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Abstract
Objectives Evaluate the influence of an MRI contrast agent application on primary and follow-up staging in pediatric 
patients with newly diagnosed lymphoma using  [18F]FDG PET/MRI to avoid adverse effects and save time and costs during 
examination.
Methods A total of 105  [18F]FDG PET/MRI datasets were included for data evaluation. Two different reading protocols 
were analyzed by two experienced readers in consensus, including for PET/MRI-1 reading protocol unenhanced T2w and/
or T1w imaging, diffusion-weighted imaging (DWI), and  [18F]FDG PET imaging and for PET/MRI-2 reading protocol an 
additional T1w post contrast imaging. Patient-based and region-based evaluation according to the revised International Pedi-
atric Non-Hodgkin’s Lymphoma (NHL) Staging System (IPNHLSS) was performed, and a modified standard of reference 
was applied comprising histopathology and previous and follow-up cross-sectional imaging. Differences in staging accuracy 
were assessed using the Wilcoxon and McNemar tests.
Results In patient-based analysis, PET/MRI-1 and PET/MRI-2 both determined a correct IPNHLSS tumor stage in 90/105 
(86%) exams. Region-based analysis correctly identified 119/127 (94%) lymphoma-affected regions. Sensitivity, specificity, 
positive predictive value, negative predictive value, and diagnostic accuracy for PET/MRI-1 and PET/MRI-2 were 94%, 97%, 
90%, 99%, 97%, respectively. There were no significant differences between PET/MRI-1 and PET/MRI-2.
Conclusions The use of MRI contrast agents in  [18F]FDG PET/MRI examinations has no beneficial effect in primary and 
follow-up staging of pediatric lymphoma patients. Therefore, switching to a contrast agent–free  [18F]FDG PET/MRI protocol 
should be considered in all pediatric lymphoma patients.
Clinical relevance statement This study gives a scientific baseline switching to a contrast agent–free  [18F]FDG PET/MRI 
staging in pediatric lymphoma patients. This could avoid side effects of contrast agents and saves time and costs by a faster 
staging protocol for pediatric patients.
Key Points 
• No additional diagnostic benefit of MRI contrast agents at [18F]FDG PET/MRI examinations of pediatric lymphoma 

primary and follow-up staging
• Highly accurate primary and follow-up staging of pediatric lymphoma patients at MRI contrast–free [18F]FDG PET/MRI
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Abbreviations
HL  Hodgkin’s lymphoma
IPNHLSS  International Pediatric Non-Hodgkin’s Lym-

phoma Staging System
NHL  Non-Hodgkin’s lymphoma

Introduction

As the third most common tumor disease, lymphomas rep-
resent a significant proportion of pediatric malignancies, 
accounting for approximately 15% [1]. Generally, lymphoma 
types are broadly distinguished: Non-Hodgkin’s lymphoma 
(NHL) is diagnosed more frequently than Hodgkin’s lym-
phoma (HL) [2]. Highly accurate staging of lymphoma 
patients plays an important role for therapy, as it is well 
known that therapeutic strategies and prognosis depend 
heavily on the tumor stage at initial staging [3–5]. Although 
contrast-enhanced computed tomography (CT) diagnos-
tic is used frequently due to its immediate availability for 
initial staging,  [18F]fluorodeoxyglucose-positron emission 
tomography  ([18F]FDG PET)/CT is considered the cur-
rent reference imaging method. The additional metabolic 
information outperforms single CT diagnostics especially 
for staging of small nodal lymphoma manifestations and 
for response assessment. Nonetheless, both modalities 
come with repetitive radiation exposure and an increasing 
risk of future secondary malignancies [6–9]. Especially for 
children, a radiation-saving diagnostic alternative should 
be the goal. Combining high spatial soft tissue resolution 
with a functional imaging dataset,  [18F]FDG PET/magnet 
resonance imaging (MRI) is becoming increasingly impor-
tant as a radiation-saving alternative for initial staging and 
follow-up imaging of all lymphoma patients, especially in 
children [10–14]. It enables a reduction of radiation expo-
sure up to 65%, while obtaining high quality at morphologic 
lymphoma imaging [15–17]. Consequently, improvements 
of the diagnostic work-up therapeutic abilities build the 
basis of increasingly favorable prognosis for children with 
lymphoma, measurable with a 5-year survival of 97% for 
HL and 85% for NHL, respectively [18–20]. However,  [18F]
FDG PET/MRI can easily reach 1 h of examination time 
for an adequate staging, making it stressful and challenging 
for pediatric and adult patients [21]. Bearing in mind that 
lymphoma patients commonly undergo multiple examina-
tions for staging and therapy monitoring, special attention 
should be paid to the ongoing discussion about the relevance 
of gadolinium deposition to the brain [15, 22–25]. Thus, 
application of an MRI contrast agent should be reduced 
to a clinically reasonable minimum. Thus, skipping con-
trast administration and the associated contrast-enhanced 
sequence could reduce the risk of adverse effects like the 

