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We propose active steering protocols for quantum state preparation in quantum circuits where each system
qubit is connected to a single detector qubit, employing a simple coupling selected from a small set of steering
operators. The decision is made such that the expected cost-function gain in one time step is maximized. We
apply these protocols to several many-qubit models. Our results are underlined by three remarkable insights.
First, we show that the standard fidelity does not give a useful cost function; instead, successful steering is
achieved by including local fidelity terms. Second, although the steering dynamics acts on each system qubit
separately, entanglement in the generated target state is introduced, and can be tuned at will, by performing
Bell measurements on detector qubit pairs after every time step. This implements a weak-measurement variant
of entanglement swapping. Third, numerical simulations suggest that the active steering protocol can reach
arbitrarily designated target states, including passively unsteerable states such as the N-qubit W state.
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I. INTRODUCTION

Solving complex tasks by means of control and feedback
circuits is of ubiquitous importance in the modern world. A fa-
mous example is the Apollo space mission where optimal con-
trol enabled a spaceship to smoothly land on the moon with
vanishing target velocity. Can one design a similar strategy
where one “steers” a quantum system at will towards a predes-
ignated target state? In the quantum case, exerting “control”
over the system requires the ability to perform quantum mea-
surements while “feedback” may arise from unitary Hamilto-
nian dynamics and from measurement backaction [1,2]. While
the analogy to the classical case sounds appealing, quantum
mechanics imposes several fundamental differences. In par-
ticular, the probabilistic outcome of quantum measurements
implies that the state dynamics will resemble a random walk
where quantum jumps can cause large state changes. The
present paper explores the potential of such approaches in the
context of quantum state preparation for a system of N qubits.
Our ideas may be tested in different platforms of current in-
terest [3–13], including superconducting qubit arrays, trapped
ion setups, photonic circuits, and ultracold atom lattices.

Quantum state preparation in general represents a complex
challenge [1,2]. One possible avenue is to employ determin-
istic schemes, without feedback from measurements over the
course of the protocol. For sufficiently small N , applying a
sequence of single- and two-qubit unitary gates (that is, a
quantum circuit) is an option. However, with increasing N ,
a deterministic gate sequence leading from a given initial
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state |�(0)〉 to a predesignated and possibly highly entangled
final target state |� f 〉 is generally difficult to identify and
requires an exponential overhead of additional ancilla qubits
[14]. If |� f 〉 represents a nondegenerate ground state of a
gapped local Hamiltonian, one can resort to analog quantum
simulations and/or quantum annealing or cooling methods
[15], where the corresponding Hamiltonian is implemented in
a controlled and tunable way, e.g., using lattices of trapped
ions or ultracold atoms weakly coupled to a thermal envi-
ronment. For very low temperature, the quantum state then
dynamically evolves towards the ground state |� f 〉. However,
such approaches may become impractical if the Hamiltonian
is gapless. Moreover, a certain class of states cannot be ex-
pressed as ground states of a “parent Hamiltonian,” the latter
being the sum of local Hamiltonians. Examples are exotic
highly entangled N-qubit states such as the Green-Horne-
Zeilinger (GHZ) state and the W state [1,16]. Written in the
standard basis defined by Pauli-Z operators (σ z|0〉 = |0〉 and
σ z|1〉 = −|1〉 for the respective qubit),

|GHZ〉 = 1√
2

(|00 · · · 0〉 + |11 · · · 1〉),

|W〉 = 1√
N

(|10 · · · 0〉 + |01 · · · 0〉 + · · · + |00 · · · 1〉),

(1)

represent two state classes with different types of high mul-
tipartite entanglement for N > 2 qubits [16], where |GHZ〉
(resp., |W〉) is a superposition of two (resp., N) product states.

In this paper, we instead study measurement-based strate-
gies where the protocol is designed to autonomously find a
desired target state of arbitrary form. It is widely recognized
that quantum measurements offer great freedom in shaping
and controlling the dynamics of quantum many-body systems,
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far beyond the possibilities offered by the unitary Hamiltonian
dynamics of closed systems or the dissipative dynamics of
driven open systems [1,2,17–20]. For instance, the interplay
of projective measurements of stochastically selected qubits
with the unitary dynamics due to local two-qubit random gates
causes nontrivial entanglement phase transitions in random
quantum circuits, see Ref. [21] for a recent review. By al-
lowing for projective measurements on detector qubits weakly
coupled to the system qubits, weak-measurement protocols
can be designed for “steering” the system state |�(t )〉 towards
a desired target state |� f 〉. As customary in the recent litera-
ture [22–28], we here use the term “steering” as a proxy for
“guiding” (or “piloting” [29]) the system state by a sequence
of measurement processes. We emphasize that this meaning
is distinct from the notion of “quantum steering” in quantum
information theory [30–33]. In fact, we avoid the term “quan-
tum steering” throughout.

One possibility is to employ passive steering, where mea-
surement outcomes are simply discarded [22,25,34–36]. One
may distinguish “blind passive” from “nonblind passive”
steering, where in the latter case the measurement readout is
used to stop the protocol if it corresponds to a “success” [28].
However, the protocol is still passive since the steering opera-
tor is selected before the protocol started. Following Ref. [23],
we refer to active steering only if a decision is made after each
time step of the protocol. This decision depends on the history
of previous measurement outcomes. For many-body systems,
nonblind passive protocols with local system-detector cou-
plings are basically impossible since one cannot terminate the
protocol based on the result of a single local measurement.
While termination could be based on a long sequence of read-
outs, such a sequence may only be a probabilistic indicator of
success. In addition, such approaches typically suffer from the
postselection problem (exponentially small chance of success)
[21].

Importantly, there are major obstacles, which can prevent
the success of passive steering. First, while a state may in
principle be passively steerable, the required steering opera-
tors can be so complicated that they are not available for the
hardware at hand. Second, more fundamentally, it is impossi-
ble to passively steer certain state classes by any set of local
steering operators. This is the case if the state cannot be repre-
sented as a ground state of a nonfrustrated parent Hamiltonian
[37]. The active steering protocols detailed in this paper can
overcome the no-go theorem of passive steering in Ref. [37]
for two reasons: (i) In an active protocol, one follows the time
evolution of the state and takes the decision (which steering
operator is applied during the next time step) based on the
history of previous measurement outcomes. (ii) Unlike with
standard passive protocols, an important part of the state dy-
namics now comprises manipulations or measurements of the
detector qubits. In our implementation, we introduce a weak-
measurement variant of entanglement swapping (for details,
see below).

It is worth emphasizing that previous applications of active
decision making to the problem of steering, cf. Ref. [23],
have only used sets of “passive” measurement operators, i.e.,
operators, which allow one to passively steer the system at
long times. The goal was to accelerate steering by properly
choosing—based on the current system state—one of the

available operators at each step of the protocol. In the present
paper, a much more challenging question is addressed and
solved: Is it possible to actively steer the system using a set
of local measurement operators that would never yield the
desired target state without active decisions?

Important examples for passively unsteerable (by local [38]
steering) N-qubit states are given by the GHZ and W states,
see Eq. (1). While tracing over a single qubit implies an only
classically correlated reduced density matrix (RDM) for the
remaining qubits for the GHZ state, the W state is more robust
against entanglement loss. Highly entangled states such as
those in Eq. (1) can be used as a resource [39], e.g., for in-
creasing the sensitivity of quantum detectors [40–42]. We note
that the GHZ state is a stabilizer state, which can be prepared
by projective measurements of a set of commuting products
of Pauli operators (stabilizers) augmented by Clifford oper-
ations or postselection if one measures “wrong” stabilizer
eigenvalues [1,43]. Previous measurement-based state prepa-
ration experiments, see, e.g., Refs. [44–47], have typically
been limited to stabilizer states. Related ideas for preparing
topologically ordered states in the large-N limit have been
described in recent papers [12,22,48–58]. However, the under-
lying strategies apply only in special cases where, for instance,
all measurement operators commute with all unitary gates.

In this paper, we show that passively unsteerable states,
including nonstabilizer states such as the W state, can be
prepared by active steering protocols using only a limited,
and usually available, set of simple steering operators. Even if
|� f 〉 is passively steerable, active steering will usually result
in significantly faster protocols. In general, active steering
protocols involve decision making strategies where (a part of)
the history of measurement outcomes is taken into account in
the subsequent time evolution [5,23,24,59–65]. In our proto-
col, we consider N system qubits each of which is allowed to
couple only to its own detector qubit partner, see Fig. 1(a)
for a schematic illustration. The respective system-detector
coupling (“steering operator”) is chosen from a small set of
Pauli operators, where the choice is determined by an active
decision making strategy. We emphasize that direct couplings
between system qubits are not needed and only a single steer-
ing operator (not superpositions thereof) is applied during a
given time step of duration δt . One cycle then corresponds to
a sequence of the following operations, see Fig. 1(b):

(1) One prepares the detector qubits in a simple product
state.

(2) The chosen steering operators (see below for our active
decision making policy) are switched on and unitary time
evolution sets in.

(3) After the time δt has elapsed, the steering opera-
tors are switched off again. One now performs projective
Bell measurements on neighboring detector qubit pairs. The
measurement outcomes are used for selecting the steering
operators in the next cycle.

Since steering operators associated with different system
qubits commute by construction, and measurement operators
for distinct (nonoverlapping) qubit pairs commute as well, one
can simultaneously steer [N/2] pairs in a given time step, cf.
Fig. 1(b).

The above Bell measurements realize weak measure-
ments on the system qubits and provide an efficient way
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FIG. 1. Cartoon of the active steering protocol. (a) N system
qubits (orange squares, here shown for N = 3) are coupled to the
respective detector qubit (blue circles) by selected Pauli steering
operators (here denoted by H1 and H2), see Eq. (4) below. After
a unitary time step, projective Bell measurements of neighboring
detector qubit pairs (in this example for qubits 1 and 2, with qubit
3 not being measured) implement weak local Bell measurements for
the state |�〉 of the system qubits (entanglement swapping, see Fig. 2
for details). (b) Time evolution of the monitored quantum circuit with
active feedback, shown for three time steps of a chain of N = 6
qubits with periodic boundary conditions. A possible scheme for
Bell measurements of neighboring detector qubit pairs in subsequent
cycles is indicated. For details, see main text.

to systematically generate entanglement in |�〉 by means
of a weak-measurement version of entanglement swapping
[66–73], where entanglement is incrementally teleported from
the detector qubits to the system qubits. (We simply refer
to “entanglement swapping” in what follows.) We illustrate
the basic mechanism in Fig. 2, where |σn,n+1〉 (|σn,n+1〉d )
with σ = 0, 1 refer to basis states of the respective system
(detector) qubits n and n + 1. In panels (a)–(c), we consider
the first cycle of the protocol, starting at the initial time t = 0:
(a) One starts from the simple product state (|0n〉 ⊗ |0n〉d ) ⊗
(|0n+1〉 ⊗ |0n+1〉d ). (b) Switching on the selected steering op-
erators during a time step of duration δt , each system and
detector qubit pair are entangled by the unitary time evolution.
(c) The subsequent projective Bell measurement of the detec-
tor qubits then disentangles the system and detector qubits but
at the same time generates entanglement among the system
qubits by means of entanglement swapping. We provide a
detailed discussion of this step in Appendix A. Next, in panels
(d)–(f) we illustrate what happens during the next cycles of the

(a)

n n + 1

(b)

n n + 1

(c)

n n + 1

(d)

n n + 1

(e)

n n + 1

(f)

n n + 1

(g) |σ1〉
Rα1,β1(2J1δt)|01〉d • H

|02〉d
Rα2,β2(2J2δt)|σ2〉

FIG. 2. Schematic illustration of entanglement generation during
one time step of the protocol. We use a weak-measurement variant of
entanglement swapping [66–73], where one steers the neighboring
system qubits (n, n + 1) indicated by squares. Circles depict the
corresponding detector qubits as in Fig. 1. (a) Configuration at initial
time t = 0, where all qubits are decoupled from each other. (b) At
time δt (after one time step), each system-detector qubit pair is
entangled (green-vertical arrows) due to unitary time evolution under
the chosen steering operators. (c) After a projective Bell measure-
ment of the detector pair, system and detector qubits disentangle
and, depending on the measurement outcome, entanglement between
the system qubits (red-horizontal arrow) builds up. Panels (d)–(f)
show the corresponding steps during the subsequent time step of
the protocol, where entanglement generated in the previous time
step is already present. Typically, entanglement increases after the
Bell measurement (thicker red horizontal arrow). (g) Quantum circuit
representation of entanglement swapping. The Pauli rotations (R)
depend on the chosen steering operators (see Sec. II A for details) and
act on system and detector qubits, with a subsequent measurement
of the detector qubits in the Bell basis. System (detector) qubit states
are here denoted by |σ1,2〉 (|σ1,2〉d ). The Bell basis measurement is
achieved by CNOT and Hadamard gates.

protocol: (d) As a result of the last step, some entanglement
may now be present in the system state |�(δt )〉, before one
applies the steering operators for the next step. (e) After the
unitary time step, each system-detector qubit pair becomes
entangled. (f) One performs again a Bell measurement, which
typically increases the entanglement in the resulting state
|�(2δt )〉. Finally, we provide a quantum circuit representation
of this entanglement swapping protocol [1] in Fig. 2(g). A
detailed discussion of our entanglement swapping protocol
can be found in Sec. II A and in Appendix A.
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We emphasize that the re-initialization of detector qubits
after the measurements is possible in our scheme, see also
Refs. [13,28]. Without such a property, the number of detector
qubits would proliferate for large circuit depth. Moreover,
since the implementation of such measurements only requires
two-qubit interactions, we expect that entanglement swapping
is easier to realize experimentally than, for instance, the gen-
eration of entanglement through measurements done on single
detector qubits coupled to two or more system qubits. In fact,
one can show that in the latter setup, with a fixed set of Pauli
steering operators, it is not possible to reach arbitrary target
states |� f 〉, not even for N = 2. We provide a discussion
of this point in Appendix B. As shown below, entanglement
swapping does not suffer from this problem. Measuring a
pair of qubits in their Bell basis also is a standard proce-
dure in many platforms of current interest. More generally,
we find that an arbitrary state obtainable by consecutively
entangling pairs of qubits, say, by applying two-qubit gates,
can also be engineered by means of active steering based
on entanglement swapping. In principle, this includes highly
entangled states with volume-law growth of the entanglement
entropy.

