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"The world cannot live without the Arctic; it
affects every living thing on Earth and acts as a

virtual thermostat, reflecting sunlight and
cooling the planet. "

Philippe Cousteau, Jr.





Abstract

The Arctic Ocean is undergoing rapid and significant changes due to atmospheric and oceanic
warming. The reduction in sea ice cover has raised questions about the ecological impact on
biodiversity, primary productivity, and the biological carbon pump. Furthermore, it has led to
environmental changes such as atlantification and a rapidly changing marginal ice zone. The
diversity and composition of the phytoplankton community, particularly in the sea ice and
water column of the Central Arctic Ocean, will be impacted. As the primary food source for
several trophic levels, phytoplankton plays a crucial role in the overall productivity and func-
tioning of the Arctic ecosystem. Any changes in the community structure could have significant
implications for other trophic levels and carbon sequestration. Arctic Ocean communities play
a significant role in the biogeochemical cycle, due carbon sequestration and nutrient cycling.
Yet they have received little academic attention. It is clear that their diversity and function
are important areas for further research. The objective of this research is to identify which
microorganisms are capable of adapting to the rapidly changing Arctic environment and the
forthcoming Atlantification. By investigating the diversity and interactions of microbial com-
munities throughout the year, we aim to elucidate how shifting environmental conditions are
altering these ecosystems. Utilizing cutting-edge bioinformatics and mathematical tools, this
thesis advances our understanding of marine biology. Considering all these points together, a
novel framework was developed for the analysis of temporal patterns and interactions of organ-
isms, with a focus on identifying those groups that exhibit stability under various conditions.
In addition, a novel tool for precise and e!cient analysis of zooplankton images was developed,
which will be crucial for further community analyses in our framework. This holistic approach
promises to significantly improve our understanding of the vibrant ecosystem of the Arctic
Ocean and its response to ongoing environmental change.
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Zusammenfassung

Der Arktische Ozean ist aufgrund der Erwärmung der Atmosphäre und der Ozeane raschen
und bedeutenden Veränderungen unterworfen. Der Rückgang der Meereisbedeckung hat Fra-
gen zu den ökologischen Auswirkungen auf die biologische Vielfalt, die Primärproduktion und
die biologische Kohlensto"pumpe aufgeworfen. Außerdem hat er zu Umweltveränderungen wie
der Verlagerung einer sich rasch verändernden Randeiszone geführt. Die Vielfalt und Zusam-
mensetzung der Phytoplankton-Gemeinschaft, insbesondere im Meereis und in der Wassersäule
des zentralen Arktischen Ozeans, werden davon betro"en sein. Als primäre Nahrungsquelle für
mehrere trophische Ebenen spielt das Phytoplankton eine entscheidende Rolle für die Gesamt-
produktivität und das Funktionieren des arktischen Ökosystems. Jegliche Veränderungen in
der Struktur der Gemeinschaft könnten erhebliche Auswirkungen auf andere trophische Ebe-
nen und die Kohlensto"speicherung haben. Die Lebensgemeinschaften im Arktischen Ozean
spielen eine wichtige Rolle im biogeochemischen Kreislauf, da sie für die Kohlensto"bindung
und den Nährsto"kreislauf verantwortlich sind. Dennoch haben sie bisher nur wenig wissen-
schaftliche Aufmerksamkeit erhalten. Es ist unbestritten, dass die Vielfalt und Funktion der
Mikroorganismen wichtige Forschungsbereiche darstellen. Die vorliegende Forschung zielt dar-
auf ab, die Fähigkeit von Mikroorganismen zu untersuchen, sich an die sich rasch verändernde
arktische Umwelt und die bevorstehende Atlantisierung anzupassen. Durch die Untersuchung
der Diversität und der Interaktionen mikrobieller Gemeinschaften über das gesamte Jahr hin-
weg soll eruiert werden, wie sich diese Ökosysteme durch die veränderten Umweltbedingungen
verändern. Die Anwendung modernster Bioinformatik und mathematischer Methoden trägt zu
einer umfassenderen Betrachtung der Meeresbiologie bei. Unter Berücksichtigung der genann-
ten Punkte wurde ein neuartiger Rahmen für die Analyse zeitlicher Muster und Interaktionen
von Organismen entwickelt. Dabei liegt der Schwerpunkt auf der Identifizierung derjenigen
Gruppen, die unter verschiedenen Bedingungen Stabilität zeigen. Des Weiteren wurde ein neu-
artiges Werkzeug zur präzisen und e!zienten Analyse von Zooplanktonbildern entwickelt, das
für weitere Gemeinschaftsanalysen in unserem Rahmenwerk von Bedeutung sein wird. Der
ganzheitliche Ansatz verspricht, unser Verständnis des lebendigen Ökosystems des Arktischen
Ozeans und seiner Reaktion auf die laufenden Umweltveränderungen zu verbessern.
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Chapter 1

Introduction and Motivation

1.1 The landscape of the Arctic Ocean

The Arctic Ocean, the smallest and northernmost of the world’s five oceans, covers only 4%
of the total ocean area. It is characterized by two major deep basins, namely the Eurasian
and the Amerasian Basin, separated by the Lomonosov Ridge, and surrounded by extensive
continental shelves (Jakobsson, 2002; Slagstad et al., 2015). With an average water depth of
around 1,200 m, the Arctic Ocean is the shallowest of all oceans, largely due to its shelves,
collectively comprising over 50% of its total area (Jakobsson et al., 2003, 2004, 2014).

Its distinctive geographical location and landlocked nature gives rise to several unique charac-
teristics that profoundly influence its physicochemical environment and biological dynamics.
The Arctic Ocean receives a significant amount of freshwater and organic matter from some of
the planet’s largest river systems, such as the Lena River, which accounts for approximately
10% of the global river discharge (Dittmar and Kattner, 2003). This freshwater inflow results
in strong stratification within the Arctic Ocean, with a less dense fresh upper ocean layer
overlaying denser, more saline deeper water. River discharge plays a pivotal role in regulating
mixing patterns, nutrient distribution, heat exchange, and sea-ice formation within the region
(Carmack et al., 2016; Osadchiev et al., 2024).

The pronounced stratification of the Arctic Ocean serves as a driving force for its interaction
with the Pacific and Atlantic Oceans (Rudels et al., 2013; Rudels and Friedrich, 2000). Water
from the Pacific enters the Arctic via the Bering Strait (Woodgate et al., 2012), but the
most significant water mass exchange occurs with the North Atlantic through Fram Strait
and the Barents Sea (Figure 1.1) (Rudels et al., 2013; Rudels et al., 2004; Wefing et al.,
2021). The Fram Strait is a passage, that acts as a gateway between the Arctic Ocean and the
Atlantic Ocean (Pawlowicz et al., 1995). Long-term time-series studies in the Arctic marine
ecosystem provide a baseline for understanding ongoing changes in the Fram Strait. These
studies significantly contribute to global e"orts to comprehend variations in ecosystem structure
and functioning, aiding in future predictions under di"erent climate scenarios (Soltwedel et al.,
2016). The Long-Term Ecological Research (LTER) site, HAUSGARTEN (Soltwedel et al.,
2005), encompasses several stations spanning the West Spitzbergen Current (WSC) and East
Greenland Current (EGC). The WSC is primarily characterized by Atlantic conditions with
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Chapter 1 Introduction and Motivation

minimal polar influences, whereas the EGC experiences typical polar conditions and regular
sea-ice cover. The transition zone, represented by station HGIV, situated between the WSC and
EGC, is subject to influences from both Arctic and Atlantic conditions, frequently experiencing
intrusion of Polar Water (PW) and ice coverage throughout the annual cycle (Soltwedel et al.,
2013). Notably, the EGC area demonstrates a more pronounced polar influence.

Figure 1.1: Expedition tracks: Sampling locations in the Arctic Ocean The map shows
the Arctic Ocean. Blue dots are representing samples from the MOSAiC Expedition
(Mock et al., 2022) and the black ones from the ATWAICE Expedition (Kanzow,
2021). The red, purple, and cyan dots are representing the mooring stations F4,
HG-IV, and EGC. These stations are equipped with autonomous samplers, which
collect biological samples and measure environmental data over several years. Sea
ice concentration shown for illustrative purposes only (Based on data from Polar-
Watch ERDDAP).

The Arctic Ocean, reigning supreme north of the Arctic Circle (66°34’ N), is characterized
by its extensive sea ice cover. This icy blanket acts as a critical regulator for the entire
Arctic ecosystem. It controls how much heat escapes to the atmosphere by reflecting sunlight
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1.1 The landscape of the Arctic Ocean

(albedo) and influences the amount of light reaching the water below (Lindsey, 2009; Perovich
and Polashenski, 2012). As sea ice freezes and melts, it dictates the temperature and salinity of
the surface ocean, which in turn has a domino e"ect on ocean layering (stratification), mixing
patterns, and nutrient availability for marine life (Korhonen et al., 2013; Zhang et al., 2023).
Beyond its physical influence, sea ice provides a vital habitat for a diverse array of organisms,
o"ering shelter for those living on the ice surface and those thriving in the hidden world beneath
(Arrigo, 2014, 2017; Bluhm and Gradinger, 2008).

The Arctic system experiences a pronounced seasonality, characterized by an extended winter
period with several months of polar night, followed by spring, summer, and fall months with
continuous daylight supporting autotrophic life in the sea ice and upper ocean (Wassmann,
2011). Arctic sea ice reaches its maximum seasonal extent in March after growing throughout
the winter, and undergoes melting and breakup in spring and summer, reaching its minimum
extent in September (Perovich et al., 2020; Serreze and Barry, 2011; Stroeve and Notz, 2018).
As a result, freshwater input to the system is lowest in winter, when river discharge is limited
by freezing and stratification is weakened, allowing for deep mixing and nutrient replenishment
(Korhonen et al., 2013; Meredith et al., 2019).

In the context of an anticipated transition to an ice-free Arctic, projections indicate that the
earliest instance of completely ice-free conditions during September could occur by the 2020s to
2030s across all emission scenarios, with a high likelihood by 2050. On average, daily September
ice-free conditions are expected to occur about four years earlier, possibly surpassing monthly
metrics by up to a decade (Jahn et al., 2024; Kinnard et al., 2011). Consistently ice-free
conditions during September are projected to become regular by mid-century, ranging from
2035 to 2067, depending on emission trajectories. The IPCC’s assessment report suggests that
under intermediate and high greenhouse gas emissions scenarios, the Arctic may be nearly
ice-free in September by mid-century (Masson-Delmotte et al., 2021b). A study employing an
attribution analysis approach highlights the significant influence of greenhouse gas emissions
on Arctic sea ice area, with forecasts indicating ice-free Arctic conditions by mid-century across
all scenarios. This underscores the urgent need to prepare for, and adapt to a seasonally ice-
free Arctic (Kim et al., 2023; Stroeve et al., 2007). The diminishing extent of Arctic sea ice
has profound environmental and economic implications for global climate change trajectories.
Statistical forecasts based on extensive satellite data suggest an accelerating decline in sea ice
coverage, diverging from Coupled Model Intercomparison Project (CMIP5) model projections
(Driscoll et al., 2012). Long-term statistical projections indicate a nearly 60% likelihood of
an essentially ice-free Arctic Ocean by the 2030s, earlier than average global climate model
projections (Diebold and Rudebusch, 2022). E"orts within the Paris Agreement framework
aim to stabilize global temperatures, but current emission reduction policies may limit warming
to around 3.0°C by 2100. The study suggests that transitioning from 2.0°C to 1.5°C warming
could significantly reduce ice-free conditions, while at 3.0°C warming, permanent summer
ice-free conditions are likely, emphasizing the urgency of stronger commitments to the Paris
Agreement (Bamber, 2022; Diebold and Rudebusch, 2022).
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Chapter 1 Introduction and Motivation

1.2 Ocean warming: A changing landscape

The Earth’s natural atmospheric greenhouse e"ect has undergone changes. Since 1750, the
atmospheric concentrations of greenhouse gases such as carbon dioxide, methane, and nitrous
oxide have increased, leading to the absorption of outgoing heat and subsequent warming of
the Earth’s surface (Crowley, 2000; Hartmann et al., 2013; Katelaris and Beggs, 2018). The
global mean surface temperature has increased by approximately (Khilyuk, 2003) 0.85°C over
the late 19th century. The period from 1983 to 2012 was the warmest in the past 800 years
(Masson-Delmotte et al., 2013). This rise in surface temperatures is also evident in the world’s
oceans, with notable climate-related changes occurring in the upper 700 m of the Northern
Hemisphere between 1971 and 2010 (Figure Section 1.8 (a))(Howes et al., 2015; Rhein et al.,
2013).

Furthermore, the heat flux of Atlantic Water (AW) through the Fram Strait into the Cen-
tral Arctic Ocean (CAO) has increased significantly since 1997 due to elevated surface water
temperatures (0.06°C per year, mean temperature from 1997 to 2010) and intensified water
flow (Beszczynska-Möller et al., 2012; Karam et al., 2024; Long et al., 2024; Schauer et al.,
2008; Schauer et al., 2004). Poleward ocean heat transport plays a critical role in the Earth’s
system. Over the past five decades, the Arctic Ocean, encompassing the Nordic and Barents
Seas, has experienced significant warming, aligning with amplified ocean heat transport and
sea ice reduction. This warming trend has notably contributed to the recession of marine-
terminating glaciers in Greenland. In the Nordic Seas, where approximately 60% of total heat
loss to the atmosphere occurs, variability is primarily influenced by the frequency of Cold Air
Outbreaks and cyclones, yet no long-term statistically significant trend has been observed.
Conversely, heat loss from the Barents Sea (approximately 30%) and the more northern Arctic
seas (approximately 10%) exhibits considerable positive trends. Since 1900, there has been a
notable increase in Atlantic Water (AW) inflow, total heat loss to the atmosphere, and dense
outflow, with these parameters consistently linked through theoretical scaling. Additionally,
the increase in AW inflow is influenced by wind dynamics. Moreover, Arctic Ocean Carbon
Dioxide (CO2) uptake has surged by approximately 30% over the past century, aligning with
the loss of Arctic sea ice, which enhances air-sea interaction. This uptick represents roughly 8%
of the global CO2 uptake, indicating the Arctic’s increasing significance in the global carbon
cycle (Smedsrud et al., 2022; Tesi et al., 2021). The Arctic Ocean is a dynamic and complex
ecosystem, in which the biological pump plays a crucial role in carbon cycling (Figure Fig-
ure 1.3). Primary producers within the sea ice and the upper water column utilise solar energy
to convert carbon dioxide (CO2) into biomass, initiating a cascade of ecological processes.
This conversion results in the generation of a diverse range of dissolved and particulate organic
matter, a high proportion of which is respired by heterotrophic organisms that inhabit the
sea ice and surface waters. Heterotrophic microbes, predominantly bacteria, decompose and
remineralise the organic matter, thereby recycling essential inorganic nutrients that support
ongoing primary production. In addition, the viral shunt mechanism releases organic matter
into the surrounding seawater or sea ice through viral-induced cell lysis. The microbial loop,
a process whereby microbial activity mediates the cycling and transformation of carbon, pre-

4



1.3 Arctic sea ice: Sea ice decline and its repercussions in the Arctic Ocean

dominantly occurs in the surface ocean, where the majority of organic material is consumed
and respired. As sinking material descends, microbial degradation and grazing further reduce
the export flux and modify the organic matter. Zooplankton consume and respire a portion
of this organic matter, transferring it to higher trophic levels. Only a small proportion of sur-
face production reaches the deep-sea floor, supporting benthic heterotrophic organisms. Their
metabolic activity results in the remineralisation of the majority of organic material, with only
a negligible proportion (0.1%) undergoing burial and contributing to long-term carbon seques-
tration from the atmosphere (Jahnke and Jackson, 1992). The heightened heat flux, combined
with atmospheric warming, has had a negative impact on sea ice conditions in the CAO (Cao
et al., 2018; Comiso, 2003; Comiso et al., 2008; Stroeve et al., 2008; Stroeve et al., 2012b). It
is projected that there may be a nearly ice-free summer period between 2020 and 2050 (Kim
et al., 2023; Kirtman et al., 2013), which would have significant ecological consequences for
species associated with and adapted to sea ice (see Pagano and Williams, 2021; Post et al.,
2013 for a comprehensive review).

1.3 Arctic sea ice: Sea ice decline and its repercussions in the
Arctic Ocean

In the last decade, the Central Arctic Ocean has experienced significant sea ice loss due to
atmospheric and oceanic warming (Yadav et al., 2020; Zhao et al., 2019; Zhou et al., 2024).
Data shows that the average sea ice extent has decreased by approximately 10% per decade
(Comiso et al., 2008; Stroeve et al., 2012b). At the same time, the ice has become thinner and
fresher, and there has been an increase in the prevalence of melt ponds. The Arctic Ocean has
experienced a decrease in the thickness of multi-year ice (MYI, 1.5 - 3 m), with thin first-year
ice (FYI, 0.5 - 1.5 m) becoming the dominant ice type (Fetterer and Untersteiner, 1998; Kwok
and Rothrock, 2009; Laxon et al., 2013; Ye et al., 2016).

Sea ice conditions in the Arctic Ocean show considerable seasonal and annual variability. The
polar day, which starts towards the end of February or early March, marks the beginning of
the productive season in the pelagic realm due to increased light intensity (Berge et al., 2015b;
Cohen et al., 2020; Ellertsen, 1993; Perrette et al., 2011). The summer minimum sea ice extent
is usually reached in August or September, resulting in extensive open water areas (Arrigo
et al., 2008). Significant losses of sea ice occurred in September of 2007 and 2012. The latter
experienced an extreme and sudden reduction in ice cover in the Beaufort, Chukchi, and East
Siberian Seas (NSIDC; http://nsidc.org).

The thinning of sea ice in the Central Arctic Ocean, combined with strong southward geostrophic
winds, has resulted in an increased export of sea ice through the Fram Strait out of the CAO
(Halvorsen et al., 2015; Krumpen et al., 2015; Smedsrud et al., 2011). During autumn, new ice
forms as ocean surface temperatures drop below the freezing point of seawater (-1.8°C and a
salinity of approximately 34 psu) (Arrigo, 2014; Golden et al., 1998; Krembs et al., 2011; Le Hir
et al., 2014; Meredith et al., 2019; Yang et al., 2023). Sea ice extent and concentration peak
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during the dark winter period, from late October to late February. Climate-related changes
are becoming increasingly evident during the Arctic winter. On March 24, 2016, the Arctic
experienced its first recorded seasonal minimum sea ice extent since the winter of 1979. This
led to large ice-free areas in the Arctic shelf regions (Perovich et al., 2020; Serreze and Barry,
2011).

The sea ice in the CAO has unique physico-chemical conditions and serves as a vital habitat
for unicellular eukaryotes, fish, crustaceans, and higher trophic levels such as seals and polar
bears. The anticipated decline in sea ice and subsequent loss of habitat is to have a significant
impact on the biodiversity and ecology of highly adapted Arctic species. The sea ice habitats,
such as the water column, under-ice water, sea ice, and melt ponds, are home to unicellular
eukaryotes that serve as the basis for the marine and benthic food webs.

1.4 The Arctic water column: A haven for diverse microbial life

The Arctic Ocean boasts a unique water column structure, shaped by a constant influx of
freshwater from rivers and melting ice (Aagaard et al., 1985; Carmack et al., 2016; Talley
et al., 2011). Evidence suggests distinct microbial communities thrive within each of these
stratified layers (Hamdan et al., 2013).

The polar surface water, the uppermost layer, extends to roughly 200 meters deep (Jones, 2001;
Talley et al., 2011). Nestled beneath it lies the Polar Mixed Layer (PML), with expansion
depths of 25-50 m. Characterized by low salinity (27-34 psu), and near-freezing temperatures
with significant seasonal variations, the PML plays a crucial role for the carbon cycle (Appen
et al., 2021; Talley et al., 2011). A sharp halocline separates the surface layer from the warmer,
saltier intermediate Atlantic layer below, restricting deep-to-surface ocean exchange (Aagaard
et al., 1985; Rudels, 2012; Talley et al., 2011). Regionally, water column properties vary due
to its journey through the Arctic, leading to distinct vertical profiles in the Amerasian and
Eurasian basins, as well as extensive shelf regions (Jakobsson et al., 2004; Talley et al., 2011).

Biological production thrives primarily in the surface ocean, further divided into three distinct
zones. The first zone boasts a deep euphotic zone (40-50 m), vigorous vertical mixing, and
high productivity (Sigman and Hain, 2012). The second zone experiences seasonal ice cover,
resulting in stronger stratification, reduced mixing, and a shallower euphotic zone, leading to
lower primary productivity. However, occasional phytoplankton blooms can still occur. Areas
with permanent ice cover have a very shallow euphotic zone, resulting in minimal produc-
tivity and biomass (Laney et al., 2014; Wassmann, 2011; Wassmann et al., 2011). Ice-free
or seasonally ice-covered shelf regions typically exhibit higher productivity compared to the
perpetually ice-covered deep central basins (Carmack et al., 2016; Holt et al., 2016; Tremblay
et al., 2015).

Regardless of location, studies consistently show oligotrophic Alphaproteobacteria, primarily
identified as Pelagibacter or members of the SAR11 clade, to be dominant pelagic bacteria in
Arctic surface waters (Boeuf et al., 2014; Bowman et al., 2012; Salcher et al., 2011; Wilson et
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1.5 Sea-ice ecosystem

al., 2017). Algal bloom events result in an increase in the abundance of taxa that thrive in high
biomass and nutrient-rich conditions. Members of the Bacteroidetes, Gammaproteobacteria,
and specific Alphaproteobacteria are among these taxa (Teeling et al., 2012; Wells et al., 2015;
Zhou et al., 2018). Arctic pelagic communities exhibit successional patterns similar to bacterial
communities in warmer oceans (Boeuf et al., 2014; Bunse and Pinhassi, 2017; Teeling et al.,
2016).

The deeper water column, characterized by light deprivation, higher concentrations of inorganic
nutrients, and reduced seasonal variability, o"ers a more stable habitat (Aristegui et al., 2009;
Orcutt et al., 2011).

Here, chemolithotrophic Thaumarchaeota and representatives of the Chloroflexi-type SAR202
clade appear to dominate year-round (Wilson et al., 2017). While some studies suggest minimal
seasonal changes in community structure (Kirchman et al., 2010), others report significant
di"erences, including the presence of deep-water groups near the surface during winter (Alonso-
Sáez et al., 2008; Wilson et al., 2017).

A question surrounds the exchange of bacteria and microeukaryotes between the Arctic Ocean’s
water column and sea ice. We don’t fully understand how surface seawater communities influ-
ence the microbial denizens within the sea ice during winter freeze-up. Similarly, the impact
of melting sea ice and the release of its trapped biomass on the composition of summer surface
water communities remains unclear. Furthermore, research is needed to identify the specific
heterotrophic groups that associate with algal biomass in both the sea ice and the water col-
umn. These interactions likely play a crucial role in nutrient recycling within the upper ocean,
but their exact nature awaits further exploration. By unraveling these intricate connections, we
can gain a deeper understanding of the delicate balance within the Arctic marine ecosystem.

1.5 Sea-ice ecosystem

The Arctic Ocean contains regions with both perennial and seasonal ice coverage. Perennial
sea ice, which persists year-round, is mainly found in the deep basins. In contrast, sizable
portions of the shelves and neighboring seas experience seasonal ice cover, which is present
only during specific times of the year (Polyak et al., 2010). Ice formation primarily occurs
over open waters on the shelves during autumn and winter. It is then transported towards the
central basins by wind and currents (Polyak et al., 2010). The ice can remain adrift for several
years before undergoing significant melting, and the remaining ice eventually exits the Arctic
mainly via the Fram Strait (Kwok and Rothrock, 2009; Rudels et al., 2013). FYI and MYI can
di"er significantly in thickness, albedo, salinity, and brine inclusion (Weeks and Ackley, 1986).
During the process of sea ice formation, salt is expelled and accumulates as brine liquids within
a network of pores and channels that permeate the entire structure of the ice, from its surface
to its base (Petrich and Eicken, 2010; Thomas and Dieckmann, 2002). The concentration of
salt within these networks is high enough to prevent the water from freezing even in subzero
temperatures. This creates a viable habitat within the ice structure (Petrich and Eicken, 2010;
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Thomas and Dieckmann, 2002). Variations in ice morphology, along with pronounced gradients
in temperature, light, nutrients, salinity, volume, and pore space contribute to the remarkable
spatial heterogeneity of this environment (Arrigo et al., 2008; Deming et al., 2007; Dieckmann
and Hellmer, n.d.; Petrich and Eicken, 2010).

The sea-ice matrix supports a diverse range of organisms, including viruses, bacteria, algae,
protists, various meiofauna, and small crustaceans (Bluhm et al., 2018; Legendre et al., 1992;
Steiner et al., 2021), which form their own ice-associated food web. Photoautotrophic algae
serve as the foundation, and diatoms are the primary contributors to biomass. They accumulate
in the lower part of the ice, reaching concentrations that can give the ice a brownish tint or form
extended filamentous strands that attach to the underside of the ice (Arrigo, 2014; Katlein et
al., 2015; Melnikov, 1987; Mock and Gradinger, 1999). As the ice melts, significant amounts of
sea ice biomass can be released into the water column and descend to the seafloor (Appen et al.,
2021; Boetius et al., 2013; Swoboda et al., 2024; Tamelander et al., 2009). This biomass not
only sustains benthic life, but also facilitates vertical dispersal of associated microorganisms,
thereby promoting microbial community connectivity.

Sea ice organisms are thought to originate primarily from the surface ocean, where they are
recruited during the freezing process, adhere to, or become trapped between newly formed ice
crystals, and are subsequently incorporated into the consolidating ice matrix (Ewert and Dem-
ing, 2013). However, they can also originate from entrained sediments (Nürnberg et al., 1994;
Pfirman et al., 1997; Wegner et al., 2017) or atmospheric deposition (Price et al., 2009). In
their new environment, organisms must adapt to harsh abiotic conditions, including changes in
available space, light levels, salinity, nutrient concentrations, and extremely low temperatures
(Gradinger and Ikävalko, 1998). Many organisms inhabiting sea ice exhibit specific physio-
logical or biochemical adaptations, such as specialized membrane compositions that maintain
fluidity at low temperatures (Bayer-Giraldi et al., 2011; Feng et al., 2014; Ramasamy et al.,
2023), psychro- and halophilic enzymes (Pomeroy and Wiebe, 2001), or the ability to encyst
to endure specific time intervals (Stoecker et al., 1998). These adaptations provide sea ice mi-
croorganisms with the necessary mechanisms to survive sudden melting and relocation events,
such as transitions from sea ice to the water column.

Bacterial populations within sea ice can reach densities of up to 107 cells per milliliter (Bowman,
2013; Gosink et al., 1993), and even higher when associated with high ice algal biomass (Assmy
et al., 2013; Deal et al., 2011; Fernández-Méndez et al., 2014).

Within the confined brine channel system, they thrive due to reduced grazing pressure from
large metazoan predators (Krembs et al., 2000), close spatial association with ice algae (Deming
et al., 2007; Krembs et al., 2000), and elevated concentrations of dissolved organic matter
resulting from cell death, lysis, or exudation (Collins and Deming, 2011; Paul et al., 2012;
Thomas et al., 2001; Thornton, 2014). Both ice algae and bacteria are prolific producers
of extracellular polymeric substances (EPS) (Costa et al., 2018; Decho and Gutierrez, 2017;
Krembs et al., 2002), which consist primarily of polysaccharides and glycoproteins (Verdugo
et al., 2004). These substances enhance cell surface adhesion and can facilitate the selective
incorporation of cells into the ice during freezing (Cai et al., 2020; Gradinger and Ikävalko,
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1998), as well as provide potential attachment sites (Junge et al., 2004). EPS also serve as
carbon-rich substrates for bacteria in sea ice (Meiners et al., 2004) and are thought to act as
cryoprotectants, bu"ering against abrupt changes in pH or salinity (Collins et al., 2008; Decho
and Gutierrez, 2017). Through EPS production, bacteria modify the microstructure of the
ice, improving its habitability and permeability (Krembs et al., 2011) and influencing nutrient
regeneration processes (Riedel et al., 2007). The majority of existing knowledge about the
structure of Arctic sea ice communities is derived from research conducted during the spring
and summer seasons. During these seasons, heterotrophic taxa, primarily Flavobacteria and
Gammaproteobacteria, flourish due to the copious organic matter produced by algae (Bowman,
2015; Bowman et al., 2012; Eronen-Rasimus et al., 2016). Notably, these spring and summer
ice communities di"er from source communities in the underlying seawater (Collins et al.,
2010; Han et al., 2014; Hatam et al., 2014), prompting questions about selection processes or
seasonal succession within sea ice and connectivity between ice and water column communities.
Initial findings on winter ice community structure and the early stages of sea ice community
formation revealed that the dominant members in winter ice, oligotrophic Alpha- and Gamma-
proteobacteria, mirrored those in the underlying waters, arguing against selective incorporation
of specific bacterial groups (Collins et al., 2010; Comeau et al., 2011). With temperatures in
the ice potentially dropping to -35°C (Deming and Eicken, 2007; Deming et al., 2007), gradual
selection for psychrotrophic types with the capacity and metabolic traits to survive at these
temperatures is conceivable (Feng et al., 2014; Heinz et al., 2018; Junge et al., 2011, 2004).
In addition, winter conditions appear to favor species with the ability to adhere to surfaces or
particles, such as members of the bacteroidetes (Larose et al., 2013). The sea ice environment
exhibits pronounced physical and chemical vertical gradients that evolve over time as the ice
matures (Meier et al., 2014; Yamanouchi and Takata, 2020). Consequently, distinct bacterial
communities have been observed at di"erent depth levels (Eronen-Rasimus et al., 2016; Hatam
et al., 2014), as well as in multi-year ice versus first-year ice (Hatam et al., 2016). Elevated
levels of presumed brackish or freshwater groups, such as members of the Actinobacteria and
Betaproteobacteria, in the surface layer of ice have been associated with the presence of melt
ponds on sea ice (Aparıécio, 2023; Hatam et al., 2014). At the same time, the prevalence of
copiotrophic members of Flavobacteria, Alpha-, Gammaproteobacteria, and Verrucomicrobia
has often been associated with high algal biomass (Bowman et al., 2012; Collins et al., 2010;
Eronen-Rasimus et al., 2016). The availability of algal-derived substrates has been identified
as a primary factor shaping sea ice bacterial communities during the productive season (Cowie
et al., 2014; Eronen-Rasimus et al., 2015; Hatam et al., 2016), and potentially even during the
dark winter months (Eronen-Rasimus et al., 2017; Junge et al., 2004). Heterotrophic bacteria
are essential components of the sea ice ecosystem (Figure 1.3), as their metabolic activity
releases remineralized inorganic nutrients to support the growth of sea ice algae (Kottmeier
and Sullivan, 1990; Roukaerts et al., 2021). Their e!ciency in metabolizing organic matter
within the ice matrix also influences the amount and composition of materials released into the
water column during ice melt (Deming, 2010). Despite their critical role, our understanding
of Arctic sea ice bacteria and microeukaryotes remains limited, based primarily on sporadic
observations focused primarily on the ice shelves or the Amerasian Basin. Furthermore, detailed
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investigations of which types of heterotrophic bacteria are associated with sea ice algal biomass
and whether these associations are specific are lacking and therefore largely unknown (Bowman,
2015; Ramanan et al., 2016).

1.6 Microeukaryotic biodiversity

Microeukaryotes are an integral part of the Arctic ecosystem and play an important role in the
diversity and productivity of various water and ice environments. Autotrophic species, such
as phytoplankton and ice algae (e.g. diatoms, flagellates), are major contributors to primary
production and thus influence energy fluxes and carbon sequestration in the Arctic Ocean
(Boetius et al., 2013; Fernández-Méndez et al., 2015; Gosselin et al., 1997; Gradinger, 2009;
Kudryavtseva et al., 2023).

Phytoplankton and ice algae serve as food sources for heterotrophic zooplankton (e.g. flag-
ellates, dinoflagellates, ciliates). In addition, carbon incorporated into algal aggregates and
zooplankton fecal pellets is transported to the Arctic deep sea, where it provides food for
benthic communities and is preserved in sediments (Bathmann et al., 1990; Bauerfeind et al.,
1994; Kohlbach, 2017).

Diatoms, belonging to the supergroup Stramenopiles, are among the most diverse planktonic
organisms in the Arctic and play a crucial role in the ecosystem (Figure 1.2). Diatoms make up
a significant portion of both the water column and sea ice ecosystems (Arrigo, 2014). Within
these environments, they serve as a vital food source for heterotrophic flagellates or crustaceans
(zooplankton). Diatoms vary in size, ranging from 5 to 500 micrometers, with some species
exceeding 1 millimeter in length. The silica-based frustule (cell wall) of diatoms provides
protection against grazers (Behrenfeld et al., 2021; Passow, 1991).

Under favorable physicochemical conditions in spring or summer, certain diatom species (e.g.
Chaetoceros spp., Figure 1.2 , Thalassiosira spp., and Fragilariopsis spp.) can initiate blooms
in open water, at ice margins, or under sea ice (Ardyna et al., 2020; Arrigo et al., 2012;
Ellertsen, 1993; Von Quillfeldt, 2000). Factors that drive bloom formation include increased
water stratification, nutrient availability, and light exposure. Following blooms, aggregates
composed of chain-forming diatoms (e.g. Fragilariopsis, Melosira, Thalassiosira, Figure 1.2)
or highly silicified diatoms (e.g. Fragilariopsis, Coscinodiscus, Melosira) exhibit high sinking
rates and contribute significantly to carbon export to the deep seafloor in the Fram Strait and
the Arctic Ocean (Bauerfeind et al., 2009; Boetius et al., 2013).

The Arctic Ocean boasts a vibrant tapestry of eukaryotic microorganisms, each with a critical
function within the ecosystem. This work zooms in on some of these essential inhabitants. The
supergroup Haptophyta includes a collection of autotrophic flagellates (Figure 1.2) typically
found in the pico- and nanoplankton size range (3-20 micrometers).

Another member of the Haptophyta supergroup is Phaeocystis. Existing as either single-celled
organisms or gelatinous colonies, Phaeocystis boasts a wide distribution, particularly in the
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warm North Atlantic waters of Fram Strait and the Arctic Ocean (Eikrem et al., 2016; Metfies
et al., 2016; Reigstad and Wassmann, 2007). Unlike Coccolithophores, Phaeocystis plays a
less significant role in vertical export of organic carbon. However, their abundance makes
them a critical food source for mesozooplankton in the upper ocean (Baumas and Bizic, 2024;
Gasparini et al., 2000).

Green algae, or Chlorophyta, encompass a diverse group, including both multicellular and
unicellular taxa, found commonly in marine and freshwater phytoplankton communities (Caron
et al., 2012). The smallest marine eukaryotes, measuring less than 3 micrometers, belong to the
chlorophyte class Mamiellophyceae. Ostreococcus exemplifies this group. Micromonas, another
member of Mamiellophyceae, enjoys a wide distribution and forms a significant portion (≥ 1%
abundance) of the Arctic Ocean biosphere (Lovejoy et al., 2007; Yung et al., 2022). Recent
observations have identified Micromonas pusilla in the Arctic halocline, particularly associated
with Atlantic Water (Metfies et al., 2016). Interestingly, M. pusilla exhibits high adaptability
to various environments through its diverse genetic lineages (Foulon et al., 2008; Worden et al.,
2009).

The supergroup Haptophyta encompasses a group of autotrophic flagellates (Figure 1.2) pri-
marily found in the pico- and nanoplankton size range (3-20 micrometers). Certain members,
like Emiliania huxleyi and Coccolithus pelagicus, are known as Coccolithophores. These fasci-
nating organisms produce intricate calcified scales called Coccoliths. During massive blooms,
Coccolithophores are even visible from space. Their contribution is significant, as they act
as major regional contributors of carbonate and a vital source of calcite carbon (Bates et al.,
2013; Brown and Yoder, 1994; Winter and Siesser, 2006).

Dinoflagellates, belonging to the Alveolata supergroup, are arguably the most prominent pro-
tozooplankton in the Arctic pelagic realm, ranging in size from 3 to 200 micrometers. Het-
erotrophic dinoflagellates, like Akashiwo, Prorocentrum, and Protoperidinium (Figure 1.2),
boast relatively large cells and play a vital role as grazers of phytoplankton and smaller flag-
ellates. Mixotrophic dinoflagellates, including Gymnodinium (Figure 1.2) and Karlodinium,
possess the unique ability to both photosynthesize and ingest prey within a single cell (Lee
et al., 2014; Li et al., 2022; Mitra et al., 2016). Depending on environmental factors, these
adaptable organisms can switch between feeding modes through gene regulation (Matantseva
and Skarlato, 2013).

Another subgroup within the Alveolata supergroup is the Ciliophora (Figure 1.2). This group
primarily consists of heterotrophic grazers of small flagellates and diatoms, although some
mixotrophic species also exist (Posch et al., 2015). Ciliate growth rates are closely linked to the
abundance and productivity of phytoplankton communities (Jensen and Hansen, 2000; Verity,
1985). For example, mixotrophic ciliates like Mesodinium consume Cryptophytes (Gustafson Jr
et al., 2000). Tintinnids (e.g. Acanthostomella, Parafavella, Tintinnopsis) feed on organisms
like Phaeocystis pouchetii (a haptophyte, Figure 1.2), especially during spring blooms observed
in the Dutch Wadden Sea and coastal North Sea (Admiraal and Venekamp, 1986).
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Figure 1.2: Representatives of microeukaryotes found in the Fram Strait. They
can be characterized as follows: Diatoms (Melosira varians, Chaetoceros affi-
nis) and haptophytes (Phaeocystis globosa) are autotrophic, while dinoflagellates
(Gymnodinium) are mainly mixotrophic. Ciliates (Myrionecta rubra) exhibit a
mixotrophic lifestyle (Mesodinium sp.) or are heterotrophic. The images were se-
lected and modified from various publications for illustrative purposes.The scales
for A to D are 20 µm respectively. All images were sourced from Plankton Net, a
provider of biodiversity data. All images are licensed under the Creative Commons
Attribution 3.0 (planktonnet.awi.de, 2024).
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1.7 The essential role of Zooplankton in the Arctic food web

Zooplankton are a diverse array of small organisms that drift in the water column of oceans,
seas, and freshwater systems (Stockdale et al., 2015). It is important to acknowledge the
significance of zooplankton, as they include a variety of animal species, such as copepods, krill,
jellyfish larvae, and other invertebrates. They are integral components of the Arctic food web
and play a crucial role in marine ecosystems (Spisla, 2021).

In the Arctic ecosystem, zooplankton play a crucial role as a link between primary producers,
such as phytoplankton, and higher trophic levels, including fish, seabirds, and marine mammals
(Spisla, 2021). Zooplankton consume phytoplankton and other organic particles, transferring
energy from lower to higher trophic levels through predation and consumption. They are the
primary food source for many Arctic organisms, forming the base of the marine food web.
This highlights the importance of zooplankton in maintaining the Arctic ecosystem’s delicate
balance.

Furthermore, zooplankton are of vital importance in the cycling of nutrients and the seques-
tration of carbon in Arctic waters (Botterell et al., 2023; Lebrato et al., 2019). They release
nutrients through excretion and fecal pellets while consuming phytoplankton and other or-
ganic matter, which in turn stimulates primary production and supports the growth of marine
plants (Kyewalyanga, 2016). When zooplankton die or are consumed by predators, their or-
ganic matter sinks to the seafloor. The ecological significance of zooplankton populations in
the Arctic highlights the need to comprehend and preserve them, especially considering the
current environmental changes and human impacts (Lomartire et al., 2021). It is crucial to
acknowledge the importance of these populations. This organic matter can become buried
and stored as sedimentary carbon, contributing to the long-term storage of carbon in Arctic
ecosystems. Zooplankton play a pivotal role in regulating carbon dioxide (CO2) levels in both
the atmosphere and the ocean. Their feeding activities and respiration significantly influence
the balance of CO2 between the surface ocean and the atmosphere, which can have a pro-
found impact on global climate dynamics (Cavan et al., 2017; Lean, 2017). The abundance,
distribution, or composition of zooplankton populations in the Arctic can have far-reaching con-
sequences for ecosystem structure and function, as well as for climate regulation on a broader
scale (Yamuza-Magdaleno et al., 2024).
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Figure 1.3: Fundamental processes of the biological carbon pump operating in the
Arctic Ocean. (1) Photosynthetic primary producers convert CO2 into biomass.
(2) Organic matter is respired by heterotrophs. (3) Bacteria decompose and recycle
nutrients. (4) Viral lysis releases organic matter, contributing to the microbial loop.
(5) Most organic material is consumed in the surface ocean. (6) Zooplankton and
higher trophic levels transfer organic matter. (7) A small fraction reaches the deep-
sea floor, with about 0.1% buried for long-term sequestration.
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1.8 The impact of climate change on the Arctic Ocean

Although geographically isolated, the Arctic Ocean has emerged as a sentinel for global warm-
ing, exhibiting temperature increases two to three times faster than the global average (Belan
et al., 2022; Rantanen et al., 2022) (Figure ??(a)). Although the extent and thickness of sea ice
in the Arctic Ocean has varied significantly throughout its geological history, including episodes
of ice-free conditions during particularly warm periods (Polyak et al., 2010), the observed rate
of ice loss in recent decades is unprecedented and without comparison to any historical record
(Polyak et al., 2010; Schweiger et al., 2019). Due to atmospheric warming, rising temperatures
in the Arctic Ocean are leading to a reduction in sea ice extent (Cavalieri and Parkinson, 2012;
Serreze et al., 2007; Stroeve et al., 2007; Stroeve et al., 2012b) and a decrease in mean ice
thickness (Laxon et al., 2013; Rothrock et al., 2008).

