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ABSTRACT The threat situation due to cyber attacks in hospitals is emerging and patient life is at risk.
One significant source of potential vulnerabilities is medical cyber-physical systems (MCPS). Detecting
intrusions in this environment faces challenges different from other domains, mainly due to the heterogeneity
of devices, the diversity of connectivity types, and the variety of terminology. To summarize existing
results, we conducted a structured literature review (SLR) following the guidelines of Kitchenham et al. for
SLRs in software engineering. We developed six research questions regarding detection approach, detection
location, included features, adversarial focus, utilized datasets, and intrusion prevention. We identified that
most researchers focused on an anomaly-based detection approach at the network layer. The primary focus
was on the detection of malicious insiders. While several researchers used publicly available datasets for
training and testing their algorithms, the lack of suitable datasets resulted in the development of testbeds
consisting of various medical devices. Based on the results, we formulated five future research topics. First,
the special conditions of hospital networks, the MCPS deployed within them, and the contrasts to other IT
and OT environments should be examined. Thereupon, MCPS-specific datasets should be created that allow
researchers to address the health domain’s unique requirements and possibilities. At the same time, endeavors
aimed at standardization in this area should be supported and expanded. Moreover, the use of medical
context for attack detection should be further explored. Last but not least, efforts for MCPS-tailored intrusion
prevention should be intensified. This way, the emerging threat landscape can be addressed, IT security in
hospitals can be improved, and patient health can be protected.

INDEX TERMS Detection, IDS, intrusion prevention, medical cyber-physical systems, medical CPS,
internet of health things, IoMT, medical IoT, connected health, healthcare 4.0.

I. INTRODUCTION
The healthcare sector faces an increasing threat of cyber
attacks. A Comparitech study explored the threat landscape
of the US sector and found that in the time 2016 to 2022,
6,835 healthcare companies were hit by ransomware [1].
Already in 2014, a SANS report admonished the risks of
MCPS and identified ‘‘Nontraditional medical endpoints’’ as
one of the main malicious traffic sources [2]. Gartner predicts
for the year 2025 that operational technology (OT) environ-
ments will be weaponized to harm or kill people and that the
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resulting financial impact from such attacks will amount to
$50 billion per year [3].

Coventry et al. surveyed hospital staff to determine the
reasons for clinics’ high IT security risks. One key find-
ing is that medical device software is often outdated and
unsupported [4]. This corresponds to the report of the Euro-
pean Union Agency for Network and Information Security
(ENISA). They stress that legacy software and unpatched
vulnerabilities are particularly critical in the healthcare sec-
tor. Accordingly, imaging systems, patient monitoring, and
medical device gateways root for 86% of hospital secu-
rity issues [5]. As Coventry et al. emphasized, securing
legacy medical devices seems more crucial than ever. Despite
these findings, current security scanners often fail to detect
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vulnerabilities in the healthcare environment because they do
not have modules for medical devices and systems [6].
Intrusion detection is a technology that has been around

for more than three decades [7]. Many organizations rely
on it even more in a time of increasing cyber threats. Its
most widespread application is in the field of (office) infor-
mation technology (IT). In contrast, the used OT is not as
covered in many sectors. Only in recent years, there have
been efforts to transfer insights from IT to OT, primarily
because of the emerging threat situation [8]. Many sectors
can interoperate and share their sector-specific discoveries
and perceptions. The health sector differs in this regard.
There are three reasons: The heterogeneity of OT devices
in healthcare, the diversity of connectivity types, and the
variety of terminology. The heterogeneity of devices and
missing regulations lead to a situation where no central man-
agement of devices from assorted manufacturers is possible.
Furthermore, the different needs of different devices lead to
different requirements for connectivity. E.g., while computed
tomography scanners are regularly connected via a wired
connection, wearable medical devices require a wireless con-
nection for obvious reasons. Researchers cover this domain
as wireless sensor networks (WSN), of which subgroups
are medical smartphone networks (MSN) and wireless body
area networks (WBAN). These networks consist of devices
known as wearables, which are worn by a person and can
also be connected to each other. Since devices of those groups
are carried around, they not only have special requirements
for connectivity but also for an intrusion detection system
(IDS). In addition, the need for real-time detection for all
MCPS, regardless of the device type, is argued to be even
more critical than in existing mechanisms because lives could
depend on a timely detection [9]. While some researchers
try to detect intrusions in a protocol-agnostic way, others are
motivated by the particular conditions of a subset of medical
devices. This leads to different categorizations and definitions
of groups and, thereby, to various terms. We further discuss
the diversity of terms in section III-B.

This paper aims to outline the existing research on attack
detection in the healthcare sector. We focus on the current
state of research in detecting attacks on medical devices
available for hospitals and clinics. The challenges of hos-
pital networks, attached medical devices, and the plethora
of protocols used by those devices are of particular interest.
By discussing this environment’s background and special
requirements, we identify research gaps and give future
endeavors direction.

The paper is organized as follows. In section II, we present
other secondary studies and point out how this paper
complements the existing work. Thereafter, in section III,
we describe our methodology and present the research ques-
tions, according to which we have evaluated the studies. The
results are presented in section IV. In section V, we discuss
the findings and work out the implications. Finally, we draw
a conclusion in section VI.

II. RELATED WORK
Existing reviews and survey papers onMCPS attack detection
can be summarized into four groups. The papers of the first
group discuss work about general IoT and merely touch the
area of medical devices. They refer to MCPS either as moti-
vation or to highlight them as a unique area with particular
characteristics. One example is Banerjee et al., who discuss
the security of several sectors in which IoT is used and how
blockchain could improve it in the future. The healthcare
domain is a characteristic example in which very sensitive
data must be shared, and privacy is essential [10].

The second group concentrates on medical device secu-
rity and attempts a comprehensive overview. Either they
use broad definitions of security and include not only
IT security but also privacy and patient safety, or the
review outlines several IT security measures. Examples are
Yaacoub et al., Tervoort et al., and Ferrag et al., who provide
a detailed overview of relevant attack scenarios for medical
devices and discuss which defensive measures can protect
the devices from which attacks. These measures range from
technical to non-technical aspects. Yaacoub et al. recommend
a layered security architecture, ranging from raising aware-
ness through employee training to sophisticated intrusion
detection, mainly through a machine learning (ML)-based
intrusion detection and prevention system cooperating with
honeypots and security information and event management
(SIEM) to gain the latest insights into attacks [11]. Ter-
voort et al. conduct a scoping review presenting an overview
of security solutions for medical software vulnerabilities that
do not require the software to be replaced. Besides intrusion
detection, monitoring specific aspects of medical devices,
such as software execution characteristics and tunneling
legacy protocols, have been examined [12]. Ferrag et al.
outline security solutions for the Internet of medical things
(IoMT) of five categories: authentication and access con-
trol, key management and cryptography, intrusion detection
systems, blockchain-based solutions, and privacy-preserving
solutions [13].

The third group of papers focuses on a specific aspect or a
specific type of approach. Thomasian and Adashi summarize
the policy and regulatory measures (primarily concentrated
on the US) to secure medical devices. Furthermore, they
provide an overview of the emerging threats in this context
on a high level [14]. Hameed et al. elucidate ML-based
approaches in their structured review of security and privacy
in the context of the IoMT. Besides insightful statistical data
surrounding the publications, such as the geographical dis-
tribution of research groups and the development of publi-
cations per year, a focal point of the work of Hameed et al.
is ML-based intrusion detection [15]. Rbah et al. concentrate
their efforts on comparing deep learning methods utilized
for IDSs in the IoMT. They observe that many researchers
develop their approaches in an isolated environment for a
limited number of attacks [16]. Pelekoudas-Oikonomou et al.
review blockchain-based security mechanisms for IoMT
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edge networks. While they describe several ways in which
attack detection in IoMT-edge networks could benefit from
a blockchain extension, they state that, to their knowledge,
there are no blockchain-based IDSs specifically designed for
IoMT-edge networks yet. Instead, they outline approaches
from other IoT environments and show how they could be
applied to IoMT-edge networks [17].