discussed gadolinium deposition in the brain and allergic 
reactions and save time as well as costs.

A pilot study published by Kirchner et al. in 2017 already 
compared different reading protocols in a small cohort, 
entailing non-enhanced/contrast-enhanced and diffusion-
weighted  [18F]FDG PET/MR imaging and whole-body diffu-
sion-weighted MRI for lesion detection and determination of 
the tumor stage in pediatric lymphoma patients. This study 
revealed that the application of contrast agents does not lead 
to a noticeable improvement of the diagnostic accuracy of 
a PET/MRI staging [13]. Nonetheless, data about the value 
of MRI contrast agent application in  [18F]FDG PET/MRI in 
the diagnostic work-up of pediatric lymphoma patient is still 
limited to few small cohort studies [26–29].

Therefore, the present follow-up study aims to further 
validate a potentially time- and contrast agent–saving  [18F]
FDG PET/MRI protocol in the diagnostic work-up of pedi-
atric lymphoma patients.

Material and methods

Patients

The institutional review board (study number 11–4822-BO) 
approved this study and it was performed in conformance 
with the Declaration of Helsinki. All patients underwent a 
clinically indicated contrast-enhanced whole-body  [18F]FDG 
PET/MRI after informed written consent of the parents was 
obtained. Histopathological verification of lymphoma sub-
types was available in all patients. Following a publication 
of the Council on Child and Adolescent Health (1988) that 
sees the upper pediatric age limit at 21 and a 2019 published 
study of Arendt et al which included pediatric lymphoma 
patients until the age of 25 years, this study included pediat-
ric lymphoma patients < 21 years [26, 30]. Ultimately n = 25 
HL patients and n = 7 NHL patients mean aged 14 ± 3 years 
(range 7–20 years) with a total of 105 examinations, includ-
ing scans for initial staging (n = 32) and restaging during 
treatment or at the end of treatment (n = 73), as recom-
mended in the ESMO Guidelines, were included [31, 32].

Whole‑body PET/MRI

All  [18F]FDG PET/MRI examinations were performed on an 
integrated 3-T PET/MRI system (Biograph mMR, Siemens 
Healthcare GmbH) with an average delay of 67 ± 19 min 
after  [18F]FDG injection. To ensure blood glucose lev-
els below 150 mg/dl, blood samples were obtained prior 
to injection of a bodyweight adapted dosage of  [18F]FDG 
(4 MBq/kg bodyweight). Mean activity was 202 ± 53 MBq. 
Initial  [18F]FDG PET/MRI staging was performed using a 
whole body protocol (including the head and limbs). All 
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follow-up scan volumes generally covered the skull base to 
mid-thigh if the head and limbs were unsuspicious in initial 
staging.