In order to make progress, we consider an idealized sit-
uation free from external noise or other imperfections [25].
In particular, we assume that the parameters characterizing
allowed steering operators are known from prior calibration
runs. If the initial pure state |�(0)〉 (e.g., an easily accessible
product state) and the measurement outcomes are known, one
can then track the state trajectory |�(t )〉 at later times t = mδt
(integer m) by a classical calculation. (For a given measure-
ment record, |�(t )〉 always remains pure. By averaging over
measurement outcomes, one may obtain a mixed state.)

For moderate values of N , those assumptions may be
justified to reasonable accuracy on time scales below the re-
spective qubit dephasing time. This case is also of practical
interest if parts of the system can be steered locally and
the whole system is then composed of small-N blocks, see
Ref. [58] for related study. A different perspective is to run
our protocol on a fault-tolerant circuit with quantum error
correction [1,43,74–81], where all system and detector qubits
are encoded logical qubits. Errors related to external noise can
thereby be detected and actively corrected. We note that recent
experimental studies managed to beat the break-even point
for fault tolerance of a logical qubit [82,83]. In Sec. IV C,
potential extensions of our protocol to noisy quantum circuits
will be discussed, see also Ref. [25]. While we show numer-
ical simulation results based on the present formulation of
our active steering protocol only for N � 6 system qubits in
Sec. III, we expect that large values of N can be reached using
closely related protocols, see Sec. IV B. Our paper represents
a proof of concept that active steering protocols can reach
passively unsteerable target states.

A central element of our approach is active feedback:
Based on the measurement outcomes recorded after a given
time step, the steering operators used in the next time step are
determined by optimizing a non-negative cost function C(t ).
Convergence, i.e., |�〉 = eiγ |� f 〉 with arbitrary global phase
γ , is reached only for C = 0, such that one has to minimize
C(t ). In practice, for each steering parameter configuration
K , we compute the expected cost-function change in the next

time step,

dC(K ) ≡ C(t + δt ; K ) − C(t ), (2)

where the overbar indicates an average over measurement
outcomes. The steering operator K is then chosen to maximize
the cost-function gain |dC(K )| with dC(K ) � 0. For a proper
cost function, and assuming a sufficiently large (“universal”)
steering operator set, dC(K ) < 0 is required for at least one
K unless one has already reached convergence. An obvious
cost-function candidate is related to the fidelity F [1],

CN = 1 − F 2, F = |〈� f |�〉|. (3)

However, Eq. (3) is not sufficient for our active steering pro-
tocol. For instance, consider steering from |�〉 = |00 · · · 0〉 to
|� f 〉 = |11 · · · 1〉. Flipping single (or a few) qubits, |0〉 → |1〉,
evidently brings one closer to the target state yet the result-
ing state remains orthogonal, F = 0, unless one flips all N
qubits simultaneously. In essence, we encounter a situation
reminiscent of Anderson’s orthogonality catastrophe [84] with
similarities to the barren plateau problem in machine learning
[85]. In any case, when using Eq. (3) as cost function, active
steering will generally fail. This failure already affects the
minimal case N = 2, see Sec. II C for details, and becomes
more severe with increasing N . We show below that by incor-
porating “local” fidelity cost-function terms, this problem can
fortunately be resolved. (“Locality” is here meant in the sense
of operator locality.) For all possible RDMs for r < N qubits
built from |�(t )〉, those terms minimize a suitable operator
distance measure between the RDM and the respective RDM
constructed from |� f 〉. We address convergence properties of
the resulting active steering protocols in Sec. II D.

The structure of the remainder of this paper is as follows.
In Sec. II, we discuss the detailed quantum state dynamics
of the actively monitored circuit described above. In Sec. III,
we present numerical simulation results to illustrate the per-
formance of the active steering protocol. We then discuss
implementation aspects and summarize possible perspectives
for future work in Sec. IV. Technical details can be found in
the Appendices. Throughout, we use units with h̄ = 1.

II. ACTIVE STEERING PROTOCOL

We now turn to a quantitative description of the active
steering protocol. The measurement-conditioned dynamics of
the quantum circuit in Fig. 1 is analyzed in detail in Sec. II A.
For concreteness, we study a chain of N system qubits with
periodic boundary conditions, where each system qubit can
be coupled to an detector qubit. However, our protocol can
easily be adapted to other circuit geometries. In Sec. II B,
we summarize the Bloch tensor state representation, which
considerably simplifies the subsequent steps. We proceed with
an analysis of the active decision making strategy in Sec. II C,
which crucially depends on the construction of a cost function
employed in the optimization process. Utilization of a global
fidelity cost function introduces “weak values” [86] into the
ensuing stochastic evolution equation. Using these weak val-
ues, we show that successful active steering is only possible if
local fidelity terms are added to the cost function. Finally, we
discuss convergence aspects in Sec. II D. Additional details
can be found in Appendix C.
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A. Stochastic Schrödinger equation

In what follows, system qubits are described by the
operators σμ

n , where n = 1, . . . , N labels the qubits, μ =
0 corresponds to the identity, and for μ = α ∈ {1, 2, 3} =
{x, y, z}, we have standard Pauli matrices. Similarly, detector
qubits correspond to the operators τμ

n . For clarity, we assume
below that all states of the uncoupled system qubits and,
separately, all states of the detector qubits are degenerate,
assigning to them zero energy. In other words, we assume no
intrinsic Hamiltonian of the system and detector qubits. Dur-
ing a unitary time evolution step, a steering operator Hn,Kn can
couple the system qubit σn with the corresponding detector
qubit τn, where Kn is chosen from a set of allowed steering
parameters. We here consider Pauli steering operators,

Hn,Kn = snJnσ
αn
n τβn

n , (4)

with the sign sn ∈ {1,−1} and the Pauli operator indices αn ∈
{x, y, z} and βn ∈ {x, y, z}. (Identity operators acting on other
qubits are often kept implicit below.) Clearly, the steering op-
erators in Eq. (4) commute for n 	= n′. We stress that for each
pair (σn, τn), only a single Pauli operator couples the respec-
tive system and detector qubit during a given time step—no
superpositions of different Pauli operators are needed in our
protocol. The coupling constants Jn > 0 are assumed to be
fixed and known, such that the available steering operators are
parametrized by Kn = (sn, αn, βn). Without loss of generality,
the sign sn can be restricted to sn = +1 for βn 	= z, implying a
set of 12 possible steering parameters {Kn}. Further reductions
of the steering operator set are possible in special cases. For
instance, we empirically find that in order to prepare the GHZ
state, one can exclude steering operators with βn = y. Such
operators are, however, needed for the W state. Determining
the minimal set of steering operators required for achieving
convergence to general target states remains an interesting
open issue.

Let us now consider a specific nearest-neighbor qubit pair
(n, n + 1) as illustrated in Fig. 2. Before each unitary time
evolution step, the corresponding detector qubits are initial-
ized in a simple product state, say, |00〉d . (The index d
distinguishes the detector Hilbert space from system space.)
Subsequently, the steering operator HK = Hn,Kn + Hn+1,Kn+1

is switched on for suitably chosen steering parameters K =
(Kn, Kn+1), and unitary time evolution of the full system sets
in. After the time step δt with Jn/n+1δt � 1, the steering oper-
ator HK is switched off again, and one projectively measures
the detector pair in its Bell basis [1],

|	ξ=0,η=±〉d = (|00〉d ± |11〉d )/
√

2,

|	ξ=1,η=±〉d = (|01〉d ± |10〉d )/
√

2, (5)

where symmetric (η = +1) and antisymmetric (η = −1) Bell
states have either even (ξ = 0) or odd (ξ = 1) parity. Here
“symmetry” refers to the behavior of the state under exchange
of the two qubits, while even (odd) “parity” means that it
is built from the basis states {|00〉d , |11〉d} ({|01〉d , |10〉d }).
Since the initial state |00〉d obviously has even parity, we refer
to measurement outcomes with ξ = 1 as “quantum jumps”.
By means of entanglement swapping [66–73], see Fig. 2
and Appendix A, one can then generate entanglement in the
system state |�〉, where the binary stochastic variables ξ

and η encode the measurement outcomes. Their probabilistic
nature is a fundamental consequence of quantum mechanics.
We emphasize that the above Bell measurements are local in
the sense that only nearest-neighbor detector pairs are probed.
In practice, they can be implemented by simultaneously
measuring two commuting Pauli operators for detector qubit
pairs [1],

Ôx = τ x
n τ x

n+1, Ôz = τ z
nτ

z
n+1. (6)

Indeed, one easily checks that

Ox|	ξ,η〉d = η|	ξ,η〉d . Oz|	ξ,η〉d = (1 − 2ξ )|	ξ,η〉d . (7)

A projective measurement of the Bell state |	ξ,η〉d thus
implies that one measures the eigenvalues Ox = η(= ±1) and
Oz = +1 (for ξ = 0) or Oz = −1 (for ξ = 1) for the observ-
ables in Eq. (6). Finally, we note that for the quantum circuit
in Fig. 2(g), in the computational basis of the two detector
qubits, the measurement has the possible outcomes | 1−η

2 , ξ 〉d .
For measurement outcome (ξ, η) after a completed time

step, the state of the full system is given by |�(t + δt )〉 ⊗
|	ξ,η〉d , where the system state |�(t + δt )〉 depends on
(ξ, η) because of entanglement swapping, see Fig. 2 and
Appendix A. In our protocol, since direct couplings between
system qubits are absent, entanglement is solely generated
(or removed) through the above Bell measurements. Upon
re-initializing the detector pair, the full state is prepared for the
next time step as |�(t + δt )〉 ⊗ |00〉d . Since all measurement
operators Ôx,z for nonoverlapping pairs commute, and also
the corresponding steering operators HK commute, one can
simultaneously steer and measure [N/2] distinct pairs in one
time step. For instance, for N = 4 qubits, we could steer the
qubit pairs (1,2) and (3,4) in the first cycle, and then the
pairs (2,3) and (4,1) in the second cycle. We do not allow for
next-nearest-neighbor couplings within our notion of locality,
i.e., only adjacent detector qubit pairs are subject to Bell mea-
surements. Hence direct pair steering of (1,3) and (2,4) is not
taken into account. In general, for subsequent time steps, one
can choose either a random pattern or an alternating pattern
of measurement pairs; the latter case is shown in Fig. 1(b).
We find that a randomized pair assignment gives slightly
superior convergence properties, but both schemes work well
in practice.