This loss of ice is accompanied by changes in its physical properties (Figure ?? (b), (d), (e)),
with the average age of the ice decreasing and shifting to a thinner and younger ice cover
(Kwok, 2007; Maslanik et al., 2007; Perovich et al., 2017; Tschudi et al., 2016). During the
1980s, the spring ice cover was predominantly composed of thick multi-year ice, but this has
now changed dramatically, with first-year ice largely taking its place (Stroeve et al., 2012a;
Tucker III et al., 2001). This shift renders the ice cover more susceptible to summer melt
(Perovich et al., 2017) and results in a lengthening of the summer melt season (Figure ??
(b)), characterized by an earlier onset and later freeze-up (highlighted by Stroeve et al., 2014).
In addition, there has been an increase in drift velocity and ice export through Fram Strait
due to thinning of Arctic sea ice (Smedsrud et al., 2017; Spreen et al., 2020), which may also
promote more frequent lead and ridge formation (Assmy et al., 2017). The observed loss of
ice in the Arctic is directly related to anthropogenic CO2 emissions (Notz and Stroeve, 2016),
with various model projections suggesting that the remaining summer sea ice in the Arctic will
disappear before mid-century (Notz and Stroeve, 2016; Snape and Forster, 2014; Zege et al.,
2015) unless there is a significant reduction in emissions (Mahlstein and Knutti, 2012; Notz and
Stroeve, 2016; Overland et al., 2014). However, most models currently underestimate the rate
of decline, with observed losses exceeding predictions (Notz and Stroeve, 2016; Overland and
Wang, 2013; Winton, 2011). In addition, to the drastic reduction in sea ice cover (Figure ??
(b)), the Arctic Ocean is undergoing a process of freshening (Carmack et al., 2016; Jean-Michel
et al., 2021; Lellouche et al., 2018) and warming (McLaughlin et al., 2009; Polyakov et al.,
2012; Steele and Dickinson, 2016). Remarkably, these observed changes are intricately linked
and to some extent contribute to each other, forming a complex positive feedback loop known
as Arctic amplification (Alexeev and Jackson, 2013; Box et al., 2019; Dai et al., 2019; Taylor
et al., 2013).
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Figure SPM.8 | Selected indicators of global climate change under the five illus-
trative scenarios used in this Report.
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Figure 1.4: The projections for each of the five scenarios are shown in colour. Shades represent
uncertainty ranges – more detail is provided for each panel below. The black curves
represent the historical simulations (panels a, b, c) or the observations (panel d).
Historical values are included in all graphs to provide context for the projected fu-
ture changes. Panel (a) Global surface temperature changes in °C relative to
1850–1900. These changes were obtained by combining Coupled Model Intercom-
parison Project Phase 6 (CMIP6) model simulations with observational constraints
based on past simulated warming, as well as an updated assessment of equilib-
rium climate sensitivity (see Box SPM.1). Changes relative to 1850–1900 based
on 20-year averaging periods are calculated by adding 0.85°C (the observed global
surface temperature increase from 1850–1900 to 1995–2014) to simulated changes
relative to 1995–2014. Very likely ranges are shown for SSP1-2.6 and SSP3-7.0.
Panel (b) September Arctic sea ice area in 106 km2 based on CMIP6 model
simulations. Very likely ranges are shown for SSP1-2.6 and SSP3-7.0. The Arc-
tic is projected to be practically ice-free near mid-century under intermediate and
high GHG emissions scenarios. Panel (c) Global ocean surface pH (a measure
of acidity) based on CMIP6 model simulations. Very likely ranges are shown for
SSP1-2.6 and SSP3-7.0. Panel (d) Global mean sea level change in metres,
relative to 1900. The historical changes are observed (from tide gauges before 1992
and altimeters afterwards), and the future changes are assessed consistently with
observational constraints based on emulation of CMIP, ice-sheet, and glacier mod-
els. Likely ranges are shown for SSP1-2.6 and SSP3-7.0. Only likely ranges are
assessed for sea level changes due to di!culties in estimating the distribution of
deeply uncertain processes. The dashed curve indicates the potential impact of
these deeply uncertain processes. It shows the 83rd percentile of SSP5-8.5 projec-
tions that include low-likelihood, high-impact ice-sheet processes that cannot be
ruled out; because of low confidence in projections of these processes, this curve
does not constitute part of a likely range. Changes relative to 1900 are calculated
by adding 0.158 m (observed global mean sea level rise from 1900 to 1995–2014) to
simulated and observed changes relative to 1995–2014. Panel (e) Global mean
sea level change at 2300 in metres relative to 1900. Only SSP1-2.6 and SSP5-8.5
are projected at 2300, as simulations that extend beyond 2100 for the other scenar-
ios are too few for robust results. The 17th–83rd percentile ranges are shaded. The
dashed arrow illustrates the 83rd percentile of SSP5-8.5 projections that include
low-likelihood, high-impact ice-sheet processes that cannot be ruled out. Panels
(b) and (c) are based on single simulations from each model, and so include a
component of internal variability. Panels (a), (d) and (e) are based on long-term
averages, and hence the contributions from internal variability are small. {4.3; Fig-
ures 4.2, 4.8, and 4.11; 9.6; Figure 9.27; Figures TS.8 and TS.11; Box TS.4, Figure
1} This figure (Figure SPM.8) has been reproduced with the approval of the IPCC
(Intergovernmental Panel on Climate Change), 2021: Summary for Policymakers.
In: Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (Masson-Delmotte et al., 2021a).
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1.9 Melting ice is reshaping microbial communities in the Arctic
Ocean

Rapid climate change is already a"ecting Arctic ecosystems, most notably in larger marine
organisms from zooplankton to polar bears (Wassmann, 2011), with implications for food web
structure and the link between pelagic and benthic environments (highlighted by (Grebmeier
et al., 2006)). While microbial responses to these ecosystem changes are less well understood,
reports of such responses have emerged from di"erent regions of the Arctic Ocean (Barber
et al., 2015; Vincent, 2010; Wassmann, 2011).
Concomitant with alterations in the physicochemical properties of the sea ice cover in the
Amerasian Basin from the 1970s to the late 1990s, there have been notable changes in the
composition of sea ice algal communities. These changes have led to a reduction in overall
diversity and abundance, likely attributable to ice melt and freshwater input into the upper
ocean (Dupont, 2012; Kohlbach, 2017).
Changes in the duration of the melt season (Kahru et al., 2010; Rapp, 2018; Stroeve et al.,
2014), as well as changes in the extent and thickness of the ice cover (Arrigo and Dijken, 2015),
have extended the growing season for phytoplankton and increased light availability, thereby
increasing primary productivity in Arctic coastal regions (Arrigo and Dijken, 2015; Arrigo et
al., 2012; Negrete-Garcıéa et al., 2024; Pabi et al., 2008; Tremblay et al., 2011). The rise in
water temperature and the increased inflow of Atlantic and Pacific water masses (Korhonen
et al., 2013; Polyakov et al., 2012; Rudels et al., 2013; Spielhagen et al., 2011) have facilitated
the invasion of phytoplankton species typical of the North Atlantic and Pacific oceans into the
Arctic, such as the Coccolithophore Emiliania huxleyi, the picocyanobacterium Synechococcus,
and the diatom Neodenticula seminae (Nöthig et al., 2015; Paulsen et al., 2016). This is the
first time in over 800,000 years that Pacific phytoplankton has been able to migrate through
the Arctic to the Atlantic Ocean (Miettinen et al., 2013), indicating the potential for increased
trans-Arctic exchange if warming trends continue (Zhang et al., 2019). The intensification of
upper ocean stratification caused by increased freshwater input has been particularly noticeable
in the oligotrophic deep basins, potentially reducing nutrient delivery to the surface (Chen et
al., 2021; McLaughlin and Carmack, 2010; Slagstad et al., 2015) and thereby limiting primary
production within the water column despite increased illumination (Tremblay and Gagnon,
2009). A change in phytoplankton composition has been observed, characterized by an increase
in small algae and bacteria, with a concomitant decrease in larger algae, which may be less
e!cient at nutrient acquisition (Franz, 2012; Li et al., 2009; Paulsen et al., 2016; Pinhassi
et al., 2004). Ocean freshening following significant ice melt in 2007 also triggered changes in
the structure of the pelagic bacterial community in the Canadian Arctic, resulting in a less
diverse community after 2007 and a notable decline in Bacteroidetes (Comeau et al., 2011).
These documented shifts in microbial diversity and community composition are likely to have
implications for the biological pump and carbon cycling in the Arctic (Appen et al., 2021;
Rapp, 2018). Certainly, the first indications of an impact on the benthic-pelagic coupling
came from extensive monitoring in the Fram Strait. This monitoring revealed a consistent rise
in water temperature and salinity in the North Atlantic inflow (Walczowski et al., 2017), which
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coincided with changes in phytoplankton community composition and export flux from 1998
to 2011. Even in the depths of the deep seafloor, deviations in organic matter supply observed
during the 2005-2007 warm phase were reflected in changes in benthic bacterial community
structure and reduced diversity (Jacob, 2014; Soltwedel et al., 2016). In 2012, extensive ice
melt in the central Arctic resulted in the release of substantial sub-ice filaments of the diatom
Melosira arctica that sank to the seafloor, leading to widespread deposition of fresh ice-algae
material at depths of 4400 m (Boetius et al., 2013). Increased rates of oxygen consumption
in sediments with algal deposits suggest bacterial remineralization in response to increased
carbon flux rates (Boetius et al., 2013). Thus, it seems clear that the environmental changes
observed in the Arctic are a"ecting microbial communities from shelf to deep basin and from
sea ice to the seafloor.

1.10 Modern tools for exploring microbial diversity

The "great plate count anomaly", as described by Staley and Konopka in 1985 (Staley and
Konopka, 1985), elucidates that only a small proportion of viable marine microorganisms
can flourish under traditional laboratory conditions. Consequently, the characterization of
microbial communities has historically been constrained by cultivation methods (Berg et al.,
2020; Eilers et al., 2000). Over the past few decades, the advent of innovative molecular tools
for evaluating microbial diversity has transformed the investigation of microbial communities
(Amann et al., 1995; Berg et al., 2020; DeLong and Pace, 2001; Eme and Tamarit, 2024; Lane et
al., 1985). In particular, the use of the small subunit ribosomal RNA gene as a molecular marker
(Pace et al., 2012; Woese and Fox, 1977; Woese et al., 1990), along with advances in low-cost
sequencing technologies and computational methods for data processing, has greatly expanded
our ability to understand the taxonomic composition of natural communities. Following this,
endeavors in high-throughput sequencing have shed light on the extensive microbial diversity
present in the environment, unveiling the genomic makeup and functional capacities of complete
microbial populations (Cao et al., 2020; Morey et al., 2013; Pace, 1997; Reuter et al., 2015).

1.11 Amplicon sequencing as a lens into arctic microbial
diversity

In contemporary microbiology, amplicon sequencing has emerged as the predominant method
for examining microbial diversity in environmental samples. This technique involves targeted
sequencing of specific genomic regions of interest, with a primary focus on segments of the
16S or 18S RNA genes to evaluate bacterial and archaeal or eukaryotic diversity, respectively.
These gene regions exhibit key characteristics that render them valuable as taxonomic and phy-
logenetic markers, such as widespread occurrence, significant sequence conservation, and the
presence of hypervariable regions (Hugenholtz and Pace, 1996; Lane et al., 1985; Pace, 2009;
Woese and Fox, 1977). After DNA is extracted from all cells within a given sample, specific
primer sequences are used to target the genes or gene regions of interest for amplification. The
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amplified products are then sequenced, and subsequent analysis and comparison to reference
databases allows inference of community composition and structure within the original sample.
Amplicon sequencing has emerged as a valuable tool for exploring microbial biodiversity in di-
verse environments, demonstrating its power to reveal the richness and diversity of microbial
taxa that are often overlooked or underestimated. It has provided insights into co-occurrence
networks among organisms and revealed spatial and temporal distribution patterns of micro-
bial populations (Masenya et al., 2024; Trego et al., 2022). While amplicon sequencing o"ers
numerous benefits, it also presents notable limitations and drawbacks stemming from technical
biases inherent in the amplification and sequencing procedures, as well as the choice of gene
region. These factors can exert a substantial impact on the detected biodiversity, a concern
underscored by various research findings (Ibarbalz et al., 2014; Poretsky et al., 2014; Schloss
et al., 2011; Wylie et al., 2012). Furthermore, the applicability of the method is limited to
organisms with known dedicated marker genes, potentially missing highly divergent or novel
community members beyond the scope of current primer sequences. Di"erences in the number
of RNA gene copies across microbial genomes (Huse et al., 2008; Milanese et al., 2019), along
with gene transfer between taxa, can add complexity to determining the true composition of
a microbial community in a sample. However, despite these challenges, utilizing amplicon
sequencing of the RNA gene remains a cost-e"ective and time-e!cient method for investigat-
ing diversity, community structure, and the identity of individual members within extensive
microbial datasets.

1.12 Bioinformatics: Unraveling marine ecosystems

In marine biology, understanding the intricate interactions between di"erent organisms, both
eukaryotic and bacterial, is critical to understanding ecosystem dynamics and functioning.
Bioinformatics, particularly techniques such as network analysis, play a key role in unraveling
this complexity and shedding light on the interconnectedness within marine communities.

1.12.1 Data processing and analysis

Marine ecosystems are intricate and data-rich, demanding robust tools for analysis. Bioinfor-
matics has become essential in this field, enabling researchers to handle large-scale genomic,
transcriptomic, and proteomic datasets generated by high-throughput sequencing technologies
(Lightbody et al., 2019; Manzoni et al., 2018; Ward et al., 2013). These tools facilitate data
analysis, integration of multi-omics data, and development of predictive models. Bioinfor-
matics empowers researchers to uncover biological features, elucidate complex processes, and
identify potential applications in marine biotechnology (Jain and Tailor, 2020; Rotter et al.,
2020). This thesis examines the application of specific bioinformatics and mathematical tools
to enhance our comprehension of marine biology.
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1.12.2 Time series analysis

Time series analysis is a method of examining a sequence of data points collected over time
intervals. In contrast to intermittent or random data recording, time series analysis records
data points consistently over a defined period. This allows for the identification of how variables
change over time, thereby providing insights into temporal dependencies and adjustments
within the data (Montgomery et al., 2015). Access to time series data is crucial for the e"ective
utilisation of statistical and mathematical tools. Such data consists of observations recorded
at regular intervals, providing timestamps for each observation (Stock and Watson, 2020).
Examples of time series data include stock prices, weather measurements, economic indicators,
and physiological parameters such as heart rate. A large dataset is typically required for time
series analysis to ensure reliability, consistency, and noise reduction. Moreover, time series
data enables forecasting based on historical trends, allowing for predictions of future outcomes
(Box et al., 2015; Chatfield and Xing, 2019; Jose, 2022; Tableau, 2024).
The analysis of time series data reveals temporal patterns, trends, and behaviors, providing
valuable insights into temporal relationships and facilitating forecasting e"orts (Ducklow et
al., 2009; Krueger and Von Storch, 2011; Mudelsee, 2010; Steele, 1985). This is essential
for comprehending how data evolve over time, regardless of whether the data are collected
at regular or irregular intervals, contingent upon the specific phenomenon being investigated
(Popa et al., 2020a).
Time series analysis is a powerful tool for capturing and understanding temporal dependen-
cies and relationships within data. This analytical approach yields valuable insights into the
dynamic nature of data, facilitating a deeper understanding of complex systems and processes
(Lawton, 1988; Petchey et al., 1997; Pimm and Redfearn, 1988). In the context of microbial
communities in the Arctic, time series analysis o"ers several advantages. Time series analysis
provides a comprehensive understanding of microbial community dynamics, allowing scientists
to draw more confident conclusions about their behavior (Kraemer et al., 2024). By track-
ing changes in microbial populations across di"erent seasons and environmental conditions,
researchers can observe how microorganisms respond to variations in temperature, light avail-
ability, nutrient levels, and other factors inherent in the Arctic environment (Comeau et al.,
2011; Deslippe et al., 2012). Time series analysis enables the identification of seasonal pat-
terns and trends in microbial abundance, diversity, and activity. This information is of critical
importance for comprehending the ecological dynamics of microbial communities in the Arctic
and predicting their responses to ongoing environmental changes, such as climate warming and
sea ice melting (Brussaard et al., 2013; Macdonald et al., 2005; Mudelsee, 2010). Moreover,
time series analysis facilitates the detection of short-term fluctuations and long-term trends
in microbial populations (Nöthig et al., 2015). By examining microbial dynamics over ex-
tended periods, researchers can distinguish between transient fluctuations and persistent shifts
in community composition or structure (Callaghan et al., 2004; Crump et al., 2003). This
insight is essential for assessing the resilience of Arctic microbial ecosystems to environmental
perturbations and predicting their future trajectories.
In conclusion, time series analysis provides a robust framework for exploring the dynamics of
microorganisms in the Arctic and understanding their response to environmental variability and
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change (Doherty et al., 2020). By leveraging this analytical approach, scientists can uncover
the main factors driving microbial community dynamics, identify crucial thresholds or tipping
points, and develop e"ective strategies for climate change in Arctic ecosystems (Buttigieg et
al., 2018; Mock et al., 2016).

1.12.3 Network analysis: Mapping ecosystem interactions

In marine biology, networks are a powerful tool for analyzing the complex interactions and
dynamics of marine organisms in ecosystems. They visually display the relationships between
entities, such as species, genes, or ecological variables, enabling researchers to confidently
identify patterns, key players, and underlying ecological processes. Co-occurrence networks
and convergent cross mapping (CCM) are two common types of networks used in marine
biology (Barberán et al., 2012; Berry and Widder, 2014; Javier et al., 2022; Sugihara et al.,
2012).
Co-occurrence Networks Co-occurrence networks clearly illustrate the co-occurrence pat-
terns of organisms or ecological variables across samples or environmental conditions. The
nodes in the network represent individual entities (e.g. species or environmental factors), and
the edges (connections) between nodes indicate significant co-occurrence relationships between
them. In a microbial co-occurrence network, nodes represent microbial taxa, and edges repre-
sent co-occurrence patterns between taxa across di"erent marine samples. Such networks reveal
ecological associations, interactions, and potential dependencies between organisms or environ-
mental factors, providing valuable insights into community structure, species interactions, and
ecosystem dynamics (Barberán et al., 2012; Berry and Widder, 2014).
Convergent Cross Mapping CCM Convergent cross mapping CCM is a powerful statis-
tical technique that infers causal relationships between variables based on time series data.
By assessing the predictability of one variable using time series data from another variable,
CCM provides strong evidence for a potential causal relationship between them. This tech-
nique is particularly useful for identifying causal connections between ecological variables or
environmental factors, and has been widely adopted by researchers in these fields (Javier et al.,
2022; Sugihara et al., 2012). CCM is a powerful tool in marine biology that can be used to
understand the behavior of marine organisms.

1.13 Mathematical Modeling: Quantifying ecosystem stability

The application of mathematical models in the study of natural phenomena has a long history,
with notable contributions from the physical sciences and, more recently, the biological sciences.
Over the past approximately 40 years, mathematical models have been used to gain insights
into a wide range of natural phenomena. The fundamental principle behind constructing a
mathematical representation of a natural phenomenon is to simplify it to its essential compo-
nents, discarding extraneous details that are irrelevant to the research question. Two primary
approaches to model building exist: the top-down approach, which begins with data and pro-
ceeds to deduce the metabolic network structure, and the bottom-up approach, which begins

22



1.14 Artificial intelligence empowers image recognition to improve data analysis

with knowledge about the phenomenon and proceeds to construct a qualitative mathematical
model that reproduces experimental observations. Following the selection of the model-building
approach, researchers must choose a modeling technique from various available mathematical
methods. With advancements in computational power, numerous software programs are now
capable of e!ciently solving these models within a reasonable time-frame. Mathematical mod-
eling employs mathematical equations and computational algorithms to accurately simulate
real-world processes, phenomena, or systems (Bellouquid and Delitala, 2006; Ji et al., 2017).
In the context of Arctic marine communities, mathematical modeling o"ers numerous benefits
for comprehending ecosystem dynamics, species interactions, and responses to environmen-
tal changes (Fulford et al., 2020). Mathematical models have a clear advantage in exploring
complex ecological relationships and predicting ecosystem responses under di"erent scenarios.
Through the use of mathematical models, we can gain insights that may not be achievable
through observational or experimental studies alone (Mazur, 2006). This is due to their ability
to integrate data from various sources, including field observations, laboratory experiments,
and remote sensing, to generate comprehensive representations of marine ecosystems and their
dynamics. Changes in temperature, sea ice extent, nutrient availability, and other environmen-
tal factors can be predicted through models, allowing for a better understanding of how they
may a"ect species distributions, population dynamics, and ecosystem structure (Chen et al.,
2023). Mathematical models inform conservation e"orts, resource management decisions, and
policy interventions to mitigate climate change e"ects on Arctic marine ecosystems through
simulating various climate scenarios (Parrott et al., 2012).
Energy landscape analysis (ELA) quantifies the stability and resilience of Arctic ecological
communities by mapping their energy landscapes. The energy landscape represents the po-
tential energy of a system as a function of its configuration or state, with lower energy states
indicating more stable configurations. Through analysis of the topology and properties of the
energy landscape, researchers can confidently identify stable community configurations, critical
thresholds, and potential regime shifts in marine ecosystems (Fujita et al., 2023; Suzuki et al.,
2021). The Energy Landscape Analysis provides valuable insights into the mechanisms driving
ecosystem stability, the impacts of environmental disturbances, and the resilience of marine
communities in the Arctic. Incorporating ELA into mathematical models of Arctic marine
ecosystems may allow researchers to improve predictions of ecosystem responses to climate
change and enhance our understanding of the complex interactions that shape Arctic marine
communities.

1.14 Artificial intelligence empowers image recognition to
improve data analysis

Artificial intelligence (AI) is the broad field of creating machines capable of intelligent behavior.
Machine learning (ML) is a subset of AI that involves training algorithms to learn from and
make predictions based on data. Deep learning (DL) is a further subset of machine learning
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that uses neural networks with many layers to analyze complex patterns in large datasets
(Goodfellow et al., 2016).

1.14.1 Improving Accuracy / Precision

Advanced computational algorithms employ machine learning techniques to train on various
datasets of annotated images, allowing the algorithms to learn patterns and features indicative
of di"erent microbial species or cellular structures. These algorithms can di"erentiate between
closely related strains or morphologically similar organisms. Once trained, DL models can
e!ciently analyze diverse microbial images from various sources, including laboratory cultures,
environmental samples, and clinical specimens. This ability is particularly valuable in fields
such as environmental microbiology, where assessing the diversity and complexity of microbial
communities using traditional methods can be challenging (Eerola et al., 2024; Luo et al.,
2018).

1.14.2 Scalability

Deep Learning in image recognition o"ers significant benefits, particularly in terms of scal-
ability and adaptability (Burns et al., 2023; Kumar et al., 2023). These programs o"er are
cost-e"ectiveness and saving valuable time, allowing researchers to process large datasets ef-
ficiently without the need for extensive manual labor or specialized expertise (Cheng et al.,
2019; O’Mahony et al., 2020). This is particularly advantageous in the Arctic, where limited
resources and logistical challenges often hinder research e"orts. Automating the identification
process based on deep learning maximizes the utility of available data and allows researchers
to focus their e"orts on data analysis, interpretation, and scientific discovery (Oldenburg et al.,
2023b).
In conclusion, DL applied on marine organisms in the Arctic, providing improved e!ciency,
accuracy, scalability, and adaptability to changing environmental conditions (Oldenburg et
al., 2023b). AI technologies are advancing rapidly, providing great potential for enhancing
our understanding of Arctic marine ecosystems in the face of ongoing environmental changes
(Andersson et al., 2021; Buškus et al., 2021).

1.15 Synergy for Arctic Ocean research

The integration of bioinformatics, mathematical modeling, and artificial intelligence o"ers
unique advantages for the study of marine biology in the Arctic Ocean. In this dynamic and
environmentally sensitive region, where samples are limited, environmental variability is sub-
stantial, and future predictions are critical, the synergy of these three approaches is invaluable.
By leveraging comprehensive data integration, advanced modeling techniques, and AI-based
analysis, researchers can gain deeper insights into the structure, function, and resilience of
Arctic marine ecosystems (Mueter et al., 2021). This holistic understanding is essential for
informing conservation e"orts, guiding sustainable management practices, and mitigating the
impacts of climate change on Arctic marine ecosystems and the broader Earth system.
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1.16 Research Questions

The classic paradigm that marine life comes to a standstill during Arctic winter has recently
been challenged by data showing that even during the polar night, zooplankton species were
active and feeding, and some key phytoplankton species were found to be widely distributed
in Svalbard waters (Berge et al., 2015a). The underpinning mechanisms and consequences for
Arctic marine biogeochemical cycles, ecosystem functionality and functions are still unknown.
The overall aim of this research project is to gain deeper insights into the key components
that drive the dynamics of Arctic microbial ecosystems. Special attention will be paid to the
transition period from the end of summer to the beginning of winter, which will be investi-
gated by analyzing time series data. This is crucial for understanding ecosystem dynamics,
predicting future changes, and informing strategies for conservation. This doctoral thesis will
investigate several critical research questions related to the influence of environmental factors
on phytoplankton and microbial communities in the Arctic Ocean.

RQ1: How do environmental conditions, including sea ice melt, influence the prevalence of
specific phytoplankton species in the Arctic, and how does the tolerance of different phyto-
plankton taxa to varying oceanographic conditions affect their ability to persist and spread in
Arctic waters?
Relevance: Recognizing the significance of environmental changes, particularly the melting
of sea ice, on phytoplankton dynamics in the Arctic is of utmost importance for Arctic ecology
and climate research. Phytoplankton serve as the cornerstone of Arctic marine ecosystems,
acting as primary producers that sustain higher trophic levels. Changes in phytoplankton
composition and distribution can have significant impacts throughout the food web, a"ecting
the abundance and distribution of marine organisms, from zooplankton to marine mammals.
Additionally, phytoplankton play a critical role in carbon cycling and the regulation of global
climate. Insights gained from studying the response of phytoplankton communities to environ-
mental changes provide valuable information for predicting and mitigating the ecological and
climatic consequences of ongoing Arctic warming and sea ice decline.
Our Approach: Our approach aims to comprehensively understand the environmental prefer-
ences of Arctic and Atlantic microbial communities and their spatial-temporal variations. We
have observed distinct microbial preferences for di"erent water regimes, such as mixed-layer
and meltwater regimes. Additionally, we have analyzed how microbial community composition
changes over space and time by comparing locations and years, which highlights the dynamic
nature of Arctic microbial ecosystems. We have thoroughly analysed the seasonal succession
of microbial communities and have identified clusters that represent synchronized occurrences
of microbes (see Chapter 2).

RQ2: How does the increasing influx of Atlantic water and changes in sea-ice cover affect the
distribution and ecological roles of prokaryotic communities in the Arctic Ocean, and what are
the implications for ecosystem dynamics?
Relevance: Understanding the ecological and dynamic changes in the Arctic Ocean as a result
of global warming is crucial for understanding ecosystem structure and function. By analyzing
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high-resolution data sets spanning several years and di"erent spatial and temporal scales, the
e"ects of Atlantic water inflow and sea ice loss on Arctic bacterial communities will be revealed.
Examining how microbial communities respond to changing environmental conditions provides
insight into shifts in bacterial populations, with densely ice-covered polar waters harboring
stable resident microbiomes, while the influx of Atlantic water leads to the dominance of
seasonally fluctuating populations. This allows the identification of characteristic bacterial
populations associated with di"erent environmental conditions and a better understanding
of their ecological roles. Importantly, the studies provide evidence for metabolic di"erences
between bacteria adapted to Arctic and Atlantic conditions, with implications for food webs
and biogeochemical cycles. Overall, this work provides new insights into Arctic ecology and
points to an ongoing biological atlanticization of the warming Arctic Ocean.
Our Approach: Our study aims to unravel the e"ects of Atlantification and sea-ice decline
on the composition, diversity, and functional capabilities of Arctic microbial communities. To
achieve this, we analyze high-resolution data spanning four years, including high-resolution
amplicon data and metagenomes generated from the East Greenland Current (EGC) and sup-
plemented with existing datasets from TARA Arctic (Gascard et al., 2008) and MOSAiC
(Mock et al., 2022). This approach allows us to assess how variations in sea-ice cover and
Atlantic water influx influence microbial community dynamics. By identifying microbial sig-
natures associated with specific environmental conditions and exploring their ecological roles,
we gain insight into the mechanisms driving changes in Arctic ecosystem dynamics in response
to ongoing environmental shifts (see Chapter 3).

RQ3: How do microbial communities assemble and function across seasonal and inter-annual
scales in the pelagic Arctic Ocean, and what are the underlying environmental drivers of these
dynamics?
Relevance: An understanding of the dynamics of microbial communities in marine ecosystems
is essential to comprehend how these ecosystems function and how they adapt to environmen-
tal change. This study highlights the seasonal and interannual dynamics of prokaryotic and
microeukaryotic communities in pelagic marine ecosystems of the Arctic. Using advanced
sampling techniques over a period of four years, the study reveals recurrent fluctuations in the
predominant populations and gene content of the community organised in di"erent seasonal
modules. The identification of distinct microbial signatures associated with specific environ-
mental conditions, such as the polar night and polar summer, emphasises the complex links
between taxonomy, function and oceanographic factors. These modules represent unique eco-
logical states that are influenced by specific microeukaryotic populations and environmental
conditions. Furthermore, the study reveals heterogeneous environmental selection processes in
these ecological states, providing valuable insights into the structural and functional organi-
sation of microbial communities in rapidly changing polar marine ecosystems. In conclusion,
this research contributes significantly to our understanding of how microbiomes respond to pro-
nounced environmental variability in understudied marine regions. Furthermore, this approach
is crucial, as microbial communities are not only defined by their taxonomic composition, but
also by their functional roles and interactions with the environment. By considering these
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multiple dimensions, the study contributes to a better understanding of microbial ecology and
ecosystem functioning.
Our Approach: The study utilizes a multi-faceted approach to explore microbial community
dynamics in the Arctic Ocean. Moorings with autonomous devices continuously monitor taxo-
nomic, functional, and environmental parameters over four years, o"ering high-resolution data.
Advanced sequencing methods provide detailed inventories of microbial taxa and gene content,
integrated with environmental data. Sophisticated analytical techniques like Fourier transfor-
mation and co-occurrence network analysis identify recurrent patterns, ecological states, and
environmental drivers, revealing insights into microbial community structure and function (see
Chapter 4).

RQ4: How do microbial communities in the Arctic Ocean respond to seasonal changes and
environmental shifts, and what are the key species driving these dynamics?
Relevance: Given the significant environmental changes currently occurring in the Arctic
Ocean, it is critical to gain a deeper understanding of how microbial communities respond in
order to accurately predict ecosystem resilience. Conventional analytical methods employed
to examine microbial communities often struggle to identify key species that are essential for
maintaining ecosystem stability. To address this challenge, we have developed an innovative an-
alytical approach that integrates co-occurrence networks, convergent cross mapping, and energy
landscape analysis. These methods enable the identification of seasonal microbial communities
and their interactions, providing a more comprehensive understanding of the complex dynamics
within these ecosystems. Convergent Cross Mapping Network enables the clear visualisation
of seasonal patterns in phytoplankton composition and species interactions. Additionally, a
"winter reset" phenomenon is revealed, influencing the dynamics of the community. Energy
landscape analysis also demonstrates the di"ering stability of winter communities compared to
summer communities. Identifying key species that determine microbial community dynamics
allows for the identification of species most sensitive to environmental change. An understand-
ing of these responses provides insight into potential impacts at higher trophic levels, which is
of importance to industries such as commercial fisheries and indigenous communities that rely
on Arctic marine resources.
Our Approach: Our approach focuses on understanding Arctic microbial communities’ re-
sponses to environmental changes by utilizing three advanced analytical methods. By integrat-
ing Co-Occurrence Networks, Convergent Cross Mapping, and Energy Landscape Analysis, we
identify key species driving community dynamics and assess ecosystem stability. With this
comprehensive approach, we can recognise seasonal shifts in microbial community interactions
and thus gain a deeper insight into how communities interact in the Arctic Ocean and what
e"ects changes can have (see Chapter 5).

RQ5: How can we quickly and efficiently pre-sort and analyze zooplankton images without
internet access and limited computing power on a ship?
Relevance: Zooplankton plays a crucial role in the marine ecosystem, exerting a significant
influence on food chains and the nutrient cycle. Nevertheless, the vertical distribution of
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these organisms is challenging to quantify. During an Arctic expedition, a device known as
the Lightframe On-sight Keyspecies Investigation (LOKI) is employed at various positions
to analyse the vertical distribution of zooplankton. The LOKI is a method of concentrating
zooplankton by means of a net, which leads to a flow chamber in which a camera records
images. The high-resolution images permit the identification of zooplankton taxa, frequently
to the genus or species level, and developmental stages. A considerable number of images
are generated during each expedition, necessitating manual analysis on board. This process
currently requires a significant amount of time and an internet connection. The advent of Big
Data and the use of AI in biology has led to an increased importance in the development of
data pipelines. This enables rapid, e"ective and time-saving analysis, allowing scientists to
gain an overview of the population at an earlier stage and make time-saving decisions on the
ship, for example with regard to the further course of the experiments.
Our Approach: To address the questions, we employed a two-step approach. Initially, we
implemented an automated deep transfer learning approach for pre-sorting the images based
on the preferred taxonomic level. Subsequently, we developed a graphical user interface and
validated our results with the state-of-the-art technology currently in use by the scientists on
the ship. This process not only o"ers a significantly faster alternative to manual classification
but also demonstrates greater accuracy compared to the software solution currently in use.
The solution can be executed on a standard MacBook, rendering it suitable for deployment in
remote locations lacking a stable internet connection, such as the Central Arctic. The algorithm
necessitates training with already sorted images, and the superior the training set, the more
accurate the prediction. Our model achieved an impressive accuracy of 83.9%, which is twice
as accurate as conventional methods such as EcoTaxa. Furthermore, AI can be employed
to identify anomalies and enhance data quality. This methodology is not dependent on the
system in question and can be employed with di"erent imaging systems, provided that su!cient
labelled data is available (see Chapter 6).
Within the framework of this research, three papers have been accepted for publication: Old-
enburg et al., 2023b, 2024b; Priest et al., 2023. In addition, two paper have been submitted
for publication: Oldenburg et al., 2024a; Priest et al., 2024.
Furthermore, two software projects based on the papers (DeepLOKI1), (otter2), have been
published under MIT license or will be after acceptance.

1.17 Outline of this thesis

The first chapter provides an overview of the Arctic Ocean and its vulnerability to climate
change. The text emphasises the importance of understanding the dynamics of phytoplankton
and bacterial communities in response to environmental change, particularly sea ice melt and
the influx of Atlantic water and the resulting atlantification. Moreover, the utilisation of
diverse methodologies to gain a more profound comprehension of the dynamics of microbial
communities and the significance of studying key species in Arctic microbial ecosystems will

1Source code: https://gitlab.com/qtb-hhu/qtb-sda/DeepLOKI,
2Source code: https://github.com/rakro101/otter,
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be elucidated. Furthermore, the development of an AI-based software framework for higher
trophic levels, such as zooplankton analysis, will be presented.
Chapter 2 investigates the impact of sea ice melt on phytoplankton dynamics in the Arctic
Ocean. It presents findings from a study conducted over two years at two mooring locations,
revealing the dominance of polar phytoplankton during periods of high diatom abundance and
the limited prevalence of temperate taxa. Furthermore, it discusses the Atlantification for the
northward expansion of temperate species.
Chapter 3 examines the influence of Atlantic water influx on Arctic bacterial communities. It
analyses data collected over four years to identify stable microbiomes in densely ice-covered po-
lar waters and fluctuating populations in regions with increased Atlantic water influx. Further-
more, the chapter explores the discovery of bacterial signature populations associated with dis-
tinct environmental conditions and metabolic disparities between Arctic and Atlantic-a!liated
bacteria.
Chapter 4 presents the investigation of microbial community dynamics in the Arctic Ocean,
revealing recurrent seasonal patterns and distinct ecological states over a four-year period.
Integrating taxonomic, functional, and environmental data, the study demonstrates heteroge-
neous environmental selection across seasons, with stronger functional than taxonomic selection
shaping microbial communities across pronounced environmental gradients.
Chapter 5 presents an analytical approach for identifying keystone species in Arctic microbial
ecosystems. It describes the methodology based on Co-Occurrence Networks, Convergent Cross
Mapping, and Energy Landscape Analysis. The chapter discusses the identification of keystone
species representative of di"erent trophic modes and explores seasonal patterns in microbial
phytoplankton communities and their interactions.
Chapter 6 introduces DeepLOKI, a software framework developed for analysing high-resolution
zooplankton images. It details the development process and validation of DeepLOKI us-
ing Deep Transfer Learning with a Convolutional Neural Network backbone. Additionally,
the chapter demonstrates DeepLOKI’s e!ciency in achieving high classification accuracy and
streamlining the annotation process for zooplankton research.
The concluding last chapter presents a synthesis of the principal findings from each preced-
ing chapter, together with an analysis of their implications for the understanding of Arctic
ecosystem functioning. It also outlines prospective avenues for future research, including the
application of analytical approaches to other Arctic regions and the integration of multi-omics
data for comprehensive ecosystem analysis. Finally, the chapter emphasises the continued
necessity for research in order to mitigate the impacts of climate change on Arctic marine
ecosystems.
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Chapter 2

Eukaryotes: Sea-ice melt determines
seasonal phytoplankton dynamics and
delimits the habitat of temperate Atlantic
taxa as the Arctic Ocean atlantifies

In this chapter, we present our use case concerning temperate eukaryotes at the F4 mooring:
Sea-ice melt acts as a barrier. Sea-ice melt determines seasonal phytoplankton dynamics and
delimits the habitat of temperate Atlantic taxa as the Arctic Ocean atlantifies.

Figure 2.1: Effects of meltwater and mixed layer conditions on temperate (dark
green) and polar (light green) taxa from 2017 to 2018. A-B: Similar abun-
dances observed in highly stratified meltwater and mixed layer regimes at cluster
F-06. C-D: Reduced abundances of temperate and polar taxa in di"erent regimes
at cluster H-06 (Oldenburg et al., 2023a).
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Chapter 2 Sea-ice melt determines seasonal phytoplankton dynamics

2.1 Sea-ice melt acts as a barrier establishment of temperate
Atlantic taxa in atlantified Arctic Ocean

In this section, we provide an overview of the contributions and impact of our paper (Oldenburg
et al., 2023a):

Ellen Oldenburg, Ovidiu Popa, Matthias Wietz, Wilken-Jon von Appen, Sinhue
Torres-Valdes, Christina Bienhold, Oliver Ebenhöh, Katja Metfies

“Sea-ice melt acts as a barrier establishment of temperate Atlantic taxa in atlantified Arctic
Ocean”

In: ISME Communications, 2024, 4(1)

Main Results in Simple Terms

During a two-year period, we conducted a study on phytoplankton in two locations (moorings)
in the Fram Strait. While this duration may not be enough to represent long-term changes, it
provided us with valuable insights into potential future outcomes. It is possible that climate
change could lead to the Arctic Ocean being ice-free during summer but ice-covered during
winter. Our research has shown that this melting ice has an impact on the eukaryotes, minus-
cule plant-like organisms in the water. Specifically, in 2017, we observed a higher concentration
of these organisms due to increased ice melt. It was found that certain eukaryote species are
more adapted to the conditions similar to the Atlantic Ocean, while others struggle in colder,
ice-covered waters. The study suggests that the melting of sea ice in the Arctic could hinder
the northward spread of certain phytoplankton species, potentially leading to long-term e"ects
on the ecosystem.

Summary/Abstract

The Arctic Ocean is one of the regions where anthropogenic environmental change is progressing
most rapidly and drastically. The impact of rising temperatures and decreasing sea ice on Arctic
marine microbial communities is yet not well understood. Microbes form the basis of food webs
in the Arctic Ocean, providing energy for larger organisms. Previous studies have shown that
Atlantic taxa associated with low light are robust to more polar conditions. We compared to
which extent sea ice melt influences light-associated phytoplankton dynamics and biodiversity
over two years at two mooring locations in the Fram Strait. One mooring is deployed in pure
Atlantic water, and the second in the intermittently ice-covered Marginal Ice Zone. Time-series
analysis of amplicon sequence variants abundance over a 2-year period, allowed us to identify
communities of co-occurring taxa that exhibit similar patterns throughout the annual cycle.
We then examined how alterations in environmental conditions a"ect the prevalence of species.
During high abundance periods of diatoms, polar phytoplankton populations dominated, while
temperate taxa were weakly represented. Furthermore, we found that polar pelagic and ice-
associated taxa, such as Fragilariopsis cylindrus and Melosira arctica, were more common in
Atlantic conditions, while temperate taxa, such as Odontella aurita and Proboscia alata, were
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less abundant under polar conditions. This suggests that sea ice melt may act as a barrier to
the northward expansion of temperate phytoplankton, preventing their dominance in regions
still strongly influenced by polar conditions. Our findings highlight the complex interactions
between sea ice melt, phytoplankton dynamics, and biodiversity in the Arctic.

Personal Contribution

EO conducted the data analyses. WJvA, CB, MW, STV and KM are responsible for the
sampling design. STV contributed nutrient data. WJvA contributed oceanographic data. EO,
KM and OP interpreted the data, conceptualized and drafted the manuscript. All authors
contributed to improving the final manuscript, by contributions to the scientific interpretation
of the data and the discussion of results.

Importance of the Research and Contribution to this Thesis

Therefore, it answers our first research question: Based on the findings of the paper, envi-
ronmental conditions such as sea ice melt have a significant influence on the prevalence of
specific phytoplankton species in the Arctic. The study observed that certain phytoplankton
taxa, particularly those associated with polar pelagic and ice-associated environments, were
more common in regions influenced by Atlantic water conditions. Conversely, temperate taxa
had limited potential to persist in colder, ice-impacted waters. This suggests that as sea ice
melts and Arctic waters experience changes in oceanographic conditions, there could be shifts
in the composition and distribution of phytoplankton communities. These changes may have
implications for the broader Arctic ecosystem, as the ability of di"erent phytoplankton taxa to
tolerate varying environmental conditions can a"ect their persistence and spread in Arctic wa-
ters. Overall, the study provides insights into the complex relationship between environmental
changes, phytoplankton dynamics, and ecosystem responses in the Arctic Ocean.
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Abstract
The Arctic Ocean is one of the regions where anthropogenic environmental change is progressing most rapidly and drastically. The
impact of rising temperatures and decreasing sea ice on Arctic marine microbial communities is yet not well understood. Microbes
form the basis of food webs in the Arctic Ocean, providing energy for larger organisms. Previous studies have shown that Atlantic taxa
associated with low light are robust to more polar conditions. We compared to which extent sea ice melt influences light-associated
phytoplankton dynamics and biodiversity over two years at two mooring locations in the Fram Strait. One mooring is deployed in pure
Atlantic water, and the second in the intermittently ice-covered Marginal Ice Zone. Time-series analysis of amplicon sequence variants
abundance over a 2-year period, allowed us to identify communities of co-occurring taxa that exhibit similar patterns throughout the
annual cycle. We then examined how alterations in environmental conditions affect the prevalence of species. During high abundance
periods of diatoms,polar phytoplankton populations dominated,while temperate taxawereweakly represented. Furthermore,we found
that polar pelagic and ice-associated taxa, such as Fragilariopsis cylindrus andMelosira arctica, were more common in Atlantic conditions,
while temperate taxa, such as Odontella aurita and Proboscia alata, were less abundant under polar conditions. This suggests that sea ice
melt may act as a barrier to the northward expansion of temperate phytoplankton, preventing their dominance in regions still strongly
influenced by polar conditions. Our findings highlight the complex interactions between sea ice melt, phytoplankton dynamics, and
biodiversity in the Arctic.