PET data acquisition was performed in up to 5 bed posi-
tions by using an acquisition time of 4 min per bed posi-
tion, depending on children height. PET images were 
reconstructed using the iterative ordered-subset expectation 
maximization (OSEM) algorithm (3 iterations, 21 subsets, 
Gaussian filter 4 mm, matrix size 344 × 344) [33]. Inves-
tigating possible differences between (PET/MRI-1) unen-
hanced PET/MRI (T2 weighted (w) imaging and/or T1w 
imaging, diffusion-weighted imaging (DWI)) and (PET/
MRI-2) contrast-enhanced PET/MRI (T2w imaging and/
or T1w pre-contrast imaging and T1w post-contrast imag-
ing, DWI), the readers were asked to exclusively read the 
corresponding sequences in different combinations out of a 
longer protocol. Due to MRI protocol adjustments in clinical 
practice for time saving in some cases, a T2w sequence or a 
contrast-free T1w sequence was skipped at some pediatric 
patients. The MRI protocols were set up in accordance with 
clinical (age-dependent) standards, entailing different kinds 
of T1w and T2w sequences as well as a transversal DWI 
echo-planar imaging (EPI) (b values: 0, 500, and 1000 s/
mm2). For contrast-enhanced imaging, a transverse volume 
interpolated breath-hold examination (VIBE) after intrave-
nous administration of a gadolinium-based contrast medium 
(Dotarem; 0.05 mmol/kg bodyweight, literature accepted 
standard value) was acquired.

Image analysis

Imaging datasets of PET/MRI-1 and PET/MRI-2 were 
evaluated using a dedicated OsiriX workstation (Pixmeo 
SARL). A board-certified radiologist and a board certi-
fied nuclear medicine physician with experience in hybrid 
(more than 5 years) and MR imaging (more than 5 years) 
performed reading. Imaging datasets of the  [18F]FDG PET/
MRI examination were analyzed in consensus. In general, 
reading was subdivided in two different reading sessions 
entailing the different datasets of PET/MRI-1 and PET/MRI-
2. Each dataset was evaluated in a dedicated reading ses-
sion in a random order with a minimum of 4 weeks apart to 
avoid recognition bias. Both readers were blinded to patient 
identity and results of initial or follow-up imaging. Readers 
were informed about pediatric lymphoma diagnosis and scan 
indication (initial staging or restaging).

First, readers should evaluate all typical areas for pres-
ence or absence of lymphoma manifestation. Lymph nodes 
were summarized to nodal groups comprising the head/
neck (Waldeyer’s ring, bilateral cervical and bilateral supr-
aclavicular), chest (bilateral infraclavicular, prevascular, 
aortopulmonary, paratracheal, pretracheal, subcarinal, pos-
terior mediastinal, bilateral hilar, and retrocrural), axilla/

extremities (bilateral axillary), abdomen (gastrohepatic, 
periportal, aortocaval, retrocrural, mesenteric, retroperi-
toneal, and paraaortic), and pelvis (bilateral common iliac, 
bilateral internal iliac, bilateral external iliac and bilat-
eral inguinal). Lymphoma manifestations at the bilateral 
pleura, bilateral lung, bilateral breast, myocardium, liver, 
ovary, and bowel as well as bone lesions were classified 
as extranodal manifestation.

Afterwards, readers were asked to separately set a 
tumor stage for each dataset in accordance with the IPN-
HLSS [34].

No universally applied morphologic criteria for pedi-
atric lymphoma manifestation have been established yet. 
In accordance with previous publications for lymphoma 
in adults and according to the Lugano classification, the 
following morphologic criteria for the manifestation of 
lymphoma were considered: nodal lesions with a nodal 
long-axis diameter greater than 1.5 cm (unidimensional 
measurement), cluster formation or mass-like lesions, and 
high signal intensity at DWI sequences on high b value 
(b = 1000 s/mm2) with correlating signal drop in the cor-
responding ADC map [35–37]. In addition, a homogene-
ously accentuated contrast enhancement of a lesion and 
the adjacent tissue was considered lymphoma suspicious. 
Due to the large number of possible lymphoma-affected 
regions, contrast enhancement was assessed visually and 
not determined by a cut-off.

