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Abstract
Motivation: Microbial sequencing data from clinical samples is often contaminated with human sequences, which have to be removed prior to 
sharing. Existing methods for human read removal, however, are applicable only after the target dataset has been retrieved in its entirety, put-
ting the recipient at least temporarily in control of a potentially identifiable genetic dataset with potential implications under regulatory frame-
works such as the GDPR. In some instances, the ability to carry out stream-based host depletion as part of the data transfer process may 
be preferable.
Results: We present SWGTS, a client–server application for the transfer and stream-based host depletion of sequencing reads. SWGTS enfor-
ces a robust upper bound on the maximum amount of human genetic data from any one client held in memory at any point in time by storing all 
incoming sequencing data in a limited-size, client-specific intermediate processing buffer, and by throttling the rate of incoming data if it 
exceeds the speed of host depletion carried out on the SWGTS server in the background. SWGTS exposes a HTTP–REST interface, is imple-
mented using docker-compose, Redis and traefik, and requires less than 8 Gb of RAM for deployment. We demonstrate high filtering accuracy 
of SWGTS; incoming data transfer rates of up to 1.65 megabases per second in a conservative configuration; and mitigation of re-identification 
risks by the ability to limit the number of SNPs present on a popular population-scale genotyping array covered by reads in the SWGTS buffer to 
a low user-defined number, such as 10 or 100.
Availability and implementation: SWGTS is available on GitHub: https://github.com/AlBi-HHU/swgts (https://doi.org/10.5281/zenodo. 
10891052). The repository also contains a jupyter notebook that can be used to reproduce all the benchmarks used in this article. All datasets 
used for benchmarking are publicly available.

1 Introduction
The sharing of raw sequencing reads within the scientific 
community, e.g. publicly via SRA or ENA or across institu-
tions as part of a multi-center study, is an important best 
practice in microbial genomics and microbiome research. 
Sharing of raw sequencing reads typically involves the identi-
fication and removal of “contaminant” human reads (“host 
depletion”); these are produced as a by-product of many se-
quencing workflows (Bush et al. 2020) and carry the risk of 
individual re-identification (Tomofuji et al. 2023). Of note, 
even small amounts of human genetic data are sufficient to 
raise privacy and identifiability concerns, as <100 SNPs may 
be sufficient for subject re-identification (Lin et al. 2004, 
Pakstis et al. 2010). Multiple effective host depletion methods 
have been developed, including Hostile (Constantinides et al. 
2023), dehumanizer (https://github.com/SamStudio8/dehu 
manizer) or ReadItAndKeep (Hunt et al. 2022); in addition, 
general mapping or classification tools like minimap2 (Li 
2018) or Kraken 2 (Wood et al. 2019) can also be used. 
Existing methods, however, only support the “bulk 
depletion” use case, i.e. removal of human data from a lo-
cally stored sequencing data file.

Here, we present the Secure Whole-Genome Transfer System 
(SWGTS), the first approach for the depletion of host reads in 
an incoming stream of sequencing data; by relying on a defined- 
size buffer for the temporary storage of incoming and as-of-yet 
uncontaminated sequencing data. SWGTS enforces a robust up-
per bound on the amount of human read data stored at any 
point during the transfer process. To motivate the use case for 
SWGTS, consider the case of a sequencing data exchange be-
tween Bob and Alice, with data flowing from Bob to Alice. 
Alice wants to ensure that the data received from Bob does not 
contain an identifiable amount of human genetic sequencing 
data at any point in time. For example, Alice may operate a 
public sequencing data archive; provide a cloud-based bioinfor-
matics data analysis service; function as the centralized sequenc-
ing data collection node for a multi-center pathogen genome 
sequencing study; or want to avoid re-identifiability and legal 
risks associated with human genetic data potentially arising un-
der the GDPR (Shabani and Marelli 2019). Alice could ask Bob 
to carry out human decontamination prior to transmitting any 
data, but whether and how Bob actually implements decontami-
nation is out of Alice’s control. Alice may therefore implement 
her own decontamination process, but existing “bulk” 
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approaches only become applicable after receipt of the complete 
dataset. If Bob’s data are sufficiently contaminated, Alice will 
thus—at least for the period of time until her own decontamina-
tion process is successfully executed, which may vary depending 
on available system resources or be affected by unforeseen tech-
nical failures—be in control of identifiable human genetic data. 
Using SWGTS, however, Alice can set the size of the buffer for 
incoming sequencing data to appropriately minimize re- 
identification risks even if the un-decontaminated data held in 
memory was exclusively human; using SWGTS, Alice thus 
ensures that she is never in control of a personally identifiable 
human genetic sequencing dataset.

