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Abstract
Aims/hypothesis There are two prerequisites for the precision medicine approach to be beneficial for treated individuals. First, 
there must be treatment heterogeneity; second, in the case of treatment heterogeneity, we need to detect clinical predictors to 
identify people who would benefit from one treatment more than from others. There is an established meta-regression approach 
to assess these two prerequisites that relies on measuring the variability of a clinical outcome after treatment in placebo-controlled 
randomised trials. Our aim was to apply this approach to the treatment of type 2 diabetes.
Methods We performed a meta-regression analysis using information from 174 placebo-controlled randomised tri-
als with 178 placebo and 272 verum (i.e. active treatment) arms including 86,940 participants with respect to the 
variability of glycaemic control as assessed by  HbA1c after treatment and its potential predictors.
Results The adjusted difference in log(SD) values between the verum and placebo arms was 0.037 (95% CI: 0.004, 0.069). 
That is, we found a small increase in the variability of  HbA1c values after treatment in the verum arms. In addition, one 
potentially relevant predictor for explaining this increase, drug class, was observed, and GLP-1 receptor agonists yielded 
the largest differences in log(SD) values.
Conclusions/interpretation The potential of the precision medicine approach in the treatment of type 2 diabetes is modest 
at best, at least with regard to an improvement in glycaemic control. Our finding of a larger variability after treatment with 
GLP-1 receptor agonists in individuals with poor glycaemic control should be replicated and/or validated with other clinical 
outcomes and with different study designs.
Funding The research reported here received no specific grant from any funding agency in the public, commercial or not-
for-profit sectors.
Data availability Two datasets (one for the log[SD] and one for the baseline-corrected log[SD]) to reproduce the analyses 
from this paper are available on https:// zenodo. org/ record/ 79566 35.
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Abbreviations
DPP-4  Dipeptidyl peptidase-4
GLP-1  Glucagon-like peptide-1
SGLT-2  Sodium–glucose cotransporter 2

Introduction

In 1999, F. S. Collins, the then leader of the Human Genome 
Project, announced a genetic revolution in medicine, funda-
mentally changing the diagnosis, treatment and prevention of 
multiple diseases [1]. With respect to treatment, the resulting 
‘individualised medicine’ would use identified human genetic 
variation to subclassify diseases and tailor therapies to the indi-
vidual patient because there ‘may be large differences in the 
effectiveness of medicines from one person to the next’ [1].

Tremendous amounts of knowledge with respect to genet-
ics and other biomarkers have been assembled since then, 
more recently also in diabetology. Indeed, and as empha-
sised by J. M. Dennis [2], the treatment of type 2 diabetes 
seems to be particularly well-suited for a precision medicine 
approach. After initial treatment with metformin, a number 
of drugs with different mechanisms of action are available 
and there is no clear ‘best’ overall treatment, except for in 
the treatment of a small group of individuals with specific 
complications. In addition, there is large heterogeneity in the 
clinical phenotype of type 2 diabetes [3], making it plausible 
that people with different underlying pathophysiologies will 
have varying responses to different drugs. Indeed, the idea 

of precision treatment has a strong momentum in diabetes 
research. Two leading diabetes societies, the ADA and the 
EASD, founded a ‘Precision Medicine in Diabetes Initiative’, 
issued a common consensus report [4] and recently reported 
the progress of the initiative and its future vision [5]. The 
official journal of the EASD, Diabetologia, published a spe-
cial issue on precision medicine [6], collecting 16 reviews 
written by well-recognised experts on various aspects of 
precision medicine in diabetes. With a view towards future 
precision-based pharmacological treatment of type 2 diabe-
tes, Florez and Pearson [7] introduced a roadmap to preci-
sion medicine becoming the standard of care and determined 
what additional work is needed.

A prerequisite for precision medicine is that there is treat-
ment heterogeneity, i.e. that a treated person responds differ-
ently to different treatments. From a methodological point 
of view, this assumption proclaims an interaction between 
treatment and person. However, it is largely unknown that 
this interaction cannot be observed directly from a stand-
ard RCT, where only an average treatment effect can be 
observed. Instead, repeated-crossover or N-of-1 trials are 
needed [8, 9], in which individuals are treated at least twice 
with at least one of the treatments under study. Moreover, 
differences in outcomes between treated individuals are not 
necessarily caused by a heterogeneous treatment effect but 
may also arise from random variation within and/or differ-
ences between treated individuals [10].

