D. Sanders, X. Zhao, A. Malhotra, D. Porubsky, T. Rausch, E. J.

Gardner, O. L. Rodriguez, L. Guo, R. L. Collins, X. Fan, J. Wen, R. E. Handsaker, S.

Fairley, Z. N. Kronenberg, X. Kong, F. Hormozdiari, D. Lee, A. M. Wenger, A. R. Hastie,

D. Antaki, T. Anantharaman, P. A. Audano, H. Brand, S. Cantsilieris, H. Cao, E. Cerveira,

C. Chen, X. Chen, C.-S. Chin, Z. Chong, N. T. Chuang, C. C. Lambert, D. M. Church, L.

Clarke, A. Farrell, J. Flores, T. Galeev, D. U. Gorkin, M. Gujral, V. Guryev, W. H. Heaton,

J. Korlach, S. Kumar, J. Y. Kwon, E. T. Lam, J. E. Lee, J. Lee, W.-P. Lee, S. P. Lee, S. Li,

P. Marks, K. Viaud-Martinez, S. Meiers, K. M. Munson, F. C. P. Navarro, B. J. Nelson, C.

Nodzak, A. Noor, S. Kyriazopoulou-Panagiotopoulou, A. W. C. Pang, Y. Qiu, G. Rosanio,

M. Ryan, A. Stütz, D. C. J. Spierings, A. Ward, A. E. Welch, M. Xiao, W. Xu, C. Zhang,

Q. Zhu, X. Zheng-Bradley, E. Lowy, S. Yakneen, S. McCarroll, G. Jun, L. Ding, C. L.

Koh, B. Ren, P. Flicek, K. Chen, M. B. Gerstein, P.-Y. Kwok, P. M. Lansdorp, G. T. Marth,

J. Sebat, X. Shi, A. Bashir, K. Ye, S. E. Devine, M. E. Talkowski, R. E. Mills, T. Marschall,

J. O. Korbel, E. E. Eichler, and C. Lee. “Multi-platform discovery of haplotype-resolved

structural variation in human genomes”. In: Nature Communications 10.1 (Apr. 2019).

1784. DOI: 10.1038/s41467-018-08148-z.

[49] P. Ebert, P. A. Audano, Q. Zhu, B. Rodriguez-Martin, D. Porubsky, M. J. Bonder, A.

Sulovari, J. Ebler, W. Zhou, R. S. Mari, F. Yilmaz, X. Zhao, P. Hsieh, J. Lee, S. Kumar,

J. Lin, T. Rausch, Y. Chen, J. Ren, M. Santamarina, W. Höps, H. Ashraf, N. T. Chuang,

X. Yang, K. M. Munson, A. P. Lewis, S. Fairley, L. J. Tallon, W. E. Clarke, A. O. Basile,

M. Byrska-Bishop, A. Corvelo, U. S. Evani, T.-Y. Lu, M. J. P. Chaisson, J. Chen, C. Li,

https://doi.org/10.3389/fgene.2019.00335
https://doi.org/10.1038/nrg3054
https://doi.org/https://doi.org/10.1016/j.ajhg.2021.08.005
https://doi.org/10.1038/ng.3679
https://doi.org/10.1038/s41588-023-01415-w
https://doi.org/10.1038/s41588-023-01415-w
https://doi.org/10.1038/s41467-018-08148-z

130 BIBLIOGRAPHY

H. Brand, A. M. Wenger, M. Ghareghani, W. T. Harvey, B. Raeder, P. Hasenfeld, A. A.

Regier, H. J. Abel, I. M. Hall, P. Flicek, O. Stegle, M. B. Gerstein, J. M. C. Tubio, Z. Mu,

Y. I. Li, X. Shi, A. R. Hastie, K. Ye, Z. Chong, A. D. Sanders, M. C. Zody, M. E. Talkowski,

R. E. Mills, S. E. Devine, C. Lee, J. O. Korbel, T. Marschall, and E. E. Eichler. “Haplotype-

resolved diverse human genomes and integrated analysis of structural variation”. In:

Science 372.6537 (2021). DOI: 10.1126/science.abf7117.

[50] N. van Lieshout, A. van der Burgt, M. E. de Vries, M. ter Maat, D. Eickholt, D. Esselink,

M. P. W. van Kaauwen, L. P. Kodde, R. G. F. Visser, P. Lindhout, and R. Finkers. “Solyntus,

the new highly contiguous reference genome for potato (Solanum tuberosum)”. In: G3

(Bethesda) 10.10 (Oct. 2020), pages 3489–3495. DOI: 10.1534/g3.120.401550.

[51] H. Sun, W.-B. Jiao, K. Krause, J. A. Campoy, M. Goel, K. Folz-Donahue, C. Kukat, B.

Huettel, and K. Schneeberger. “Chromosome-scale and haplotype-resolved genome as-

sembly of a tetraploid potato cultivar”. In: Nature Genetics 54.3 (Mar. 2022), pages 342–

348. DOI: 10.1038/s41588-022-01015-0.

[52] R. Serra Mari, S. Schrinner, R. Finkers, F. M. R. Ziegler, P. Arens, M. H.-W. Schmidt,

B. Usadel, G. W. Klau, and T. Marschall. “Haplotype-resolved assembly of a tetraploid

potato genome using long reads and low-depth offspring data”. In: Genome Biology

25.1 (Jan. 2024). DOI: 10.1186/s13059-023-03160-z.

[53] X. Zhang, R. Wu, Y. Wang, J. Yu, and H. Tang. “Unzipping haplotypes in diploid and

polyploid genomes”. In: Computational and Structural Biotechnology Journal 18 (2020),

pages 66–72. DOI: 10.1016/j.csbj.2019.11.011.

[54] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy.

“Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and

repeat separation”. In: Genome Research 27.5 (Mar. 2017), pages 722–736. DOI: 10.

1101/gr.215087.116.

[55] M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner. “Assembly of long, error-prone reads

using repeat graphs”. In: Nature Biotechnology 37.5 (May 2019), pages 540–546. DOI:

10.1038/s41587-019-0072-8.

[56] H. Cheng, G. T. Concepcion, X. Feng, H. Zhang, and H. Li. “Haplotype-resolved de novo

assembly using phased assembly graphs with hifiasm”. In: Nature Methods 18.2 (Feb.

2021), pages 170–175. DOI: 10.1038/s41592-020-01056-5.

[57] S. Koren, A. Rhie, B. P. Walenz, A. T. Dilthey, D. M. Bickhart, S. B. Kingan, S. Hiendleder,

J. L. Williams, T. P. L. Smith, and A. M. Phillippy. “De novo assembly of haplotype-

resolved genomes with trio binning”. In: Nature Biotechnology 36.12 (Dec. 2018),

pages 1174–1182. DOI: 10.1038/nbt.4277.

https://doi.org/10.1126/science.abf7117
https://doi.org/10.1534/g3.120.401550
https://doi.org/10.1038/s41588-022-01015-0
https://doi.org/10.1186/s13059-023-03160-z
https://doi.org/10.1016/j.csbj.2019.11.011
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1038/nbt.4277

BIBLIOGRAPHY 131

[58] Z. N. Kronenberg, A. Rhie, S. Koren, G. T. Concepcion, P. Peluso, K. M. Munson, D.

Porubsky, K. Kuhn, K. A. Mueller, W. Y. Low, S. Hiendleder, O. Fedrigo, I. Liachko,

R. J. Hall, A. M. Phillippy, E. E. Eichler, J. L. Williams, T. P. L. Smith, E. D. Jarvis, S. T.

Sullivan, and S. B. Kingan. “Extended haplotype-phasing of long-read de novo genome

assemblies using Hi-C”. In: Nature Communications 12.1 (Apr. 2021), page 1935. DOI:

10.1038/s41467-020-20536-y.