Keywords: climate change, time-series clustering, marine, Arctic aquatic communities, Atlantification, Fourier decomposition

Introduction
The Arctic is affected by rapid and drastic environmental changes.
For instance, air temperatures rise four times [1] as quickly in
the region compared to other regions on Earth [2]. Arctic sea ice
is one of the fastest changing components of the Earth system
[3]. Over the past decades, the area of Arctic sea ice declined at
a rate of ∼1 million km2 in area extent per decade [3, 4]. There
are indications for a 40% decline in ice thickness due to thicker
and older ice cover [5]. The geographical extent of warmer and
more saline Atlantic water is expected to expand northwards into
the Central Arctic Ocean (CAO), which consequently will become
warmer and saltier, further accelerating sea-ice decline [6]. This
process, called Atlantification of the Arctic Ocean [6], coincides
with altered physical conditions. Ecosystems shift towards amore
temperate state including the appearance and range expansion

of subarctic specie [7-12]. If the temperature increases and the
loss of sea-ice continue at their current pace, the Arctic Ocean
will likely be seasonally ice-free by 2050 [13]. In such a scenario,
sea-ice melt-related processes, such as melt-water stratification
of the upper layer of the ocean, that is currently observed in
the marginal ice zone (MIZ), might become more important over
more prolonged periods throughout the seasonal cycle, and a
larger geographic area, with ecological consequences for the Arc-
tic Ocean. The MIZ is usually covered with 15–80% sea ice [14-20]
and its distribution, thickness, and melt dynamics are key drivers
of productivity [21], carbon export, biogeochemical cycling, and
pelagic-benthic coupling. As a result of decreasing sea ice extent
and the expected Atlantification, larger areas of the Arctic Ocean
might become favorable for pelagic temperate phytoplankton. As
a study site, Fram Strait allows us to investigate the combined
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effects of Atlantification and seasonal ice cover on Arctic marine
ecosystems.Moorings with a suite of physical and biogeochemical
sensors, as well as autonomous sampling systems for molecular
biodiversity studies (Remote Access Sampler RAS), are positioned
at two different locations in Atlantic Waters of Fram Strait at
∼79◦N: central Fram Strait (mooring cluster “HG-IV”) and in the
eastern Fram Strait (mooring cluster “F4”) -see Figure 1. F4 is
located in the flow path of the West Spitsbergen Current (WSC).
HG-IV is located in the vicinity of the interface between the WSC
and the East Greenland Current (EGC). The WSC carries rela-
tively warm and salty Atlantic Water via Fram Strait northwards
towards the CAO, while the EGC exports cold ice-covered and less
saline Polar Water (PW) from the CAO through Fram Strait. In
the vicinity of HG-IV, some of the Atlantic Water (AW) is mixed
in an eddy-rich area [22] as part of a subduction process [23, 24]
with the outflowing colder and fresher water of the EGC. This
area is frequently characterized by major sea-ice melt events,
as sea-ice coverage regularly extends [25] into the WSC, which
carries temperate species towards the CAO.Thus, ecosystem func-
tionality in the vicinity of the MIZ in the WSC might serve as a
model for future biodiversity and ecosystem functionality in a
seasonally ice-free CAO impacted by Atlantification and thereby
inform on the potential of temperate taxa to thrive in a seasonally
ice-covered Atlantic-influenced Ocean [8, 26-28].

Over the past few decades, the transport of sea ice in both
volume and velocity towards Fram Strait increased in the area of
the Transpolar Drift due to the thinning Arctic pack ice [29-31].
This led to a significant south-eastward extension of the MIZ
into Fram Strait during certain years of the past decade. In 2017,
the MIZ extended into large parts of the WSC during summer,
including the two moorings [31]. Conversely, the 2018 ice export
was reduced to <40% relative to that between 2000 and 2017.

The associated meltwater-induced stratification promoted a
longer phytoplankton bloom with a relatively shallow extent
and reduced export flux [32]. The summer of 2018 had a mixed
layer regime (MLR) and a shorter, more intense bloom com-
pared to other periods. During the spring of that year, there
was also an increased carbon export to the deep sea [33]. The
particularly warm year of 2018 may reflect the conditions of
the CAO in the future. The native biodiversity of the commu-
nities is a key determinant of whether and how a community
or an individual organism can respond to changing abiotic con-
ditions [34]. We, therefore, expect that studying the microbial
communities and, in particular, comparing the seasonal dynam-
ics between the years 2017 and 2018 can greatly improve our
knowledge about the resilience of pelagic and sympagic organ-
isms and how microbial diversity and seasonality scale with the
environmental variability. Molecular biodiversity research using
ribosomal meta-barcoding has substantially improved our com-
prehension of marine microbial diversity and distribution pat-
terns during the last 20 years. [35, 36]. As part of the FRAM Infras-
tructure Program (Frontiers in Arctic Marine Monitoring) and the
long-term ecological research site LTER HAUSGARTEN, activities
in Fram Strait provide information on Arctic marine eukaryotic
microbial biodiversity and biogeography based on annually recur-
ringmeasurements (since 1999) recently expanded by year-round,
continuous sampling since 2016.We hypothesize that biodiversity
and seasonal succession in the Fram Strait are strongly impacted
by sea-ice melt and the extent of stratification [37].

In this study,we exploit this wealth of data through a combina-
tion of statistical and bioinformatic approaches. The continuous
data collected over two years were decomposed using a Fourier
transformation into a series of sinusoidal functions. Each function

represents a specific amplicon sequence variant (ASV) dynamic
over time. By clustering the ASVs based on their seasonal fluctua-
tion patterns, it became possible to analyze the impact of different
water regimes that occurred in 2017 and 2018, as reported in
Appen et al. 2021 [32], on both species and community levels.
We could elucidate the effects of sea-ice melt on the seasonal
dynamics of the associated eukaryotic microbial communities
as key drivers of phytoplankton bloom phenology. By assessing
the contribution of polar and temperate phytoplankton taxa to
eukaryotic microbial communities in the WSC over the annual
cycle, we infer the potential of polar taxa to thrive in ice-free
Atlantic water and temperate taxa to expand to areas impacted
by sea-ice melt.

Materials and methods
Sampling
The samples analyzed in this study were collected using McLane
Remote Access Samplers (RAS) deployed in conjunction with
other oceanographic sensors over three individual annual cycles
from June 2016–August 2019 on long-term moorings at stations
HG-IV (79.0118 N 4.1666E) and F4 (79.0118 N 6.9648E) of the
LTER HAUSGARTEN and FRAM in the Fram Strait [38]. This study
covers the period from January 2017 to December 2018, i.e., two
calendar years. One RAS was deployed at a depth between 24–
29 m at HG-IV and another at 23-26 m - at F4. The RAS samplers
contained 48 sterile bags, each collecting water samples of 500mL
at programmed sampling events every two weeks. Samples were
preserved by adding 700 µl of half-saturated mercuric chloride
(7.5%w/v) to the bags prior to sampling.A sample reflects the pool
of up to two samples collected one hour apart in two individual
bags. Following the recovery of the RAS devices, water samples
were filtered using Sterivex filter cartridges with a pore size of
0.22µm(Millipore,USA). Filterswere then stored at−20◦C for later
processing.

Mooring and satellite data
Temperature, salinity, and dissolved oxygen concentration were
measured with a CTD-O_2 attached to the RAS frame. Physical
oceanography sensors were manufacturer-calibrated and pro-
cessed as described in [39]. Raw and processed mooring data are
available at PANGAEA https://doi.org/10.1594/PANGAEA.904565,
https://doi.org/10.1594/PANGAEA.940744, https://doi.pangaea.
de/10.1594/PANGAEA.941125. For chemical sensors, raw sensor
readouts were used. The fraction of Atlantic and PolarWater were
computed for each sampling event following [23] and reported
alongwith distance below the surface (due tomooring blowdown).
Sea ice concentration derived from the Advanced Microwave
Scanning Radiometer sensor AMSR-2 [40] were downloaded
from the Institute of Environmental Physics, University of
Bremen (https://seaice.uni-bremen.de/sea-ice-concentration-
amsr-eamsr2). Sentinel 3A OLCI chlorophyll surface concentra-
tions were downloaded from https://earth.esa.int/web/sentinel/
sentinel-data-access. For all satellite-derived data, we considered
grid points within a radius of 15 km around the moorings. Similar
to van Appen et al. 2021 [41], the analyzed datasets consist of
ten environmental values for the two locations, F4 and HG-IV,
from 01.01.2017 to 31.12.2018. From this dataset, we retrieved the
following variables: water temperature (temp ◦C), fluorescence
chlorophyll concentration from in situ sensor (chl_sens ∼µg l−1),
daylight (daylight h), water depth (depth m), ice concentration
(iceConc %), ice distance (IceDist to 20% ice concentration km),
mixed layer depth (MLD m), partial pressure of CO2 (pCO2_conc
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Figure 1. Map of mooring locations, major currents, and water depths in Fram Strait. The main currents in the area are illustrated schematically:
West Spitsbergen Current (WSC) in red and East Greenland Current (EGC) in blue. The locations of the moored remote access samplers discussed in
this study are marked in black for HG-IV and F4. F4 is located in the WSC and HG-IV west of the WSC. Land is displayed in gray and the different water
depths in a white-blue color gradient.

µatm), O2 concentration (O2 _conc µmol l−1), polar-water fraction
(PW_frac %).

DNA-extraction and Illumina
amplicon-sequencing of 18S rRNA genes
Isolation of genomic DNA was carried out using the PowerWater
kit (Qiagen, Germany) following the manufacturer’s protocol.
Obtained DNA was quantified using Quantus (Promega, USA)
and stored at −20◦C. 18S rRNA gene fragments from the
hypervariable V4 regionwere amplified by polymerase chain reac-
tion (PCR) with primers 528iF (GCGGTAATTCCAGCTCCAA) and
926iR (ACTTTCGTTCTTGATYRR). illuminaNextV4F (TCGTCGGCA
GCGTCAGATGTGTATAAGAGACAGGCGGTAATTCCAGCTCC) and
illuminaNextV4R (GTCTCGTGGGCTCG-GAGATGTGTATAAGAGAC
AGGGCAAATGCTTTCGC) [42]. All PCRs had a final volume
of 50 µL and contained 0.02 U Phusion Polymerase (Thermo
Fisher, Germany), the 10-fold polymerase buffer according to
manufacturer’s specification, 0.8 mM each dNTP (Eppendorf,
Germany), 0.2 µM L−1 of each primer, and 1 µL of template
DNA. PCR amplification was performed in a thermal cycler
(Eppendorf, Germany) with an initial denaturation (94◦C, 2 min)

followed by 35 cycles of denaturation (94◦C, 20 sec), annealing
(58◦C, 30 sec), and extension (68◦C, 30 sec) with a single final
extension (68◦C, 10 min). The PCR products were purified from
an agarose gel 1% [w/v] with the NucleoSpin Gel Kit (Macherey-
Nagel, Germany) and Mini Elute PCR Purification kit (Qiagen,
Germany). Subsequently, DNA concentrations were determined
using a Quantus Fluorometer (Promega, USA). Prior to library
preparation, DNA fragments were diluted with TE buffer to a
concentration of 0.2 ng µL−1. Libraries were prepared according
to the 16S Metagenomic Sequencing Library Preparation protocol,
and sequenced using MiSeq (Illumina, USA) in 2x300 paired-
end runs. Sequence data are available under ENA BioProjects
PRJEB43889 and PRJEB43890.

Sequence analysis
After primer removal using cutadapt [43], reads were processed
into amplicon sequence variants (ASVs) using DADA2 v1.14.1
[39], as described in Wietz et al [44]. Briefly, reads were trimmed
based on quality profiles, with filtering settings truncLen=c(250,
200), maxN=0, minQ=2, maxEE= c(3, 3), and truncQ =0. Followed
by merging (minOverlap=20) and chimera removal, reads were

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae027/7614855 by guest on 30 M
arch 2024

Chapter 2 Sea-ice melt determines seasonal phytoplankton dynamics

36



4 | Oldenburg et al.

taxonomically classified using PR2 v4.12 [45]. The herein reported
data has been processed in the scope of autonomous eDNA biodi-
versity analyses within the FRAMObservatory, as described under
https://github.com/matthiaswietz/FRAM-RAS_eDNA.

Analysis strategy and R packages
All calculations were performed in R version 4.1.3 (2022-03-10).
The complete analysis pipeline is available at https://gitlab.com/
qtb-hhu/qtb-sda/framstrait_1718. Analysis and plotting tools
used for this work are available in a git repository with scripts
and an R package. Fourier decomposition was performed with the
segmenTier R package [46], available at https://cran.r-project.org/
package=segmenTier. The dynamics of eukaryotes were analyzed
using the Fourier-transformed time series signals of the relative
abundance information. As part of biodiversity, relative species
abundance refers to the extent to which a species is common or
rare relative to other species in a particular location or community
[47]. Relative abundance is the percentage composition of an
organism of a given species relative to the total number of
organisms in that habitat. The data were interpolated on daily
bases.

Time series analysis
The use of Fourier decomposition for time series signals is a
common technique to obtain temporal profiles of data that con-
tain seasonal patterns. In this study, we used this technique
to identify and describe the seasonality of several species, as
also described in Priest et al. [48]. For each amplicon sequence
variant we extracted the time series signal from the relative
abundance data using a Fourier approach implemented in the R
package segmenTier / segmenTools [49]. The Fourier technique is
decomposing signals into the sum of their frequency components,
characterized by sine and cosine functions. The Fourier Theorem
states that any function can be rewritten as the sum of sinusoidal
functions. The approximation becomes more accurate with each
additional series element. These elements are called Fourier com-
ponents.

A measurement for seasonality s for the times series t was
calculated by the following formula:

s(t) = |f2(t)|
|f0(t)|

, (1)

where fi is the i-th fourier component of the times series t and |·|
is the absolute value function [50, 51].

After the Fourier transformation, the frequency, amplitude,
and phase information of each particular ASV time signal was
extracted. These values indicate the seasonality, abundance
strength, and time of occurrence within the measured period.

Cluster definition
Species with similar temporal pattern were grouped into co-

occurrence clusters. The choice for the parameter N=10, the
number of clusters for both locations, was chosen to keep the
cluster comparable. The metric (Bayesian Information Criterion -
BIC) of the applied clustering algorithm proposes a value around
9 and 10 as the optimal cluster number. Groups of species with
similar time signals were identified by a clustering approach in
the segmenTools R package [49]. The significance of overlapping
clusters (shared members by two clusters), illustrated as a color
gradient, is calculated based on the negative logarithm of the
p-value and the number of overlapping features. All identified
clusters were classified into low-light, high-light, and mixed-
light clusters depending on the light conditions in which their

members show the highest abundance. Further, all clusters were
named depending on the mooring (H for HG-IV and F for F4)
and numbered in ascending order depending on the phase of the
sinusoidal function, which was calculated for each cluster from
the average of the cluster members. Therefore, the order of the
numbers indicates the order of occurrence within the year.

Co-occurrence of ASVs
In contrast to earlier investigations that depended on Pearson
correlation for pairwise comparisons of relative abundance values
to deduce co-occurrence patterns our methodology utilized
Fourier decomposition of time series data [52-54]. This allowed the
extraction of unique temporal profiles for each Amplicon
Sequence Variant (ASV). By applying correlation analysis to these
individual profiles, we effectively mitigated the inherent bias
associated with utilizing Pearson correlation on compositional
data [55] .

Conditions preference
To assess the population’s annual abundance, we computed
the sum of relative abundances for each Amplicon Sequence
Variant (ASV) within a specified timeframe. Total abundance
values were separately calculated for the F4 and HG-IV locations.
Subsequently, entries with zero abundance were excluded to
prevent division by zero, and we determined the abundance
quotients for 2017 and 2018, as well as the reverse calculation.
The log2(quotient) values were categorized as meltwater regime
(MWR) or MLR based on whether they were greater than or equal
to 1 or less than or equal to −1, respectively. ASVs not meeting
either condition were assigned to the unspecified group. To gauge
the dissimilarity between locations in a given year for a specific
group of ASVs, we defined four quotients as follows:

p
(
x, y

)
= MWR|x

MWR|y
, x ∈ X, y ∈ Y, (2)

t
(
x, y

)
= MLR|x

MLR|y
, x ∈ X, y ∈ Y, (3)

where X= {F417, F418}, Y = {HG-IV17, HG-IV18}, and MWR (MLR)
containing all MWR (MLR) ASVs relative two-year abundances.
The restriction is defined by selecting only the ASV abundances
from the given time and location.

• p(F42017, HG-IV2017) correspond to the ratio of F4 to HG-IV
for species preferring the MWR in 2017.

• p(F42018, HG-IV2018) correspond to the ratio of F4 to HG-IV
for species preferring the MWR in 2018.

• t(F42017, HG-IV2017) correspond to the ratio of F4 to HG-IV
for species preferring the MLR in 2017.

• t(F42018, HG-IV2018) correspond to the ratio of F4 to HG-IV
for species preferring the MLR in 2018.

To compare how much the MWR is favoured on average versus
a MLR within a given site, we define the following equations:

q(z) =
1

|MWR| z |
∑

i∈ MWR|ziMWR|z
1

|MLR| z |
∑

h∈ MLR|zhMLR|z
, z ∈ Z, (4)

where Z= {F417, F418, HG-IV17, HG-IV18}, and MWR (MLR) con-
taining all MWR (MLR) ASVs relative two-year abundances. The
restriction is defined by selecting only the ASV abundances from
the given time and location and iMWR (hMLR) is the i-th (h-th)
relative two-year abundance from the MWR (MLR) ASV.
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Figure 2. Environmental data for the F4 (dark orange) and HG-IV (blue) location from 2017 to 2018. The x-axis indicates the period from 01.01.2017
to 31.12.2018. The y-axis indicates: A: Mixed layer depth (Minimum of the estimated MLD) [m] B: Distance to 20% ice concentration (*) [m] C: Sea ice
concentration [%] D: Temperature [◦C] E: Polar water fraction [%] F: Chlorophyll a concentration (**) [µL–1] *Negative values indicate that the ice edge is
south east of the mooring points at the blue curve March 2017 to September 2017) **Sensor did not work before August 2017.

• q(F42017) corresponds to the ratio for meltwater preference
over mixed-layer in 2017 at station F4.

• q(F42018) corresponds to the ratio for meltwater preference
over mixed-layer in 2018 at station F4.

• q(HG-IV2017) corresponds to the ratio for meltwater prefer-
ence over mixed-layer in 2017 at station HG-IV.

• q(HG-IV2018) corresponds to the ratio for meltwater prefer-
ence over mixed-layer in 2018 at station HG-IV.

Cross-condition analysis
To investigate how the dynamics of a particular ASV with a
preference for a specific water regime change under the con-
ditions of the opposite water regime, we determined and com-
pared the area under the curve (AUC) from the relative abun-
dance within a time range of 365 days. For that, we used on
a daily level interpolated abundance data to which we applied
a polynomial function and calculated the AUC for each year
separately. Afterward, we compared the ratio of the AUC val-
ues between the years to illustrate prosperity differences that
are related to the environmental conditions of the individual
year.

Results and discussion
Environmental conditions
A pronounced extension of the ice edge/MIZ into the WSC during
the first half of 2017, compared to 2018, led to different environ-
mental conditions in this part of the eastern Fram Strait. That
MLR was similar to that expected for a seasonally ice-free Arctic
Ocean, impacted by Atlantification. More specifically, eastern
Fram Strait experienced extended sea ice melt during spring and
early summer 2017. According to van Appen et al. 2021 [32], there
were significant differences in environmental conditions between
2017 and 2018, with station HG-IV exhibiting more pronounced
differences compared to the pure AtlanticWater station F4.This is
best reflected by variability in the fraction of PolarWater, distance
to the ice edge, ice concentration, and water column stratification
(Fig. 2).

At HG-IV, the mixed layer depth was overall shallower from
January to May 2017 compared to 2018 and F4 due to higher
ice concentrations. Moreover, HG-IV was frequently impacted by
the intrusion of Polar Water (PW) throughout the annual cycle,

which is common for this region. Higher fractions of PW were
observed for the period’s March, July to August, and November–
December of 2017 compared to 2018, according to the RAS data.
The intrusion of PW led to lower water temperatures. At HG-
IV, temperatures were lower in spring 2017 compared to 2018—
ice distances, defined as the distance to 20% ice coverage. At
HG-IV, the distance to the ice edge was shorter in 2017 than in
2018 until August but was similar during the remaining months
(Figure 2). From mid-August to November; water temperatures
were higher in 2017 compared to 2018. In 2017, there was higher
ice cover in Fram Strait and subsequent ice melt, resulting in
a highly stratified melt water regime (MWR). In contrast, in
2018, an unstratified mixed layer dominated regime (MLR) was
present [32].

At F4, ice distances were not significantly different between the
two years. However, water temperatures were higher in 2017 com-
pared to 2018 frommid-August to November. In this investigation,
Station F4 serves as a reference for typical Atlantic environmental
conditions for both years.

In the following section, we examined the behavior of eukary-
otic microbes under distinct water regimes, namely meltwater
andmixed layer conditions. To achieve this, we employed a top-
down structure to delineate the temporal abundance changes
for: (i) all ASVs, (ii) specific ASV clusters, and (iii) individual
representative species.

Preference of eukaryotic microbes for the
different water regimes
There is a remarkable similarity in species composition between
the two stations. A total of 50% (583) of all ASVs under inspection
were detected at both stations, which we refer to as the core com-
munity. In contrast, 22% were unique to F4 (254 ASVs) and 28%
to HG-IV (320 ASVs) (Figs S5 and S2). To determine the preferred
water regime formicrobial eukaryote taxa,we calculated the total
relative abundance of each ASV per year and compared them
between both years. This comparison was only possible at station
HG-IV due to the differing conditions in both years.To achieve this,
we sorted the ASVs into three groups based on the preferredwater
regime: the unstratified MLR, the highly stratified MWR, and an
unspecified group. The MLR group comprises all temperate taxa,
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Figure 3. Effects of meltwater and mixed layer conditions on temperate (dark green) and polar (light green) taxa. The x-axis shows the months January
through December from 2017 through 2018. The green areas reflect the relative abundances of temperate (dark green) and polar (light green) taxa.
Since the data is relative, no quantification is given on the y-axis. The relative abundance curves of A and B were derived from water column samples
from cluster F-06, and C and D from cluster H-06. A: Polar and temperate taxa are observed in similar abundances in the highly stratified meltwater
regime at F4 in 2017. B: Similar abundances for polar and temperate taxa in the mixed layer regime at F4 in 2018. C: Reduced abundance of temperate
taxa in the meltwater regime with high stratification at HG-IV in 2017.D: Reduced abundance of polar taxa in the mixed layer regime at HG-IV in 2018.

which were twice as abundant in HG-IV-2018 compared to HG-
IV-2017 (n=67 [11.49% of the core community]). In contrast, ASVs
that were twice as abundant in HG-IV-2017 compared to HG-IV-
2018 belong to the MWR group (n=94 [16.12% of the core com-
munity]), which are referred to as polar taxa. The remaining ASVs
were classified as an unspecified group (n=422 [72.38% of the core
community]). In the following steps, we focused on species that
are sensitive to one of the water regimes that occurred. Notably,
we identified 161 species in this study that showed a preference
for a specific regime. These species were distributed between the
MLR group (41.62%) and the MWR group (58.38%) (Table S5]).

Cross spatio-temporal comparison
We compared both groups (MLR & MWR) to identify differences
attributed to either location, HG-IV vs. F4 (Fig. 1), or the varying
conditions between 2017 and 2018 (Fig. 3). To do so, we conducted
two types of comparisons: (i) within each year, we compared the
stations to each other and (ii) within each station, we compared
the data from 2017 and 2018. First, we compared the relative
abundance differences in 2017 between stations. We calculated
the median of the MLR group and MWR group, respectively, and
compared them. Our results showed that the median differences
between the locations (Fig. 3A-D) of species favouring mixed-
layer were 1.54 times larger than the median differences of the
species favouring meltwater in 2017 (Table S5; see methods for-
mula (2,3)). Furthermore,we confirmed this observation regarding
the different medians by comparing the relative abundances
of each ASV member in the aforementioned groups (one-sided
Kolmogorov–Smirnov test P-value: 3.13E-05). In the next step, we
repeated the same analysis for the year 2018.

In contrast to 2017, the median differences in 2018 of the
meltwater-favouring species were 2.78 times greater than the

median differences of themixed-layer favouring species (Table S5;
see methods formula (2,3)). Also, in this case, comparing the
relative abundance of the particular ASVs could support this
observation (one-sided Kolmogorov–Smirnov test P-value: 1.376E-
14). Once we had distinguished dissimilarities among the stations,
our attention turned to describing dissimilarities over the years
(Fig. 3 A-D). This was motivated by the different water regimes
observed in 2017 and 2018 [32]. Consequently, this examina-
tion enabled us to demonstrate how species abundance is influ-
enced by varying environmental circumstances. Therefore we
compared the relative abundance ratio of each group (MLR,MWR)
between years (2017 vs. 2018). The difference between the two
years (2017 and 2018) for each groupwas less significant at station
F4 (MWR=1.23 andMLR=0.60),whereas at HG-IV, the discrepancy
was approximately four times higher than that observed at F4
for the same years (MWR=2.13 and MLR=0.27), see Table S5.
As a result for the following analysis, we used station F4 as a
reference for constant environment because it is less influenced
bymeltwater conditions. In contrast, the HG-IV location offers the
opportunity to study the effects of Atlantification in a seasonally
ice-coveredArctic Ocean, conditions that are expected for the CAO
in the near future [56]. For that, we examined how each other’s
water regimes affected the relative abundance of the respective
ASV. We aimed to determine whether polar or temperate ASVs
were more resilient to the opposing condition. For the analysis,
we specifically selected ASVs that are known to grow in polar or
temperate conditions [57-64].

Seasonal succession of eukaryotic microbes
To understand the seasonal succession of eukaryotic microbes,
we analysed the phases obtained from the sinusoidal function
after Fourier transformation. This allows us to determine the
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Figure 4. Time-Series Clustering for both moorings spanning the years 2017-2018. The x-axis indicates the period from 01.01.2017 to 31.12.2018.
Black sinusoidal curves show the predicted seasonality of the entire cluster based on the dominant Fourier component. The respective relative
abundance is shown for each cluster on the left yaxis. Cluster names are shown on the right. The clusters are sorted by phase which illustrates the
time of maximal abundance of each community. Clusters are colored according to the three classes HL (green), LL (grey), and NA (white) introduced in
the text. A: HG-IV, B: F4.

chronological timeline of the species in this region. Ten clusters of
seasonally synchronized and ordered occurrences of eukaryotic
microbial species were identified through community detection
analysis of time-series data from the F4 and HG-IV moorings,
which included 837 and 903 ASVs, respectively (Fig. 4, Table 1).
The frequency obtained from the sinusoidal function (light grey)
shows the number of high abundance periods of each community
per year. Most clusters (85%) had two maxima, indicating that
most organisms exhibit a seasonal occurrence with the highest
abundance once a year (Fig. 4, Table 1). We divided the clusters
based on their high abundance period into two classes of light
conditions. The low-light (LL 0–2 hours sunlight per day) clusters
include species with a high abundance phase in the low-light
period from October to March when water temperature and dis-
tance to the ice edge are low. The high-light class (HL 2–24 hours
sunlight per day) includes clusters, in which the high abundance
phases coincide with the high-light period fromMarch to October.
All other clusters are collected in the mixed light (NA) class. This
distinction allowed us to test the succession of the organisms
regarding environmental factors per light condition separately. To
investigate the commonalities and differences between the two
moorings, we compared the species distribution in terms of abun-
dance and seasonality. This analysis also enabled us to assess the
succession and prosperity of common species in relation to the
varying water regimes. In addition, we compared the time series

cluster composition fromHG-IV and F4with each other to identify
overlapping communities between both locations. For example,
the similarity in cluster composition between the two moorings
was highest during the high-light period, particularly between
clusters H-06 and F-06 and clusters H-08 and F-08 (Fig. 5). The
presence of these common ASVs at both mooring sites can be
explained by a similar trend in the transportation of temperate
organisms through the northward-flowing warmer Atlantic and
the transportation of polar organisms through the intrusion of
polar water from EGC. This pattern was also observed for zoo-
plankton [65, 66]. On the other hand, the varying quantities of
ASVs reaching each station because of variations in the influence
of the two currents may also explain the biodiversity observed at
these two locations (Fig. S1).

Low-light period
During the low-light period from October to March, four distinct
clusters (F-01, F-02, F-03, F-04 at F4; H-02, H-03, and H-04 at HG-
IV) exhibited an ordered appearance, collectively representing
around 40% of the total ASVs and 50% of the total reads at both
stations. The clusters were dominated by heterotrophic Dinoflag-
ellates, parasitic Syndiniales, and other small heterotrophic
flagellates like MAST and Picozoa (Fig. S4). This composition
aligns with previous reports of microbial diversity during the low-
light period in the Arctic Ocean [66-68], possibly linked to feeding
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Table 1. Cluster overview with the 10 clusters for the moorings F4 and HG-IV.

Name Type #Peaks cl_size cl_size % s-score AUC17 AUC18 AUC17/18 AUC18/17 MS(abs) MS(rel)

H-01 NA 2 72 9 0.18 6.9837 8.8812 0.7863 1.2717 12 16.67
H-02 LL 1 68 8 0.39 1.81 1.0084 1.7949 0.5571 52 76.47
H-03 LL 2 151 18 0.44 4.4387 4.1164 1.0783 0.9274 41 27.15
H-04 LL 2 50 6 0.83 1.7481 0.7188 2.432 0.4112 28 56
H-05 HL 2 76 9 0.33 5.2585 5.1262 1.0258 0.9748 37 48.68
H-06 HL 2 87 10 0.41 4.1827 4.7476 0.881 1.1351 21 24.14
H-07 HL 2 65 8 0.2 6.0155 6.5539 0.9179 1.0895 13 20
H-08 HL 2 113 14 0.32 6.6398 4.405 1.5073 0.6634 23 20.35
H-09 HL 2 33 4 0.53 7.9501 4.5641 1.7419 0.5741 9 27.27
H-10 HL 2 122 15 0.41 5.0174 5.0116 1.0012 0.9988 18 14.75
F-01 LL 2 27 3 0.66 0.6775 2.8243 0.2399 4.1687 26 96.3
F-02 LL 2 144 16 0.39 5.4081 5.1656 1.0469 0.9552 48 33.33
F-03 LL 2 33 4 0.46 3.289 1.228 2.6783 0.3734 18 54.55
F-04 LL 2 168 19 0.75 2.9621 1.8344 1.6148 0.6193 94 55.95
F-05 NA 1 61 7 0.06 6.194 5.2571 1.1782 0.8487 11 18.03
F-06 HL 2 109 12 0.58 3.9653 4.1903 0.9463 1.0567 37 33.94
F-07 NA 4 53 6 0.13 3.4143 3.529 0.9675 1.0336 24 45.28
F-08 HL 2 142 16 0.58 4.8684 4.4017 1.106 0.9041 26 18.31
F-09 NA 2 36 4 0.17 5.6129 7.6206 0.7365 1.3577 8 22.22
F-10 HL 2 130 12 0.34 7.0415 7.0604 0.9973 1.0027 28 21.54

The cluster names, light types (high-light (HL), low-light (LL), mixed-light (NA)), the number of peaks and the total cluster size of ASV and the percent size, the
s-score that measures the seasonality, the area under the curve (AUC) for both years (see methods), the quotients of those years and the number of ASV that
only occur on this mooring: absolute (MS(abs)) and relative values (in %) (MS(rel)) (MS: mooring specific).

Figure 5. Cluster overlap between F4 and HG-IV locations. The clusters
of F4 are plotted on the y-axis against the clusters of HG-IV. The
numbers inside the boxes indicate how many ASVs are shared between
two clusters The clusters of each location are sorted according to their
classes: low-light (grey box frame), mix-light (white box frame) and
high-light (green box frame) from top to bottom (F4) and from left to
right (HG-IV). The background color of the boxes shows the significance
of the overlap from dark (highly significant) to white (non significant).

on bacteria [67].Notably, diatomASVswere present in all low-light
clusters, exhibiting substantial relative abundances, with higher
proportions at HG-IV compared to F4 (Fig. S4). These diatoms,
including ice-associated genera such asMelosira arctica,Navicuales
sp., or Attheya sepentrionalis (Fig. S4 Table S4), are adapted to low
light and colder temperatures [69] or residing under the ice [70].
The source of these diatoms in the water column during winter at
HG-IV is attributed to physical exchange processes at the water-
sea ice interface and advection. The persistence of diatoms, par-
ticularly Bacillariophyceae, during the polar night in ice-covered
waters has been observed previously [67] and their survival

strategies, possibly involving resting stages like spores or cysts
[71]), influence the composition of Arctic phytoplankton during
early spring. Thistaxon-specific survival contributes to diatoms
gaining a competitive advantage in the Arctic phytoplankton
community when sunlight returns, facilitated by their chlorophyll
storage throughout the polar night [72].

High-light period
The high-light period (March to October), distinct clusters (F-
06, F-08, F-10 at F4;H-05, H-06, H-07, H-08, H-09, H-10 at HG-IV)
sequentially emerged, collectively constituting ∼50% of mooring-
specific ASVs (Table 1). The community composition of the ear-
lier high-light clusters in 2017 at HG-IV resembled that of early
high-light in 2018 at F4 (Fig. 5), suggesting a shared community
initiation (Table S3, Table S4). Throughout this period, diatoms,
alongside dinoflagellates and other autotrophic taxa, were preva-
lent (Fig. S4, Table S3). Diatom sequences exhibited a sequen-
tial appearance during spring, aligning with Arctic diatoms like
Fragilariopsis cylindrus, Bacillaria paxilifer, Chaetoceros neogracilis, and
Grammonema striatula [73-75] (Table S3) Their major contribution
to the pelagic spring bloom emphasized the polar character of
the spring bloom community at HG-IV [7, 27, 76]. Notably, Gram-
mononema striatula and C. neogracilis, polar taxa, were abundant
in the first high-light cluster (F-06) at. In contrast to the Arctic
diatoms dominating the spring bloom at HG-IV, the temperate
diatom Odontella aurita [77] ranked among the five most abun-
dant diatoms in the early spring cluster at F4. This suggests the
influence of AtlanticWater, transporting organisms fromwarmer,
temperate waters (Fig. 6). O. aurita, a key contributor to spring
blooms in the German Bight [78], further supports the idea that
it thrives in warm, nutrient-rich waters.

Differences in diatoms community composition between F4
and HG-IV became more pronounced in the late summer clusters
(H-08 and F-10),which peaked after July.ClusterH-08 atHG-IVwas
dominated by sea-ice-associated diatoms like Melosira arctica and
related taxa [70], comprising 57% of the total diatom abundance
in this cluster (Table S4 H-08). In contrast, the late cluster F-10 at
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Figure 6. Correlation between the relative abundances of selected ASVs in 2017 vs 2018: The diagonal (blue line) indicates the line on which
abundances in 2017 and 2018 would be identical. On the left side (first and second columns) selected polar taxa are displayed, where the first column
shows the species at HG-IV and the second column the same ASV at F4. The right side shows selected temperate taxa, where the third column
displays species at HG-IV and the fourth column the same ASV at F4. The dots indicate: Fragilariopsis cylindrus (ASV207: H-08, F-10), Fragilariopsis
cylindrus (ASV16: H-05, F-02), Bacillaria paxillifer (ASV98: H-03, F-06), Chaetoceros neograciis (ASV17: H-05, F-06), Grammonema stratula (ASV33: H-05,
F-06), Odontella aurita (ASV96:H-05, F-06), Corethron hystrix (ASV172: F-10), Proboscia alata (ASV947: F-06), Color bar and colored dots indicate month
of the year from blue (winter) to red (summer).

F4 was dominated by Pseudonitzschia sp. representing 38% of the
total diatom abundance (Table S4 F-10). The late summer cluster
F-10 at F4 also contained significant quantities of Corethron hystrix
and Proboscia alata, two diatoms thriving in temperate waters [79,
80] highlighting the influence of Atlantic Water on the diatom
community at F4. Cluster H-09 at HG-IV, representing 28% of the
total abundance of diatoms (Table S3), was dominated by the

genus Pseudonitzschia, known for year-round blooms with peaks
in late August or early September [81]. Studies have shown that
this diatom undergoes blooming throughout the year, typically
exhibiting a minor bloom in June, followed by a more substantial
bloom in late August or early September [81]. Other major Arctic
pelagic autotrophs, such as Phaeocystis sp., Chaetoceros socialis and
Micromonas sp., were predominantly found in clusters with high
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Figure 7. Biplots for both mooring and both years: First PCA component plotted versus the second PCA component of the abundance values for the
ASV and the environment conditions on monthly bases aggregated. The arrows correspond to the most relevant features. The length of the arrow
corresponds to the feature importance associated with this arrow. A: HG-IV 2017, B: HG-IV2018, C: F4 2017 and D: F4 2018.

light levels (Table S3). Specifically, Phaeocystis pouchetii was most
abundant in early spring clusters (H-05 and F-06) accounting for
16% and 11% of the total abundance, respectively (Table S3 H-
05, F-06), consistent with findings from the Western Spitsbergen
Current (WSC) and under the ice north of Svalbard [82, 83].

Impact of sea-ice melt on seasonal
phytoplankton dynamics and consequences for
bloom phenology in Atlantic waters
The different environmental conditions observed in 2017 and 2018
did not seem to affect the order of the annually recurring commu-
nity clusters at F4 and HG-IV. Instead, changes in environmental
conditions resulted in differences in their persistence, abundance
amplitude, and integrated abundances (Fig. 4 A and B). At F4,
environmental conditions during the high light periods of 2017
and 2018 were similar. In consequence, the integrated seasonal
cluster abundance, reflected by the area under the curve, did
not significantly change from one year to the other (Table 1). In
contrast, we observed differences between both years for HL and
LL periods at HG-IV (Fig. 7). According to our data, the changes in
environmental conditions, associated with sea-ice melt in spring
and summer 2017 at HG-IV, might have significantly affected
the communities during high-light periods. For example, these
changes can be observed in the high-light cluster H-09 (Table 1).
The last period of the cluster (2018) shows a 1.7-fold decrease in
abundance compared to the first period (2017). Despite the area
under the curve of the early high-light clusters (H-05, H-06, and
H-07) showing almost no difference between the two years at
HG-IV, the amplitude was much lower in 2017 compared to 2018
(Table S2). This observation suggests that the growth rates in 2017
were lower. It is important to note that the organism abundances
only reflect relative proportions of the filtered samples. However,

in 2017 the RAS was below the productive layer for at least the
first half of the high-light period [35],whichmay explain the lower
relative abundances.

Polar pelagic taxa, such as C. neogracilis and Grammonema striat-
ula, were dominant (compared to other Bacillariophyta) in the
first clusters of the high-light period at both stations (H-05, F-
06, Table S3). These species are more robust to variation in ice
coverage. In contrast, the contribution of Fragillariopsis cylindrus
to the spring cluster H-05 was greater at HG-IV than at F-06, as
indicated in Table S3. During the spring of 2017 at HG-IV, lower
relative abundances of F. cylindrusmay suggest lower growth rates,
which could be attributed to higher ice coverage at this station.
F. cylindrus and Bacillaria pacillifer were among the ASVs with the
ten highest relative abundances at both stations. They had higher
relative abundances during the spring at HG-IV compared to F4
in the observation period, as shown in Table S4 and Fig. 6. This
was likely because they benefited from lower ice concentrations
and comparatively higher water temperatures at HG-IV during
the spring of 2018 compared to 2017 (Fig. 6). This observation
suggests that these polar taxa are not strictly dependent on polar
conditions and can tolerate or benefit from Atlantic influence.

O. aurita, a temperate taxon occurring at both stations, benefits
at both stations from warmer temperatures. The contribution of
this temperate species in cluster H-05 was negligible, accounting
for only 1% of total abundance, with a further decrease in 2017
to 0.81%, indicating that it struggles to thrive under the ice. In
contrast, at mooring F4, its contribution to the spring cluster
F-06 was high in both years (Table S3) as temperatures were
in a similar range. During the later part of the season in HG-
IV, the area under the curve of cluster H-08 showed a 1.5-fold
increase in 2017 compared to 2018, as indicated in Table 1. This
cluster mainly comprised typical sea-ice-associated diatoms like
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M. arctica, Fragillariopsis sublineata and -cylindrus, and Chaetoceros
rostratus. Interestingly, these diatoms did not contribute signifi-
cantly to the phytoplankton community at F4 during the same
time of the year. This indicates a sea-ice melt-related release of
sea-ice-associated taxa. The environmental conditions existing
at this time, especially meltwater stratification, promoted their
bloom in the Atlantic Water of Fram Strait (Tables S3 and S4).

During the specified time frame, there was a notable decrease
in the prevalence of polar spring phytoplankton species at the
start of the season, accompanied by a corresponding increase in
the abundance of ice-associated phytoplankton species during
the autumn of 2017. It is worth noting that the peak abundance of
ice-associated phytoplankton species usually occurs later in the
season in the CAO [84-86]. Ice-associated phytoplankton is less
present at HG-IV in 2018 (ice-free year) and does not significantly
contribute to the autumn community at ice-free station F4 in
either year.

Conclusion
In this study, we compared the dynamics of phytoplankton ASVs
from two locations in the Fram Strait (moorings HG-IV and F4)
as recorded in 2017 and 2018 (Fig. 3). Although data from only 2
years are not necessarily representative of the long-term develop-
ment of environmental parameters, these particular years exhibit
conditions that make them appear ideal for comparing current
conditions with those expected in the future in an Atlantified
CAO. This comparison supports a new perspective on how the
eukaryotic microbial community in the Central Arctic Ocean
might change in the near future. Climate change will likely lead
to an ice-free Central Arctic Ocean in summer but ice-covered in
winter, as suggested by some climate model scenarios [13].

In our analysis, we could show that a MWR can strongly
influence arctic micro-eukaryotes on several levels and that phy-
toplankton bloom phenology in 2017 is a result of an increased
sea ice melt [32]. We could extend previous observations about
the influence of sea-icemelt on community dynamics and carbon
export. We propose that sea ice melt and the resulting environ-
mental conditions are putative key drivers of microbial eukary-
otic community composition and bloom phenomenology. Our
observations suggest that polar pelagic and ice-associated taxa
(such as F. cylindrus or M. arctica) are relatively tolerant of more
Atlantic oceanographic conditions. In contrast, temperate taxa
(such as O. aurita or P. alata) have limited potential to persist
in colder ice-impacted waters. Thus, we hypothesize that sea-
ice melt in the MIZ may hinder the northward expansion of
temperate Atlantic taxa towards the CAO. This trend will con-
tinue even as Atlantic oceanographic conditions move further
northwards.
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Chapter 3

Bacteria: Variations in Atlantic water influx
and sea-ice cover drive taxonomic and
functional shifts in Arctic marine bacterial
communities

In this chapter, we present our use case concerning analysis of atlantic water influx to bacteria
communities. Here we investigates how Atlantification a"ects Arctic microbial communities
by analyzing changes in composition, structure, and function in the Fram Strait mixing zone
(Figure 3.1).