The 5-point (Deauville) scale for interpretation of  [18F]
FDG PET and the revised staging and response criteria of 
the Lugano classification were entirely focused on adult 
lymphoma without reference to pediatric lymphoma enti-
ties [5, 38]. Nonetheless, for lesion characterization on  [18F]
PET, visually increased focal FDG uptake in comparison to 
background and mediastinum and higher than liver activity 
was considered indicative for involvement with active lym-
phoma in concordance with the 5-point scale of the Lugano 
classification.

Standard of reference

All included patients suffered from a histologically proven 
lymphoma disease. Patients suffering from NHL and unclear 
bone marrow involvement underwent bone marrow biopsy 
according to the actual pediatric guidelines [39–41]. Due 
to clinical and ethical standards, a histological confirma-
tion of each lymphoma-suspected lesion was not possible. 
Therefore, in a final consensus reading a modified standard 
of reference was established by the two experienced readers 
on a patient and region basis. Previous and follow-up cross-
sectional imaging were provided for the final consensus 
reading, as it was already performed in previous publica-
tions, to enable accurate lesion characterization [13, 42, 43].
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Statistical analysis

SPSS Statistics 26 (IBM Inc.) was used for statistical analy-
sis. Data analysis was performed patient-based and region-
based. Descriptive analysis was performed and data are 
presented as mean ± SD. Sensitivity, specificity, positive 
predictive value, negative predictive value, and diagnostic 
accuracy were calculated for PET/MRI-1 and PET/MRI-2, 
respectively. Confidence intervals were calculated at 95%. 
The Wilcoxon test was chosen for evaluation of differences 
in tumor stage between PET/MRI-1 and PET/MRI-2. The 
McNemar test was used for paired-group comparison at a 
region-based analysis. P values < 0.05 were considered to 
be statistically significant.

Results

In total, n = 32 patients underwent  [18F]FDG PET/MRI 
providing a total of 105 examinations. Mean acquisition 
time of contrast-enhanced PET/MRI examinations was 
51 ± 23 min (range: 22 to 112 min) with a mean acquisition 
time of 2 ± 1 min (range: 1 to 6 min) of the T1-weighted 
post-contrast sequence. In all 105 examinations, MRI con-
trast–enhanced MRI was successfully completed. Eighty 
of total 105 (76%) examinations suffered from Hodgkin 
lymphoma, 4/105 (4%) examinations suffered from Burkitt 
lymphoma, 11/105 (10%) examinations suffered from B cell 
lymphoma, and 10/105 (10%) examinations suffered from T 
cell lymphoma (see Table 1).

Region‑based analysis

As previously described, PET/MRI-1 and PET/MRI-2 imag-
ing datasets of pediatric lymphoma patients were subdivided 
into six anatomical regions to differentiate between differ-
ent anatomical lymphoma manifestations. According to 
the standard of reference, active lymphoma manifestations 
were visible at 127 anatomical regions. PET/MRI-1 and 
PET/MRI-2 correctly detected 119/127 (94%) lymphoma-
affected regions. A detailed evaluation of active lymphoma 
manifestations according to the six anatomical regions is 
shown in Table 2.

Sensitivity, specificity, positive predictive value, nega-
tive predictive value, and diagnostic accuracy for PET/
MRI-1 and PET/MRI-2 were 94%, 97%, 90%, 99%, and 
97%, respectively (see Table 3). No statistically significant 
difference was seen between both reading protocols (p = 1).

Patient‑based analysis

According to the standard of reference, active lymphoma 
was present in 65/105 (62%) examinations and 40/105 (38%) 
examinations had no evidence of disease (see Table 4). Sixty-
two of 65 active lymphoma manifestations were identified by 
PET/MRI-1 and PET/MRI-2, and the same three were missed 
respectively (exemplified in Figs. 1 and 2). PET/MRI-1 and 
PET/MRI-2 each rated the same three examinations as false 
positive (3/40; 8%).

