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Abstract
This paper describes the first data-driven parser for Vedic Sanskrit, an ancient Indo-
Aryan language in which a corpus of important religious and philosophical texts has 
been composed. We report and critically discuss experiments with the input feature 
representations, paying special attention to the performance of contextualized word 
embeddings and to the influence of morpho-syntactic representations on the pars-
ing quality. In addition, we provide an in-depth discussion of the parsing errors that 
covers structural traits of the predicted trees as well as linguistic and extra-textual 
influence factors. In its optimal configuration, the proposed model achieves 87.61 
unlabeled and 81.84 labeled attachment score on a held-out set of test sentences, 
demonstrating good performance for an under-resourced language.

Keywords Vedic Sanskrit · Dependency parsing · Low-resource languages · 
Contextual embeddings

1 Introduction

Vedic Sanskrit (VS)—or short, Vedic—used in the 2nd and 1st millennium BCE, is 
one of the oldest transmitted Indo-European (IE) languages and the historical prede-
cessor of Classical Sanskrit (CS) as well as of most Modern Indo-Aryan languages. 
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There exists a rich corpus of texts composed in Vedic, which is crucial for under-
standing the cultural history of South Asia and for reconstructing the early devel-
opment of the IE languages. While, however, the computational processing of CS 
has seen significant progress in the last decade, much less work has been done on 
resources and NLP tools for VS. The present paper addresses this issue by present-
ing the first data-driven dependency parser for Vedic, which is used for extending 
an existing treebank of this language (Hellwig et al. 2020). We do not aim at pre-
senting a new parsing architecture. Instead, we concentrate on discussing choices 
made when designing the parser, most notably the selection of input features and 
their static or contextualized representation. In addition, we present an in-depth, lin-
guistically motivated discussion of the parsing errors. These contributions are meant 
to form the foundation for a parsing algorithm more targeted to the peculiarities of 
Vedic and similar premodern languages such as Ancient Greek and Latin.

The results discussed in this paper are also relevant for the wider field of parsing 
morphologically rich languages (MRLs) because Vedic has a rich system of fusional 
morpho-syntactic features. Parsing MRLs has encountered increasing interest in the 
NLP community over the last decade (see Tsarfaty et al., 2013 and esp. the survey 
in Tsarfaty et al., 2020). Many MRLs, including Vedic, share a number of basic syn-
tactic traits that set them apart from languages using a reduced morphology, such as 
English or Chinese. Most importantly, they have a rich repertoire of morpho-syntac-
tic markers that indicate the syntactic relations in a sentence and thereby can support 
a dependency labeler in finding the correct parse. The morpho-syntactic expressive-
ness, however, often comes along with a low degree of configurationality, imply-
ing, among others, free word order and the use of discontinuous constituents (see 
Sect. 4.4.2).

Dependency parsing of VS involves several domain- and annotator-related issues. 
Firstly, the Vedic corpus has been composed over a period of at least one millen-
nium and contains texts from different literary genres. VS is therefore a good test 
case for studying domain effects on a diachronic linguistic axis and with regard to 
genres (see Sect.  4.4.8). Secondly, the number of potential annotators for a Vedic 
Treebank (VTB) is small, so that the standard approach, which involves adjudicating 
multiple annotations of the same sentence, is practically not viable (for an example 
of good practice in this regard see Berzak et al., 2016). In addition, active speakers 
of VS are missing and many syntactic phenomena and content-related issues are by 
far less well understood than for modern languages. As individual annotators tend to 
form idiosyncratic annotation decisions (see Biagetti et al., 2021 for a study of VS), 
a parser of VS must be able to learn from partly idiosyncratic annotation schemes. 
Thirdly, the extant Vedic corpus contains around 3 million words (see Sect. 3.1) and 
may therefore not be large enough for pretraining contextualized word embeddings, 
which have boosted the performance of many downstream NLP tasks (see e.g. Kul-
mizev et al., 2019). Adding data from the corpus of CS mitigates the issue of data 
sparsity, but these later texts come from different cultural and linguistic domains 
(think of the difference between Middle and Modern English). As similar issues are 
encountered with other premodern languages (see e.g. Passarotti, 2019, Sect.  4.2, 
for Latin), we perform a systematic evaluation of how state-of-the-art contextual-
ized word embeddings influence the performance of the parser. Certain linguistic 
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characteristics of (Vedic) Sanskrit such as sandhi (see Hellwig & Nehrdich, 2018) 
and its high morphological complexity complicate the annotation process. It is 
therefore even more important to use high-quality morpho-syntactic input data when 
parsing VS; we obtain this data from the gold annotations in the Digital Corpus of 
Sanskrit (DCS, see Sect. 3.3). This situation is contrary to that of many other lan-
guages, where predicted (silver) morpho-syntactic data is typically used as input for 
the parsing process (see Sect.  4.3 for a comparative evaluation). Our experiments 
suggest that parsers trained with lexical and morpho-syntactic gold annotations are 
at least competitive with contextualized models when only limited text corpora are 
available.

Our paper thus makes the following main contributions:

• We present and discuss the first data-driven syntactic parser for Vedic.
• The experiments described in Sects. 4.2 and 4.3 provide quantitative evidence 

that the lack of large corpora needed for pretraining contextualized model can be 
counterbalanced by the use of gold input data.

• We provide an in-depth discussion of the errors made by the parser.

After an overview of related research (Sect.  2) and the available data (Sect.  3), 
Sect. 4 describes the experimental setup and presents the evaluation of contextual 
embeddings. Individual types of parsing errors are discussed in Sect. 4.4. Section 5 
summarizes the paper. In addition, we publish a new, significantly extended version 
of the VTB as compared to its state described in Hellwig et al. (2020). This treebank 
and the code of the parser are available under a Creative Commons license at https:// 
github. com/ Olive rHell wig/ sansk rit.

2  Related research

Modern dependency parsing methods can be broadly categorized into transition- 
(Nivre, 2003) and graph-based parsers (McDonald, 2006). Transition-based parsers 
build the dependency tree incrementally by a series of actions. A simple classifier is 
trained on local parser configurations and guides the parsing process by scoring the 
possible actions at each step. This approach is very efficient since the time-complex-
ity is usually linear. Graph-based parsers on the other hand maximize a particular 
score by searching through the space of possible trees, given a sentence. The search-
space is encoded as a directed graph and the score of a possible tree is calculated by 
a linear combination of the scores of local sub-graphs. Methods from graph theory 
such as the maximum spanning tree (MST) are then used to find the highest scor-
ing among all possible trees. Recently, the application of neural networks and con-
tinuous representations has led to a substantial performance gain for transition-based 
(Chen & Manning, 2014; Ballesteros et al., 2015; Weiss et al., 2015; Kiperwasser 
& Goldberg, 2016) as well as graph-based parsers (Kiperwasser & Goldberg, 2016; 
Dozat & Manning, 2017). These current state-of-the-art parsers are still either tran-
sition- or graph-based, but the differences in their error distributions decrease con-
stantly due to the convergence of neural architectures and feature representations.

https://github.com/OliverHellwig/sanskrit
https://github.com/OliverHellwig/sanskrit
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The comparative experiments in McDonald and Nivre (2011) and Kulmizev et al. 
(2019) show systematic differences between transition- and graph-based models. 
In our analysis of their results we noticed that, according to Table 1 in McDonald 
and Nivre (2011), their graph-based model performs better than a transition-based 
one for morphologically rich IE languages (mean labeled attachment score/LAS1 + 
1.127), whereas for IE languages with a comparatively low amount of inflection it 
even performs worse (mean LAS −0.47 ). In addition, the graph-based model of Kul-
mizev et al. (2019) yields much better results than the transition-based one for lan-
guages of the SOV type (mean LAS +1.82). Since Vedic is both a morphologically 
rich IE language and has a preference for SOV, we decided to use a graph-based 
architecture.

We adapt the biaffine model that achieved a state of the art UAS (see Footnote 
1) on all CoNLL 09 languages (Dozat and Manning 2017) and that performs bet-
ter on non-projective dependencies than transition-based neural models (e.g. Andor 
et al., 2016)—a relevant feature for Vedic where non-projectivity plays an important 
role (see Sect.  4.4.2). We further adapt DCST (Rotman & Reichart, 2019) which 
enhances the biaffine parser by adding deep contextualized self-training. More recent 
models that outperform these two architectures exist, for example Zhou and Zhao 
(2019) and Mrini et al. (2020). However, the head-driven phrase structure grammar 
that they apply requires constituency annotation in addition to dependency annota-
tion, which is currently not available for VS. Recent research (Che et al., 2018; Kul-
mizev et al., 2019) has shown that dependency parsers benefit from the addition of 
deep contextual embeddings such as ELMo (Peters et al., 2018) and BERT (Devlin 
et al., 2019), and such embeddings are also used in current state of the art models 
such as Mrini et al. (2020). We therefore evaluate how the addition of deep contex-
tual embeddings affects the performance in the case of VS.