[59] E. Motazedi, R. Finkers, C. Maliepaard, and D. de Ridder. “Exploiting next-generation

sequencing to solve the haplotyping puzzle in polyploids: a simulation study”. In: Brief-

ings in Bioinformatics 19.3 (May 2018), pages 387–403. DOI: 10.1093/bib/bbw126.

[60] E. Berger, D. Yorukoglu, J. Peng, and B. Berger. “HapTree: A Novel Bayesian Frame-

work for Single Individual Polyplotyping Using NGS Data”. In: PLOS Computational

Biology 10.3 (Mar. 2014), pages 1–10. DOI: 10.1371/journal.pcbi.1003502.

[61] National Center for Biotechnology Information and U.S. National Library of Medicine.

File Format Guide. URL: https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/.

Accessed: 2024-03-16.

[62] National Center for Biotechnology Information and U.S. National Library of Medicine.

BLAST Topics. URL: https://blast .ncbi .nlm.nih.gov/doc/blast - topics/. Accessed:

2024-03-16.

[63] Illumina Inc. FASTQ files explained. URL: https://knowledge.illumina.com/software/

general/software-general-reference_material-list/000002211. Accessed: 2024-03-16.

[64] Samtools. The Variant Call Format Specification, VCFv4.3 and BCFv2.2. URL: https :

//samtools.github.io/hts-specs/VCFv4.3.pdf. Accessed: 2024-03-16.

[65] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. “Algorithmic strategies for the single

nucleotide polymorphism haplotype assembly problem”. In: Briefings in Bioinformatics

3.1 (Mar. 2002), pages 23–31. DOI: 10.1093/bib/3.1.23.

[66] R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp. “On the Complexity of Several Hap-

lotyping Problems”. In: Algorithms in Bioinformatics. Edited by R. Casadio and G. My-

ers. Springer Berlin Heidelberg, 2005, pages 128–139. ISBN: 978-3-540-31812-5. DOI:

10.1007/11557067_11.

[67] R.-S. Wang, L.-Y. Wu, Z.-P. Li, and X.-S. Zhang. “Haplotype reconstruction from SNP

fragments by minimum error correction”. In: Bioinformatics 21.10 (Feb. 2005), pages 2456–

2462. DOI: 10.1093/bioinformatics/bti352.

[68] V. Bansal and V. Bafna. “HapCUT: an efficient and accurate algorithm for the haplotype

assembly problem”. In: Bioinformatics 24.16 (Aug. 2008), pages i153–i159. DOI: 10.

1093/bioinformatics/btn298.

https://doi.org/10.1038/s41467-020-20536-y
https://doi.org/10.1093/bib/bbw126
https://doi.org/10.1371/journal.pcbi.1003502
https://www.ncbi.nlm.nih.gov/sra/docs/submitformats/
https://blast.ncbi.nlm.nih.gov/doc/blast-topics/
https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002211
https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002211
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://doi.org/10.1093/bib/3.1.23
https://doi.org/10.1007/11557067_11
https://doi.org/10.1093/bioinformatics/bti352
https://doi.org/10.1093/bioinformatics/btn298
https://doi.org/10.1093/bioinformatics/btn298

132 BIBLIOGRAPHY

[69] D. He, A. Choi, K. Pipatsrisawat, A. Darwiche, and E. Eskin. “Optimal algorithms

for haplotype assembly from whole-genome sequence data”. In: Bioinformatics 26.12

(June 2010), pages i183–i190. DOI: 10.1093/bioinformatics/btq215.

[70] Z.-Z. Chen, F. Deng, and L. Wang. “Exact algorithms for haplotype assembly from

whole-genome sequence data”. In: Bioinformatics 29.16 (June 2013), pages 1938–

1945. DOI: 10.1093/bioinformatics/btt349.

[71] M. Etemadi Maryam and Bagherian, Z.-Z. Chen, and L. Wang. “Better ILP models

for haplotype assembly”. In: BMC Bioinformatics 19.52 (Feb. 2018). DOI: 10.1186/

s12859-018-2012-x.

[72] J. M. Zook, D. Catoe, J. McDaniel, L. Vang, N. Spies, A. Sidow, Z. Weng, Y. Liu, C. E. Ma-

son, N. Alexander, E. Henaff, A. B. McIntyre, D. Chandramohan, F. Chen, E. Jaeger, A.

Moshrefi, K. Pham, W. Stedman, T. Liang, M. Saghbini, Z. Dzakula, A. Hastie, H. Cao, G.

Deikus, E. Schadt, R. Sebra, A. Bashir, R. M. Truty, C. C. Chang, N. Gulbahce, K. Zhao,

S. Ghosh, F. Hyland, Y. Fu, M. Chaisson, C. Xiao, J. Trow, S. T. Sherry, A. W. Zaranek,

M. Ball, J. Bobe, P. Estep, G. M. Church, P. Marks, S. Kyriazopoulou-Panagiotopoulou,

G. X. Zheng, M. Schnall-Levin, H. S. Ordonez, P. A. Mudivarti, K. Giorda, Y. Sheng,

K. B. Rypdal, and M. Salit. “Extensive sequencing of seven human genomes to char-

acterize benchmark reference materials”. In: Scientific Data 3.1 (June 2016). 160025.

DOI: 10.1038/sdata.2016.25.

[73] O. Delaneau, J. Marchini, and The 1000 Genomes Project Consortium. “Integrating

sequence and array data to create an improved 1000 Genomes Project haplotype ref-

erence panel”. In: Nature Communications 5.1 (June 2014). 3934. DOI: 10 . 1038/

ncomms4934.

[74] J. Wagner, N. D. Olson, L. Harris, Z. Khan, J. Farek, M. Mahmoud, A. Stankovic, V.

Kovacevic, B. Yoo, N. Miller, J. A. Rosenfeld, B. Ni, S. Zarate, M. Kirsche, S. Agane-

zov, M. C. Schatz, G. Narzisi, M. Byrska-Bishop, W. Clarke, U. S. Evani, C. Markello,

K. Shafin, X. Zhou, A. Sidow, V. Bansal, P. Ebert, T. Marschall, P. Lansdorp, V. Hanlon,

C.-A. Mattsson, A. M. Barrio, I. T. Fiddes, C. Xiao, A. Fungtammasan, C.-S. Chin, A. M.

Wenger, W. J. Rowell, F. J. Sedlazeck, A. Carroll, M. Salit, and J. M. Zook. “Bench-

marking challenging small variants with linked and long reads”. In: Cell Genomics 2.5

(2022). 100128. DOI: 10.1016/j.xgen.2022.100128.

[75] M. Rautiainen, S. Nurk, B. P. Walenz, G. A. Logsdon, D. Porubsky, A. Rhie, E. E. Eichler,

A. M. Phillippy, and S. Koren. “Telomere-to-telomere assembly of diploid chromosomes

with Verkko”. In: Nature Biotechnology 41.10 (Oct. 2023), pages 1474–1482. DOI: 10.

1038/s41587-023-01662-6.

[76] F. Mölder, K. Jablonski, B. Letcher, M. Hall, C. Tomkins-Tinch, V. Sochat, J. Forster,

S. Lee, S. Twardziok, A. Kanitz, A. Wilm, M. Holtgrewe, S. Rahmann, S. Nahnsen,

https://doi.org/10.1093/bioinformatics/btq215
https://doi.org/10.1093/bioinformatics/btt349
https://doi.org/10.1186/s12859-018-2012-x
https://doi.org/10.1186/s12859-018-2012-x
https://doi.org/10.1038/sdata.2016.25
https://doi.org/10.1038/ncomms4934
https://doi.org/10.1038/ncomms4934
https://doi.org/10.1016/j.xgen.2022.100128
https://doi.org/10.1038/s41587-023-01662-6
https://doi.org/10.1038/s41587-023-01662-6

BIBLIOGRAPHY 133

and J. Köster. “Sustainable data analysis with Snakemake [version 2; peer review: 2

approved]”. In: F1000Research 33 (2021). DOI: 10.12688/f1000research.29032.2.