SWGTS implements a minimap2-based approach for the 
identification of human reads and carries out depletion by re-
moval of sequences that align against the human genome 
(“Host Subtraction”); by exclusive retention of sequences 
that align against a target pathogen genome (“Simple 
Pathogen Retention”); or by exclusive retention of sequences 
that align to a target pathogen genome where the reference 
being aligned to also includes the human genome (“Host- 
Competitive Pathogen Retention”).

2 Materials and methods
2.1 Implementation
SWGTS is based on a client–server architecture, implemented 
using docker-compose. The SWGTS client splits a locally stored 
sequencing read dataset into equally-sized packets of a defined 
size (“chunks”) and sequentially transmits these to the SWGTS 
server. For each ongoing upload, the SWGTS server maintains 
an in-memory “buffer” of a configured maximum size of reads 
that have not yet undergone host depletion; an incoming chunk 
of reads is accepted if and only if the contained reads can be 
added to the buffer without the buffer exceeding its specified 
maximum size, and otherwise the chunk is rejected. Host deple-
tion is implemented as a continuously running background pro-
cess on the server, based on mapping the chunks sent by the 
client with the in-memory “mappy” version of minimap2 
against the human reference genome (“Host Subtraction”); the 
target pathogen genome (“Simple Pathogen Retention”); or 
against the human reference genome plus the target pathogen 
genome (“Host-Competitive Pathogen Retention”). Filtering 
criteria in different modes are summarized in Supplementary 
Table S2. Once a chunk has been sent to mappy, it is removed 
from the buffer; filtered reads are always deleted; non-filtered 
reads can be stored on the SWGTS server and the IDs of these 
reads can also be transmitted back to the sending client. The 
communication between client and server is implemented using 
a traefik (https://traefik.io/)-based HTTP/REST interface; redis 
(https://redis.io/) is used for in-memory storage on the SWGTS 
server. SWGTS comes with a Python-based CLI client and with 
a React-based browser demo client application. The most im-
portant configurable parameters include the maximum size of 
the buffer on the server side and the number of threads used for 
host depletion. A full specification of all parameters and of the 
REST API is given in the SWGTS repository.

Evaluation
Four “contaminated” pathogen datasets were created represent-
ing the possible combinations of SARS-CoV-2 and multi- 
resistant Staphylococcus aureus (MRSA) as well as of Illumina 
(1000 000 reads per dataset) and Oxford Nanopore 
Technologies (ONT; 250 000 reads per dataset). For each 

dataset, 99% pathogen reads sampled from three different path-
ogen isolates (Walker et al. 2022) were mixed with 1% human 
reads sampled from three 1000 Genomes Project (1000 
Genomes Project Consortium et al. 2015) samples; see 
Supplementary Note S2 for datasets and accessions. Hostile was 
used with its human-t2t-hla reference which was also utilized 
for SWGTS in “Host-Competitive Pathogen Retention” and 
“Host Subtraction” mode. For SARS-CoV-2 we used the 
MN90 
8947.3 reference without the poly-A tail provided by 
ReadItAndKeep and for MRSA the assembly GCF_000 
013425.1 of Staphylococcus aureus subsp. NCTC 8325. For 
measuring data transfer rates, two systems were used. System A 
is a server system with an AMD EPYC 7742 64-Core Processor 
with 128 Threads and 1 TiB RAM. System B is a VM config-
ured with 10 virtual cores using an Intel® Xeon® CPU E5- 
2618L v4 @ 2.20 GHz with 20 GB RAM and 1�GbE uplink.