Syntactic parsing of Sanskrit has met with increasing interest in recent years. 
Kulkarni (2021) describes a rule-based dependency parser that uses semantic and 
structural principles of the Pāṇinian system of grammar and Śābdabodha for pruning 
the arcs of an initially fully connected graph. While the use of the Pāṇinian grammar 
is an appealing solution, Vedic texts contain phenomena that are not (fully) compati-
ble with this system (e.g. sentences without finite verbs) so that an application to VS 
does not seem to be promising. In addition, this parser requires information about 
the case frames of verbs. While case frames are available for several frequent verbs 
in CS (Sanka, 2015), such a resource does not exist for the highly variegated verbal 
system of Vedic which abounds in hapax legomena with unclear meaning. Applying 
this parser to Vedic would therefore require a substantial amount of data collection 
and validation. More closely related to the present paper is the survey of data-driven 
dependency parsing of CS given by Krishna et al. (2020). The authors compare the 
performance of YAP (More et al., 2019), biaffine (Dozat & Manning, 2017), DCST 
(Rotman & Reichart, 2019) and L2S (Chang et al., 2016) on the Sanskrit Treebank 

1 The labeled attachment score gives the proportion of arcs whose heads and labels are predicted cor-
rectly, while the unlabeled attachment score (UAS) only considers the heads; see e.g. Kübler et  al. 
(2009).
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Corpus (STBC, see Kulkarni, 2013), a small treebank of works composed mainly 
in the 20th century CE. On this treebank, the graph-based neural models (biaffine, 
DCST) perform significantly better than YAP or L2S, and the pretraining step of 
DCST gives another 2% advance as compared to the biaffine model (UAS 80.95; 
LAS 72.86). Notably, the authors report substantially lower scores when they apply 
the models trained on the STBC to the Śiśupā lavadha, a metrical text composed in 
the 7th or 8th century CE. In this cross-domain application, DCST, being the best 
model, only achieves 40.02 UAS and 35.7 LAS. While the authors explain this drop 
primarily by the metrical form of the Śiśupā lavadha, one should also consider that 
the texts in the STBC are composed, so to say, in Neo-Sanskrit, a regulated form of 
the language which follows a strict SOV word order that is not found in the majority 
of texts composed before the 19th century, and whose vocabulary differs from that 
used in CS texts. Similar considerations apply to the results reported for the EBM 
model (Krishna et al., 2021) because EBM uses largely the same linguistic rules for 
pruning the search space that also regulate Neo-Sanskrit. The good performance that 
EBM shows on the STBC (UAS 85.32, LAS 83.93) is therefore not surprising.

Computer-based analyses of texts in premodern languages often face specific 
challenges, some of which also apply to the Vedic corpus. Recent reports on two 
important cuneiform languages (Sukhareva et al., 2017; Bansal et al., 2021) show 
that, due to data sparsity and the difficult nature of the texts, sometimes even the 
problem of POS tagging is far from being solved. On the other extreme, we have 
Latin, where the amount of raw textual material is large enough to achieve a state 
of the art POS tagging result by training a BERT model (Bamman & Burns, 2020). 
Universal Dependencies (UDs) list about a dozen treebanks of premodern languages 
on their website,2 among which the cases best comparable to the situation of Vedic 
are probably Latin and Ancient Greek (see also Passarotti, 2019; Celano, 2019). 
Challenges arising when annotating ancient texts have also been discussed by Bam-
man et al. (2010) for Ancient Greek and Biagetti et al. (2021) for Vedic. Examples 
of error analysis following the dependency parsing of Ancient Greek texts are given 
by Mambrini and Passarotti (2012) and Majidi and Crane (2014).

3  Vedic Sanskrit and the Vedic corpus

3.1  Structure and size of the Vedic corpus

The texts of the Vedic corpus were originally composed orally and were written 
down only at a much later date (Falk, 1993; Renou, 1947). In fact, the corpus as we 
have it today represents only a small part of the original oral material (for a detailed 
overview see Gonda, 1975, 1977; Olivelle, 1998). Traditionally it is divided into five 

2 https:// unive rsald epend encies. org.

https://universaldependencies.org
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major groups which can be briefly characterised as follows in terms of their content 
and style3:

• Saṃhitās ( 15th–9th century BCE): lit. ‘collections’, namely of metrical hymns 
addressed to various deities, and of ritual and magical formulas (in verse and 
prose).

• Brāhmaṇas ( 9th–7th century BCE): voluminous prose texts mostly containing 
explanations and discussions of rituals.

• Āraṇyakas ( 8th–6th century BCE): prose texts of ritualistic and philosophical 
character.

• Upaniṣads ( 7th–2nd century BCE): theological and philosophical treatises, the 
oldest of which are composed in prose, the younger ones in verses.

• Vedāṅgas ( 6th century BCE–3rd century CE): Apart from numerous treatises on 
technical topics such as phonetics and metrics, this group comprises three types 
of texts, composed in a special, extremely condensed style: the Gṛhyasūtras, 
Śrautasūtras (manuals of domestic and of solemn rituals), and Dharmasūtras 
(compendiums of law and customs).

From a linguistic point of view, the Vedic corpus can be divided into layers that only 
partly overlap with the traditional text groups just mentioned. The division used in 
this paper has been adopted from Kümmel (2000, 5f.): 

(1) Early Vedic [= 1-RV]: the Ṛgveda-Saṃhitā,
(2) Old Vedic [= 2-MA]: the metrical portions of the Atharvaveda- and Yajurveda-

Saṃhitās (‘Mantra language’),
(3) Middle Vedic [= 3-PO]: the prose portions of the Saṃhitās, and the older parts 

of the Brāhmaṇas, Āraṇyakas, and Upaniṣads,
(4) Young Vedic [= 4-PL]: the younger parts of the Brāhmaṇas, Āraṇyakas (both 

prose), and Upaniṣads (partly prose, partly verse),
(5) Late Vedic [= 5-SU]: the Sūtra texts of the Vedāṅgas (prose).

Data-driven parsing and pretraining methods require large training corpora. This 
raises the question whether the Vedic corpus is large enough for successfully pre-
training (contextualized) language models. To our knowledge, no reliable estima-
tion of its word count has been published so far because the euphonic merging of 
separate words into one string (the so-called external sandhi, lit. ‘connection’; see 
Sect. 3.2) prevents a straightforward word count in Sanskrit texts. In order to obtain 
an approximate number of the words in the extant Vedic corpus, we collect publicly 
available digital versions of Vedic texts and count the characters in the resulting 72 
files. For 14 of these files, the DCS (see Sect. 3.3) contains a complete lexical and 
morpho-syntactic annotation that allows to establish the true, ‘unsandhied’ number 

3 The absolute dates of the Vedic texts are highly uncertain, so the chronological figures given below are 
only meant to serve as a rough orientation; for a more detailed relative chronology see Kümmel (2000) 
and Witzel (1989).
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of words in these files. We fit a linear model that predicts the number of words ( yi ) 
given the number of characters ( xi ) and an intercept term a on the basis of the 14 
lexically annotated files, i.e. yi = a + �xi . The model shows an almost perfect lin-
ear fit ( R2 = 0.994 ) and is therefore used for estimating word counts in the remain-
ing 58 files for which no (complete) lexical annotation is available. The estimated 
counts reported in column 1 of Table  1 show that Brāhmaṇas and the old metri-
cal Saṃhitā texts are the dominant text categories of the Vedic corpus, closely fol-
lowed by the expositions of the solemn rituals (Śrautasātras). The true size of the 
extant Vedic corpus is slightly higher than indicated by our estimate of about 3 mil-
lion words because some texts have not been digitized (completely) so far. It also 
becomes apparent from Table 1 that the annotation of the Vedic corpus is biased 
because the Saṃhitās and Upaniṣads have significantly more lexical, morphological 
and syntactical annotations than would correspond to their proportion in the corpus. 
This over-representation correlates with their importance in the scholarly discourse. 
Neither the DCS nor the VTB are therefore balanced samples from the extant Vedic 
literature, but rather reflect scholarly preferences.

3.2  Linguistic, syntactic and orthographic traits of Vedic

Vedic is a MRL, with all eight Proto-IE noun cases, three numbers, numerous verbal 
categories and declension classes, both for nouns and verbs (see e.g. Burrow, 1955). 
The morphology abounds in sound changes because of ablaut phenomena and of 
euphonic changes occurring between (nominal and verbal) stems and endings. A 
notable feature of Vedic word formation are the ample possibilities of nominal com-
pounding (see Sect. 4.4.6). In addition to a considerable vocabulary of nouns, verbs 
and various pronouns, Vedic also possesses a large number of particles, many of 

Table 1  Size and composition of the Vedic corpus, split by the main genres of the Vedic literature (col-
umn 1; see Sect. 3.1)

Column 2 gives an estimation of the size of the respective group in words (see Sect. 3.1), and columns 
3–5 report the current state of the annotation in the DCS (column 3) and the Vedic Treebank (columns 
4–5; see Sect. 3.3). The numbers in square brackets give the rounded proportion of a text category with 
regard to the total count in the respective column (lowermost row)

Group Words (est.) Words (morph.) Words (dep.) Sens. (dep.)

Saṃhitā 847,158 [28] 333,516 [45] 44,666 [35] 6512 [39]
Brāhmaṇa 869,560 [28] 208,392 [28] 35,489 [28] 4707 [28]
Āraṇyaka 46,317 [2] 19,675 [3] 3455 [3] 582 [4]
Upaniṣad 52,551 [2] 40,260 [5] 13,415 [11] 1747 [11]
Śrautasūtra 657,010 [21] 38,513 [5] 12,445 [10] 1107 [7]
Gṛhyasātra 279,181 [9] 87,686 [12] 16,854 [13] 1837 [11]
Dharmasātra 154,158 [5] 12,283 [2] 205 [0] 33 [0]
Other 154,021 [5] 518 [0] 0 [0] 0 [0]

∑

∶ 3,059,956 740,843 126,529 16,525
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which are used with high frequency. The word order is extremely free, so that Vedic 
in this respect is often compared to languages like Warlpiri (e.g. Reinöhl, 2020), 
although certain preferred word order patterns can be distinguished (Delbrück, 
1888, Chap. 2 ).