It is also often overlooked that another prerequisite is nec-
essary for making precision medicine clinically useful [11]. 
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Even if there is real treatment heterogeneity, predictors (e.g. 
age, sex,  HbA1c) must be available to identify people who 
would benefit more from a given treatment than from others.

We are not aware of any previous work that attempted to 
assess the potential of precision medicine in diabetology by 
checking these two prerequisites of treatment heterogeneity 
and available predictors. Recently, such methods have been 

proposed and used in other disciplines, e.g. in psychiatry 
[10, 12–15] and pain research [16]. These methods rely on 
the basic idea that if there is real treatment heterogeneity, the 
variability of outcomes after treatment in a randomised, pla-
cebo-controlled trial will be larger in the verum (i.e. active 
treatment) arms than in the placebo arms (see Fig. 1 for a 
detailed explanation). In other words, if we observe larger 
variability in outcome values after treatment in the verum 
arm than in the placebo arm, there is treatment heteroge-
neity and thus a greater potential for a precision medicine 
approach. To investigate the second prerequisite of the pre-
cision medicine approach, the availability of predictors for 
treatment heterogeneity, we can additionally explore interac-
tions of predictors and treatment.

To assess whether treatment of type 2 diabetes is amena-
ble to the precision medicine approach, we report here on a 
meta-regression analysis of randomised, placebo-controlled 
trials aimed at treatment of type 2 diabetes with respect to 
the variability of  HbA1c values after treatment and its poten-
tial predictors.

Methods

Included trials Our study population comprised all RCTs 
from three recent systematic reviews [17–19] that com-
pared treatments for type 2 diabetes (alpha-glucosidase 
inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, 
glucagon-like peptide-1 (GLP-1) receptor agonists, 
metformin, sodium–glucose cotransporter-2 (SGLT-2) 
inhibitors, sulfonylureas, thiazolidinediones, combination 
therapies or others) to placebo and reported on the out-
come of glycaemic control as assessed by  HbA1c (in %). 
Multiple treatment arms from the same trial were allowed 
where they could result from different drugs and/or dif-
ferent doses of the same drug and/or different application 
forms being compared. Trials were also eligible if placebo 
and verum were given as a randomised add-on to a pre-
existing diabetes treatment.

Outcomes Our primary outcome was the variability of 
 HbA1c values, measured as the logarithm of the standard 
deviation (log[SD]), after treatment in each trial arm. As 
these log(SD) values were not always reported in the original 
trial publications, we used elementary conversion formulas 
from standard errors to SDs and from 95% confidence inter-
vals for the mean  HbA1c value to arrive at SDs. In addition, 
when only medians and/or quartiles and/or minima/maxima 
of  HbA1c values were given in the original trial publications, 
we used the formulas given by Luo et al [20] and McGrath 
et al [21] to achieve means and SDs of  HbA1c values. We 
extracted values from the text as well as from figures in 
the original trial publications. Only unadjusted log(SD) 
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Fig. 1  Results of two fictitious but realistic randomised trials that 
compare a placebo to a verum treatment. Given are 200 individual 
 HbA1c trajectories from the baseline to the  HbA1c value after treat-
ment and (in red) the corresponding standard deviations of  HbA1c 
values at the two different time points and treatment arms. In both tri-
als, and as a consequence of randomisation, the SD of  HbA1c values 
at baseline is identical (10 mmol/mol [0.92%]). (a) In this trial there 
was no differential heterogeneity between treatments, and the SD of 
 HbA1c values after treatment equals 12 mmol/mol (1.10%) in both 
treatment arms. Please note that there is a treatment effect, and verum 
treatment leads to a stronger reduction in  HbA1c values. However, this 
is no contradiction to treatment heterogeneity being absent. Treat-
ment heterogeneity is measured by the interaction between treatment 
and person and not by the treatment itself. (b) In this trial there was 
heterogeneity between treated individuals. Indeed, there is a group of 
non-responders (grey lines) and a group of ‘super responders’ (black 
lines) in which the  HbA1c values are lowered considerably more 
strongly. As a consequence, the SD in the verum group is consider-
ably larger (16 mmol/mol [1.46%])
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values were extracted, and we did not include information 
from analyses using ANCOVA techniques. If  HbA1c values 
were reported on the mmol/mol scale, we used the formula 
 HbA1c(%)=HbA1c(mmol/mol) × 0.0915 + 2.15 to achieve 
 HbA1c values on the per cent scale.
Two types of log(SD) values after treatment were reported in 
the original trial publications. The first type of log(SD) values 
used the originally observed  HbA1c values after treatment, 
and the second type used baseline-corrected  HbA1c values. 
Baseline correction here means that the baseline  HbA1c value 
(i.e. before treatment) for each individual participant was sub-
tracted from its  HbA1c value after treatment, and only then 
were the log(SD) values of the resulting baseline-corrected 
 HbA1c values after treatment computed and reported. Both 
types of log(SD) values, raw and baseline-corrected, are of 
interest, and they are essentially comparable on the same 
scale; trials reported on one or on both of them. For the sake 

