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Abstract: In DWI, multi-exponential signal analysis can be used to determine signal underlying
diffusion components. However, the approach is very complex due to the inherent low SNR, the
limited number of signal decay data points, and the absence of appropriate acquisition parameters
and standardized analysis methods. Within the scope of this work, different methods for multi-
exponential analysis of the diffusion signal in the kidney were compared. To assess the impact of
fitting parameters, a simulation was conducted comparing the free non-negative (NNLS) and rigid
non-linear least square (NLLS) fitting methods. The simulation demonstrated improved accuracy for
NNLS in combination with area-under-curve estimation. Furthermore, the accuracy and stability of
the results were further enhanced utilizing optimized parameters, namely 350 logarithmically spaced
diffusion coefficients within [0.7, 300] × 10−3 mm2/s and a minimal SNR of 100. The NNLS approach
shows an improvement over the rigid NLLS method. This becomes apparent not only in terms of
accuracy and omitting prior knowledge, but also in better representation of renal tissue physiology.
By employing the determined fitting parameters, it is expected that more stable and reliable results
for diffusion imaging in the kidney can be achieved. This might enable more accurate DWI results for
clinical utilization.

Keywords: diffusion-weighted MRI; multi-exponential; microstructural image analysis; simulation;
fitting; modelling; kidney

MSC: 92C55; 68U10; 92C50; 11L07; 92-10

1. Introduction

Diffusion-weighted MRI (DWI) is a specialized imaging technique that offers insights
into the microstructure of tissue by assessing the movement of water molecules within the
tissue microstructure without the need for tracer injections [1,2]. It is widely used in clinical
settings to detect, characterize, and stage malignant lesions in various anatomical regions of
the human body. Furthermore, DWI distinctive ability to quantify diffusion processes can
be utilized to detect and characterize fibrosis and inflammation including but not limited
to the abdomen. In terms of kidney applications, it enables differentiation between healthy
tissue and tissue affected by renal failure, pyelonephritis, ureteral obstruction, and renal
cell carcinoma [1,3,4]. A precise description of the acquired MRI signal is crucial in order to
distinguish between physiological and pathological processes.

To evaluate an acquired DWI signal, multi-exponential signal analysis can be used. The
conventional Intra-Voxel Incoherent Motion (IVIM) model proposes a two-compartment
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model consisting of fractions related to capillary perfusion and tissue diffusion [5]. How-
ever, recent studies have indicated that bi-exponential modelling of the diffusion signal
is insufficient to describe the behavior of water molecules in complex environments such
as the human kidney. The kidney is composed of various structures of varying magni-
tudes, including dense tissue, small capillaries, and large blood vessels. This results in
different diffusion environments in the renal cortex, medulla, and hilum, thus rendering a
bi-exponential description insufficient [6–11]. Instead, a more appropriate approach in renal
tissue involves a tri-exponential model, which encompasses the three diffusion regimes
with contributions from blood flow, tubular flow, and pure tissue diffusion [7–10].

The standard method for fitting the IVIM model to the acquired renal DWI data is to
perform non-linear least squares fitting (NLLS) [12] of a predefined rigid tri-exponential
model. However, NLLS requires initial estimated starting values. Starting from this initial
guess, the values are varied until the tri-exponential model function best fits the measured
data using least squares. That way, NLLS provides a distinct unique solution for each
unknown, poorly representing physiological conditions with variable value spectrums.
Because NLLS requires prior knowledge regarding the number of components, its use has
been limited so far. Especially in pathophysiological conditions, initial fitting values are
difficult to determine and the number of diffusion compartments may vary [13]. Therefore,
the recently utilized non-negative least squares fitting (NNLS) [14] approach presents an
advantage, as it does not demand further specification of underlying diffusion components
or specific initial starting values a priori, making it potentially superior to the NLLS
algorithm. In contrast to NLLS, which requires a specific model function—in this case
a tri-exponential model—to be specified, NNLS automatically determines the number
and size of the exponential terms based on a specified (pseudo) continuous spectrum of
exponential functions. The only assumption made, which applies to diffusion, is that the
coefficients of interest should not be negative. NNLS results in a distribution of exponential
terms that directly reflects the diffusion compartments of the renal tissue being studied.
Therefore, NNLS has the potential to better reflect the complex characteristics of biological
tissue. Nevertheless, a systematic quantitative comparison of these different signal analysis
techniques and the establishment of standardized parameters for multi-exponential renal
DWI investigations is missing to date.