Tokenization of (Vedic) Sanskrit is complicated because individual words 
are sometimes merged due to external sandhi. Although algorithms and tools for 
tokenization and related tasks are available for CS (Goyal & Huet, 2016; Hellwig & 
Nehrdich, 2018; Krishna et al. 2021), they either require manual correction of the 
results (Goyal & Huet, 2016), only perform word splitting, but no lexical and mor-
phological analysis (Hellwig & Nehrdich, 2018) or are tuned for CS (Krishna et al., 
2021). The obvious solution to this problem is an end-to-end system that gener-
ates syntactic parses from raw Vedic text, featuring word segmentation as one of its 
intermediate steps (see e.g. the model proposed by Hashimoto et al., 2017). As such 
a system is currently not available, we use texts with presegmented words through-
out this paper. Moreover, Vedic does not feature grammatical sentence boundary 
markers, and the scribes who first wrote down the Vedic texts did not provide reli-
able orthographic markers. Traditionally, the texts are structured by single or double 
vertical strokes (daṇḍas, i.e. ‘staffs’), that are used to indicate the end of verse lines, 
paragraphs, sentences and other textual units. Usage of these signs largely does not 
follow general rules so that a sequence of strings terminated by a daṇḍa can contain 
one or several sentences or only a part of a sentence. Sentence segmentation is, con-
sequently, another, far from trivial, task that has to be accomplished by the parser, 
and by the human annotators of the gold data (see Biagetti et al., 2021). In the exper-
iments performed in this paper we therefore work with presegmented sentences.

3.3  Digital resources for (Vedic) Sanskrit

Two important repositories of digitized Vedic texts are hosted by the Universities 
of Göttingen (GRETIL4) and Frankfurt (TITUS5). Due to sandhi and the fusional 
morphology of VS (see Sect.  3.2), texts from these repositories cannot be used 
directly for training a dependency parser, because the texts need at least to be split 
into words for further processing. The files in CoNLL-U format made available by 
the DCS (Hellwig, 2010-2021) provide manually validated lexical and morpho-syn-
tactic annotations, but cover only about one quarter of the extant Vedic corpus (see 
column 3 of Table 1). In spite of their limited coverage, we therefore use the DCS 
data for those (pre-)training steps that require linguistically annotated input.

The syntactic gold annotations for our experiments come from an extended ver-
sion of the VTB (Hellwig et al., 2020; Biagetti et al., 2021), a treebank of VS anno-
tated following the UD standard (Nivre et al., 2016). When compared with its state 
described in Biagetti et al. (2021), the amount of data has increased by about 80,000 
words, and it now features substantial text samples from all parts of the Vedic corpus 

4 http:// gretil. sub. uni- goett ingen. de/ gretil. html.
5 http:// titus. fkidg1. uni- frank furt. de/ framee. htm?/ index. htm.

http://gretil.sub.uni-goettingen.de/gretil.html
http://titus.fkidg1.uni-frankfurt.de/framee.htm?/index.htm
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(see Table 1, columns 4 and 5). Because the current version of the VTB covers sev-
eral new textual domains, we also revised the annotation guidelines, paying special 
attention to linguistic phenomena that preferably occur in late Vedic texts such as 
the frequent citation of mantras (see Sect. 4.4.7) or argument sharing.

Because there are no native speakers, the inter-annotator agreement (IAA) for 
treebanks of ancient languages tends to be lower than for those of modern lan-
guages. Getting an idea of the IAA on the VTB is important for the purpose of this 
paper because this value can be thought of as bounding the expected accuracy of a 
parser: when the annotators strongly diverge in their decisions, the parser cannot be 
expected to produce perfect prediction scores. This risk is real in the present case, 
because many Vedic texts leave ample space for contending interpretations in terms 
of grammar, syntax and content. For our IAA experiments, two authors of this paper 
re-annotate (1) 50 sentences annotated by one former contributor to the VTB (‘anno-
tator 3’) and (2) 50 sentences annotated by each other. Each sentence has at most 
15 words, and examples from the Rigveda are excluded due to the many disputed 
passages of this text. We obtain overall values of 89.3% for unlabeled (UAA) and 
86.8% for labeled attachment agreement (LAA; see Kübler et al., 2009). This is a 
marked improvement over the results of the evaluation done for the previous version 
of the VTB (Biagetti et al., 2021, Sect. 4), although the figures are not completely 
comparable as the Rigveda is excluded in the present evaluation.6 A detailed evalu-
ation reveals that most of the disagreement in our annotation can be tracked down 
to two sources. First, disagreement between the two authors of this paper arises in 
the annotation of the Śvetāśvatara-Upaniṣad, a notoriously difficult text. Second, 
the two authors of this paper often disagree with annotator 3, especially about the 
attachment and function of particles. When excluding these two problematic areas 
from the evaluation, we obtain 93.1% UAA and 89% LAA, which may reflect the 
degree of disagreement in annotations recently added to the VTB. Note that the true 
value of agreement for the complete VTB is certainly below this optimistic estimate 
as the treebank has grown over years and annotations were usually not adjudicated 
due to lack of manpower.

4  Experiments

In this section, we give an in-depth assessment of the parser performance. After a 
brief overview of the experimental settings in Sect. 4.1, Sect. 4.2 studies the influ-
ence of contextualized embeddings and Sect. 4.3 reports the results of a feature abla-
tion experiment and the scores of an optimal model. The subsequent sections dis-
cuss various sources of errors.

6 The figures of 87.4% UAA and 80.6% for ancient Greek given by Bamman et al. (2010) are in the same 
range but cannot be directly compared to our results because they have been calculated in a different 
manner. A very high UAA of 96% is reported for presegmented Coptic by Zeldes and Abrams (2018).
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4.1  Experimental settings

For all experiments described in this section, we apply the biaffine architecture of 
Dozat and Manning (2017) with the addition of a character based CNN (CharCNN) 
that uses the individual characters of each inflected form as input (see Rotman & 
Reichart, 2019; Zhang et  al., 2015). We use the implementation of Rotman and 
Reichart (2019), DCST,7 but do not apply the pretraining steps for the evaluation 
of the lexical embedding strategies and the feature ablation due to time constraints 
(also see Sect. 4.3 for a comparison with the full DCST model). The main extension 
of this model is that we integrate a larger number of categorical input features. In the 
same way as in the biaffine model, these features are represented as continuous, ran-
domly initialized embeddings. We use embedding dimensions of 100 for lexical and 
all other features. Because our parser targets the middle and late Vedic language, 
Rigvedic data are not included in the following experiments if not specified other-
wise. We consider the following input features for the dependency parser: 

Morpho-syntax: Case, number and gender of each word, as provided by the VTB 
CoNLL-U files. These features are fully specified for nouns, adjectives, non-per-
sonal pronouns and verbal nouns with a nominal inflection (e.g. participles of 
various tenses). Personal pronouns have case and number information. We evalu-
ate atomic features and their joint representations (see Gupta et al., 2020).
Verbal nouns: Verbal nouns convey syntactic information. Participles of the pre-
sent, future, aorist and perfect stems as well as infinitives typically occur in active 
constructions, whereas gerunds and the so called past participle are regularly used 
in active as well as passive constructions and thus require different case frames. 
We therefore evaluate a combination of the tense and the type of verbal nouns.
Inflected word forms: Some graph based parsers (e.g. DCST) use the character 
representation of each word as input. Since sandhi (see Sect.  3.2) prevents the 
straightforward extraction of words from digital texts, we take recourse to the 
‘unsandhied’ word forms stored in the VTB CoNLL-U files. If this information 
(due to reasons connected with the history of the DCS) is missing, we reconstruct 
the word form by looking it up in the complete DCS including its non-Vedic parts 
(note that the inflectional morphology of VS and CS differs only in minor points) 
and by applying a set of heuristic rules. This approach typically retrieves more 
than 99% of the missing word forms. The word forms are used as input for the 
CharCNN and for pre-training fastText embeddings.
Punctuation: Apart from (double) daṇḍas, which have only a limited value for 
sentence segmentation (see Sect.  3.2), the DCS CoNLL-U data provide addi-
tional punctuation marks that demarcate clauses and were added by the annota-
tors of the DCS (Hellwig, 2016). We use these values as additional input features 
in our experiments.

7 https:// github. com/ rotma nguy/ DCST.

https://github.com/rotmanguy/DCST
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Text-historical layers: We flag each sentence in the VTB CoNLL-U files with 
a historical period according to the scheme proposed by Kümmel (2000) (see 
Sect. 3) and use these flags as additional input features.

In order to regularize the training process of the parser and to avoid overfitting, 
we augment the training data by randomly concatenating up to four, not necessar-
ily subsequent sentences from the training set. We make the root of the first sen-
tence the root of the new concatenated sentence and connect the root nodes of the 
subsequent sentences with the first root using the non-UD label senconj. As a 
side effect, this strategy enables the model to learn how to split texts without pre-
segmented text lines (see Sect.  3.2), because clauses labeled with senconj can 
be split into individual sentences during decoding. This feature is especially useful 
when applying the parser to texts with unreliable sentence boundary annotation.