[77] D. Aguiar and S. Istrail. “Haplotype assembly in polyploid genomes and identical by

descent shared tracts”. In: Bioinformatics 29.13 (July 2013), pages i352–i360. DOI:

10.1093/bioinformatics/btt213.

[78] D. Aguiar and S. Istrail. “HapCompass: a fast cycle basis algorithm for accurate hap-

lotype assembly of sequence data”. In: Journal of Computational Biology 19.6 (June

2012), pages 577–590. DOI: 10.1089/cmb.2012.0084.

[79] S. Das and H. Vikalo. “SDhaP: haplotype assembly for diploids and polyploids via semi-

definite programming”. In: BMC Genomics 16 (Apr. 2015), page 260. DOI: 10.1186/

s12864-015-1408-5.

[80] D. He, S. Saha, R. Finkers, and L. Parida. “Efficient algorithms for polyploid haplotype

phasing”. In: BMC Genomics 19.Suppl 2 (May 2018). 110. DOI: 10.1186/s12864-018-

4464-9.

[81] M. J. P. Chaisson, S. Mukherjee, S. Kannan, and E. E. Eichler. “Resolving multicopy du-

plications de novo using polyploid phasing”. In: Research in Computational Molecular

Biology 10229 (May 2017), pages 117–133. DOI: 10.1007/978-3-319-56970-3_8.

[82] C. Cai, S. Sanghavi, and H. Vikalo. “Structured Low-Rank Matrix Factorization for

Haplotype Assembly”. In: IEEE Journal of Selected Topics in Signal Processing 10.4 (June

2016), pages 647–657. DOI: 10.1109/JSTSP.2016.2547860.

[83] A. Hashemi, B. Zhu, and H. Vikalo. “Sparse Tensor Decomposition for Haplotype As-

sembly of Diploids and Polyploids”. In: BMC Genomics 19.4 (Mar. 2018). 191. DOI:

10.1186/s12864-018-4551-y.

[84] E. Siragusa, N. Haiminen, R. Finkers, R. Visser, and L. Parida. “Haplotype assembly of

autotetraploid potato using integer linear programing”. In: Bioinformatics 35.18 (Jan.

2019), pages 3279–3286. DOI: 10.1093/bioinformatics/btz060.

[85] M.-H. Moeinzadeh, J. Yang, E. Muzychenko, G. Gallone, D. Heller, K. Reinert, S. Haas,

and M. Vingron. “Ranbow: A fast and accurate method for polyploid haplotype re-

construction”. In: PLOS Computational Biology 16.5 (May 2020), pages 1–23. DOI:

10.1371/journal.pcbi.1007843.

[86] S. Mazrouee and W. Wang. “PolyCluster: Minimum Fragment Disagreement Cluster-

ing for Polyploid Phasing”. In: IEEE/ACM Transactions on Computational Biology and

Bioinformatics 17.1 (2020), pages 264–277. DOI: 10.1109/TCBB.2018.2858803.

[87] N. Bansal, A. Blum, and S. Chawla. “Correlation Clustering”. In: Machine Learning 56.1

(July 2004), pages 89–113. DOI: 10.1023/B:MACH.0000033116.57574.95.

https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1093/bioinformatics/btt213
https://doi.org/10.1089/cmb.2012.0084
https://doi.org/10.1186/s12864-015-1408-5
https://doi.org/10.1186/s12864-015-1408-5
https://doi.org/10.1186/s12864-018-4464-9
https://doi.org/10.1186/s12864-018-4464-9
https://doi.org/10.1007/978-3-319-56970-3_8
https://doi.org/10.1109/JSTSP.2016.2547860
https://doi.org/10.1186/s12864-018-4551-y
https://doi.org/10.1093/bioinformatics/btz060
https://doi.org/10.1371/journal.pcbi.1007843
https://doi.org/10.1109/TCBB.2018.2858803
https://doi.org/10.1023/B:MACH.0000033116.57574.95

134 BIBLIOGRAPHY

[88] C. Zahn. “Approximating Symmetric Relations by Equivalence Relations”. In: Journal

of the Society for Industrial & Applied Mathematics 12 (Dec. 1964), pages 840–847.

DOI: 10.1137/0112071.

[89] R. Shamir, R. Sharan, and D. Tsur. “Cluster graph modification problems”. In: Discrete

Applied Mathematics 144.1 (2004). Discrete Mathematics and Data Mining, pages 173–

182. DOI: https://doi.org/10.1016/j.dam.2004.01.007.

[90] E. D. Demaine and N. Immorlica. “Correlation Clustering with Partial Information”.

In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques. Edited by S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai. Springer Berlin

Heidelberg, 2003, pages 1–13. ISBN: 978-3-540-45198-3. DOI: 10.1007/978-3-540-

45198-3_1.

[91] O. Abou Saada, A. Tsouris, C. Eberlein, A. Friedrich, and J. Schacherer. “nPhase: an

accurate and contiguous phasing method for polyploids”. In: Genome Biology 22.1

(2021), page 126. DOI: 10.1186/s13059-021-02342-x.

[92] R. Shirali Hossein Zade, A. Urhan, A. Assis de Souza, A. Singh, and T. Abeel. “HAT:

haplotype assembly tool using short and error-prone long reads”. In: Bioinformatics

38.24 (Oct. 2022), pages 5352–5359. DOI: 10.1093/bioinformatics/btac702.

[93] O. A. Saada, A. Friedrich, and J. Schacherer. “Towards accurate, contiguous and com-

plete alignment-based polyploid phasing algorithms”. In: Genomics 114.3 (2022). 110369.

DOI: 10.1016/j.ygeno.2022.110369.

[94] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truss, and S. Böcker. “Exact and

Heuristic Algorithms for Weighted Cluster Editing”. In: Computational systems bioinfor-

matics / Life Sciences Society. Computational Systems Bioinformatics Conference 6 (Feb.

2007), pages 391–401. DOI: 10.1142/9781860948732_0040.

[95] S. Böcker, S. Briesemeister, and G. W. Klau. “Exact Algorithms for Cluster Editing:

Evaluation and Experiments”. In: Algorithmica 60.2 (June 2011), pages 316–334. DOI:

10.1007/s00453-009-9339-7.

[96] L. H. N. Lorena, M. G. Quiles, A. C. P. d. L. F. de Carvalho, and L. A. N. Lorena. “Pre-

processing Technique for Cluster Editing via Integer Linear Programming”. In: Intelli-

gent Computing Theories and Application. Edited by D.-S. Huang, V. Bevilacqua, P. Pre-

maratne, and P. Gupta. Cham: Springer International Publishing, 2018, pages 287–

297. ISBN: 978-3-319-95930-6. DOI: 10.1007/978-3-319-95930-6_27.

[97] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz,

and J. P. Mesirov. “Integrative genomics viewer”. In: Nature Biotechnology 29.1 (Jan.

2011), pages 24–26. DOI: 10.1038/nbt.1754.

[98] Y. Ono, K. Asai, and M. Hamada. “PBSIM: PacBio reads simulatortoward accurate

genome assembly”. In: Bioinformatics 29.1 (Nov. 2012), pages 119–121. DOI: 10.1093/

bioinformatics/bts649.

https://doi.org/10.1137/0112071
https://doi.org/https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1007/978-3-540-45198-3_1
https://doi.org/10.1007/978-3-540-45198-3_1
https://doi.org/10.1186/s13059-021-02342-x
https://doi.org/10.1093/bioinformatics/btac702
https://doi.org/10.1016/j.ygeno.2022.110369
https://doi.org/10.1142/9781860948732_0040
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/978-3-319-95930-6_27
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1093/bioinformatics/bts649
https://doi.org/10.1093/bioinformatics/bts649

BIBLIOGRAPHY 135

[99] M. A. Hardigan, E. Crisovan, J. P. Hamilton, J. Kim, P. Laimbeer, C. P. Leisner, N. C.