of brevity, we focus on the raw log(SD) in the main paper 
and give the results for the baseline-corrected log(SD) in the 
electronic supplementary material (ESM).

Data extraction In terms of data extraction, data from the 
first Palmer et al review [17] were already available from a 
previous project [22] and had been extracted by two inde-
pendent reviewers. All remaining trial publications were 
read by one of two reviewers (MEO or LVB), and each of 
them validated a small sample of publications of the other 
reviewer. Both reviewers were in regular contact with OK 
and AH to calibrate and harmonise data extraction.

Statistical analysis To assess the first prerequisite (treat-
ment heterogeneity, defined as larger variability of  HbA1c 
values after treatment in verum arms compared with placebo 
arms) we used the ‘arm-based’ model of Nakagawa et al 

Table 1  Description of included trial arms, separated by placebo and verum arms

Placebo (N=178 arms) Verum (N=272 arms)

Variable Number 
of missing 
arms

Median (Min/Q1/Q3/Max) Number 
of missing 
arms

Median (Min/Q1/Q3/Max) or 
Number (%)

Mean age at baseline (in years) 7 57.0 (39.5/55.0/59.0/74.4) 11 56.5 (38.8/54.8/58.9/74.0)
Proportion of male participants at baseline (in %) 9 54.3 (0.5/48.9/61.1/100) 16 55.3 (0.4/48.9/61.1/100)
Mean BMI at baseline (in kg/m2) 6 30.6 (22.9/27.6/32.3/41.6) 10 30.9 (23.5/28.3/32.3/40.7)
Mean known disease duration at baseline (in years) 35 8.0 (0.0/5.6/10.4/19.6) 57 7.3 (0.0/5.0/9.8/16.4)
Mean  HbA1c at baseline (in mmol/mol) 0 66.1 (38.8/62.8/71.6/112.0) 0 66.1 (43.5/62.8/70.6/116.4)
Mean  HbA1c at baseline (in %) 0 8.2 (5.7/7.9/8.7/12.4) 0 8.2 (6.1/7.9/8.6/12.8)
Year 0 2013 (1987/2006/2016/2020) 0 2012 (1987/2006/2016/2020)
Treatment (drug class)
 Alpha-glucosidase inhibitors -- -- 0 22 (8)
 DPP-4 inhibitors -- -- 0 58 (21)
 GLP-1 receptor agonists -- -- 0 56 (21)
 Metformin -- -- 0 22 (8)
 SGLT-2 inhibitors -- -- 0 42 (15)
 Sulfonylureas -- -- 0 8 (3)
 Thiazolidinediones -- -- 0 47 (17)
 Combination therapies -- -- 0 10 (4)
 Others -- -- 0 7 (3)
Duration of treatment (in weeks) 0 26.0 (16/24/36/260) 0 26.0 (16/24/30/260)
Number of treated individuals 0 83 (5/41/137/7998) 0 108 (6/53.5/164.5/8078)
Mean  HbA1c after treatment (in mmol/mol) 0 63.9 (36.6/59.8/70.2/134.0) 0 56.4 (38.8/52.4/61.2/117.8)
Mean  HbA1c after treatment (in %) 0 8.0 (5.5/7.6/8.6/14.4) 0 7.3 (5.7/6.9/7.7/12.9)
Log(mean) of  HbA1c after treatment (in mmol/mol) 0 4.2 (3.6/4.1/4.3/4.9) 0 4.0 (3.7/4.0/4.1/4.8)
Log(mean) of  HbA1c after treatment (in %) 0 2.1 (1.7/2.0/2.1/2.7) 0 2.0 (1.7/1.9/2.0/2.6)
SD of  HbA1c values after treatment (in mmol/mol) -- -- -- --
SD of  HbA1c values after treatment (in %) 0 1.10 (0.20/0.90/1.34/2.93) 0 1.02 (0.10/0.80/1.27/2.75)
Log(SD) of  HbA1c values after treatment (in mmol/