The fourth group of papers compares approaches tai-
lored to small subsets of MCPS. Eliash et al. discuss the
security of the subset of medical devices used in inten-
sive care units (ICUMDs), introduce a taxonomy for these
devices, and explain how these devices interact with each
other. They develop scenarios for 16 attacks on medical
devices and derive the main building blocks. Additionally,
they analyze the applicability of existing security mech-
anisms, including detection mechanisms [18]. Similarly,
Kintzlinger and Nissim establish a taxonomy for personal
medical devices (PMDs) and collect attack scenarios and
building blocks for attacks on this group of devices. Further-
more, they review the existing security solutions and identify
the gaps between them and the identified attack vectors [19].
Ghosal et al. present a survey for ML approaches utilized
for IT security in cloud-based IoT healthcare systems [20],
Wa Umba et al. review security measurements exclusively
for software-definedWSNs (SDWSNs) [21], andWazid et al.
compare detection approaches for malware in the IoMT
environment [22].

This paper differs from those presented as it aims to
provide an overview of all intrusion detection approaches
for all kinds of medical devices available for hospitals
and clinics. The main contributions can be summarized as
follows:

• We present the current state of research on attack detec-
tion in medical cyber-physical system environments.
In particular, we show the various challenges that are
special or unique to the health sector and frame our
research questions around these specifics.

• As a distinct difference from other secondary stud-
ies based on a single or small number of keywords
(e.g., IoMT), we identified 22 synonyms for MCPS.
We included them in an extensive database search as a
basis. The high number of synonyms allows a compre-
hensive and profound analysis of the research state.

• By following the guidelines of Kitchenham et al. for
structured literature reviews in software engineering,
we minimized the risk of a biased consideration of the
studies available. This includes:
1) A structured two-step screening process
2) Transparent inclusion and exclusion criteria for

study selection
3) The independent review of studies by at least two

researchers in every selection and extraction step.
• By answering six research questions, we structure the
confusing and convoluting state of literature and high-
light commonalities and differences. For exceptional
approaches, we present a detailed description.

• We critically engage with the selected aspects of the
research and discuss the applicability of the proposed
approaches.

• The resulting discrepancies will help researchers con-
duct more focused research through five derived future
research topics.

III. METHODOLOGY
We adopted the guidelines for performing systematic litera-
ture reviews (SLR) in software engineering [23]. According
to Kitchenham et al., the goal of such a review is threefold:
Firstly, the review shall summarise the existing results in a
field. Secondly, it should identify gaps in the current research,
and thirdly, it should provide the background to position
future research endeavors.

A. RESEARCH QUESTIONS
We developed six research questions to determine the state
of research in the field of MCPS attack detection. These are
outlined in the following.

1) WHICH DETECTION APPROACH IS USED?
First, we wanted to ascertain what detection approaches
are utilized most to detect attacks in hospital environments.
Research knows three types of IDSs:

• signature-based detection
• anomaly-based detection
• specification-based detection

The two best-known subcategories are signature-based and
anomaly-based IDSs. Signature-based IDSs use predefined
patterns of known attacks to detect intrusions in a pattern-
matching approach. Themajor downside is that those systems
can only detect known attacks. Even the smallest changes that
modify the signature of the attack might evade detection. The
upside is few false alarms.

The counterpart is anomaly-based intrusion detection
which has drawn much interest in the research community.
Those IDSs model the expected behavior of a system or
network and warn in the case of deviation from baseline
behavior. Advantages and disadvantages are contradictory:
While this approach might detect even zero-day attacks, it is
difficult to consider every borderline case in the baseline,
which ultimately leads to a higher count of false positives.
Other often-named challenges in the context of MCPS are
limited sources of energy and constrained computational
power. Often, especially in the case of wearable devices,
those resources are already utilized by the device’s primary
purpose, so few resources remain for the intrusion detec-
tion algorithm. Moreover, even if one may argue that some
wearables have an easily changeable battery, the need for
energy-saving algorithms and protocols cannot get clearer for
implantablemedical devices (IMD). Consequently, motivated
by these considerations, several research endeavors focus on
energy and resource-efficient intrusion detection approaches
(e.g., [24], [25], [26], [27]).
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A third category, sometimes also considered a subcate-
gory of anomaly-based IDSs, is specification-based intrusion
detection [28]. In this approach, all possible behaviors of the
given medical device are specified. The device’s operation
is then monitored. An alarm is triggered if the device transi-
tions to an unspecified operating state. We decided to follow
Mitchell and Chen’s definition and consider specification-
based intrusion detection as a standalone category [29]
because the medical sector offers unique possibilities for
specifications. It, therefore, enjoys special attention in the
field of MCPS intrusion detection. The researchers promise
that it combines the advantages of signature-based and
anomaly-based detection, namely the ability to identify pre-
viously unknown attacks while limiting false positives and
requiring less computational power than ML-based anomaly
detection. However, very detailed knowledge of the moni-
tored medical device is needed, and this approach is therefore
associated with a high initial implementation effort.

Furthermore, hybrid approaches combine two ormore vari-
ants into a new approach. Here it is essential to state that
several authors combined different ML algorithms and called
their approach hybrid. Since the distinction to, e.g., ensemble
learningmethodswas too small from our point of view,we did
not follow this subsumption. Therefore, we only classified
an approach as hybrid if it comprised variants from different
main categories (e.g., anomaly-based and signature-based).

2) WHERE IS THE ATTACK DETECTION SYSTEM LOCATED?
Classically, there are two locations where attack detection
systems are usually placed. On the one hand, a host-based
IDS (HIDS) runs on the device and monitors the station’s
operating system, processes, or logs. On the other hand,
a network-based IDS (NIDS) inspects the network traffic
and often monitors the traffic of all devices connected to the
network. The locality of the NIDS, particularly in segmented
networks, can, in turn, influence its effectiveness and there-
fore be decisive. Both locations have their advantages and
disadvantages. An NIDS is able to detect external threats at
an early stage, but the mass of data can cause limitations,
especially in large networks. While an HIDSmight not notice
external threats as early as an NIDS, it might detect malicious
insiders that remain hidden to NIDSs [28]. In addition to this
distinction, we observed a third location often chosen by the
researchers in the MCPS domain: cloud or cloudlet-based
IDSs. Here, too, hybrid approaches are conceivable and in
other sectors pervasive.

3) WHAT KIND OF DATA IS ANALYZED BY THE ATTACK
DETECTION APPROACH?
This question often interrelates with the location of the detec-
tion system (or at least with the collector’s location). At the
network level, detection approaches might use metadata of
captured packets or analyze the whole packet, more or less
understanding the entailed sector-specific protocols. At the
host level, various information about the operating system,

TABLE 1. Digital libraries consulted for study selection.

processes, or log files can be evaluated. Of course, all this
data can also be conglomerated in a cloud to be processed
centrally.

4) WHAT ATTACK SCENARIO IS THE PRIMARY FOCUS OF
THE DETECTION SYSTEM?
Frequently, detection approaches specialize in the defense
against specific scenarios. This is because an outside attack
is detectable by different indicators than an insider abusing
valid privileges. We identified the scenarios with the greatest
research interest and those that may be underrepresented in
current research.

5) WHICH DATASETS AND SOURCES ARE UTILIZED TO
EVALUATE THE EFFECTIVENESS OF THE DETECTION
APPROACH?
Publicly available datasets make the detection approaches
of different researchers comparable. Sometimes, however,
researchers cannot find a dataset that fits their use case
and look for alternatives. Some build test environments with
simulators or real devices, while others generate data in
other ways. We examined the approaches and the most used
datasets and -sources in the field of MCPS attack detection.