Manrique-Carpintero, L. Newton, G. M. Pham, B. Vaillancourt, X. Yang, Z. Zeng, D. S.

Douches, J. Jiang, R. E. Veilleux, and C. R. Buell. “Genome reduction uncovers a

large dispensable genome and adaptive role for copy number variation in asexually

propagated Solanum tuberosum”. In: Plant Cell 28.2 (Feb. 2016), pages 388–405. DOI:

10.1105/tpc.15.00538.

[100] W. Zhang, B. Jia, and C. Wei. “PaSS: a sequencing simulator for PacBio sequencing”.

In: BMC Bioinformatics 20.1 (June 2019). 352. DOI: 10.1186/s12859-019-2901-7.

[101] C. Yang, J. Chu, R. L. Warren, and I. Birol. “NanoSim: nanopore sequence read simu-

lator based on statistical characterization”. In: Gigascience 6.4 (Apr. 2017), pages 1–6.

DOI: 10.1093/gigascience/gix010.

[102] M. Petek, M. Zagorak,. Ramak, S. Sanders,. Toma, E. Tseng, M. Zouine, A. Coll, and

K. Gruden. “Cultivar-specific transcriptome and pan-transcriptome reconstruction of

tetraploid potato”. In: Scientific Data 7.1 (July 2020). 249. DOI: 10.1038/s41597-020-

00581-4.

[103] A. V. Zimin, D. Puiu, M.-C. Luo, T. Zhu, S. Koren, G. Marçais, J. A. Yorke, J. Dvoák, and

S. L. Salzberg. “Hybrid assembly of the large and highly repetitive genome of Aegilops

tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm”. In:

Genome Research 27.5 (May 2017), pages 787–792. DOI: 10.1101/gr.213405.116.

[104] P. P. Edger, T. J. Poorten, R. VanBuren, M. A. Hardigan, M. Colle, M. R. McKain, R. D.

Smith, S. J. Teresi, A. D. L. Nelson, C. M. Wai, E. I. Alger, K. A. Bird, A. E. Yocca, N.

Pumplin, S. Ou, G. Ben-Zvi, A. Brodt, K. Baruch, T. Swale, L. Shiue, C. B. Acharya,

G. S. Cole, J. P. Mower, K. L. Childs, N. Jiang, E. Lyons, M. Freeling, J. R. Puzey, and

S. J. Knapp. “Origin and evolution of the octoploid strawberry genome”. In: Nature

Genetics 51.3 (Mar. 2019), pages 541–547. DOI: 10.1038/s41588-019-0356-4.

[105] X. Jin, H. Du, C. Zhu, H. Wan, F. Liu, J. Ruan, J. P. Mower, and A. Zhu. “Haplotype-

resolved genomes of wild octoploid progenitors illuminate genomic diversifications

from wild relatives to cultivated strawberry”. In: Nature Plants 9.8 (Aug. 2023), pages 1252–

1266. DOI: 10.1038/s41477-023-01473-2.

[106] D. J. Bertioli, S. B. Cannon, L. Froenicke, G. Huang, A. D. Farmer, E. K. S. Cannon,

X. Liu, D. Gao, J. Clevenger, S. Dash, L. Ren, M. C. Moretzsohn, K. Shirasawa, W.

Huang, B. Vidigal, B. Abernathy, Y. Chu, C. E. Niederhuth, P. Umale, A. C. G. Araújo,

A. Kozik, K. Do Kim, M. D. Burow, R. K. Varshney, X. Wang, X. Zhang, N. Barkley,

P. M. Guimarães, S. Isobe, B. Guo, B. Liao, H. T. Stalker, R. J. Schmitz, B. E. Scheffler,

S. C. M. Leal-Bertioli, X. Xun, S. A. Jackson, R. Michelmore, and P. Ozias-Akins. “The

genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors

of cultivated peanut”. In: Nature Genetics 48.4 (Apr. 2016), pages 438–446. DOI: 10.

1038/ng.3517.

https://doi.org/10.1105/tpc.15.00538
https://doi.org/10.1186/s12859-019-2901-7
https://doi.org/10.1093/gigascience/gix010
https://doi.org/10.1038/s41597-020-00581-4
https://doi.org/10.1038/s41597-020-00581-4
https://doi.org/10.1101/gr.213405.116
https://doi.org/10.1038/s41588-019-0356-4
https://doi.org/10.1038/s41477-023-01473-2
https://doi.org/10.1038/ng.3517
https://doi.org/10.1038/ng.3517

136 BIBLIOGRAPHY

[107] X. Jiang, D. Li, H. Du, P. Wang, L. Guo, G. Zhu, and C. Zhang. “Genomic features of

meiotic crossovers in diploid potato”. In: Horticulture Research 10.6 (Apr. 2023). DOI:

10.1093/hr/uhad079.

[108] C. R. Clot, X. Wang, J. Koopman, A. T. Navarro, J. Bucher, R. G. F. Visser, R. Finkers, and

H. J. van Eck. “High-Density Linkage Map Constructed from a Skim Sequenced Diploid

Potato Population Reveals Transmission Distortion and QTLs for Tuber Yield and Pollen

Shed”. In: Potato Research 67.1 (Mar. 2024), pages 139–163. DOI: 10.1007/s11540-

023-09627-7.

[109] E. M. Arkin and E. B. Silverberg. “Scheduling jobs with fixed start and end times”. In:

Discrete Applied Mathematics 18.1 (1987), pages 1–8. DOI: 10.1016/0166-218X(87)

90037-0.

[110] S. Nurk et al. “The complete sequence of a human genome”. In: Science 376.6588

(2022), pages 44–53. DOI: 10.1126/science.abj6987.

[111] T. Wang, L. Antonacci-Fulton, K. Howe, H. A. Lawson, J. K. Lucas, A. M. Phillippy,

A. B. Popejoy, M. Asri, C. Carson, M. J. P. Chaisson, X. Chang, R. Cook-Deegan, A. L.

Felsenfeld, R. S. Fulton, E. P. Garrison, N. A. Garrison, T. A. Graves-Lindsay, H. Ji, E. E.

Kenny, B. A. Koenig, D. Li, T. Marschall, J. F. McMichael, A. M. Novak, D. Purushotham,

V. A. Schneider, B. I. Schultz, M. W. Smith, H. J. Sofia, T. Weissman, P. Flicek, H. Li,

K. H. Miga, B. Paten, E. D. Jarvis, I. M. Hall, E. E. Eichler, D. Haussler, and the Human

Pangenome Reference Consortium. “The Human Pangenome Project: a global resource

to map genomic diversity”. In: Nature 604.7906 (Apr. 2022), pages 437–446. DOI:

10.1038/s41586-022-04601-8.

https://doi.org/10.1093/hr/uhad079
https://doi.org/10.1007/s11540-023-09627-7
https://doi.org/10.1007/s11540-023-09627-7
https://doi.org/10.1016/0166-218X(87)90037-0
https://doi.org/10.1016/0166-218X(87)90037-0
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1038/s41586-022-04601-8

Appendix A

Additional results for the (Ped)MEC

heuristic

A.1 Additional benchmarks for the single-sample datasets

(a) Peak memory consumption (b) Runtime for phasing algorithm only

Figure A.1: Memory consumption and runtime of MEC heuristic (HiFi). This figure extends Figure 2.8 by the
peak memory consumption and phasing runtime.