Table 1  N = 105 pediatric lymphoma examinations subdivided in his-
tological subtypes

Histological subtypes Number of examinations

Hodgkin lymphoma 80/105 (76%)
Non-Hodgkin lym-

phoma
Burkitt lymphoma 4/105 (4%)
B-cell lymphoma 11/105 (10%)
T-cell lymphoma 10/105 (10%)

Table 2  Correctly detected 
lymphoma-affected regions of 
all pediatric patients at PET/
MRI-1 and PET/MRI-2 reading 
protocols according to the 
standard of reference

Lymphoma-affected regions Standard of reference
n

PET/MRI-1
n—correct

PET/MRI-2
n—correct

Head and Neck 42/127 (33%) 41/127 (32%) 41/127 (32%)
Chest 37/127 (29%) 35/127 (28%) 35/127 (28%)
Axilla and Extremities 13/127 (10%) 13/127 (10%) 13/127 (10%)
Abdomen 12/127 (9%) 10/127 (8%) 10/127 (8%)
Pelvis 4/127 (3%) 4/127 (3%) 4/127 (3%)
Extranodal 19/127 (15%) 16/127 (13%) 16/127 (13%)
Total 127 119/127 (94%) 119/127 (94%)

Table 3  Quality criteria of PET/MRI-1 and PET/MRI-2 subdivided 
in sensitivity, specificity, positive predictive value, negative predictive 
value, and diagnostic accuracy

PET/MRI-1
(%)

PET/MRI-2
(%)

Sensitivity 94 (CI 89–98) 94 (CI 89–98)
Specificity 97 (CI 95–98) 97 (CI 95–98)
Positive Predictive Value 90 (CI 83–94) 90 (CI 83–94)
Negative Predictive Value 99 (CI 97–99) 99 (CI 97–99)
Accuracy 97 (CI 95–98) 97 (CI 95–98)
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Patient-based lymphoma manifestation was determined 
in accordance with the revised IPNHLSS. According to the 
standard of reference, 40/105 (38%) examinations had no 
evidence of disease, 5/105 (5%) examinations had an IPN-
HLSS stage 1, 16/105 (15%) examinations had an IPNHLSS 
stage 2, 34/105 (32%) examinations had an IPNHLSS stage 
3, and 10/105 (10%) examinations had an IPNHLSS stage 
4 lymphoma manifestation. PET/MRI-1 and PET/MRI-2 
determined a correct IPNHLSS tumor stage in 90/105 
(86%) examinations and each protocol overrated 7 of 105 
(7%) lymphoma-affected examinations. The same 8 exami-
nations of total 105 (8%) were underrated in both reading 
protocols. There was no significant difference determining 
IPNHLSS stage between both reading protocols (p = 1). The 
rated lymphoma stages of the PET/MRI-1 and PET/MRI-2 
are given in Table 4.

Discussion

[18F]FDG PET/MRI is increasingly accepted for staging of 
lymphoma patients, and the present study further confirms 
the feasibility and high diagnostic accuracy of it in pediatric 
lymphoma patients [11, 12]. Especially in larger lymphoma 
treatment centers,  [18F]FDG PET/MRI becomes more and 

more the diagnostic of choice in the work-up of lymphoma 
patients compared to the current  [18F]FDG PET/CT refer-
ence imaging method. This is also caused by the fact that 
radiation exposure when using  [18F]FDG PET/MRI is sig-
nificantly less than the radiation exposure of even a low-dose 
 [18F]FDG PET/CT [44, 45]. Bearing in mind the repetitive 
scans for therapy planning and follow-up imaging a lym-
phoma patient needs to undergo the reduction in radiation 
exposure using  [18F]FDG PET/MRI is even more substan-
tial. Consequently, the risk of secondary malignancies due to 
radiation exposure becomes significantly lower [6, 7]. This is 
of particular high importance in pediatric patients.