6) WHAT APPROACHES GO BEYOND DETECTION AND
ALSO INCLUDE PREVENTIVE MEASURES?
It is often of particular research interest to not only detect
but also mitigate attacks as quickly as possible. This is also
appealing in healthcare, as any attack might endanger human
life. On the other hand, one of the biggest challenges in the
field of attack detection, especially in the case of anomaly
detection, is the false-positive rate. This gets even more rele-
vant if automated mitigation measures are taken. By review-
ing the relevant articles, we explored how researchers address
the potentials and risks in this regard.

B. IDENTIFICATION OF RESEARCH
To capture the current state of research, the variety of terms
used in the literature for networked medical devices alone
necessitated a structured approach. We were not the first
to find that IT security terms and definitions diverge in
healthcare. Athinaiou et al. surveyed the IT security lan-
guage and observed that definitions of concepts differed in
health environments [30]. We identified 22 terms used in
reference to such systems (Connected Health, Connected
Healthcare, Digital Healthcare, e-health network, Healthcare
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TABLE 2. Inclusion criteria used during study selection.

IoT-based Systems, Healthcare 4.0, (Industrial) Healthcare
Systems, Internet of Health Things, Internet of Healthcare
Things, Internet of Medical Things, IoMT, IoT-Health, Med-
ical Cyber-Physical Systems, Medical CPS, MCPS, Medical
Information Systems, Medical Internet of Things, Medical
IoT, Medical Sensor Networks, Networked Healthcare, Net-
worked Medical Devices, (Smart) Medical Devices).

While there are no precise definitions, it is our impression
that term combinations of medical/health and internet of
things (IoT) like IoMT,mIoT, or IoHT have been used to refer
not only to medical devices in hospitals but also to devices
used to monitor specific health values at home. In contrast,
the term MCPS was used almost exclusively for medical
devices in a hospital context. However, this observation did
not apply to all publications, and we noticed a convergence of
the device classes. Researchers hypothesize that all sensors
monitoring patients’ health parameters in hospitals will be
connected to local gateway devices in the future [31]. This
evolution can already be observed and is the reason for the
prevalence of so-called medical device gateways in hospitals
that connect medical devices to the hospital network. Accord-
ing to ENISA, these devices presently account for 34% of
all devices in the healthcare sector [5]. Besides, it is quite
similar to the convergence of general IoT and cyber-physical
systems (CPS). NIST established in a special publication in
2019 that the concepts of CPS and IoT have become more
and more equal and that the definitions can recently often be
used interchangeably [32]. However, to clarify that this work
focuses on detecting attacks on medical devices available for
hospitals, we used the term MCPS.

In addition, we identified five expressions describing the
detection of attacks (Detection, Network Security Monitor,
Network flow, IDS, and Intrusion Prevention). The com-
bined search strings were employed to search five electronic
libraries. The results per library can be seen in table 1. In total,
we obtained 5354 papers matching our search strings.

C. SELECTION OF PRIMARY STUDIES
Following Kitchenham et al., two authors performed a
two-step screening of all obtained papers and selected those
relevant to the research topic. To make the process compre-
hensible and verifiable, we defined the selection criteria in
tables 2 and 3. In the first quantitative screening, the title
and abstract of the publications were evaluated. The vast
majority of the papers was excluded in this step. For the qual-
itative screening, 358 papers remained. The high rejection
rate is attributable to the fact that many intrusion detection

TABLE 3. Exclusion criteria used during study selection.

synonyms are also used in medical regard. Two examples of
major fields in medical research are disease detection and
monitoring of patients’ health parameters utilizing various
medical devices. Unfortunately, those terms could not be
excluded from our search terms for obvious reasons, which
led to a high rate of false positive results.

In the following qualitative screening, the full-text versions
of the 358 papers have been consulted to single out those rel-
evant to our research questions. The papers were screened by
two researchers independently, and the resulting selection of
included papers differed. The agreement has been measured
using the Cohen Kappa statistic [33]. The initial value of
the Kappa statistics was 0,826. Afterward, all disagreements
were discussed and resolved. In the end, 118 papers were
selected for data extraction.

D. DATA EXTRACTION AND SYNTHESIS
For data extraction, the remaining studies were read in full
and categorized by the research questions defined in sec-
tion III-A. Thereby, we were able to answer the questions as
comprehensively as possible. Here we followed the recom-
mendation of Kitchenham et al. and assigned one researcher
as the data extractor and the other as the data checker. Emerg-
ing disagreements have been discussed, and all researchers
have agreed on the final classification.

Finally, the results of the review were summarized. In the
following section, we will provide the gained insights.

IV. RESULTS
We identified 118 papers that could contribute to answering
the research questions. However, not every paper could be
consulted to answer every research question. One example is
the study byArdito et al., who outline a framework but did not
implement it or test it using a dataset [34]. Therefore, while
we were able to use this publication to evaluate the proposed
detection approach (RQ 1), it was not suitable for answering
the question about the used data sources (RQ 5). The exact
number of papers included in the evaluation of each research
question is indicated in each subsection.

A. RQ 1—UTILIZED DETECTION APPROACH AND
EMPLOYED TECHNOLOGY
We identified three main approaches in the context of MCPS
attack detection: anomaly-based detection, signature-based
detection, and specification-based detection.
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TABLE 4. An overview of the different detection approaches.

As shown in table 4, most researchers focus on an
anomaly-based detection approach (98). The majority pro-
poses an ML algorithm they tweaked to be most suitable
for MCPS (42). Often, the approaches consist of an opti-
mized feature/dimensionality reduction algorithm and anML
algorithm that performs the actual detection. While most
researchers substantiate why their approach works best (e.g.,
Saheed et al. with their swarm-based approach [105]), others
focus on optimizing parts of their approach. E.g., Priya et al.
measure the benefits of different dimensionality reduction
approaches [95]. The detection algorithm then classifies the
traffic, flow, or packet into malicious/benign (binary classi-
fication) or even categorizes it into specific attack groups.
One example of the latter is the work of Mowla et al., which
attempts to identify an attack and classify the attack type [86].
Astillo et al. focus on one specific MCPS: a diabetes man-
agement control system consisting of three separate compo-
nents: a sensor that steadily measures a patient’s glucose level
(continuous glucose monitor (CGM)), an insulin pump, and a
controller. Their detection approach first estimates the blood
glucose level of the patient. Thereafter, estimated and actual
values are compared and derived as features. Eventually, the
classification module evaluates if the current event cycle is
anomalous [44]. Khan et al. criticize that researchers have
so far focused on optimizing accuracy and false alarm rate
while no attention has been paid to interpreting the prediction
model. Therefore, they use an explainable model that pro-
vides information about the features leading to the prediction.
Their motivation is to help security personnel to react timely
and in the right way to an alarm and to increase trust in their
detection model. They explain this is especially necessary

for the healthcare domain since there are too few security
experts [74].

20 of the papers compare several anomaly-based
approaches to one another and assess the advantages and
disadvantages of the approaches in the context of MCPS.
E.g., Newaz et al. developedHealthGuard, which utilizes four
ML-based detection techniques (Artificial Neural Network,
Decision Tree, Random Forest, k-Nearest Neighbor) [89].
The researchers compare the algorithms in terms of accu-
racy, precision, recall, and F1-score (test accuracy consid-
ering precision and recall). 14 researchers combine different
anomaly-based approaches to a new, amalgamated approach.
While most state how their approach improves the anomaly
detection, Kintzlinger et al. emphasize that their proposition
of a combination of ML algorithms and statistical methods
performs worse than the use of statistical methods alone [77].

Another repeatedly seized approach is Federated Learn-
ing (17) which researchers use to address the chal-
lenges of healthcare data privacy (e.g., Otoum et al. [92],
Thapa et al. [117], Ferrag et al. [54]). It is a machine learning
technique that has recently attractedmuch attention – not only
in medical applications – because it protects data privacy.
Other ML approaches often store data centrally without tak-
ing privacy-preservingmeasures. This turns these central data
stores themselves into lucrative targets. In contrast, Federated
Learning establishes a global learning platform that combines
the knowledge of locally available models. The process of
training an algorithm runs over separate decentralized mod-
els. Local datasets are used without revealing private data.
Federated learning can thus preserve the training dataset on
the devices so that the patient’s data is not needed for training
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on the server side [93]. While several researchers include
one network segment or a whole hospital in a local model,
Gupta et al. propose a digital twin for each patient and train
their local model on it. The advantage is that all collected data
belong to a single patient, and the researchers can correlate
more parameters [59].