mol)
-- -- -- --

Log(SD) of  HbA1c values after treatment (in %) 0 0.10 (−1.60/−0.11/0.30/1.07) 0 0.02 (−2.30/−0.22/0.24/1.01)
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[23], where each trial arm is considered a single observa-
tion. To be concrete, we fitted a weighted meta-regression 
model with the bias-corrected (23, equation 7) outcome 
log(SD)HbA1c+1∕(2n−1) as the response variable, where 
n denotes the sample size in the respective trial arm, and 
1∕(2n−1) is the bias correction. Fixed effect covariates in 
this meta-regression model were: (1) the treatment (verum 
vs placebo); and (2) the logarithm of the mean  HbA1c value 
( log(x)HbA1c ) after treatment in the respective trial arm. To 
account for correlations between treatment arms from the 
same trial, we included a random intercept for the trial in 
the meta-regression model. Finally, with the aim of adjust-
ing for the different sample sizes of trial arms, we followed 
the standard inverse-variance principle in meta-analysis and 
weighted each observation by (2n−1) , the inverse variance 
of the bias-corrected estimate of log(SD) (23, equation 8).

The key parameter of interest in this meta-regression 
model is the regression coefficient for the treatment effect. 
If this value is 0, then there is no difference between the 
verum and placebo arms with respect to their log(SD) val-
ues, although there was proper adjustment for the size of the 
treatment effect (via the log(mean)), the correlations within 
trials (via the random intercept) and the different sample 
sizes in trial arms (via inverse-variance weighting). Values 
above 0 indicate a larger variability in the verum arms, i.e. 
treatment heterogeneity, and thus a potential for precision 
treatment in individuals with type 2 diabetes.

To assess the second prerequisite (identification of predic-
tors to explain treatment heterogeneity), we used a separate 
meta-regression model for each individual predictor. To this 
end, the meta-regression model as described in the previous 
paragraph was extended by an additional interaction term of 
the respective predictor with treatment. Evaluated predictors 
were mean age, proportion of male participants, mean BMI, 
mean known disease duration and the mean  HbA1c (in %) 
of populations at baseline in the respective trial arm. We 
further assessed drug class, the duration of the trial and the 
year in which the trial was performed as potential predictors.

SAS, Version 9.4 (SAS Institute, Cary, NC, USA), was 
used for data management and analysis. As the study does 
not include personalised data, we did not seek a vote from an 
ethics committee. The study was not preregistered and had 
no previously published protocol.

Results

After removing duplicate trials from the three systematic 
reviews, 382 RCTs with at least one placebo arm were eli-
gible. Four trials had to be excluded because the full texts 
could not be retrieved and one trial had to be excluded 
because it lacked information on the placebo arm. Of the 
remaining 377 trials, 193 did not report on the outcome 

log(SD), 30 did not report on the sample size and 14 did 
not report on the mean  HbA1c value after treatment. A trial 
could have no information on more than one of the three 
items (no log(SD), no sample size, or no mean  HbA1c value), 
so we ended up with a final dataset of 450 trial arms (272 
verum arms with 52,195 participants and 178 placebo arms 
with 34,745 participants) from 174 different trials.