The need for MRI contrast agent application in PET/
MRI is clinically not debatable in individual tumor enti-
ties for further classification, such as liver or pelvic tumors 
[46–48]. Contrary, first publications have already shown 
that especially in pediatric lymphoma patients, a MRI con-
trast agent application might be waived for staging [13, 29]. 
MRI contrast–free  [18F]FDG PET/MRI imaging protocols 
are able to outperform a radiation-saving  [18F]FDG PET/CT 
low-dose protocol with a more accurate soft tissue contrast 
and its well-known advantages when imaging parenchymal 
organs [13, 29]. Furthermore, they profit from simultane-
ously acquired metabolic PET imaging data that has been 
shown to be beneficial for staging, therapy monitoring, and 

Table 4  Presentation of 
IPNHLSS tumor stages 
determined by standard of 
reference, correctly identified 
at PET/MRI-1 and PET/
MRI-2 examinations and over-/
underrated at PET/MRI-1 and 
PET/MRI-2 according to the 
standard of reference

IPNHLSS tumor stage Standard of reference
n

PET/MRI-1
n—correct

PET/MRI-2
n—correct

No evidence of disease 40/105 (38%) 36/105 (34%) 36/105 (34%)
1 5/105 (5%) 3/105 (3%) 3/105 (3%)
2 16/105 (15%) 15/105 (14%) 15/105 (14%)
3 34/105 (32%) 30/105 (29%) 30/105 (29%)
4 10/105 (10%) 6/105 (6%) 6/105 (6%)
n—overrated 7/105 (7%) 7/105 (7%)
n—underrated 8/105 (8%) 8/105 (8%)

Fig. 1  Example of a 15-year-old pediatric patient with correctly iden-
tified active lymphoma disease at PET/MRI-1 (A) and PET/MRI-2 
(A, B) with visual  [18F]FDG uptake (SUVmax: 13.1). No additional 

diagnostic benefit of the T1-weighted (w) contrast-enhanced (CE) 
sequence was seen
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differentiation between active and non-active lymphoma 
diseases [15–17, 49].

The omission of contrast administration and the associ-
ated contrast-enhanced sequence would avoid side effects of 
contrast agents like gadolinium deposition to the body, aller-
gic reactions, and incompatibilities and furthermore saves 
time and costs by a faster  [18F]FDG PET/MRI protocol [24]. 
Thus, the present follow-up study aims to further validate 
the need of MRI contrast agent application in the diagnostic 
 [18F]FDG PET/MRI work-up of pediatric lymphoma patients 
by evaluating two different reading protocols.

According to our data evaluation, there was no 
difference between the diagnostic potential of PET/
MRI-1 and PET/MRI-2. Bearing in mind that this 
cohort consists of initial and follow-up examinations, 
it can be concluded that pediatric lymphoma patients 
do not benefit from MRI contrast agent application 
at initial and follow-up  [18F]FDG PET/MRI staging. 
In detail, information about vascularization gained 
from contrast MRI sequences does not add informa-
tion when compared to FDG metabolic identification, 
MRI diffusion, and morphological localization of lym-
phoma. Clinical relevant aspects of lymphoma stag-
ing for therapy planning are metabolic mapping and 
morphologic information on size, shape, and infiltra-
tion we can achieve from non-contrast  [18F]FDG PET/
MRI without missing therapeutic relevant informa-
tion. Apart from tumor detection, the application of 
contrast agents might be beneficial in cases of large 
mediastinal tumors, e.g., causing a superior vena cava 
compression syndrome. A venous vessel compression 
can lead to venous thrombosis that are better deline-
ated after contrast agent application [50, 51]. How-
ever, since these cases are very rare, administration of 

contrast agents should be strictly discussed and regu-
lated in the future due to the lack of diagnostic benefit 
shown in this study. For example, administration after 
clinical examination and suspicion of venous occlu-
sion may be appropriate accordingly.