To identify optimized fitting parameters, this study aims to compare and evaluate
the NLLS and NNLS fitting approaches using an extensive multi-parametric simulation.
Firstly, a synthetic multi-exponential diffusion signal was simulated, based on physiological
conditions present in the human kidney. Extensive signal analysis was then performed
using the introduced fitting approaches with various parameter variations. Moreover,
both NLLS and NNLS were combined by using the NNLS results as initial values for the
rigid non-linear fitting method (named NLLS*). In addition, the NNLS algorithm was
enhanced by incorporating an area-under-curve (AUC) function to improve accuracy,
referred to as NNLSAUC. Afterwards, we conducted a comprehensive comparison of
the results obtained from all four multi-exponential fitting techniques and derived the
optimal fitting parameters. These parameters were subsequently applied to a thorough
final simulation.

This study aims to determine optimized acquisition and fitting parameters by con-
ducting a comprehensive evaluation of the NLLS and NNLS fitting approaches through
extensive multi-parametric simulations based on physiological conditions present in the
human kidney. Therefore, we determined a set of optimized parameters that can serve as
basis for accurate analysis of real renal DWI data using multi-exponential methods.

The paper is structured as follows. Section 2 describes the mathematical model and
the fitting algorithms and explains the generation of the synthetic multi-exponential signal.
Next, the simulation conditions are presented in the same section, showing the parameters
used and further details of the parameter variations performed. The section ends with a
comprehensive description of the statistics used to evaluate the results. The results are
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presented in Section 3, followed by a full discussion in Section 4. Finally, Section 5 presents
the conclusions of this work.

2. Methods
2.1. Multi-Compartment Model

The diffusion signal S(b) observed in the human body can generally be described as a
superposition of multiple individual diffusion processes, with various diffusion coefficients
resulting in a multi-exponential decay function [15]:

S(bi) =
M

∑
i=1

f je
−bi Dj , j = 1, 2, . . . , N (1)

where bi is the diffusion weighting b-value in mm2/s, M is the total number of measure-
ments i with different b-values, fj is the amplitude of the exponential component with the
diffusion coefficient Dj. In the following, fj is denoted as the volume fraction, although this
nomenclature is mathematically inaccurate due to the omission of correction for relaxation
times and the exclusion of the prevailing proton density. N is the number of diffusion
components. Typically, mono- or bi-exponential models are used to describe DWI data from
certain organs. However, recent studies have questioned the correctness of bi-exponential
fitting for the diffusion signal, particularly for renal tissue [8,9,11,16]. It appears as though
a three-compartment model, considering the tubular volume fraction, is physiologically
more appropriate in the context of the kidney. By applying the tri-exponential fitting model,
the measured diffusion signal S(bi) can be defined as:

S(bi) =
M

∑
i=1

f je
−bi Dj , j ∈ [1, 3] (tissue, tubule, blood) (2)

The diffusion coefficient Dj can be assigned to diffusion processes in tissue, tubules,
and blood. In detail, these three components relate to the restricted diffusion of water
molecules in renal tissue, the pseudo-diffusion occurring inside tubules, and the pseudo-
diffusion component present in blood vessels. They are often referred to as the slow,
intermediate, and fast diffusion components, respectively. The same classification accounts
for the three different volume fractions fj.

The sum of all volume fractions in multi-compartment models adds up to ∑N
j f j = 1.

Therefore, the diffusion signal S(bi) for a three-compartment model can be defined as:

S(bi) =
M

∑
i=1

fslowe−bi Dslow + fintere−bi Dinter + (1 − fslow − finter)e
−bi D f ast (3)

2.2. Non-Linear Least Square Fitting

The established tri-exponential model described in Equation (3) was incorporated
into a rigid NLLS algorithm constructed around the lsqnonlin function of MATLAB (The
Mathworks Inc., Natick, MA, USA). To fit the synthetic signal (construction details provided
below), the standard trust-region algorithm [17] was employed. Initial parameter values for
D, f, and boundary conditions of the non-linear fit need to be declared a priori. Hence, stan-
dard starting values and parameter ranges were chosen in accordance with literature [13],
as summarized in Table 1. Following the fitting process, the NLLS algorithm produced
discrete optimal values for Dj and fj with respect to the corresponding signal input.
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Table 1. Ground truth values required for the generation of synthetic multi-exponential diffusion
decay data and standard simulation parameters.