The description of trial populations is given in Table 1. 
At baseline and as a consequence of randomisation, popu-
lations in the placebo and verum arms were similar with 
respect to mean age, proportion of male participants, mean 
BMI and mean known disease duration. The most frequently 
used treatments were DPP-4 inhibitors (in 58 verum arms), 
GLP-1 receptor agonists (56) and SGLT-2 inhibitors (42). 
The median mean  HbA1c values were 66.1 mmol/mol (8.2%) 
before treatment, and 63.9/56.4 mmol/mol (8.0%/7.3%) in the 
placebo/verum arms after treatment, indicating a clear overall 
beneficial effect of verum treatments. In terms of the primary 
outcome, the median log(SD) of  HbA1c values after treat-
ment was 0.10%/0.02% in the placebo/verum arms pointing 
to larger variability of  HbA1c in the placebo arms. Regarding 
the complete distributions of log(SD) values, no differences 
were observed between the verum and placebo arms (Fig. 2). 
However, these boxplots are not adjusted for the mean  HbA1c, 
the sample size or the correlation within trials.

The results from the weighted meta-regression model for 
assessing the first prerequisite (treatment heterogeneity) are 
as follows. The key estimate for treatment that measures the 
difference in log(SD) values between verum and placebo 
arms is 0.037 (95% CI: 0.004, 0.069). That is, after using 
the full meta-regression model, we found a slightly larger 
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Fig. 2  Boxplots and observed values for the log(SD) of  HbA1c values 
after treatment, separately for the verum and placebo arms. Bottom and 
top edges of the boxes show the first (Q1) and third (Q3) quartile, while 
the horizontal line inside the box indicates the median value. The red dia-
mond within the boxes shows the respective mean value. The whiskers 
that extend from a box indicate the range of values that are outside of the 
intra-quartile range. Note that these boxplots do not adjust for the mean 
 HbA1c, the sample size or for the correlation within trials
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log(SD) in the verum arms. Estimates for the log(mean) 
effect were 1.476 (95% CI: 1.128, 1.824), and 0.112 (95% 
CI: 0.089, 0.147) for the random effects variance.

To put the size of this difference into perspective, we 
consider the median raw log(SD) across all placebo arms 
which is 0.10% (see Table 1). This corresponds to a median 
SD of  HbA1c values after placebo treatment of exp(0.10) 
= 1.105% (12 mmol/mol). An increase of 0.037 on the 
log-scale would result in an SD of  HbA1c values after treat-
ment of exp(0.10 + 0.037) = 1.147% (12.5 mmol/mol). 
This increase appears rather small if compared with the 
situation of treatment heterogeneity with two responder 
groups as given in Fig. 1 where the observed SD is 1.46% 
(16 mmol/mol).

The results from the extended weighted meta-regression 
models for assessing the second prerequisite are given in 
Fig. 3 and Table 2 (for continuous predictors) and in Fig. 4 
for the categorical predictor drug class. Figure 3 shows 
scatterplots of the log(SD) values against the respec-
tive continuous clinical predictor on the x-axis. Again, 
the regression slopes in Fig. 3 are not adjusted for mean 
 HbA1c and the correlation within trials. We therefore give 
the fully adjusted slopes of the regression lines and their 

differences in Table 2. We find no relevant differences 
between slopes for the clinical predictors, the only excep-
tion being the duration of disease where the log(SD) grows 
faster with increasing disease duration in verum arms.

Figure 4 shows differences in outcomes against placebo 
for all drug classes. Estimates for all drug classes show 
larger variabilities in verum arms, with the effect most pro-
nounced for alpha-glucosidase inhibitors with an increase 
of 0.16 (95% CI: 0.02, 0.31) in the log(SD) and for GLP-1 
receptor agonists with an increase of 0.15 (95% CI: 0.07, 
0.22) in the log(SD) in verum compared with placebo arms.

The analyses for the baseline-corrected log(SD) values as 
given in the ESM (ESM Results, ESM Tables 1, 2 and ESM 
Fig. 1–3) essentially replicate the results for the raw log(SD) 
values. In brief, baseline-corrected log(SD) values were 
available for 638 trial arms, 405 verum arms with 58,225 
participants and 233 placebo arms with 31,784 participants 
from 229 different trials. In the weighted meta-regression 
model the estimate for the treatment effect that measured 
the difference in log(SD) values between the verum and 
placebo arms was 0.033 (95% CI: −0.002, 0.069), qualita-
tively identical to the estimate for the raw log(SD) (0.037 
(95% CI: 0.004, 0.069)). With respect to the clinical predic-
tors, we also observed larger variability for GLP-1 receptor 
agonists, with an increase of 0.08 (95% CI: 0.02, 0.13) in 
the baseline-corrected log(SD) in the verum arms compared 
with placebo arms.