A.2 Additional benchmarks for trio-phasing datasets

Figure A.2: Memory consumption for PedMEC evaluation. This figure extends Figure 2.9 by the peak memory
consumption.

137

138 APPENDIX A. ADDITIONAL RESULTS FOR THE (PED)MEC HEURISTIC

(a) Switch flip rate

(b) Hamming rate

(c) Peak memory consumption

(d) Runtime for phasing algorithm only

Figure A.3: Evaluation of PedMEC heuristic (HiFi). These plots contain the same results as described in Figure 2.7
but for the HiFi data instead of the PacBio data. All algorithms used the PedMEC model and reads from all three
samples.

Appendix B

Additional results for WHATSHAP

POLYPHASE

B.1 Benchmarks on artificial polyploid human data

104 105 106 107 108 109
0
5

10
15
20
25
30
35
40
45

N50 block length

H
am

m
in

g
ra

te
(%

)

N50 vs block-wise HR (real)

104 105 106 107 108 109
0
5

10
15
20
25
30
35
40
45

N50 block length

H
am

m
in

g
ra

te
(%

)

N50 vs block-wise HR (simulated)

WH-PP (40×) WH-PP (old, 40×) H-POP-G (40×) WH-PP (80×) WH-PP (old, 80×) H-POP-G (80×)

Figure B.1: N50 block lengths vs block-wise Hamming rates. N50 block lengths and the respec-
tive block-wise Hamming rates for different block cut strategies of WHATSHAP POLYPHASE on the real
tetraploid read dataset (top) and the simulated tetraploid dataset (bottom) with 40× and 80× coverage.

139

140 APPENDIX B. ADDITIONAL RESULTS FOR WHATSHAP POLYPHASE

coverage method SFR (%) SER (%) HR (%) WGR (%) N50 (bp)

40×

WH-PP 3.90 5.32 6.82 0 16641
WH-PPOLD 1.41 1.76 2.35 0 18635
WH-PP∗ 4.90 6.55 29.26 0 2435940
WH-PP∗OLD 2.60 3.18 28.49 0 2421639
H-POP-G 3.96 5.69 28.08 0 2587104
FLOPP 8.36 3.64 36.75 16.43 248889649

80×

WH-PP 3.19 4.37 6.25 0 23471
WH-PPOLD 0.81 0.95 1.58 0 25439
WH-PP∗ 3.94 5.28 27.98 0 2587104
WH-PP∗OLD 1.78 2.08 27.09 0 2587104
H-POP-G 3.08 4.38 27.46 0 2599743
FLOPP 10.21 2.72 38.37 29.71 248889649

Table B.1: Comparison of WHATSHAP POLYPHASE, H-POP-G and FLOPP on pentaploid simulated datasets. Per-
formances are based on switch flip rate (SFR), switch error rate (SER), block-wise Hamming rate (HR), wrong
genotype rate (WGR) and N50 block size.

coverage method SFR (%) SER (%) HR (%) WGR (%) N50 (bp)

40×
WH-PP 1.98 2.43 3.60 0 8758
WH-PPOLD 0.84 1.00 1.67 0 16028
WH-PPd 6.95 1.03 7.13 32.74 10349
WH-PP∗ 3.42 4.10 27.79 0 4265325
WH-PP∗OLD 1.96 2.27 27.30 0 4265325
WH-PP∗d 7.96 1.66 30.94 32.81 4265325

80×
WH-PP 1.27 1.52 2.83 0 15162
WH-PPOLD 0.48 0.53 1.14 0 25429
WH-PPd 4.50 0.67 5.01 21.54 16240
WH-PP∗ 2.30 2.70 27.94 0 6412111
WH-PP∗OLD 1.27 1.41 25.68 0 6412111
WH-PP∗d 5.37 1.33 30.39 21.73 6412111

(a) real hexaploid read data

coverage method SFR (%) SER (%) HR (%) WGR (%) N50 (bp)

40×
WH-PP 2.07 2.64 3.45 0 8947
WH-PP (old) 0.88 1.06 1.83 0 16882
WH-PP d 7.54 1.02 7.44 35.14 11005
WH-PP * 3.43 4.24 27.52 0 3754960
WH-PP (old) 1.99 2.31 26.96 0 3754960
WH-PP *d 8.50 1.55 30.85 34.91 3754960

80×
WH-PP 1.03 1.25 2.12 0 14656
WH-PPOLD 0.43 0.48 0.96 0 26251
WH-PPd 4.16 0.57 4.36 20.11 15679
WH-PP∗ 2.04 2.40 26.55 0 4490129
WH-PP∗OLD 1.23 1.36 26.08 0 4607645
WH-PP∗d 5.04 1.23 28.58 20.33 4490129

(b) simulated hexaploid read data

Table B.2: Comparison of WHATSHAP POLYPHASE and FLOPP, with and without trusting genotypes.

B.1. BENCHMARKS ON ARTIFICIAL POLYPLOID HUMAN DATA 141

Figure B.2: Runtime of different WHATSHAP POLYPHASE stages. For the simulated datasets, this plot shows the
runtime of the different stages of both old and new versions of WHATSHAP POLYPHASE. The left and right groups
of bar plots refer to the tetraploid and hexaploid datasets, respectively.

142 APPENDIX B. ADDITIONAL RESULTS FOR WHATSHAP POLYPHASE

The comparison between collapsing and non-collapsing regions was done by Rebecca Serra Mari [14].

The numbers and the table description are taken from the paper.

coverage method collapsing regions non-collapsing regions total

40×
WH-PPOLD 0.29 0.69 0.60
H-POP-G 2.02 2.16 2.02

SER(H-POP-G
WH-PPOLD

) 6.97 3.13 3.37

80×
WH-PPOLD 0.14 0.46 0.35
H-POP-G 1.05 1.30 1.24

SER(H-POP-G
WH-PPOLD

) 7.50 2.83 3.54

(a) Real read data (tetraploid)

coverage method collapsing regions non-collapsing regions total

40×
WH-PPOLD 0.18 0.45 0.43
H-POP-G 2.01 1.63 1.68

SER(H-POP-G
WH-PPOLD

) 11.17 3.62 3.91

80×
WH-PPOLD 0.08 0.37 0.32
H-POP-G 0.94 0.98 0.99

SER(H-POP-G
WH-PPOLD

) 11.75 2.65 3.09

(b) Simulated read data (tetraploid)

Table B.3: Comparison between the resulting switch error rates of the original version of WHATSHAP POLYPHASE

(WH-PPOLD) and H-POP-G on collapsing regions over at least 50 variants as compared to non-collapsing regions
and the average throughout the genome. Results (switch error rates in %) are presented for Chromosome 1 of the
real (a) and simulated (b) tetraploid dataset on both 40× and 80× coverage. The third row marks the quotient
between the switch error rate of H-POP-G and that of WHATSHAP POLYPHASE to highlight by which magnitude the
results differ.

B.2. BENCHMARKS ON SIMULATED SOLANUM TUBEROSUM DATA 143

B.2 Benchmarks on simulated Solanum tuberosum data

method SFR (%) SER (%) HR (%) WGR (%) variants N50 (bp)
WH-PP∗ 0.13 0.08 0.10 0 67461 3019508
WH-PP∗d 0.34 0.01 0.72 1.29 67044 3018008
WH-PP∗OLD 0.36 0.51 36.75 0 67390 3018244
H-POP-G 0.46 0.79 0.47 0 67721 3019149
FLOPP 1.14 0.01 1.14 4.23 64995 3016505

(a) simulated tetraploid PacBio reads

method SFR (%) SER (%) HR (%) WGR (%) variants N50 (bp)
WH-PP∗ 0.19 0.30 23.78 0 66407 3019618
WH-PP∗d 0.55 0.01 12.60 2.56 65850 3019084
WH-PP∗OLD 0.46 0.61 34.03 0 66313 3019084
H-POP-G 0.37 0.65 0.38 0 66609 3018966
FLOPP 1.28 0.01 1.28 5.54 64244 3014872

(b) simulated pentaploid PacBio reads

Table B.4: Comparison between WHATSHAP POLYPHASE, H-POP-G and FLOPP on simulated Solanum tuberosum
data.