4.2  Word representation strategies

Inspired by Sandhan et  al. (2021), we evaluate how the following word represen-
tation strategies influence the parsing accuracy: a CharCNN, Word2Vec (Mikolov 
et al., 2013), fastText (Bojanowski et al. 2017), ELMo (Peters et al., 2018), RoB-
ERTa (Liu et  al., 2019) and XLM-RoBERTa (Conneau et  al., 2020). CharCNN, 
which uses the individual characters of each inflected word form as input, serves 
as a baseline.8 The Word2Vec model was pretrained on the lemmata provided by 
the DCS (see Sect.  3.3; ca. 4,800,000 tokens; settings: continuous bag of words 
(CBOW) model, window size: 8, embedding size: 100). fastText was pre-trained 
on the GRETIL corpus (see Sect. 3.3; 5m lines/237 Mib). We decided to train and 
apply fastText to the inflected forms instead of the lemmata, because, due to sub-
word modeling, fastText promises a better performance on inflected forms of MRLs. 
Word2Vec on the other hand creates token-level representations and is therefore 
more suited to be applied to the lemmata. While Word2Vec and fastText were pre-
trained on a mixture of VS and CS, ELMo was only pretrained on the 26 Mib of 
Vedic data on which the estimates in Table 1 are based, a restriction due to hardware 
constraints. Since it turned out that the performance of this ELMo model is clearly 
inferior to that of a RoBERTa model that uses only Vedic (RoBERTa-Vedic), we 
assume that training ELMo with Vedic and non-Vedic data together will not lead 
to a performance gain over RoBERTa-Vedic-GRETIL. Default settings for the bidi-
rectional language model were applied during training.9 We trained two versions of 
RoBERTa from scratch: one based only on Vedic data (RoBERTa-Vedic) and one 
based on Vedic and Classical data (RoBERTa-Vedic-GRETIL). For both versions 
we applied the default parameters given in Liu et al. (2019) with a vocabulary size 
of 32,000. We also evaluate the performance of a pretrained XLM-RoBERTa model 
(XLM-100, see Conneau et al., 2020) that was trained, among other languages, on 

8 We adapted the CharCNN from Rotman and Reichart (2019), see also Zhang et al. (2015).
9 https:// github. com/ allen ai/ allen nlp- models/ blob/ main/ train ing_ config/ lm/ bidir ectio nal_ langu age_ 
model. jsonn et.

https://github.com/allenai/allennlp-models/blob/main/training_config/lm/bidirectional_language_model.jsonnet
https://github.com/allenai/allennlp-models/blob/main/training_config/lm/bidirectional_language_model.jsonnet
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Vedic and non-Vedic Sanskrit.10 Due to hardware constraints, we could only evalu-
ate the performance of the XLM-100 model in its base configuration, although 
Fig. 4 in Conneau et al. (2020) suggests that a better performance for low-resource 
languages can be expected when a model with more capacity is trained. We also 
evaluate the performance of XLM-100 after it was further pretrained on Vedic data 

Table 2  Evaluation of lexical embedding strategies with different amounts of training data and different 
levels of additional information (None = embeddings only; POS: with POS tags; All: all available infor-
mation, see Sect. 4.1)

The best result per combination of training set size and feature type is printed bold, the second best in 
italics. Asterisks and dots after the best result give the significance level of a �2-test that compares this 
result with the second best one (notation: . (single dot): 0.05; *: 0.01; **: 0.001)

UAS LAS

Features Model 1000 5000 1000 5000

None CharCNN 51.5 65 38.5 54.1
fastText 57.5 70 45.5 60.3
Word2Vec 51.7 62.5 37.1 49.1
ELMo 63.8 69.8 49.6 57.8
RoBERTa-Vedic 63.3 71.2 49.2 59.8
RoBERTa-Vedic-GRETIL 64.8 ��.��∗ 52.4 ��.��∗∗

XLM-100 58.5 64.5 44 52
XLM-100-Vedic ��.��. 72.8 ��.� 62.5

+POS CharCNN 59.7 71.4 46.2 61
fastText 64.9 74.4 54 65.8

Word2Vec 59.7 68.2 44.9 55.2
ELMo 64 70.5 49.6 58.6
RoBERTa-Vedic 65.1 72.8 50.9 62.1
RoBERTa-Vedic-GRETIL 67.6 ��.��∗ 55.6 ��

XLM-100 62.2 69.4 48.6 58.3
XLM-100-Vedic ��.� 74.6 ��.� 65.1

All CharCNN 69.2 78.1 58.4 69.8
fastText �� ��.��. �� ��

Word2Vec 70.4 79.0 60.4 71.5

ELMo 63.9 71.1 49.7 59.1
RoBERTa-Vedic 66.1 76.6 53.6 68.1
RoBERTa-Vedic-GRETIL 70.8 78.5 60 70.6
XLM-100 68.9 77.1 57.4 68.3
XLM-100-Vedic 70.7 78.6 60.3 70.7

10 The Sanskrit dataset used in that publication is accessible here: https:// metat ext. io/ datas ets/ cc100- 
sansk rit. It contains about 340 Mib of Vedic, Classical and contemporary Sanskrit, occasionally inter-
mixed with text from other languages.

https://metatext.io/datasets/cc100-sanskrit
https://metatext.io/datasets/cc100-sanskrit
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(XLM-100-Vedic). For all embedding models except for Word2Vec we use the 
inflected ‘unsandhied’ forms as inputs.

In order to assess how the models react under different conditions of data-availa-
bility, we report results for experiments with 1000 and 5000 sentences. We apply a 
cross-validation scheme with fivefolds, using 80% of the data for training and 20% 
for the evaluation. In order to make the results comparable, we evaluate all models 
on the same train/test splits. We further evaluate all models in three settings: first 
using only lexical information (‘None’ in Table 2), second with the universal POS 
tags enabled (‘+POS’), and third with the complete ensemble of linguistic informa-
tion (see Sect. 4.1) enabled (‘All’). Notably, we include the CharCNN for all models 
in the third setting. We choose these three settings in order to emulate different lev-
els of availability of (gold) annotated data. The influence that this gold information 
exerts on the results is evaluated separately in Sect. 4.3.

The results of our experiments are shown in Table 2. In general, all models ben-
efit from the addition of the POS tags, and adding the full ensemble of linguistic 
information gives a further boost in performance. Equally, having more sentences 
available for training leads to an overall increase in performance. Static embeddings 
(CharCNN, fastText, and Word2Vec) are inferior in performance when no POS tags 
and/or linguistic information are available. With detailed linguistic information 
static models perform slightly better than contextual ones. The results also show that 
contextual models benefit from the addition of non-VS training data.

When no POS tags or linguistic information is available (setting ‘none’, first com-
partment of Table 2), the three non-contextual models perform significantly worse 
than the contextual models. This difference is especially pronounced with only 1000 
sentences of data. Among the non-contextual models, fastText performs clearly bet-
ter than the rest, while Word2Vec produces the lowest LAS. This shows that using 
inflected forms instead of lemmata is important for obtaining good LAS when no 
further linguistic information is available. When we increase the size of the training 
set to 5000 sentences, fastText begins to outperform, in terms of LAS, all contextual 
models with the exception of RoBERTa-Vedic-GRETIL and XLM-100-Vedic.

Adding POS tags (setting ‘+POS’, second compartment of Table 2) reduces the 
gap between static and contextual models. Word2Vec becomes more competitive 
with the contextual models: It consistently outperforms XLM-100 and ELMo and it 
also performs better than RoBERTa-Vedic with the exception of the UAS for 1000 
sentences. Among the contextual models, XLM-100-Vedic remains the best per-
forming model for 1000 sentences, as does RoBERTa-Vedic-GRETIL for 5000.

When all linguistic information is considered (third compartment of Table  2), 
fastText outperforms all other models although the difference to the respective sec-
ond best model, which is now Word2Vec, is statistically significant only for the UAS 
with 5000 sentences. XLM-100-Vedic and RoBERTa-Vedic-GRETIL remain the 
best contextual models with very similar performance. ELMo clearly falls behind 
with a significant gap to all other models. It is noteworthy that XLM-100 performs 
much better in this setting than in the previous two settings, even outperforming 
RoBERTa-Vedic.

We conclude that contextual models have an advantage over non-contextual ones. 
This advantage, however, vanishes when enough linguistic information is available. 
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While all models benefit from the addition of such information, this effect is weakest 
for ELMo. This is in line with observations made in Straka et al. (2019), Sect. 4.2, 
where ELMo is outperformed by BERT (Devlin et al. 2019) in dependency parsing. 
The finding that ELMo performs worse than other types of embeddings in the set-
ting ‘All’ seems to be in contrast to a recent paper according to which ELMo out-
performs several other contextualized embedding types on a wide range of semantic 
tasks in CS (Sandhan et al., 2021). We hypothesize that the contradictory results are 
first due to the nature of the tasks (semantics vs. syntax) and, second, to the fact that 
the authors did not consider a scenario where additional linguistic information was 
available to their model.

The results of RoBERTa-Vedic show that it is difficult to achieve competitive 
performance when only Vedic data is considered during training. Conneau et  al. 
(2020) have observed that “a few hundred MiB of text data is usually a minimal 
size for learning a BERT model”. Presumably, 26 Mib of Vedic text are not enough 
to train a competitive model, especially in the light of the linguistic complexity of 
Vedic (see Sect. 3.2). As the performance of RoBERTa-Vedic-GRETIL shows, add-
ing non-Vedic Sanskrit data improves the performance although the model is not 
able to outperform the static ones in the setting ‘All’. The performance gains of the 
static fastText model in this setting are especially obvious for the labels iobj and 
compound where fastText shows substantial performance gains when compared 
to RoBERTa-Vedic-GRETIL. It seems plausible that case information contributes 
most to these gains. It thus becomes apparent that non-VS data can support the train-
ing process, which mirrors the observation made in Lample and Conneau (2019), 
Table 4, where a Nepali language model shows significantly lower perplexity when 
additional Hindi data is considered during training. The poor results for XLM-100 
show that the performance of contextual models on the very specific Vedic domain 
is hampered when numerous other languages are included during training. This is 
in line with Conneau et al. (2020), Fig. 2, which shows an effect of dilution on low-
resource languages when more than 15 languages are considered. In addition, most 
of the data used for training XLM-100 are of much younger age and from com-
pletely different socio-cultural domains—a statement that even pertains to the San-
skrit and Latin subcorpora. Further finetuning of the XLM-100 model on Vedic data 
helps to boost its performance so that it becomes competitive with, but not better 
than RoBERTa-Vedic-GRETIL. We conclude that pretraining on 100 languages 
does not lead to a better performance over pretraining on Sanskrit data alone.

Our observations match the results presented in Wu and Dredze (2020), where 
the performance of multilingual and monolingual BERT models for low-resource 
languages on the tasks of named entity recognition, part of speech tagging and 
dependency parsing is evaluated. The authors observe that for languages with a 
corpus size of less than 0.044–0.088 GB (raw dump of the Wikipedia archive file), 
using no pretrained language model at all is in general better than using multilingual 
BERT, with the performance of monolingual BERT models for such small corpora 
being even worse. Straka et al. (2019) also evaluate the performance of multilingual 
BERT for dependency parsing of various languages. For two corpora of Ancient 
Greek, contextual embeddings do not improve parsing accuracy, in contrast to most 
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other languages.11 Similarly, contextual embeddings provide only marginal improve-
ments for Latin parsing. These combined observations lead to the conclusion that 
for ancient languages with limited resources, using contextual embeddings does not 
necessarily improve the parsing accuracy, especially when enough other linguistic 
information is available.