In view of the large and precisely estimated treatment 
heterogeneity effects of GLP-1 receptor agonists for both 
log(SD) outcomes, we repeated the investigation of predic-
tors in the subgroup of trials that assessed GLP-1 recep-
tor agonists. For both log(SD) outcomes there was a clear 
effect of baseline  HbA1c with larger treatment heterogeneity 

Fig. 3  Scatterplots of the log(SD) values of  HbA1c values after treat-
ment against continuous predictors. (a) Mean age at baseline, (b) pro-
portion of male participants at baseline, (c) mean BMI at baseline, 
(d) mean disease duration, (e, f) mean  HbA1c at baseline, (g) dura-
tion of treatment and (h) year in the respective treatment arms. Linear 
weighted fits are given for both treatments, and the two linear regres-
sion lines being nonparallel would point to an interaction between 
the clinical predictor and treatment. Note that the linear fits account 
for the different weights of trial arms but are not adjusted for mean 
 HbA1c and the correlation within trials

◂

Table 2  Results from assessing the second prerequisite, existence of clinical predictors for the log(SD) of  HbA1c values after treatment

Each line reports on a separate meta-regression model for each individual predictor. The models are identical to the models for the first prerequi-
site, however, they were extended by an additional interaction term of the respective predictor with treatment. Given are the slopes of regression 
lines for the respective predictor in the placebo and the verum arms, as well as their difference, which actually measures the interaction between 
treatment and predictor

Predictor Number of missing 
arms for the predic-
tor

Slope of adjusted regression line in: Slope difference (verum−pla-
cebo) (95% CI)

Verum arms (95% CI) Placebo arms (95% CI)

Mean age at baseline (in years) 18 −0.001 (−0.012, 0.010) 0.002 (−0.009, 0.014) −0.003 (−0.008, 0.003)
Proportion of male participants at 

baseline (in %)
25 −0.001 (−0.005, 0.002) 0.001 (−0.003, 0.005) −0.002 (−0.005, 0.0003)

Mean BMI at baseline (in kg/m2) 16 0.014 (−0.004, 0.0316) 0.010 (−0.009, 0.028) 0.004 (−0.009, 0.016)
Mean disease duration at baseline (in 

years)
92 0.007 (−0.009, 0.023) −0.004 (−0.021, 0.012) 0.011 (0.002, 0.021)

Mean  HbA1c at baseline (in mmol/
mol)

0 0.006 (−0.001, 0.013) 0.003 (−0.005, 0.010) 0.003 (−0.001, 0.007)

Mean  HbA1c at baseline (in %) 0 0.065 (−0.010, 0.140) 0.031 (−0.052, 0.114) 0.034 (−0.008, 0.076)
Duration of treatment (in weeks) 0 0.001 (−0.0005, 0.002) 0.001 (−0.0005, 0.002) 0.00004 (−0.00038, 0.00030)
Year 0 −0.008 (−0.016, 0.0005) −0.006 (−0.014, 0.003) −0.002 (−0.008, 0.003)



1629Diabetologia (2023) 66:1622–1632 

1 3

at higher  HbA1c values (Fig. 5 and ESM Fig. 4). Thus, 
there might be potential for use of the precision medicine 
approach for individuals with poor glycaemic control with 
a GLP-1 receptor agonist.

Discussion

This meta-regression of 174 RCTs including 86,940 partici-
pants revealed a small increase in the variability of  HbA1c 
values after treatment in the verum arms. Only one out of 
eight investigated clinical predictors, drug class, was identi-
fied as potentially explaining this increase. The potential of 
the precision medicine approach in the treatment of type 2 
diabetes is therefore modest at best, at least with regard to an 
improvement in glycaemic control as assessed by the  HbA1c. 
Nevertheless, the larger variability of response to GLP-1 
receptor agonists in individuals with poor glycaemic control, 
indicated by high baseline  HbA1c, suggests a potential for 
precision medicine, which would be of clinical relevance 
given novel guideline recommendations and the increasing 
use of this drug class. Of note, GLP-1 receptor agonists exert 
pleiotropic effects aside from modulating insulin secretion 
by the incretin effect, such as decreasing appetite, slowing 
gastric emptying and specific action via receptors in the 
immune system, heart and kidney [24–26]. These effects 
and intra-individual variability in its degradation may impact 
on heterogeneous treatment responses. However, the finding 
of larger variability of response to GLP-1 receptor agonists 
needs replication and validation with other clinical outcomes 
and/or with different study designs.