144 APPENDIX B. ADDITIONAL RESULTS FOR WHATSHAP POLYPHASE

B.3 Benchmarks on Altus cultivar data

method SFR (%) SER (%) HR (%) WGR (%) variants
WH-PP∗ 7.69 0.42 21.02 28.01 5364
WH-PP∗OLD 9.36 1.94 36.80 28.71 5475
WH-PP∗d 2.53 0.10 8.16 9.35 5237
FLOPP 3.23 0.09 20.16 11.91 4886

(a) region ch03:60,269,000-60,504,000

method SFR (%) SER (%) HR (%) WGR (%) variants
WH-PP∗ 7.67 1.20 16.90 24.83 7468
WH-PP∗OLD 9.05 2.24 38.08 25.34 7515
WH-PP∗d 3.11 0.08 21.99 11.73 7140
FLOPP 0.42 0.04 5.98 1.27 7487

(b) region ch05:56,711,000-57,066,000

Table B.5: Additional benchmarks for Hifi reads from Altus cultivar.

(a) Runtime in seconds for different datasets. (b) Peak memory consumption in GiB for the same
datasets.

Figure B.3: Runtime and memory consumption. Each bar plot represents one dataset, which is stated below
the x-axis. The first dataset corresponds to the simulated Solanum tuberosum data from Section 3.5.2, while the
others belong to the three test regions on the Altus sample (Section 3.5.3). The left plot (a) shows the runtime in
seconds for each algorithm. The right plot (b) shows the peak memory consumption in GiB. WHATSHAP POLYPHASE

was run with block cut sensitivity -B 1.

Appendix C

Additional results for WHATSHAP

POLYPHASE-GENETIC

C.1 Detailed benchmarks on selected regions

variant types phased SER (%) WGR (%) HR (%)
only simplex-nulliplex (no retyping) 4091 2.94 10.83 7.06
only simplex-nulliplex 3934 0.97 3.46 2.89

(50% sampled) 3581 0.86 3.27 2.55
(25% sampled) 3164 0.50 6.89 4.2

additional simplex-simplex 3927 0.95 3.26 2.63
additional duplex-nulliplex 5943 3.25 20.46 8.88

Table C.1: Error metrics for WH-PPG on chromosome 3 region. Region coordinates are ch03:60,269,000-
60,504,000 with 9549 bi-allelic and 10286 total variants. The exclusive simplex-nulliplex-mode has been repeated
with 50% and 25% of parental coverage for genotype calling and without retyping. The variant type additions are
cumulative, i.e. the last row shows the results for all three variant types.

variant types phased SER (%) WGR (%) HR (%)
only simplex-nulliplex (no retyping) 3170 0.43 0.82 1.77
only simplex-nulliplex 3127 0.26 1.37 0.63

(50% sampled) 2948 0.47 1.42 0.81
(25% sampled) 2562 0.51 1.83 1.08

additional simplex-simplex 4289 1.37 2.19 1.63
additional duplex-nulliplex 4508 1.57 3.02 2.02

Table C.2: Error metrics for WH-PPG on chromosome 4 region. Region coordinates are ch04:71,586,000-
71,947,000 with 12378 bi-allelic and 14500 total variants. Columns and rows follow the same scheme as Table C.1.

145

146 APPENDIX C. ADDITIONAL RESULTS FOR WHATSHAP POLYPHASE-GENETIC

variant types phased SER (%) WGR (%) HR (%)
only simplex-nulliplex (no retyping) 4552 1.29 1.25 1.47
only simplex-nulliplex 5096 0.82 0.90 0.92

(50% sampled) 4634 0.47 0.73 0.56
(25% sampled) 4075 0.52 0.69 0.60

additional simplex-simplex 5332 0.73 1.41 0.95
additional duplex-nulliplex 6350 0.99 9.78 3.33

Table C.3: Error metrics for WH-PPG on chromosome 5 region. Region coordinates are ch05:56,711,000-
57,066,000 with 13030 bi-allelic and 15810 total variants. Columns and rows follow the same scheme as Table C.1.

Appendix D

Code and data availability

The main repository for all workflow pipelines and instructions can be found at https://

github.com/schrins/dissertation-pipelines. It will be updated in case of bug fixes or

improvements. The initial release of this repository is also archived on Zenodo under https:

//zenodo.org/doi/10.5281/zenodo.11266453.

Data availability is described in the above-mentioned repository. In addition, important

intermediate files created during the experiments are archived on Zenodo at https://doi.

org/10.5281/zenodo.11264527.

The main tool WhatsHap is available at https://github.com/whatshap/whatshap. The

custom version that was used for some of the experiments refers to commit 77133e6 in branch

sven-thesis. It can be accessed through https://github.com/whatshap/whatshap/commit/

77133e665616346f66606c6dbdae407c97af6c29.

147

https://github.com/schrins/dissertation-pipelines
https://github.com/schrins/dissertation-pipelines
https://zenodo.org/doi/10.5281/zenodo.11266453
https://zenodo.org/doi/10.5281/zenodo.11266453
https://doi.org/10.5281/zenodo.11264527
https://doi.org/10.5281/zenodo.11264527
https://github.com/whatshap/whatshap
https://github.com/whatshap/whatshap/commit/77133e665616346f66606c6dbdae407c97af6c29
https://github.com/whatshap/whatshap/commit/77133e665616346f66606c6dbdae407c97af6c29

148 APPENDIX D. CODE AND DATA AVAILABILITY

Appendix E

Published articles contributing to this

thesis

E.1 Haplotype Threading: Accurate Polyploid Phasing from Long

Reads

E.1.1 Authors

Sven D. Schrinner*, Rebecca Serra Mari*, Jana Ebler*, Mikko Rautiainen, Lancelot Seillier,

Julia J. Reimer, Björn Usadel, Tobias Marschall and Gunnar W. Klau

*shared first authors

E.1.2 Contributions

The following quotes the author contributions as stated in the published article [14]:

SDS, RSM, JE, GWK, and TM developed the algorithmic concepts and designed

the study. RSM designed the haplotype threading algorithm and implemented

a prototype. SDS designed and implemented the cluster editing algorithm, de-

signed the block cut strategies, and optimized the threading implementation. JE

performed the evaluation and analyzed the potato dataset. MR ran the error cor-

rection on the potato reads. LS, JJR, and BU performed potato sequencing, and

BU helped with the interpretation of phasing results. SDS, RSM, and JE integrated

all software components into WhatsHap and tested the workflow. SDS, RSM, JE,

GWK, and TM wrote the paper. All authors read and approved the final manuscript.

E.1.3 License and copyright

The “Rights and permissions” section on the publication’s web address (https://doi.org/10.

1186/s13059-020-02158-1) states the following:

149

https://doi.org/10.1186/s13059-020-02158-1
https://doi.org/10.1186/s13059-020-02158-1

150 APPENDIX E. PUBLISHED ARTICLES CONTRIBUTING TO THIS THESIS

This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in

any medium or format, as long as you give appropriate credit to the original au-

thor(s) and the source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material in this article

are included in the articles Creative Commons licence, unless indicated otherwise

in a credit line to the material. If material is not included in the articles Creative

Commons licence and your intended use is not permitted by statutory regulation

or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made

available in this article, unless otherwise stated in a credit line to the data.