Figure 3.1: Bacterial communities under contrasting AW influx and ice cover con-
ditions. Illustration showing the ten taxonomic groups with highest average rel-
ative abundances under Atlantic vs. Arctic conditions, derived from the relative
abundances of Int-ASVs (sPLS cluster C1) and Res-ASVs (sPLS cluster C8), re-
spectively. Adapted from Priest et al., 2022.
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3.1 Variations in Atlantic water influx and sea-ice cover drive
taxonomic and functional shifts in Arctic marine bacterial
communities

In this section, we provide an overview of the contributions and impact of our paper (Priest
et al., 2022):

Taylor Priest , Wilken-Jon von Appen , Ellen Oldenburg , Ovidiu Popa , Sinhué
Torres-Valdés ,Christina Bienhold, Katja Metfies , Bernhard M. Fuchs , Rudolf Amann ,

Antje Boetius ,Matthias Wietz
“Variations in Atlantic water influx and sea-ice cover drive taxonomic and functional shifts in

Arctic marine bacterial communities”
In: The ISME Journal, 2023, volume 17

Main Results in Simple Terms

This study examines the impact of the increasing influx of Atlantic water into the Arctic
Ocean, known as Atlantification, on microbial communities. The study focused on areas where
Pacific water meets Atlantic water in Fram Strait, with the aim of understanding how changes
in sea-ice cover and Atlantic water influx impact these communities. The detailed analysis
revealed significant changes in the types and functions of bacteria in response to these envi-
ronmental changes. Areas with thick sea ice exhibited stable microbial communities, while
areas with less ice and more Atlantic water exhibited fluctuating populations linked to phy-
toplankton. Additionally, specific groups of bacteria were identified that were associated with
di"erent environmental conditions, indicating how they adapt to their surroundings. Our find-
ings suggest that as Atlantification continues, bacterial populations in the Arctic will shift,
with consequences for the entire ecosystem.

Summary/Abstract

The Arctic Ocean is undergoing unprecedented changes due to climate warming, necessitating
in-depth analysis of its biological communities to comprehend present and future ecosystem
transformations. In this study, we compiled a comprehensive dataset spanning four years,
including high-resolution amplicon data and PacBio HiFi read metagenomes from the East
Greenland Current (EGC). These datasets were integrated with datasets from various spa-
tiotemporal scales (Tara Arctic and Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC)) in order to investigate the impact of the influx of Atlantic wa-
ter and changes in sea-ice cover on bacterial communities in the Arctic Ocean. Our findings
revealed that densely ice-covered polar waters host a stable, resident microbiome, whereas
increased Atlantic water influx and reduced sea-ice cover lead to the dominance of fluctu-
ating populations, indicating a process akin to "replacement" driven by advection, mixing,
and environmental sorting. We identified bacterial signature populations associated with dis-
tinct environmental conditions, including polar night and high-ice cover, and evaluated their
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ecological roles. Furthermore, our analyses demonstrated consistent dynamics of signature
populations across the broader Arctic region. For instance, populations linked with dense
ice cover and winter in the EGC were prevalent in the central Arctic Ocean during winter.
Population- and community-level assessments unveiled metabolic disparities between bacteria
adapted to Arctic and Atlantic conditions. Arctic-a!liated bacteria showed enhanced capabil-
ities to utilise various substrates. The present study o"ers novel insights into Arctic ecology by
elucidating the spatiotemporal dynamics of bacterial communities. It highlights the ongoing
biological Atlantification of the warming Arctic Ocean and its implications for food webs and
biogeochemical cycles.

Personal Contribution

TP performed ASV and metagenomics analysis. MW processed amplicon raw data into ASVs
and coordinated the data analysis. TP and MW wrote the paper. WJvA contributed quality-
controlled oceanographic data, and coordinated the mooring operations. EO and OP per-
formed network analyses. STV provided quality-controlled chlorophyll data. CB, KM and AB
co-designed and coordinated the autonomous sampling and mooring strategy, and contributed
to interpretation of the results. TM and WB provided access and background information on
MOSAiC data, and contributed to interpretation of the results. BMF and RA contributed to
interpretation of the results and development of the story. All authors contributed to the
final manuscript.

Importance of the Research and Contribution to this Thesis

Therefore, it answers our second research question: This study addresses our research ques-
tion by demonstrating the significant impact of Atlantic water influx and changes in sea-ice
cover on bacterial communities in the Arctic Ocean. Through comprehensive analysis span-
ning four years and integrating datasets from di"erent spatiotemporal scales, we reveal how
these environmental factors influence the composition, structure, and functionality of microbial
populations, providing insights into the progressing Biological Atlantification of the warming
Arctic ecosystem.
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Atlantic water influx and sea-ice cover drive taxonomic and
functional shifts in Arctic marine bacterial communities
Taylor Priest 1✉, Wilken-Jon von Appen 2, Ellen Oldenburg 3, Ovidiu Popa3, Sinhué Torres-Valdés 2, Christina Bienhold 1,4,
Katja Metfies5, William Boulton6,7, Thomas Mock 6, Bernhard M. Fuchs 1, Rudolf Amann 1, Antje Boetius 1,4,8 and
Matthias Wietz 1,4✉

© The Author(s) 2023

The Arctic Ocean is experiencing unprecedented changes because of climate warming, necessitating detailed analyses on the
ecology and dynamics of biological communities to understand current and future ecosystem shifts. Here, we generated a four-
year, high-resolution amplicon dataset along with one annual cycle of PacBio HiFi read metagenomes from the East Greenland
Current (EGC), and combined this with datasets spanning different spatiotemporal scales (Tara Arctic and MOSAiC) to assess the
impact of Atlantic water influx and sea-ice cover on bacterial communities in the Arctic Ocean. Densely ice-covered polar waters
harboured a temporally stable, resident microbiome. Atlantic water influx and reduced sea-ice cover resulted in the dominance of
seasonally fluctuating populations, resembling a process of “replacement” through advection, mixing and environmental sorting.
We identified bacterial signature populations of distinct environmental regimes, including polar night and high-ice cover, and
assessed their ecological roles. Dynamics of signature populations were consistent across the wider Arctic; e.g. those associated
with dense ice cover and winter in the EGC were abundant in the central Arctic Ocean in winter. Population- and community-level
analyses revealed metabolic distinctions between bacteria affiliated with Arctic and Atlantic conditions; the former with increased
potential to use bacterial- and terrestrial-derived substrates or inorganic compounds. Our evidence on bacterial dynamics over
spatiotemporal scales provides novel insights into Arctic ecology and indicates a progressing Biological Atlantification of the
warming Arctic Ocean, with consequences for food webs and biogeochemical cycles.

The ISME Journal (2023) 17:1612–1625; https://doi.org/10.1038/s41396-023-01461-6

INTRODUCTION
The Arctic Ocean is experiencing unprecedented changes as a
result of climate warming, progressing nearly four times faster
than the global average [1]. Of particular significance is the rapid
decline in sea-ice extent and thickness [2, 3], with future
projections indicating frequent ice-free summers by 2050 [4]. In
the Eurasian Arctic, accelerated rates of sea-ice decline are
associated with increasing volume and heat content of inflowing
Atlantic water (AW) [5]. The expanding influence of AW in the
Arctic Ocean, termed Atlantification, not only impacts hydro-
graphic and physicochemical conditions, but also provides
avenues for habitat range expansion of temperate organisms
[6, 7].
The impact of climate change on biological communities has

become increasingly apparent across the Arctic Ocean in recent
decades. Elevated primary production in shelf seas has been
attributed to declining sea-ice extent and increasing phytoplank-
ton biomass [8], particularly in the Eurasian Arctic where
Atlantification is driving a poleward expansion of temperate

phytoplankton [7, 9]. Concurrently, phytoplankton phenologies
are also changing, with secondary autumnal blooms now
occurring in seasonally ice-covered areas [10]. This will have
major consequences for th,0e organic matter pool of the Arctic
Ocean. Sea-ice dynamics play an important role in the availability
of nutrients and organic matter in surface waters and the
transport of carbon to the deep-sea [11–13]. At sea-ice margins,
strong melt events result in intense stratification, which traps
organic material in surface waters and delays vertical export [11].
Considering their role as primary degraders of organic matter

and mediators of biogeochemical cycles, assessing the conse-
quences of such changes for bacterial communities is essential to
understand and predict alterations to ecosystem functioning.
Recent studies have documented distinctions in bacterial com-
munities between Atlantic- and Arctic-derived waters [14], and
between sea-ice and seawater [15]. In addition, sea ice-derived
dissolved organic matter (DOM) has been shown to stimulate
rapid responses by bacterial taxa and significantly alter commu-
nities in incubation experiments [16, 17]. However, in order to gain
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a deeper understanding of potential shifts in Arctic Ocean
microbial ecology, communities need to be studied over high-
resolution temporal scales and across natural environmental
gradients such as the Arctic–Atlantic interface.
The Fram Strait, the main deep-water gateway between the

Arctic and Atlantic Oceans, is a key location for conducting long-
term ecological research over environmental gradients and under
changing conditions [18]. Fram Strait harbours two major current
systems; the East Greenland Current (EGC), transporting polar
water (PW) southwards, and the West Spitsbergen Current (WSC),
transporting AW northward. The EGC accounts for the export of
~50% of freshwater and ~90% of sea-ice from the central Arctic
Ocean and carries Arctic hydrographic signatures [19]. Large-scale
recirculation of AW into the EGC continuously occurs, although
the magnitude varies across latitudes and over time [20, 21]. The
mixing of AW and PW in the marginal ice zone (MIZ) creates
different hydrographic regimes reflective of Arctic, mixed and
Atlantic conditions, which can harbour unique bacterial composi-
tions [14, 22]. It has been predicted that future Atlantification of
the Arctic may result in a shift towards temperate, Atlantic-type
communities [14]. However, further assessments of microbial
population dynamics across spatiotemporal scales are needed to
validate such hypotheses.
Here, we performed a high-resolution analysis of the temporal

variation of bacterial taxonomy and function in the MIZ
(2016–2018) and the core-EGC (2018–2020), covering the full
spectrum of ice cover, daylight and hydrographic conditions. Our
study is embedded in the “Frontiers in Arctic Marine Monitoring”
(FRAM) ocean observing framework that employs mooring-
attached sensors and autonomous Remote Access Samplers
(RAS) to continuously monitor physicochemical parameters and
biological communities in the Fram Strait. We analysed four-year
16S rRNA gene amplicon data supplemented with an annual cycle
of PacBio HiFi read metagenomes, expanding a previous
assessment of microbial dynamics over a single annual cycle in
the EGC [23]. We hypothesise that high AW influx and low sea-ice
cover result in communities dominated by chemoheterotrophic
populations that taxonomically and functionally resemble those of
temperate ecosystems. Our study provides essential insights into
the impact of changing conditions on microbial ecology and
biogeochemical cycles in the Arctic Ocean.

METHODS
Seawater collection and processing
Autonomous sample collection and subsequent processing proceeded as
previously described [23]. Briefly, RAS (McLane, East Falmouth, MA) were
deployed over four consecutive annual cycles between 2016 and 2020,
with deployments and recoveries occurring each summer (2019–2020
mooring recovered in 2021). From 2016 to 2018, RAS were deployed
in the MIZ (78.83° N −2.79° E) and from 2018 to 2020 in the core-EGC
(79° N −5.4° E), with average sampling depths of 80 and 70m, respectively.
The depths were chosen to prevent contact with moving ice overhead. In
weekly to fortnightly intervals (Supplementary Table S1), ~1 L of seawater
was pumped into sterile plastic bags and fixed with mercuric chloride
(0.01% final concentration). After RAS recovery, water was filtered onto
0.22 µm Sterivex cartridges directly frozen at −20 °C until DNA extraction.

Amplicon sequencing and analysis
DNA was extracted using the DNeasy PowerWater kit (Qiagen, Germany),
followed by amplification of 16S rRNA gene fragments using primers
515F–926R [24]. These primers perform well at recovering marine mock
communities, and were recently suggested as optimal for studying Arctic
microbial communities [24, 25]. Sequencing was performed on a
MiSeq platform (Illumina, San Diego, CA) using 2 × 300 bp paired-end
libraries according to the “16S Metagenomic Sequencing Library Prepara-
tion protocol” (Illumina). Reads were subsequently processed into
amplicon sequence variants (ASVs) using DADA2 and the SILVA v138
database [26–28]. Analysis and plotting were performed in RStudio [29],
primarily using the vegan [30], limma [31], mixOmics [32], ggplot2 [33] and

ComplexHeatmap [34] packages. Briefly, community composition was
compared using Bray-Curtis dissimilarities and distance-based redundancy
analysis (dbRDA) with the functions decostand and dbrda in vegan, and
visualised using ggplot2. The influence of environmental variables on
community dissimilarity was determined through a stepwise significance
test on the dbRDA using the ordiR2step and anova.cca functions in vegan.
ASVs were assigned to distribution groups based on the frequency of
detection over time.
Co-occurrence networks were calculated for MIZ and core-EGC samples

separately using the packages segmenTier [35] and igraph [36]. Oscillation
signals were calculated for each ASV per year based on Fourier
transformation of normalised abundances and compared using Pearson’s
correlations. Only statistically significant positive correlations were retained
(adjusted p-value < 0.05 after correction using the FDR method [37]). Using
a network robustness analysis, a correlation coefficient of 0.7 was
determined as a strong co-occurrence. Below this value, removal of a
single node would cause network disruption. Networks were constructed
using the co-occurrences that passed the above thresholds, and visualised
in Cytoscape [38] with the Edge-weighted Spring-Embedded Layout.
Values of centrality and node betweenness were calculated using igraph.

PacBio metagenome sequencing
Nine samples from the 2016–2017 annual cycle in the MIZ were selected
for metagenomic sequencing, using the same DNA as for amplicon
sequencing. Sequencing libraries were prepared following the protocol
“Procedure & Checklist – Preparing HiFi SMRTbell Libraries from Ultra-Low
DNA Input” (PacBio, Menlo Park, CA) and inspected using a FEMTOpulse.
Libraries were sequenced on 8M SMRT cells on a Sequel II platform for 30 h
with sequencing chemistry 2.0 and binding kit 2.0. The sequencing was
performed together with samples of another project, such that seven
samples were multiplexed per SMRT cell. On average, this resulted in
268,000 reads per metagenome, with an N50 of 6.8 kbp.

Taxonomic and functional annotation of HiFi reads
The 2.4 million generated HiFi reads were processed through a custom
taxonomic classification and functional annotation pipeline. The classification
pipeline followed similar steps to previously published tools, but with some
modifications. A local database was constructed based on protein sequences
from all species-representatives in the GTDB r202 database [39]. Prodigal
v2.6.3 [40] was used to predict open reading frames (ORFs) on HiFi reads,
which were subsequently aligned to the GTDB-based database using
Diamond blastp v2.0.14 [41] with the following parameters: --id 50 --query-
cover 60 --top 5 --fast. After inspection of the hits, a second filtering step was
performed: percentage identity of >65% and an e-value of <1˗10. Using
Taxonkit v0.10.1 [42], the last common ancestor (LCA) algorithm was
performed, resulting in a single taxonomy for each ORF. A secondary LCA
was subsequently performed for all ORFs from the same HiFi read, generating
a single taxonomy for each read. Functional annotation of HiFi reads was
performed using Prokka [43] followed by a series of specialised databases.
This included using blastp v2.11.0 [44] or HMMscan (HMMER v3.2.1) [45]
against dbCAN v10 [46], CAZy (release 09242021) [47], SulfAtlas v1.3 [48], the
Transporter Classification [49], MEROPS [50] and KEGG [51] databases along
with sets of Pfam HMM family profiles for SusD and TonB-dependent
transporter genes. Functional gene counts were normalised by the average
sequencing depth of 16 universal, single-copy ribosomal protein genes per
sample [52] – providing “per genome” counts. Genes enriched under high-
and low-ice cover conditions were identified using ALDEx2 [53].

Metagenome-assembled genome recovery
In order to maximise the recovery of metagenome-assembled genomes
(MAGs), metagenomes were clustered into two groups based on
dissimilarity in ASV composition of the corresponding amplicon samples.
Samples were individually assembled using metaFlye v2.8.3 (parameters:
--meta --pacbio-hifi –keep-haplotypes --hifi-error 0.01). Contigs with a
length of <10 kbp were removed and the remaining contigs were renamed
to reflect the sample of origin. Contigs from each group were concatenated
into a single file. Coverage information, necessary for binning, was acquired
through read recruitment of raw reads from all metagenomes to the
contigs using Minimap2 v2.1 [54], using the ‘map-hifi’ preset. Contigs were
binned using Vamb v3.0.2 [55] in multisplit mode using three different sets
of parameters (set1: -l 32 -n 512 512, set2: -l 24 -n 384 384, set3: -l 40 -n 768
768). Completeness and contamination estimates of bins were determined
using CheckM v1.1.3 [56], and those with >50% completeness were
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manually refined using the interactive interface of Anvi’o v7 [57]. A
consensus set of refined MAGs with non-redundant contigs was obtained
using DASTool v1.1.1 [58]. The consensus MAGs were de-replicated at 99%
average nucleotide identity using dRep v3.2.2 [59] (parameters: -comp 50
-con 5 -nc 0.50 -pa 0.85 -sa 0.98), resulting in 47 population-representative
MAGs. A phylogenetic tree was reconstructed that also incorporated MAGs
recently published from the Fram Strait [22], following a procedure outlined
previously [52]. Briefly, 16 single-copy universal ribosomal protein genes
were identified in each MAG using HMMsearch against the individual Pfam
HMM family profiles and aligned using Muscle v3.8.15 [60]. Alignments
were trimmed using TrimAI v1.4.1 [61], concatenated, and submitted to
FastTree v2.1.0 [62]. The tree was visualised and annotated in iToL [63].

Classification, abundance and distribution of MAGs
A dual taxonomic classification of MAGs was performed using single-copy
marker and 16S rRNA genes. Firstly, MAGs were assigned a taxonomy using
the GTDBtk tool v1.7.0 [64] with the GTDB r202 database. Secondly,
extracted 16S rRNA gene sequences were imported into ARB [65], aligned
with SINA [66] and placed into the SILVA SSU 138 Ref NR99 reference tree
using ARB parsimony. Those containing a 16S rRNA gene were linked to
ASV sequences through competitive read recruitment using BBMap of the
BBtools programme v35.14, with an identity threshold of 100%.
The distribution of MAGs across the Arctic Ocean were determined

through recruitment of reads from the herein generated metagenomes
and published datasets from the Tara Arctic and MOSAiC expeditions
(Supplementary Table S11). Counts of competitively mapped reads were
converted into the 80% truncated average sequencing depth, TAD80 [67].
Relative abundance was then determined as the quotient between the
TAD80 and the average sequencing depth of 16 single-copy ribosomal
protein genes. Ribosomal proteins were identified following the same
procedure outlined above, and their sequencing depth estimated using read
recruitment with minimap2 (for PacBio-derived metagenomes) and BBMap
(for Illumina-derived metagenomes).

Mooring and satellite data
Bacterial community data was placed into context using in situ measured
environmental parameters (Supplementary Table S1). Temperature, depth,
salinity and oxygen concentrations were measured using Seabird SBE37-
ODO CTD sensors and chlorophyll a concentration was measured using a
WET Labs ECO Triplet sensor, all attached to the RAS. Sensor measure-
ments were averaged over 4 h around each sampling event. The relative
proportions of AW and PW were determined as described previously [23].
Physical sensors were manufacturer-calibrated and processed in accor-
dance with https://epic.awi.de/id/eprint/43137. Mooring-derived data are
published under PANGAEA accession 904565 [68], 941159 [69], and 946539
[70]. Sea-ice concentrations, derived from the AMSR-2 satellite, were
downloaded from https://seaice.uni-bremen.de/sea-ice-concentration-
amsr-eamsr2, and averaged over a 15 km radius around the moorings.

RESULTS
The amplicon dataset incorporates samples (>0.2 µm fraction)
collected at weekly to fortnightly intervals in the MIZ (2016–2018)
and central EGC (core-EGC; 2018−2020) between 70 and 90m depth
(Supplementary Table S1). The two locations were selected in order
to capture the full spectrum of water mass and sea-ice conditions.
The core-EGC was characterised by year-round dense ice cover
(hereon abbreviated as “high ice”) and PW conditions. In contrast, the
MIZ featured variable, generally lower ice cover (hereon abbreviated
as “low ice”) and periodic AW influx (Fig. 1). To visually portray this
variability, animated GIFs were created for current velocities
(Supplementary Fig. S1) and sea-ice cover (Supplementary Fig. S2)
over the four-year period. Combining the high-resolution data from
both mooring locations allowed for the assessment of bacterial
community dynamics over time and in relation to Arctic- and
Atlantic-dominated conditions.

Bacterial community and population dynamics over time
The amplicon dataset encompasses 12.5 million quality-filtered
reads in 84 samples, with an average of 134,588 reads per sample.
A total of 4083 ASVs (Supplementary Table S2) were recovered,

which were initially used in a taxonomy-independent approach to
assess community dynamics over environmental gradients (Fig. 2).
A dbRDA with stepwise significance testing identified AW
proportion, daylight and past ice cover (average ice cover of the
days preceding the sampling event) as the significant factors
constraining compositional variation (model R2= 0.23, p= 0.001).
AW proportion explained 13% of the variation in bacterial
community dissimilarity, compared to 6% for daylight and 4%
for past ice cover.
Assessing ASV dynamics at the two mooring locations over time

revealed several distinct patterns. In total, 75% of the ASVs were
detected at both mooring sites (i.e. shared), whilst 16% and 9%
were unique to the MIZ and core-EGC respectively. The frequency
of detection and maximum relative abundance of shared ASVs
exhibited a strong positive linear relationship, i.e., those identified
in more samples also reached higher maximum relative abun-
dances (Fig. 3a). To better understand the structuring of
communities and distinguish between ecologically different
fractions, we categorised ASVs into three groups: (a) Resident
(Res-ASVs), present in >90% of samples, (b) Intermittent (Int-ASVs),
present in 25–90% of samples, and (c) Transient (Trans-ASVs),
present in <25% of samples (Supplementary Table S3). Res-ASVs
represented a small fraction of the diversity (231 ASVs) but the
largest proportion of the sampled bacterial communities (43–87%
relative abundance). In comparison, the 1943 Int-ASVs constituted
12–53% and the 1909 Trans-ASVs 0.4–9.3% of relative abun-
dances. Presence of a dominant resident microbiome, represented
by a minority of ASVs, is consistent with multiannual observations
in the Western English Channel and Hawaiian Ocean time-series
[71, 72].
Temporal dynamics of the three community fractions was

linked to changes in AW proportion, evidenced by negative
correlations for the resident (Pearson’s coefficient: −0.29, p < 0.05)
and transient fractions (Pearson’s coefficient: −0.36, p < 0.01)
compared to positive correlations for the intermittent fraction
(Pearson’s coefficient: 0.37, p < 0.01). This is reflected in the more
stable temporal dynamics at the core-EGC with less AW influence,
compared to the MIZ (Fig. 3c). In addition, the transient fraction
was positively correlated with ice cover (Pearson’s coefficient: 0.26,
p < 0.05).
The dynamics of the three community fractions were supported

by co-occurrence networks computed at ASV level (Supplemen-
tary Fig. S3). The MIZ network contained more ASVs and more
significant co-occurrences compared to the core-EGC, primarily
driven by Int-ASVs. There were 283 more Int-ASVs in the MIZ than
in the core-EGC network, and the number of connections per ASV
was nine-fold higher. In contrast, Trans-ASVs were threefold more
numerous and exhibited threefold more connections per ASV in
the core-EGC compared to the MIZ network (Fig. 3b and
Supplementary Information). Res-ASVs were comparable in
number in both networks.
The resident microbiome was phylogenetically diverse, incor-

porating both abundant and rare community members. Res-ASVs
were assigned to 61 families and 79 genera, with the Flavobacter-
iaceae (n= 15), Magnetospiraceae (n= 13), Marinimicrobia
(n= 11), SAR11 Clade I (n= 21) and SAR11 Clade II (n= 17)
harbouring the largest diversity. Maximum relative abundances of
Res-ASVs ranged from 0.04 to 13.9%, with the most prominent
being affiliated with SAR11 Clade Ia (asv1; 14%), Polaribacter (asv6;
14%), Aurantivirga (asv7; 12%), SUP05 (asv2; 12%), SAR92 (asv16;
11%) and SAR86 (asv3; 9%). Pronounced fluctuations of the
intermittent community coincided with AW influx in the MIZ. Int-
ASVs were more phylogenetically diverse than Res-ASVs, encom-
passing 254 genera, and included rare and abundant populations
that reached 0.004–36% maximum relative abundance. The most
diverse taxa included the SAR11 Clade II (n= 148), Marinimicrobia
(n= 129), NS9 Marine Group (n= 78), AEGEAN-169 (n= 73), and
SAR86 (n= 47). Those with largest relative abundances were
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Fig. 1 Location of seafloor moorings and environmental conditions in the MIZ (2016–2018) and core-EGC (2018–2020). a Example
representation of monthly average (January 2020) current velocities at the approximate depth of sampling (78m). White and dark red arrows
indicate strongest and weakest velocities, respectively. b Example representation (December 2019) of sea-ice cover. Increasing opacity of
white colour reflects increasing sea-ice cover (pure white = 100%). Current and sea-ice data were obtained from copernicus.eu under
‘ARCTIC_ANALYSIS_FORECAST_PHY_002_001_a’. c Variation in AW proportion, ice cover and water temperature at the two moorings. The
bathymetric map was made using data from GEBCO.
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affiliated with Colwellia (asv10; 36%), Luteolibacter (asv24; 15%),
Flavobacterium (asv140; 10%), and Polaribacter (asv206; 10%). The
resident and intermittent community fractions shared 71 genera,
constituting 90% of the genus-level diversity of the resident
microbiome. Hence, compositional changes over temporal scales
relate to dynamics on the (sub-)species level.

Taxonomic signatures of distinct environmental conditions
A sparse partial least squares regression analysis (sPLS) identified
430 ASVs that were associated with distinct environmental
conditions. Based on similar, significant correlations (Pearson’s
coefficient > 0.4, p < 0.05) to environmental parameters, the ASVs
were grouped into eight distinct clusters (Fig. 4a and Supplemen-
tary Table S3), each comprising unique taxonomic signatures
(Fig. 4b). The three largest clusters encompassed 88% of the ASVs,
and were distinguishable based on their associations to different
water mass and ice cover conditions. Clusters C1 and C2 represent
AW conditions, with C1 also being associated with low-ice cover.
In contrast, cluster C8 represents PW conditions under high-ice
cover. In accordance with the distribution dynamics described
above, the AW-associated clusters comprised a higher proportion
of Int-ASVs, 51–88%, compared to ~50% Res-ASVs in PW-
associated clusters. Five smaller clusters (C3–C7) correspond to
polar day and night under different ice cover and water mass
conditions. Comparing the most prominent ASVs (>1% relative
abundance) of each cluster revealed unique taxonomic signatures
at the genus level (Fig. 4b). For instance, Amylibacter, SUP05 and
AEGEAN-169 are signatures of the AW-associated, low-ice cluster
C1, whereas SAR324, NS2b and Magnetospira are signatures of the
PW-associated, high-ice cluster C8. Overall, this pattern underlines

that water mass and ice cover have the largest influence on
microbial community structure, with a smaller number of ASVs
being influenced by daylight and seasonality.

MAGs and comparison to other Arctic datasets
Nine PacBio HiFi read metagenomes spanning one annual cycle in
the MIZ yielded 43 manually refined, population-representative
MAGs, delineated at 99% ANI (Supplementary Table S4). The MAGs
were of medium- and high-quality according to MIMAG standards
[73], exhibited low fragmentation (average number of contigs= 33),
and >80% contained at least one complete rRNA gene operon. MAGs
covered a broad phylogenetic diversity, including 35 genera, 27
families and nine classes (Supplementary Fig. S4). For deeper
ecological insights, we contextualised ASV dynamics with MAGs to
link distribution with metabolic potential. Of the 27 ASVs linked to a
MAG through competitive read recruitment (100% identity thresh-
old), 18 were associated with sPLS clusters and thus distinct
environmental conditions – these are hereon referred to as “signature
populations” (Supplementary Table S5). Signature populations
included some of the most abundant ASVs, such as asv6-Polaribacter
and asv7-Aurantivirga from cluster C4 (polar day-associated) and
asv18-SAR86 from cluster C8 (high-ice, PW-associated).
To corroborate the associations of signature populations with

distinct environmental conditions, we assessed their spatiotemporal
dynamics across the Arctic Ocean. This comparison included an
additional 59 metagenomes as well as 1184 MAGs and metage-
nomic bins from the Fram Strait [22], the Tara Arctic expedition
(TARA) [74], and the MOSAiC expedition [75]. Combined, these
datasets provide an extensive geographical and seasonal coverage,
from above the continental shelf in summer to the central basin in
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winter. Combining the MAG datasets resulted in 843 species-level
clusters at 95% ANI (Supplementary Table S6). Each dataset
comprised a mixture of unique and shared species (Fig. 5a), but
there were no cosmopolitan species. Of the MAGs recovered in this
study, hereon termed FRAM_EGC MAGs, 42% were unique species.
However, these results are influenced by differences in dataset size,
sequencing platforms and analysis pipelines, e.g. co-assembly
(TARA) vs. single sample assembly (FRAM and MOSAiC).
FRAM_EGC MAGs were among the most abundant and widely

detected (Supplementary Table S7) across the Fram Strait and
Arctic Ocean, constituting 0.02–58% of bacterial communities.
Their distribution across the wider Arctic supported the
dynamics observed in the EGC; e.g. residents (associated with
a Res-ASV) were more widely detected than intermittent or
transient populations (Fig. 5b, Supplementary Figs. S5 and S6).
Three of the resident FRAM_EGC MAGs, one assigned to OM182
(UBA9659) and two to Thioglobus, were detected in >90% of all
metagenomes. One of these species did not have a MAG
representative in the other Arctic datasets, highlighting that our
study contributes novel genomic information towards a better
understanding of Arctic Ocean microbial ecology. Furthermore,
the dynamics of signature-population MAGs across the Arctic
supported their association with distinct environmental condi-
tions. MAGs from cluster C8 (high-ice and PW) and C7 (high-ice

and polar night) reached higher relative abundances in
mesopelagic depths (TARA) and during polar night (MOSAiC)
(Fig. 5c). In contrast, a higher relative abundance of C4 and C6
(polar day) MAGs occurred in surface water collected during
summer (TARA).

Functional potential of Atlantic and Arctic signature
populations
Connecting ASV temporal dynamics and MAG functional potential
facilitated predictions on the ecology of signature populations
within the context of environmental conditions. Of particular
interest were the signature populations of Atlantic (cluster C1) and
Arctic (cluster C8) conditions, as they could provide insights into
how bacterial community structure and function may shift in the
future Arctic Ocean. Comparing the functional potential of MAGs
revealed that Atlantic and Arctic signature populations clearly
differ in substrate metabolism. In short, signature populations of
Arctic conditions harboured genes for autotrophy and the
utilisation of bacterial- and/or terrestrial-derived compounds,
compared to Atlantic signature populations that were functionally
connected to phytoplankton-derived organic substrates. Ecologi-
cal descriptions of all signature populations and functional gene
tables are provided in Supplementary Information and Supple-
mentary Files S1, respectively.
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Atlantic signature populations. Atlantic signature populations
included Thiotrichaceae (asv45), OM182 (asv130) and SAR86
(asv157) from the Gammaproteobacteria (Fig. 6). Although all
three populations were more abundant in the MIZ, differences
were observed in their temporal dynamics (asv45 peaking during
polar day, asv157 peaking during polar night, and asv130 showing
minimal seasonality). The asv45 and asv130 populations both
harboured genes for the degradation of phytoplankton-derived
organic compounds. For asv45-Thiotrichaceae, this included the
capacity to oxidise methanethiol (MTO gene) and the downstream
reaction products, sulfide (dsrAB and soeABC) and formaldehyde
(H4-MPT-dependent oxidation pathway), which could provide

carbon, sulfur and energy. The asv130-OM182 population
encoded a more diverse substrate metabolism, with the capacity
to use dissolved organic sulfur (DOS) and nitrogen (DON)
compounds, such as taurine and methylamine, as well as carbon
monoxide (CO) as supplemental energy source. The capacity to
store and use elemental sulfur was evidenced by a polysulfide
reductase and flavocytochrome c-sulfide dehydrogenase.
Together with its flagellar machinery, this suggests a motile,
heterotrophic, carboxydovorous lifestyle.

Arctic signature populations. Arctic signature populations
included Nitrospina (asv118), OM75 (asv163), SAR86 (asv18 and
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asv189) and Arctic97B-4 (asv191) affiliated with cluster C8, as well
as BD2-11 (asv78) affiliated with cluster C7 (high-ice and polar
night) (Fig. 6). Their metabolic potential and predicted ecological
role varied considerably. The most prominent population (asv18-
SAR86), reaching 8% relative abundance, harboured a hetero-
trophic metabolism with the capacity to gain supplemental
energy through a green-light proteorhodopsin. Although similar
to other SAR86 members [76, 77], asv18-SAR86 has an enriched
repertoire of peptidases (n= 19) compared to carbohydrate-active
enzymes (n= 7), as well as genes for D-amino acid metabolism.
Two of the Arctic signature populations were affiliated with

enigmatic taxa, including the Arctic97B-4 (Verrucomicrobiae;
Pedospharaceae) and BD2-11 (Gemmatimonadota). Arctic97B-4
was shown to be enriched in the particle-attached fraction in
the Southern Ocean [78] and in subsurface waters [79, 80]. In
comparison, BD2-11 has largely been observed in terrestrial and
freshwater environments or in deep-sea sediments [81]. The

genomic content of the Arctic97B-4 population indicated a motile
chemomixotrophic lifestyle with the capacity to fix carbon,
assimilate sulfate, and synthesise the vitamins riboflavin and
biotin. This population encoded a high number of CAZymes (23
genes) and sulfatases (84 genes). The most numerous CAZyme
gene families are involved in animal glycan degradation, such as
sialic acids (GH33). The BD2-11 population encodes genes for
inorganic and organic compound metabolism, including aerobic
denitrification (nap, nirK) and the metabolism of taurine,
hypotaurine, D-amino acids, dicarboxylic acids and halogenated
haloaliphatic compounds.

Whole-community functional shifts with contrasting
environmental conditions
The raw HiFi reads contained 17.6 million ORFs (Supplementary
Table S8), with 54% being assigned a function and 92% a
taxonomy. Expectedly, taxonomic classifications varied in
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resolution, with 92% of genes assigned to a kingdom and 37% to a
genus (Supplementary Fig. S7). Evident taxonomic shifts over the
annual cycle included higher proportions of Bacteroidia during
polar day and low-ice cover; compared to Verrucomicrobiae, BD2-
11 and Marinimicrobia under polar night and high-ice cover, in
agreement with ASV dynamics. A dissimilarity analysis of
community functionality separated samples into two distinct
clusters, with ice cover being the only statistically significant factor
between the two (F-statistic = 12.6, p= 0.009) (Supplementary
Fig. S8). A total of 1088 differentially abundant genes were
identified between the two clusters, with 328 and 845 genes
enriched under high- and low-ice conditions, respectively.

Enriched functions under different ice-cover regimes. In agreement
with Arctic and Atlantic signature populations, the enrichment of
genes under high- and low-ice cover suggested differences in
substrate utilisation (Supplementary Fig. S9). Low-ice communities
were enriched in genes involved in the utilisation of phytoplankton-
derived carbohydrates as well as DON and DOS compounds,
including dimethylsulfoniopropionate (DMSP), taurine, sulfoquino-
vose and methylamine (Fig. 7). In addition, glycoside hydrolase
families involved in the degradation of laminarin, α-galactose- and
β-galactose-containing polysaccharides (GH16, GH36, GH42 and
GH8), and genes related to the metabolism of mono- and
disaccharides, such as D-xylose, glucose and rhamnose, were
enriched (Fig. 7). All of these compounds have been related to
phytoplankton production [82] and can act as carbon, nitrogen and
sulfur sources for heterotrophic microbes [83, 84].
Under high-ice cover, 50% fewer genes were enriched, and

they were mostly related to the recycling of bacterial cell wall
carbohydrates, proteins, amino acids, aromatics and ketone
compounds (Fig. 7). Reduced phytoplankton productivity under
high-ice cover and during polar night [23] limits the availability
of fresh labile organic matter, which would necessitate
alternative growth strategies. For instance, the enrichment of
an assimilatory nitrate reductase gene (nap) indicates a need for
utilising inorganic nitrogen compounds. Enrichment of GH109
and GH18 involved in peptidoglycan and chitin degradation
[85], along with genes for D-amino acid degradation, indicate an
increased reliance on recycling of bacterial-derived organic
matter. Furthermore, we observed an enrichment in genes for
the degradation of aromatic and ketone compounds, such as
phenylpropionate (Fig. 7).

DISCUSSION
In recent decades, the Atlantic influence in the Arctic Ocean has
expanded, a process termed Atlantification [5, 6]. Atlantification
encompasses the multi-faceted physicochemical impacts of
northward-flowing AW, such as accelerated sea-ice decline,
weakened water column stratification and altered nutrient
availability. Although its impact on microbial communities has
been postulated [14], we provide the first high-resolution analysis
over a natural mixing zone between outflowing PW and
inflowing AW in Fram Strait to assess potential ecological
implications. We show that sea-ice cover and AW influx have a
considerable impact on the composition, structure and function-
ality of bacterial communities. Densely ice-covered PW harboured
a temporally stable, resident microbiome capable of using
versatile substrates, with an enriched potential to degrade
bacterial- and terrestrial-derived substrates as well as inorganic
compounds. In contrast, low ice cover and high AW influx
coincided with seasonally fluctuating populations that are
functionally linked to phytoplankton-derived organic matter. We
further identified bacterial signatures of distinct environmental
conditions in the EGC (Fig. 8), showed the consistency of these
patterns across the wider Arctic Ocean, and assessed ecological
roles through MAG-based functional gene content. Our combined

population- and community-level evidence suggests a future
“Biological Atlantification” of the Arctic Ocean.

Bacterial communities under different water mass and ice
cover regimes
The pronounced impact of AW influx reflects the role of water
masses as physical barriers to and conduits of dispersion for
planktonic organisms. Influx events thus result not only in
physiochemical changes, but also the mixing of microbial
communities. How the microbiomes are reshaped under these
events is a function of the degree of influx as well as the size (in
number), competitive fitness and physiological adaptations of
individual populations. Our dataset reveals that large influx events
over short timescales can lead to the “replacement” of popula-
tions, evidenced by the dominance of AW-derived populations
(Int-ASVs) in the MIZ. In contrast, the core-EGC, with rare
occurrences of AW influx, harboured a temporally stable resident
community that is adapted to polar conditions and constantly
seeded from southward-flowing PW. However, the continual
detection of the resident community in the MIZ indicates that
even large influx events do not result in complete community
turnover. Although the hydrological dynamics assessed here are
more rapid than the gradually proceeding Atlantification of other
Arctic regions, northward advection of organisms and subsequent
replacement has already been documented for phyto- and
zooplankton [7, 9, 86].
In addition to AW influx, bacterial communities were signifi-

cantly impacted by sea-ice cover, which reflects its integral role in
shaping Arctic Ocean ecosystems. Of particular significance is the
influence of sea ice on water column stratification and organic
matter availability. Sea ice supports rich biological communities
that contribute significantly to Arctic Ocean primary production
and the pool of organic matter [87, 88]. The melting of sea ice
results in the release of dissolved and particulate organic matter,
which heterotrophic bacteria can be highly responsive to
[16, 17, 89]. However, ice-derived meltwater also induces rapid
and strong stratification of the water column, which can reduce
the mixed layer depth to as little as 5 m [11]. This shallow mixed
layer can support prolonged phytoplankton blooms, but also trap
the produced organic carbon, delaying vertical export [11]. In
contrast, ice-free conditions result in a deeper mixed layer, shorter
but more pronounced phytoplankton blooms and a higher
response of grazers [11], potentially contributing to an increased
availability of organic carbon to communities below. Considering
the sampling depth in this study (70–80m), the bacterial
communities likely experienced an indirect influence from sea
ice, through its impact on mixed layer depth, mixing and the
vertical export of surface water production.
AW influx and sea-ice cover are intrinsically linked in the

Eurasian Arctic. Consequently, the majority of signature popula-
tions were associated with either Arctic (high-ice and low-AW) or
Atlantic (low-ice and high-AW) conditions. Furthermore, these
populations were metabolically distinguishable, with Arctic
signature populations harbouring genes for chemoautotrophy
and the utilisation of bacterial and/or terrestrial-derived com-
pounds. In the Beaufort Sea and Canadian Arctic, heterotrophic
Alphaproteobacteria (Rhodobacterales and Rhodospirillales) and
SAR324 (Chloroflexi) were shown to encode [90] and transcribe
[91] pathways for the degradation of terrestrial-derived aromatic
compounds. Similarly, Royo-Llonch et al. [74] described a number
of bacteria as Arctic habitat specialists with versatile metabolisms,
including the potential for autotrophy and denitrification. In this
study, we found further examples of specific adaptations to Arctic
Ocean conditions. For instance, the asv18-SAR86 population
appears adapted towards proteinaceous and bacterial-derived
compounds, with a reduced capacity for carbohydrate degrada-
tion compared to other SAR86 [76, 77]. In addition, the asv78-BD2-
11 population encodes the capacity to use diverse inorganic and
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organic substrates, indicating a high degree of metabolic
flexibility. The metabolic distinctions of Arctic signature popula-
tions illustrate evolutionary adaptations to the unique hydro-
logical and physicochemical conditions. The Arctic Ocean is
characterised by a comparatively large terrestrial and riverine
influence [92, 93] and experiences a short productive season with
a single phytoplankton bloom, compared to biannual bloom
events in temperate oceans. This results in an organic matter pool
rich in terrestrial-derived material, up to 33% in the case of DOM

[94], which has likely contributed to the enrichment of distinct
metabolic potentials.
Atlantic signature populations featured a closer relation to

labile, phytoplankton-derived organic matter. For example, the
asv45-Thiotrichaceae population harbours genes for the degrada-
tion of methanethiol and its downstream reaction products.
Methanethiol originates from DMSP demethylation [95], an
osmoprotectant produced by phytoplankton. DMSP concentra-
tions in the Arctic Ocean are spatially heterogeneous and
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influenced by water mass and sea ice, with highest concentrations
in areas with AW inflow [96] where its availability is tightly coupled
to chlorophyll [96, 97]. Methanethiol concentrations would thus
be elevated in AW during polar day. Similarly, the concentration of
CO and its production by phytoplankton is also elevated in
temperate compared to Arctic water masses [98]. The asv130-
OM182 population encodes genes for CO degradation, as well as a
capacity to use DOS compounds and store sulfur that may
contribute to sustaining its more stable temporal dynamics in the
MIZ. Given that previous reports of such a metabolism are
restricted to members of the Roseobacter clade [99], the asv130-
OM182 population may contribute to connecting carbon and
sulfur cycles.