Relationship between SWGTS buffer size and 
re-identifiability
The number of SNP positions present on a common 
population-scale SNP genotyping array (Illumina Infinium 
Omni2.5–8) covered by reads in the SWGTS buffer under 
worst-case assumptions (only human data submitted) was 
pragmatically treated as a proxy for re-identifiability risk (see 
Supplementary Note S1). To empirically characterize the rela-
tionship between the number of such SNPs and buffer size, 
we randomly selected reads from three 1000 Genomes 
Project samples (Supplementary Note S2) until the cumula-
tive length of the selected reads was equal to the selected 
buffer size, trimming the last selected read if necessary. The 
collected reads were mapped to the human reference genome 
(GRCh38), counting the number of Infinium SNP positions 
covered by primary alignments (Supplementary Table S1,  
Fig. 1B, left panel). To complement experimental results and 
assist the determination of an appropriate buffer size without 
having to carry out extensive simulations, we developed sta-
tistical models for the expected number of such SNPs 
(Supplementary Note S1).

3 Results
First, we confirmed the accuracy of SWGTS with respect to dis-
criminating between human and pathogen reads. At a buffer 
size large enough to process all reads and depending on the de-
pletion mode, SWGTS retained between 96.5% and 100.0% of 
target pathogen reads and removed between 96.0% and 100% 
of human reads on the four “contaminated” datasets 
(Supplementary Fig. S1, Supplementary Table S1), consistent 
with the host depletion accuracy of minimap2 reported in the 
literature (Bush et al. 2020, Hunt et al. 2022) and very similar 
to the host retention and pathogen removal reads of Hostile 
(v.0.4.0, matching the “Host Subtraction” mode of SWGTS; 
the slight difference results from SWGTS requiring a mapping 
quality of at least 20 using default settings, this can be config-
ured) and ReadItAndKeep (v.0.3.0, matching the “Regular 
Retention” mode of SWGTS). A decrease in buffer size resulted 
in a decrease of retained pathogen reads (and a slight increase in 
filtered human reads) since all reads exceeding the buffer size 
are immediately rejected; from a buffer size of ≥10 000 bases, 
both rates were within 3% of rates observed for the largest 
buffer size (Supplementary Fig. S1).
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Figure 1. (A) Overview of SWGTS. SWGTS is a client–server application for the transfer and stream-based depletion of sequencing data from human 
reads. An upload to the SWGTS server is initiated by a context creation request; on the SWGTS server, each context corresponds to a unique buffer of 
unprocessed sequencing data of a defined maximum size (buffer size). After creation of the context, the client sequentially transmits equally-sized 
packets of sequencing data (chunk size) to the server, including the ID of the context just created; the server accepts chunks and adds the reads 
contained therein to the buffer corresponding to the specified context ID, for as long as doing so would not lead to the buffer exceeding its specified 
maximum size; otherwise, a “buffer full, retry in × seconds” notification is sent to the client. Single reads that are larger than the buffer are sent but 
immediately rejected and treated as filtered. A (multi-threaded) background process on the server continuously pulls reads from the buffer and carries out 
host depletion by aligning the received reads against a combined reference of the human genome and the target pathogen (in “Host-Competitive 
Pathogen Retention” mode). Reads that map to the pathogen are saved to disk; reads mapping to either the human reference or not at all are discarded. 
When a context is closed, the server sends a summary containing the IDs of the reads that were not discarded to the client. (B) Impact of the “buffer 
size” parameter on potential re-identifiability and performance. (Left panel) Relationship between buffer size and the number of Illumina Infinium 
Omni2.5-8 Kit Panel SNPs, which is pragmatically treated as a proxy for re-identifiability, covered by reads in the SWGTS buffer under worst-case 
assumptions (only human reads submitted); shown are empirical distributions based on real Illumina and ONT reads from three human samples (see 
Section 2; 10 replicates), as well as the expected value of the number of such SNPs under an approximate statistical model (“Binomial Model Expected 
Value”, see Supplementary Note S1). (Right panel) Relationship between buffer size and mean transfer rate for sequencing datasets between two 
systems, averaged over the four “contaminated” datasets representing SARS-CoV-2 and MRSA as well as Illumina and ONT (see Section 2) and in “host 
subtraction” mode.
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Second, we investigated how different buffer and transfer 
chunk sizes influence the performance of SWGTS by measur-
ing how these variables affected transfer rates from System A 
to System B for the four “contaminated” datasets in “host 
subtraction” mode (Fig. 1B, Supplementary Fig. S2, 
Supplementary Table S1). Optimal performance across 
pathogens and sequencing data types was achieved (a) when 
chunk size was a fraction of buffer size, enabling parallel 
processing of chunks on the server side and, based on more 
frequently updated mapping rate estimates than for larger 
chunk sizes, a more accurate calibration of the “retry-after” 
messages sent to the client in case the buffer was full; (b) 
when the buffer was sufficiently large so that few retries were 
necessary; and (c) for chunk sizes ≥5000 bp and <50 000 bp.