Given the above remarks, it suffices to analyze the state
change in one time step when steering and measuring only a
single pair (n, n + 1). For the measurement outcome (ξ, η),
the state |�(t + δt )〉 after the measurement is given by
[1,2,17]

|�(t + δt )〉 = 1√
Pξ,η

Aξ,η|�(t )〉, (8)

with the Kraus operators Aξ,η = d〈	ξ,η|e−iδtHK |00〉d and the
outcome probabilities

Pξ,η = 〈�(t )|A†
ξ,ηAξ,η|�(t )〉. (9)

In the weak-measurement limit [2], the couplings Jn and the
time step δt are adjusted such that the rates

�n = J2
n δt (10)

are effectively independent of δt and satisfy Jnδt = √
�nδt �

1. We assume this limit throughout.
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Expanding the Kraus operators to lowest nontrivial order
in δt , we then obtain

Aξ,η =
√

δt

2
ξcη + 1√

2
(1 − ξ )

[
1 − iδt

(
Hη − i

2
c†
ηcη

)]
,

(11)

where the effective Hamiltonian Hη and the jump operators
cη act on the system Hilbert space. These quantities apply
to a given time step and for the chosen qubit pair (n, n + 1).
We note that Hη only appears in Eq. (11) if one measures the
same (even, ξ = 0) parity of |	ξ,η〉d as for the initial detector
state |00〉d . With the Kronecker symbol δβ,α (α = x, y, z), we
obtain

Hη=± =
∑

m=n,n+1

smJmδβm,zσ
αm
m + η

√
�n�n+1

× (δβn,xδβn+1,y + δβn,yδβn+1,x
)
σαn

n σ
αn+1
n+1 , (12)

where the term ∝ η arises from a Lamb shift contribution. In
addition, for βm 	= z, quantum jumps—transitions from |00〉d

into the odd-parity sector signaled by ξ = 1—are possible,
with the respective jump rates given by Eq. (10). With the
compact notation

δ
(c)
β,⊥ = δβ,x + iδβ,y, δβ,⊥ = δβ,x + δβ,y, (13)

the jump operators take the form (η = ±)

cη = −i
(
η
√

�nδ
(c)
βn,⊥σαn

n +
√

�n+1 δ
(c)
βn+1,⊥σ

αn+1
n+1

)
. (14)

From Eq. (11), the outcome probabilities (9) can be written as

Pξ,η = 1
2 (δξ,0 + (δξ,1 − δξ,0)δt 〈c†

ηcη〉) (15)

with 〈c†
ηcη〉 = 〈�(t )|c†

ηcη|�(t )〉. From Eq. (14), we obtain

〈c†
ηcη〉 = 2η

√
�n�n+1

(
δβn,xδβn+1,x + δβn,yδβn+1,y

)
× Qαn,αn+1

n,n+1 +
∑

m=n,n+1

�mδβm,⊥ (16)

with the correlation function

Qα,α′
n,n′ = 〈�(t )|σα

n σα′
n′ |�(t )〉. (17)

The average of the binary quantum jump variable ξ ∈ {0, 1}
then has a state-independent form,

ξ =
∑
ξ,η

ξPξ,η =
∑

m=n,n+1

�mδt δβm,⊥. (18)

Since ξ ∝ δt , terms ∝ ξδt are beyond the accuracy of the
lowest-order expansion in δt and will be neglected throughout.
However, the identity ξ 2 = ξ implies that terms involving
products of ξ are of order δt and must be retained [2,17].

From Eqs. (8) and (11), we find that the state change
after one time step, |d�〉 = |�(t + δt )〉 − |�(t )〉, follows
from a jump-type nonlinear stochastic Schrödinger equation
[2,17,87,88],

|d�〉 =
[
−iδtHη + ξ

(
cη√

〈c†
ηcη〉

− 1

)

− δt

2
(c†

ηcη − 〈c†
ηcη〉)

]
|�(t )〉. (19)

Unless noted otherwise, we assume an easily accessible pure
product initial state, say, |�(0)〉 = |00 · · · 0〉. For given mea-
surement record, the state |�(t )〉 then always remains pure
and follows from Eq. (19). Depending on the choice of the
steering operators, the quantum state dynamics in Eq. (19)
includes single- and two-qubit unitary Hamiltonian terms
(from Hη), single-qubit Pauli gates (due to quantum jumps
for ξ = 1), and two-qubit unitary terms (from the last term,
which represents state diffusion [17]). In principle, given the
set of steering operators in Eq. (4), which in turn determine
the jump operators cη and the Hamiltonian Hη, all operations
needed for accessing a target state of arbitrary form are there-
fore contained in Eq. (19) [1,89–91]. We discuss convergence
properties of our protocol in Sec. II D.

One can equivalently describe the state dynamics by using
the density matrix, ρ(t ) = |�(t )〉〈�(t )|. Using Eq. (19), the
change in one time step, dρ = ρ(t + δt ) − ρ(t ), is deter-
mined by the stochastic master equation [2]

dρ = −iδt[Hη, ρ] + ξ

(
cηρc†

η

〈c†
ηcη〉

− ρ

)

− δt

2
{c†

ηcη − 〈c†
ηcη〉, ρ}, (20)

with the anticommutator {·, ·}. State normalization holds be-
cause of Tr(dρ) = 0. Apart from a unitary evolution term due
to Hη, Eq. (20) again contains a jump term ∝ ξ , which can
result in large state changes, and a stochastic contribution of
diffusion type (the anticommutator).

Averaging Eq. (20) over measurement outcomes using
the probabilities (15) will usually result in a mixed state.
The averaged state change, dρ = ∑

ξ,η dρξ,ηPξ,η with dρξ,η

in Eq. (20), is governed by a Lindblad master equation
[2,87],

dρ = δt
∑

m=n,n+1

(−ismJmδβm,z
[
σαm

m , ρ
]+ �mδβm,⊥L

[
σαm

m

]
ρ
)
,

(21)

with L[σαm
m ]ρ = σαm

m ρσαm
m − ρ. Equation (21) corresponds to

the time evolution under a blind steering protocol, where
measurement outcomes are simply discarded. Since only un-
correlated contributions from qubits n and n + 1 appear in
Eq. (21), the averaged state dynamics by itself is not capable
of detecting entanglement structures built up in measurement-
conditioned state trajectories.

B. Bloch tensor representation

Given the Pauli form of the steering operators (4), it is
convenient to employ the rank-N Bloch tensor RS for repre-
senting states. (In quantum information theory, RS is usually
referred to as N-qubit Bloch vector.) To that end, we first
define Pauli string operators of length N ,

S = σ
μ1
1 σ

μ2
2 · · · σμN

N , μ j ∈ {0, 1, 2, 3}. (22)

(We synonymously use the notations μ j = x, y, z and μ j =
1, 2, 3.) An arbitrary N-qubit state ρ can be written in the form

ρ = 1

2N

∑
S

RSS, RS = Tr(ρS ), (23)
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where the 4N Bloch tensor coefficients RS = Rμ1,...,μN are real
valued (because of ρ = ρ†) and satisfy R0,...,0 = 1 (because
of state normalization). Using a standard tensor product rep-
resentation in the computational basis (σ j = 0, 1), a pure state
is parametrized by 2N complex numbers Cσ1,...,σN subject to
normalization,

|�〉 =
∑

σ={σ1,...,σN }
Cσ |σ 〉, |σ 〉 = |σ1, σ2, . . . , σN 〉, (24)

where the Bloch tensor follows as

RS =
∑
σ,σ ′

C∗
σCσ ′

N∏
j=1

〈σ j |σμ j

j |σ ′
j〉. (25)

For instance, for |�〉 = |00 · · · 0〉, one finds RS =∏N
j=1(δμ j ,0 + δμ j ,3).
The stochastic master equation (20) then determines the

measurement-conditioned change of the Bloch tensor in one
time step,

dRS = RS (t + δt ) − RS (t ) = Tr(dρ S ), (26)

see Eq. (C1) for an explicit expression. Averaging over mea-
surement outcomes, the Lindbladian form of Eq. (21) gives

dRS = −2δt
∑

m=n,n+1

∑
α 	=αm

(
smJm δβm,z

∑
α′

εαmαα′ + �mδβm,⊥

)

× δμm,αRS , (27)

with the standard Levi-Civita symbol ε.
By taking a partial trace over the Hilbert space pertaining

to one (or several) qubits, one obtains the RDM describing
the state of the remaining qubits [1,49]. In many cases, this
state is mixed. For the RDM ρ

(r)
M, one selects an ordered

subset of r < N qubits, M = { j1, j2, . . . , jr} with 1 � j1 <

· · · < jr � N , and partially traces over the N − r remaining
other qubits. With the complementary set Mc corresponding
to the traced-out qubits, we have ρ

(r)
M = TrMc

ρ. To proceed,
we again use Pauli string operators SM as in Eq. (22) but
keeping only operators σ

μ j

j with j ∈ M, i.e., operators for
traced-out qubits are left out when constructing the length-r
string operator SM from the original length-N string operator
S . Since Pauli matrices are traceless, Eq. (23) then yields

ρ
(r)
M = 1

2r

∑
SM

R(r)
SM

SM, (28)

where the rank-r Bloch tensor R(r)
SM

follows from the Bloch
tensor RS for the pure state ρ = |�〉〈�| by simply putting
μ j = 0 for all traced-out qubits ( j ∈ Mc).

Let us briefly give a few examples. For N = 1, Eq. (23)
reproduces the standard Bloch vector representation of a
single-qubit state, ρ = 1

2 (σ 0 + R · σ), with the Bloch vector
R = (R1, R2, R3)T and σ = (σ x, σ y, σ z ). For N = 2, Eq. (23)
involves the 4×4 Bloch matrix Rμ1,μ2 [92]. The entries Rα1,0

and R0,α2 with α j ∈ {1, 2, 3} determine the Bloch vectors R1

and R2 for the single-qubit RDMs ρ
(1)
1 and ρ

(1)
2 corresponding

to the first and second qubit, respectively. The remaining
entries encode the correlator (17), Rα1,α2 = Qα1,α2

1,2 . For N = 3,
the state is represented by Rμ1,μ2,μ3 . The Bloch vector
R1 determining the single-qubit RDM for the first qubit,
ρ

(1)
1 = Tr2,3ρ, follows as R1 = (R1,0,0, R2,0,0, R3,0,0)T , and

likewise for other qubits. Similarly, there are three two-qubit
RDMs, {ρ (2)

12 , ρ
(2)
23 , ρ

(2)
13 }. For instance, ρ

(2)
12 —the mixed state

of qubits 1 and 2 after tracing over qubit 3—is represented by
R(2)

μ1,μ2
= Rμ1,μ2,0 according to Eq. (28). The matrix elements

R(2)
α1,0

and R(2)
0,α2

encode the Bloch vectors R1 and R2, while
R(2)

α1,α2
= Qα1,α2

1,2 .
In what follows, the Bloch tensor representation of the

target state ρ f = |� f 〉〈� f | is denoted by R f
S , which also de-

termines the Bloch tensors R(r) f
SM

for the corresponding r-qubit

RDMs ρ
(r) f
M .

C. Active feedback and cost function

We next discuss the active decision making part of the
protocol, where the steering parameters K = (Kn, Kn+1) used
in the next time step are selected. In our protocol, this decision
is based on optimizing the expected (i.e., averaged over mea-
surement outcomes) change of a cost function dC(K ) with
respect to the steering parameters, see Eq. (2). If several K
form a set with the same optimal average cost-function gain,
we choose K according to a uniform random distribution from
this set.

We note in passing that interesting variants of our protocol
could be based on other strategies. For instance, one could
optimize an entanglement measure such as the entanglement
entropy in order to steer states towards a class of highly
entangled target states. Grouping N qubits into two subsets A
and B, and defining the RDM ρA = TrBρ(t ), the entanglement
entropy is given by [1]

S(t ) = −TrA(ρA ln ρA). (29)

The measurement-conditioned change, dS = S(t + δt ) −
S(t ) = −TrA(dρA ln ρA), then has a nonlinear dependence on
ρ. While the use of entanglement measures for active feed-
back protocols is beyond the scope of this work, we show
results for S(t ) in Sec. III in order to illustrate how entangle-
ment is generated (or removed) in the active steering process.

For state preparation, one cost-function candidate is the
fidelity-based cost function CN = 1 − Tr(ρρ f ) in Eq. (3).
For a given steering parameter choice K , the expected cost-
function change is given by

dCN (K ) = −Tr(dρ ρ f ) = − 1

2N

∑
S

dRS R f
S , (30)

with dρ in Eq. (21) and dRS in Eq. (27). Interestingly, the
same quantity can equivalently be expressed in terms of weak
values [86].

1. Weak value representation

The weak-value representation of Eq. (30) follows by writ-
ing dCN (K ) = −〈� f |dρ|� f 〉 and using Eq. (21). Assuming
that the time-evolving state |�〉 is not orthogonal to the target
state |� f 〉 (i.e., CN < 1), we find

dCN (K )

1 − CN
= δt

∑
m=n,n+1

[−2smJmδβm,z Im
(
Wm,αm

)

+�mδβm,⊥
(
1 − ∣∣Wm,αm

∣∣2)], (31)
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with complex-valued weak values [86] pertaining to single-
qubit Pauli operators,

Wm,αm = 〈� f |σαm
m |�〉

〈� f |�〉 . (32)

If the target state has been reached, |�〉 = eiγ |� f 〉, all
Wm,αm are real valued (because σαm

m is Hermitian) and satisfy
|Wm,αm | � 1. Evidently, Eq. (31) then tells us that one can-
not find steering parameters that could further improve the
average cost function, precisely as expected at convergence.
If convergence has not yet been reached; however, successful
steering requires that at least one steering configuration K
exists such that the cost function can still be improved on
average, dCN (K ) < 0. According to Eq. (31), if Im(Wm,αm ) 	=
0 holds for at least one choice of (m, αm), one can satisfy
dCN (K ) < 0 for the global fidelity cost function by choosing
βm = z and sm = sgn[Im(Wm,αm )]. Since for nearly orthogonal
states |�〉 and |� f 〉, weak-value matrix elements tend to be
large (“weak-value amplification” [86]), Eq. (31) suggests that
a particularly large improvement of the cost function can arise
in this case.