Connectivity and structuring of bacterial communities across
the Arctic
The identification of signature populations not only highlights
ecological distinctions associated with different environmental
regimes, but also aids in elucidating patterns in dispersal and
connectivity in the Arctic Ocean. Although microbial species have
been previously associated with certain depth layers and regions
in the Arctic [74], this is the first study to evidence tight
associations of populations with specific conditions over season-
ally and geographically resolved scales. For example, polar day
signatures found in the MIZ between 2016 and 2018 were also
abundant in surface waters above continental shelves during the
summer of 2013 (TARA). In addition, the here identified polar night
and high-ice signature populations, which are of particular
significance due to limited sampling of these conditions, were
also abundant in the central Arctic during winter (MOSAiC). The
consistency in dynamics of signature populations over space and
time indicates a strong connectivity between Arctic regions, which
is in agreement with the relatively short residence times of upper
water layers [100]. Consequently, local environmental forcing is
likely the key process shaping microbial communities. Further-
more, the prevalence of Arctic winter signatures in mesopelagic
depths during summer suggests that solar- and meltwater-
induced stratification contribute to shaping bacterial distribution.
In the core-EGC, where conditions are temporally stable, we

identified a persistent, resident community fraction. The temporal
stability of resident populations in the core-EGC, their variable
dynamics in the MIZ, and low detection rate across summer Arctic
samples suggests an adaptation to high-ice and PW conditions.
However, in order to persist, the populations must be continually
seeded from southward-flowing PW, underlining high dispersal and
connectivity in the Arctic. Although the presence of a persistent

community fraction has been reported from the Western English
Channel and Hawaiian Ocean time-series [71, 72], this is the first
such description from the Arctic. It is also a feature likely restricted
to the central Arctic and core-EGC, as bacterial communities of
continental shelf and peripheral regions are exposed to more
dynamic conditions and stronger seasonal forcing.

Biological Atlantification and future Arctic Ocean bacterial
communities
Considering population- and community-level dynamics in con-
cert with contrasting environmental conditions, we predict a
Biological Atlantification of Arctic Ocean bacterial communities.
Biological Atlantification will be driven by northward advection of
populations, coupled with shifting physicochemical conditions
from expanding AW influence as well as its associated effects on
primary producers and higher trophic levels. There are two
underlying mechanisms; “replacement” through advection, mixing
and species sorting (as outlined above), and physiological or
evolutionary adaptation. We hypothesise that replacement will be
more commonplace for bacteria with narrow ecological niches
due to their sensitivity to change. In addition, replacement is more
likely to occur in the central Arctic and above Eurasian shelves.
With ice-free summers predicted by 2050, the central Arctic is
shifting to a seasonally dynamic environment. This will reduce the
niche space of bacteria that are adapted to permanent ice cover,
while benefitting those adapted to conditions of the shelf and
peripheral regions. Similarly, the Eurasian shelves will experience
the immediate impact of Atlantification along with the northward
expansion of temperate species. In short, we envision a net shift in
bacterial distribution from shelf regions to the central Arctic, and
from the North Atlantic onto the Eurasian Arctic shelves. However,
adaptation will also play a role in the reshaping of communities,
but will likely be more commonplace among bacteria with wider
ecological niches and higher competitive fitness that are less
vulnerable to changing conditions (Fig. 8).

DATA AVAILABILITY
The 16S rRNA gene sequences are available at EBI-ENA under PRJEB43890 (2016−17),
PRJEB43889 (2017−18), PRJEB54562 (2018−19), and PRJEB54586 (2019−20).
Individual sample accessions are provided in Supplementary Table S9. The
metagenomic sequence data and MAGs generated are available at EBI-ENA under
PRJEB52171 (accessions provided in Supplementary Table S10). Tara Arctic data are
available under PRJEB9740. MOSAiC accession numbers are shown in Supplementary
Table S11. Functional gene annotations for all signature populations are provided in
Supplementary Files S1. Physicochemical parameters are available under PANGAEA
accessions 904565 [68], 941159 [69], and 946539 [70].

Fig. 8 Bacterial communities under contrasting AW influx and ice cover conditions. Illustration showing the ten taxonomic groups with
highest average relative abundances under Atlantic vs. Arctic conditions, derived from the relative abundances of Int-ASVs (sPLS cluster C1)
and Res-ASVs (sPLS cluster C8), respectively. Figure was generated using Biorender.com.
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CODE AVAILABILITY
Bioinformatic code for reproducing analyses and generating figures, along with necessary
data files, is available at https://github.com/tpriest0/FRAM_EGC_2016_2020_data_analysis.
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Chapter 4

Bacteria: Seasonal recurrence and modular
assembly of an Arctic pelagic marine
microbiome

In this chapter, we present our use case concerning analysis of pelagic Arctic Ocean microbiome
dynamics over seasonal and interannual scales. Here we examine taxonomic and functional dy-
namics with high temporal resolution data collected over four years using autonomous samplers
and in situ sensors.

Figure 4.1: Ecosystem modules, their temporal dynamics and association with envi-
ronmental conditions a) Co-occurrence network of prokaryotic ASVs and func-
tional cluster oscillation signals (Pearson correlations >0.7). Circle nodes represent
ASVs, triangle nodes represent functional clusters. b) Number of components in the
modules. c) Temporal abundance dynamics of module ASVs (area) and functional
clusters (line). d) Significant Pearson’s correlations between combined abundance
of module ASVs and functional clusters against environmental factors (p <0.05
after multiple testing correction) (Priest et al., 2024).
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4.1 Seasonal recurrence and modular assembly of an Arctic
pelagic marine microbiome

In this section, we provide an overview of the contributions and impact of our paper (Priest
et al., 2024):

Taylor Priest, Ellen Oldenburg, Ovidiu Popa, Bledina Dede, Katja Metfies, Wilken-Jon von
Appen, Sinhué Torres-Valdés, Christina Bienhold, Bernhard M. Fuchs, Rudolf Amann, Antje

Boetius, Matthias Wietz
“Seasonal recurrence and modular assembly of an Arctic pelagic marine microbiome”

In: biorxiv, 2024 (Submitted to Nature Communications)

Main Results in Simple Terms

This paper explores how di"erent types of tiny organisms, called microbes, come together in the
ocean, particularly in the Arctic. We used special tools to track these microbes over four years,
focusing on how they change over time. We found that certain groups of microbes tend to come
and go in a pattern each year, and this pattern is influenced by the seasons and environmental
factors like sunlight and nutrients. For example, in the winter, we often see a certain type
of microbe that helps break down ammonia, while in the summer, we find di"erent microbes
that help break down sulfur compounds. We also noticed that from year to year, the types of
microbes and their functions can vary, showing how the environment a"ects them. This study
gives us important insights into how these tiny organisms organize themselves in the ocean,
especially in places like the Arctic where there hasn’t been much research done before.

Summary/Abstract

An understanding of how microbial communities assemble in di"erent environments is essential
for comprehending the functioning of ocean ecosystems. Currently, the diversity of functions
exhibited by these microbial communities and the relationship between their classification and
their activities, particularly over time, remain poorly understood. In this study, we employed
specialized equipment to track the alterations in both the types of microbes and their activities
in the pelagic Arctic Ocean over four years, with considerable detail. The study revealed that
the primary types of microscopic organisms exhibit predictable fluctuations in abundance and
genetic composition on an annual basis. These organisms form five distinct patterns through-
out the seasons, reflecting varying ecological conditions. For instance, during the early stages
of the polar night, we frequently observe a specific microbe and its associated function in am-
monia breakdown, along with other specific organisms and oceanic conditions. In contrast, late
summer brings di"erent microbes and functions, such as the breakdown of sulfur compounds
and various types of algae. Furthermore, it was observed that these patterns change from
year to year, indicating that the environment plays a significant role in shaping them. For
instance, in spring, there are fewer types of microbes, but they perform similar functions, and
there is a great deal of variation in their genetics, which suggests that the environment selects
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for certain functions over time. By integrating data on the types of microbes present, their
functions, and the environmental context, our research contributes to a better understanding
of the organization of microbial communities in the Arctic Ocean. This is crucial because these
ecosystems are undergoing rapid changes and have been relatively understudied.

Personal Contribution

TP designed and executed the ASV and metagenomic analysis pipelines and wrote the
manuscript, with input from MW, EO and BD. EO and OP performed time-series and network
analyses. MW processed amplicon raw data into ASVs, co-designed the sampling and mooring
strategy, and coordinated data analysis. WJvA contributed quality-controlled oceanographic
data and coordinated the mooring operations. KM coordinated the processing of samples
and sequencing and provided 18S rRNA gene sequence data. STV provided quality-controlled
chlorophyll sensor data. CB, KM and AB co-designed the sampling and mooring strategy, and
contributed to the interpretation. BF and RA contributed to study design and interpretation.
All authors contributed to the final manuscript.

Importance of the Research and Contribution to this Thesis

Therefore, it answers our third research question: This study provides fundamental insights
into the seasonal and interannual structuring of prokaryotic and microeukaryotic communities
in an Arctic pelagic ocean ecosystem. By demonstrating the prevalence of annually recur-
rent dynamics of populations and community gene content, we identify five distinct seasonal
modules. These modules represent unique ecological states within the prokaryotic microbiome
each year, connected to specific microeukaryotic populations and environmental conditions.
Furthermore, our findings demonstrate that environmental selection varies across these states,
exerting di"erential pressures on both organismal and functional levels. Our results contribute
to the growing body of knowledge on microbial community structuring across pronounced
environmental gradients in rapidly changing and understudied ocean regions.
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ABSTRACT 

Deciphering how microbial communities are shaped by environmental variability is fundamental for 

understanding the structure and function of ocean ecosystems. Thus far, we know little about the structuring 

of community functionality and the coupling between taxonomy and function over seasonal environmental 

gradients. To address this, we employed autonomous sampling devices and in situ sensors to investigate 

the taxonomic and functional dynamics of a pelagic Arctic Ocean microbiome over a four-year period. We 

demonstrate that the dominant prokaryotic and microeukaryotic populations exhibit recurrent, unimodal 

fluctuations each year, with community gene content following the same trend. The recurrent dynamics 

within the prokaryotic microbiome are structured into five temporal modules that represent distinct 

ecological states, characterised by unique taxonomic and metabolic signatures and connections to specific 

microeukaryotic populations and oceanographic conditions. For instance, Cand. Nitrosopumilus and the 

machinery to oxidise ammonia and reduce nitrite are signatures of early polar night, along with Radiolarians. 
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In contrast, late summer is characterised by Amylibacter, sulfur compound metabolism and diverse 

Haptophyta lineages. Exploring the composition of modules further along with their degree of functional 

redundancy and the structuring of genetic diversity within functions over time revealed seasonal 

heterogeneity in environmental selection processes. In particular, we observe strong selection pressure on 

a functional level in spring while late polar night features weaker selection pressure that likely acts on an 

organismal level. By integrating taxonomic, functional, and environmental information, our study provides 

fundamental insights into how microbiomes are structured under pronounced environmental variability in 

understudied, yet rapidly changing polar marine ecosystems. 

INTRODUCTION 

Bacteria, archaea and microeukaryotes are the dominant life forms in ocean environments and comprise 

an immense taxonomic, functional and physiological diversity. These microbes drive and respond to 

changes in their surrounding environment, such as bottom-up (e.g. resource availability) and top-down (e.g. 

grazing and viral infection) factors and physicochemical conditions (e.g. temperature), which results in the 

assembly of distinct communities over spatial and temporal scales1,2. The assembled communities 

subsequently perform essential trophic roles and mediate the biogeochemical cycling of biologically 

important elements3–5. Deciphering how microbial community dynamics are shaped across environmental 

gradients is thus fundamental for understanding the structure and function of ecosystems and how they 

respond to change.  

Long-term observations have uncovered recurrent and transient dynamics in microbial 

communities across daily, seasonal and annual timescales. In temperate ecosystems, communities are 

predominantly structured by seasonal variability, with broadly recurrent fluctuations of taxa on annual 

scales6–11. These patterns have led to the conclusion that microbial responses to biological and 

environmental shifts are predictable12. However, recent evidence indicates that microeukaryotes exhibit 

weaker temporal structuring than prokaryotes13, suggesting different controlling mechanisms. Furthermore, 

high-frequency sampling has shown that population dynamics are highly ephemeral in nature, undergoing 

rapid, short-lived fluctuations that transpire over days14–16. Thus, while microbial communities are structured 

over time, they also undergo constant flux, reflecting the dynamic nature of ocean ecosystems.  

Despite the wealth of knowledge gained from long-term observations, the focus primarily on 

taxonomic dynamics and on temperate and sub-tropical ecosystems has left many questions unanswered. 

In particular, it remains unclear how compositional shifts across environmental gradients translate to 

changes in the functionality of microbial communities. Since distantly related organisms can perform similar 

metabolic functions17,18, taxonomic information alone does not inform about ecological landscapes or 

ecosystem function. Therefore, long-term observations that integrate taxonomic, functional, and 

environmental information are greatly needed. This is particularly important in the polar oceans, where long-

term observations are rare and unprecedented changes are taking place because of climate warming. 

To address this, we investigated the dynamics of prokaryotic (here used operationally to refer to 

bacteria and archaea) and microeukaryotic communities from a taxonomic and functional perspective over 
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a four-year period in an Arctic Ocean ecosystem, the West Spitsbergen Current (WSC). The WSC 

constitutes the primary entry route for Atlantic water into the Arctic Ocean and is characterised by 

pronounced seasonal variability in environmental conditions, archetypal of high-latitude ecosystems. 

However, unlike other Arctic Ocean ecosystems, the WSC remains ice-free year-round, due to the warmth 

of the North Atlantic water. Therefore, the WSC represents a model system for investigating the dynamics 

of microorganisms and ecosystem function in the context of pronounced seasonal variability. In addition, it 

can provide valuable insights into potential future shifts in Arctic Ocean ecosystems, given the progressive 

northward expansion of Atlantic water influence19. 

We hypothesised that the Arctic epipelagic microbiome shows a seasonally recurring assembly 

primarily structured by polar day/night cycles. To investigate this, we employed moorings fitted with 

autonomous sampling and measuring devices to continuously track taxonomic, functional and 

environmental dynamics. Through 16S and 18S rRNA gene amplicon and PacBio HiFi metagenome 

sequencing, we generated a high-quality, temporally resolved microbiome catalogue. Using a Fourier 

transformation-based approach, we demonstrate that prokaryotic and microeukaryotic communities exhibit 

annually recurrent, seasonally structured dynamics͘ Within the prokaryotic microbiome, these dynamics 

assemble into five distinct temporal modules that feature unique taxonomic and metabolic signatures, are 

associated with specific microeukaryotic populations and are subject to different environmental selection 

pressures. Our study provides the first multi-year ecosystem catalogue from the Arctic that integrates 

taxonomic, functional and environmental information, and provides fundamental insights into the dynamics 

and structuring of microbiomes across pronounced environmental gradients.   

RESULTS & DISCUSSION 

The West Spitsbergen Current harbours an ecosystem with pronounced temporal structuring 

We first investigated how environmental conditions in the WSC are structured over intra- and inter-annual 

scales. For this, we combined data collected from in situ sensors attached to the mooring, including 

temperature, salinity and oxygen saturation, with chlorophyll a measurements and satellite-derived values 

of photosynthetically active radiation (PAR) (Supplementary Table S1). Our measurements were derived 

from the epipelagic layer but varied between 20 – 100 m in depth due to the movement of the mooring by 

currents. Owing to the inclusion of multiple CTD sensors at different depths, we were also able to determine 

the lower bound of the mixed layer depth (MLD). Each annual cycle was characterised by pronounced shifts 

in environmental conditions (Figure 1). As expected, these shifts followed the transition between polar night 

and polar day, which is a major force stimulating biological dynamics in the Arctic20. The end of polar night 

was marked by an increase in PAR in April, which continued to rise until a maximum, on average, of 38 

μmol photons m-2 s-1 in June. The increasing solar radiation onset warming, with temperatures rising until 

a peak of ~7°C in August/September before decreasing again to <4 °C between December – May. Changes 

in MLD were inversely related to temperature (Pearson correlation: R = -0.47, p < 0.05), but were 
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characterised by abrupt events of shallowing to <5 m in June and deepening to >200 m between December-

January. Chlorophyll concentrations showed a lagged association with PAR, peaking between June-

August. However, the magnitude and timing of the chlorophyll peak varied across years, from 3.35 μg l-1 in 

July 2019 to 13.22 μg l-1 in June 2018, indicating differences in phytoplankton bloom phenologies. The 

WSC thus exhibits pronounced intra-annual shifts in environmental conditions, presenting an ideal 

ecosystem to study seasonally driven biological dynamics.  

 

The intra- and inter-annual temporal structuring of communities 

We next investigated the temporal structuring of prokaryotic and microeukaryotic communities from a 

taxonomic perspective. Using autonomous Remote Access Samplers, we collected 97 samples at, on 

average, fortnightly resolution that were used for 16S and 18S rRNA gene sequencing. From these, we 

recovered 3629 bacterial, 119 archaeal and 3019 microeukaryotic Amplicon Sequence Variants (ASVs) 

(Supplementary Table S2 and S3).  

The alpha diversity of prokaryotic and microeukaryotic communities exhibited distinct trends within 

each annual cycle (Figure 2a and 2b). For prokaryotic communities, we observed a tight coupling between 

Species Richness (R), Evenness (E) and Shannon Diversity (H’), evidenced through significant positive 

Pearson’s correlations (Figure 2c and Supplementary Table S4 and S5). The alpha diversity metrics 

followed a unimodal fluctuation within each annual cycle for prokaryotic communities, reaching a peak 

during polar night (December - March) with a mean R of 1210 ± 208, E of 0.78 ± 0.04 and H’ of 5.3 ± 0.36. 

The enriched diversity in winter observed here mirrors previous observations in temperate and polar 

regions21–23 and is associated with the deepening of MLD, which drives mixing and dilution of previously 

Figure 1. The WSC mooring site and environmental conditions between July 2016 and July 2020. a) Bathymetric map of the Fram Strait 

region with the mooring location within the West Spitsbergen Current. Arrows represent average current velocities over the four-year sampling 

period at the average depth of the moored autonomous sampler (32 m). b) Water temperature, oxygen saturation, mixed layer depth, chlorophyll 

concentrations measured from mooring-attached sensors and photosynthetically active radiation (PAR) derived from AQUA-MODIS satellite data. 

The shaded grey and yellow represent the periods of polar night and day, respectively. 
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stratified communities24.  The influx of PAR and rapid shallowing of MLD at the end of polar night coincided 

with a sharp drop in alpha diversity, with lowest values observed in June (R = 762 ± 156, H’ = 4.50 ± 0.34, 

E = 0.68 ± 0.03). Hence, shifts in prokaryotic alpha diversity were tightly coupled to MLD, supported by 

strong positive Pearson’s correlations; Richness (r = 0.71, 95% CI [0.59,0.79], p = 4 x 10-16), Evenness (r 

= 0.43, 95% CI [0.25,0.58], p = 1.08 x 10-5) and Shannon diversity (r = 0.58, 95% CI [0.43,0.70], p = 5.68 x 

10-10) (Supplementary Table S5). This observation is in contrast to previous reports of temperature25–27, 

ocean currents28 and day length10,22 as key drivers of epipelagic bacterial diversity. The greater role of MLD 

in shaping prokaryotic diversity observed here may be a feature unique to high-latitude ocean ecosystems, 

where seasonal shifts in MLD are more pronounced29 and can be influenced by sea-ice dynamics30. 

However, MLD has rarely been measured or incorporated before, and thus its considerations in future 

studies will help to ascertain whether its influence varies across latitude.  

In contrast to prokaryotes, microeukaryotic communities exhibited a bimodal fluctuation in alpha 

diversity in each annual cycle. The bimodal pattern was reflected in a peak in H’ in both polar-night 

(February-March) and polar-day (July-August). However, during polar night, the increased H’ was 

Figure 2. The diversity of prokaryotic and microeukaryotic communities is structured differently over time. All values of diversity shown 

represent the mean value after performing 100 iterations of rarefying and metric calculation. Richness, Evenness and Shannon diversity of a) 
prokaryotic and b) microeukaryotic communities. Statistically significant (p < 0.05) correlations between (c) prokaryotic and (d) microeukaryotic 

alpha-diversity measures and environmental parameters after multiple testing correction. 
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underpinned by a reduced R and increased E, while in polar day, it was driven by an increased R. These 

temporal fluctuations in microeukaryotic diversity are in contrast to observations from the temperate San 

Pedro time-series (SPOT), where H’ was shown to be invariable over time across the top 500 m of the 

water column13. The difference may indicate more seasonal structuring of microeukaryotic communities in 

high-latitude ocean ecosystems as a consequence of the pronounced environmental variability, supported 

by the negative correlation of MLD and Richness (Pearson’s R = -0.48, 95% CI [-0.62,-0.31], p = 7.2 x 10-

7). Furthermore, the distinct trends observed between prokaryotes and microeukaryotes provides evidence 

that the diversity of these communities is shaped by different forces. 

We next assessed how the composition of communities was structured over time. We observed a 

coherent structuring of prokaryotic and microeukaryotic communities based on the month of sampling. That 

is, communities sampled from the same month across years were often more similar than from other months 

in the same year (Figure 3a and 3b), reflecting an annual ecosystem clock. For prokaryotic communities, 

this pattern aligns with previous observations of month-based clustering at the Banyuls Bay Microbial 

Observatory in the Mediterranean31 as well as lowest pairwise beta-diversity at 12-month intervals reported 

from the temperate English Channel L432 and SPOT13 time-series. However, in contrast, microeukaryotic 

communities showed weaker temporal structuring over multi-annual scales in the SPOT time-series13. By 

comparing the within- and between-month dissimilarities across years through the convex hull areas within 

the NMDS ordination (Figure 3 and Supplementary Table S6), we demonstrate a clear distinction in the 

temporal recurrence of prokaryotic and microeukaryotic composition. Prokaryotic communities were more 

cohesive across years in February-March and more variable during June-July, with convex hull areas of 

~0.025 and ~0.13 respectively. In contrast, microeukaryotic communities were more cohesive during 

August and more variable during January-March, with convex hull areas of 0.06 and ~0.43 respectively. 

However, maximal inter-annual differences in microeukaryotic communities were observed in April, in the 

phase before the spring bloom. This indicates that the assembly of the spring bloom is less predictable, 

and only later in the summer, the increased richness of microeukaryotic populations (high R) assembles 

into a cohesive structure each year. In previous years, a high inter-annual variability during polar day has 

been observed in microeukaryotic communities in this region33,34, so this pattern may change with time and 

reflect climate-induced or natural decadal variations34. The recurrent structuring of microeukaryotic 

communities during the productive season could be anticipated to stimulate predictable dynamics in 

prokaryotes, owing to specialised substrate niches and specific interactions35,36 as observed in temperate 

systems7,8. Indeed, it triggers a pronounced response of a minority of prokaryotic populations, evidenced 

through reduced R and E, but their emergent population structure shows high inter-annual variability, which 

may be a result of selection on a functional level and stochastic processes. In contrast, polar night 

conditions manifest species-rich but compositionally cohesive prokaryotic communities, suggesting that 

vertical mixing drives replenishment back to a “standing stock”.  

Temporal dynamics of ASVs and community gene content  
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To gain a deeper understanding of ecosystem dynamics in the WSC, we complemented the amplicon 

dataset with long-read metagenomes and systematically investigated the temporal fluctuations of ASVs 

and community gene content. From 47 PacBio HiFi read metagenomes that spanned the four years, we 

obtained 48.5 million open-reading frames that could be classified as bacterial or archaeal, by comparing 

to species-representative genomes in the GTDB. The predicted prokaryotic gene sequences were 

subsequently grouped into 704,158 non-singleton clusters based on a 95% average nucleotide identity cut-

off. This, combined with the ASV data, forms a rich multi-year ecosystem catalogue that can be used to 

elucidate community assembly processes and temporal dynamics on a taxonomic and functional level.  

 

To unravel the temporal dynamics of ASVs and gene clusters, we employed an approach based on Fourier 

transformations and the determination of oscillation signals. Fourier transformations convert abundance 

data into frequencies, resulting in wave-like signals that can be evaluated in terms of peak/trough dynamics, 

hereon termed oscillation signals. We determined that 18% of prokaryotic ASVs, 15% of microeukaryotic 

ASVs and 69% of gene clusters exhibited a single oscillation each year, reflecting a unimodal fluctuation in 

Figure 3. Structuring of community composition and the oscillations of ASVs and genes across years. Non-metric multi-dimensional scaling 

of Bray-Curtis dissimilarities calculated after rarefying and Hellinger transforming ASV count data for (a) prokaryotic and (b) microeukaryotic 

communities over four years, where colours indicate months. c) The count (left) and relative abundance (right) of prokaryotic ASVs, microeukaryotic 

ASVs, and prokaryotic gene clusters for each oscillation signal. The relative abundances of ASVs and genes was subject to Fourier transformation 

and oscillation signals determined based on amplitude of peak/trough dynamics within each annual cycle. An oscillation of 1 indicates a single 

peak/trough, reflecting a unimodal annual fluctuation in abundance.  
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abundance with a single peak and trough (Figure 3c). Although only capturing a fraction of the diversity, 

these annually oscillating ASVs and gene clusters comprised the majority portion of communities across all 

time points, with an average relative abundance of 67% for prokaryotic ASVs, 55% for microeukaryotic 

ASVs, and 60% for gene clusters. These findings expand on previous reports of seasonally recurrent 

patterns in temperate prokaryotic communities at more coarse-grained resolutions, such as OTUs10 and 

higher taxonomic levels13,22, and are in line with those on microdiversity temporal dynamics from a coastal 

temperate region8 – suggesting comparable ecological forcing in high-latitude oceans.  

The dominance of annually oscillating ASVs raises the question, “To what extent are these patterns 

deterministic?”. More than 15 years ago, Fuhrman and colleagues proposed that “annually recurrent 

microbial communities can be predicted from ocean conditions”12. However, only more recently, with 

technological advancements and increasing quantity and resolution of data, is predictive ecology becoming 

more feasible. To contribute to this, we assessed the timing and order of ASV oscillations across each 

annual cycle. We found that 20% of prokaryotic ASVs consistently oscillated in the same order each year, 

while 51% reached their peak within the same 30-day window. Therefore, while recurrent oscillations are 

largely bound within temporal windows, the composition of co-occurring populations can vary across years, 

likely reflecting the influence of trophic interactions and the ephemeral nature of population dynamics14,37. 

A similar pattern was recently described from prokaryotic communities in the NW Mediterranean, where 

seasonally recurrent taxa exhibited inter-annual changes in the composition of their neighbours within co-

occurrence networks31. Despite these variations, the periodic timing of recurrent population dynamics within 

narrow temporal windows provides strong support towards deterministic patterns in ocean ecosystems.  

Seasonal recurrence is underpinned by transitions across distinct ecological states  

We investigated how the annual recurrence of ASVs and genes translates to ecological and functional shifts 

within prokaryotic communities. For this, we first grouped the prokaryotic genes into functions. Of the 

482,923 annually oscillating gene clusters, 85% were assigned to an orthologous group in the EGGNOG 

database and were subsequently grouped based on the functional annotation of the matching ortholog. 

This resulted in 11,320 unique gene functions that captured between 41 – 72% of community gene content 

across all time points.  

To investigate temporal structuring on a taxonomic and functional level, we used the oscillations of 

prokaryotic ASVs and gene functions to build a correlation-based network. Correlation co-occurrence 

networks have proven powerful for disentangling community dynamics and organismal interactions over 

spatial and temporal scales38. Here, we compared the oscillation signals of ASVs and gene functions 

through Pearson’s correlation and retained only those with a strong, positive coefficient (R > 0.7, FDR- 
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based adjusted p < 0.05). We subsequently built a network using these correlation coefficients as the edges 

and the respective ASVs and gene functions as the nodes. Using the Louvain algorithm, the network was 

partitioned into five modules comprised of co-oscillating ASVs and gene functions (Figure 4a) that represent 

distinct temporal periods in the WSC. Each annual cycle was thus characterised by a succession across 

these five temporal modules (Figure 4b and Supplementary Table S7).  

To uncover the ecological shifts associated with the module succession, we compared the composition of 

modules, the environmental conditions they prevail under, and their association with microeukaryotes. The 

modules differed markedly in the number of their taxonomic and functional components, from a low number 

of ASVs (n = 66) and high number of functions (n = 3140) in the spring module M3 to a low number of both 

functions (n = 1159) and ASVs (n = 60) in the autumn module M5. Beyond quantitative differences, the 

modules comprised unique taxonomic (Figure 5a) and metabolic signatures (Figure 5b). Module M1, which 

prevailed from early to mid-polar night, was taxonomically distinguished by Cand. Nitrosopumilus, 

Arctic97B-4 (Verrucomicrobiota) and BD2-11 (Gemmatimonadota) and functionally distinguished by 

ammonia oxidation (amoABC), nitrite reduction (nirK and norBC) and carbon fixation 

(hydroxypropionate/hydroxybutyrate cycle39). The numerous Cand. Nitrosopumilus ASVs detected and 

their high network connectivity to gene functions within module M1 (Figure 5a) complements previous 

findings from southward flowing Arctic waters40 and reports of increased ammonia oxidation rates during 

polar night in Antarctic coastal waters41. Taken together, these observations indicate that ammonia-

oxidising Archaea are likely keystone members of prokaryotic communities during winter in high-latitude 

Figure 4. Ecosystem modules, their temporal dynamics and association with environmental conditions. a) Co-occurrence network 

constructed from significant positive Pearson correlations (>0.7) between prokaryotic ASVs and functional cluster oscillation signals. Circle nodes 

= ASVs, Triangle nodes = functional clusters. b) The temporal relative abundance dynamics of module ASVs (area) and functional clusters (line). 

c) Significant Pearson’s correlations between the combined relative abundance of module ASVs and module functional clusters against measured 

environmental factors (only those with a p <0.05 after multiple testing correction are shown). 
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ocean ecosystems, irrespective of water mass origin. Microeukaryotic ASVs that co-oscillated with this early 

polar night module included members of Radiolarians, Nassophorea and MOCH-1 (Figure 6). A shift in 

dominance from module M1 to M2 marked a transition in the prevailing ecological state during the mid- to 

late-polar night period. This transition saw the emergence of Thalassobius and Arenicellaceae members 

dominating the prokaryotic communities along with an increase in C1 and nitrogen metabolic machinery. 

The onset of solar radiation and rapid transition from module M2 to M3 signified the end of polar night. The 

positive correlation of module M3 with PAR and chlorophyll (Figure 4c and Supplementary Table S8) as 

well as its association with Bacillariophyta, Prymnesiophyceae and Dinophyceae (Figure 6) indicates its 

representation of the spring phytoplankton bloom period. As could be expected, this module was dominated 

by members of heterotrophic bacteria known as primary responders to phytoplankton blooms and their 

carbohydrate exudates in temperate regions7,35, including Polaribacter, Aurantivirga, Formosa and SAR92. 

Functionally, module M3 was enriched in carbohydrate-active enzymes, amino and nucleotide sugar 

metabolism and organosulfur compound utilisation, including DMSP demethylation, DMSO to DMS 

(dmsBC) and methanesulfonate to sulfate (msmAB, sorAB/SUOX sulfite oxidase). The summer module M4 

that preceded the spring bloom was also enriched in sulfur metabolism but included both inorganic and 

organic sulfur utilisation, such as sulfur oxidation (soxABCXYZ), sulfite reduction (soeABC), DMSP 

demethylation, methanethiol oxidation (MeSH), and taurine utilisation (tauABC). The prokaryotic community 

in module M4 was dominated by a single Amylibacter ASV. Amylibacter are key contributors to organosulfur 

compound metabolism in temperate coastal waters during summer42,43. However, we could also attribute 

Amylibacter to the machinery to oxidise sulfur (SOX system) and reduce sulfite (sulfite reducatese), 

suggesting their specialisation on more diverse sulfur sources44. Module M4 was also signified by motility 

Figure 5. Modules are phylogenetically and functionally distinct. a) Ten most abundant ASVs identified in each module, along with the 

number of connections they share with other ASVs and functions from the same network module. The number of network connections was 

normalised by the total number of nodes in each module. b) Composition of KEGG metabolic pathways that exhibited the largest variance in the 

number of assigned functions between modules along with the number of carbohydrate-active enzyme gene families. 
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machinery, quorum sensing and photosynthesis. The photosynthesis machinery was associated with 

Synechococcus, which represented up to 1.7% of the prokaryotic community during this period. 

Synechococcus is a significant contributor to primary production in tropical and temperate oceanic regions 

but is largely absent from polar waters. Our observations of increased Synechococcus abundances in late 

summer mirrors recent findings from the WSC45 and suggests that progressing Atlantification is driving their 

northward expansion into the Arctic.  

The taxonomic and metabolic signatures of each module demonstrate that the prokaryotic microbiome is 

structured by a succession across five distinct ecological states within each annual cycle. Previous 

taxonomic-centred analyses of prokaryotic communities from temperate and tropical ecosystems have also 

reported recurrent dynamics structured by seasonality. However, the proportion of ASVs exhibiting 

seasonal recurrence and the number of temporal modules appears to be higher in the WSC. For instance, 

in the North West Mediterranean, only 4% of prokaryotic ASVs, constituting a relative abundance of 47%, 

were shown to exhibit seasonal recurrence and could be grouped into three distinct seasonal clusters46. In 

a coastal temperate region that lacks pronounced phytoplankton blooms but experiences large 

environmental variability, recurrent dynamics of prokaryotes are primarily partitioned into summer and 

winter groups47. The higher prevalence of recurrent dynamics and their organisation into narrower temporal 

Figure 6. Correlations between prokaryotic and microeukaryotic ASV oscillations. Pairwise Pearson’s correlations were computed between 

module associated prokaryotic ASVs and microeukaryotic ASVs. Correlations with a coefficient > 0.7 and p <0.05, after multiple testing correction, 

were used to construct the chord diagram. Microeukaryotic ASVs are grouped at higher taxonomic ranks.  
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modules in the WSC may indicate stronger selective pressure arising from the more pronounced seasonal 

environ mental variability. 

Selection pressure varies across ecological states 

The recurrent dynamics of ASVs, genes and functions and their assembly into cohesive, ecological modules 

suggests that the WSC microbiome is predominantly shaped by deterministic processes. The primary 

mechanisms that contribute to driving deterministic structuring of microbiomes are environmental selection 

and organismal interactions. Environmental selection is considered the primary force shaping the 

distribution of populations and the assembly of microbial communities in ocean ecosystems48. However, 

we lack a mechanistic understanding of how environmental selection operates. In particular, it is unclear 

whether the environment primarily selects for a function or for a specific organism with a function. Recent 

evidence has shown that the taxonomic composition of a microbiome can change while the gene content 

remains conserved49,50, reflecting the prevalence of metabolic redundancy across microbial taxa. In 

addition, studies on surface ocean microbial communities have demonstrated incongruencies in structuring 

on a taxonomic and functional level, with strong selection pressure on functional groups but weak selection 

pressure on the taxonomic composition within functional groups18. These observations provide evidence 

for the decoupling of taxonomy and function within microbiomes and suggests that selection may act on a 

functional level. 

Here, we showcase that selection acts heterogeneously across seasonal periods, with differential 

pressures on a taxonomic and functional level. To demonstrate this, we focus on the late polar night module 

M2 and spring module M3, as they represent two contrasting scenarios. The spring module M3 comprises 

a nearly two-fold larger diversity of gene functions than the polar night module M2, but fourfold less ASVs. 

Hence, spring is underpinned by annually recurrent dynamics predominantly on a functional level, 

compared to both taxonomic and functional recurrence during late polar night. Hence, selection pressure 

may be stronger on the function than organismal level in spring. However, despite this, both modules 

contained more functional redundancy than the other seasonal modules, with 10% more multi-gene cluster 

compared to single-gene cluster functions. Amongst these redundant functions, we identified a strong 

positive linear relationship between function abundance and the diversity of the contained gene clusters 

(Figure 7b) in ~55% of cases. As such, the oscillations of these redundant functions are, in part, driven by 

the concurrent oscillations of metabolically overlapping prokaryotes as opposed to selection for specific 

populations. To explore this further, we compared the structuring of gene cluster diversity within redundant 

functions over time. In module M2, 60% of the redundant functions were dominated by the same gene 

cluster during each annual oscillation, compared to 40% in module M3 (Figure 7c). The increased genetic 

variability within functions of module M3 supports the notion of stronger functional selection and weaker 

organismal selection during spring. 
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Integrating the observations on ASV dynamics further supports seasonal variations in 

environmental selection pressure. The late polar night features high species richness and evenness and a 

low variability in community composition across years. As such, the late polar night is characterised by a 

well-mixed community that is taxonomically and functionally conserved across years. Interestingly, we 

observed three ASVs during this period that reached a large fraction of the microbial community (Figure 5), 

which included members of known sub-surface taxa, such as Dadabacteriales. Therefore, the deeper 

vertical mixing during polar night drives a recurrent homogenisation of epipelagic communities, with 

potentially a weaker environmental pressure that selects for only a few populations upwelled from 

subsurface waters. Conversely, spring exhibits low species richness and evenness and high inter-annual 

variability in community composition (Figure 2 and 3). Combined with the observations on gene functions, 

spring can thus be characterised by the emergence of a prokaryotic community dominated by few 

populations that can compositionally vary but remain functionally conserved across years. Therefore, 

selection pressure appears stronger on a functional rather than organismal level in spring.  

Figure 7. Diversity, abundance and structuring of gene clusters within functions. a) Proportion of functions in each module comprised of 

multiple or single gene clusters. For those functions that contain >1 gene cluster, we calculated the b) Shannon diversity of gene clusters within 

functions against the relative abundance of the function across all timepoints. Each point represents an individual function. The inserted barplots 

illustrate the proportion of multi gene clusters functions that exhibit a significant positive linear relationship between Shannon diversity and 

abundance. c) Proportion of multi gene clusters functions that are dominated by the same or different gene cluster during each annual oscillation. 
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To further advance our understanding on environmental selection and the mechanisms that shape 

the structuring of ocean microbiomes, it is paramount to integrate both taxonomic and functional profiling 

along with more extensive environmental information. Of particular importance is information on the 

availability of organic carbon and energy substrates, which play a fundamental role in shaping the dynamics 

of microbial communities. For instance, phytoplankton blooms in coastal temperate regions that are of a 

larger magnitude than in the WSC have been shown to drive a predictable composition of microbes7,8, in 

contrast to our observations here. The disparity between the regions may be related to the quantity of 

organic matter released by such phenomena, i.e. higher organic matter concentrations may drive more 

deterministic taxonomic responses. However, whether the availability of organic matter, or other here 

unmeasured environmental factors, play a role in shaping the deterministic and recurrent dynamics within 

microbiomes requires further investigation.  

 

CONCLUSION 
Our study provides fundamental insights into the seasonal and interannual structuring of prokaryotic and 

microeukaryotic communities in an Arctic pelagic ocean ecosystem. We demonstrate the prevalence of 

annually recurrent dynamics of populations and community gene content, which are organised into five 

distinct seasonal modules. Each of the modules represents distinct ecological states that prevail within the 

prokaryotic microbiome each year and are connected to specific microeukaryotic populations and 

environmental conditions. We further provide evidence that environmental selection is heterogeneous 

across these ecological states, with differential pressures on an organismal and functional level. Our 

findings provide new insights into understudied yet rapidly changing ocean regions and advances our 

understanding of how microbial communities are structured across pronounced environmental gradients. 

MATERIALS AND METHODS 

Sample collection and processing  

Moorings carrying autonomous water samplers (Remote Access Samplers; RAS) were deployed between 

2016 – 2020 at a single location in the eastern Fram Strait (mooring F4: 79.0118 N 6.9648 E). Moorings 

were deployed for 12-month intervals, with collection and redeployment occurring in summer, typically 

August. Owing to ocean currents, the vertical positioning of the RAS fluctuated between 20 – 110 m over 

the four-year period. At weekly to fortnightly intervals, 2 x 500 ml of seawater was collected in sterile plastic 

bags and fixed with mercuric chloride (0.01% final concentration). Following mooring recovery, fixed 

seawater samples from each timepoint were filtered onto 0.22 μm Sterivex cartridges and directly frozen at 

-20 °C until DNA extraction.  

 

Mooring and satellite data 
Attached to the RAS were Seabird SBE37-ODO CTD sensors that measured temperature, depth, salinity, 

and oxygen concentration. Sensor measurements were averaged over 4 h around each seawater sampling 
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event. Physical sensors were manufacturer-calibrated and processed in accordance with 

https://epic.awi.de/id/eprint/43137. Employing multiple CTD sensors along the mooring depths enabled the 

determination of the minimum mixed layer depth (MLD) at each sampling time point. For instance, if two 

CTDs showed the same temperature and salinity measurements, the MLD was at least the depth of the 

deeper CTD. Chlorophyll concentrations were measured via Wetlab Ecotriplet sensors. Surface water 

Photosynthetically Active Radiation (PAR) data, with a 4 km grid resolution, was obtained from AQUA-

MODIS (Level-3 mapped; SeaWiFS, NASA) and extracted in QGIS v3.14.16 (http://www.qgis.org). 

 

SSU rRNA gene amplicon and metagenome sequencing 

Filtered seawater samples from 97 time points were subjected to DNA extraction using the DNeasy 

PowerWater Kit (QIAGEN, Hilden, Germany). 16S and 18S rRNA gene fragments were PCR-amplified 

using the primers 515F–926R51 and 528iF–964iR52, respectively. Sequencing libraries were constructed 

from rRNA gene products according to the “16S Metagenomic Sequencing Library Preparation” protocol 

(Illumina, San Diego, CA) and sequenced on an Illumina MiSeq platform in 2 x 300 bp, paired-end mode. 

Amplicon sequencing took place at the Alfred Wegener Institute. The extracted DNA from 47 timepoints 

was additionally used to generate PacBio HiFi metagenomes. Sequencing libraries were prepared following 

the protocol “Procedure & Checklist – Preparing HiFi SMRTbell Libraries from Ultra-Low DNA Input” 

(PacBio, Menlo Park, CA) followed by inspection with a FEMTOpulse. The libraries were multiplexed and 

sequenced on 8M SMRT cells (7 - 8 samples per cell) on a PacBio Sequel II platform for 30 h with 

sequencing chemistry 2.0 and binding kit 2.0. Metagenomes were sequenced at the Max Planck Genome 

Centre, Cologne, Germany.  