What is the reason for this unexpected result of rather 
small treatment heterogeneity that might limit the enthusi-
asm for precision medicine, at least with regard to the effects 
of glucose-lowering drugs on glycaemic control? The key 
point is that we should not view the existing outcome vari-
ability in clinical trials or clinical practice as proof that a 
treated person responds differently to different treatments. 

What we observe in real life are the effects of treatments 
plus the differences between individuals plus the differences 
within different individuals. However, observing real treat-
ment heterogeneity is more complicated because it entails an 
interaction effect, i.e. a difference in the effect of treatments 
in an individual person.

As stated before, heterogeneity of the treatment effect 
can best be assessed in studies that repeatedly look at the 
same person receiving at least two different treatments. 
Even standard crossover trials with each single treatment 
given only once are of no help here. Instead, we would 
need repeated-crossover or N-of-1 trials that are not yet 
seen in diabetology. Interestingly, there is a systematic 
review of N-of-1 trials [27] across all clinical disciplines, 
where the authors indeed found some evidence for the 
existence of treatment effect heterogeneity. The included 
trials, however, originated mainly from neurology, rheu-
matology and psychiatry, and none of them were from 
diabetology. In addition, Raman et al [27] only reported 
on the proportion of statistically significant treatment-by-
person interactions, but did not aim for an effect measure 
that would also give an impression of the clinical relevance 
of these interactions. In view of the treatment heterogene-
ity observed here for GLP-1 receptor agonists in individu-
als with poor glycaemic control, one would certainly like 
to see a trial that compares GLP-1 receptor agonists with 
a placebo in a repeated-crossover design, preferably also 
assessing other outcomes such as body weight or diabetes-
related complications.

Of course, individual treatment paths with individuals 
having a treatment more than once can also be collected 
from observational studies. This would come with the 
additional advantage of larger external validity, because 
populations from observational studies are in general more 
representative than those from clinical trials. However, the 
challenges of non-randomised data are also well known. 
Treatment switches would not be randomised but depend 
on the current glycaemic state of the person, thus potentially 

Fig. 4  Differences in log(SD) 
values against placebo for all 
treatments (drug classes)
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confounding the treatment effect and, more importantly, 
treatment effect heterogeneity.

Our results suggest an intensified search for new, multi-
omics predictors, e.g. genomics, phenomics or metabolomics 
for differential treatment response. At least with respect to 
genomic predictors, such efforts have not yet been very suc-
cessful [28]. The reason for this is that genetic or genomic 
factors determining individual response to treatment can 
only exist if consistent overall individual responses are 
present. From a statistical point of view, the treatment-by-
person interaction, i.e. the individual response to treatment, 
provides an upper bound to the treatment-by-gene interac-
tion, i.e. the differential response in possible genetic sub-
groups, because individuals necessarily differ by more than 
their genes [29]. In addition, type 2 diabetes might be gov-
erned mainly by polygenic risks, with individual differences 
in the contribution of risk alleles and various other factors 
affecting phenotypes. In this context, one might refer to the 
recently proposed subclassifications for diabetes, which are 
based on simple clinical variables and may be useful for 
future precision diabetology approaches [3].

Beyond the actual empirical analysis, we proposed a 
general procedure to assess the potential of the precision 
medicine approach in diabetology. Extending previous 
analyses in other medical disciplines where only treatment 
heterogeneity (our first prerequisite) was examined, we 
argue, following Wilkinson et al [11], that for a complete 
picture of the precision medicine approach, predictors for 
treatment heterogeneity should also be investigated. Only 
if such predictors exist can we identify individuals who 
would benefit more from a given treatment than from oth-
ers. Finally, we consider it a strength of the work presented 
here that we explicitly avoided the ratio-based approach 
that is regularly used in assessing the potential of precision 

medicine and instead used the arm-based approach as rec-
ommended by Nakagawa et al [23].