4.3  Feature ablation

In order to evaluate how the input features influence the performance of the parser, 
we carry out a feature ablation experiment. Based on the results of Sect. 4.2, we use 
fastText of the inflected forms as the lexical embedding, apply the same fivefold 
cross-validation scheme as in Sect. 4.2 and run the experiment with 1000 and 5000 
sentences. As a baseline we use a setting where character embedding, fastText repre-
sentation and all linguistic features as well as punctuation and diachronic layer infor-
mation are enabled. The results in Table 3 show that removing the joint representa-
tion (see Sect. 4.1) and the lexical fastText representation decreases the performance 
most clearly, whereas removing number, gender and even case has no statistically 
significant effects. The effect of the joint representation is most obvious for 5000 
sentences where data sparsity is less severe than in the 1000 sentence setting. We 
conclude that when the joint representation is available, atomic morpho-syntactic 
features do not support the model performance in a significant way. This is con-
trary to the results reported in Gupta et al. (2020), where composite models outper-
formed joint models on the task of Sanskrit morphological tagging. With the excep-
tion of number, gender and the joint representation, the negative effects of removing 
a feature are stronger for 1000 than for 5000 sentences. This observation suggests 
that fine-grained linguistic information is more beneficial when less training data is 

Table 3  UAS results of the 
feature ablation experiments 
for morpho-syntactic and other 
input features

Removed feature 1000 5000

Characters −1.27* −0.76*
fastText representation −1.63** −1.71**
UD-POS −1.05 −0.63*
Joint representation −1.01 −3.01**
Case −1.32 −0.49

Number 0.03 0.12
Gender 0.23 0.1
Verbal nouns −0.98 0.02
Punctuation −0.61 −0.22*
Diachronic layers −0.24 −0.18

11 Note that in the case of Ancient Greek Straka et al. (2019) did not use any Ancient Greek data for the 
training of the BERT model, while we could use a small corpus of VS. In addition, they did not employ 
gold POS tags and lemmatized words for dependency parsing, but utilized the output of UDPipe 2.0 
(Straka, 2018); see Sect. 4.3 for the effect of this setting.
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available. The character embedding has a significant impact in both scenarios. Since 
VS is a morphologically rich language, we assume that the character embedding is 
able to encode lexical properties that are not accessible via the other features. From 
among the remaining features, only punctuation has a small positive effect on the 
parsing performance.

For the best performing model, we use all available sentences of the VTB, yield-
ing 16,272 sentences after removing duplicates. 80% are held back for training, 
10% are used for validation and 10% for testing. After augmentation (see above, 
Sect. 4.1), the training data consists of 41,052 sentences. Samples from the Rigveda 
are used for training, but not for validation and testing. Since the effect of adding 
atomic case, number and gender features is not conclusive, we decided to use all 
available features for this setting. We slightly modify the hyper-parameters used in 
Rotman and Reichart (2019): 100 epochs, a batch size of 32, a learning rate of 0.002 
and dropout probabilities of 0.33. With these settings, our model reaches 87.63 UAS 
and 81.68 LAS without pretraining. When we apply the DCST pretraining step, the 
model reaches 87.61 UAS and 81.84 LAS, showing that this kind of pretraining, 
while substantially increasing the computation time, does not lead to decisive per-
formance gains.

Contrary to most other studies, our parser uses gold POS and morpho-syntac-
tic information, since this data is available for the Vedic subcorpus of the DCS. In 
order to evaluate to which degree this gold information influences the parser per-
formance, we repeat the ablation experiment using predicted (silver) tags (results 
in Table 4). To obtain these tags, which are not provided by the DCS, we train two 
separate linear classifiers on top of the XLM-100-Vedic-model, which is among the 
strongest of the contextual models evaluated in our ablation study (see Table  2). 
These classifiers receive the manually validated split word forms provided by the 
DCS as input, and are trained to predict the part-of-speech and the morpho-syntactic 
information of each word. The classifiers reach accuracy rates of 97.1% for POS 
and 94.1% for morpho-syntactic tagging on the same held-out set that we use for 
evaluating the dependency parser. When using a static word embedding model in 
combination with these silver annotations, the best performing configuration of the 
biaffine parser reaches a performance of 84.87 UAS and 79.34 LAS, which is clearly 
below the performance of the biaffine parser with gold annotation. When we add 
the contextual embedding model XLM-100-Vedic to this configuration, the perfor-
mance increases slightly to 84.97 UAS, while LAS decreases to 79.18. The results 
in Table 4 thus show that gold POS and morpho-syntactic information improves the 

Table 4  Results of training the 
best performing configuration of 
the biaffine parser with the full 
dataset and augmentation

Upper half: gold POS and morpho-syntax; lower half: silver POS 
and morpho-syntax

Model UAS LAS

Biaffine Word2Vec + gold annotation 87.63 81.68
DCST + gold annotation 87.61 81.84
Biaffine Word2Vec + silver annotation 84.87 79.34
Biaffine XLM-100-Vedic + silver annotation 84.97 79.18
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parsing accuracy; and that, even when silver annotation is used, the parsing accuracy 
for Vedic does not improve consistently by adding contextual embedding models.

4.4  Error analysis

This section provides an in-depth analysis of the errors made by the parser. We start 
with structural features as explored by McDonald and Nivre (2007) and others and 
then move forward to examining linguistic and text-historical issues that have an 
impact on the performance.

4.4.1  Structural traits of the dependency tree

It has repeatedly been reported that the parsing accuracy depends on the length of 
a sentence (see e.g. McDonald & Nivre, 2007). This effect can also be observed 
in Vedic, as the sentence-wise LAS decreases significantly for increasing sentence 
lengths.12 The only peculiarity worth mentioning here is that very short sentences of 
two or three words have labelled attachment scores of only 87.5 and 86.2, although 
one may expect them to be easy to parse. A closer inspection of the relevant POS 
patterns shows, however, that these low scores are mainly caused by purely nominal 
identity statements. This type of sentences is problematic for the parser as well as 
for human readers, as the direction of the identification and thus the root assignment 
is often questionable (see the discussion in Sect. 4.4.4).

The sentence lengths interact differently with the diachronic layers of the Vedic 
corpus (see Sect. 3.1 for a presentation of the five layers distinguished used in this 
study). To understand these interactions, we fit a linear model that predicts the sen-
tence-wise LAS using an additive combination of an intercept term, the length of 
the sentence and the interaction of its length with the chronological layer. When we 
apply a t-test to assess if the coefficient estimates of this model differ from zero, we 
obtain highly significant p-values for all model coefficients (details in Table 5). Most 

Table 5  Results of a linear 
regression that tests the joint 
influence of the sentence 
lengths, the diachronic layers 
(see the list of abbreviations 
on p. 6) and of their 
combinations (Length: 3-PO 
etc.) on the sentence-wise LAS; 
R
2
= 0.0249

Column ‘Estimate’ reports the values of the weight of each covariate 
as estimated by the model, ‘t’ is the result of a t-test applied to this 
estimate, and column ‘p-value’ reports the statistical significance of 
this test (low values are good)

Coefficient Estimate t p-value

Intercept 0.8726 239.32 < 0.001

Length −0.0121 −13.66 < 0.001

Length: 3-PO 0.0093 9.84 < 0.001

Length: 4-PL 0.0069 7.95 < 0.001

Length: 5-SU 0.0056 6.31 < 0.001

12 A linear model that predicts the LAS conditioned on the sentence lengths has highly significant coef-
ficients: Intercept: 87.6065, t = 250.98 , p 0.001; Length: −0.6209, t = −15.74 , p 0.001.
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notably, the two prose layers (3-PO, 4-PL) and even the elliptic Sūtra texts (5-SU) 
obtain higher scores than the earlier metrical texts (2-MA), which forms the calibra-
tion for the interaction terms and is therefore not listed separately in Table 5. Such a 
result makes sense because long sentences in early metrical texts often contain long 
adpositions, placed at the left and right periphery of sentences, whose syntactic con-
nection with the rest of the sentence is open to discussion.

We further hypothesize that some issues with long sentences are due to com-
plex paths leading from the roots to the leaves of the dependency trees (see Gulor-
dava & Merlo, 2015). We define a measure of complexity c for each sentence s. For 
each word wi ∈ s of length |s| , we determine the depth li of its incoming edge, i.e. 
the number of nodes between the word and the root node of the sentence (see e.g. 
Husain & Agrawal, 2012, p. 7); note that li = 1 for the root node itself for the sake of 
consistency. c is now defined as:

If all nodes are directly connected to the root, c evaluates to 0, whereas it approaches 
1 for increasing edge depths. We fit a linear model that predicts the sentence-wise 
LAS from the z-standardized values of c and the z-standardized sentence lengths, 
using complete interaction between the predictors. The estimates of the model coef-
ficients in Table 6 show that the main effects would have a comparable influence on 
the LAS when considered in isolation. The interaction of the main effects increases 
this negative effect on the LAS.

Branching is another feature that influences the attachment scores. Like other 
old IE languages (see Lehmann, 1974), Vedic shows a preference for left-branching 
constructions (i.e. the dependent is found to the left of its head). This tendency is 
confirmed when we perform a binomial test of the count data, which produces an 
estimate of 𝜋 = 0.609, p < 0.001 . When we split the counts of correctly and wrongly 
labelled assignments by the branching directions, left-branching constructions obtain 
a higher average attachment score and a �2 test of the resulting 2 × 2 table yields 
a highly significant test statistic of 𝜒2(1) = 686.1, p < 0.001, v = 0.093 . The distri-
bution of the branching directions is, however, biased by the UD convention that 
requires enumerations to be connected to their leftmost element using conj (see 
Rehbein et al., 2017) for a critical discussion of such entropy-increasing encoding 
schemes). In addition, we label the frequently interspersed mantras (see Sect. 4.4.7) 
with flat in right-to-left chaining annotation. Both conventions artificially increase 

(1)c = 1 −
�s�

∑

wi∈s
li
.