E.2 Genetic polyploid phasing from low-depth progeny samples

E.2.1 Authors

Sven Schrinner, Rebecca Serra Mari, Richard Finkers, Paul Arens, Björn Usadel, Tobias Marschall,

Gunnar W. Klau

E.2.2 Contributions

The following quotes the author contributions as stated in the published article [16]:

Conceptualization, S.S., R.S.M., R.F., B.U., T.M. and G.W.K.; Methodology S.S.,

R.S.M., R.F., T.M. and G.W.K.; Software S.S.; Investigation S.S., R.S.M., R.F., B.U.,

T.M. and G.W.K.; Resources R.F., P.A., and B.U.; Writing Original Draft S.S. and

G.W.K.; Writing Review & Editing S.S., R.S.M., R.F., P.A., B.U., T.M. and G.W.K.;

E.2.3 License and copyright

https://doi.org/10.1016/j.isci.2022.104461

This is an open access article distributed under the terms of the Creative Com-

mons CC-BY license, which permits unrestricted use, distribution, and reproduc-

tion in any medium, provided the original work is properly cited.

You are not required to obtain permission to reuse this article.

To request permission for a type of use not listed, please contact Elsevier Global

Rights Department.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1016/j.isci.2022.104461
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://service.elsevier.com/app/contact/supporthub/permissions-helpdesk/

E.3. HAPLOTYPE-RESOLVED ASSEMBLY OF A TETRAPLOID POTATO GENOME 151

E.3 Haplotype-resolved assembly of a tetraploid potato genome

using long reads and low-depth offspring data

E.3.1 Authors

Rebecca Serra Mari, Sven Schrinner, Richard Finkers, Freya Maria Rosemarie Ziegler, Paul

Arens, Maximilian H.-W. Schmidt, Björn Usadel, Gunnar W. Klau & Tobias Marschall

E.3.2 Contributions

The following quotes the author contributions as stated in the published article [52]:

R.S.M. and T.M. designed the assembly method, with input from S.S., R.F., B.U.,

and G.W.K. R.S.M. implemented the assembly method, performed the assemblies,

and created the figures. R.S.M., S.S., R.F., G.W.K., B.U., and T.M. discussed and

interpreted results. R.S.M., R.F., B.U., and T.M. wrote the manuscript, with input

from S.S. and G.W.K. P.A. provided offspring sequencing data. M.HW.S. produced

HiFi data and ran an initial assembly. F.M.R.Z. produced ONT data and wrote text

describing data production. All authors read and approved the final manuscript.

E.3.3 License and copyright

The “Rights and permissions” section on the publication’s web address (https://doi.org/10.

1186/s13059-023-03160-z) states the following:

This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in

any medium or format, as long as you give appropriate credit to the original au-

thor(s) and the source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise

in a credit line to the material. If material is not included in the article’s Creative

Commons licence and your intended use is not permitted by statutory regulation

or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made

available in this article, unless otherwise stated in a credit line to the data.

https://doi.org/10.1186/s13059-023-03160-z
https://doi.org/10.1186/s13059-023-03160-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

152 APPENDIX E. PUBLISHED ARTICLES CONTRIBUTING TO THIS THESIS

List of Tables

2.1 Number of phased variants for both algorithms, depending on the supplied cov-

erage. 42

3.1 Block cut thresholds for different sensitivity levels 81

3.2 Abbreviations for different versions and configurations of WHATSHAP POLYPHASE. 82

3.3 Comparison of WHATSHAP POLYPHASE, H-POP-G and FLOPP on tetraploid real (a)

and simulated (b) datasets . 83

3.4 Comparison of WHATSHAP POLYPHASE with and without cluster refinement on

tetraploid datasets with coverage 80×. 85

3.5 Comparison of WHATSHAP POLYPHASE and FLOPP, with and without trusting

genotypes. 86

3.6 Comparison of WHATSHAP POLYPHASE, H-POP-G and FLOPP on hexaploid real (a)

and simulated (b) datasets . 88

3.7 Comparison between WHATSHAP POLYPHASE, H-POP-G and FLOPP on simulated

Solanum tuberosum data, provided as test data by Shaw and Yu. 92

3.8 Comparison between WHATSHAP POLYPHASE, H-POP-G and FLOPP on simulated

Solanum tuberosum data. 93

3.9 Benchmarks for Hifi reads from Altus cultivar on the region ch04:71,586,000-

71,947,000. 94

B.1 Comparison of WHATSHAP POLYPHASE, H-POP-G and FLOPP on pentaploid simu-

lated datasets . 140

B.2 Comparison of WHATSHAP POLYPHASE and FLOPP, with and without trusting

genotypes. 140

B.3 Comparison of the original version of WHATSHAP POLYPHASE (WH-PPOLD) and

H-POP-G on collapsing regions . 142

B.4 Comparison between WHATSHAP POLYPHASE, H-POP-G and FLOPP on simulated

Solanum tuberosum data. 143

B.5 Additional benchmarks for Hifi reads from Altus cultivar. 144

C.1 Error metrics for WH-PPG on chromosome 3 region 145

C.2 Error metrics for WH-PPG on chromosome 4 region 145

153

154 LIST OF TABLES

C.3 Error metrics for WH-PPG on chromosome 5 region 146

List of Figures

1.1 Read sequencing and alignment . 6

1.2 Variant types . 9

1.3 Variant calling and genotyping . 10

1.4 Recombination . 11

1.5 Categories of haplotyping methods . 12

1.6 Visualization of evaluation metrics . 18

1.7 Example SAM file . 21

1.8 Example VCF file . 22

2.1 Example for the WHATSHAP algorithm . 29

2.2 Example for the WHATSHAP algorithm . 31

2.3 Example for the WHATSHAP algorithm . 32

2.4 Look-ahead scoring for transmission . 36

2.5 Duplicated PedMEC solutions . 38

2.6 De-novo mutation . 39

2.7 Evaluation of MEC heuristic (PacBio) . 42

2.8 Evaluation of MEC heuristic (HiFi) . 43

2.9 Evaluation of PedMEC heuristic (PacBio) . 45

2.10 Evaluation of PedMEC heuristic with de-novo mutations 46

3.1 Example of uneven MEC partitions . 51

3.2 Example of an unresolvable region . 51

3.3 Overview of WHATSHAP POLYPHASE . 55

3.4 Example for cluster editing . 57

3.5 Cluster refinement . 65

3.6 Visualization of the threading . 69

3.7 Example for collapsed regions . 72

3.8 Breakpoints . 73

3.9 Genotyping error . 75

3.10 Illustration of phase block reordering . 77

3.11 N50 block lengths vs lock-wise switch error rates . 84

3.12 Runtime and memory consumption . 89

155

156 LIST OF FIGURES

3.13 Visualization of the read clusters . 91

3.14 Visualization of the haplotype threading . 91

4.1 Method overview for WHATSHAP POLYPHASE-GENETIC 100

4.2 Tetraploid heritage probabilities for simplex-nulliplex variants 101

4.3 Tetraploid heritage probabilities for simplex-simplex variants 102

4.4 Switch errors in genetic phasing . 107

4.5 Example for cluster scheduling . 109

4.6 Evaluation of WHATSHAP POLYPHASE-GENETIC . 112

4.7 Degradation of phasing accuracy with smaller offspring pool 113

4.8 Results on whole chromosomes . 114

4.9 Block size estimates for different chromosome coverages 115

4.10 Evaluation of hybrid phasing . 117

A.1 Memory consumption and runtime of MEC heuristic (HiFi) 137

A.2 Memory consumption for PedMEC evaluation . 137

A.3 Evaluation of PedMEC heuristic (HiFi) . 138

B.1 N50 block lengths vs block-wise Hamming rates. 139

B.2 Runtime of different WHATSHAP POLYPHASE stages. 141

B.3 Runtime and memory consumption . 144

List of variables and symbols

Symbol Chapter Meaning or usage

A 1.4 Input allele matrix

amax 1.4 Highest number of alternative alleles

A j 2.2.1 Set of read indices (⊆ {1, . . . , n}) that is active for column/variant j