Specification-based detection approaches are the second
largest group, though by a large margin (9). We present
three examples in the following: To detect maliciously act-
ing devices instead of attacks, Mitchell and Chen devise a
behavior specification-based approach. They define behavior
rules and derive attack states from there. Subsequently, the
researchers develop state machines. The authors promise this
approach could detect unknown attacks while keeping the
overhead and false positive rate low [130]. Refining this
work, Abdulhammed et al. create a hardware approach (Field
Programmable Gate Array (FPGA) chip) that employs behav-
ior rules to detect anomalies [127]. Their approaches address
the resource constraints of MCPS. Fang et al. also observed
and analyzed the behavior of the monitored devices. They
suggest a combined approach of fuzzy core vector machine
and rough set (RS) as preprocessor (peculiarity: RS acts as a
filter for apparent abnormal behavior) [129].

Exclusively signature-based approaches propose only four
researchers in their publications. Meng et al. and Zhang et al.
are two examples: Meng et al. cover the topic of decentralized
detection for privacy reasons and outline a decentralized
signature-based detection approach [25]. Zhang et al. com-
bine the open source IDS Snort and the vulnerability scanner
Nessus for an attack intention prediction [137].
Although signature-based detection may seem to be the

least pursued approach, some researchers include it in a
more general security strategy, combine it with another
method (hybrid), or use it as a means of comparison.
Dupont et al. wrote a protocol dissector for the IDS Forescout
SilentDefense [140]. Magomedov recommends a signature-
based approach for identified DICOM vulnerabilities [6].
Nguyen et al. designed a secure logger for medical devices
with some detection capabilities. It consists of a don-
gle attached to the medical device that sends data to a
remote cloud. The detection component focuses on packet
or sequence tampering. Contrarily, the researchers consider
compromised medical devices or devices sending compro-
mised logs out of scope [145]. Radoglou-Grammatikis et al.
compare their ML-based approach to Suricata loaded with
attack signatures of Cisco Talos for the IEC 60 870-5-104
protocol. The signature-based approach performs better than
most anomaly-based solutions presented in their work [97].

B. RQ 2—DATA COLLECTION AND
PROCESSING LOCATIONS
Researchers choose different locations and thus varying data
sources for their IDSs. We differentiated between the device,
network, and cloud/cloudlet locations and combinations of
two out of those (figure 1). It is essential to state that we

FIGURE 1. The chosen data collection location for the different IDS
approaches. In total, 117 papers were analyzed. ‘‘Combination’’ consists
of a mixture of two locations, where device and network make up 12%,
device and cloud 4%, and network and cloud 10%.

chose the location network if network traffic was seized, the
location device if data was collected and processed on the
device (e.g., log data), and the cloud if data was collected in
or from cloud services.

Most researchers select the network as the sole location
for their approach (52%). While a majority chooses a clas-
sical IP-based NIDS approach, some utilize particular cir-
cumstances of the healthcare sector or a specific MCPS. For
instance, Gao and Thamilarasu propose a gateway device
for an IMD and its programmer device. It acts as a man-in-
the-middle and is supposed to detect attacks between those
devices [56]. Mahler et al. developed an IDS specifically for
a CT device. It intercepts traffic between the host pc and the
device (on the can bus) [82].

The location cloud(-let) was chosen by eleven percent
of researchers. This was often the case if researchers gath-
ered health data from a manufacturer’s cloud. Examples are
Gupta et al. [59] andNewaz et al. [89], who correlate different
vital signs of patients. The approach of Gupta et al. stood
out since they took the first steps in matching network data
and health data. From this, they assess the monitored user’s
behavior to detect abnormalities [58].

Similarly, eleven percent of researchers opted for a pure
on-device approach. To meet the special requirements of the
healthcare sector, many researchers focus on lower resource
constraints while preserving the patients’ privacy. A partic-
ular advantage of the location device is that researchers can
benefit from the special conditions of hospitals and clinics.
E.g., Ardito et al. tailor their approach to an electrocardio-
graphy (ECG) device and use its user interface to display
warnings in case of an anomaly. Then, feedback is requested
from the treating physician. In this way, the physician is
warned as quickly as possible in dangerous situations, and
in the event of a false positive result, the effects can be lim-
ited [34]. A disadvantage of the location is that to implement
a HIDS on a medical device, most researchers rely on device-
specific knowledge or access to source code. This limits the
transferability and scalability of the approach in many cases.

Adding combinations of the locations device & network
(12%) and device & cloud (4%), the number of researchers
who combine the on-device approach with another
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location (16%) is higher than the number of researchers who
use a pure on-device approach (11%). Thereby, in total, 27%
of researchers decided to include device-specific information
in their detection approach. Astillo et al. present one example
of a combination of device and cloud. In their federated
learning approach, they collect the data directly from the
Continuous Glucose Monitor and process it on the controller
unit of the MCPS. To share the knowledge between similar
setups (other diabetes management control systems), only a
submodel is generated on the device and subsequently fused
to a central model on a cloud server [44]. The approach
of Mitchell and Chen is a combination of host-based and
network-based detection. Every node in the network acquires
a set of behavior rules and can monitor the behavior of its
trusted peers. So every medical device is monitored while
it is also part of the detection approach [130]. Meng et al.
suggest to perform the detection on every node individually
and recommend a blockchain as an exchange platform for
necessary signatures and a list of blocked nodes. As every
node could add signatures to the chain in this scenario, the
authors propose a centralized trust management scheme [25].

Besides the aforementioned categories, we could also
observe that some researchers neglect the location choice of
data collection. Instead, they base their detection approach
on existing datasets (further elaboration in section IV-E) in
computing platforms and simulation environments such as
Matlab and Simulink. In this case, the dataset dictates the
collection location. Examples are: Akram et al. [36] and
Begli et al. [138]. Others combine the toolboxes with dif-
ferent simulators or platforms. Chen et al. employ Matlab
and a cloudlet mesh simulator to calculate and evaluate the
optimal number of collaborating IDSs in their cloudlet mesh
approach [139]. In contrast, other researchers embed the
proposed detection approach in a holistic security concept
for a realistic hospital environment and even consider hos-
pital network specifics. One example is Lakka et al., who
describe an incident management approach, complementing
their swarm-based detection with signature-based detection
and consolidating the data in a hospital SIEM. A layered
model outlines what information is collected where, sent
where, and processed where [143]. Khan et al. also con-
sider how their approach could be rapidly deployed in many
hospitals. To this end, they have developed a framework for
deploying their approach as Infrastructure as a Service in the
cloud and as Software as a Service in a hospital network [75].

C. RQ 3—INCLUDED FEATURES AND CHARACTERISTICS
OF THE LEVERAGED DATA
In contrast to the IDS locations, we observed a higher vari-
ety in the examined features (figure 2). The majority of
researchers base the detection on non-medical contextual
information (50%), i.e., analyze technical data and transfer
gained IDS-insights from other sectors to the medical sec-
tor. One often-used approach is the analysis of the network
packet’s contents. The medical sector is particularly inter-
esting for ML-based detection approaches because of the

FIGURE 2. The type of data from which the features and characteristics
were obtained. In total, 114 papers were applicable for the evaluation.
‘‘Combination’’ consists of a mixture of two data types, where network
flow data and contextual (non-medical) data make up 13%, metadata and
contextual information 3%, and metadata and network flow data 1%.

resource constraints and the data masses generated byMCPS.
Therefore, often observed research focuses are feature selec-
tion and hyperparameter tuning (e.g., Akshay et al. [37],
Schneble and Thamilarasu [108]).