Table 6  Influence of the 
sentence complexity score 
(Eq. 1) on the sentence-wise 
LAS

Refer to Table 5 for the interpretation of the columns

Coefficient Estimate t p-value

Intercept 0.8247 297.82 < 0.001

Complexity −0.0158 −4.31 < 0.001

Length −0.0219 −5.72 < 0.001

Complexity:Length −0.0047 −2.14 0.032
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the number of right-branching constructions and may thereby decrease the parsing 
accuracy.

4.4.2  Non‑projective constructions and non‑configurationality

The oldest layer of VS features central traits of a non-configurational language in 
the sense defined by Hale (1983): it has a free word (or clause) order, discontinu-
ous NPs and null arguments (Ponti & Luraghi, 2018; Reinöhl, 2016; Keydana & 
Luraghi, 2012). The presence of such features is less well studied for the middle and 
late Vedic periods, but observations from other IE languages suggest that the degree 
of configurationality increases over time. As the resulting changes in the syntax of 
VS may affect the efficacy of a parsing algorithm, we perform the three tests for 
non-configurationality proposed by Keydana and Luraghi (2012) by collecting sta-
tistics about non-projective constructions, object–verb (OV) vs. verb–object (VO) 
order and the frequency of third person pronouns13 in the five diachronic layers of 
the VTB (see Simonenko et al., 2018 for a broader set of metalinguistic influence 
factors). We consider a subgraph of a dependency tree as non-projective if its yield 
does not form an interval (Kuhlmann & Nivre, 2006).

The results presented in Table 7 show a clear development of the three indicators 
from a non-configurational setting in early Vedic towards sentences with a stricter 

Table 7  Proportions of sentences with at least one non-projective (row 1), OV (vs. VO) constructions 
(row 2) and third person pronouns functioning as objects (row 3), grouped by the five historical layers of 
the VTB

All indicators show the diachronic development towards a more configurational setting of Vedic Sanskrit

Feature 1-RV 2-MA 3-PO 4-PL 5-SU

Non-projectivity 37.2 33.3 19.3 21.2 13.6
OV 64.1 71.8 97.1 95.2 93.7
Zero arguments 2.6 4.7 12.5 13.6 3.9

Table 8  Coefficient estimates 
of a linear model calculated 
to predict LAS based on the 
number of non-projective 
attachments ( R2

= 0.020)

Coefficient Estimate Standard error t p

Intercept 86.15 0.39 221.15 < 
0.001

Non-projective − 2.1 0.43 -5.03 < 
0.001

Length − 0.48 0.04 − 11.02 < 
0.001

Non-projective:Length 0.06 0.03 1.88 0.060

13 The use of third person pronouns (third test) is meant as a proxy for zero object constructions. 
According to Keydana and Luraghi (2012) the increasing use of such pronouns indicates that zero object 
constructions become dispreferred.
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word order (row 2 of Table  7) and less discontinuous constituents (row 1) in the 
later layers of the Vedic literature. Especially noteworthy are the high proportions of 
sentences with non-projective constructions in the early metrical texts which should 
be compared with e.g. 23% for modern Czech as reported by Kuhlmann and Nivre 
(2006). The third indicator rises until the late prose level, but drops unexpectedly in 
the Sūtra period. We hypothesize that this behavior is due to the brevity of the sūtra 
style which requires argument sharing. It must be underlined that these results need 
to be considered as preliminary because it is not clear to what degree they are corre-
lated to the genre differences between the older metrical and the younger prose texts 
(see Hock, 1997a, 2001).

In order to assess how discontinuous constructions affect the parsing accuracy, 
we fit a linear model that predicts the sentence-wise LAS given its z-standardized 
number of dependents with non-projective attachment while controlling for z-stand-
ardized sentence lengths. The coefficient estimates in Table 8 show that, when con-
sidered as an isolated main effect, the number of non-projective attachments exerts 
a larger negative effect on the LAS than the sentence length, while their interaction 
just captures the obvious fact that longer sentences have a higher chance of having 
multiple non-projective attachments. As non-projective constructions are not equally 
distributed over the Vedic corpus, we fit a second linear model that additionally con-
trols for the diachronic layer (details not reported here). Somehow surprisingly, the 
coefficients of the interaction terms suggest that the most severe problems with non-
projective constructions are found in the early Mantra literature and the late Sūtra 
texts whereas non-projectivity exerts almost no influence on the LAS in old prose 
(3-PO). Upon closer inspection it becomes, however, apparent that the unexpected 
correctness of non-planar attachments in the old prose is largely due to (long) inter-
secting edges in the fifteenth book of the Atharvaveda, a prose section that is char-
acterized by highly repetitive passages easily memorized by the parser. When we 
exclude these passages from the evaluation, the trend in the old prose conforms to 
the overall picture.

4.4.3  Syntactic constructions

Turning now to the question which syntactic constructions are especially error-
prone, we calculate precision, recall and F-score for all UD labels.14 The results in 
Table 9 (sorted by decreasing F-scores) show a high variability of the F-scores, the 
values of which are moderately correlated with the amount of training data avail-
able per label (results of Kendall’s correlation test: � = 0.393 , T = 303, p = 0.002). 
Among the highest scoring labels in Table  9, we find subordinating (mark) and 
coordinating conjunctions (cc) as well as the root label, whose high error contribu-
tion (see column 6 of Table 9) is mainly due to issues in identity statements (see 

14 A word is labeled correctly if its predicted label as well as its predicted head are the same as in the 
gold standard. Precision is calculated by dividing the number of correct predictions by the number of 
predicted labels of a given type. Recall is calculated by dividing the number of correct predictions by the 
count of this label in the gold standard.
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Sect.  4.4.4). Another label with a high error contribution is discourse. Vedic 
texts use more than two dozen particles, some of which are extremely frequent (see 
Delbrück, 1888 for the RV and Dunkel, 2014 for a recent survey). In many cases it 
is not easy to determine the function and scope of a given particle, with the general 
label discourse and the more specific ones advmod and cc being available. In 
addition, some particles tend to occur in chains, and there is no scholarly consensus 
about which combinations should be treated as fixed and which functions should be 
attributed to such multi-word entities. These uncertainties are also reflected by the 
comparatively high error contribution of advmod. The high error contribution of 

Table 9  Precision, recall and 
F-score for individual UD 
labels, sorted by decreasing 
F-scores

The column ‘Error contrib.’ records how much the given label con-
tributes to the overall error; values of more than 5% are printed bold

Label P R F Count Error contr.

root 91.3 91.3 91.3 12,745 6.3
mark 89.7 90.0 89.9 4059 2.3
flat 89.8 88.6 89.2 6140 4
nummod 87.4 87.4 87.4 682 0.5
vocative 85.2 87.0 86.1 438 0.3
obj 84.0 87.4 85.6 7122 5.1
advmod 84.3 84.4 84.3 6076 5.4
cc 83.7 84.4 84.1 1916 1.7
nsubj 82.8 83.2 83.0 8894 8.5
fixed 79.0 86.3 82.5 563 0.4
obl 81.4 81.4 81.4 6633 7.0
discourse 81.7 80.3 81.0 4795 5.4
det 78.6 78.7 78.7 2838 3.4
advcl 79.1 77.9 78.5 3303 4.2
amod 74.6 80.5 77.4 1837 2
aux 78.5 76.1 77.3 163 0.2
nmod 75.4 77.9 76.6 4667 5.9
iobj 76.3 76.5 76.4 1126 1.5
cop 76.0 71.7 73.8 769 1.2
case 71.8 72.4 72.1 731 1.2
ccomp 65.4 76.5 70.5 1649 2.2
compound 68.7 66.3 67.5 703 1.4
conj 68.0 66.2 67.1 5597 10.8
acl 66.5 65.1 65.8 3385 6.8
xcomp 65.8 60.6 63.1 1125 2.5
appos 68.4 56.4 61.8 165 0.4
csubj 67.5 53.5 59.7 256 0.7
orphan 64.6 52.3 57.8 2367 6.4
parataxis 65.3 49.3 56.2 649 1.9
dislocated 50.0 14.3 22.2 35 0.2



1194 O. Hellwig et al.

1 3

conj is due to problems with the right-to-left direction of coordinating structures 
(see also Husain and Agrawal, 2012, 9ff. and Sect. 4.4.1 of this paper). One exem-
plary case in which coordinating structures are not recognized are multiple verbal 
arguments of the same type. While we label such constructions in bouquet anno-
tation, the parser tends to connect each element directly to the verb, though often 
using the correct label. Similar effects have, for instance, been reported for papyro-
logical Ancient Greek (Keersmaekers, 2019, Sect. 4.4).