Ground truth values

Diff. coefficient blood (d f ast) 165 × 10−3 mm2/s

Diff. coefficient tubule (dinter) 5.8 × 10−3 mm2/s

Diff. coefficient tissue (dslow) 1 × 10−3 mm2/s

Vol. fraction blood ( f f ast) 0.1

Vol. fraction tubule ( finter) 0.3

Vol. fraction tissue ( fslow) 0.6

Standard simulation parameters

b-value distribution [16] [0, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 525, 750]

SNR 140

Iterations 1000

Standard NNLS parameters

M 300

Dmin 0.7 × 10−3 mm2/s

Dmax 300 × 10−3 mm2/s

Standard starting values NLLS

Diff. coefficients [1.5, 30, 100] × 10−3 mm2/s

Volume fractions [0.50, 0.25, 0.20]

2.3. Non-Negative Least Square Algorithm

To analyze the diffusion signal with the NNLS approach, an implementation of the
algorithm of Lawson and Hanson [14] was employed. Fitting of the synthetic renal DWI
data was accomplished with an in-house software based on the lsqnonneg MATLAB R2022a
function. An advanced regularization method of NNLS using cross-validation to determine
the regularization factor µ was implemented based on the open-source multi-exponential
decay image analysis software AnalyzeNNLS (2017.05.09) from Bjarnason and Mitchell [18].

In the NNLS algorithm, the signal decay is expressed as a superposition of exponen-
tials, similar to Equation (1) [15]:

yi =
M

∑
j=1

Aijsj, i = 1, 2, . . . , N (4)

with the constraint matrix Aij representing the exponentials and sj representing the cor-
responding amplitudes for M logarithmically spaced diffusion coefficients at N diffusion
components. An inverse of Aij cannot be derived due to noise contained in the signal
yi, resulting in an ill-posed problem. The NNLS algorithm is then used to minimize the
minimal least squares χ2 misfit between the measured (or simulated) and modelled data:

χ2 = min

 N

∑
i=1

∣∣∣∣∣ M

∑
j=1

Aijsj − yi

∣∣∣∣∣
2
, (5)

while all amplitudes are implicitly defined as non-negative, stating sj ≥ 0 [15].
Unlike non-linear optimization methods, the NNLS algorithm does not require a priori

information or an initial guess of variables to solve Equation (4). As an output, NNLS yields
amplitudes for the M exponential functions for each diffusion coefficient Dj. To obtain a
more physiologically realistic representation, the least-square algorithm can be adapted to
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construct a continuous spectrum. By incorporating extra constraints into the matrix Aij,
one is able to alter the discrete character of the basic NNLS solution. By introducing the
regularization term µ, Equation (5) can be adjusted accordingly [18]:

χ2 = min

 N

∑
i=1

∣∣∣∣∣ M

∑
j=1

Aijsj − yi

∣∣∣∣∣
2

+ µ
M

∑
j=1

∣∣sj+2 − 2sj+1 + sj
∣∣2 (6)

The weighting factor µ serves as a smoothing constraint that affects the curvature
of the NNLS solution spectrum and ensures a robust fit, determined by cross-validation.
Larger µ values result in smoother distributions, satisfying the constraints at the expense
of increasing misfit. For µ = 0, this formula yields the least square solution χ2

min from
Equation (5) [18].

The outcome of the regularized NNLS fitting entails various exponential terms, which
correspond to the diffusion components identified in the signal decay curve. By plotting
the associated diffusion coefficients with respect to the amplitudes, distinct peaks become
evident. Individual peaks can be characterized by assessing their maximum and area under
curve. This allows for the derivation of the geometric mean D and volume fraction f of the
contributing exponential constituents.

2.4. Combined Non-Linear and Non-Negative LS Algorithms

A unique approach was employed by combining both NNLS and NLLS methods to
create a two-level analysis of the diffusion signal to overcome the starting value limitation
of NLLS and thereby increase the accuracy of the fitting results. For this purpose, the NLLS
algorithm utilizes the fitting results obtained by the NNLS algorithm as initial parameters,
resulting in an advanced approach referred to as NLLS*.