Figure 2 visualizes one borderline patient with missed 
lymphoma manifestation cervical (right) at PET/MRI-1 and 
PET/MRI-2 according to the standard of reference. Although 
MRI contrast agent uptake might result in a better deline-
ation and potentially give a hint to subsequent lymphoma 
manifestation, there is no clinical benefit in this case. Given 
the morph on both reading protocols and without visible 
 [18F]FDG uptake, this lymph node would not be considered 
suspicious for lymphoma in a clinical setting.

Dependent on the aggressiveness of lymphoma disease, 
sensitivity and accuracy of whole-body MRI and  [18F]FDG 
PET/CT in detecting bone marrow involvement of adult and 
pediatric patients is ranging from 45 to 100% [52–55]. Gen-
erally, focal or multifocal  [18F]FDG uptake exceeding liver 
uptake indicates bone marrow involvement of lymphoma 
in adults [56]. Diffuse  [18F]FDG uptake of the bone mar-
row is more likely associated with lymphoma bone marrow 
manifestation in NHL than in HL [56, 57]. In our data, it is 
noticeable that a lower number of lymphomas were detected 
in examinations who suffered from a stage 4 IPNHLSS 
lymphoma (bone marrow involvement, 6/105 vs. 10/105) 
compared to the standard of reference including a bone mar-
row aspiration for unclear involvement and NHL patients. 
Missed children with bone marrow involvement of their 
lymphoma showed a more diffuse  [18F]FDG uptake of the 
bone marrow in our data. In addition to a general misinter-
pretation by the reader during the data evaluation, another 
possible explanation for this underestimation of bone mar-
row involvement could be the increased proportion of the 

Fig. 2  Example of a 13-year-old pediatric patient with missed active 
lymphoma disease at PET/MRI-1 (A) and PET/MRI-2 (A, B) accord-
ing to the standard of reference. No visual  [18F]FDG uptake (SUV-
max: 2.0) was seen. Non-pathological appearance of the lymph 

node right cervical with borderline size (13  mm). Minimal contrast 
agent accumulation (white frame) within the lymph node in the 
T1-weighted (w) contrast-enhanced (CE) sequence. However, in syn-
opsis of the images, this did not change the evaluation
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 [18F]FDG affine red bone marrow in children compared to 
adults [58]. During adolescence, the proportion of yellow 
bone marrow increases, resulting in a decreased metabolic 
FDG activity of the bone. However, this may also increase 
again in adults, especially when suffering from hematopoi-
etic diseases. Thus, yellow bone marrow is again converted 
to red bone marrow for hematopoiesis at patients with ane-
mia, especially common at HL [57]. Furthermore, diffuse 
inflammatory bone marrow reaction also visualized at lym-
phoma patients makes it also difficult to identify bone mar-
row involvement of lymphoma [57]. Although the partially 
different, anatomical condition supports the fact that staging 
of adult lymphoma patients cannot be unreservedly trans-
ferred to staging of pediatric lymphoma patients, subtle bone 
marrow involvement of pediatric patients could be more 
difficult to detect at diffuse  [18F]FDG uptake of the bone 
marrow exceeding liver uptake according to the described 
findings [13].

In line with the current literature, both reading protocols 
had a high sensitivity, specificity, positive predictive value, 
negative predictive value, and accuracy above 89% concord-
ant to previous publications [36, 59]. Our results clearly sup-
port the increasing trend of MRI contrast agent–free  [18F]
FDG PET/MR imaging in pediatric lymphoma patients 
[26–29]. This is from particular importance to skip the 
potential risk of gadolinium deposition to in the brain 
(dentate nucleus/paleostriatum) and bone due to repetitive 
application of linear, gadolinium-based contrast agents [23, 
24, 60]. Although there is no evidence to date concerning 
adverse effects of gadolinium-based contrast agents or clin-
ical implications, the potential risk makes it necessary to 
reduce the MRI contrast agent to a justifiable minimum [24].