Table 10 gives a more detailed overview of some problematic constructions. 
The left half of this table records the top five entries of a confusion matrix con-
structed from those instances in which the arc assignment was correct, but the 
labelling failed. Leaving aside the confusion of orphan and ccomp, which is 
mainly due to inconsistencies in the annotation of citations (see Sect.  4.4.7), a 
substantial number of errors is caused by obliques being labelled as objects and 
vice versa. This is largely due the fact that words in accusative case, though pri-
marily functioning as direct objects, can also denote oblique arguments, prefer-
ably the goal of a motion and the duration of an action. There exists a certain 
amount of disagreement among the annotators about how individual instances 
need to be labelled, because the size of the Vedic corpus often does not allow to 
perform passivization tests. A lexicon of verbal arguments would be helpful in 
these cases, but is currently not available for VS as the discussion in Sanka (2015) 
concentrates on the classical language. The confusion of nmod and obj which 
contributes to the low score of the label obj (see Table 9) mainly occurs in com-
pounds the final members of which have a verbal notion (also see Sect.  4.4.6). 
One of the most prominent cases are compounds ending in the deverbal noun 
kāma- ‘desire, wish’. We observed clear preferences of individual annotators for 
labelling the dependents of kāma- either as nmod or as obj, without any other 
special clue that could explain these divergent decisions. We are currently in the 
process of harmonizing these and related instances. The last entry in the left half 
of Table 10 also relates to compounds. The DCS is not fully consistent in its treat-
ment of compounds. While many of them are split into their constituents, others, 
especially those with irregular internal sandhi or with a non-compositional mean-
ing, are given without further internal analysis. While the DCS provides the POS 
tag ADJ for unanalyzed exocentric compounds, which would result in the obvious 
annotation amod, many annotators choose the syntactic label acl in such cases.

Table 10  Top five errors from a 
label confusion matrix

Left: Arcs correct, labels wrong. Right: Arcs and labels wrong

Head correct Head wrong

Gold Silver Frequency Gold Silver Frequency

orphan ccomp 270 nsubj root 405
obl obj 256 root nsubj 345
obj obl 184 acl conj 126
obj nmod 105 conj acl 124
acl amod 93 conj nsubj 120



1195

1 3

Data-driven dependency parsing of Vedic Sanskrit  

The right half of Table 10 contains the most frequent errors in constructions in 
which neither the arc nor the label were predicted correctly. Here, the dominating 
phenomenon is the root assignment in nominal sentences which is responsible 
for the top two entries (also see Sect. 4.4.4). Issues with acl and conj typically 
occur when two words with the same morpho-syntactic information are labelled 
as coordinated although one is actually an adnominal modifier of the other (and 
vice versa). The final entry (conj, nsubj) is another instance of the problem of 
argument assignment (see p. 21). Here, the parser attaches multiple coordinated 
subjects individually to their governing verbal head.

4.4.4  Nominal sentences without a copula

Vedic texts abound in (elliptic) nominal sentences which are hard to understand 
even for a human reader. We hypothesize that such constructions are also consider-
ably harder to parse, as already mentioned in Sect. 4.4.3. Figure 1 gives a Hinton 
diagram of the sentence-level LAS, grouped by the lengths of the sentences (x-axis) 
and the number of verbal forms, both finite and infinite, found in each sentence 
(y-axis). While the accuracy generally decreases with increasing sentence lengths 
(see Sect. 4.4.1), Fig. 1 also shows that the presence of verbal forms has a strong 
influence on the accuracy, because the lowest accuracy scores are quite consistently 
observed for sentences lacking any verbal form (see the bottom-most row in Fig. 1), 

Fig. 1  Hinton diagram of the sentence-level LAS conditioned on the number of verbal forms (y-axis) and 
the length class of the sentence (x-axis). The smallest entry corresponds to 79.6% and the largest one to 
96%. The marginal histograms summarize the distributions on the two axes
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a type of sentences which is comparatively frequent throughout the Vedic literature 
(see the right marginal histogram in Fig. 1). Especially problematic are short nomi-
nal sentences, which are typically identity statements and in which root assignment 
is the main problem. Consider the two word sentence Aitareyabrāhmaṇa 1.1.14.5: 
saṃvatsaraḥ prajāpatiḥ which consists of the two nominatives saṃvatsaraḥ ‘the 
year’ and prajāpatiḥ ‘the (god) Prajāpati’. Contentwise, it is not immediately clear 
which of the two words has to be considered the subject, and which the predicate, 
neither is the grammar of decisive help here, as Vedic has no rigid word order (see 
the discussion in Hock, 2013, Sect. 4.1.2). As a consequence, the annotator has to 
make a decision based on context and pragmatics, mainly taking into consideration 
which of the two elements is the rheme (or topic) and which is the theme (or com-
ment) of the utterance: the former then becomes the subject, the latter, the predicate 
(see Gren-Eklund, 1978; also see Viti, 2010 for a critical reappraisal of the theme-
rheme approach of the Prague school, with a special focus on early Vedic).

4.4.5  Word frequencies and out‑of‑vocabulary terms

It has been observed in previous research that the frequencies of words have a sub-
stantial influence on individual tagging decisions (see e.g. Tsarfaty et  al., 2013; 
Kolachina et  al., 2017). In order to study such effects for our data, we perform a 
log-linear regression with the word-wise LAS as the predicted variable and the log-
frequency of words in the training set of each fold as the predictor. This regression 
yields a highly significant result (intercept: 69.43, t = 125.28 , p 0.001; slope: 3.69, 
t = 10.26 , p 0.001), and its coefficients show that the LAS increases by about 3.7% 
for each step of one in the log space. The same positive log-linear trend can also be 
observed for most POS types (details not reported here), the only exception seem-
ingly being the tag VERB that displays a decreasing trend in the log-linear space. 
Closer inspection of the relevant cases shows that the decrease of LAS in the high 
frequency spectrum is mainly due to the two frequent verbs as ‘be, exist’ and bhā 
‘become, be, exist’ both of which can function as main verbs (‘exist’, ‘become’), 
copula and occasionally also as auxiliaries.

As could be expected, words with errors in the OOV class almost exclusively 
belong to the three open word classes of nouns, adjectives and verbs (see Table 11). 
When we compare the error rates of OOVs with the non-OOV error rates for the 
respective POS tag using binomial tests (alternative hypothesis: the LAS for OOV 
words LAS0 is less than the score LAS1+ for non-OOV), OOV nouns and adjec-
tives obtain a significantly lower score than these tags do in general, while this effect 

Table 11  LAS of words in the 
OOV frequency class ( LAS0 ), 
grouped by their POS tags

LAS1+ is the LAS of all words that occur at least once in the training 
set

POS LAS0 LAS1+ Frequency p

NOUN 62.6 75.8 1702 < 0.001

ADJ 51.9 67.6 966 < 0.001

VERB 84.3 85.2 896 0.229
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is much less pronounced for verbs. We hypothesize that OOV verbs are less error 
prone than the other two classes because verbs have a more restricted choice of syn-
tactic functions than, for instance, nouns. In addition, their derivational morphology 
is often more transparent than that of nouns which gives the character encoder the 
chance to transfer semantic information from the base word to the derivative. The 
low labelled scores of adjectives are due to issues with how the DCS encodes lexi-
cographic information (see the discussion of compounds used as adjectives on p. 21) 
and the unclear linguistic status of adjectives in Vedic.

The frequency range in which the LAS conforms least to the log-linear trend 
comprises words with frequencies between 100 and 1000 in the training set. A 
detailed inspection of these words shows no single source for the widely diverging 
attachment scores. Some of the lowest scoring words in this frequency range are 
multifunctional particles (see p. 20 of this paper) and quantifiers (e.g. viśva- ‘all’ 
which can form part of a high-frequency theonym). At the upper end of the LAS 
spectrum, we mainly encounter verbs with specialized meanings and well defined 
case frames (e.g. ālabh ‘touch [a sacrificial animal in order to kill it]’, ah ‘say’) 
whose LAS often comes close to 100%. Apart from the two verbs as and bhā (see 
above), the three deictic pronouns etad, idam and especially tad are responsible for 
most errors in the highest frequency class. These errors are due to the multiple func-
tions these pronouns can perform in Vedic.15 Apart from their regular use as deter-
miners, (a) they occur as subjects in identity statements (see Sect.  4.4.4), (b) the 
accusative singular neuter forms of etad- and tad- often express an adverbial notion 
of manner, place or time, and (c) sa, apparently the nominative singular masculine 
of tad-, is sometimes used as a discourse particle, the so-called sa-figé (see Hock, 
1997b).

Mere word frequencies provide only a coarse explanation of what is going wrong 
in parsing, as is evidenced by the low R2 score of 0.01524 of the linear model. We 
hypothesize that co-occurrences in the training set better predict the parsing accu-
racy. We therefore compile a lexical co-occurrence matrix � for each fold f of the 
training set. Cell a, b of the upper triangular matrix � is set to 1 if the words a, b 
co-occur in any sentence of the training part of f. For each sentence in the test part 
of f, we count the number u of word pairs that have a positive entry in � . As a sen-
tence of length n can maximally have 

(

n

2

)

 positive entries in � , the evaluation metrics 
r = u∕

(

n

2

)

 is limited to [0, 1], with 0 meaning no hits in � and 1 that all word pairs 
of a sentence also co-occur in sentences of the training part. We fit another linear 
model with sentence-wise LAS as the predicted variable and r as the predictor, and 
obtain a fitted model with a slope of 0.19 (t = 29.6, p 0.001) and an intercept of 0.73 
(t = 194.9, p 0.001). If this model would perfectly fit the data (which it does not, 
R2 = 0.06303 ), a sentence all word pairs of which co-occur in the training set would 
therefore have 19% more LAS than one without any pairs in the training set.

15 For the related problem of case syncretism in dependency parsing see Seeker and Kuhn (2013) and 
Seeker (2016).
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4.4.6  Compounds

The oldest metrical texts of the Vedic canon use nominal compounding quite spar-
ingly, mostly in the form of two-word compounds with deverbal heads such as 
vāja-sṛt ‘running to the prize (of a contest)’ (on which see e.g. Wackernagel, 1905, 
174ff.). Subsequent historical layers of VS see an increasing use of longer com-
pounds, which can express, among others, coordination or subordination and serve 
as complex ‘adjectival’ modifiers of other nouns (for an overview see Lowe, 2015). 
Because the non-terminal members of compounds usually do not show inflectional 
endings, determining the compositional structure must largely rely on the seman-
tics and the order of the compounded words which makes this task different from 
determining the syntactic structure of a ‘regular’ sentence. The example in Fig. 2 
which is taken from a late Vedic manual of the solemn ritual illustrates some of 
these issues. The basic structure of the compound is a coordination of the two nouns 
prabhṛti- ‘start, begin’ and anta- ‘end’ that are modified by the nouns āhuti- ‘pour-
ing’ and iḍā-, a technical term for food consumed during the sacrifice. The deverbal 
noun āhuti- is further modified by another noun that denotes the substance being 
poured out (havis-) and that we connect with the label obj due to the deverbal deri-
vation of its syntactic head. Determining the structure of this compound thus merely 
relies on the derivation and semantics of the compounded words and on knowledge 
about the ritualistic context.