Remarkable is the high count of papers using contextual
medical information fromwhich researchers derive indicators
of an intrusion. 20% of papers base their detection approach
solely on such information. Mitchell and Chen were the first
to incorporate medical context and correlations for attack
detection (e.g., one proposed rule for conspicuous behavior
is if the pulse is above a certain threshold during an anal-
gesic request of the patient) [29]. Siniosoglu et al. utilize
medical data such as ECG and arterial blood pressure [44].
Newaz et al. relate health values from different devices and
interpret the results. They hypothesize that an attack usually
targets one device at a time and that a deteriorating state of
health should simultaneously affect various measured health
values. If only single values deviate, they infer that this data
must have been manipulated. E.g., if the patient’s oxygen
level drops due to health reasons, her heart rate would nat-
urally also decrease. So if only one of the values changes,
the IDS will detect an anomaly and raise the alarm [59].
Hady et al. propose a packet comprehension functionality:
Their models recognize the heart rate, respiration rate, sys-
tolic blood pressure, diastolic blood pressure, blood oxygen,
and more from captured network traffic [61].

Others utilize network flow data (9%) or packet metadata
(4%) and claim that this is more suitable than inspecting
all packets. Besides the already mentioned data masses in
the health sector, some researchers give additional reasons.
Fernandez et al. argue, for example, that their primarymotiva-
tion for using network flows is the more and more encrypted
data sent over the network, due to which inspecting packets
would be pointless [53].

Several researchers combine two types of features in their
detection approach to identify attacks (17%). One example
is the expansion from the field of disease classification to
attack detection on medical data, as Haque et al. pledge
their approach can do both [66]. Siniosoglou et al. leverage
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FIGURE 3. The detection approaches focused on different attack
scenarios. In total, 113 papers were analyzed. Combinations consist of
approaches promising to detect external and internal threats (25%),
external and malware threats (3%), and internal and malware
threats (3%).

this approach and propose two supplementary models: one
model to detect intrusions from network flow data and
one model to detect anomalies from healthcare data [112].
Sehatbaksh et al. and Rao et al. follow entirely different
approaches. The former propose to use the electromagnetic
(EM) signals generated by the monitored medical devices
during operation to distinguish between normal andmalware-
infected MCPS [109]. The latter suggest monitoring system
operations. They hypothesize that amalware infection is iden-
tifiable by monitoring processes and other system parameters
(especially the execution time) of a medical device [100].

D. RQ 4—ADVERSARIAL FOCUS
Many researchers limit the applicability of their work bymak-
ing assumptions about attack types, targets, and locations,
among other things. We have investigated which defense
scenarios the detection approaches focus on. Here, we dif-
ferentiated between external threat actors, malicious insiders,
attack scenarios utilizing malware, and approaches focusing
on detecting more than one attack scenario (figure 3).

Most researchers concentrate on insider scenarios (37%) or
the combination of internal as well as external threats (25%).
23% focused on the sole detection of external threats. 9% of
the researchers centralize the detection of malware infections.
It is essential to state that we also included such papers
in the category of insiders that do not explicitly mention
such a specific attack scenario as a limitation, but require an
attacker to have access to the network or a device (e.g., the
attacker is able to spoof a mac address or the drug dosage
is monitored for manipulations). So an external attacker that
has already compromised an MCPS and can be detected as
late as he laterally moves in the network or interferes with
the normal function of the MCPS, is considered an insider
in our classification scheme. The behavior-based approach
of Fang et al. contrasts this scheme, as it promises to defend
against external attackers. The model that they call detecting
illegal behavior (DIB) focuses on the detection ofmaliciously
acting accounts and devices (e.g., accounts that have been
taken over through shoulder-surfing attacks) [129]. As it
is technically impossible to differentiate between such a
compromised account and a real insider sending malicious

FIGURE 4. The four categories of datasets and -sources encountered in
the reviewed publications. In total, 108 papers were analyzed.

commands, we decided to follow our definition. While most
other behavior-based detection approaches concentrate on the
detection of insiders, Mitchell and Chen additionally claim to
be able to detect malware, as they estimate malware to change
the behavior of an infected device as well [130].

E. RQ 5—DATASETS USED FOR VALIDATION
Researchers need data to train and test detection approaches
(especially if they are ML-based). There is an additional
benefit when multiple researchers use the same dataset, as the
different detection methods become comparable. Choosing a
dataset fitting the task is crucial since datasets are generated
for specific purposes. We have organized the used datasets
and -sources into two categories, each with two subcate-
gories, as shown in figure 4. The first category includes
approaches that utilize publicly available datasets. Here we
differentiate between security and medical datasets. The sec-
ond category deals with publications that have created their
data themselves. While datasets from some approaches are
available to the community, many remain unpublished.

1) PUBLICLY AVAILABLE DATASETS
In non-health domains, researchers usually train and test
novel IDSs utilizing publicly available security datasets. Our
analysis shows that 51% of the researchers also follow this
approach. Figure 5 presents the different datasets. 8% of the
researchers in this group utilize the KDDcup-99 dataset. This
dataset was developed for the KDD-cup competition in the
year 1999, whose goal was to develop an NIDS [146]. Several
problems, such as redundant records, have been reported,
and the successor, the NSL-KDD dataset, was released in
2009 [147]. 18% of the researchers in this group use this
dataset. Both datasets contain several IT protocols such as
HTTP, SMTP, and FTP. Among others, Khan et al. bemoan
the deficiencies of missing the latest attack vectors in the
NSL-KDD dataset [74]. The Canadian Institute for Cyber-
security (CIC) published several datasets promising to have
more recent attacks resembling real-world data. Their top
priority varies from dataset to dataset. In the 2017 data
set, they provided realistic background traffic and simu-
lated the behavior of 25 users [148]. In the 2018 dataset,
they focused on insider attacks and provided system logs
of every machine [149]. Most researchers relying on CIC
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FIGURE 5. The different publicly available network traffic datasets used.
During our analysis, we encountered 18 different datasets that were used
72 times. Some research groups used more than one dataset and were
therefore assigned to more than one category.

datasets in the examined works use the CIC IDS 2017 dataset
(8%). It consists of raw packets in PCAP files as well as
labeled flows [148]. However, none of the presented datasets
comprise IoT or MCPS protocols. The University of New
South Wales (UNSW) fill the gap with their datasets ToN-
IoT [150] and Bot-IoT [151]. In these datasets, a real-world
network environment containing both IT and IoT devices was
mimicked. Besides the network traffic, the researchers from
UNSW provide Windows and Linux audit traces and teleme-
try data for the IoT services. Their IoT testbed consisted of
various devices, among others: a fridge, a garage door opener,
a thermostat, a GPS tracker, a motion sensor, and a weather
station [150]. MCPS, however, have not been included. The
ToN-IoT dataset, by 24%, is the most used dataset, while the
Bot-IoT dataset is employed by 8% of the researchers that
rely on publicly available datasets.

Some researchers employ the medical sector only as moti-
vation and ignore the discrepancy between real network traf-
fic in hospitals and the datasets they choose to support their
detection approach. Others point to the absence ofMCPS traf-
fic in the dataset and handle the inadequacy differently. For
instance, Schneble and Thamilarasu explain that in the con-
text ofMCPS, two aspects are crucial to keeping the detection
latency low: Feature selection and reducing the amount of
data processed by the IDS. Hence, to test the effectiveness
of their feature ranking and selection algorithm, they consult
the MNIST digit recognition dataset. This dataset contains
60,000 handwritten digits. They choose this dataset, among
other reasons, because of the large feature space and the easy
access to the data [108]. In contrast, Ferrag et al. explic-
itly determine the MNIST dataset unsuitable for training
and testing IDSs in the context of medical devices [13].
Hameed et al. state that their approach is only applicable
for detecting MCPS in a real environment if it is properly
adapted prior to deployment [63]. Tabassum et al. use the
datasets KDDcup-99 and NSL-KDD and merge their self-
generated IoT traffic to cope with the missing IoT traffic in

named datasets. However, they do not explain which MCPS
they employed for the generation [114].