Third, we characterized the relationship between the buffer 
size parameter and the number of Illumina Infinium Omni2.5– 
8 SNPs covered by reads in the SWGTS buffer under the worst- 
case assumption of only human data being submitted by the cli-
ent; the number of such SNPs was pragmatically treated as a 
proxy for re-identifiability risk. Simulations (see Section 2) and 
statistical modeling (Supplementary Note S1) showed that the 
number of covered SNPs remained at ≤10 for a buffer size of 
10 000 and ≤100 for a buffer size of 100 000 in almost all cases 
(Fig. 1B, Supplementary Table S1); furthermore, experimental 
results were highly consistent with the developed statistical 
model (Fig. 1B, Supplementary Note S1).

Finally, we evaluated which absolute data transfer speeds 
may be expected when using SWGTS, deploying an SWGTS 
server on System B (limited to 10 cores; two containers used 
for handling API requests; seven worker threads) and be-
tween 1 and 30 SWGTS clients on System A sending data si-
multaneously. Using a buffer size of 10 000 bases and 
transmitting the simulated SARS-CoV-2-containing Illumina 
read datasets, we observed data transfer rates (incoming data 
processed by System B) of up to approximately 0.4 mega-
bases/s; using a buffer size of 100 000 bases and transmitting 
the simulated MRSA-containing Nanopore read datasets, we 
observed data transfer rates of up to approximately 1.8 meg-
abases/s (see Supplementary Table S1 for full results). We 
note that the performance of SWGTS depends on multiple 
factors including network speed, the number of concurrent 
uploads, and the properties of the submitted data. Since the 
bulk of the required RAM is made up of the reference index, 
held in shared memory, and as each connection only adds a 
small fixed amount of memory, memory usage is generally 
consistent across buffer and chunk sizes and the number of 
incoming data streams and SWGTS can be deployed using 
relatively small amounts of RAM (<8 GB).

4 Discussion
We have presented SWGTS, the first approach for the trans-
fer and stream-based human depletion of sequencing data. By 
combining a configurable-size buffer with a background host 
depletion process, SWGTS can enforce a robust upper bound 
on the maximum amount of human genetic data from any 
one client held in memory at any point in time.

Using conservative experiments, we have demonstrated 
that SWGTS can reliably keep the number of SNP positions 
present on a popular population-scale SNP genotyping array, 
which we have treated pragmatically as a proxy for 
re-identifiability risk, covered by reads in the SWGTS buffer 
below 100 or even 10. While the question of genetic 

identifiability is subtle, the risk of re-identification from so few 
(arbitrarily selected) SNPs has to be classified as low; in partic-
ular, to the best of our knowledge, no approaches have been 
presented that would allow for individual re-identification 
from 10 SNPs. Furthermore, we have shown consistency be-
tween the empirical results and a simple statistical model 
(Supplementary Note S1), which users may consult to identify 
a suitable application-dependent buffer size setting.

Using SWGTS can lead to significantly reduced data trans-
fer rates; improving these, e.g. based on k-mer-based read 
prescreening, is therefore an important goal for future work. 
Additional potential improvements to SWGTS include the in-
corporation of a specialized short-read mapper; the improved 
handling of reads that exceed the buffer size, e.g. by splitting, 
chunk-wise processing and reconciliation; decoupling of 
transmission chunk size and mapping chunk size; and sup-
port for authentication and metadata handling mechanisms. 
These limitations notwithstanding, however, potential users 
of SWGTS may find that the benefits of a privacy-ensuring 
data transfer mechanism—such as only having to demon-
strate conformity with data protection rules for demonstrably 
non-identifiable sequencing data—may outweigh the costs of 
a decreased data transfer rate.
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