However, it may happen that all possible weak values in
Eq. (32) are real valued with |Wm,αm | � 1 before convergence
has been reached, i.e., for CN > 0. Equation (31) then predicts
dCN (K ) � 0 for all possible K , and the state trajectory gets
stuck in a state where the average cost function cannot be
lowered anymore by any steering operator. In what follows,
we refer to such states as “trapped states.” Active steering
protocols based on the global fidelity cost function CN then
encounter a prohibitive roadblock. Remarkably, trapped states
are abundant already for just N = 2 qubits, and they tend to
proliferate with increasing N . For instance, consider a specific
N = 2 Bell target state

|� f 〉 = |Bell〉 = (|00〉 + |11〉)/
√

2, (33)

where we can easily show that |�〉 = |00〉 is a trapped state.
Indeed, for this example, we find C2 = 1/2 and the weak
values (32) are given by Wm,αm = δαm,z. Hence Eq. (31) implies
dC2(K ) � 0 for all K .

In general, trapped states form a manifold in Hilbert space
whose dimensionality depends on the target state. Let us
briefly illustrate this point for a two-parameter class of even-
parity target states for N = 2,

|� f 〉 = u|00〉 + eiθ
√

1 − u2|11〉, (34)

with real parameters u ∈ [0, 1] and θ ∈ [0, 2π ). Computing
the weak values in Eq. (32), we find from Eq. (31) that for
u 	= 1√

2
, the states

|�〉 = v|00〉 + eiθ
√

1 − v2|11〉 (35)

with arbitrary v ∈ [0, 1] span a one-dimensional trapped-state
manifold. For u = 1√

2
, the dimensionality of the manifold can

further increase because trapped states may now also receive
contributions from the odd-parity sector.

We conclude that the weak values in Eq. (32), evaluated
along the time-evolving state trajectory, can provide useful
hints about steering protocols. In particular, they are able to

diagnose trapped-state manifolds, which arise when all acces-
sible weak values are real valued with |Wm,αm | � 1.

We note that there is another mechanism, which can also
invalidate active steering based on the global fidelity cost
function. This mechanism arises from the orthogonality catas-
trophe problem discussed in Sec. I. In fact, for orthogonal
states |�〉 and |� f 〉, the weak-value matrix elements in
Eq. (32) are ill defined. However, dCN (K ) in Eq. (31) can then
be written in the form

dCN (K ) = −δt
∑

m=n,n+1

�mδβm,⊥
∣∣〈� f |σαm

m |�〉∣∣2. (36)

If all matrix elements 〈� f |σαm
m |�〉 of single Pauli operators

vanish, we have dCN (K ) = 0 and the steering protocol gets
stuck, i.e., |�〉 is a trapped state. This case is typically en-
countered for orthogonal many-qubit states.

The above discussion shows that the averaged fidelity-
based cost function (3) is not able to guarantee the success of
active steering protocols because of the presence of trapped
states. Such states are either diagnosed by weak values or
arise because of the orthogonality catastrophe problem. In
addition, the separation of dCN (K ) into single-qubit weak
values, see Eq. (31), indicates that entanglement structures are
not captured. This separation is a consequence of the linearity
of CN in ρ and of the uncorrelated Lindblad dynamics of dρ

in Eq. (21). We will now describe how one can resolve this
apparent roadblock.

2. Local cost-function terms

In order to enable successful steering under protocols with
active feedback, we next include local fidelity contributions in
the cost function. To that end, we introduce basis-independent
terms, which enforce that all RDMs formed from the state ρ(t )
will approach the respective RDMs for ρ f . This strategy is
able to resolve the trapped-state problem.

To that end, let us define a local cost-function term Cr (t ) for
r-qubit RDMs with r < N . This term includes contributions
from all ordered subsets M, which can be constructed for r
qubits, see Sec. II B. The number of such subsets is given by
a binomial coefficient, Nr = (N

r ). Using the squared Frobenius
norm (also known as relative purity) [1] to quantify the dis-
tance between the RDM and the corresponding target RDM,
we arrive at

Cr (t ) = 1

2Nr

∑
M

Tr
(
ρ

(r)
M(t ) − ρ

(r) f
M
)2

. (37)

This cost function penalizes r-qubit RDMs, which deviate
from the respective r-qubit RDM of the target state. We ob-
serve that for r = N , Eq. (37) reduces to CN (t ) in Eq. (3).
Using the Bloch tensor representation (28), we obtain

Cr (t ) = 1

2r+1Nr

∑
M

∑
SM

(
R(r)
SM

(t ) − R(r) f
SM

)2
, (38)

where we recall that the Bloch tensors R(r)
SM

(t ) for RDMs
follow from the Bloch tensor RS (t ) for the pure state ρ(t ) =
|�(t )〉〈�(t )| by setting μ j = 0 for all traced-out qubits, see
Sec. II B. Given the time-evolving Bloch tensor RS (t ), it is
then straightforward to determine the cost functions Cr (t ).

013244-8



ENGINEERING UNSTEERABLE QUANTUM STATES WITH … PHYSICAL REVIEW RESEARCH 6, 013244 (2024)

It is worth mentioning that one could employ other distance
measures instead of the squared Frobenius norm in Eq. (37),
e.g., the max norm, the trace norm, or a Schatten p norm [93].
However, we expect that the corresponding active steering
protocols perform with similar efficiency.

Importantly, all cost-function terms Cr (t ) with r = 1,

. . . , N are non-negative and simultaneously minimized by
Cr = 0 when the time-evolving state converges to the target
state. This scenario is reminiscent of the parent Hamiltonian
construction in Ref. [37], where passive steerability of a state
was shown to be equivalent to the simultaneous minimization
of all local contributions of a parent Hamiltonian. However,
our cost-function based approach is more general and does
not suffer from the restrictions on steerability discussed in
Ref. [37].

We here employ the weighted-sum method [94], that is, we
use a single cost function C(t ), which takes into account the
r-qubit contribution Cr (t ) with probability weight pr ,

C(t ) =
N∑

r=1

prCr (t ),
∑

r

pr = 1. (39)

This function is minimized, with C = 0, by the converged
state, |�〉 = eiγ |� f 〉. The expected cost function change in
one time step, dC(K ) = ∑

r pr dCr (K ), see Eq. (2), then fol-
lows from

dCr (K ) = 1

2rNr

∑
M,SM

[(
R(r)
SM

− R(r) f
SM

)
dR(r)

SM
+ dR(r) 2

SM

2

]
,

(40)

where dR(r)
SM

follows from Eq. (27). We note that for r = N ,

Eq. (40) reduces to Eq. (30). The term dR(r) 2
SM

is due to the
nonlinear state dependence of the cost functions in Eq. (37).
We provide its explicit form in Eq. (C5). In fact, dCr<N (K )

has a nonlinear dependence on dρ because Tr(ρ (r) 2
M ) � 1 is

possible for RDMs. [For a pure state, Tr(ρ2) = 1 instead im-
plies that the cost function change is linear in dρ.] Thanks to
this nonlinearity, the disentangling character of the averaged
Lindblad dynamics in Eq. (31) can be avoided.

In practice, the efficiency of the active steering protocol
depends on the choice of the probability weights pr in Eq. (39)
[94]. Unfortunately, we have not found a simple strategy for
determining the optimal weights. Our heuristic choices are
described in Sec. III, but future work may be able to achieve
a better understanding of this important issue.

D. Convergence properties

We here address the convergence properties of the protocol
discussed above. Even though we do not have a mathemati-
cally rigorous proof valid for arbitrary number N of system
qubits, the numerical simulation results for N � 6 in Sec. III
suggest that the protocol does converge for general N . In
fact, in our simulations, we never encountered a case where
a predesignated target state was out of reach. In addition,
the arguments in Sec. II A suggest that the scheme does con-
verge since one can in principle realize arbitrary sequences
of single- and two-qubit gates. In this section, for the case
N = 2, we provide analytical arguments indicating that our
active steering protocol converges to a predesignated target
state of arbitrary form. For the Bell state, these arguments are
rigorous. The results below also illustrate how the inclusion
of local cost functions resolves the trapped-states problem.

For N = 2, it suffices to take into account only steering
operators with β ∈ {x, z} in Eq. (4). We use the Bloch vec-
tors R1,2, with components Rα

1 = Rα,0 and Rα
2 = R0,α , see

Sec. II B, in order to parametrize the time-evolving system
state. Similarly, R f

1,2 with components Rα f
m describes the tar-

get state. The average local cost-function change (40) for
N = 2 can be written as

dC1 = δt

2

∑
m=1,2

⎛
⎝−smJmδβm,z

(
Rm × R f

m

)αm +
∑
α 	=αm

�mδβm,xRα
m Rα f

m

⎞
⎠− δtδβ1,xδβ2,x

�1�2(�1 + �2)Xα1,α2

(�1 + �2)2 − 4�1�2R2
α1,α2

,

Xα1,α2 = 1

2

(
1 − R2

α1,α2

)(
R2

1 + R2
2

)− (
Rα1

1

)2 − (
Rα2

2

)2 + 2Rα1,α2 Rα1
1 Rα2

2 , (41)

where we used Qα1,α2
1,2 = Rα1,α2 , see Eq. (17). Instead of the weak-value representation (31), it is here more convenient to express

the average global fidelity change dC2 in terms of Bloch tensors as well. From Eqs. (30) and (27), we then obtain the equivalent
representation

dC2 = δt

2

∑
m

⎡
⎣−smJmδβm,z

{(
Rm × R f

m

)αm +
∑
α′

(
Sm;α′ × S f

m;α′
)αm

}
+ �mδβm,x

∑
α 	=αm

{
Rα

m Rα f
m +

∑
α′

Sα
m;α′S

α f
m;α′

}⎤
⎦. (42)

For given m ∈ {1, 2} and α′ ∈ {x, y, z}, the vector Sm;α′ is
here defined by the components Sα

m=1;α′ = Rα,α′ and Sα
m=2;α′ =

Rα′,α . With the probability weight p1 in Eq. (39), the aver-
age total cost-function change follows as dC = p1dC1 + (1 −
p1)dC2.

Let us first study |� f 〉 = |Bell〉 as target state, see Eq. (33),
where the Bloch vectors vanish, R f

1,2 = 0. (Analogous argu-
ments can be given for the other Bell states.) For p1 = 0 in
Eq. (39), i.e., without the local fidelity term, a subclass of
trapped states is then given by Eq. (35) with θ = 0. This class
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is parametrized by 0 � v � 1 with v 	= 1√
2
. Importantly, it is

always possible to identify at least one steering operator such
that dC1 < 0 for these states. As a consequence, the active
steering protocol will converge to the Bell state by allowing
for a finite weight p1 > 0. To see this, we note that R f

1,2 = 0
implies that only the Xα1,α2 term in Eq. (41) can contribute
to dC1. Accordingly, one has to choose β1 = β2 = x, where
we can specify at least one steering parameter set (α1, α2)
such that Xα1,α2 > 0. Indeed, for the states in Eq. (35), we
find Rαm

m = (2v2 − 1)δαm,z and Rα1,α2 = δα1,α2 Q̃α1 , with Q̃x =
−Q̃y = 2v

√
1 − v2 and Q̃z = 1. From Eq. (41), we thus ob-

tain Xα1,α2 = 0 for α1 = z or α2 = z, but Xα,α = (2v2 − 1)4

for α 	= z and Xx,y = Xy,x = (2v2 − 1)2. One can therefore
always lower the total cost function (39) until convergence has
been achieved. This convergence proof for the Bell state also
illustrates how the inclusion of local cost functions resolves
the trapped-states problem and thereby allows for successful
active steering.

We observe numerically that the protocol also converges
to a predesignated target state |� f 〉 of arbitrary form, with
nonvanishing Bloch vectors R f

m. In order to rationalize this
observation, we first observe that the terms ∼smJm in Eqs. (41)
and (42) imply that one can always lower the cost function
by choosing βm = z and a suitable sign sm unless the Bloch
vectors Rm are parallel (or antiparallel) to R f

m, respectively.
Similarly, the cost function in Eq. (42) can be lowered by
βm = z terms until the vectors Sα ≡ S2;α satisfy the relations∑

α

Sα × S f
α = 0 (43)

and (for all pairs α < α′)

Sα · S f
α′ = Sα′ · S f

α. (44)

In addition, purity of the state, i.e., Tr(ρ2) = Tr(ρ f 2) = 1,
implies the relation∑

m

(
a2

m − 1
)(

R f
m

)2 +
∑

α

[
(Sα )2 − (

S f
α

)2] = 0, (45)

where we write Rm = amR f
m. We can express the solution to

Eqs. (43) and (44) as

Sx = b f S f
x + b×S f

y × S f
z + bxyS f

y + bxzS f
z ,

Sy = b f S f
y + b×S f

z × S f
x + bxyS f

x + byzS f
z , (46)

Sz = b f S f
z + b×S f

x × S f
y + bxzS f

x + byzS f
y ,

where the real coefficients (b f , b×, bxy, bxz, byz ) must satisfy
Eq. (44) and Sα has to be of pure-state form [92]. We then
examine the effects of βm = x steering operators. From the
terms aside the X term in Eq. (41), convergence requires am �
0 and for α ∈ {x, y, z} the relations∑

α′ 	=α

Sα′ · S f
α′ � 0,

∑
α′

(
Sα′ · S f

α′ − Sα
α′S

α f
α′
)
� 0. (47)

The X term is important since it is the only term coupling the
Bloch vectors and the vectors Sα . A sufficient condition for
successful steering arises if the only solution for the above re-
lations is given by am = 1 and b f = 1, with b× = bxy = bxz =
byz = 0. The requirement that Sα must be of the pure-state

form (46), together with all the above restrictions, suggests
that there is essentially no freedom for other solutions besides
Sα = S f

α . While the above argument is not a convergence
proof, it gives further evidence for the fact that our steering
protocol does converge for all possible N = 2 target states.