Some researchers harness medical datasets containing
patient and medical data to identify attacks from those
datasets (7%). The most commonly used dataset is the
MIMIC III dataset, which contains health-related data of forty
thousand patients who received intensive care in a hospital
in Israel [152]. 25% of the researchers in this group used
this dataset. While the researchers found the specifics of
the medical data particularly valuable for attack detection,
the drawback is that none of these freely available medical
datasets contain attacks. Therefore, alternative ways must be
found here as well. One idea given by Siniosoglou et al.
is to use two distinct datasets to train their neural network:
A publicly available medical dataset, and the UNSW-NB
intrusion detection dataset for network flow data [112].

2) SELF-GENERATED DATA(SETS)
Many researchers generate their own data(-sets) and work
with that data without publishing it afterward (36%). While
this results in the fact that subsequent studies cannot be
compared to their work, the reasons given are manifold.
On the one hand, this data often results from cooperation with
hospitals and could reveal real patient data. One example is
Boddy et al., who captured network traffic in a UK hospital
and depict the complexity of the network infrastructure in
a visualization approach [153]. Even if this data could be
anonymized, many argue that hospitals prefer to be on the
safe side and not risk the exposure of any patient data. On the
other hand, the data might be especially suited to an approach
or just randomly generated, as in the work of Mitchell and
Chen. They generated random data following their devised
state machine [130]. This data would have had no benefit
for any other researcher, as their states are unique to their
approach.

As we already addressed in section IV-B, researchers
used computing and simulation environments to test their
new attack detection algorithm on existing datasets. Another
approach is to utilize simulators and frameworks to model
an even more realistic MCPS environment. Among these
approaches are those designed for a medical environment
and those whose original purpose is different. Two examples
of non-medical simulators are presented in the following.
Meng et al. operate a publicly available tool to generate
attacks on wireless networks. The attacks are not specifi-
cally adapted to MCPS environments [25]. Thamilarasu et al.
employ Castalia, a simulator for WSN and WBANs, in sev-
eral papers [26], [56], [116]. Such toolboxes and frame-
works originally developed for other purposes have certain
limitations regarding MCPS simulation. Therefore, several
researchers adapt various open-source medical device sim-
ulators to their needs or implement their own medical device
simulators. Astillo et al. operate the UVA/Padova Type 1 dia-
betes simulator that has been approved by the U.S. Food and
Drug Administration (FDA) in their testbed and generated
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their test data with it. They also use an extended simulator
version to induce artificial attacks [44]. Sehatbakhsh et al.
leverage open-source code to deploy a syringe pump on
various architectures. They found a buffer-overflow vulner-
ability in the syringe pump’s source code that they were able
to exploit [109]. Raiyat Aliabadi et al. employ OpenAPS,
an open source Smart Artificial Pancreas [132]. They use fault
injection as the source for unknown attacks.

Recent research efforts concentrate on the standardization
of medical device inter-connectivity to address the hetero-
geneity of network protocols used by medical devices in
hospitals mentioned in section I This is not only an IT
security challenge. One project that has already made some
progress is the community implementation of an integrated
clinical environment, OpenICE. It provides a framework
for the integration of medical devices into an integrated
clinical environment (ICE). The developers even promise
to be able to connect legacy devices to their ecosystem.
For that, they developed adapters for those devices and a
novel network protocol [154]. Some security researchers pro-
pose IDSs for networks based on OpenICE. Li et al. use
OpenICE to simulate future medical devices and accomplish
a data flow analysis in an OpenICE network [131]. Fernan-
dez et al. analyze network flows of malware outbreaks in such
environments [53].

To mimic real-world hospital conditions even better, many
researchers employ actual medical devices in a testbed.
Figure 6 shows the different devices. While the medical
devices most used are blood pressure sensors (12%) a clear
favorite could not be determined. Various research groups
cover multiple devices. A protruding example is the testbed
of Fang et al. which contains 21 different medical devices
and a malicious access point to capture network traffic. From
the device behavior, they derive 21 behavior rules. Instead
of attacking the devices, they define operation rules for each
device and specify some operation rules as normal and the
remaining as abnormal behavior [129]. This way, no real
attacks are conducted. Instead, some behavior is defined as
malicious. The detection system ofKintzlinger et al. is explic-
itly designed for attacks directed at programmer devices
for implantable cardioverter defibrillators. They cooperated
with two cardiology experts from a university medical
center to create malicious programmings [77]. Yan et al.
analyzed a medical shoe with 99 sensors attached. It is
designed to detect the instability and balance of patients. The
researchers statistically correlate the data of the different sen-
sors in a shoe and, thereupon, identify attacks using anomaly
detection [123].

Similar to Fang et al. before, we observed that many
research endeavors were conducted utilizing household
IoT devices rather than medical devices for data collec-
tion [129]. One example is Gupta et al., who built a con-
joined testbed consisting of medical devices such as pulse
oximeters and smart home devices like a fridge and a door
sensor [58].

FIGURE 6. The different medical devices deployed in the testbeds of
researchers. A total of 23 devices were used in 86 cases. Since several
research groups analyzed more than one device, the percentages refer to
the number of cases used (86) and not to the count of individual devices
(23).

The same phenomenon occurs in the field of mal-
ware detection. Since there is little to no research on
MCPS-specific malware, those researchers investigating
malware outbreaks in clinical environments fall back
on existing malware samples. Some utilize IT malware
(e.g. Chowdhury et al. [52]), others use malicious android
APK packages and explain that there are many mobile
devices using android in hospitals [40].

Only six percent of research groups publish their generated
datasets of MCPS-specific traffic. Nguyen-An et al. create an
IoT traffic generator named IoTTGen. Their focus is smart
home IoT as well as biomedical IoT. They analyze the behav-
ior of smart homes and medical devices to build templates for
those devices. The generator also allows adding new devices,
if the traffic patterns are known. To generate anomalous
packets, they extract attack traffic traces from the Bot-IoT
dataset and inject them into their generated data. Since the
Bot-IoT dataset does not contain MCPS-specific attacks, this
generator cannot generate such attacks either. And since one
finding in this work is that significant differences between the
traffic of smart home devices andmedical devices exist [155],
it stands to reason that traces of attacks will differ as well.

Three dataset developers have focused on specific proto-
cols or technologies. Radoglou-Grammatikis et al. present
a IEC 60 870-5-104 protocol dataset. It contains protocol-
specific attacks. They use the IEC Testserver to deploy their
MCPS devices without specifying what devices were mod-
eled in detail [97]. Zubair et al. provide a Bluetooth-enabled
medical device dataset. They record Bluetooth network traf-
fic and generate flow data from such devices - explic-
itly excluding the collection of patients’ exact health data.
The attacks performed during the data recording are also
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Bluetooth-protocol-specific [126]. Hussain et al. focused on
Message Queuing Telemetry Transport (MQTT) traffic and
developed a tool for generating MQTT-based MCPS Traffic.
The result is provided as an open-source dataset [70].

Two self-generated and published MCPS datasets have
already been reused by other researchers: Ahmed et al.
operate the Libelium Mysignals healthcare kit to gener-
ate their dataset. This kit provides a platform for the
development of medical devices and eHealth applications.
The researchers use three available health sensors in their
testbed. Just their attacks are not medical protocol spe-
cific. Their ECU-IoHT dataset provides the recorded net-
work packets in PCAP format, and network flows recorded
using Argus [35].

Hady et al. record their testbed’s network traffic, consisting
of several small medical devices, and extract traffic flows
and patient data from it. This recording is published under
the name WUSTL-EHMS dataset. Among their carried-out
attacks is the manipulation of medical data. Thereby, they
directly integrated attacks on medical network traffic in
their dataset, even if those are limited to spoofing and data
modification from a MITM position [61]. In addition, their
WUSTL-EHMS dataset is the dataset from the category of
self-generated and published datasets in our survey that has
been used most often by other researchers to detect attacks on
MCPS (4).