 
PacBio HiFi metagenome analysis 

A total of 48 Gbp of PacBio HiFi reads were generated, with an average of 1 Gbp per sample. Gene 

sequences were predicted on HiFi reads using Fraggenescan (v1.31; parameters:-complete=1 -

train=sanger_5)53. The genes were subsequently clustered using cd-hit v4.8.154 at a 95% identity threshold 

– these comprise the ‘gene clusters’. To facilitate comparisons between metagenomes, gene cluster counts 

were normalised by the estimated number of prokaryotic genomes in each sample, determined from the 

average sequencing depth of 16 single-copy ribosomal proteins, as described previously55. The longest 

sequence from each cluster was used as the representative for functional assignment against the EGGNOG 

v5.0 database56 using the eggnog-mapper tool v257. To build the ‘functional clusters’ used in our analysis, 

we grouped gene clusters based on functional annotations of matching seed orthologs. As the seed 

orthologs of EGGNOG have been functionally annotated using numerous resources, we grouped gene 

clusters firstly based on annotations against the carbohydrate-active enzyme database, followed by KEGG 

and then PFAM. 

 

Taxonomic diversity analyses 
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The 16S and 18S amplicons were processed into Amplicon Sequence Variants (ASV) using DADA258 in 

RStudio v4.1.359. ASVs were taxonomically classified using the SILVA SSU v138 (16S) and PR2 v4.12 

(18S) databases using the assignTaxonomy function of DADA2. The ASV dataset was filtered to remove 

those with <3 counts in <3 samples. For alpha diversity, the ASV count table was subject to 100 iterations 

of rarefying followed by the calculation of Richness, Shannon diversity (diversity function in vegan) and 

Evenness. The mean and standard deviation was calculated for each metric, with the mean being used for 

visualisations and statistical comparisons to environmental metadata. For beta diversity analysis, the ASV 

count table was rarefied a single time, followed by Hellinger transformation before calculation of Bray-Curtis 

dissimilarities (using vegan). Dissimilarities were ordinated using Non-Metric Multi-Dimensional Scaling.  

 

Time-series and network analysis 

The temporal analysis of ASVs and gene clusters as well as the construction of co-occurrence networks 

was performed using the same workflow as that presented recently by authors of this paper60. In brief, for 

each ASV and gene cluster, we calculated a time-series signal using the signal using the 

segmenTier/segmenTools (https://github.com/raim/segmenTools) packages 

https://www.nature.com/articles/s41598-017-12401-8) using relative (ASV) and normalized (gene cluster) 

abundance data. The recovered signals indicate the frequency, amplitude and phase of abundances in 

each annual cycle, which we termed oscillation signals. Oscillation signals were extracted for each ASV 

and gene cluster using the fprocessTimeseries function from the segmenTier package. The ASVs and 

genes with an oscillation signal of one, i.e. a single peak and trough in each annual cycle, were deemed as 

“annually oscillating” and retained for further analysis. Phase-Rectified Signal Averaging (PRSA) was used 

to visualize periodic patterns of ASVs, using phase-rectified data to remove phase variability. Then, the 

phase-rectified data was averaged for the final PRSA plot. The oscillation signals of ASVs and gene clusters 

were compared through pairwise Pearson’s correlation, with multiple testing corrections using the FDR 

method. Those with a statistically significant (p < 0.05) positive correlation coefficient of >0.7 were used to 

build a co-occurrence network, with edges as correlation coefficients. By using oscillation signals, focusing 

on ASVs and gene clusters with a defined oscillation, and using only positive correlations, we minimise 

noise in the dataset and prevent potential network topology distortion of negative correlations. Co-

occurrence correlation networks were constructed using the igraph package61 in R and visualised in 

Cytoscape v3.7.262 using the Edge-weighted Spring-Embedded Layout. ASVs and gene clusters in the 

network were clustered using the Louvain algorithm63. All steps outlined above were performed in R v4.1.3. 

 
DATA AVAILABILITY 
Mooring data are available under https://doi.pangaea.de/10.1594/PANGAEA.904565 (2016-2017), 

https://doi.pangaea.de/10.1594/PANGAEA.904534 (2017-2018), 

https://doi.pangaea.de/10.1594/PANGAEA.941126 (2018-2019), and 

https://doi.pangaea.de/10.1594/PANGAEA.946508 (2019-2020). ENA accession numbers for 16S rRNA 
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amplicons are: PRJEB43890 (2016-2017), PRJEB43889 (2017-2018), PRJEB67813 (2018-2019), 

PRJEB66202 (2019-2020). ENA accession numbers for 18S rRNA amplicons are: PRJEB43504 (2016-

2017), PRJEB43885 (2017-2018), PRJEB66212 (2018-2019), PRJEB66220 (2019-2020). Raw 

metagenomic reads are available under PRJEB67368. Code for reproducing workflow and figures is 

available at https://github.com/tpriest0/Fram_Strait_WSC_time_series_2016-2020 while the accompanying 

derived data files are available at https://doi.org/10.17617/3.CA8MQY.  
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Chapter 5

Interactions, Stability and Occurence

In this chapter, we present our use case concerning keystone prediction: Keyspecies identi-
fication framework. We first briefly introduce the topic "Image Classification using Machine
Learning" and subsequently present our approach to identify keystone species based on their 18S
abundance data using a framework consisting on three mathematical approaches Figure 5.1.

Figure 5.1: Workflow of the framework. The middle panel displays the results of clustering
achieved through analysis of the Co-Occurrence Network. Each season is presented
as a distinct cluster, including spring, summer, autumn and winter. Following this,
a Convergence Cross Mapping Network is calculated, based on the connections
within the network. It reveals the normalized mutual information score of the
four taxonomic class levels within and between clusters, as depicted in the right
panel. The ASVs (circles) that represent the samples (diamonds) are organized into
seasonal clusters for an Energy Landscape Analysis. Keystone species are identified
based on their occupancy within Stable States (rings) in the left panel. Finally,
the last panel shows the stable sets that correspond to the typical habitats during
winter and summer in the Arctic and Atlantic regions, determined by assessing the
abundance of our Atlantic communities (Oldenburg et al., 2024a).
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5.1 A novel time series analysis framework predicts seasonal
keystone species

In this section, we provide an overview of the contributions and impact of our paper (Oldenburg
et al., 2024a):

Ellen Oldenburg, Raphael M. Kronberg, Katja Metfies, Wilken-Jon von Appen, Matthias
Wietz, Christina Bienhold, Ovidiu Popa and Oliver Ebenhöh

“Beyond blooms: A novel time series analysis framework predicts seasonal keystone species
and sheds light on Arctic pelagic ecosystem stability”

In: biorxiv, 2024 (Submitted to Communications Earth & Environment)

Main Results in Simple Terms

In the Arctic Ocean, which is experiencing significant challenges due to climate change, it is
crucial to comprehend the interactions between living organisms in this region. Scientists aim
to identify the most critical species for maintaining a healthy ecosystem. However, traditional
methods are inadequate for this purpose. To address this issue, we have applied three novel
techniques to study microorganisms. These methods help to determine the most important
species in di"erent seasons and how they interact in the ecosystem. The research discusses the
identification of 38 key species that are crucial for the Arctic food web using Co-Occurrence
Networks, Convergent Cross Mapping, and Energy Landscape Analysis. The research demon-
strates that the types of microbes in the Arctic vary depending on the season, and these key
species can provide insight into how environmental changes a"ect the ecosystem. Microbes
can be more active during either the bright summer months or the dark winter. Our research
has shown that summer microbes have a significant impact on winter microbes, but not vice
versa. In the spring, as the ice begins to melt, two main groups of microbes emerge: those that
consume organic matter and those that use sunlight for growth. These groups do not directly
a"ect each other, indicating that each winter acts as a de novo start, allowing certain microbes
to flourish. Energy Landscape Analysis revealed that the microbial communities in winter are
more stable than those in summer.

Summary/Abstract

A thorough understanding of ecosystem functioning in the Arctic Ocean, a region under severe
threat by climate change, requires detailed studies on inhabiting biological communities. The
identification of keystone species with special ecological relevance is of great importance, yet
di!cult to achieve with established community assessments. In the case of microbes, metabar-
coding and metagenomics o"er fundamental insights into community structure and function,
yet remain limited regarding conclusions about the role of individual species within the ecosys-
tem. To overcome this limitation, we have developed an analytical approach based on three
di"erent methods: Co-Occurrence Networks, Convergent Cross Mapping, and Energy Land-
scape Analysis. These methods enable the identification of seasonal communities in microbial
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ecosystems, elucidate their interactions, and predict potential stable community configurations
under varying environmental conditions. Combining the outcomes of these three methods al-
lowed us to define 38 keystone species that are representative for the di"erent trophic modes
that build the local food web. They may serve as indicator species for monitoring the con-
sequences of environmental change in Arctic marine ecosystems. Our research reveals a clear
seasonal pattern in the composition of the microbial phytoplankton community, with distinct
assemblages characterizing the carbon fixation (light) and consumption (dark) phases. Species
interactions exhibit strong seasonality, and we observed summer communities with significant
influence on winter communities but not vice versa. During spring thaw, two distinct groups
are present: consumers (heterotrophs), strongly linked to the dark phase, and photoautotrophs
(mainly Bacillariophyta), initiating growth (photoautotrophic Bacillariophyta). These groups
are not causally related, suggesting a "winter reset" with selective e"ects that facilitates a new
blooming period, allowing survivors of the dark phase to emerge. Investigating the fragility of
these ecological systems using Energy Landscape Analysis we demonstrate that winter com-
munities are more stable than summer communities. In summary, the ecological landscape of
the Fram Strait can be categorized by two distinct phases: a production phase governed by
specialized organisms that are highly responsive to environmental changes, and a consumption
phase dominated by generalist species with enhanced resilience.

Personal Contribution

WJvA, CB, MW and KM are responsible for the sampling design. WJvA contributed oceano-
graphic data. EO devised the project, the main conceptual ideas and study outline. EO and
RMK designed the model and the computational framework, analysed the data and wrote the
initial draft. RMK carried out the implementation. EO, RMK and OP interpreted the data,
conceptualized and drafted the manuscript. OE and OP advised data evaluation and data
interpretation and revised and finalized the manuscript. All authors contributed to improv-
ing the final manuscript, by contributions to the scientific interpretation of the data and the
discussion of results.

Importance of the Research and Contribution to this Thesis

Comprehending the functioning of the delicate Arctic ecosystem requires an understanding of
the structure and dynamics of its food web. Our research aims to gather comprehensive data on
various components, including eukaryotes, bacteria, genomes, zooplankton, and environmental
factors, to piece together a clearer picture.
Here, we created a framework to identify co-occurrence, interactions, and stability within
microbial communities. This framework allows us to model how these communities change in
response to shifts in environmental conditions. Our aim is to e"ectively address our fourth
research question, particularly in identifying keystone species that are vital to Arctic ecosystem
health.
To demonstrate the e"ectiveness of our framework, we validated our findings with existing
scientific literature. Our analysis encompassed a broader array of components from the food
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webs, not solely eukaryotic data. This research expansion enhances our understanding of
ecosystem dynamics, aiding in the identification of keystone species crucial for maintaining
Arctic marine ecosystems.
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E. Oldenburg, R. M. Kronberg, et al.

ABSTRACT
A thorough understanding of ecosystem functioning in the Arctic Ocean, a region under severe threat by
climate change, requires detailed studies on linkages between biodiversity and ecosystem stability. The
identification of keystone species with special relevance for ecosystem stability is of great importance, yet
difficult to achieve with established community assessments. In the case of microbes, metabarcoding
and metagenomics offer fundamental insights into community structure and function, yet remain
limited regarding the ecological relevance of individual taxa. To overcome this limitation, we have
developed an analytical approach based on three different methods: Co-Occurrence Networks, Convergent
Cross Mapping, and Energy Landscape Analysis. These methods enable the identification of seasonal
communities in microbial ecosystems, elucidate their interactions, and predict potential stable community
configurations under varying environmental conditions. Combining the outcomes of these three methods
allowed us to define 38 keystone species in the Arctic Fram Strait that represent different trophic
modes within the food web, and might signify indicator for ecosystem functionality under the impact
of environmental change. Our research reveals a clear seasonal pattern in phytoplankton composition,
with distinct assemblages characterizing the phases of carbon fixation (polar day) and consumption
(polar night). Species interactions exhibited strong seasonality, with significant influence of summer
communities on winter communities but not vice versa. Spring harbored two distinct groups: consumers
(heterotrophs), strongly linked to polar night, and photoautotrophs (mainly Bacillariophyta). These
groups are not causally related, suggesting a ”winter reset” with selective effects that facilitates a new
blooming period, allowing survivors of the dark phase to emerge. Energy Landscape Analysis showed that
winter communities are more stable than summer communities. In summary, the ecological landscape of
the Fram Strait can be categorized into two distinct phases: a production phase governed by specialized
organisms that are highly responsive to environmental variability, and a heterotrophic phase dominated
by generalist species with enhanced resilience.

Keywords: Cross Convergence Mapping, Co-Occurrence Network, Energy Landscape Analysis, Keystone species, Eukaryotes

1 INTRODUCTION
The Arctic Ocean is a unique ecosystem, undergoing major transitions during climate change. Over
the past two decades, temperatures have risen more than twice compared to the global average
(Meredith et al., 2019), linked to reduced in sea-ice and snow cover, which exacerbates warming
trends. In particular, the extent of Arctic sea ice has declined (Meredith et al., 2019). These
environmental changes have a wide range of consequences, including profound shifts in biodiversity
(Sala et al., 2000), and thus have a fundamental impact on ecosystems of the Arctic Ocean. There
are first signs that the geographical ranges of temperate species are shifting northwards (Kraft et al.,
2013), while polar fish and ice-associated species experience a reduction in their habitat due to
changing environmental conditions. These ecological changes impact the entire ecosystem stability
(Meredith et al., 2019). The complex relationship between biodiversity and ecosystem stability
remains poorly understood, particularly in the Arctic Ocean. Consequently, the rapid changes in
Arctic sea ice and environmental conditions urgently require an improved understanding of the
mechanisms governing the resilience and stability of biological processes and ecosystem functions
in the Arctic Ocean. Within marine ecosystems, primary production is a key service supporting
all trophic levels (Eppley and Peterson, 1979; Lin et al., 2003), with implications for biodiversity,
the abundance and community structure at higher trophic levels, and carbon sequestration. This
distinct ecosystem feature is supported by a highly productive microalgal community that thrives
in sea ice, accompanied by a remarkably diverse heterotrophic community ranging from bacteria
to metazoans (Bluhm et al., 2017). Recent decades have seen a remarkable increase in pelagic
phytoplankton and primary production in the Arctic Ocean, a direct consequence of global warming
(Arrigo et al., 2015; Lewis et al., 2020; Nöthig et al., 2020).
In the Arctic Ocean (CAO), sea-ice algae rather than phytoplankton account for much of the primary
production (Gosselin et al., 1997; Fernández-Méndez et al., 2015)as they have the potential to
initiate pelagic blooms beneath the ice (van Leeuwe et al., 2022). Typically, phytoplankton growth
starts mainly within the marginal ice zone in spring, co-occurring with increased solar radiation
and meltwater-induced stratification (Clement Kinney et al., 2020). Over the past three decades,
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increasing evidence has documented the occurrence of under-ice blooms in the Arctic Ocean (Strass
and Nöthig, 1996; Fortier et al., 2002; Leu et al., 2011; Assmy et al., 2017), while phytoplankton in
the water column below the ice shows significant differences from the microalgal communities in the
sea ice (Hardge et al., 2017). However, changes in biodiversity key species related to the increase in
Arctic pelagic primary production and its impact on the marine ecosystem stability are currently
unresolved.
Recent findings indicate that high temperatures in natural ecosystems may affect ecological
stability, whereas the consequences of alterations to biodiversity remain variable (Zhao et al., 2023).
Nevertheless, the underlying mechanisms remain a subject of debate and limited understanding
(Loreau and De Mazancourt, 2013). The presence of nearly 2,000 phytoplankton taxa and 1,000
ice-associated protists in the Arctic (Bluhm et al., 2011) indicates the relevance of identifying
keystone species in this wealth of Arctic marine microbial diversity that account for ecosystem
stability (Frey, 2017; Barber et al., 2015; Richter-Menge and Farrell, 2013).
Understanding biological and ecological dynamics across seasonal environmental gradients is
substantially fostered by novel statistical approaches. In polar ecosystems, these gradients, including
Polar day and -night, as well as variations in sea-ice cover, stratification, or nutrient concentrations.
Techniques are now accessible to assess the impact of ecological variables on ecosystem stability.
For instance, co-occurrence networks (CON) determine and visualize how species coexist within
communities or ecosystems (Priest et al., 2023; Ma et al., 2016). However, in natural ecosystems,
species interactions are subject to variation as a result of changes in environmental conditions,
which can cause a transition from one stable state of co-occurrence to another (Ives and Carpenter,
2007). Cross-convergence mapping (CCM) helps to identify causality of co-occurrence in complex
ecosystems, i.e. which organisms might share mutual or other direct relationships. Energy Landscape
Analysis (ELA) aids in building ecological models that simulate and predict how ecosystems respond
to disturbances or changes of environmental parameters (Sugihara et al., 2012; Suzuki et al., 2020,
2021).
In this study we establish a mathematical methodology to reveal seasonal patterns, suggest causal
ecological relationships and identify microbial key species in Western Fram Strait. This major
,gateway between Arctic and Atlantic Oceans has been studied for over 20 years within the
framework of the Longterm ecological research site HAUSGARTEN and FRAM observatories
(Soltwedel et al., 2016). Our study contributes an extended mathematical perspective on microbial
inventories in Fram Strait, showing seasonal patterns and the influence of sea-ice on microbial
dynamics and the biological carbon pump (Metfies et al., 2017; Wietz et al., 2021; von Appen et al.,
2021; Cardozo-Mino et al., 2023; Wietz et al., 2024). Based on a four-year metabarcoding dataset of
microeukaryotic taxa in context of rich oceanographic data, sampled year-round in approx. biweekly
intervals, we develop scenarios of their long-term resilience. Additionally, we predict taxa that play
a crucial role in maintaining stable communities within the Arctic eukaryotic planktonic food web.
Furthermore, we seek to define keystone species that can serve as indicators for monitoring the
consequences of environmental change for Arctic marine ecosystem stability. Using an unprecedented
combination of network analysis techniques like co-occurrence networks and cross convergence
mapping, along with energy landscape analysis, our objective is to elucidate which factors might
determine the stability of Arctic marine ecosystems. This approach will significantly improve our
understanding of the effects of climate change on this ecosystem.
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2 METHODS

2.1 Sampling and Data

Samples were collected with Remote Access Samplers (RAS; McLane) deployed in conjunction with
oceanographic sensors over four annual cycles (01.08.2016 to 16.09.2020 (96 Samples)) at the F4
mooring (79.0118N 6.9648E) of LTER HAUSGARTEN and FRAM in the Fram Strait (Soltwedel
et al., 2005; Oldenburg et al., 2024). Each RAS contains 48 sterile bags, each collecting water samples
of 500 mL at programmed sampling intervals . The samples collected from 2016 to 2018 reflects the
pool of up to two samples collected one hour apart in two individual bags. Since 2018, we pooled
samples taken 7 to 8 days apart from two consecutive weeks. The samples were preserved by adding
700 µl of mercuric chloride (7.5% w/v) to the bags prior to sampling. Following RAS recovery, water
samples were filtered onto Sterivex filter cartridges with a pore size of 0.22 µm (Millipore, USA).
Filters were stored at -20°C until DNA extraction and ribosomal metabarcoding of 18S rRNA reads
using primers 528iF (GCGGTAATTCCAGCTCCAA) and 926iR (ACTTTCGTTCTTGATYRR).
The resulting amplicon sequence variants (ASVs) were classified using the PR2 4.12 database (see
Supplementary - Methods). We normalised raw ASV counts for CON and CCM using the Hellinger
transformation but did not for the energy landscape analysis; hence a different normalisation is
introduced in the for the rELA implementation (Suzuki et al., 2021).
Temperature, salinity and oxygen concentration were measured with a CTD-O 2 attached to the
RAS. Physical oceanography sensors were manufacturer-calibrated and processed as described under
(von Appen et al., 2021). Raw and processed mooring data are available at PANGAEA https://
doi.org/10.1594/PANGAEA.904565, https://doi.org/10.1594/PANGAEA.940744, https://doi.
pangaea.de/10.1594/PANGAEA.941125 and
https://doi.org/10.1594/PANGAEA.946447. For chemical sensors, the raw sensor readouts are
reported. The fraction of Atlantic and Polar Water were computed following (von Appen et al.,
2018) for each sampling event and reported along with distance below the surface (due to mooring
blowdown). Sea ice concentration derived from the Advanced Microwave Scanning Radiometer
sensor AMSR-2 (Spreen et al., 2008) were downloaded from the Institute of Environmental Physics,
University of Bremen (https://seaice.uni-bremen.de/sea-ice-concentration-amsr-eamsr2).
Sentinel 3A OLCI chlorophyll surface concentrations were downloaded from https://earth.esa.
int/web/sentinel/sentinel-data-access. For all satellite-derived data, we considered grid
points within a radius of 15km around the moorings. Surface water Photosynthetically Active
Radiation (PAR) data, with a 4 km grid resolution, was obtained from AQUA-MODIS (Level-3
mapped; SeaWiFS, NASA) and extracted in QGIS v3.14.16 (http://www.qgis.org).
We considered eight environmental variables : mixed layer depth (MLD in m), water temperature
(temp °C), polar-water fraction (PW frac %), chlorophyll concentration from in situ sensor (chl sens
∼ µg l−1), PAR (µ mol photons m−2d−1), Salinity (PSU), oxygen concentration (O2 conc µmol
l−1) and sampling depth (depth m) (von Appen et al., 2021),.

2.2 Co-Occurrence Network

The abundance of species over the full observation period were converted into temporal profiles
by employing Fourier transformation techniques to time-series signals. These temporal profiles
rely on the 14 Fourier coefficients. We chose 14 coefficients because they reflect the majority of
observed species abundance peaks within the four years. To investigate the similarity of temporal
profiles between species pairs, we performed pairwise correlations between the individual temporal
profiles, where pairs with higher Pearson correlation value show also a similar temporal profile. Pairs
with at least 0.7 (p<0.05) Pearson correlation were then visualized in an undirected graph. Only
positive correlations were retained to later focus on co-operative relationships. To identify strongly
connected components that reflect the existing communities of co-occurring species, we applied the
Louvain community detection algorithm (Blondel et al., 2008) on the entire graph. The entire process
was implemented using the CCM and networkx packages in Python; visualization was performed
using Cytoscape with the Edge-weighted Spring-Embedded Layout (Shannon et al., 2003). The
whole co-occurrence network construction is described in Supplementary - Methods Co-Occurrence
Network.
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2.2.1 Distance between Clusters

To measure the distance between previously defined Louvain communities (clusters), we applied
UMAP on time-series signals obtained after Fourier decomposition of the abundance data. From this
we generated a three-dimensional embedding space. Centroids for each cluster were calculated within
this space (see Supplementary - Results Figures S4, S5, S6). The network distance between clusters
was determined as the Euclidean distance between their centroids. Subsequently, a distance matrix
was created and distances were rounded to integers, with only significant connections retained.

2.3 Convergent Cross Mapping

Convergent Cross Mapping (CCM) identifies potential causal relationships between variables in
time series data. It quantifies how knowledge of the time series of one species allows predicting the
time series of an another species. We first built a CCM network from all pairwise combinations.
From this, we extracted the in- and outgoing edges between nodes that are also connected in the
co-occurrence network. We used the implementation of Normalized Mutual Information (NMI)
from https://github.com/polsys/ennemi by Petri Laarne and the Convergent Cross Mapping
by Implementation from Javier, Prince https://github.com/PrinceJavier/causal_ccm (Javier
et al., 2022) to measure the strength of the causal relationship considering also non-linear relations.
We could show that the implementation of Normalized Mutual Information (NMI) results into similar
findings as the original implementation based on Pearson correlation (Veilleux, 1979; Sugihara et al.,
2012) (see Supplementary - Methods).
Using a permutation approach (Ma et al., 2016) on the connectivity of the network we calculated
significance values for the edge weights, quantifying whether the respective NMI values are greater
than expected for random edges (see Supplementary - Results). The whole CCM network construction
and validation are described in Supplementary - Methods and Supplementary - Results (Convergent
Cross Mapping) of the Supplementary Information.

2.3.1 Aggregation on cluster level

We simplify the network of interactions between single species into a network of interactions between
clusters. For this, we assign a weight to a directed edge between two clusters by calculating the
arithmetic mean of NMI of all (directed) edges connecting species belonging to the respective clusters.
This process effectively reduces the number of items in the node cloud, representing clusters through
a unified composite node.

2.4 Energy Landscape Analysis

Energy Landscape Analysis is a method based on statistical physics. From data for many points
in time, which contain species abundance and environmental variables, an energy landscape is
reconstructed. This energy landscape is a function that maps ASV abundance and environmental
variables to an energy value. In analogy to the potential energy in physics, a (local) minimum
of this energy landscape indicates a stable community state. Here, we reconstruct the energy
landscape function based on the complete time series of ASV abundance together with the available
environmental data. We use the reconstructed function to determine the stability of observed
communities, and in particular the seasonal clusters determined by the co-occurrence network,
and we predict the most stable community compositions. Moreover, because this function also
depends on environmental variables, we can predict how stable a given community is under
perturbed environmental conditions. Assessing stable community states and how they change across
environmental shifts is crucial for comprehending the resilience and adaptability of ecosystems in
the face of environmental challenges. Our analysis focused on the Top 100 most abundant ASVs
within each cluster. Outliers were excluded solely for the purpose of plotting. Details of our analysis,
including parameters and thresholds applied, are described in in Supplementary - Methods (Energy
Landscape Analysis). Understanding the existence and the nature of stable community states and
how they change in response to environmental shifts is crucial for comprehending the resilience
and adaptability of ecosystems in the face of various ecological challenges. Details of our analysis,
including parameters and thresholds applied, are described in in Supplementary - Methods (Energy
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Landscape Analysis). Our analysis focused on the Top 100 ASVs within each cluster. Outliers were
excluded solely for the purpose of plotting.
2.5 Keystone Species Definition

After collecting attributes from a co-occurrence analysis and distinguishing between potential
ecological influence and occurrence just by chance, we calculated the stable states for different
clusters using ELA. This information was merged to suggest potential keystone species. We defined
a keystone species as an ASV with i) a significant influence on other organism in the network
(significant NMI value), ii) a high centrality (closeness) value within its co-occurrence community
and iii) presence in at least one stable state as predicted by ELA. A significant high centrality value
was determined by comparing each centrality value of a single node to the average centrality values
of all nodes from the graph using a one sided, one-sample t-test with Benjamini-Hochberg correction
for multiple testing (similar to (Guimera and Nunes Amaral, 2005; Joyce et al., 2010).
2.6 Season Definition

For assessing results in context of the entire annual variability over which samples were collected,
we defined the seasons as follows, based on month and the availability of light (PAR). In the case of
Cluster 01TA, the maximum month is August. However, several nodes are also present in September
and October. Consequently, we mapped this cluster to the autumn season, in order to model a
transition from the autumn cluster.

Figure 1. (Schematic) Cluster definition: Names are based on light availability (as defined in
Oldenburg et al. (2024)), categorized in transition areas between dark and light (T), high light (H)
and low light (L) phases based on PAR parameter (Figure 4) and the season spring (S), summer(S),
autumn (A) and winter (W).
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3 RESULTS
We examined a dataset of 1,019 eukaryotic ASVs and eight environmental parameters compiled over
four years at mooring site F4 in the West Spitsbergen Current (WSC) in Fram Strait. The aim was
to characterize species communities, analysing causal relationships between ASVs and to identify
keystone and resilient species with respect to the impact of various environmental conditions.
To accomplish this, we established a novel computational pipeline, coupling co-occurrence analysis
with convergence cross mapping and energy landscape analysis. This allowed us to identify causal
interactions among species in a co-occurring community and to identify stable community states
across different environmental conditions.
3.1 Co-Occurrence Network reveals seasonal dynamics

The co-occurrence network (CON) comprised eight connected components, with a major component
accounting for 98% (935) of all nodes, which are connected by 8,610 edges. In the following, we
focus on this major connected component. The resulting undirected graph notably displays a clear
seasonal cyclic pattern (Figure 2 A).
The network was partitioned using the Louvain community detection algorithm (Blondel et al.,
2008), revealing ten discrete community clusters (Figure 2 B) labeled by the season in which the
majority of clusters members had their maximum abundance (Table 1). To further group the clusters,
we submerge each three month period to one season. Two clusters were assigned to the transition
autumn period (01TA and 02TA), three clusters were associated with the low light winter period
(03LW, 04LW and 05LW) and three clusters with the transition spring period (06TS, 07TS and
08TS). Finally, clusters 09 and 10 were allocated to the high light summer season (09HS, 10HS).
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Figure 2. Co-Occurrence Networks and microeukaryotic composition at mooring F4
from 2016-08-01 to 2020-09-17.
Each network node represents an ASV, and each edge represents a similar temporal pattern of
two ASVs. The edge weights correspond to the Pearson correlation coefficients determined from
the comparison of the individual ASV temporal profiles. ASVs are connected if the coefficient is
r > 0.7, p < 0.05. A: Node color reflect the month in which the ASV exhibit maximal abundance,
calculated from the maximum abundance mode for each year ranging from January to December. B:
In this representation, nodes are coloured based on the community membership that was determined
by the Louvain community detection algorithm. C: The relative abundance of the top 10 taxonomic
classes by cluster (’HS’ high light summer , ’LW’ low light winter, ’TS’ corresponds to transition
spring and ’TA’ transition autumn). Colour shades illustrate the assignment to auto- (green), mixo-
(orange) or heterotroph (purple) .
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Figure 3. Convergence Cross Mapping Networks of microeukaryotes at mooring F4
from 2016-08-01 to 2020-09-17.
Each node in the CCM network represents an ASV, and each edge represents the causal influences.
The edge weight corresponds to the Normalized Mutual Information determined from the comparison
of the individual ASV and their predicted representation in the shadow manifold. ASVs are connected
if the smoothed p-value of the weight is p < 0.05. A: Node color reflects the month in which the
ASV exhibits maximal abundance, calculated from the maximum abundance mode for each year
ranging from January to December. B: In this representation, nodes are coloured based on the
community membership that was determined by the Louvain community detection algorithm. ’HS’
labels denote high light summer, ’LW’ represents low light winter, ’TS’ corresponds to transition
spring, and ’TA’ indicates transition autumn. C: The Normalised Mutual Information aggregated
across the edges between the clusters, visually represented by thickness of the arrows corresponding
to their respective values. Corresponding colour visually represent the clusters. D: Interaction
analysis between taxonomic clusters. For each of the ten clusters, the interactions between ASV
groups are examined at class level, considering ’Syndiniales’, ’Dinophyceae’, ’Bacillariophyta’ and
’MAST’. The cluster assignments are marked by different colors. The thickness of the arrows denotes
the strength of the interaction, while the shapes represent the various taxa groups at the class level.
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Table 1. Co-occurrence network clusters. Ten labeled clusters with their assigned season based
on month in which the ASV exhibit maximal abundance, calculated from the maximum abundance
mode (majority vote) for each year ranging from January to December, the number of ASVs per
cluster, and the number of significant edges in network graph. The stats denote that the MaxMonth
is in August, but several nodes are also in September and October, therefore we mapped it to
autumn, to model a transition autumn cluster.

Cluster MaxMonth Season Number of ASVs Number of edges
01TA Aug∗ Autumn∗ 162 997
02TA Nov Autumn 24 86
03LW Dec Winter 78 522
04LW Feb Winter 52 212
05LW Dec Winter 74 467
06TS Mar Spring 51 388
07TS Mar Spring 153 3040
08TS Apr Spring 63 262
09HS Jun Summer 88 509
10HS Jul Summer 190 1189

3.2 Community composition

We explored the taxonomic community per cluster to explore the seasonal associations of each
specific taxonomic group. Alpha biodiversity, measured by Shannon entropy, decreases from summer
through autumn and winter, gradually decreasing towards spring (Supplementary - Results Figure
S1). The beta biodiversity, measured by Bray-Curtis distance (Supplementary - Results Figure S2),
between the winter and spring clusters (03LW, 04LW, 05LW and 06TS) is notably lower than the
most other scores, except that between 01TA and 10HS. Cluster 02TA exhibits on average a higher
beta diversity compared to all other clusters, which can be explained by the fact that 02TA is the
smallest cluster in terms of the number of ASVs (Supplementary - Results Figure S2).
In our study, we found distinct taxonomic compositions within various clusters. Photosynthetic
organisms like Ochrophyta and Haptophyta dominate the light phases (Oldenburg et al., 2024). In
late spring (cluster 08TS) phototrophs make up more than 75% of ASVs, while during summer
(clusters 08TS and 09HS) and early autumn (10HS) they still comprise over 25% of all ASVs.
Mixotrophs are highly abundant in most clusters, while they clearly dominate during the late
autumn transition (cluster 02TA). Through the complete dark period (clusters 03LW, 04LW and
05LW) as well as in early spring (06TS and 07TS), heterotrophs, particularly Syndiniales, are
dominant wiht a clear peak of abundance (more than 90% of ASVs) in mid winter (cluster 04LW).
During early spring (cluster 06TS) when sunlight appears again, mixotrophs increase in their
abundance, highlighting the nuanced trophic dynamics during the annual cycle. This comprehensive
analysis at taxa level provides insights into the composition of these clusters, shedding light on the
prevalence and distribution of specific classes within distinct seasonal communities (Figure 2 C).

3.3 Convergent Cross Mapping identifies Community Interactions

Convergent Cross Mapping (CCM) was applied to predict causal relationships within and between
seasonal clusters based on the underlying ASV dynamics. We project the CCM-derived weights onto
the co-occurrence network, resulting in a directed graph consisting of 17,220 directed edges and 935
nodes. Here, a directed edge indicates that knowledge of the dynamics of the source node allows
predicting the dynamics of the target node.
A comparative analysis of edge weights within the CCM network was conducted. The connectivity
derived from the co-occurrence network was compared with theoretical edge weights and randomly
permuted connections. To perform this comparison, a two-sided Kolmogorov-Smirnov test was used.
The theoretical edge weights were derived from all possible connections between pairs of nodes in the
co-occurrence network, excluding the existing true links (Section 3.3). The findings clearly show that
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there is a stronger causal influence (higher NMI values) between co-occurring species compared to
random or to unconnected nodes (Supplementary - Results Figure S8 and S9 and Table S1 and S2).
The significance level was set at a nonparametric p-value of less than 0.05 calculated similar to Ma
et al. (2016). Trimming edges with non-significant NMI values (Supplementary - Results Figure S10),
produced a network graph consisting of 4,597 edges and 719 nodes, divided into 18 disconnected
components, with the largest module encompassing 706 nodes with 4,572 edges(Fig. 3 A,B).
Of the total 12,648 edges eliminated during trimming, 18.16% represent connections between species
reaching their peak abundance in March. This selective removal has a profound impact on the
network structure, (Figure 3 A). In contrast to the co-occurrence network, the causal interaction
network “breaks” during spring season, as demonstrated in Figure 3 A (months March and April).
The winter cluster 05LW and the spring cluster 06TS collapse (see Figure 3 B), meaning that nodes
disintegrate and large parts of the clusters are no longer connected to the rest of the network. This
suggests that the corresponding connections in the co-occurrence network are not a result of causal
interactions, but rather result from other factors, possibly caused by the prevailing environmental
conditions. Analysis of the betweenness centrality reveals that species of Picozoa, Leegaardiella,
Acantharea, Dinophyceae, MAST-1, and Syndiniales serve as essential hub nodes throughout the
seasonal cycle in the network, highlighting their crucial function in maintaining network stability.

3.4 Community Interaction

Analyzing cluster interactions revealed distinct patterns. We measure distance of clusters by ”network
distance”, a metric designed to evaluate the separation between clusters. This measure is computed
by assessing the distance between the centroids of clusters within the dimension-reduced UMAP
embedding space (Supplementary - Results). Distances between clusters thus determined range
between one and seven. Proximate clusters (a network distance of two to four), exhibited notably
higher connectivity compared to clusters situated further apart (distance five to eight). Figure 3 C
provides a visual and quantitative representation of these interactions. Subsequent analysis revealed
a prevalence of connections at a network distance of two (91.5% of total connections), followed by
distances of three (7.4% of total connections), and four (0.7% of total connections) (Supplementary
- Results Figure S4, S5, S6).
For each seasonal cluster, we investigate in detail the mutual influence (NMI) of four taxonomic groups
selected from the top ten classifications (Figure 2 D): Bacillariophyta, Syndiniales, Dinophyceae, and
MAST ( all MAST-X variants were classified under MAST). Bacillariophyta primarily comprises
photo-autotrophic species (Mann et al., 2017), while Syndiniales include parasitic species, most of
them characterized by their heterotrophic lifestyle (Suter et al., 2022). Dinophyceae are known for
their diverse array of species and ecological roles, from symbionts to planktonic autotrophs (Lin
et al., 2022). MASTs are heterotrophic protists and contribute substantially to protist abundances
in the ocean. They play a crucial role in marine ecosystems being among the dominant eukaryotes
in the Arctic Ocean (Thaler and Lovejoy, 2014; Lin et al., 2022).
These four taxonomic groups are primarily distinguished by their unique lifestyles and ecological
roles as primary producers, consumers, parasites, or endosymbiotic interactors. These distinctions
form the basis for our analysis of their contributions to the ecosystem. Hence, by summarizing the
members of each group into single nodes, we analyzed their cross-interactions using the information
obtained from the CCM network.
The strength and direction of interactions between these taxonomic groups varied over the annual
cycle (see Figure 3 D). During the spring-summer and summer-fall transition, clusters 02TA and
06TS displayed fewer and weaker connections compared to other clusters (see Figure 3 B). This
suggests dynamic changes in community structure during these transition phases, with ecological
interactions between individual species either yet to be established or no longer present. The start of
the polar night (cluster 05LW), we detected the most substantial influence from the dinoflagellates
(shown by the thickest arrow in Figure 3 D) to the pico-eukaryotic heterotrophic groups Syndinales
and MAST, suggesting a crucial ecological role of dinoflagellates for the establishment of the winter
community. Overall, the strength of the links between the taxonomic groups decreases as the polar
night progresses and has its minimum at the peak of the polar night in December (Cluster 04LW and
03LW). The lack of strong connections between taxonomic groups during the deepest polar night
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indicates that there are only a few ecologically significant interactions within the microeukaryotic
community.
During polar day, the connections between taxonomic groups become stronger and reach their peak
during the zenith of the polar day (Cluster 10HS). Notably, Bacillariophyta (i.e. diatoms) showed
the most robust connections during the polar day, owing to their role as predominat phototrophic
biomass producer and form the foundation of the marine food web. However, towards the end of
the growth period, the impact of MAST on Dinoflagellates becomes more pronounced (as shown
by the thicker arrow), indicating an essential involvement of this pico-eukaryotic heterotroph in
the ecosystem during the late polar day; a signature of the transition from primary production to
recycling.
3.5 Community and Environment Interactions

For a more detailed understanding of which environmental conditions align with seasonal community
clusters, we conducted a correlation analysis (Figure 4). Cluster 10HS displayed a significant positive
correlation with Photosynthetically Active Radiation (PAR) (0.64) and temperature (0.52), but
a significant negative correlation with Mixed Layer Depth (MLD) (-0.64). This cluster thrives in
environments with high light and temperature levels but less deeper mixed layers. Cluster 03LW
exhibits the opposite behavior, showing a moderately positive correlation with MLD (0.25) and polar
water fraction (PW frac) (0.21) while displaying an inverse relationship with PAR and temperature
(-0.35 and -0.37, respectively).
3.6 Energy Landscape Analysis determines stability of microbial communities

Energy landscape analysis assessed the stability of communities under the prevailing environmental
conditions. We focus on four clusters representing the four seasons (01TA for autumn, 03LW for
winter, 08TS for spring and 10HS for summer). For each of these clusters, we determined the energy
landscape, which is a highly complex function that depends on the abundances of all ASVs and
the environmental parameters (see Figure 5). To approximately visualize this landscape, we plot
an interpolated smooth surface as a function of the two most significant NMDS dimensions. In
addition, for each time point, we evaluate the energy landscape function and represent each energy
value by a point in the three-dimensional diagram, where the z-axis represents the energy value.
For the landscape reconstructed for cluster 01TA (Figure 5 A) the community displayed lower
energy values than in other seasons; demonstrating high stability of the autumn community. This
demonstrates that the autumn communities exhibit a high stability. For the winter cluster 03LW
(Figure 5 B), the picture is less clear. Whereas the interpolated energy landscape has a more
pronounced minimum, the energy values of the observed communities are not clearly separated.
As a tendency, the summer communities have a high energy value, demonstrating that summer
communities are unstable in winter conditions. However, spring and autumn communities exhibit
comparable energy values as winter communities, which indicates that stable community structures
in winter conditions are not clearly defined. This trend is even more pronounced for the spring
cluster 08TS (Figure 5 C). Here, the interpolated energy landscape shows a broad and shallow
minimum, and the energy values of the all observed communities, regardless of the season in which
they are found, are very similar. This suggests that under spring conditions community structures
are not very stable and that community compositions show a high plasticity. As a consequence, many
different communities may exist under spring conditions. The findings demonstrated that knowledge
of the composition of winter communities does not allow for the prediction of the composition of
spring communities, in conjunction with the observation of the CCM analysis and the gap between
winter and spring clusters (Figure 3 B). Finally, the energy landscape in summer (Figure 5 D) shows
a pronounced minimum, in which the observed summer communities are also found. This indicates
that summer conditions support well-defined communities with a high degree of stability.
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Figure 4. Environmental data and their correlation with Louvain clusters. A):
Environmental data for F4 from 2016-08-01 to 2020-09-17. The x-axis represents the time period,
while the y-axis indicates the following parameters: Mixed Layer Depth (MLD) [m], Temperature [°C],
Chlorophyll Fluorescence [µ g/L], Polar Water Fraction [%], Photosynthetically Active Radiation
(PAR) [µ mol photons/m2/d], Salinity [Practical Salinity Units (PSU)], Oxygen Concentration [µ
mol/L], Depth of measurement [m]. B): Correlations between environmental parameters
and seasonal Louvain clusters. The displayed chart shows the environmental parameters from
section a) in relation to seasonal clusters. These clusters are characterized by the cumulative relative
abundance of ASVs. ’TA’ denotes transition autumn, ’LW’ represents low light winter, ’TS’ transition
spring and ’HS’ high light summer. The colour gradient used in the heatmap illustrates the strength
of the correlation visually, with blue shades indicating negative correlations and red shades the
positive correlations. It is worth noting that a significance mask has been applied to show only
correlations that are statistically significant.
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Figure 5. Energy landscapes depicting community structure dynamics. The plots display
the reconstructed energy landscape on the NMDS surface for a cluster of each season. Environmental
landscapes over the NMDS surface are reconstructed for each of the four example clusters. The
z-axis displays the energy, while the x- and y-axes display the first and second NMDS dimensions.
The landscape contours were estimated using a smoothing spline approach with optimized penalty
parameters. Community states, which are defined by ASV compositions and occupy lower-energy
regions, indicate higher stability within the energy landscapes. A): The transition autumn cluster
01TA. B): The low light winter cluster 03LW. C): The transition spring cluster 08TS. D): The
high light summer cluster 10HS.
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3.7 Predicting keystone microeukaryotes in the Fram Strait

According to our definition (Section 2.5) a keystone species is highly connected in the co-occurrence
network, has a high influence on other species, and appears in a stable community. By contextualizing
the evidence from CON, CCM and ELA, we predict 38 keystone species across the annual cycle
within the measured environmental profile (Table 2). 14 of these keystone species are associated with
summer clusters (three and eleven are found in clusters 09HS and 10HS, respectively), 13 with winter
(eleven and two in the winter clusters 03LW and 04LW, respectively), eight are associated with
autumn (cluster 01TA) and three with spring (cluster 07TS). The nine keystone species from the
summer clusters belong to the taxonomic groups Ochrophyta (6), Dinophyceae (4),Ciliophora (3) and
Cryptophyta (1). These groups include Fragilariopsis, Pseudo-nitzschia, and Thalassiosira, major
diatom taxa during Arctic blooms (Von Quillfeldt, 2000) that also serve as prey for microzooplankton
(Cleary et al., 2016; Yang et al., 2015). Notably, Fragilariopsis and Thalassiosira exhibited the highest
abundance within this cluster. The keystone species in the winter clusters comprise Syndiniales (10),
Radiolaria (1), Ochrophyta (1) and Dinophyceae (1), autumn cluster keystone species are Syndiniales
(3), Ochrophyta (2), Chlorophyta (1), Dinophyceae (1) and Eukaryota uc (1). The spring keystone
species belongs to Syndiniales (1) and Radiolaria (2); reflecting the major ecological strategies
including primary production, heterotrophy, and parasitism. The finding of only a few spring
keystone species aligns with the greatest variability as shown by ELA (Section 3.6). The emergence
of Chlorophyta during early autumn suggests a shift in primary production from Ochrophyta to
Chlorophyta, including taxa that may prefer colder temperatures ((Tragin and Vaulot, 2018) and
are better adapted to nutrient limitation (Maat et al., 2014).