III. SIMULATION RESULTS

In order to test the active steering protocol introduced
above, we have performed numerical simulations of the
stochastic Schrödinger equation (19). We provide general
remarks on our numerical approach in Sec. III A, followed
by a presentation of numerical results for the simplest case
N = 2 in Sec. III B. We here mainly focus on the Bell state in
Eq. (33). In Sec. III C, we turn to the highly entangled GHZ
and W states for N qubits in Eq. (1). We begin with the case
N = 3, and then turn to larger values of N .

A. General remarks

All cost-function terms in Eq. (39) as well as the ex-
pectation values for the corresponding changes in Eq. (40)
can be computed from the time-evolving Bloch tensor RS (t ),
which in turn follows from Eq. (25). For every time step,
[N/2] nonoverlapping pairs of adjacent qubits are steered,
where we scan through all possible steering parameters K
for each pair in order to identify the optimal choice giving
the largest expectation value of the cost-function gain. The
steering parameters are taken from the Pauli operators (4). Un-
less noted otherwise, the numerical results shown below were
obtained by excluding detector operators of Pauli type βn = y
in Eq. (4). (However, such terms are helpful when preparing
the W state or for product states.) Once the optimal steering
parameters have been identified, the quantum measurement
is simulated by stochastically determining the measurement
outcome (ξ, η) according to the probabilities Pξ,η in Eq. (15).
Subsequently, the quantum state is updated using Eq. (19)
and the respective detector qubit pair is re-initialized in the
product state |00〉d before the next iteration step is launched.

For a given state trajectory, starting from the initial state
|�(0)〉 = |00 · · · 0〉, the steering protocol is terminated once
the fidelity F (t ) in Eq. (3) exceeds a predefined threshold
value F ∗ above which the state is considered converged. The
corresponding time t defines the number of time steps nt =
t/δt needed for reaching convergence. Of course, this number
varies for different measurement-resolved state trajectories.
By collecting a histogram from M � 1 trajectory realizations,
we can obtain a numerical estimate for the probability distri-
bution of the step number nt . This distribution depends on the
chosen fidelity threshold F ∗. As shown below, we find that
the distribution is quite different from a Gaussian distribution
and of a typical asymmetric shape. (We have tried to fit our
numerical results to commonly used distributions but did not
find satisfactory agreement.) For a qualitative description of
the simulation results, we characterize the distribution by
three indicators, namely (i) the median Ns, (ii) the mode Nm

corresponding to the maximum, and (iii) the half-width �N
defined as the width of the histogram at half-maximum height.
All three numbers depend on the fidelity threshold F ∗.
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Apart from the statistics of the number of iteration cycles
needed for achieving convergence, we also show results for
the time dependence of the fidelity cost function CN (t ) =
1 − F 2(t ), see Eq. (3), both on the level of individual state
trajectories and for averages taken over many realizations.
Similarly, we monitor the time dependence of the total cost
function C(t ) in Eq. (39). Since no steering operations are
applied anymore once the fidelity threshold has been passed,
the averaged cost functions Cr (t ) can depend on the chosen
value of F ∗ at long times.

Throughout, we assume identical system-detector cou-
plings, Jn = 1, and choose δt = 0.2 as elementary time step
such that �n = 0.2. We have checked that weak asymmetries
in the Jn couplings and/or moderate changes of δt do not
cause qualitative changes.

B. Bell state

We start with the simplest case of N = 2 qubits and study
the active steering protocol for the target state |� f 〉 = |Bell〉
in Eq. (33). Let us recall that all entangled N = 2 states are
equivalent under local operations and classical communica-
tion (LOCC) to |Bell〉 [95]. In fact, we have numerically
tested for many examples that other N = 2 target states can
be reached with similar efficiency by our protocol. For several
measurement-resolved state trajectories and for an average
taken over M = 104 runs of the protocol, Fig. 3(a) shows
the time evolution of C2(t ) = 1 − F 2(t ). Similarly, Fig. 3(b)
shows the total cost function C(t ) in Eq. (39). We here used
the probability weights p1 = 0.9 and p2 = 0.1 for the r-
qubit cost-function terms in Eq. (39), but simulation results
are qualitatively similar for all p1 � 0.5 (with p2 = 1 − p1).
While the analytical argument given at the end of Sec. II C
suggests that the trapped-states problem can be resolved for
any p1 > 0, we find that in practice, for small p1, the protocol
becomes inefficient.

We observe that the individual state trajectories in Fig. 3
are characterized by strong fluctuations and large quantum-
jump-induced steps in the global fidelity F (t ). Typically, the
steering protocol |�(0)〉 → |� f 〉 does not result in a mono-
tonically increasing time dependence of the fidelity at the level
of individual trajectories. Figure 3(a) shows that the protocol
instead first steers the system into one of the other Bell states,
which is orthogonal to the target state (F = 0), but then just
one additional quantum jump is enough to bring the system
to the target state. By allowing for a decrease of the global
fidelity F (t ) at intermediate times, the protocol is thereby
able to allow for fast and efficient active steering. Such state
trajectories are easily found and implemented by our protocol
because of the presence of the local cost function C1(t ), see
Sec. II C. It is worth emphasizing that, in our case, most state
trajectories reach the target state with almost perfect fidelity,
well above the fidelity threshold F ∗ used in Fig. 3. We note
in passing that the active decision framework of Ref. [23] is
consistent with this scenario. However, a crucial difference is
that Ref. [23] considers steering operators pertaining to pas-
sive steering protocols, where the active-decision policy only
accelerates the steering. In the present protocol, active steering
based on global and local cost functions instead allows one to

(a)

FIG. 3. Active steering protocol for N = 2 qubits and the tar-
get state |� f 〉 = |Bell〉 in Eq. (33), using the total cost function
C(t ) in Eq. (39) with p1 = 1 − p2 = 0.9 and target fidelity F ∗ =
99%. (a) Time evolution of the global fidelity cost function C2(t ) =
1 − F 2(t ) vs number of time steps nt = t/δt . The colored-dashed
lines show three measurement-resolved trajectories, the solid-black
curve is an average over M = 104 runs. The dotted-horizontal line
indicates the fidelity threshold value. (b) Corresponding results for
the total cost function C(t ). (c) Corresponding results for p1 = 0,
where C(t ) = C2(t ) includes only the global fidelity cost function.
For the shown data, our simulations were modified to tolerate a tiny
increase in dC2(K ) in order to still allow for active decision making.
Nonetheless, the fidelity threshold is only passed by very few state
trajectories, while the great majority of trajectories fails to converge.

“steer the unsteerable”, i.e., to engineer passively unsteerable
target states.

At the same time, the total cost function C(t ) is observed to
monotonically decrease at the level of individual trajectories,
see Fig. 3(b), even though C(t ) could in principle increase
after an “unfavorable” measurement outcome. In fact, our
protocol only enforces a decrease of the average cost function
C(t ), which must be a monotonically decreasing function for
M → ∞. Similarly, after an initial transient behavior, the
averaged squared global fidelity, F 2(t ) = 1 − C2(t ), increases
monotonically, where we find an approximately exponential
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FIG. 4. Histogram of the number of trajectories that have reached
fidelity F ∗ = 99% in nt = t/δt time steps, obtained from M = 104

realizations of the N = 2 protocol with |� f 〉 = |Bell〉, see Fig. 3.
Note the logarithmic scale for the vertical axis. The solid-vertical line
(horizontal bar) indicates the mode Nm (half-width �N), the dashed-
vertical line shows the median Ns. (Inset) Same results but with a
linear scale for the vertical axis.

time dependence for approaching the target state, see
Fig. 3(a). Interestingly, the slope d

dt F 2(t ) is larger for short-
to-intermediate times than in the long-time limit: states that
are nearly orthogonal to the target state tend to be “corrected”
more rapidly. This observation is consistent with the weak-
value amplification mechanism discussed in Sec. II C.

Next, Fig. 3(c) shows the corresponding results obtained
from the active steering protocol with p1 = 0, where only the
global fidelity cost function is used. In that case, steering is
not successful because of the emergence of trapped states,
see Sec. II C. In such cases, state trajectories get stuck before
convergence has been reached, and the averaged cost function
saturates at some value above the target fidelity threshold.
While very few trajectories are still able to pass the fidelity
threshold, the scheme is inefficient and fails to converge.

For the fidelity threshold F ∗ = 99% and using M = 104

realizations, Fig. 4 shows a histogram of the number of time
steps nt needed for achieving convergence. Evidently, the
corresponding distribution function of nt is asymmetric, quite
broad, and rather different from a Gaussian distribution. This
fact is particularly evident from the inset of Fig. 4, where we
use a linear scale for the vertical axis. Using the quantities in-
troduced in Sec. III A to characterize the distribution, we find
the maximum (mode) Nm = 10, the median Ns = 22, and the
half-width �N = 28. Importantly, there are many trajectories,
which end up in the target state after just a few cycles. On the
other hand, we also encounter rare trajectories, which require
an exceptionally large number of iterations for convergence.

In Fig. 5, we study the time evolution of the global fidelity
cost function C2(t ) (main panel) and of the total cost function
C(t ) (inset) if the protocol is run in the opposite direction:
we here start from |�(0)〉 = |Bell〉 and steer towards |� f 〉 =
|00〉. This seemingly trivial task, where entanglement needs to
be removed from the system, is much more difficult to realize

FIG. 5. Reversed steering protocol for N = 2 as in Fig. 3 but with
interchanged initial and target states, |�(0)〉 = |Bell〉 and |� f 〉 =
|00〉, using p1 = 1 − p2 = 1 in Eq. (39) and F ∗ = 90%. The steering
operator set includes βm = y terms. Time evolution of the global
fidelity cost function C2(t ) = 1 − F 2(t ) vs number of time steps
nt = t/δt . Dashed-colored curves show individual trajectories, the
solid-black curve is an average over M = 104 realizations. The
dotted-horizontal line indicates the fidelity threshold F ∗. (Inset) Cor-
responding results for the total cost function C(t ). For p1 = 1, we
have C = C1.

than the case in Fig. 3 using the present formulation of the
protocol. In fact, entanglement swapping as employed in our
protocol gives efficient ways to inject entanglement into the
system, but the removal of entanglement is harder to achieve.
Even though we target only the relatively poor fidelity F ∗ =
90% in Fig. 5, converge times are now much longer.

From the main panel in Fig. 5, we observe that different
measurement-resolved trajectories surpass the fidelity thresh-
old at widely different times, but they typically do not reach
the target state with (almost) perfect fidelity as in Fig. 3. One
of the shown trajectories passes the fidelity threshold after just
49 steps. Since a finite fraction of all trajectories show such a
behavior, we obtain a step-like initial decrease of the averaged
fidelity cost function C2(t ) and of the averaged total cost
function C(t ) at very short times. While individual trajectories
sometimes show a sudden increase of C(t ) due to unfavorable
measurement outcomes, the average C(t ) decreases mono-
tonically except for a shallow minimum at short times. This
minimum is possible because of the finite number M of runs
used in computing the average. Since one here typically ends
up in states with imperfect fidelity, F ∗ < F (t ) < 1, where no
steering operations are applied after the corresponding time
anymore, C(t ) and C2(t ) show a significant dependence on F ∗
at long times.

The measurement-resolved trajectories in Fig. 5 show that
an improvement in the global fidelity is often reversed again
in the next step due to unfavorable measurement outcomes.
Such a behavior indicates that it is a nontrivial task for our
protocol to remove entanglement from the system. However,
this task could easily be made highly efficient by adding
occasional rounds of single-detector qubit measurements to
the active steering protocol. Since our main interest is in the

013244-12



ENGINEERING UNSTEERABLE QUANTUM STATES WITH … PHYSICAL REVIEW RESEARCH 6, 013244 (2024)

FIG. 6. Time evolution of the entanglement entropy S(t ) for
N = 2, see Eq. (29). S(t ) vs nt = t/δt for |� f 〉 = |Bell〉 for the same
measurement-resolved trajectories as in Fig. 3(a). The solid-black
curve is an average over M = 104 runs. The dotted-horizontal line
indicates Smax = ln 2. (Inset) Same but for the reversed protocol in
Fig. 5, where the low fidelity F ∗ = 90% implies that S(t ) saturates
at a relatively large value instead of approaching zero.

preparation of exotic highly entangled states, however, we do
not pursue this extension here. We conclude that, even though
less efficient, the protocol is also able to actively steer in the
backward direction.