F. RQ 6—ATTACK PREVENTION ENDEAVOURS
Attack detection is often closely associated with attack pre-
vention since attackers and malware act fast, and a manual
response often results in data loss or, in the case of the
medical sector, patient harm. Therefore, a timely reaction
is an often invoked point. Troublesome is that an automatic
reaction based on a false positive might also harm a patient.
One example is a higher-than-usual drug dosage given to a
patient because of a life-threatening condition. If an IDS iden-
tifies this as an overdose attack and preventively interrupts
medication delivery, the patient might die. Researchers have
to consider these exceptional circumstances and come up
with sector-specific solutions. Out of the 118 primary studies
we reviewed, only 14 studies address attack prevention or
mitigation. Others, such as Kumar et al, see the need for
attack mitigation but choose to merely alert an administra-
tor if an attack is detected and take no further action to
thwart it [78].

Most preventive approaches (9) leverage software-defined
networking (SDN). (Férnandez) Maimó et al. propose a deci-
sion and reaction module in their approach. It consists of a
rule-based decision component and a reaction and notifica-
tion component. Utilizing network function visualization and
SDN, medical devices can be isolated automatically. They
emphasize that their approach is not to prevent the actual
attack but to reduce the reach of the attack by preventing the
attacker or malware from accessing more devices [53]. This
strategy is also chosen by most other SDN-based prevention
and mitigation approaches.

Others concentrate on preventing a specific attack vector
in a specific environment. E.g., Thapa et al. utilize mitigation
SDN rules to react to ransomware spread in an ICE [117].
Similarly, Bassene and Gueye focus their work on detecting
DDoS attacks against hospital networks. They as well pro-
pose the utilization of SDN [49], but unlike the previous,
their approach excludes entire subnets to counter this specific
attack type.

Radoglou-Grammatikis et al. are part of the few who
discuss the potential consequences of automatic preventive
measures. They draw attention to the fact that an attack might
come from a device still used for legitimate health-related
operations. Their notification and response module weighs
this risk of causing higher costs for the healthcare organi-
zation against the threat of the detected attacks. Eventually,
it decides whether to isolate the device via automatically
generated and applied firewall rules, or simply to report it to
an administrator and ultimately have that administrator make
the mitigation decision [97].

One example of a non-SDN-based approach is MedMon.
MedMon is placed in a man-in-the-middle position between a
controller and a wirelessly-connected medical device. Attack
prevention works by jamming the identified malicious wire-
less connection. Regarding the option of a false positive,
MedMon can be operated in different modes. If a valid con-
nection from the controller to the insulin pump in the exam-
ple of the researchers is jammed, the patient can manually
deactivate the jamming [134]. Since insulin delivery does not
have to occur within seconds, a patient can usually react to a
warning. Therefore, this approach might be suitable for this
particular device type. Contrarily, it might not be suitable for
medical devices with other preliminary requirements.

Another non-SDN-based, innovative approach byRao et al.
proposes a new resilient design for MCPS. They suggest to
employ different operating modes in the MCPS architecture.
Threat mitigation is realized by automatically changing the
operating mode based on calculated risk values. In 2018, they
presented the idea of a so-called multi-modal system in the
form of a pacemaker [100], while in 2019, they expanded
the idea to an insulin pump [101]. Carreon-Rascon refined it
and added self-healing capabilities to the system. In addition
to the operational modes and threat mitigation policies, self-
healing policies are proposed and linked to the tasks of the
different modes. Once the steps of the active mode have been
executed, it is possible for the MCPS to switch to the next
lower-risk mode and execute the self-healing tasks coupled
to this mode [51].

V. DISCUSSION AND IMPLICATIONS
Overall, many good reasons and motivations for intrusion
detection in the medical sector have been published. It is
clear that the healthcare sector is receiving special attention,
and many argue that particular challenges require special
solutions. In the following, we use the knowledge gained on
the state of research to discuss obstacles and limitations of
attack detection for MCPS. By deriving five future research
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topics (A-E), we would like to support prospective research
projects to take a targeted direction.

A. CAPTURING THE HEALTH SECTOR-SPECIFIC
REQUIREMENTS FOR ATTACK DETECTION
The results show that the majority of researchers sees the
difficulties of attack detection in the healthcare domain as
detecting attacks with a low false positive rate, with as lit-
tle computing power as possible while preserving patient
privacy. The, by far, most popular approach is anomaly
detection, while only a few researchers discuss options,
how understaffed IT security personnel could handle results
containing false positives. Overall, we observed that many
researchers assume different conditions and circumstances
in MCPS environments. Especially, technical differences
between healthcare networks and those in other sectors
have received little attention in research to date. Therefore,
we identify the need to determine the requirements to which
detection approaches in the medical field must adapt.

One main difference is the use of medical device gate-
ways, which connect medical devices to hospital networks.
Such a setup could lead to difficulties since, for example,
agent-based approaches could not be easily deployed to such
architectures. This also applies to innovative approaches that
operate by combining local and global predicates. If, for
instance, in an intelligent agent-based approach, such an
agent can investigate a suspiciously-acting device, how could
legacy devices be included without involving all their man-
ufacturers? Furthermore, it is unclear to the research com-
munity if medical devices use encryption. As illustrated in
section IV-C, some researchers assume that much of the
traffic in a hospital is encrypted and propose a flow-based
approach in response to this assumption. In contrast, other
researchers like Hady et al. derive patient data from captured
network traffic and assume that this traffic is sent unencrypted
from medical devices to servers [61]. However, performing
deep packet inspection (DPI) in the case of encrypted traffic
(e.g., by implementing application layer gateways to break up
encryption) is aggravated in the MCPS environment, as secu-
rity engineers cannot easily place certificates on medical
devices. Approaches that rely on DPI must take that into
account. As a first future research topic, we see the need for
a comprehensive study of the unique constraints, technical
characteristics, and challenges of hospital networks, along
with connected medical devices, in contrast to other IT and
OT environments.

B. CREATING MCPS-SPECIFIC ATTACK
DETECTION DATASETS
Researchers deal with the scarce information situation dif-
ferently. Some leverage the diversity typical for the health-
care sector solely for motivational reasons. Others do not
place much emphasis on where and how data is collected.
Instead, they use existing, often outdated datasets that do not
fit the field or their motivation and ignore any differences.
Again other researchers find ‘creative’ ways to replicate

individual features of hospital networks and test specific parts
of their approach. One example is the debatable use of the
MNIST digit-recognition dataset to reenact the high feature
dimensionality in the health sector. Either way, detection
based on real health-specific protocols is rarely conducted,
leading to limited portability of detection approaches from
outside the medical domain. Moreover, it leads to uncertainty
about whether the supposedly most suitable approach will be
the best fit in a real hospital environment. ML-based IDSs
must, most certainly, be retrained to prevent an increased
false positive rate in a real-world environment. Furthermore,
even the more recent datasets (e.g., CIC IDS 2017/2018)
are often unsuitable for detecting attacks on medical devices
since they do not contain IoT or IIoT traffic. Even if such
datasets exist (e.g., TON-IoT or Bot-IoT), they might not
be suitable for the health domain, as we saw that MCPS
traffic significantly differs from other IoT traffic. There are
several health-specific protocols (e.g., HL7 and DICOM
[6], [140]), but only exceedingly few of these protocols are
part of the datasets examined. Problematically, current adver-
saries are increasingly attacking application-layer protocols,
as discussed byHussain et al. [70]. Another factor not covered
in current datasets is that different real-world attackers would
behave differently. While several researchers, among other
things, focus on detecting port scans or denial-of-service
attacks, APT attackers would act much more stealthy. The
first steps of recognizing the differences in the attacker’s
modus operandi were taken by Mitchell and Chen, who
consider this fact with their attacker archetypes (reckless,
opportunistic, and random attacker) [130]. Thamilarasu, too,
takes the attacker’s behavior’s impact on the effectiveness
of the detection into consideration [116]. However, these
researchers use simulations for their distinctive environ-
ment. A dataset containing such characteristics has yet to be
developed.