We have to acknowledge some limitations of our 
approach. Foremost, treatment heterogeneity can also 
exist even though outcome variabilities are similar in the 
verum and placebo arms; a fictitious example is given in 
ESM Fig. 5. Therefore, our approach can only yield indi-
rect evidence for the absence of treatment heterogeneity. 
However, for a situation such as that given in ESM Fig. 5, 
strong assumptions regarding the correlation between indi-
vidual placebo and verum responses must be fulfilled [13]. 
Specifically, those individuals whose  HbA1c value would 
remain unchanged under a placebo treatment would have 
to show the strongest treatment effect with the verum treat-
ment and vice versa, which is a rather unrealistic assump-
tion. A further limitation is that in trials with more than 
one verum arm, we did not use the available information 
on dose; in particular we did not check whether a higher 
dose of treatment also leads to higher variability; however, 
this will be the subject of our future work. We restricted the 
list of investigated predictors to the eight that were avail-
able from the three systematic reviews. It is possible that 
other predictors, e.g. race/ethnicity, treatment adherence, 
concomitant therapies or lifestyle factors might yield dif-
ferent results. Regarding our clinical outcome of  HbA1c, it 
is well known that this is not necessarily a good surrogate 
for ‘harder’, more clinically- or person-relevant outcomes 
[22]. Therefore, future work should also investigate other 
outcomes that are more person-relevant, such as diabetes-
related complications or mortality. In addition, GLP-1 
receptor agonists and SGLT-2 inhibitors have been shown 
in RCTs to have beneficial effects on cardiovascular and 
renal outcomes, which are not necessarily (or only partly) 
due to their glucose-lowering effects. Thus, further clini-
cal outcomes outside the classical diabetes domain, such 
as blood pressure, blood lipid levels or renal function, are 
also candidates for the evaluation of the precision medicine 
approach. With a view to more formal issues, we did not 
perform our own trial search, but relied on previous sys-
tematic reviews that were chosen because of their recency 
and the large numbers of included trials. Some trial publi-
cations were read by only a single reviewer, and we did not 
make any attempts to obtain additional information from the 
authors, e.g. in situations involving missing values.

Finally, a low variability of the clinical outcome in verum 
arms is not necessarily a disadvantage. Glucose-lowering 
treatment might have a stabilising quality, eventually shifting 
 HbA1c values across all treated individuals in a small corridor 
where the harms of too-low as well as too-high values are 
minimised [10]. Indeed, when we looked at the variances of 
the mean  HbA1c values after treatment in the verum and pla-
cebo arms, we found 0.46 (95% CI: 0.41, 0.53) in the verum 
arms but 0.82 (95% CI: 0.70, 0.97) in the placebo arms, clearly 

Mean HbA1c at baseline (mmol/mol)
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Fig. 5  Scatterplot of the log(SD) of  HbA1c values after treatment 
against baseline  HbA1c values in the subgroup of studies with GLP-1 
receptor agonists. Linear weighted fits are given for both treatments, 
and the two linear regression lines being nonparallel would point to 
an interaction between the clinical predictor and treatment. Note that 
the linear fits account for the different weights of trial arms but are 
not adjusted for mean  HbA1c or the correlation within trials
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supporting the notion of a stabilising effect of treatment. As 
such, the potential for precision medicine might be masked 
by this ‘corridor effect’ when using  HbA1c as the clinical out-
come. This again emphasises the need for replication of our 
findings for other clinical outcomes (e.g. body weight or all-
cause mortality), which are less prone to this effect because 
they are not the primary response of diabetes treatment.

Closely related to this, a further reason for this stabilisa-
tion of  HbA1c values might be the floor effect. Individuals 
with initial  HbA1c values that are already low have a smaller 
potential for reduction as compared with people starting with 
high  HbA1c values [10]. In addition, the absence of treatment 
heterogeneity is not necessarily harmful for treated individu-
als. If the treatments work similarly in all of them, then no 
one is treated inferiorly.

In conclusion, the overall small differences in  HbA1c 
variability in the verum and placebo arms of RCTs and the 
absence of predictors for treatment heterogeneity suggest an 
overall limited potential for the precision medicine approach 
for glucose-lowering treatment of type 2 diabetes. The prom-
ising result we found for GLP-1 receptor agonists in individu-
als with poor glycaemic control deserves further investigation 
with other clinical outcomes and/or different study designs. 
Until then, it is safe to assume that the average treatment 
effect as observed in standard RCTs is a reasonable expecta-
tion for the treated person.
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