The time evolution of the entanglement entropy S(t ) in
Eq. (29) during the above N = 2 steering protocols is shown
in Fig. 6. For the direction |00〉 → |Bell〉, the main panel of
Fig. 6 shows S(t ) for the same trajectories as in Fig. 3(a).
We observe that entanglement is quickly built up and one ap-
proaches (at long times) the maximal value S = ln 2 expected
for |Bell〉, see Refs. [19,96] for related results. In fact, since
the trajectory typically cycles through other Bell states before
reaching the final target state |Bell〉, see Fig. 3(a), the conver-
gence of S(t ) toward S = ln 2 at long times is faster than the
corresponding convergence of the fidelity cost function C2(t )
shown in Fig. 3(a). In the inset of Fig. 6, using the trajectories
in Fig. 5 for the reversed steering direction |Bell〉 → |00〉,
we illustrate that entanglement can also be removed from the
system.

In Fig. 7, for several target states with N = 2 and N = 3,
we show the mode Nm, the median Ns, and the half-width �N
as functions of the target fidelity F ∗. These three numbers
characterize the distribution function of the step number nt ,
see Sec. III A, which in turn is estimated by collecting a
histogram. Figure 7 indicates that the F ∗ dependence of Nm

and Ns is very weak for the |Bell〉 and |GHZ〉 states, while it
is approximately exponential for |W〉. We note that a steeper
increase in Ns(F ∗) is observed for the N = 3 states in Fig. 7
in the limit F ∗ → 1. This increase can be rationalized by
recalling that our termination policy, where one ceases to
apply steering operations once a fluctuating state trajectory
has passed the fidelity threshold, also affects the long-time
limit of averaged cost functions. As a result, an exception-
ally large number of steps is needed on average for reaching
convergence if the target fidelity is very close to F ∗ = 1.

FIG. 7. Mode Nm (filled symbols), median Ns (open symbols),
and half-width (vertical bars) vs target state fidelity F ∗ for active
steering to the N = 2 target state |Bell〉 and for the maximally en-
tangled N = 3 states |GHZ〉 and |W〉. The shown results have been
obtained from M = 104 trajectories. Note the logarithmic scale for
the vertical axis. Dashed lines are a guide to the eye only. For the W
state, steering operators with β = y in Eq. (4) have been included.

C. W and GHZ states

We next turn to the case N = 3, where we consider ac-
tive steering from |�(0)〉 = |000〉 to either |� f 〉 = |GHZ〉 or
|� f 〉 = |W〉 in Eq. (1). These two states represent different
types of maximal tripartite entanglement [16]. However, we
have numerically checked that the steering protocol performs
with similar efficiency for many other N = 3 target states,
e.g., with additional phase factors in Eq. (1). For all N = 3
results shown here, we have used the probability weights
p1 = 0.9, p2 = 0.09, and p3 = 1 − p1 − p2 = 0.01 for the
total cost function in Eq. (39). Our protocol is then capable
of finding both target states, but one needs a larger number of
steps than for N = 2.

Results for the time evolution of the cost functions are
shown in Fig. 8 for the W state, and in Fig. 9 for the GHZ
state. In both cases, the fidelity threshold is F ∗ = 97.5%. For
these states, the dependence of the mode Nm, of the median
Ns, and of the half-width �N on the target fidelity F ∗ are
shown in Fig. 7. Figure 7 indicates that reaching the |W〉
state requires more steps than for the |GHZ〉 state, especially
when asking for high target fidelity F ∗. This observation is
consistent with the fact that almost all N = 3 states with
genuine tripartite entanglement are LOCC-related to |GHZ〉
[16]. Preparing the much more elusive |W〉 state thus is ex-
pected to be a challenging task. By comparing the results
in Figs. 8 and 9, we observe that the individual trajectories
are of different character for both target states. For the GHZ
state in Fig. 9, we find similar trajectories as for the Bell
state in Fig. 3: the trajectory cycles through highly entangled
intermediate states different from the target state, but then one
quantum jump is enough to reach the final target state. For the
W state, on the other hand, Fig. 8 shows that the fluctuating
trajectories are qualitatively different. Typically, jumps to the
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FIG. 8. Active steering protocol for N = 3 qubits and the tar-
get state |� f 〉 = |W〉 in Eq. (1), with target fidelity F ∗ = 97.5%.
We use the total cost function C(t ) in Eq. (39) with p1 = 0.9,
p2 = 0.09, and p3 = 1 − p1 − p2 = 0.01, and include β = y steer-
ing operators. Global fidelity cost function C3(t ) = 1 − F 2(t ) vs
number of time steps nt = t/δt . The dashed colored curves show
three measurement-resolved trajectories, the solid black curve is an
average over M = 104 runs. The dotted-horizontal line corresponds
to the fidelity threshold. (Inset) Corresponding results for C(t ).

almost perfect target state (as found for the GHZ state) are
much less likely.

This difference is also manifest in a different dependence
of Nm and Ns on the target fidelity F ∗ as shown in Fig. 7.
While the dependence of Nm and Ns on F ∗ is exponential
for both states, the rate governing the growth of Nm(F ∗) and
Ns(F ∗) is very small for the GHZ state but of significant
magnitude for the W state. Similarly, for the target fidelity

FIG. 9. Same as Fig. 8 but for the target state |GHZ〉, again for
F ∗ = 97.5% and with the same weights pr . Global fidelity cost func-
tion C3(t ) = 1 − F 2(t ) vs nt = t/δt , where dashed colored curves
correspond to individual trajectories and the black curve is an average
over M = 104 runs. The dotted horizontal line corresponds to the
fidelity threshold. (Inset) Corresponding results for the total cost
function C(t ).

FIG. 10. Histogram of the number of trajectories that have
reached fidelity F ∗ = 97.5% in nt = t/δt time steps for the N = 3
target states |W〉 (blue, see Fig. 8) and |GHZ〉 (green, see Fig. 9).
Using a total of M = 104 runs, each bin shows the corresponding
trajectory number accumulated over 25 subsequent time steps. Note
the logarithmic scale for the vertical axis. Solid-vertical lines (hor-
izontal bars) indicate the respective mode Nm (half-width �N), and
dashed-vertical lines show the median Ns. For the W state, β = y
steering operators have been included.

F ∗ = 97.5%, the histograms in Fig. 10 yield Nm = 206 for
the W state (blue histogram) but Nm = 35 for the GHZ state
(green histogram). The GHZ state is therefore much easier to
realize. The distribution functions are again found to be broad,
asymmetric, with a non-Gaussian shape as observed for the
Bell state in Fig. 4.

We next apply our active steering protocol to systems
with qubit number N > 3. The weights pr in Eq. (39) have
empirically been chosen as pr+1 = 0.1pr for 1 < r < N − 1,
with p1 = 0.9 and pN = 1 −∑

r<N pr , but the protocol could
probably be made more efficient by a smarter choice for these
weights. Since the computational effort for numerical simu-
lations using the present formulation of the protocol scales
exponentially in N , we here limit ourselves to N � 6 qubits
and moderate target fidelities F ∗. We refer to Sec. IV B for a
discussion of variants of our protocol, which should be able to
reach large values of N .

First, in Fig. 11, choosing a rather poor but fixed fidelity
threshold F ∗ = 80%, we explore how Nm, Ns, and �N scale
with the qubit number N for the highly entangled N-qubit
states |GHZ〉 and |W〉 in Eq. (1). We recall that, on gen-
eral grounds, such states cannot be prepared by physically
realizable passive steering protocols [37], see Sec. I. More-
over, while the N-qubit GHZ state could be prepared in a
simpler way by projective measurements of suitable stabilizer
operators, such a route is not available for the nonstabilizer
W state. Figure 11 shows that upon increasing N with fixed fi-
delity threshold, the values of Nm and Ns also increase. Similar
to our observations in Fig. 7 for the F ∗ dependence of these
numbers at fixed N , the requirements needed for preparing the
W state are more demanding than for the GHZ state.

In Fig. 12, we next show the steering dynamics for the N =
4 W state, again for selected measurement-resolved trajecto-
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FIG. 11. Mode Nm (filled symbols), median Ns (open symbols),
and half-width (vertical bars) vs qubit number N for active steering
to the N-qubit states |W〉 and |GHZ〉 in Eq. (1). Note the logarithmic
scale for the vertical axis. For each case, the respective target fidelity
is F ∗ = 80% and results have been obtained from M = 104 (M =
103 for N = 6) trajectories. Dashed lines are guides to the eye only.
The weights pr in Eq. (39) have been chosen as pr+1 = 0.1pr for
1 < r < N − 1, with p1 = 0.9 and pN = 1 −∑

r<N pr . For the W
state, β = y steering operators have been included. For N = 2, |Bell〉
is identical to |GHZ〉 in Eq. (1).

ries and for the averaged cost functions. The corresponding
histogram is shown in Fig. 13. On a qualitative level, the
steering protocol gives similar results as for the N = 3 W
state in Figs. 8 and 10. However, even for the modest fidelity
threshold F ∗ = 90% used in Figs. 12 and 13, the mode Nm

and median Ns of the distribution are about one order of
magnitude larger than what we found for the N = 3 W state
with F ∗ = 97.5%, see Figs. 8 and 10. Finally, in Fig. 14, we
show the steering dynamics and the corresponding histogram
for the N = 5 GHZ state. The typical trajectories again feature
jump-like steps as for N = 3, see Figs. 9 and 10.

IV. DISCUSSION AND OUTLOOK

In this section, we summarize our active steering protocol
and discuss open points that, in our opinion, deserve to be
studied by future work. We begin in Sec. IV A with several
comments on implementation aspects. We then continue in
Sec. IV B with a discussion of the scaling of the protocol with
the number N of system qubits. A summary of our key results
can be found in Sec. IV C along with perspectives for future
research.

A. Implementation aspects

While the active steering protocol laid out in Sec. II is
formulated in a platform-independent way, experimental suc-
cess will depend on the concrete circuit realization. We here
discuss several salient points of applied importance for our
approach.

First, a key element of our protocol is the ability to ef-
ficiently perform Bell measurements of detector qubit pairs.

FIG. 12. Active steering protocol for N = 4 qubits and target
state |� f 〉 = |W〉 in Eq. (1) with target fidelity F ∗ = 90%, us-
ing the total cost function (39) with p1 = 0.9, p2 = 0.09, p3 =
0.009, and p4 = 1 − p1 − p2 − p3. We included β = y steering op-
erators. Global fidelity cost function C4(t ) = 1 − F 2(t ) vs number
of time steps nt = t/δt . The dashed-colored curves show three
measurement-resolved trajectories, the solid-black curve is an aver-
age over M = 104 runs. The dotted-horizontal line corresponds to
the fidelity threshold. (Inset) Corresponding results for the total cost
function C(t ).

In many platforms, these measurements can be routinely per-
formed by measuring the eigenvalues (syndromes) Ox,z = ±1
of the detector two-qubit Pauli operators in Eq. (6). However,
it is still a challenge to perform Bell measurements in some
platforms, e.g., in photonic circuits [42,97]. On the other
hand, it is comparatively easy to provide detector qubits in the

FIG. 13. Histogram of the number of trajectories that have
reached fidelity F ∗ = 90% in nt = t/δt time steps from M = 104

runs for the N = 4 target state |W〉, see Fig. 12. Each bin shows
the trajectory number accumulated over 200 subsequent time steps,
with a logarithmic scale for the vertical axis. The solid-vertical line
(horizontal bar) indicates the mode Nm (half-width �N), the dashed-
vertical line shows the median Ns.
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FIG. 14. Active steering protocol for N = 5 qubits and target
state |� f 〉 = |GHZ〉 in Eq. (1) with target fidelity F ∗ = 90%, using
the total cost function (39) with p1 = 0.9, p2 = 0.09, p3 = 0.009,
p4 = 0.0009, and p5 = 1 − p1 − p2 − p3 − p4. Global fidelity cost
function C5(t ) = 1 − F 2(t ) vs number of time steps nt = t/δt . The
dashed-colored curves show three measurement-resolved trajecto-
ries, the solid-black curve is an average over M = 104 runs. The
dotted-horizontal line corresponds to the fidelity threshold. (Inset)
Corresponding histogram of the number of time steps needed for
reaching convergence. Each bin shows the trajectory number accu-
mulated over 100 subsequent time steps, with a logarithmic scale
for the vertical axis. The solid-vertical line (horizontal bar) indicates
the mode Nm (half-width �N), the dashed-vertical line shows the
median Ns.

desired initial state for the photonic platform. We note that one
may in general use different physical detector qubits during
different cycles of the protocol.

It is also important to keep in mind that these projective
measurements take a finite time τmeas. In fact, ideal projective
measurements (with τmeas → 0) come with infinite resource
costs [98]. Unless a fault-tolerant platform is available, τmeas

should be short compared to the decoherence time of the
circuit, as well as to the time scales characterizing the in-
trasystem Hamiltonian evolution. Similar remarks apply to
the initial preparation of the detector state |00〉d before every
steering cycle. Fast readout and qubit reset techniques (with
time scales of order 100 ns) have been reported for super-
conducting qubit platforms [82,99]. In addition, for a given
physical setup, one may also need to take into account the
finite time needed for ramping up (and switching off) the
steering operators. However, in a related recent experimental
study using superconducting qubits [13], the respective time
scales were found to be short compared to τmeas.