In addition to the uncertainty about the transferability to the
real world, the lack of fitting datasets limits the comparability
of the approaches. When comparing ML-based approaches,
it is common to compare performance indicators such as
accuracy, precision, and recall. Many of the papers have
calculated and reported the corresponding values in their eval-
uation. However, we have refrained from correlating papers
based on these metrics in this paper. On the one hand, this is
because often, not the same datasets were used for training
and testing of the individual algorithms so that, at most,
a small group of algorithms could be compared to each other.
On the other hand, often further assumptions were made
about attackers, attacks used, or the granularity of the clas-
sification (as described in section IV-D). These assumptions
limit the applicability of the algorithms to single-use cases
and further reduce the comparability to other algorithms.
Sharma et al. reacted to this and built a modular framework
with a benchmarking suite. This could help future researchers
to easily test their new detection algorithms and compare
them directly to the work of other researchers [110]. But
since this framework represents a novelty, the community
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must first accept it. Furthermore, this suite also relies on
the existing datasets, and while it takes an important step
for comparability, it is not a comprehensive solution to this
concern.

We also observed a trend to utilize distributed and fed-
erated learning approaches. It is crucial to point out that
these models have specific requirements for datasets and that
current datasets do not fulfill them.

In conclusion, the lack of appropriate datasets is a major
obstacle to developing attack detection in the healthcare sec-
tor. From our point of view, an attack detection dataset should
include three things to be suitable for the health domain.
It should: (a) incorporate health-specific protocols, (b) model
different attacker behavior, and (c) be suitable for specific
scenarios and techniques, such as distributed and federated
learning. The generation of such MCPS-specific datasets has
to be addressed in the future. Therefore, we proclaim it as the
second future research topic.

C. ADVANCING STANDARDIZATION PROJECTS
In addition to capturing the current state and the character-
istics of the healthcare sector and mapping that state into
datasets, we see the need to get to the root of the increas-
ing diversity and the individual technology that makes IT
security in healthcare so difficult. Therefore, efforts to stan-
dardize the sector’s digital infrastructure must be intensified.
Initiatives such as OpenICE are commendable. However,
OpenICE was developed without consideration of secu-
rity [145]. Additionally, intrusion detection in OpenICE-
based networks will not be easily transferable to real hospital
networks, as the network protocols are unique to theOpenICE
environment.

The urgent need for standardization also applies to the
device level. While it seems unsurprising to find the majority
of researchers choosing the network as the data collection
location (corresponding to the insights into the heterogeneity
of medical devices discussed in section I), many researchers
are examining single medical devices and designing specially
adopted host-based detection approaches. This suggests that
despite the hurdles in this area, many researchers would like
to take advantage of the insights that device data can provide.
One example of the many possibilities is the implemented
feedback reaction to a detected anomaly by Ardito et al. [34]
discussed above. However, the heterogeneity of devices cur-
rently means that a separate solution is required for each type
of device. That is why most researchers propose an HIDS
focused on a single or few device types (e.g., a smart artificial
pancreas [132], a smart-connected-pacemaker [100], or a
diabetes management control system [44]). The transferabil-
ity of these approaches to the real world and, in particu-
lar, scalability are problems that are often not addressed by
researchers. Therefore, manufacturers should also incorpo-
rate security considerations into the development of devices.
Device and log data has to be made accessible to secu-
rity experts in a standardized way. We ascertain advanc-
ing standardization ventures, therefore, as the third future

research topic. As explained, this applies to both the device
level and the network level.

D. CONNECTING TECHNICAL AND MEDICAL DATA
FOR ATTACK DETECTION
In addition to the technical aspects of healthcare networks,
some researchers explored the potential of medical context in
various forms for intrusion detection. The promised benefits
were manifold. E.g., in the case of a syringe pump, medi-
cal context could provide insights into a too-high dose for
a patient and thereby recognize not only technically novel
attacks and malicious insiders but also simple mistakes of
health personnel. However, any initial attacker efforts or
intrusion attempts might go unnoticed in these approaches.
An attacker is only discovered if a device is already compro-
mised and she tries to manipulate the care process. We have
presented initial approaches for combined detection based
on network traffic and medical data. However, detection
has taken place independently and based on unrelated data
sources. The genuine and thorough integration of the medical
context with the detection based on technical features and,
thus, creating a holistic approach is the fourth future research
topic.

E. DRIVING RISK-AWARE ATTACK PREVENTION
During this survey, we observed that automatic intrusion
prevention in the medical sector is an area that is handled
even more carefully than in other sectors. The reason lies in
the high stakes at risk: Lives depend on the system’s proper
functioning. While in other domains, a quick shutdown of
a system that is most likely compromised may be just the
right response in the risk assessment, an MCPS might still
provide life-sustainingmeasures despite a compromise. Thus,
the reaction must be weighed quite differently in this domain.
As presented in section IV-F, there are very few research
groups that address prevention and mitigation at all. The vast
majority of them use the isolation capabilities that their SDN
approach provides. While this does not necessarily mitigate
the attack, it can stop potential lateral movement. Especially
in the context of malware (esp. ransomware), this can be very
valuable. However, the implications for the further function-
ing of isolated medical devices are rarely considered. Other
endeavors propose individual solutions for single medical
devices. While these preventive approaches are often inno-
vative, they are tailored to the specific device type, and their
risk assessment is not (easily) transferable to other devices.
A plausible example is the IDS for an insulin pump, which
notifies its user in case of an anomaly. The user can override
the preventive measures and thus correct a false detection
if necessary. This procedure would be fatal in the case of
a pacemaker, for example, because here, it is important to
react very promptly to anomalies. If the user is consulted first,
it is questionable whether she can respond in a timely manner
(or at all).

Since attackers and malware make no distinction between
hospitals and other targets, these considerations and

VOLUME 11, 2023 41809



S. B. Weber et al.: Attack Detection for MCPS–A Systematic Literature Review

difficulties must not lead to a neglect of prevention. Just as
in other fields, a quick but well-thought-out response in the
event of an attack is essential in the medical field. Hence,
a fundamental discussion about intrusion prevention in the
medical domain, the sector-specific requirements, and how
it can succeed despite the high risks has to be conducted.
We conclude that this is the fifth future research topic.

VI. CONCLUSION
Already in 2012, Clark and Fu denounced two challenges
in the context of the security of medical devices: ‘‘(1) com-
puter security researchers seldom have access to real medical
devices for experimentation, and (2) the computer security
community is largely disjoint from the biomedical engineer-
ing community.’’ [156] These challenges persist to this day.

In this paper, we conducted a structured literature review
by following the guidelines of Kitchenham et al. We found
the synonyms for MCPS to be manifold and many of the
security terms to be used in other respects in the medi-
cal domain. Most researchers focused on an anomaly-based
detection approach at the network layer. The detection of
malicious insiders was the primary focus. Several researchers
used publicly available datasets for training and testing their
algorithms. Others criticized the lack of suitable datasets and
developed testbeds consisting of various medical devices.
While some medical devices were used by multiple research
groups, we observed no clear preference. Based on the results,
we identified five research gaps. We discussed why it is nec-
essary to examine the special conditions of hospital networks,
the MCPS deployed within them, and the contrasts to other
IT and OT environments. Furthermore, we see an urgent need
for the creation of MCPS-specific datasets. Only with these
sets researchers can attribute to the requirements and the
unique possibilities of the healthcare domain. Alongside this,
we see the need to support and expandMCPS standardization
projects. Moreover, the medical domain offers an excellent
opportunity to fortify attack detection based on technical
features with medical context, thereby creating a holistic
approach. Last but not least, a fundamental discussion should
be held about the challenges of intrusion prevention in the
medical domain and how it can succeed despite the high
risks. We are confident that by countering these challenges,
IT security in hospitals can be enhanced, and patients’ lives
can be protected.
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