Table 2. ASV identified as potential keystone species for clusters 10HS, 06TS, 03LW and
01TA. The taxonomic classifications, clusters, raw abundance, proportion of total raw abundance,
cluster abundance, and proportion of cluster raw abundance are presented in summary form over
the 4-year observation period. The column, significance, indicates if this ASV (Nodes) has at least
on significant CCM connection measured in Normalized Mutual Information.

Nodes Phylum Class Genus Species Cluster rel. Abundance Closeness Centrality
euk asv19 Ochrophyta Bacillariophyta Thalassiosira Thalassiosira uc 10HS 0.010 0.463
euk asv12 Ochrophyta Bacillariophyta Fragilariopsis Fragilariopsis uc 10HS 0.009 0.521
euk asv29 Ciliophora Spirotrichea Strombidiidae M uc Strombidiidae M uc sp. 10HS 0.007 0.499
euk asv35 Ochrophyta Bacillariophyta Fragilariopsis Fragilariopsis sublineata 10HS 0.007 0.533
euk asv28 Ochrophyta Bacillariophyta Thalassiosira Thalassiosira uc 10HS 0.006 0.473
euk asv54 Dinoflagellata Dinophyceae Gyrodinium Gyrodinium fusiforme 10HS 0.006 0.469
euk asv24 Ochrophyta Bacillariophyta Pseudo-nitzschia Pseudo-nitzschia sp. 10HS 0.006 0.446
euk asv60 Dinoflagellata Dinophyceae Woloszynskia Woloszynskia sp. 10HS 0.005 0.489
euk asv73 Cryptophyta Cryptophyceae Plagioselmis Plagioselmis prolonga 10HS 0.005 0.513
euk asv52 Dinoflagellata Dinophyceae Peridiniales uc Peridiniales uc 10HS 0.004 0.486
euk asv125 Ciliophora Spirotrichea Dadayiella Dadayiella ganymedes 10HS 0.003 0.504
euk asv15 Dinoflagellata Dinophyceae Gyrodinium Gyrodinium fusiforme 09HS 0.011 0.399
euk asv115 Ochrophyta Bacillariophyta Mediophyceae uc Mediophyceae uc 09HS 0.004 0.404
euk asv186 Ciliophora Spirotrichea Strombidiidae H uc Strombidiidae H uc sp. 09HS 0.002 0.446
euk asv5 Radiolaria RAD-C RAD-C uc RAD-C uc sp. 07TS 0.014 0.444
euk asv23 Dinoflagellata Syndiniales Dino-I-1 uc Dino-I-1 uc sp. 07TS 0.005 0.404
euk asv42 Radiolaria RAD-C RAD-C uc RAD-C uc sp. 07TS 0.005 0.419
euk asv21 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc sp. 04LW 0.008 0.420
euk asv607 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc sp. 04LW 0.000 0.411
euk asv87 Radiolaria RAD-B RAD-B-Group-IV uc RAD-B-Group-IV uc sp. 03LW 0.002 0.489
euk asv79 Ochrophyta Chrysophyceae Chrysophyceae H uc Chrysophyceae H uc sp. 03LW 0.002 0.409
euk asv236 Dinoflagellata Syndiniales Dino-II-9 uc Dino-II-9 uc sp. 03LW 0.001 0.438
euk asv213 Dinoflagellata Dinophyceae Gymnodinium Gymnodinium sp. 03LW 0.001 0.434
euk asv198 Dinoflagellata Syndiniales Dino-II-6 uc Dino-II-6 uc sp. 03LW 0.001 0.433
euk asv411 Dinoflagellata Syndiniales Dino-II-20 uc Dino-II-20 uc sp. 03LW 0.001 0.428
euk asv615 Dinoflagellata Syndiniales Dino-II-20 uc Dino-II-20 uc sp. 03LW 0.001 0.508
euk asv511 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc sp. 03LW 0.001 0.400
euk asv553 Dinoflagellata Syndiniales Dino-II-21 uc Dino-II-21 uc sp. 03LW 0.001 0.430
euk asv780 Dinoflagellata Syndiniales Dino-I-5 uc Dino-I-5 uc sp. 03LW 0.000 0.410
euk asv1293 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc sp. 03LW 0.000 0.407
euk asv9 Ochrophyta Bacillariophyta Pseudo-nitzschia Pseudo-nitzschia sp. 01TA 0.007 0.468
euk asv44 Dinoflagellata Syndiniales Dino-II-23 uc Dino-II-23 uc sp. 01TA 0.006 0.526
euk asv36 Chlorophyta Chloropicophyceae Chloroparvula Chloroparvula pacifica 01TA 0.005 0.501
euk asv51 Ochrophyta Bacillariophyta Rhizosolenia Rhizosolenia imbricata var shrubsolei 01TA 0.003 0.404
euk asv80 Eukaryota uc Eukaryota uc Eukaryota uc Eukaryota uc 01TA 0.003 0.435
euk asv101 Dinoflagellata Syndiniales Dino-I-3 uc Dino-I-3 uc sp. 01TA 0.003 0.445
euk asv163 Dinoflagellata Syndiniales Dino-I-1 uc Dino-I-1 uc sp. 01TA 0.003 0.514
euk asv177 Dinoflagellata Dinophyceae Gymnodiniaceae uc Gymnodiniaceae uc 01TA 0.002 0.458
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3.8 Predicting community stability in altered environments

One critical ecological question is how marine microbial communities change if they experience
changing environmental conditions, such as those resulting from climate change. For a first
approximation to the potential fate of herein defined clusters under changing conditions, we
employed ELA to assess the stability of observed communities under environmental conditions
different to those they usually experience. This is done by evaluating the ELA function (see
Section 2.4) for given communities and environmental parameters. First, we test the reliability of
this approach by evaluating the communities of the summer (10HS) and winter (03LW) clusters
under ”typical Atlantic” summer or winter days, defined by the averages environmental parameters
during a three-month period (see Supplementary - Methods Table S0). As expected the energy
values remain almost unchanged when evaluating the summer cluster communities in a typical
summer day and the winter cluster communities in a typical winter day (see Supplementary - Results
Figure S13). This is to be expected, because the ASVs in the summer clusters assume their most
stable community configuration during the summer months, and likewise for the winter cluster.
When evaluating the cluster communities under the opposite conditions, i.e. the summer cluster
communities with environmental parameters representing a winter day and vice versa, the energy
values are drastically changed (see Supplementary - Results Figure S13). Those communities of
the summer cluster, which were still present in the winter, exhibit an increased stability (lower
energy) than those present in summer. The Atlantic projection panel (Supplementary - Results
Figure S13 C and E) display almost opposite oscillatory time courses. Placing communities of the
winter cluster in summer conditions has a more differentiated effect. The communities found in
winter 2018 and 2020 are highly unstable in this environment, while communities found in summers
appear to exhibit an increased stability. This observation allows speculating that some ASVs of the
winter cluster might even benefit from warmer summer conditions.
We next investigate a scenario that might result from future temperature increase and accelerated
sea-ice melt. Ice-free summers in the Arctic will allow Atlantic water, and with this Atlantic
microbial communities, to enter polar regions. We therefore explored the stability of communities
from the summer (10HS) and winter (03LW) clusters changes if they experience typical Arctic
conditions. For this, we defined “typical” Arctic summer and winter days by selecting extreme
environmental parameter values from the central Arctic (see Supplementary - Methods Table S0).
Subsequently, we evaluate the energy landscape functions as above with the respective environmental
parameters. Interestingly, simulating communities of the summer cluster under Arctic summer or
winter conditions results in similar energy values as placing these communities in Atlantic winter
days. Specially, communities found in summer are highly unstable whereas communities present in
winter show, as a tendency, increased stability (Supplementary - Results Figure S13 E,G,I - left
panel, bottom three), indicating that summer cluster communities will face challenges to adapt
to Arctic conditions. When comparing the ASVs, which are found in at least one community
configuration predicted as stable, we observe that ASVs stable in Arctic environments are almost
completely different from those stable in their natural (Altlantic) environment (Supplementary
- Results Figure S14, Table S9 and S10). To estimate the importance of the ASVs identified to
be stable under natural and Arctic conditions, respectively, we determine their average closeness
centrality (Supplementary - Results Figure S15). Clearly, ASVs stable in their natural conditions
(and in Atlantic conditions) display a significantly (p-value = 2x10−2) higher centrality than average,
while those predicted to be stable under Arctic conditions show a reduced centrality. Likewise, the
average NMI score for outgoing edges, indicating the mean influence of an ASV on other ecosystem
members, is higher than average for ASVs stable under natural (and Atlantic) conditions (p-value
= 4x10−2), but lower than average for ASVs predicted to be stable under Arctic conditions. The
reduced connectivity and weaker influence on other ecosystem members suggests that species of the
summer cluster, when exposed to Arctic conditions, will play a less important role in determining
ecosystem dynamics and stability.
Simulating the effect of Arctic conditions on winter cluster communities reveals that neither
communities present in summer nor winter display a pronounced stability. The only exception
appear to be communities during spring 2020. Remarkably, this period was characterized by
unusually low temperatures (Figure 4 A). In general the ASVs identified as members of stable
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communities in the original conditions, Atlantic winter, or Arctic winter show a four times higher
overlap compared with their summer conditions. These observations suggests that communities
of the winter cluster might easily adapt to colder Arctic conditions, which is also supported by
the observation that closeness centrality and averaged NMI scores (for outgoing edges) are almost
unchanged for these three groups of organisms.

4 DISCUSSION

In this study, we developed a new method for investigating ecological time series data based on
18S metabarcoding derived abundance information, by combining three data analysis methods: Co-
Occurrence Networks (CON) (Stephens et al., 2009), Convergent Cross Mapping (CCM) (Sugihara
et al., 2012), and Energy Landscape Analysis (ELA) (Suzuki et al., 2021). Integrating these
three methodological approaches, we aimed to to predict and characterize abundance of keystone
microeukaryotes in the West Spitsbergen Current across different seasons, environmental parameters
and in relation to other organisms. In addition, we examine how these keystone species are affected
by changing environmental conditions, providing insights into potential responses to Arctic warming
and Atlantification. We also investigate how different taxa groups affect other taxa groups, and how
their effects vary with seasonal shifts and environmental factors.
Our co-occurrence network based on Fourier decomposition differs from previous methods that rely
directly on the raw time series signals (Ma et al., 2016; Lima-Mendez et al., 2015; Ma et al., 2020).
Our CON based on Fourier decomposition differs from previous methods that rely directly on the
raw time series signals (Ma et al., 2016; Lima-Mendez et al., 2015; Ma et al., 2020). The resulting
network accurately captured seasonal states and transitions, revealing community clusters that
reflect the prevailing community structure (Dunne et al., 2002)): in spring (cluster 08TS) primary
producers such as Bacillariophyta appear, and remain throughout the summer (09HS, 10HS), while
mixotrophs increase in autumn (01TA, 02TA, 03LW) until an almost exclusively heterotrophic
and parasitic taxa dominate in winter (04LW, 05LW, 07TS). The considerable difference of spring
clusters to other seasonal clusters (Supplementary - Results Figure S2). can be explained by the
rapid environmental changes during this period (i.e. change from darkness to constant daylight
within 20 days). The predominance of dinoflagellates in the intermediate phases of spring and
autumn indicates that these mixotrophic organisms play a crucial role during transition phases
(Jassey et al., 2015; Bruhn et al., 2021; Mitra et al., 2014). According to traditional ecological theory,
keystone species are often defined as those with the most biomass (Kang and Fryxell, 1992; Sergeeva
et al., 2018). The combination of CON, CCM and ELA allowed predicting keystone species, i.e.
ASVs with strongest effects on the interaction network. We found both highly abundant (for example
Fragilariopsis or Pseudo-nitzschia diatoms) as well as low-abundant keystone ASVs, suggesting that
both common and rare members contribute to ecosystem stability CCM revealed that by far not all
co-occurring ASVs actually influence each other (Fig. 3). A striking example is between clusters
06TS and 05LW, which were closely connected in the CON but not in the CCM network(Fig. 3).
This co-occurrence without apparent causal connections could be explained by unique environmental
conditions shaping both of these clusters, such as polar water influx. Even more pronounced is
the separation of cluster 03LW, mainly heterotrophs, and 08TS, mainly phototrophs, which are
tightly connected by co-occurrence but show not a single causal link in the CCM network. The
organisms in these two clusters are primarily influenced by environmental parameters, particularly
light. Additionally, these photosynthetic and heterotrophic organisms are sometimes preyed upon
by the same predators (Zhao et al., 2022) such as Syndiniales. This explains the simultaneous
occurrence and similar seasonality of these taxa but indicates that they do not have a direct
influence on each other. The lack of causal influence during the transition from polar night to day is
clearly visible in the CCM network (see Fig. 3). We interpret this gap between winter and spring
clusters as a ’winter reset’ (Supplementary - Results Figure S11). This phase is characterized by the
predominance of Syndiniales and Dinophyceae. With the emergence of light, a new period of primary
production begins, shaped by the prevailing environmental conditions. The ambient environmental
conditions then determine which species will subsequently prevail. By reflecting causal interactions
between species, the CCM network even stronger reflects the cyclic microbiome structure than the
co-occurrence network. The cycle begins with photoautotrophs (cluster 08TS) in early spring and
ends with the hetero- and mixotrophs (cluster 01TA) in late autumn. As light intensity decreases,
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mixotrophs become more prevalent than photoautotrophs, leading to a shift towards a heterotrophic
lifestyle and a transition from carbon fixation to consumption. This transition into a low light
period is characterized by parasitic species, suggesting an ”eat and be eaten” scenario. The causal
links from fall to winter are significantly less than between other seasons (except winter to spring)
Figure 3 B. All of these causal links are related to Syndiniales, which can be explained by their
parasitic lifestyle, foraging upon mixotrophic species that are active during the transition autumn
phase.
We compared our approach with two previous studies Cross Convergence Mapping (Ushio, 2022;
Fujita et al., 2023). While our approach focuses on the specific interactions within and between
clusters, Ushio et al. provides a more general framework for predicting community diversity based
on interaction capacity, temperature and abundance. The emphasis on mechanistic explanations
for observed ecological patterns distinguishes the two approaches. Our methodology provides a
comprehensive understanding of keystone species in a specific context, while Ushio’s study provides
broader insights into the factors influencing community diversity in different ecosystems. Both
studies use similar techniques such as correlation and CCM (Ushio, 2022). Fujita’s study used
controlled experiments with six isolated community replicates, subjected to diverse treatments over
110 days. Regarding Takens’ Theorem and Convergence Cross Mapping, Fujita et al. used Simplex
projection to forecast population size (Fujita et al., 2023), while our study utilized pairwise CCM
on ASV time series signals within clusters to predict keystone species.
The reconstructed landscape for autumn cluster 01TA shows that autumn communities are highly
stable. However, for the winter cluster 03LW, the energy values of observed communities lack clear
separation, making the situation less straightforward. Communities of the winter clusters which
are still present in summer tend to display high energy values, indicating instability in winter
conditions. The spring cluster 08TS shows an even more notable trend, indicating that community
structures lack stability and exhibit high plasticity under spring conditions (Supplementary - Results
Figure S12).
Keystone species represent the ecological roles played by network members in primary production,
consumption, and parasitic interactions. During the beginning of autumn, Chlorophyta emerges
as a keystone species, indicating a shift in primary production from Ochrophyta to Chlorophyta.
This shift may be explained by the preference of Chlorophyta for colder temperatures and a better
adaptation to nutrient limitation.
Energy landscape analysis was used to assess the stability of observed communities when exposed to
environmental conditions different from their typical settings. Our results showed that communities
maintained stable configurations during typical summer (for communities of the summer clusters)
or winter (for winter clusters) days, indicating their adaptability to seasonal variations. However,
significant changes in energy values occurred when communities were assessed under opposing
conditions, suggesting diverse responses to environmental shifts. Subsequent simulations of typical
Arctic conditions revealed interesting patterns within the microbial communities. The summer
cluster communities showed a clearly decreased stability under Arctic conditions, in contrast to the
winter cluster communities, which displayed a tendency towards increased stability. This suggests
that winter communities may have a greater capacity to adapt to colder Arctic conditions compared
to their summer counterparts (Supplementary - Results Figure S15). The Arctic projection notably
harbored a higher number of unique species, indicating varied responses to environmental changes.
Notably, the absence of shared keystone species among these different datasets in the summer cluster
10HS suggests a lower robustness of Atlantic ASVs to environmental shifts, with keystone species
candidates exhibiting variability. Under Atlantic conditions, the closeness centrality of the summer
cluster 10HS increased more compared to Arctic conditions. In the winter cluster community 03LW,
closeness centrality is very similar in both projections (Supplementary - Results Figure S15).
The results presented in this study not only have practical implications for ecosystem management
by improving our understanding and ability to predict change in complex ecological systems but
also provide systematic and mechanistic insights into the mechanisms responsible for shaping and
maintaining spatiotemporal heterogeneity in ecosystem composition (Suzuki et al., 2020).
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Chapter 6

Zooplankton: Automation of Zooplankton
classification without internet access

In this chapter, we present our use case concerning zooplankton image classification: Deep
LOKI. We first briefly introduce the topic "Image Classification using Machine Learning" and
subsequently present our approach to automatic pre-sorting the zooplankton image using Deep
Transfer Learning (DTL) and self-super-vised learning Figure 6.1.

Figure 6.1: DeepLOKI workflow in detail: Images extracted from LOKI undergo aug-
mentation through torchvision transform functions such as cropping, flipping, and
auto-contrast. These augmented images are then inputted into one of the two vari-
ants of the ResNet18 neural network for classification (DTL, DINO). Our approach
consists of two steps, first data training and classification and second data sorting
in particular group after passing a confidence threshold, that we identify as clas-
sification likelihood. Images that fall below the threshold are moved to a folder
labeled as unknown/unclear. The image is based on Oldenburg et al., 2023b.

117



Chapter 6 Zooplankton: Automation of Zooplankton classification without internet access

6.1 DeepLOKI- A deep learning based approach to identify
Zooplankton taxa on high-resolution images from the optical
plankton recorder LOKI

In this section, we provide an overview of the contributions and impact of our paper (Oldenburg
et al., 2023b):

Ellen Oldenburg, Raphael M. Kronberg, Oliver Ebenhöh, Barbara Nierho" and Ovidiu Popa
“DeepLOKI- A deep learning based approach to identify Zooplankton taxa on high-resolution

images from the optical plankton recorder LOKI”
In: Frontiers in Marine Science, 2023, Volume 10

Main Results in Simple Terms

Our research focuses on oceanic ecology, specifically on zooplankton, which are tiny organisms
that play a crucial role in the marine food chain. These organisms are often distributed patchily
throughout the ocean, making their study challenging using traditional methods such as net
casts, which do not provide detailed information on their vertical distribution.
To address this issue, we developed a tool called DeepLOKI. This AI-based software uses
machine learning, DeepLOKI can be used directly on board ships during research cruises,
saving time and eliminating the need for internet connectivity.
DeepLOKI was tested on images from multiple research cruises and was found to accurately
classify zooplankton taxa, including copepod developmental stages, with an average accuracy
of 83.9%. This performance surpasses the commonly used method EcoTaxa by a factor of
two.
Additionally, a user-friendly graphical interface for DeepLOKI was developed, streamlining
the analysis process. Furthermore, DeepLOKI’s capability to visualize the networks image
representation aid in detecting irregularities in image parameters, thereby improving data
quality control.
Our approach is flexible and can be applied to di"erent imaging systems, making it a versatile
tool for studying zooplankton in various oceanic environments. DeepLOKI provides researchers
with a faster, more accurate, and more e!cient way to study these vital organisms and their
role in marine ecosystems.

Summary/Abstract

Zooplankton play a crucial role in the ocean’s ecology, as they form a foundational compo-
nent in the food chain by consuming phytoplankton or other zooplankton, supporting various
marine species and influencing nutrient cycling. The vertical distribution of zooplankton in
the ocean is patchy, and its relation to hydrographical conditions cannot be fully deciphered
using traditional net casts due to the large depth intervals sampled. The Lightframe On-sight
Keyspecies Investigation (LOKI) concentrates zooplankton with a net that leads to a flow-
through chamber with a camera taking images. These high-resolution images allow for the
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determination of zooplankton taxa, often even to genus or species level, and, in the case of
copepods, developmental stages. Each cruise produces a substantial volume of images, ide-
ally requiring onboard analysis, which presently consumes a significant amount of time and
necessitates internet connectivity to access the EcoTaxa Web service. To enhance the analy-
ses, we developed an AI-based software framework named DeepLOKI, utilizing Deep Transfer
Learning (DTL) with a Convolution Neural Network Backbone. Our DeepLOKI can be applied
directly on board. We trained and validated the model on pre-labeled images from four cruises,
while images from a fifth cruise were used for testing. The best-performing model, utilizing
the self-supervised pre-trained ResNet18 Backbone, achieved a notable average classification
accuracy of 83.9%, surpassing the regularly and frequently used method EcoTaxa (default) in
this field by a factor of two. In summary, we developed a tool for pre-sorting high-resolution
black and white zooplankton images with high accuracy, which will simplify and quicken the
final annotation process. In addition, we provide a user-friendly graphical interface for the
DeepLOKI framework for e!cient and concise processes leading up to the classification stage.
Moreover, performing latent space analysis on the self-supervised pre-trained ResNet18 Back-
bone could prove advantageous in identifying anomalies such as deviations in image parameter
settings. This, in turn, enhances the quality control of the data. Our methodology remains
agnostic to the specific imaging end system used, such as LOKI, UVP, or ZooScan, as long
as there is a su!cient amount of appropriately labeled data available to enable e"ective task
performance by our algorithms.

Personal Contribution

EO devised the project, the main conceptual ideas, and the study outline. EO and RMK
designed the model and the computational framework, analyzed the data, and wrote the ini-
tial draft. RMK carried out the implementation. EO, RMK, and OP interpreted the data,
conceptualized, and drafted the manuscript. BN was responsible for data curation, funding
acquisition, resources, validation, and contributed to writing – review and editing. OE con-
tributed to funding acquisition and writing – review and editing. OP advised on data evaluation
and data interpretation, and revised and finalized the manuscript. All authors contributed
to improving the final manuscript.

Importance of the Research and Contribution to this Thesis

Comprehending the functioning of the delicate Arctic ecosystem requires an understanding of
the structure and dynamics of its food web. Our research aims to gather comprehensive data on
various components, including eukaryotes, bacteria, genomes, zooplankton, and environmental
factors, to piece together a clearer picture.
Zooplankton, being a fundamental part of the food web, play a significant role in shaping Arctic
marine ecosystems. Studying zooplankton distribution and abundance in the vast Arctic Ocean
presents significant challenges. The research paper on DeepLOKI is essential for our research
as it enables us to e"ectively identify zooplankton taxa from the vast hauls of images captured
during research cruises.
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The research paper on DeepLOKI is essential for our research as it enables us to e"ectively
identify zooplankton taxa from the vast hauls of images captured during research cruises.
Additionally, deep learning techniques can be used to classify zooplankton images, which allows
for the alignment of image data with time-series data. This aligns with our research objective
of integrating various data types to analyze ecosystem dynamics over time.
To summarise, our research addresses the fifth research question by implementing DeepLOKI,
which provides a robust methodology for classifying zooplankton images. This classification
facilitates the integration of image data into our time-series analysis, ultimately contributing
to a deeper understanding of Arctic food web structure and community dynamics.
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DeepLOKI- a deep learning
based approach to identify
zooplankton taxa on high-
resolution images from the
optical plankton recorder LOKI

Ellen Oldenburg1,2*†, Raphael M. Kronberg3†, Barbara Niehoff4,
Oliver Ebenhöh1,2 and Ovidiu Popa1

1Institute of Theoretical and Quantitative Biology, Heinrich Heine University, Düsseldorf, North Rhine-
Westphalia, Germany, 2Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf,
North Rhine-Westphalia, Germany, 3Mathematical Modelling of Biological Systems, Heinrich Heine
University, Düsseldorf, North Rhine-Westphalia, Germany, 4Polar Biological Oceanography, Alfred-
Wegener- Institut Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany

Zooplankton play a crucial role in the ocean’s ecology, as they form a
foundational component in the food chain by consuming phytoplankton or
other zooplankton, supporting various marine species and influencing nutrient
cycling. The vertical distribution of zooplankton in the ocean is patchy, and its
relation to hydrographical conditions cannot be fully deciphered using traditional
net casts due to the large depth intervals sampled. The Lightframe On-sight
Keyspecies Investigation (LOKI) concentrates zooplankton with a net that leads
to a flow-through chamber with a camera taking images. These high-resolution
images allow for the determination of zooplankton taxa, often even to genus or
species level, and, in the case of copepods, developmental stages. Each cruise
produces a substantial volume of images, ideally requiring onboard analysis,
which presently consumes a significant amount of time and necessitates internet
connectivity to access the EcoTaxa Web service. To enhance the analyses, we
developed an AI-based software framework named DeepLOKI, utilizing Deep
Transfer Learning with a Convolution Neural Network Backbone. Our DeepLOKI
can be applied directly on board. We trained and validated the model on pre-
labeled images from four cruises, while images from a fifth cruise were used for
testing. The best-performing model, utilizing the self-supervised pre-trained
ResNet18 Backbone, achieved a notable average classification accuracy of
83.9%, surpassing the regularly and frequently used method EcoTaxa (default)
in this field by a factor of two. In summary, we developed a tool for pre-sorting
high-resolution black and white zooplankton images with high accuracy, which
will simplify and quicken the final annotation process. In addition, we provide a
user-friendly graphical interface for the DeepLOKI framework for efficient and
concise processes leading up to the classification stage. Moreover, performing
latent space analysis on the self-supervised pre-trained ResNet18 Backbone
could prove advantageous in identifying anomalies such as deviations in image
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parameter settings. This, in turn, enhances the quality control of the data. Our
methodology remains agnostic to the specific imaging end system used, such as
Loki, UVP, or ZooScan, as long as there is a sufficient amount of appropriately
labeled data available to enable effective task performance by our algorithms.

KEYWORDS

computer vision, deep learning, DeepLOKI, keystone species, marine and zooplankton

1 Introduction

Imaging has become an important tool in marine zooplankton
studies, in both the laboratory and the field, in the last decades
(Gorsky et al., 1989; Schulz et al., 2010; Hauss et al., 2016; Kiko et al.,
2020; Rubbens et al., 2023). To digitize and analyze preserved
samples that have been collected by traditional net tows, the lab-
based ZooScan system (Grosjean et al., 2004) has been developed.
Also, several in-situ systems that continuously take images during
deployment have been developed, allowing the study of the patchy
distribution of particles and zooplankton organisms (Cowen and
Guigand, 2008; Lertvilai, 2020). Among these, the underwater
vision profiler (UVP, Hydroptic, France) is one of the most
frequently used, being deployed worldwide (Picheral et al., 2010;
Kiko et al., 2020; Picheral et al., 2022). The UVP takes images
directly in the water column; therefore often the resolution is
limited. However, it excels at capturing fragile organisms such as
gelatinous zooplankton and particles that are typically destroyed by
zooplankton nets. The LOKI (Lightframe-Onsight Key species
Investigation; Isitec, Germany) system, in contrast, has been
designed to collect high-resolution images by concentrating the
zooplankton with a net that leads to a flow-through chamber with a
digital camera (Schulz et al., 2010). LOKI captures images of genera
or species and sometimes even developmental stages of rather hard-
bodied organisms such as copepods, which often dominate
zooplankton communities (Hirche et al., 2014; Orenstein et al.,
2022). The device captures images continuously during vertical
drops and records hydrographic parameters, including salinity,
temperature, oxygen concentration and fluorescence. This enables
a thorough analysis of the species distribution. For general in-situ
zooplankton images, various approaches for digital classification
have been employed (Rubbens et al., 2023). Initially, ensemble
models were used (Schmid et al., 2016). With advancements in
computing power, Deep Learning approaches emerged (LeCun
et al., 2015), leveraging convolutional neural networks to process
entire images and extract intricate patterns (Luo et al., 2018).
Additionally, Transfer Learning, which involves the transfer of
knowledge from large datasets to smaller ones (Yosinski et al.,
2014), has been employed in Deep Learning algorithms to enhance
their performance (Orenstein and Beijbom, 2017; Orenstein et al.,
2022). For UVP and ZooScan images, the analysis software
ZooProcess, a macro of ImageJ, and the web-based annotation
tool EcoTaxa (Picheral et al., 2017) have been developed. In

addition, there are numerous other methods (Bi et al., 2015; Bi
et al., 2022; Yue et al., 2023). ZooProcess extracts numerical
parameters from each image and automatically measures the size
of each object (Grosjean et al., 2004; Picheral et al., 2017). EcoTaxa
is then used to annotate the images, i.e., to sort the objects on the
images into categories and label each image accordingly. EcoTaxa
also allows to manually drag and drop images into the respective
category; however, the application also provides automated
annotation functionality through a Random Forest algorithm to
predict the categories based on numerical image parameters. The
algorithmmust be trained with annotated images, and the better the
training set, the more accurate the prediction is. For example,
depending on the taxonomic resolution, over 80% of zooplankton
images from the Fram Strait that were taken with ZooScan were
correctly annotated (B. Niehoff, pers. obs.).

For the analysis of LOKI images, a software tool - the LOKI
browser - was developed and provided together with LOKI
hardware (Schulz et al., 2010). Similar to ZooProcess, this
application generates numeric image descriptors and, similar to
EcoTaxa, allows to sort the objects into categories. Unfortunately,
the LOKI browser is outdated and lacks user-friendliness. For
instance, the process of uploading more than 150,000 images
from a single cruise requires manual handling of small batches of
2,000-5,000 images. Furthermore, the annotation procedure is
inconvenient as it does not provide direct access to specific
categories but requires traversing the entire taxonomic tree, which
results in multiple clicks per image, especially in the case of species
categorization. It also has to be noted that working on the EcoTaxa
server requires a stable internet connection, which is not always a
given during cruises to remote areas such as the Arctic. Therefore,
the image data can typically only be processed after the cruise. In
summary, the current workflow for LOKI images faces several
issues: the time-consuming and upload-limited image pre-
processing, the low prediction accuracy, and the dependence on
internet access. Addressing these issues, we present an alternative
workflow. (1) We developed two deep learning methods using the
images as input instead of image descriptors and thus omitted the
tedious upload to the LOKI browser, saving time and personnel.
Aiming at a better prediction of the categories, we implemented a
deep transfer learning (DTL) and a two-step self-supervised
learning approach based on first pre-train self-supervised and
then fine-tuning supervised, called self-distillation with no labels
(DINO), which currently is one of the state of the art methods
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(Chen et al., 2020; He et al., 2020; Caron et al., 2021). To ensure that
only images with a high level of confidence in their label
assignments are sorted into their respective categories, we
implemented a confidence threshold, which is only used within
the GUI as a parameter and not for training or evaluation. A similar
approach for threshold implementation on CNNs was previously
shown by (Kraft et al., 2022). By implementing this threshold, we
can effectively exclude images for which the algorithm exhibits
lower confidence in label assignments, thereby enabling a more
precise categorization relying on confident predictions (on
inference). As provided in EcoTaxa, we’ve included categories for
artifacts such as bubbles, detritus, and unknown objects to allow for
the categorization of these as well. (2) To allow for immediate
analyses onboard, we adopted a small backbone model that is
suitable for deployment on mobile laptops for both our methods,
eliminating the need for constant internet connectivity. The
objectives of this study thus were to enhance the classification
accuracy in comparison to the existing workflow for zooplankton
image analyses and to provide a user-friendly approach that can be
readily applied on board. We utilized a dataset of 215,000 images
from five cruises, which had been fully annotated at Alfred-
Wegener-Institut (AWI) in advance, to perform a comprehensive
evaluation of a reference dataset to assess and compare the
efficiency of three distinct methods: the EcoTaxa workflow, as
well as two innovative deep learning approaches, i.e., DTL
and DINO.

2 Methods

2.1 Data

Please note: In this paper, we use category for the technical term
class to avoid confusion with the biological term (taxa) classes. The
technical term class, which we call category, refers to a collection of
pictures containing similar motifs that are building a group after the
classification procedure. In contrast, the taxonomical term class (for
example, Ostracoda or Copepoda) refers to the rank of the
organisms in an ancestral or hereditary hierarchy.

For the present study, we used images that were taken with the
optical plankton recorder Lightframe On-Sight Keyspecies
Investigation (LOKI) in Fram Strait during five expeditions of RV
Polarstern (Table 1). Each of the 33 categories used in this study

corresponds to a group of zooplankton fauna at several taxonomic
levels (Supplementary Material DeepLOKI Section 2). LOKI
consists of a net (150µm mesh size) that concentrates the
plankton during a vertical tow from a maximum of 1000m depth
to the surface. The net leads to a flow-through chamber with a 6.1
MP camera (Prosilica GT 2750 with Sony ICX694 runs 19.8 frames
per second at 6.1 MP resolution.) that takes images at a frame rate of
max. 20sec−1. At the same time, sensors record depth, temperature,
salinity, fluorescence, and oxygen concentration. The LOKI
underwater computer extracts objects and stores the resulting
images as well as sensor data on a hard drive (Schulz et al., 2010).

2.2 Workflow

Once the LOKI images are captured, they are stored on a hard
drive. Depending on the classification tool being used, there are two
distinct data pre-processing pipelines Figure 1. The current
approach involves preparing the data for classification using
EcoTaxa by importing the images into a specialized “LOKI
browser” software, which calculates numeric features (Schulz
et al., 2010). However, due to computational limitations and the
need for internet access, the subsequent steps must be carried out
after the cruise. This involves applying ZOOMIE software (Schmid
et al., 2015) to exclude multiple images of the same organism,
followed by loading the data into EcoTaxa for classification and
storage Figure 1. In contrast, our proposed pipeline involves only
one step. The DeepLOKI tool can directly classify raw images
without any preparation steps like, for example, feature extraction
by the LOKI browser. As a final stage at the end of both pipelines, a
human carries out a final assessment of the pre-sorted images.
During this process, any necessary label corrections and duplicate
removals are made Figure 1. We display the current and the
proposed workflow (Figures 1, 2).

2.3 Data acquisition and ground truth

For the classification procedure, we used the images from all five
cruises after applying ZOOMIE to reduce the number of duplicates.

To develop the new pipeline, we used a data set of 194,479
(train/val) images (Supplementary Material DeepLOKI Table S3)
that, in addition, underwent parameterization using the LOKI

TABLE 1 Overview of LOKI images from five RV Polarstern cruises.

cruise #n images #n categories collection usage study area #LOKI deploys*

PS99.2 20683 31 June/July 2016 test Fram Strait 4

PS106.2 42462 33 July 2017 train/val Fram Strait 20

PS107 121628 32 July/Aug. 2017 train/val Fram Strait 17

PS114 7199 25 July 2018 train/val Fram Strait 1

PS122 23190 30 Nov.2019-Sept.2020 train/val Fram Strait 19

The table presents the number of images used for this study (#n), the number of categories into which the images were sorted, the months of image collection (obtained from object cruise), and the usage for
either training and validation (train/val) or testing the application. The study area is always Fram strait and the number of LOKI deploys* is based on the meta data file (technical counting).
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browser. All objects on these LOKI images were previously
identified by zooplankton scientists, often through manual efforts
in order to reach the lowest possible taxonomic level. In our study,
however, we aimed at a less detailed distinction of taxa, and thus, we
combined categories to higher taxonomic levels

(see (Supplementary Material DeepLOKI Table S3), Figure 3).
For instance, we grouped the several morphologically very similar
developmental stages of specific copepod species, as determined by
marine biologists, into a single species category. We, however, solely
utilized the images themselves and not their associated parameters.
Additionally, we analyzed a dataset for double takes using ZOOMIE
and re-categorized the images with EcoTaxa, including both
automatic predictions and final evaluations by a scientist. To
ensure accurate model development, 80% of these images were
randomly chosen for training purposes. The remaining 20% of the
data was reserved exclusively for internal model validation,
ensuring its reliability. To evaluate the model’s effectiveness,
images from the fifth cruise (Supplementary Material DeepLOKI
Table S3) that had not been used for pipeline development were

used, providing an objective measure of its performance. The
dataset encompassed various quantities of images within its
categories, with the smallest category, Foraminifera, comprising
n = 121 images, while the largest category, (Copepoda_Calanus),
contained n =43,620 images (Supplementary Material DeepLOKI
Table S3).

2.4 The baseline: EcoTaxa

The classification pipeline via the LOKI browser and EcoTaxa
was used as a baseline to compare the performance of DeepLOKI.
To ensure comparability between results obtained by our approach
and those via the EcoTaxa workflow, we extracted the categories
that have been distinguished by the scientists in EcoTaxa but
grouped, for example, development stages of species at a higher
taxonomic level. The EcoTaxa classifier was trained using up to
5,000 images per category as a maximum. The default for EcoTaxa
is a Random Forest classifier, and although it is possible to upload

FIGURE 2

DeepLOKI workflow in detail: Images extracted from LOKI undergo augmentation through torchvision transform functions such as cropping,
flipping, and auto-contrast. These augmented images are then inputted into one of the two variants of the ResNet18 neural network for
classification (DTL, DINO). Our approach consists of two steps, first data training and classification and second data sorting in particular group after
passing a confidence threshold, that we identify as classification likelihood. Images that fall below the threshold are moved to a folder labeled as
unknown/unclear.

FIGURE 1

Overview of the current workflow (top) and the DeepLOKI pipeline (bottom) to categorize objects on LOKI images. Current pipeline: images are
loaded into the LOKI Browser, then processed with ZOOMIE to remove double takes, and loaded to the EcoTaxa website for automatic classification
based on numeric image parameters fed to random-forest algorithms, and finally for a quality check by a scientist. The DeepLOKI pipeline consists
of the automatic classification of images based on one of the two variants of the ResNet18 neural network (DTL or DINO), and a final check by a
scientist as well. Blue boxes: step can be performed on the ship; red box: step requires internet access. Optional steps are indicated by *.
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other model implementations (https://github.com/ecotaxa/
ecotaxa_ML_template/blob/main/4.train_classifier.py), the images
have only been processed with the standard algorithm. The
Random Forrest performance is constrained due to imposed
parameters (optimized for UPV or ZooScan images) or training
data restrictions due to EcoTaxa. To evaluate the performance of
our classification tool, DeepLOKI, we first evaluated the accuracy of
EcoTaxa’s current classifier. Therefore, we established a new project
on the EcoTaxa platform and utilized its integrated training and

classification services, using 122,693 image training examples. The
exact configuration can be found in the Supplementary Material
EcoTaxa Setup.

2.5 Metrics

We’ve compiled the following metrics into a detailed table
(Supplementary Material DeepLOKI Table S4) that displays

FIGURE 3

Examples for the 33 categories that were utilized in this study. Each image corresponds to zooplankton fauna at different taxonomic levels or other
objects (antennae, bubbles, feces, multiples, detritus), arranged alphabetically according to their name.
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Precision, Recall, F1-Score, and sample size for every class. The last
three rows of the table indicate accuracy, followed by the columns
macro and weighted averages. Additionally, we’ve created a visual
depiction of the confusion matrix by plotting the human-labeled
ground truth against the predictions generated by our algorithm. To
evaluate and compare our models, we used the following five
metrics, here defined for the binary case. Consider a scenario in
which the dataset consists of samples that fall into one of two
distinct categories. Each sample can be assigned to either to these
categories, resulting in a binary classification problem. The scores of
the metrics are in an interval from 0 to 1, with higher scores
indicating better performance.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2TP

2TP + FN + FP

Accuracy =
TP + TN

TP + TN + FN + FP

In the context of multicategory classification, where the dataset
contains more than two possible categories (technical term: classes)
for each sample, we employed the One-vs-All approach. This
approach involved designating one class as the Positive (P)
category, which served as the target category for calculating
specific metrics such as Precision. Conversely, all other categories
were treated as Negative (N) categories.

By adopting this approach, we were able to compute separate
metrics for True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN), allowing us to assess the
performance of the model for each category individually.