Second, let us discuss the basic time scale δt for one iter-
ation cycle of the protocol. On the one hand, δt should not
be too short since otherwise the protocol becomes inefficient.
On the other hand, δt should be small enough to validate the
weak-measurement limit and the small-δt expansion of the
Kraus operators, see Sec. II A. Choosing the gate couplings of
similar magnitude, Jn ≈ J , we expect that Jδt ∼ 0.2 should
work well, cf. Sec. III.

Third, apart from the time scales τmeas and δt , one also
needs to account for the finite time τcalc required for the
classical calculation performed in parallel to the experimental
protocol. In these calculations, dC(K ) is computed for all
steering parameter configurations in order to determine the
best steering parameter K , and the state |�(t )〉 is updated after
each measurement. For the values of N studied in Sec. III,
we find that τcalc is much shorter than the expected values for
τmeas. The classical computation time is thus not expected to
impose restrictions.

Fourth, the probably most important practical restriction
for our protocol at present comes from our assumption of
having a platform free from external noise and/or static
errors [25]. In the near future, error-corrected circuits har-
boring several (say, a dozen) fault-tolerant logical qubits
are expected to come into reach [74–83]. Such platforms
will represent an ideal playground for our protocols. With-
out quantum error correction, almost noise-free platforms
are available in trapped ion systems [8]. In addition, novel
types of noise-protected superconducting qubits [100,101]
may soon realize circuits with strongly reduced noise levels.
Similarly, once Majorana qubits become available, very low
noise levels are expected due to topological protection mech-
anisms [102–105].

Finally, for any implementation, one should verify the ulti-
mate success of the protocol. Such a benchmarking could be
performed by using quantum state tomography methods such
as shadow tomography [106–108].

B. Scalability of active decision protocols

In Sec. III, we show explicit numerical simulation results
for relatively small qubit number N � 6 only. Nonetheless,
these results constitute a proof of concept that active steering
protocols allow for the engineering of passively unsteerable
states. Moreover, already for moderate N � 10, the prepara-
tion of exotic highly entangled states is a very nontrivial task
for which active steering provides a fresh perspective. In fact,
current experimental efforts on state engineering typically
consider quantum hardware with up to ten entangled qubits
(rather than large-scale systems), which suffices for typical
applications in quantum communication, quantum sensing,
or quantum foundational experiments. Our proposal can be
readily realized for such systems.

As remarked before, it is not feasible to exactly represent
and numerically simulate the time-evolving quantum state
trajectories in our active steering protocol on a classical com-
puter for large-scale systems. Since the numerical demands
grow exponentially with increasing N , further advances are
needed to improve the performance of the protocol for signifi-
cantly larger N . For instance, with an optimized choice for the
probabilities pr in Eq. (39), one may be able to significantly
speed up the protocol. Moreover, with suitable modifications,
our active feedback strategies could be used for simpler quan-
tum tasks than state preparation. Important examples include
adiabatic and nonadiabatic state manipulation, and the realiza-
tion of entanglement transitions in actively monitored circuits.
For such tasks, the protocol becomes much simpler and may
enable a study of the large-N limit.
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One of the possible routes to scalability of the protocol
is multi-block engineering: By employing a variant of our
protocol, inspired by Ref. [58], one may consider the local
steering of small parts of the system, where one subsequently
builds up the full system state by merging different small-N
blocks. Since our approach is efficient in actively steering
small-N blocks, one may be able to scale to larger system
sizes in this manner. While this idea is speculative at present,
it could eventually obviate the need for expensive classical
simulations of a large quantum system.

Furthermore, we expect that the cost functions used in the
active decision policy need not be computed exactly in order
to achieve state preparation with high fidelity. Indeed, the cost
functions in our approach provide (i) an overall “driving bias”
for the steering landscape and (ii) a local “potential” to avoid
trapped states. Both these main ingredients can, in principle,
be simulated approximately. As a consequence, numeri-
cal methods for approximately solving quantum problems
on classical hardware can be applied, e.g., tensor-network
approaches, quantum Monte Carlo simulations, machine
learning, or shadow tomography [106,107]. Such methods
often remain efficient for large-scale systems. Adapting them
to our protocols and studying the resilience to those approxi-
mations are interesting topics for future research.

C. Summary and perspectives

We have proposed and tested active steering protocols for
quantum state preparation in monitored quantum circuits. In
our approach, entanglement is generated in the time-evolving
system state |�(t )〉 by a weak-measurement version of en-
tanglement swapping using Bell measurements of detector
qubit pairs. Active decision making strategies then deter-
mine the optimal steering operators applied in the next time
step. We find that in practice, a limited and realizable set of
simple Pauli steering operators is sufficient to warrant con-
vergence of the active steering protocol. We emphasize that
we have used a rather restrictive notion of locality in our
formulation of the active steering protocol since only Bell
measurements between adjacent detector qubits are allowed.
Interesting extensions of our protocols could permit a larger
spatial coupling range.

A key finding of our analysis is that the standard fidelity
is not a useful cost function for active steering to many-body
target states. A detailed discussion of this issue can be found
in Sec. II C, where we show that a useful cost function must be
able to monitor local substructures of the many-body state. In
many cases, those local structures can be efficiently diagnosed
by monitoring weak values (which are relatively easy to com-
pute). In other cases, the failure of the fidelity cost function
is reminiscent of Anderson’s orthogonality catastrophe. We
have demonstrated that active steering is possible in practice
when including local fidelity terms, which monitor the r-body
reduced density matrices (built from the time-evolving state)
in comparison to the corresponding reduced density matrices
for the target state. In our present formulation, we constrain
all possible local fidelity terms with 1 � r � N .

Our numerical simulations reveal that the distribution of
the number of time steps nt needed to reach convergence
towards a desired target state is typically far from a Gaus-

sian distribution. (Here distribution refers to an average taken
over many different measurement-resolved trajectories.) The
distribution instead is found to be skewed, with a maximum
(mode) Nm reached after an only moderate number of steps
for small N . We have also characterized the distribution by the
median Ns and the half-width �N ; for a detailed discussion,
see Sec. III.

Let us then conclude by describing some perspectives for
future research.

State manifolds. Can active steering protocols converge
toward state manifolds instead of a single target state? For
example, such a protocol can utilize a cost function maxi-
mizing the entanglement entropy (29) or other entanglement
measures instead of C(t ) in Eq. (39). The active steering
protocol is then expected to target a manifold of maximally
entangled states. An interesting open question is to what
extent such state manifolds resemble the “dark manifolds”
obtained from passive steering [109], where the dark space is
a degenerate Lindbladian subspace with eigenvalue zero and
the final state depends on the initial state |�(0)〉. For the active
steering case, a different scenario may be that the protocol will
continue cycling through all reachable states in the manifold
as long as it is evolving in time, independent of the initial
state.

We expect that state manifolds may already appear for the
cost functions used above. Let us describe three scenarios
how this can happen: (i) One may reduce the set of possible
steering operators or the number of measurements. In such
cases, it is generally not possible anymore to steer towards an
arbitrary target state, and the protocol is likely to reach a state
manifold. Because of the drastic simplifications offered by
this route, it should also be possible to tackle larger systems.
(ii) A similar situation arises if one omits some cost-function
terms in Eq. (39). For instance, by omitting all local fidelity
terms with r < N , one reaches the trapped-state manifold dis-
cussed in Sec. II C. (iii) One may simultaneously steer towards
two nonorthogonal target states |� (1)

f 〉 and |� (2)
f 〉 by adding

the respective cost functions weighted with probabilities w1

and w2 = 1 − w1. In that case, by varying w1, we expect that
one obtains a manifold of states interpolating between both
target states. Since one can systematically study effects of
mismatch in the target state, such a protocol could also give
useful insights about the impact of errors [25].

State purification. Within our protocol, if one starts with
a pure initial state, the time-evolving state remains pure at
all times. With suitable modifications, our protocol could be
used for state purification. For instance, one may start from
a maximally mixed (infinite temperature) initial state and use
the active steering protocol to steer towards an arbitrary, pos-
sibly pure, target state. In order to implement this program,
one needs to adapt the present formulation of the protocol in
order to allow for mixed initial states.

Multipartite entanglement. One can monitor the increase
of multipartite entanglement measures [1] during the protocol.
Entanglement structures can be built up very quickly in active
steering protocols of the type considered here since limitations
imposed by the Lieb-Robinson bound for unitary evolution
are absent, see also Ref. [96]. In the present paper, we have
only studied the entanglement entropy, and we have only
considered it for the simplest case of N = 2 system qubits.
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Memory effects. Another interesting generalization is to
study active steering protocols where instead of the re-
initialization of the detector qubit pair in the state |00〉d in
each step, one simply takes the previously measured Bell state
as new initial state. This scheme is simpler to implement since
one avoids the reset of the detector qubits. However, it also
introduces memory effects for the state dynamics [110]. At
present it is unclear how this change will affect convergence
properties.

Geometrically local fidelity cost functions. In the present
version of the active steering protocol, we take into account
all ordered subsets M of r < N qubits when computing the
local cost function Cr (t ) in Eq. (37). If one truncates the sum
over M in Eq. (37) to include only geometrically local sets
of nearby qubits, significant simplifications are possible and
one is able to study larger system sizes, i.e., larger N . Alter-
natively, it is also worthwhile to explore whether it suffices to
include just the r = 1 and r = 2 cost-function terms on top of
the global fidelity term.

Connections to machine learning. It may be feasible to
significantly improve our active steering protocol by employ-
ing quantum machine learning methods [111–113]. Let us
briefly speculate about different possibilities. First, machine
learning may be useful for optimizing the probability weights
pr appearing in the total cost function (39). In the present
paper, we have simply chosen empirical values for these
weights. Second, instead of the exact classical computation
of quantum states and the associated cost functions in each
step (as done here), machine learning could offer alternative
strategies where such calculations are replaced by faster yet
still accurate schemes. Third, in our approach, we start with a
known state. In principle, machine learning may be employed
in active protocols where the information on the initial state
is incomplete. Feeding a neural network with sequences of
consecutive readouts, one can perform a partial tomography
“on the fly” such that the missing information is reconstructed
and the proper cost function can be estimated.

From weak to strong measurements. Throughout the present
paper, we have assumed the weak-measurement limit, where
Kraus operators can be Taylor expanded in Jnδt � 1. On the
other hand, for strong system-detector couplings Jn and/or
long time steps δt such that Jnδt ∼ 1, one can realize the limit
of strong (projective) measurements [1,2]. Understanding the
crossover between the weak and strong measurement regimes
in the context of active steering protocols raises an interesting
topic for future research. Since the stochastic Schrödinger
equation (19) does not apply anymore outside the weak-
measurement limit, one needs to resort to Eq. (8) without
using the small-δt form of Kraus operators. As suggested by
the results of Ref. [26], one may accelerate the convergence
of our active steering protocol by allowing for larger values of
δt . However, we leave this extension to future work.

Noise-resilient schemes. Ideally, one would like to have
active steering protocols that can also tolerate the presence
of external noise without requiring a fault-tolerant platform.
In the present cost-function-based approach, it is difficult
to accommodate such effects since state tracking along the
time-evolving trajectory is assumed. A conceptually different
approach is to target suitable measurement operators and base
the active decision making strategy directly on measurement

outcomes instead of the evaluation of fidelity cost functions.
Such a strategy would be capable of overcoming noise effects
since the feedback now directly relies on physically measur-
able observables. In addition, this approach can in principle
allow for studying systems in the large-N limit. At present, it
is unclear whether such strategies are useful for quantum state
preparation, but they certainly can be expected to find other
interesting applications.