In addition,  [18F]FDG PET/MRI is a time-consuming 
examination that can easily reach 1 h of examination time 
as visualized at our acquisition times (mean: 51 min) and can 
be hard to challenge, especially for children [29]. There is a 
need of a compromise between short examination times and 
adequate image quality. Especially in children the duration 
of a PET/MRI examination should be as short as possible to 
increase acceptance and decrease potential anesthesia [61]. 
On the one hand shortened PET image acquisition times 
and on the other hand the adaption of the MRI protocol 
can manage this problem by ending up with a “fast”-PET/
MRI protocol [36, 62, 63]. Our data highly support adjust-
ing the MRI part by omitting the post-contrast whole-body 
T1-weighted MRI sequence for staging. This would save up 
to 6 min according to the evaluated data. Whole-body DWI 
might be beneficial for staging, as it seems to be a promis-
ing, radiation-free staging alternative of lymphoma patients 
with nearly same diagnostic abilities compared to PET/
CT examinations [27, 64, 65]. Nonetheless, not all study 
results support the use of whole-body DWI for pediatric 
lymphoma staging. Thus, a study of Shapira-Zaltsberg and 

colleagues with focus on pediatric HL highlights the superi-
ority of PET/CT at initial staging and assessment of therapy 
response [66]. However, at comprehensive  [18F]FDG PET/
MRI staging of pediatric lymphoma patients, whole-body 
DWI seems to have no beneficial effect for staging [13]. 
This might be due to the included PET component that is 
highly accurate in the detection of lymphoma manifesta-
tions. Furthermore, the results by Georgi et al. recommend 
the high diagnostic potential of T2-weighted transverse fat-
saturated sequence for sufficient staging of pediatric lym-
phoma patients [29]. Additionally, a potential reduction of 
the PET acquisition times to 2 min is possible as described 
by Hartung-Knemeyer et al. [67]. Taking all this information 
into account, a relevant reduction of  [18F]FDG PET/MRI 
examination times could be achieved.

[18F]FDG PET/MRI is predestined for children 
suffering from lymphoma and should be considered 
the diagnostic of choice. Since these patients are 
often treated in larger centers for pediatric medicine, 
these data will help to establish PET/MRI diagnos-
tics at these. Furthermore, the feasibility of adapt-
ing the  [18F]FDG PET/MRI examination protocol, 
which is highlighted by the available publications, 
may improve patient satisfaction and reduce potential 
anesthesia, bearing in mind that the patients are chil-
dren suffering from a severe disease. In this context, 
higher costs and/or financial aspects should rather be 
considered secondary and the aim of such examina-
tion protocols should be a potential risk reduction to 
a minimum.

This study is not without limitations. Although his-
topathological sampling for subtype determination was 
available in all patients, in accordance with current ethi-
cal and clinical guidelines, not every detected lesion could 
be sampled. Hence, as already published in numerous 
previous studies on hybrid imaging, a modified standard 
of reference was applied. Secondly, lymphoma is known 
to comprise a heterogeneous group of cancers entail-
ing different subtypes. The limited number of pediatric 
lymphoma patients does not enable a further subgroup 
comparison because of underpowered statistical analyses. 
Furthermore, due to the diagnostic focus on HL patients 
at PET/MRI of the institute, retrospectively HL were pre-
dominantly included for data evaluation. Moreover, due 
to missing QOL data based on the retrospective design, 
impressions of children undergoing PET/MRI could not 
be implemented in data evaluation. Nonetheless, this study 
is one of the larger data collections related to pediatric 
lymphoma patients at a single institute.

Finally, the use of MRI contrast agents in  [18F]FDG 
PET/MRI examinations does not add relevant diagnostic 
information in primary and follow-up staging of pediat-
ric lymphoma patients. Therefore, switching to a contrast 
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agent–free  [18F]FDG PET/MRI protocol should be consid-
ered in all pediatric lymphoma patients.
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