2.6 Deep learning

For our Deep Learning approach, we used two variants of the
ResNet18 neural network and compared them. The first approach
involved Deep Transfer Learning, where we used a pre-trained
ResNet18 model on ImageNet (Tan et al., 2018; Kronberg, 2022;
Kronberg et al., 2022). This approach was selected due to its well-
documented effectiveness in diverse areas of biology and medicine,
with a specific emphasis on image analysis. Another factor that
influenced our decision was the efficiency offine-tuning, allowing us
to train the model on hardware configurations, such as a Macbook,
without requiring extensive computational resources. (Using Visual
Transformers instead of simple ResNet18 could boost the accuracy
by a bit, as tested in CNNs vs ViTs by the authors for (Yue et al.,
2023) For our second method, we chose the DINO approach (Caron
et al., 2021) primarily because it integrates one of the most advanced
self-supervised pre-training techniques available in the field of
computer vision. To ensure compatibility with our GPU
infrastructure, we made slight adjustments to the DINO method.

2.6.1 Image augmentation
Here, we describe the pre-processing steps applied to the images

extracted from the LOKI dataset for the Training. The primary
image augmentation techniques utilized are as follows:

1. Random Resized Crop: Images are randomly cropped and
resized to a fixed size of 300 pixels while maintaining an
aspect ratio within the range of 0.8 to 1.0. This resizing
process ensures that the model receives input images of
varying scales, improving its robustness to different object
sizes.

2. Random Rotation: We apply random rotations to the
images, introducing variability in the orientation of
objects. This augmentation technique helps the model
learn to recognize objects from various angles and
perspectives, with degrees of rotation up to 15 degrees.

3. Random Horizontal Flip: Images are subjected to random
horizontal flips. This operation allows the model to learn
features that may appear differently when mirrored
horizontally, aiding in better generalization.

4. Center Crop: After the aforementioned augmentations, we
perform a center crop on the images, resulting in a final
image size of 224x224 pixels. This cropping operation
ensures that the model focuses on the central region of
the image, which often contains the most relevant
information.

5. Normalization: Normalization is applied to the pixel
values of the images. We subtract the mean values [0.485,
0.456, 0.406] and divide by the standard deviations [0.229,
0.224, 0.225] for each color channel. This step helps
standardize the input data, making it suitable for neural
network training.

6. Random Autocontrast: Autocontrast is applied randomly
with a probability of 25%. This technique enhances image
contrast, which can be beneficial for improving the model’s
ability to distinguish between objects with subtle variations
in lighting and contrast.

7. Random Perspective: Images undergo random perspective
transformations with a distortion scale of 0.25 and a
probability of 25%. This augmentation introduces
geometric distortions, simulating variations that may
occur in real-world scenarios.

8. Random Adjust Sharpness : Random sharpness
adjustments are applied with a sharpness factor of 4 and
a probability of 25%. This operation can help the model
focus on fine details and edges within the images.

These augmentation techniques collectively contribute to a
more diverse and informative dataset, enabling our model to
better generalize and recognize objects under various conditions
and orientations.

2.6.2 Deep transfer learning
To implement our DTL approach architecture (Tan et al., 2018;

Kronberg, 2022; Kronberg et al., 2022) (Supplementary Material
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DeepLOKI Section 4), we used a pre-processing pipeline that
involved resizing the images (Height, Width, Color channel) =
(300, 300, 3) and crop to the input size of (224, 224, 3), as well as
normalization, and various augmentations to add robustness to the
training. We fine-tuned the ResNet18 neural network (He et al.,
2016) as previously described (Werner et al., 2021) and adapted it
for our purposes. Specifically, we exchanged the fully connected
layer(matching to our number of classes) of the ResNet18 model
(Figure 4) and fine-tuned the full network. Adam (Kingma and Ba,
2014) (Supplementary Material DeepLOKI Def. Adam) was used as
the optimizer for this deep transfer learning approach. The network
was trained with a batch size of 1536 and trained for 3 out of 20
epochs due to early stopping on the images of 80% of the samples
from the dataset using the biologists’ labeled images as ground
truth. The predicted probability for each image to contain each of
the labels of our 33 classes was used as the objective/loss function
(Supplementary Material DeepLOKI Def. Cross-entropy loss) in
training. We used an initial learning rate of 0.0001.

To assess the performance of our trained model, we conducted
an evaluation on the remaining 20% of the dataset, which was not
encountered by the algorithm during the training phase. By
comparing the results obtained from the model with the ground
truth, we were able to gauge its effectiveness. To ensure fair and
unbiased comparison among different algorithmic approaches, we
incorporated a reference dataset, specifically the Cruise PS99.2,
throughout the study. This reference dataset served as a
standardized benchmark for evaluating the performance of our
model alongside other approaches.

2.6.3 Self-supervised pre-training and then
supervised fine-tuning (DINO)

For the self-supervised pre-training stage, we utilized all
available images in our dataset, disregarding any label
information (Noroozi et al., 2018). The purpose was to train the
model to learn a latent space representation, as described in (Caron
et al., 2021). To maintain consistency with our DTL approach, to be
able to compare the ImageNet pre-trained ResNet18 with the pre-

training using self-super-vised learning method, we decided to
employ the same ResNet18 architecture as the backbone for the
self-supervised pre-training. In the original paper even a ResNet50
was used. To reduce training and inference computing costs, we
decided to downscale to ResNet18. For the DINO approach, we
used a 450 epoch for pre-training and trained on 8 x A100 GPUs
with 64 workers and a batch size of 512. The full parameter setup
can be found in our GitHub Repo using the lightly Python package.
Consequently, during the fine-tuning stage, we added the fully
connected layers accordingly to our classification problem and then
fine-tuned all layers using our training dataset Figure 4. This fine-
tuning process was performed for and trained for 12 out of 20 epoch
due to early stopping (on the validation accuracy with patience of 2)
while keeping all parameters identical to the previous approach.

2.6.3.1 Visualization of the latent space after self-
supervised pre-training

The purpose of this approach is to learn a condensed
representation of the classes in a lower-dimensional vector space.
Put simply; it aims to create a representation where images of the
same class are closer to each other while images of different classes
are farther apart. In general, there are two commonly used methods
for visualizing classification results based on a latent space: UMAP
and t-SNE. UMAP tends to preserve more of the overall structure of
the data, while t-SNE focuses on highlighting the local structure
(van der Maaten and Hinton, 2008; McInnes et al., 2018). We
employed UMAP (Uniform Manifold Approximation and
Projection) as another dimensionality reduction technique to
visualize the results from the classification algorithms. UMAP
provides an alternative perspective on the relationships among
the data points in a lower-dimensional space.

2.7 Graphic User Interface

A web-based Graphical User Interface (GUI) has been
developed to streamline the use of DeepLOKI, our powerful deep

FIGURE 4

Architecture of the implemented neuronal network. Convolutional layers (Conv.): These layers use filters (k x k, Conv. f where k is the kernel size and f
the number filters) to extract features from the input image. ResNet18 has a total of 17 convolutional layers. Batch normalization layers: These layers
normalize the output of the convolutional layers, which helps to improve the stability and performance of the network. Pooling layers (Max/Average
Pooling): These layers reduce the spatial dimensions of the feature maps generated by the convolutional layers, which helps to decrease the number of
parameters in the network and reduce overfitting. Fully connected layers (FC layers): These layers connect all the neurons in one layer to all the neurons
in the next layer. In ResNet18, there is one fully connected layer at the end of the network, which is used for classification (He et al., 2016).
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learning framework for taxa group recognition in zooplankton
images. Through the incorporation of the Streamlit Python
library, a seamless and intuitive interface has been created,
thereby simplifying the process of image classification.
Supplementary Tools have also been integrated, offering a user-
friendly interface for labeling new images, thus enabling further
training (Supplementary Material DeepLOKI) Figure 1.

2.8 Hard and software

Training and Validation were performed on an Nvidia A100
(Nvidia Corp., Santa Clara, CA, USA) and on Apple M1 MAX with
32 GB (Apple, USA), depending on the computational power
needed, for example, self-supervised pre-training was performed
on a Hyper performing cluster with Nvidia A100. On the Macbook
Pro (Apple, USA) we used:

Python VERSION:3.10.5

pyTorch VERSION:13.1.3

On the cluster we used cluster specifics versions of the software:

Python VERSION:3.10.5

pyTorch VERSION:13.1.3

CUDNN VERSION:1107)

3 Results

This section describes and compares the results of the image
analyses based on three methods: EcoTaxa (web link required),
ResNet18 with DTL (autonomous), and ResNet18 with DINO
(autonomous). For the comparisons, we use the PS99.2 data set
(20,683 images). AS evaluation metrics, we deliberately decided to
use the F1-score and, in addition, the classification accuracy to
highlight the different aspects of the “quality of label assignment”.

3.1 EcoTaxa default classifier
performance - study baseline

The automatic EcoTaxa categorization process generated a dataset
where each data point (image) was assigned its respective
categorization. These categories include non-living objects (detritus,
bubbles, feces), high-level taxonomic groups (Crustacea (not further
identified), Amphipoda, Calanoida (not further identified)
Euphausiacea, and Ostracoda; Polychaeta; Cnidaria, Rhizaria (not
further identified) and Foraminifera), copepod genera (Calanus,
Geatanus, Heterorhabudus, Metridia, Microcalanus, Oithona,
Oncaea, Paraeuchaeta, Pseudocalanus, Scaphocalanus, Scolethricella,
Spinocalanus), dead copepods, early life stages (eggs, nauplii, and
trochophora larvae), specific parts of organisms (antennae as well as

heads, middle parts and tails of chaetognaths) and “multiples” with
images with more than one object. We compared these labels to the
scientists’ final annotations and produced a confusion matrix and
classification report (Figure 5). The EcoTaxa algorithm achieved an
accuracy of 44.4% applied to a PS99.2 dataset of 20,683 images.
Examining the F1-scores, which consider both precision and recall, we
found an overall score of 44% for all categories Supplementary
Material DeepLOKI Table S5). Among the categories, the highest-
performing categories were Detritus, Chaetognatamiddle, and Bubble,
with a score of 70 -73% (3,363, 184 and 209 images). Categories
such as Copepoda_Heterorhabdus, Copepoda_Scolecithricella,
Copepoda_Spinocalanus, Copepoda_dead, Crustacea, Euphausiacea,
Foraminifera, Trochophora had the lowest scores of 0%, however,
these categories contained few images (i.e. 148, 22, 10, 0,28, 4, 5,0
images, respectively) (Figure 5, Supplementary Material DeepLOKI
Table S5). It should be noted that zero image counts correspond to
misclassified images when the category was present in the training set
but absent in the test set. In summary, 17% of the total images,
representing only 2 out of 33 categories, attained an F1-score of 70%
or higher.

3.2 DeepLOKI: ResNet18 - DTL classifier

As part of our DeepLOKI framework, we initially employed a
Transfer Learning approach, utilizing a fine-tuned ResNet18 model
pre-trained on the ImageNet dataset (Yang et al., 2020). The
ImageNet dataset consists of 1000 categories, encompassing
various objects such as animals, cars, and airplanes. By employing
this technique, we achieved an overall accuracy of 83.1% on our test
dataset. Using a zooplankton test dataset PS99.2 containing 20,683
images, the ResNet18 model achieved a weighted average F1-score
of 82.4% for all categories (Supplementary Material DeepLOKI
Table S6). Notably, the categories Ostracoda, Bubble, and
Copepoda_Calanus exhibited the highest F1- scores, reaching 92-
95% (748, 209, and 3,614 images, respectively). Conversely, the
categories Copepoda_Scolecithricella Copepoda_Spinocalanus,
Copepoda_dead, Crustacea, Euphausiacea, Foraminifera,
Trochophora again had the lowest scores of 0%. However, these
categories contained few images (Figure 6, as summarized in
Supplementary Material DeepLOKI Table S6).

In summary, 13 out of 33 categories, comprising 86% of all
images, achieved an F1-score of 70% or higher. As with the EcoTaxa
results, we generated a confusion matrix from the categorization
outcomes. Our findings revealed that images belonging to the
groups prefixed with Copepoda exhibited a high level of
confusion. This confusion was evident from the higher values
observed in the non-diagonal elements of the matrix. Specifically,
we observed a distinct pattern of confusion within a block
encompassing various species and sub-species of Copepoda, as
indicated by the framed region, notably in the category
Copepoda_Calanoida: here, 318 images were misclassified as
Copepoda_Mircocalanus, 95 as Copepoda_Metridia_longa, 104 as
Copepoda_Scapohocalanus and some smaller number of images to
other that have in their assigned category name Copepoda Figure 6.
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3.3 DeepLOKI: ResNet18 - DINO classifier

Using state-of-the-art methods involving self-supervised learning,
specifically a slightly down-scaled student-teacher approach (Caron
et al., 2021), followed by fine-tuning on our labeled data, we achieved
an overall accuracy of 83.9% on the PS 99.2 dataset of 20,683 images.
This performance surpassed both the EcoTaxa workflow and the DTL
approach. Notably, the categories Ostracoda, Bubble, and
Copepoda_Calanus demonstrated the highest accuracy rates
(measured as F1-score), ranging from 92% to 95% (748, 209, and
3,614 images, respectively Supplementary Material DeepLOKI Table
S7). Conversely, the poorest-performing categories were
Copepoda_Scolecithricella Copepoda_Spinocalanus, Copepoda_dead,
Crustacea, Euphausiacea, Foraminifera, Trochophora each with a 0%
F1-score, (Figure 7, data summarized in Supplementary Material
DeepLOKI Table S7). In summary, 12 out of 33 categories, covering
86.5% of all images, achieved an F1-score of 70% or higher.

The confusion matrix analysis for this categorization of
zooplankton images revealed a consistent pattern. Similar to DTL
analysis, images from the Copepoda groups exhibited higher non-
diagonal values, indicating confusion.

This pattern was particularly noticeable within a framed block
representing various Copepoda species and sub-species. Remarkably

similar to the DTL approach is the high confusion in the category
Copepoda Calanoida: here, 243 images are misclassified as
Copepoda_Mircocalanus, 69 as Copepoda_Metridia longa, 54 as
Copepoda_Scaphocalanus and similar patterns for the smaller
categories including Copepoda in their names Figure 7.

3.3.1 Data projection on latent space
To visualize the classification of the self-supervised pre-trained

ResNet18 (DINO) approach, we used UMAP (Figure 8) as a
dimension reduction approach to project the data on a 2D space.
Each dot represents an image, and the distance to each other reflects
their similarity. Dots that are close to each other reflect the same or
similar image content. The coloring was done based on the pre-
defined categories.

These are Copepoda_Microcalanus, Copepoda_Calanus, Detritus,
Copepoda_Oncaea, Copepoda_Calanoida, Copepoda_Metridia_longa,
multiples, Ostracoda, Nauplii and Copepoda_Oithona. The UMAP
plot has revealed the presence of a mirror symmetry at the x = 5
coordinate, effectively dividing the plot into two distinct regions.
Notably, comparable clusters can be observed on both the left and
right sides of this axis. This finding suggests a symmetrical organization
of data points with similar characteristics in both regions. The two taxa
Copepoda_Calanus and Copepoda_Metridia_longa exhibited close

FIGURE 5

Confusion matrix of categories predicted by EcoTaxa versus final categorization by a scientist: The y-axis shows the evaluated labels and the x-axis
the predicted labels of PS99.2. The color gradient indicates the number of images.
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proximity to each other in the two-dimensional latent space plot,
mirroring their similar morphology. It is worth mentioning that the
groups Copepoda_Oncaea, Copepoda_Microcalanus, Nauplii, and
Detritus exhibited a tendency to cluster closely together within a
specific region of the plot. The categories Copepoda_Calanoida and
Ostracoda show a similar representation in the latent space.

Upon conducting a deeper analysis of the metadata, particularly
focusing on the stations, we discovered that the initial group of clusters,
the left clusters (comprising all clusters with x umap ¡ 5), was linked to
three specific locations. Interestingly, these three locations were distinct
from the other locations in the dataset. Notably, the stations were not
part of the pre-training or training processes of the DINO ResNet18
model, yet their consideration offered meaningful insights into the
separation of these clusters based on distinct geographical associations.

3.4 Comparison of the default
EcoTaxa classifier, with the two
DeepLOKI classifiers: DTL ResNet18
and Dino ResNet18

Our proposed DINO classifier demonstrated an accuracy of
83.9% in predicting categories for objects on LOKI images.

Furthermore, our classifier reached higher F1-Scores for 26 out of
33 categories, which accounted for 93,9% of all samples. These
categories excluded Copepoda_Scolecithricella, Copepoda_
Spinocalanus, Copepoda_dead, Crustacea, Euphausiacea,
Foraminifera, Trochophora and Feces, where only the category
Feces was Eco Taxa more accurate with a delta of 0.16. For the
remaining categories both classifiers reached 0% F1-Score
(Supplementary Material DeepLOKI Table S4, Figure 9).

Overall, the newly developed DeepLOKI classifier proved to be
superior for LOKI images when compared to the standard random
forest classifier employed in EcoTaxa that had been designed for
UVP and ZooScan images Figure 9.

3.5 The GUI interface

We have developed a graphical user interface (GUI) for pre-sorting
purposes and for manual labeling, which includes a user-friendly image
viewer. The GUI was built using Streamlit, a framework that enables
easy deployment of web applications. One of the key advantages of our
GUI is that it can be accessed directly through a web browser (platform
independent), without the need for an internet connection (Figure 10,
Supplementary Material DeepLOKI Figure S1).

FIGURE 6

Confusion matrix of categories predicted by DTL ResNet18 -Classifier versus final categorization by a scientist: The y-axis presents the evaluated
labels and the x-axis the predicted labels of PS99.2. The color gradient indicates the number of images.
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3.6 Time consumption and benchmark

The pre-training with 450 epochs took less than two days on the
8 - A100 GPU DGX system. The inference of the Haul containing
about 1,400 images only took 14.8202 seconds.

4 Discussion

This study introduces the framework DeepLOKI, designed for
categorizing objects on high-resolution black-and-white images
obtained from the LOKI system (Schulz et al., 2010). Our approach
incorporates advanced deep learning techniques, specifically
convolutional neural networks (CNNs), utilizing both deep transfer
learning and self-supervised learning methods. In terms of accuracy
and F1-score, DeepLOKI outperforms the currently used web-based
tool EcoTaxa that has been developed for images collected by other
camera systems, specifically the UVP and the ZooScan (Grosjean et al.,
2004; Picheral et al., 2017). To improve the usability of DeepLOKI, we
have developed a user-friendly graphical user interface (GUI) that
simplifies interaction with the framework. This GUI streamlines the
classifying of zooplankton images, making this process easy to use. An
advantage of DeepLOKI is that the application can be executed on a
portable computer, making it suitable for implementation during

cruises as it does not rely on internet access, which is often limited
in remote regions such as the Arctic. Our DeepLOKI pipeline thus
allows for fast image classification immediately after a cast and prompt
evaluation of the zooplankton community in almost real-time. In this
study, we utilized a training set of approximately 194,479 images
collected during four cruises. We achieved a classification accuracy of
83.9% when classifying images from an independent fifth cruise,
including 20,683 images. Both our proposed approaches are
considered to be supervised, because the fine-tuning is based on
labeled data. This demonstrates the effectiveness and robustness of
DeepLOKI in accurately categorizing zooplankton images from the
same area, i.e., Fram Strait. This approach significantly improves the
efficiency of the research process and empowers researchers to make
more informed decisions on sampling during a cruise.

Deep transfer learning has been employed to classify plankton data
successfully(Orenstein and Beijbom, 2017; Cheng et al., 2019; Lumini
and Nanni, 2019). Utilizing openly accessible datasets of categorized
plankton images can facilitate the development of such designs (Sosik
et al., 2015; Elineau et al., 2018; González et al., 2019; Cornils et al.,
2022). Instead of just relying on transfer learning, the focus has now
shifted to a two-step process called self-supervised learning. In this
approach, a backbone is first pre-trained using self-supervised data to
obtain a latent space representation of the images. Once the backbone
has been pre-trained and its weights learned, it can then be fine-tuned

FIGURE 7

Confusion matrix of categories predicted by Dino DTL ResNet18 -Classifier versus final categorization by a scientist: The y-axis presents the
evaluated labels and the x-axis the predicted labels of PS99.2. The color gradient indicates the number of images.
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for a classification task using annotated images. Numerous such
methods exist, for example, Momentum contrast (MoCo), Self-
distillation with no labels (DINO),and Simple Framework for
Contrastive Learning (SimCLR): (Chen et al., 2020; He et al., 2020;
Caron et al., 2021).We applied the DINOmethod for our work but did
not evaluate the other approaches. It’s worth noting that these
alternative methods incur additional computational overhead
compared to simply utilizing the pre-trained ImageNet models. Our
framework is designed to be modular. We have presented two potential
classifiers in this paper, but it can be extended with more classifiers,
which should be implemented in PyTorch. Thus, we abstain from
comparing our approach to others since both our classifiers are based
on a relatively simple backbone architecture. This architecture may be
replaced or expanded, given sufficient resources. Our framework
facilitates the training and inference of these methods. To make
appropriate methods comparisons, standardized benchmark datasets
should be employed. Our study utilized exclusive proprietary data due
to the specialized nature of our LOKI dataset. Our main goal is to
simplify workflow and integrate the self-supervised learning technique
Dino in LOKI images, along with presenting a detailed representation
of the latent space.

To enhance the initial sorting process and the precision of image
categorization, we incorporated a confidence threshold for the neural
network. This threshold enables us to exercise greater caution when
assigning images to specific category folders.As a consequence, an image
that may have previously been classified with uncertainty is now
allocated to the “unknown” folder. This approach minimizes the risk
of mislabeling images. However, it is important to note that
implementing this method may result in a trade-off with recall, which

refers to the ability todetect truepositives.While our focuson improving
classification precisionmay lead to a decrease in recall, as wemay detect
fewer true positive cases, the overall result is amore reliable classification
system with lower numbers of misclassifications. We don’t tackle the
problem of “Previously unseen classes and unknown particles” (Eerola
et al., 2023); this could be future work and is out of scope for this study.

For the automatic removal of duplicate images, certain
algorithms that do not rely on image parameters could be
implemented. However, it is beyond the scope of this study.

To recap, our approach optimizes the allocation of resources by
automatically categorizing images and allows researchers to focus
on more complex cases, i.e., images that are marked as unknown by
the algorithm. Our approach also enables the identification and
separation of artifacts, such as dead tissue, eggs, and bubbles. This
not only enhances the overall accuracy of the classification process
but also saves valuable time by streamlining the analysis.

During our analysis, we noticed somemislabeled images within the
annotated image data, particularly in categories that comprise copepod
genera (i.e., Copepoda_Metridia, Copepoda_Pseudocalanus). This
highlights the need for additional datasets to improve the performance
of neural networks in zooplankton classification. Accurate identification
of the calanoids is especially critical in deep learning-based analyses of
LOKI images, as this is the specific area where the algorithms
encountered the highest level of confusion. Focusing on improving the
network’s ability to correctly identify these species is crucial for
enhancing the overall effectiveness of the analysis. Furthermore, our
study successfully demonstrated the classification of species with a
relatively low number of images in the training data. This indicates the
potential of our approach to effectively classify zooplankton species even
when limited training data is available. For instance, we achieved an F1-
Score of 0.83 for Chaetognata_middle, despite having only 1063
training/validation available for training and 184 test images for
testing. However, our algorithm encountered difficulties when dealing
with smaller categories, such as Foraminifera,with a training dataset size
of only 121 examples.

We observed the trend that for categories with less than 1000
training images, the F1-Score was below 50% with the exception of
Cnidaria, which are morphologically very distinct from all other
categories. The accuracy of neural networks, in general, (Kavzoglu,
2009; LeCun et al., 2015; Krizhevsky et al., 2017) tends to increase
with data set size. This is because a larger dataset provides more
diverse examples, allowing the network to learn more robust
representations of the underlying patterns. Based on more data,
the network can also better capture the underlying distribution of
the problem space and improve its generalization capabilities.
However, it’s worth noting that the relationship between data size
and accuracy is not always linear and can reach a plateau or even
decrease with excessively large datasets (Echle et al., 2020). By
augmenting (i.e., rotating the data) the training data, we can provide
an algorithm with a more comprehensive and representative set of
examples, enabling it to better understand and classify groups that
have limited representation in the current dataset.

Our analysis of the latent space embedding of zooplankton
images obtained through self-supervised pre-training using
ResNet18 revealed an insightful observation. By examining the

FIGURE 8

Learned latent-space Embedding using UMAP: The UMAP plot of
the 512-dimensional latent space representation is displayed, which
was obtained from self-supervised pre-training with DINO. This plot
displays the ten categories, which accounted for 95% of the data.
The UMAP plot provides an alternative visualization of the clustering
of these species in the latent space. The color corresponds to the
images categories as validated by the scientists.
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metadata, specifically station information, we discovered a distinct
clustering pattern that was not influenced by the pre- or training
process of the ResNet18 model. These clusters were primarily
associated with three specific geographic locations (longitude,
latitude), which were separated from all other locations in the
dataset. When we tested the image parameters extracted from the
LOKI browser, we found significant differences in most descriptors,
indicating that the images from different geographic locations
indeed differed in their optical properties (For example, see
Supplementary Material DeepLOKI Table S1 and Supplementary
Material DeepLOKI Table S2 that display the variations in image
parameters and image descriptors for Copepoda_Calanus). At
present, these differences cannot be explained by, for example,
zooplankton population dynamics, and more detailed analyses
would be necessary to make use of this result. Deep-learning-
supported annotation has some requirements that the researchers
must meet. For example, the DINO approach that we implemented
needs access to sufficient computing power. We recommend re-pre-
training the DINO ResNet18 when a sufficient number of new data
(i.e. the next 200,000 images) is available through additional cruises.
If these images are annotated, DINO and DTL should undergo
retraining utilizing the finetuning techniques. To mitigate such
resource limitations, we employed a small ResNet18 model as the
backbone, enabling inference (pre-sorting of the images) on
portable computers and mitigating all resource limitations. Our

data clearly illustrate the ability of various algorithmic approaches
to differentiate among the 33 categories present in our dataset.
Nevertheless, during the training phase, we observed that the
ResNet18 model with student-teacher self-supervised pre-training
exhibited strong performance for the specific task at hand. The
current method performed successfully and promises to enhance
LOKI image analyses. It has to be noted that LOKI is currently used
only in few working groups, however, with the technical
improvements of cameras, the resolution of images from other
optical systems used in marine studies may increases considerably.
DeepLOKI does not require high-resolution images only; it resizes
(convert down in resolution) the image down to 224 x224 pixel.

Therefore, our pipeline can serve as a valuable principle for
future applications. Its successful performance and ability to handle
the challenges specific to high-resolution images that present great
morphological details could make it a promising framework that
can be adapted and extended for further image-based research and
analysis in marine environments.

5 Conclusion

Our study presents a novel and effective approach for
zooplankton image classification using a self-supervised pre-trained
ResNet18 model in conjunction with the LOKI system. The results

FIGURE 9

Precision, Recall and F1-Score on the hold out test dataset the images of Cruise P99.2 for the classes. The y-axis indicates the scores and the x-axis
indicates the label for each of the 33 classes.
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clearly demonstrate the advantages of this approach over traditional
methods, such as random forest classification, especially when a large
training dataset is available. Compared to the default random forest
available in EcoTaxa, the ResNet18 classification performance was
two times higher. The DeepLOKI framework offers streamlined
processes that save time and minimize potential errors, eliminating
the need for calculating image parameters and providing a more
efficient pipeline from the LOKI system to the classified images. Deep
learning-based classification not only improves accuracy but also
expedites the estimation of organism density at each station. By
considering the potential for miss-classification, density is inferred
based on the number of organisms sorted into specific folders.

Despite the promising results, there is still room for further
improvement by including additional data samples to enhance the
model’s performance.

One of the advantages of our deep learning framework is its
versatility and flexibility. Besides handling just images from a single
device like the LOKI system, the framework can be easily adapted to
different image data, for example, phytoplankton obtained from
multiple devices. By leveraging the power of deep learning, our
framework effectively extracts meaningful features and patterns to
classify images, making it a valuable tool for researchers working
with diverse datasets in various domains.

In conclusion, our study demonstrates the efficacy of utilizing a
self-supervised pre-trained ResNet18 model in combination with
the LOKI system for zooplankton image classification. The
DeepLOKI framework offers improved performance, efficiency,
and adaptability, making it a promising approach for advancing
zooplankton research and facilitating accurate analysis across
different ecosystems.
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Chapter 7

Conclusion

7.1 Key results

The objective of this thesis is to elucidate the complex dynamics of Arctic Ocean ecosystems,
with a specific focus on the Fram Strait. To achieve this, a multifaceted approach combining
mathematical models, descriptive statistics, and artificial intelligence (Chapters 4 to 6) was
employed. This research aimed to describe the impacts of environmental changes, particularly
Atlantification, on various microbial and planktonic communities (Chapters 2 to 4) .
The study, comprising five distinct papers, provides a deeper understanding of the impact
of these changes on the composition, structure, and functionality of Arctic marine ecosys-
tems. The successful utilization of diverse data sources, including 16S and 18S amplicon data,
gene sequences, metagenome data, and various environmental parameters from Remote Access
Samplers (RAS) and the CTD, has been instrumental in achieving this deeper perspective
(Chapter 2). Furthermore, zooplankton images were captured using the Lightframe On-sight
Keyspecies Investigation (LOKI) device. This comprehensive suite of data sources enabled a
detailed analysis of microbial and zooplankton communities in the Arctic Ocean.
This thesis employs a range of sophisticated methodologies to analyze extensive datasets col-
lected from the Arctic Ocean. Descriptive statistics and predictive modeling based on statistical
physics provided insights into the behavior of selected taxa and sub-communities under vary-
ing environmental conditions (Chapters 3 to 5). The collection of high-resolution temporal
data via autonomous samplers and in situ sensors enabled the study of microbial dynamics
(Chapter 2). Furthermore, a novel framework was developed to identify co-occurrence pat-
terns, interaction networks, and keystone species within microbial communities (Chapter 5).
Building upon these findings, the final study explored the application of computer vision and
deep learning techniques for automated zooplankton image classification (Chapter 6). This
data can be integrated into a comprehensive time-series analysis.
This thesis has highlighted the multifaceted impacts of environmental change on the Arctic
Ocean ecosystem, with a particular focus on the consequences of sea ice retreat and Atlantifi-
cation, due to their specific adaptations in life cycle, ecology, and physiology. Our findings
indicate that specialized and rare taxa may face significant challenges under these changing
conditions (Chapter 2). Consequently, further large-scale studies are necessary to identify these
specialized taxa and clarify the impact of climate change on their abundance and diversity. In
addition, to biogeographical studies, ecophysiological studies are essential for assessing the
responses of Arctic specialists to environmental changes in comparison to widespread Arctic
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generalists. As a consequence of climate change, the melting of sea ice is occurring at an ear-
lier stage (Meredith et al., 2019), while its formation is occurring at a later point in the year.
This has an impact on the abundance of sea ice communities and the subsequent spring bloom
(Chapters 2 and 5).
The primary findings of our first study (Chapter 2) demonstrated that environmental condi-
tions, such as sea ice melt, exert a significant influence on Arctic phytoplankton species. Polar
pelagic and ice-associated taxa were more prevalent in Atlantic water-influenced regions, while
temperate taxa struggled in colder waters. This trend suggests a substantial shift in phyto-
plankton composition as the Arctic warms, which could potentially trigger cascading e"ects
on food web dynamics and nutrient cycling.
The second paper (Chapter 3) builds on this foundation by examining bacterial communities
in the East Greenland Current (EGC). It highlights the impact of Atlantic water influx and
changing sea-ice cover on these communities. A comprehensive four-year analysis revealed
significant alterations in microbial composition, structure, and functionality. The influx of
warmer Atlantic water and the reduction in sea ice cover led to changes in the relative abun-
dance of di"erent bacterial taxa, with potential implications for ecosystem processes such as
carbon cycling and primary production. This study emphasises the necessity of elucidating
microbial responses to environmental alterations in order to anticipate the future state of the
Arctic Ocean at EGC.
In our third paper (Chapter 4), we investigate the dynamics of the bacterial microbiome at
the West Spitzbergen Current (WSC). We identified five distinct seasonal modules within the
prokaryotic microbiome, each linked to specific microeukaryotic populations and environmen-
tal conditions. These modules represent unique ecological states that recur annually, thereby
illustrating the pronounced seasonal dynamics of Arctic microbial communities. Our find-
ings indicate that environmental factors and microbial community structure are intricately
linked, with di"erent selection pressures exerted across the various seasonal states. The thesis
highlight the intricate link between environmental factors and microbial community structure,
contributing to a deeper understanding of the temporal patterns regulating microbial diversity
and functionality in the Arctic pelagic ecosystem.
The fourth paper (Chapter 5) presents a novel framework for identifying keystone species
through the analysis of co-occurrence patterns, interaction networks, and stability analysis
within microbial communities. The framework was tested on a four-year dataset from the
WSC, and it identified keystone species, including certain microeukaryotes, which are crucial
for the Arctic food web’s structure and resilience. Furthermore, this framework allowed for
the modelling of community responses to environmental shifts, thereby providing insights into
the mechanisms of ecosystem stability and potential future impacts. The applicability of this
framework extends beyond microbes; future studies could incorporate micro-scale organisms
such as viruses and phages, as well as macroscopic zooplankton, in order to gain a more holistic
understanding of the ecosystem.
The fifth paper (Chapter 6) on zooplankton classification introduced DeepLOKI, a deep
learning-based method for classifying zooplankton images. This innovation addressed the chal-
lenge of rapidly processing large volumes of image data collected during research cruises, which
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would otherwise have been impractical to process manually. The automation of zooplankton
taxa identification enabled the integration of image data into our time-series analyses. This
approach facilitated the tracking of changes in zooplankton distribution and abundance with
greater e!ciency. The results demonstrated that the incorporation of image-based data signif-
icantly enhances the capacity to monitor and understand zooplankton dynamics in relation to
environmental changes. The frame is not restricted to LOKI images, the underlying networks
can be train and then applied to various image sources, given proper annotated data.
Overall, this thesis provides a comprehensive analysis of Arctic Ocean ecosystems, utilizing
advanced methodologies to reveal the impacts of environmental changes on microbial and
planktonic communities. The findings underscore the critical need for continued research to
understand and mitigate the e"ects of climate change on these vital ecosystems.

7.2 Future Work

The objective of researchers is to achieve a more comprehensive understanding of the Arctic
food web. This will necessitate the development of a robust ecosystem model with respect to the
initial conditions and the incorporation of additional communities and data types. The results
provide a foundation for future research investigating the combined dynamics of bacteria,
archaea, and microeukaryotes in the Arctic food web.
Our research will be expanded to include other key players in the Arctic ecosystem, such as
phages and zooplankton. Phages, which regulate bacterial populations and biogeochemical
cycles, are crucial for understanding the dynamics of this unique and ever-changing environ-
ment (Heinrichs et al., 2023). Further arctic expeditions are planned to collect phage samples
with the objective of expanding the current pipeline and further investigating the interactions
between organisms.
The incorporation of additional data types, such as metagenomes and metatranscriptomes,
into our amplicon (16S and 18S) data sets will facilitate the generation of functional insights in
our analyses. The metagenomes of the Arctic Ocean represent the collective genetic material
obtained directly from environmental samples. They provide insights into the diversity and
functional potential of microbial communities, as demonstrated in Chapter 4. However, it is
necessary to expand the combined analysis. Metatranscriptomes provide a comprehensive view
of RNA transcripts present at a given time, illuminating active genes and metabolic pathways
and enabling a dynamic understanding of how these communities respond to environmental
changes (Pearson et al., 2015).
In the medium to long term, our objective is to develop a comprehensive ecosystem model that
encompasses several spatial, temporal, and biological scales. This model will be used to model
community dynamics over the duration of a research cruise, such as the MOSAiC expedition
(Mock et al., 2022), where the data varies in time and space. The resulting model will facilitate
the study of complex interactions within the Arctic food web and their impact on biogeochem-
ical nutrient cycles. The utilization of novel technologies, including DeepLOKI, is intended to
facilitate a greater comprehension of species abundance and ecosystem functionality.

141



Chapter 7 Conclusion

In this context, the feasibility of developing mechanistic models capable of making predictive
statements about the future development of ecosystems is of particular interest. One example of
such models is ecosystem models based on the principles of generalized Lotka-Volterra (gLV)
theory (Lotka, 1920; Volterra, 1927). These models mathematically represent few species
interactions, typically between predators and prey, and capture population oscillations and
equilibrium states over time (Malcai et al., 2002). One challenge in this field is that we often
lack knowledge about the specific interactions between species. These interactions can change
in response to environmental factors, and it is not always straightforward to map them. For
instance, a species may engage in multiple di"erent roles of interactions with other species,
depending on the species involved.
Therefore, implementing this approach presents several immediate challenges. What are the
actual di!culties of such a predictive dynamic model, and what resources are needed to over-
come them? The first issue is the exponential growth of the parameters relative to the action
parameters. Experimental methods to determine these parameters include the isolation of
communities, which proves challenging in real ecosystems due to the significant number of
influencing parameters. Another issue is the number and selection of the parameters due to
the presence of correlation and dependencies. Despite these limitations, no single model can
currently be used to model the full complexity of the Arctic food web.
Despite the availability of all requisite data, the quality of the forecast may not be guaranteed.
The model may lack su!cient robustness with respect to the initial conditions. This will enable
reliable predictions and necessitating simplification. It is of critical importance to determine
the optimal level of complexity that will maximize the model’s predictive power (Burnham
and Anderson, 2002; MacKay, 2003). One might inquire whether it is expedient to construct
a model comprising 200 species. A smaller number of functional guilds may be a superior
solution, analogous to the clustering approach described in Chapter 5.
The multitude of variables that a"ect an organism’s behavior renders a comprehensive exami-
nation impractical. An overly granular analysis of too many details can result in the obscuring
of the overall picture. By aggregating or integrating smaller units into larger entities, pat-
terns in the data can become more discernible. For instance, as an alternative to modeling
dynamics based on individual species, it may prove more fruitful to focus on higher taxonomic
levels such as family or genus, particularly since a substantial number of species remain poorly
understood. This prompts the question of which new approaches are required.
The application of LV models necessitate the measurement of absolute densities, whereas the
typical datasets only provide estimates of relative abundances. To address these challenges,
various approaches have been developed. One approach is to derive a new nonlinear dynamical
system for microbial dynamics, termed the compositional Lotka-Volterra (cLV) model. This
unifies approaches using generalized Lotka-Volterra (gLV) equations from community ecology
and compositional data analysis (Joseph et al., 2020).
Goldford et al., 2018 paper provides an illustration of the complexity of systems and the po-
tential for simplification and reduction. Promising approaches have already been developed
for another microbial system. Very diverse and taxonomically rich samples were collected to
analyze the microbiome of soils and plant leaves. Between 110 and 1290 exact sequence vari-
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ants were sequenced. The study investigated which species survived on a minimal medium
with glucose, hypothesizing that only one species should survive on a limited resource utilising
consumer research models. Despite the simplicity of the consumer-resource model, they may
be capable of capturing many of the observed qualitative features in the experiment, as well
as the more subtle aspects, including the existence of temporal blooms. It is noteworthy that
approximately five to seventeen species exhibited remarkable resilience, demonstrating the ro-
bustness of the microbial community at the family level despite the observed variations within
individual species. This observation indicates that a detailed examination is unnecessary to rec-
ognize basic patterns. Another study (Marsland III et al., 2019) introduces an adapted version
of MacArthur’s Consumer Resource Model, which has been tailored for microbial ecosystems.
The ecological complexity of these communities has made it challenging to develop a universal
predictive model that accounts for the variability of these features in response to environmen-
tal conditions. To address this, the authors developed a versatile simulation framework and
explored a wide range of parameters and modelling assumptions in order to uncover common
patterns. This model incorporates energetic, stochastic colonization, and the exchange and
consumption of metabolites, focusing on large, diverse ecosystems with numerous species and
resources. To evaluate the community structure and resource stability, the authors conducted
simulations of ecosystems comprising 200 species and 100 resources, with species exhibiting an
average of 10 resource preferences. Parameters and consumer preferences were randomly gener-
ated to simulate diverse community dynamics under varying conditions. The findings revealed
two fundamentally di"erent types of community structures that align with observed biodiver-
sity patterns and o"er new insights into their stability and functionality. This demonstrated
which parameters indicated overall energy flow, with the original nutrient-derived energy de-
termining the number of coexisting species. The methods presented are examples of further
analytical approaches applicable to ocean microbiomes. The subsequent stage entails exam-
ining and simplifying natural communities under laboratory conditions with the objective of
identifying comparable patterns in di"erent environments. This represents a preliminary step
towards an understanding of the complexity of the Arctic Ocean ecosystem. It is assumed that
ecosystems have various niches whose exact functions are random, yet their roles are analo-
gous across cases. General data analyses eventually encounter limitations in identifying actual
interaction principles, necessitating further comprehensive experiments of reduced complexity
in controlled, reproducible environments. To address this, further comprehensive experiments
of reduced complexity in controlled, reproducible environments are required. Consequently,
it is necessary to grow these samples in a controlled environment in order to apply them to
di"erent conditions. Conversely, field work in the Arctic is also of paramount importance,
as evidenced by the many previous expeditions to the region. Developing hypotheses about
ecosystem interactions requires an empirical testing capacity, which is di!cult to achieve in
the ecosystem itself.
An illustrative example of experiments of reduced complexity in controlled, reproducible envi-
ronments is the use of small-scale bioreactors and medium- to large-scale planktotrons (Gall et
al., 2017; Musta"a et al., 2020). Planktotrons represent a distinctive experimental apparatus
used to study the behavior of planktonic organisms in a controlled environment. These tanks
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are constructed with high transparency, allowing for precise regulation of the water’s physical
and chemical conditions. Researchers can investigate the specific e"ects of varying factors on
plankton, such as temperature, light, or nutrient availability. Planktotrons facilitate long-term
observation of changes, which can often be challenging in natural waters. They contribute to
the understanding of plankton population development and ecosystem reactions to environ-
mental changes. These controlled experiments enhance the reproducibility of scientific results
and aid in comprehending the functions and evolution of marine ecosystems in response to
diverse environmental stimuli.
In conclusion, these studies and the methodologies employed underscore the necessity of de-
veloping robust, mechanistic models to predict ecosystem dynamics in the Arctic. By utilizing
controlled experimental systems such as planktotrons and integrating comprehensive data anal-
yses, we can simplify and understand complex marine ecosystems. These e"orts will not only
enhance our predictive capabilities but also deepen our understanding of the intricate interac-
tions within these ecosystems.
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Panel (c) Global ocean surface pH (a measure of acidity) based on CMIP6
model simulations. Very likely ranges are shown for SSP1-2.6 and SSP3-7.0.
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tering achieved through analysis of the Co-Occurrence Network. Each season
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