We note that all data underlying the figures presented in
this work can be retrieved at the zenodo [114].
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APPENDIX A: ON ENTANGLEMENT SWAPPING

We here give a detailed picture for how entanglement is
built up in the system state |�(t )〉 during our entanglement
swapping protocol. In Figs. 2(a)–2(c), we show the first cycle
of the protocol for the case N = 2, starting at the initial time
t = 0. (a) One starts from the simple product state

|ψ (0)〉 = |�(0)〉s ⊗ |	(0)〉d

= (|01〉s ⊗ |02〉s) ⊗ (|01〉d ⊗ |02〉d )

= (|01〉s ⊗ |01〉d ) ⊗ (|02〉s ⊗ |02〉d ), (A1)

where |�〉s and |	〉d describe the system and detector qubits,
respectively. (In this Appendix, we use the subscript s to
explicitly mark system states.) In the last step, states are
grouped to form system-detector pairs. (b) Switching on the
selected steering operators during a time step of duration δt ,
each system-detector qubit pair is entangled by the unitary
time evolution. One obtains a product state of two entangled
system-detector pairs, |ψ (δt )〉 = |ψ1(δt )〉 ⊗ |ψ2(δt )〉, where
the state of pair i = 1, 2 can be written as

|ψi(δt )〉 = Ai |0i〉s ⊗ |0i〉d + Bi |0i〉s ⊗ |1i〉d

+ Ci |1i〉s ⊗ |0i〉d + Di |1i〉s ⊗ |1i〉d . (A2)

The amplitudes satisfy the normalization condition |Ai|2 +
|Bi|2 + |Ci|2 + |Di|2 = 1 and are determined by the chosen
steering operators. Entanglement between the system-detector
qubit pair i means that |ψi(δt )〉 in Eq. (A2) does not fac-
torize into a product state, i.e., |ψi〉 	= |ψs,i〉 ⊗ |ψd,i〉. The
state |ψ (δt )〉 can equivalently be represented in the Bell
basis |	ξ,η〉d of the detectors, see Eq. (5). We thereby
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obtain

|ψ (δt )〉 =
∑
ξ=0,1

∑
η=±1

|� (ξ,η)〉s ⊗ |	ξ,η〉d , (A3)

where the “coefficients” of the expansion are states of the
two system qubits. We label these by superscripts, |� (ξ,η)〉s,
in order to distinguish them from Bell states of the system
qubits, |�ξ,η〉s, defined in analogy to Eq. (5). Explicitly, from
Eq. (A2), we find

|� (0,+)〉s = 1√
2

[(A1A2 + B1B2)|01〉s ⊗ |02〉s + (A1C2 + B1D2)|01〉s ⊗ |12〉s

+ (C1A2 + D1B2)|11〉s ⊗ |02〉s + (C1C2 + D1D2)|11〉s ⊗ |12〉s],

|� (0,−)〉s = 1√
2

[(A1A2 − B1B2)|01〉s ⊗ |02〉s + (A1C2 − B1D2)|01〉s ⊗ |12〉s

+ (C1A2 − D1B2)|11〉s ⊗ |02〉s + (C1C2 − D1D2)|11〉s ⊗ |12〉s],

|� (1,+)〉s = 1√
2

[(A1B2 + B1A2)|01〉s ⊗ |02〉s + (A1D2 + B1C2)|01〉s ⊗ |12〉s

+ (C1B2 + D1A2)|11〉s ⊗ |02〉s + (C1D2 + D1C2)|11〉s ⊗ |12〉s],

|� (1,−)〉s = 1√
2

[(A1B2 − B1A2)|01〉s ⊗ |02〉s + (A1D2 − B1C2)|01〉s ⊗ |12〉s

+ (C1B2 − D1A2)|11〉s ⊗ |02〉s + (C1D2 − D1C2)|11〉s ⊗ |12〉s].

Generically, |� (ξ,η)〉s describes an entangled state that can
also be expanded in the Bell basis |�ξ ′,η′ 〉s, leading to a super-
position of products |�ξ ′,η′ 〉s ⊗ |	ξ,η〉d . Since in our general
framework for N > 2, we do not employ Bell states for system
qubits, the explicit form of this superposition is not given here.
(c) The effect of the Bell measurement on the detector qubits
at time t = δt + 0+ is a projection of the state (A3) to one
of the Bell states, depending on the measurement outcome
(ξ, η), thus removing the three other components. As a re-
sult, the total wave function collapses to a product state (no
summation over repeated indices),

|ψ (δt )〉 → |ψ (δt + 0+)〉 = Nξ,η|� (ξ,η)〉s ⊗ |	ξ,η〉d , (A4)

where Nξ,η is a normalization factor. The system qubits are
now in the entangled state Nξ,η|� (ξ,η)〉s.

If one instead starts with an already entangled state of
the two qubits, as for the second cycle at time t = δt shown
in Figs. 2(d)–2(f), the state after the joint time evolution
of system-detector qubits can still be expanded in the Bell
basis of detector qubit states, see Eq. (A3). However, the
states |� (ξ,η)〉s will now be determined by more amplitudes,
including those parametrizing the initial state |�(δt )〉. Per-
forming the Bell measurement then again yields a product
state between the system and detector parts, where |� (ξ,η)〉s

is determined by the measurement outcome (ξ, η).
Finally, let us note that because of the so-called entangle-

ment monogamy [72,115–117], the degree of entanglement
between detectors and the corresponding system qubits is
reduced in panel (e) of Fig. 2 as compared to panel (b),
since the system qubits are already entangled. As a result,
additional entanglement generated between the system qubits
after the Bell measurement of detectors is expected to be
weaker than the initially generated system qubit entanglement
indicated in panel (c). Importantly, weak measurements of
already entangled system qubits, followed by projective Bell

measurements of the corresponding detector qubits (referred
to as entanglement swapping), do not prohibit entanglement
generation in the system.

APPENDIX B: SINGLE-DETECTOR PROTOCOL

We here briefly discuss an alternative protocol, where only
a single detector qubit (τ ) is coupled to two system qubits
during a given step of the steering protocol. For clarity, let us
consider system qubits σ1 and σ2 as the steered qubit pair. A
general steering operator for this case can be written in the
form

HK = J
[
cos(θ )σα1

1 τ z + sin(θ )σα2
2 τ x

]
, (B1)

with discrete steering parameters (α1, α2) (with α = x, y, z)
and a continuous parameter θ ∈ [0, π/2]. The overall cou-
pling J is considered fixed and known. In each time step of
the protocol, one then has a unitary evolution under HK . Note
that in general, the two pieces in Eq. (B1) do not commute,
which implies that we have a “frustrated steering” protocol
[22]. In the most general case, we assume that the detector
qubit is initialized before each time step in the state

|	〉d = cos(η)|0〉d + eiψ sin(η)|1〉d , (B2)

with fixed and known angles (η,ψ ). Instead of the Bell mea-
surements, one here performs a projective measurement of the
single-qubit detector operator τ̃z after the time step δt . We
express τ̃z in a general basis, where the outcome ξ = ±1 cor-
responds to finding the respective orthogonal detector state,

|	̃+〉d = cos(η̃)|0〉d + eiψ̃ sin(η̃)|1〉d ,

|	̃−〉d = sin(η̃)|0〉d − e−iψ̃ cos(η̃)|1〉d , (B3)

with fixed and known angles (η̃, ψ̃ ). The total system-plus-
detector state after the measurement outcome ξ is then given
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by |�ξ (t + δt )〉 ⊗ |	̃ξ 〉d , where the index ξ on the system
state emphasizes its outcome dependence.

One may naively expect that it is now possible to engineer
arbitrary target states by such an approach. However, this is
not possible, even when allowing for arbitrary δt in Eq. (8).
By evaluating the Kraus operators, we find

|�ξ (t + δt )〉 =
∑

n=1,2

a(n)
ξ e−i�(n)

ξ σ αn
n |�(t )〉, (B4)

with complex-valued amplitudes a(1,2)
ξ and angles �

(1,2)
ξ . For

instance, for ψ = ψ̃ = 0 and η̃ = −η, we find

tan �
(1,2)
+ = cos θ

cos(2η)
tan(Jδt ),

tan �
(1,2)
− = sin θ

sin(2η)
tan(Jδt ), (B5)

but general expressions can be written down for arbitrary
parameters (ψ, η, ψ̃, η̃).

According to Eq. (B4), the system state evolves by lin-
ear transformations acting separately on both qubits. These
transformations exhaust all possible actions induced by such
a steering protocol for N = 2. However, these actions are not
sufficient for reaching arbitrary target states from a given ini-
tial state. Consider, e.g., the initial state |�(0)〉 = |00〉 and the
target state |� f 〉 = |Bell〉 in Eq. (33). By (possibly repeated)
application of the time evolution in Eq. (B4), the state at a

later time t must be of the form

|�(t )〉 = (
z(1)

0 |0〉1 + z(1)
1 |1〉1

)⊗ (
z(2)

0 |0〉2 + z(2)
1 |1〉2

)
(B6)

with complex coefficients z(1,2)
0,1 (t ). (Their precise value is

not of interest here.) For steering towards |� f 〉 = |Bell〉, we
observe from Eq. (B6) that the terms ∼|01〉, |10〉 have to be
projected away since there is no possibility to otherwise arrive
at |Bell〉. However, such an operation is missing in Eq. (B4).
A similar argument can be given for the backward direction,
|Bell〉 → |00〉.

We conclude that active steering protocols employing a sin-
gle detector with the steering operator HK in Eq. (B1) are not
able to realize arbitrary operations, not even for N = 2 qubits.
The two-detector scheme with Bell measurements illustrated
in Fig. 2 does not suffer from such restrictions.

APPENDIX C: BLOCH TENSOR CHANGES

We here provide explicit expressions for dR2
S , where the

string operator S in Eq. (22) is parametrized in terms of the N
indices μ j ∈ {0, 1, 2, 3}. The corresponding expressions for
RDMs needed in Eq. (40) follow by setting μ j = 0 for all
traced-out qubits, cf. Sec. II B.

Assuming that steering operators and measurements are
applied to the qubit pair (n, n + 1), we first specify the
measurement-conditioned change dRS of the rank-N Bloch
tensor in one step, see Eq. (26). From Eq. (20) with α, α′ ∈
{1, 2, 3}, we find

dRS = −2
∑

m=n,n+1

∑
α 	=αm

(
smJmδt δβm,z

∑
α′

εαmαα′ + �m
ξ

〈c†
ηcη〉

δβm,⊥

)
δμm,α RS

+ 2η
√

�n�n+1δβn,xδβn+1,x

(
ξ

〈c†
ηcη〉

(FS − Qn,n+1RS ) − δt (HS − Qn,n+1RS )

)
, (C1)

with 〈c†
ηcη〉 in Eq. (16). For simplicity, Eq. (C1) assumes only

steering operators with βm 	= y. However, the final results,
Eqs. (27) and (C5), are specified for the general case. The
correlator (17) is encoded by

Qn,n+1 = Qα1,α2
n,n+1 = R0,...,0,αn,αn+1,0,...,0, (C2)

and the rank-N tensors FS and HS in Eq. (C1) are given by

FS = 1

2N+1

∑
S ′

RS ′Tr
((

σαn
n S ′σαn+1

n+1 + σ
αn+1
n+1 S ′σαn

n

)
S
)
,

HS = 1

2N+1

∑
S ′

RS ′Tr
({

σαn
n σ

αn+1
n+1 ,S ′}S). (C3)

Since only tensor components involving the indices μn

or μn+1 are affected, we write Fμn,μn+1 as shorthand
for FS , and similarly for RS and HS , that is, un-
changed indices μ1, . . . , μn−1 and μn+2, . . . , μN are kept
implicit. The nonvanishing matrix elements of FS are given

by

F0,0 = Rαn,αn+1 , Fαn,αn+1 = R0,0,

Fαn,0 = R0,αn+1 , F0,αn+1 = Rαn,0, (C4)

Fα 	=αn,α′ 	=αn+1 =
∑
α̃,α̃′

εαn,α,α̃ εαn+1,α′,α̃′ Rα̃,α̃′ .

Similarly, HS = FS except for a sign change in the last line of
Eq. (C4), Hα,α′ = −Fα,α′ .

Taking the average over measurement outcomes in
Eq. (C1), we arrive at Eq. (27). Next we compute dR2

S from
Eq. (C1). Recalling that ξ 2 = ξ , only the contribution ∝ ξ can
generate a contribution to leading order in δt . We therefore
obtain

1

2
dR2

S = δt
∑
η=±

G(η)2
S

〈c†
ηcη〉

, (C5)
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with

G(η=±)
S = −

∑
m=n,n+1

∑
α 	=αm

�mδβm,⊥δμm,αRS

+ η
√

�n�n+1
(
δβn,xδβn+1,x + δβn,yδβn+1,y

)
× (FS − Qn,n+1RS ). (C6)

We note that the denominator in Eq. (C5) may vanish in
special cases (for instance, if βn = βn+1 = z), but then the
numerator will also vanish and G(η)

S = 0. Similarly, for �n =
�n+1 and |Qn,n+1| = 1, one of the two ratios in Eq. (C5) is of
“0/0” type. However, the final result is well defined and finite.

To give an example, let us consider the case N = 3, with
qubits (1,2) being steered. Here a contribution from qubit 3 to
the expected single-qubit RDM cost-function change can be

present. We call this term dC(3)
1 (K ), which is due to the subset

M = {3} and comes exclusively from Eq. (C5). We note
that Eq. (C6), together with F0,0,μ = Rα1,α2,μ, see Eq. (C3),

yields

dC(3)
1 (K ) =

3∑
μ=0

dR2
0,0,μ

4

= (
δβ1,xδβ2,x + δβ1,yδβ2,y

) �1�2(�1 + �2)δt

(�1 + �2)2 − 4�1�2Q2
1,2

×
∑

α

(
Rα1,α2,α − Q1,2R0,0,α

)2

where the μ = 0 term does not contribute because of F0,0,0 −
Q1,2R0,0,0 = Q1,2 − Q1,2 = 0. Note that R0,0,α is the respec-
tive component of the Bloch vector for qubit 3, while Rα1,α2,α

encodes the entanglement between qubit 3 and the other
qubits. We conclude that the expected changes dCr (K ) of
local cost functions (r < N) are capable of detecting en-
tanglement features outside the reach of fidelity-based cost
functions.
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