A+, A− 3.4.1 Set of excess alleles, underrepresented alleles

A 3.4.1 Union of A+ and A−

Aplace 3.4.1 Multiset of alleles to redistribute

ab,t,h 3.4.3 Score of placing thread t on haplotype h for block b according to pre-phasing

B(A) 2.2.1 The set of all bipartitions over set A

B(A | B) 2.2.1 The set of all bipartitions over set A that extend bipartition B

B, Bb 3.4.3 Set of breakpoints, b-th breakpoint

C 3.2.3 Set of all read clusters

C j 3.2.3 The j-th read cluster in C
c j 3.4.1 j-th cluster index in some cluster tuple (c1, . . . , cp) ∈ {1, . . . , |C|}p
costcov 3.3 Total coverage penalties for a threading

costswitch 3.3 Total switch penalties for a threading

cov(C , i) 3.3 Absolute coverage of vi by all reads in cluster C

covr(C , i) 3.3 Relative coverage of vi by all reads in cluster C

D, D(B, j) 2.2.1 DP table for exact MEC solver, entry for column j and bipartition B

D′, D′(B, j) 2.2.1 DP table for heuristic MEC solver, entry for column j and bipartition B

Da, j() 3.4.1 Number of occurrence (allele depth) for allele a in cluster C j ∈ C
DC j ,i(a) 3.3 Allele depth of allele a for cluster C j at variant vi

e(r) 1.4 Last covered position by read r

e(C) 3.3 Last covered position by any read in cluster C

fa(G) 1.4 Absolute frequency of allele a in genotype G

F, Fi 2.1.2 Set of computed flips for the MEC model (optionally for the i-th sample)

157

158 LIST OF FIGURES

Gi 1.4 Input genotype for variant vi

G′i 3.4.1 Induced genotypes by some intermediate haplotypes for variant vi

H, Hi 1.4 Set of true haplotype, i-th element

H̃, H̃ i 1.4 Set of predicted haplotype, i-th element

H, H i 1.4 Set of pre-phased haplotype, i-th element

Hs
i 2.1.3 i-th haplotype of sample s

I 3.4.1 Haplotype indices containing an excess allele

I 2.1.3 Family of related samples to phase

icp(uv), icf(uv) 3.2 Induced cost permanent/forbidden for edge uv

LC j ,i 3.3 Consensus list of cluster C j for variant vi

l 3.4.3 Number of blocks for reordering

lb,i 3.4.3 Likelihood for i-th rearrangements of threads over breakpoint b

L=, L 6= 4.2.1 Probability to inherit certain alleles for simplex-nulliplex variants

LS
=, LS6= / LD

=, LD6= 4.2.1 Same as L=, L 6= for simplex-simplex/duplex-nulliplex variants

m 1.4 Total number of variants to phase

mult(i, j) 3.3 Selected (or induced) multiplicity of cluster C j at vi

multexp(i, j) 3.3 Expected multiplicity of cluster C j at variant i

n 1.4 Total number of reads to be used

N j 2.2.1 Set of read indices (⊆ {1, . . . , n}) that newly start at variant j

p 1.4 Global ploidy

paffine 3.3 Affine penalty for cluster switches during haplotype threading

pcov 3.3 Penalty for deviating coverage during haplotype threading

pswitch 3.3 Penalty for cluster switches during haplotype threading

R, Ri 1.4 Set of input reads, i-th read

s(r) 1.4 First covered position by read r

s(C) 3.3 First covered position by any read in cluster C

span(vi) 3.3 Set of clusters spanning variant vi

S, S(i, j) 3.3.3 DP table for threading, entry for variant j and i cluster tuple

T 3.3 Threading, tuple of all threads

T aff
b 3.4.3 Affected threads (⊆ {1, . . . , p}) for b-th breakpoint

Ti , T(i) 3.3 For threading T the i-th thread and i cluster tuple, respectively

t i, j 3.3 For variant vi , the j-th inspected candidate cluster tuple

T 2.1.3 Set of trios (mother, father and child) for family I
t ip→ic 2.1.3 Transmission vector for parent ip to child ic
vi 1.4 the i-th variant of the region ot phase

V 1.4 Set of input variants

W 2.1.2 Flip cost matrix with the same dimension of allele matrix A
W 4.2.2 Window size for variant scoring in WHATSHAP POLYPHASE-GENETIC

X 2.1.3 Vector of position-wise recombination cost

X (B, j), X (B, j)q 2.2.1 Allele balance vector (for partition q ∈ {1,2})
Y 2.2.2 Vector of position-wise mutation cost

	Statement
	Abstract
	Kurzfassung
	Acknowledgements
	Introduction
	Preliminaries
	DNA sequencing and mapping
	Sequencing technologies
	Read mapping

	Genetic variation
	Types of variation
	Genotypes
	Reproduction

	Haplotype phasing
	Read-based phasing
	Pedigree-based phasing
	Population-based phasing
	Haplotype assembly

	Terminology and notation
	Problem formulation

	Evaluation metrics
	Input and output

	Trio-phasing on human data
	Diploid phasing
	Properties of diploid genomes
	The (w)MEC model
	The PedMEC model

	Algorithm of WhatsHap
	Solving MEC with dynamic programming
	Extending MEC solvers to PedMEC

	Experiments
	Single-sample phasing on HG002
	Trio-phasing on Ashkenazim trio

	Discussion
	Limitations and issues
	Future work

	WhatsHap Polyphase
	Polyploid phasing
	Caveats of polyploid in comparison to diploid phasing
	Overview of existing methods
	Outline of WhatsHap Polyphase

	Read clustering
	Cluster editing
	Pairwise scoring
	Clustering algorithm
	Cluster refinement

	Haplotype threading
	Characterizing haplotypes as threads
	Threading model
	Solving techniques
	Further optimizations
	Breakpoints

	Refining results
	Genotype conformity
	Resolving collapsed regions
	Reordering phase blocks
	Detecting cut positions

	Experiments
	Artificial polyploid human data
	Simulated Solanum tuberosum data
	High-confidence regions from Altus cultivar

	Discussion
	Limitations
	Ideas for future work

	WhatsHap Polyphase Genetic
	Heredity in polyploid genomes
	Previous work

	WhatsHap Polyphase Genetic
	Identifying and scoring phasable variants
	Clustering variants based on Bayesian scores
	Assigning haplotypes: Interval scheduling

	Experiments
	Evaluation on HiFi-assembled regions
	WH-PPG scales to whole chromosomes

	Integrating genetic and read-based phasing
	Discussion
	Limitations
	Future work

	Conclusions
	Bibliography
	Additional results for the (Ped)MEC heuristic
	Additional benchmarks for the single-sample datasets
	Additional benchmarks for trio-phasing datasets

	Additional results for WhatsHap Polyphase
	Benchmarks on artificial polyploid human data
	Benchmarks on simulated Solanum tuberosum data
	Benchmarks on Altus cultivar data

	Additional results for WhatsHap Polyphase-Genetic
	Detailed benchmarks on selected regions

	Code and data availability
	Published articles contributing to this thesis
	Haplotype Threading: Accurate Polyploid Phasing from Long Reads
	Authors
	Contributions
	License and copyright

	Genetic polyploid phasing from low-depth progeny samples
	Authors
	Contributions
	License and copyright

	Haplotype-resolved assembly of a tetraploid potato genome
	Authors
	Contributions
	License and copyright

	List of tables
	List of figures
	List of variables and symbols