The difference between compounds and regular text is reflected in the values 
reported in Table  12a which contrasts LAS and UAS of (non-)terminal members 
of compounds with those of words in regular text. The surprisingly high UAS of 
non-terminal members can easily be explained by the fact that the majority of 

Fig. 2  Example for compounding at Āpastamba-Śrautasātra 7.23.2: ‘[A ritual discussed in the preceding 
text] terminates [with a series of ritual actions] that start with pouring an oblation and end with [eating] 
the iḍā.’ Words in square brackets need to be supplemented in thought

Table 12  Evaluation of compound annotation

Type UAS LAS Len. Total UAS Type Total UAS
(a) UAS and LAS in compounds 
(non-terminal and term. members) 
and in regular text

(b) UAS of inner members, 
split by compound len(gths)

(c) UAS of compounds of 
length 3, split by their internal 
branching types

Non-term. 91.9 72.7 2 1150 94.3 [w1 w2]w3 41 92.7
Term. 71.5 62.1 3 100 89.0 w1 [w2 w3] 8 25.0
Reg. 84.4 78.6 > 3 151 52.3
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Vedic compounds consists of only two words, which makes structure detection a 
trivial task. This idea finds support in Table 12b, where the UAS for non-terminal 
members is further split by the lengths of the compounds and which shows that the 
UAS drops rapidly for longer compounds.16 This effect can already be observed in 
compounds of length 3. The three words w1,w2,w3 can be bracketed in two ways, 
namely [w1 w2]w3 (left–right chaining) and w1 [w2 w3] ( w1 and w2 are dependents of 
the terminal member). Table 12c shows that [w1 w2]w3 is both more frequent and 
less error-prone, whereas w1 [w2 w3] seems to be challenging to analyze. This pattern 
comprises expressions such as bahu-[parṇa-śākham] ‘many-[leaf-branch]’, i.e. ‘(a 
plant) that has many leaves and branches’ where the decision for the correct bracket-
ing again relies on semantic information about the two coordinated words. This kind 
of information could only be obtained from much larger corpora than we currently 
have for (Vedic) Sanskrit. Another relevant point is the LAS of the terminal mem-
bers (see row 3 of Table 12a). When we compare the label-wise LAS of compound 
terminals with that of words in regular text using a Fisher test of the respective count 
data, we find that the LAS of the labels acl, nsubj, nmod and xcomp (ordered by 
their p-values) are lower than those for regular words at a significance level of 10%. 
Though not significant in a strict sense, this finding nevertheless points to the syn-
tactic flexibility of compounds, which can function as adnonimals (resulting in acl) 
or as nouns (nsubj, xcomp, nmod).

4.4.7  Mantra citations and ellipsis

A peculiarity of many middle and late Vedic texts is the ubiquitous use of mantras, 
i.e. short citations from early metrical texts such as the Rigveda, that accompany 
the individual steps of a sacrifice. The correct treatment of mantras is highly rel-
evant when parsing Vedic because 7.9% of all words in the current version of the 
VTB belong to such citations. Mantras complicate the syntactic analysis for two rea-
sons. First, only the first few words of a mantra are cited in many cases, because the 
authors of the ritual manuals assumed that the participants of a ritual know the rel-
evant mantra collections by heart. This practice results in truncated, elliptic expres-
sions which are difficult to annotate in a dependency framework. Second, most cited 
mantras were probably composed centuries before the texts citing them. Annotat-
ing them as direct speech would mix different historical levels of Vedic and there-
fore reduce the usefulness of the annotated data for diachronic linguistic studies. We 
therefore decided to annotate all cited mantras with the dependency label flat in 
chaining annotation.

Deciding whether an utterance is a mantra or regular direct speech requires extra-
sentential information that a parsing algorithm does not have access to. Since, how-
ever, the occurrences of mantras in the major Vedic texts have been collected sys-
tematically in Bloomfield’s Vedic Concordance (Bloomfield, 1906) and a digital 
version of this resource is available (Franceschini & Bloomfield, 2007), it is possible 

16 Note that the occasional mislabeling of two-word compounds is due to issues in the data preparation 
routine and especially the limited coverage of Bloomfield (1906); see Sect. 4.4.7.
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to detect mantra citations automatically before parsing a piece of text. We set the 
lexical and morpho-syntactic information of words in mantras to uninformative 
dummy values (e.g. replacing the gold POS tag by the dummy value MANTRA) 
thereby helping the labeler to annotate mantra sequences with the desired label flat.

One fundamental problem of this pre-processing step is that some late Vedic 
texts were not edited at the time when Bloomfield compiled his concordance so that 
mantras in such texts are not flagged with the typical dummy values. Consequently, 
the parsing algorithm tries to label them as direct speech, leading to a substantial 
divergence from the gold standard where they are labelled as flat. This problem is 
reflected in the LAS of 79% for mantras not recorded by Bloomfield that is clearly 
below that of 88% for recorded ones. Errors in the last category are mainly due to 
wrong decisions about how a mantra is connected with the rest of a sentence. While 
mantras should be connected to some kind of speech verb using ccomp, these verbs 
are often omitted, resulting in arcs labelled with orphan which can be problematic 
for the parser.

Elliptic constructions are not restricted to mantra citations, but are widely used 
as a rhetoric device and as a means for reducing the length of a text, a trend that 
finds an early culmination in the famous Sanskrit grammar called Aṣṭādhyāyī. This 
trend is also reflected in the proportions of words labelled as orphan in the VTB 
which rises from about 2% in its early layers to 4.5% in the late manuals of the rit-
ual. As can be expected, ellipsis significantly deteriorates the accuracy of the parser. 
When we compare the LAS of sentences with at least one orphan to those without 
orphans using a t-test, we obtain a highly significant test statistics of t = −10.484 
(DF = 1720.7, p < 0.001 ). Similar effects can be observed when we additionally 
control for the sentence length using an ANCOVA with interaction between the two 
predictors.17

4.4.8  Diachronic layers

Problems with the cross-domain application of parsers are well known, see e.g. 
Krishna et al. (2020) for CS, Sorokin et al. (2020) for Russian and Mambrini and 
Passarotti (2012) for Ancient Greek. The fivefold diachronic structure that we 

Table 13  Results of the layer-
wise cross-validation

See Sect. 3.1 for the abbreviations in column 1

Layer UAS LAS Words

2-MA 69.2 59 11,947
3-PO 82.9 75.9 19,782
4-PL 77.8 69.4 34,602
5-SU 72.3 62 24,636

17 Coefficients: orphans: F(1) = 58.4, p < 0.001 ; sentence lengths: F(1) = 200.8, p < 0.001 ; interaction: 
F(1) = 32.1, p < 0.001.
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impose on our data (see Sect. 3.1) makes it possible to control for time and genres 
at the same time because this structure was partly deduced from stylistic criteria. 
For the cross-domain experiments, we use all texts of one layer as the test set and 
train the parser with the remaining texts. The results in Table 13 show that the only 
layer that achieves scores comparable to those of the full model (see Sect. 4.3) is the 
old prose (3-PO). As these texts often consist of short sentences with a clear left-
branching structure, this outcome is not really surprising, and analogous considera-
tions apply to the level of late prose. The Sūtra literature (5-SU) and especially the 
early metrical texts (2-MA), on the other hand, fall far below the scores of the full 
model. While there exist continuities between the two prose layers and the Sūtra lit-
erature on the levels of content, vocabulary and style, the early metrical texts belong 
to a completely different domain: They feature hymns that address gods and try to 
cope with the difficulties of life; sentences show a high degree of non-configura-
tional constructions (see Sect. 4.4.2 and esp. Table 7); and their vocabulary contains 
many rare, semantically unclear words that are not found in any later text. Given the 
complex interplay of linguistic factors and the limited size of the Vedic corpus, we 
are sceptical whether domain-invariant architectures as proposed, for instance, by 
Ganin and Lempitsky (2015) could provide any substantial advantages.

5  Summary

This paper has presented the first data-driven parser of Vedic Sanskrit and, more 
generally, an in-depth evaluation of a modern graph-based parser on an ancient lan-
guage with limited resources. Apart from making available a substantially extended 
version of the VTB, which we are planning to integrate in the next UD release, our 
paper has made two important contributions. First, contextualized embeddings seem 
not to be able to show their full potential when only a limited corpus is available. 
Instead, a combination of static embeddings and manually validated morpho-syn-
tactic information achieves clearly better attachment scores. While such a setting 
may not appear feasible for many modern languages, where large manually anno-
tated resources are not available, one should keep in mind that corpora of ancient 
languages often originate in philological research environments where linguistic 
gold data are indispensable for scholarly research. The results of our paper may thus 
show a viable approach for training good parsing models under limited resources.

Second, the error evaluation in Sect. 4.4 often aligns with results reported in pre-
vious research. While many factors influence the parsing accuracy, often to a highly 
significant degree, it is complicated—or even impossible—to single out the main 
responsible(s). We are nevertheless convinced that the details provided in this sec-
tion (e.g. the lexical co-occurrence measure in Sect. 4.4.5) can be useful for design-
ing an error labeler that distinguishes between correct and wrong parses, similar in 
vein to the model discussed by Bollmann amb Søgaard (2021). Such a labeler can 
be used for data augmentation (see e.g. McClosky et al., 2006), but also as part of a 
data processing pipeline that generates reliable input for higher level linguistic stud-
ies in VS.
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