2.5. Advanced NNLS Algorithm with AUC Constraint

In addition to the standard NNLS algorithm, we implemented an advanced fitting
algorithm called NNLSAUC. It is based on the same fitting results as standard NNLS and
incorporates an AUC constraint following fitting. This modification aims to minimize the
influence of inaccurately identified peaks and noise interferences. To achieve that, the
NNLSAUC technique applies adaptable interval boundaries based on estimated physiologi-
cal compartment ranges for the three diffusion regimes. In cases where multiple peaks dij
are encompassed by these intervals i, a weighting factor based on their respective volume
fraction fij is applied to combine them into a single representative peak di according to
Equations (7) and (8).

fi =
n

∑
j=1

fij, ∀ intervals i (7)

di =
n

∑
j=1

dij fij

fi
, ∀ intervals i (8)

This categorization of the diffusion spectrum requires prior knowledge of basic diffu-
sion regime boundary parameters.

2.6. Simulation and Reconstruction

To simulate the underlying synthetic renal diffusion data, we followed the methodol-
ogy outlined in Equation (3) and used the ground truth (gT) values presented in Table 1.
The initial parameters used for the diffusion coefficients d and volume fractions f are based
on the physiological conditions in the human kidney, considering the presence of three
diffusion compartments [9,11,13]. Subsequently, the multi-exponential diffusion signals
were superimposed with Gaussian noise for each b-value on a random basis, ensuring
an authentic artificial signal decay with variable signal-to-noise ratio (SNR). The SNR
was defined by dividing the signal at the first b-value with b = 0 s/mm2 by the standard
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deviation of the added noise [13,19]. For better comparison, the same simulated data were
then analyzed using the different algorithms mentioned above, namely NNLS and NLLS
(Figure 1). In the context of the simulation, the diffusion coefficient parameter is denoted
as d in order to eliminate any potential confusion with the limits of the NNLS fitting range
Dmin or Dmax.
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Figure 1. Simulation workflow including a list of initial parameters, the computation of synthetic
signal data, the utilization of multi-exponential fitting algorithms, and the subsequent visualization
and analysis of the simulation.

Values of previous works utilizing NLLS fitting were used as starting parame-
ters [9,11,13,20,21]. The NNLS diffusion fitting range was set accordingly to encompass
the entire physiologically relevant spectrum [11,13]. The total number of fitting iterations
for all simulations was n = 1000.

2.7. Parameter Variation

For parameter variations, main emphasis lay on altering values within a range relevant
for routine examinations of the kidneys and feasible for research imaging experiments.

The variation in SNR ranged from 50 to 600, with a primary focus on the interval
between 100 and 140, including the most commonly observed SNR values of routinely
acquired DWI [22,23].

In addition to the standard logarithmic distribution, other b-value compositions have
been evaluated to find a suitable distribution for NNLS fitting. This work evaluates two of
these other b-value compositions: an equidistant distribution and an interval distribution.
The latter applies a dense concentration of b-values inside the three diffusion regimes. All
b-value distributions span the same range, with bmax = 750.

To investigate the impact of the number of logarithmically spaced diffusion coefficients
M on the NNLS fitting process, M was varied in increments of 50, resulting in a range of
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100 to 600 possible exponential components for NNLS. Particular attention was devoted to
the interval around M = 300, covering commonly utilized values of prior studies [11,13].

The fitting results obtained from NNLS should be self-contained from any variations
made regarding the range of possible diffusion coefficients, as defined by the choice of Dmin
and Dmax. However, altering the discrete fitting range for non-negative approaches exerts a
significant influence, posing a common problem. Therefore, we compared our standard
range (Table 1) to a shortened and an extended version. The shortened fitting range spans
from Dmin = 0.9 × 10−3 mm2/s to Dmax = 200 × 10−3 mm2/s and the extended range en-
compasses values between Dmin = 0.5 × 10−3 mm2/s and Dmax = 500 × 10−3 mm2/s [11,13].
A comprehensive summary of the complete parameter variations can be found in Table 2.

Table 2. Values and sets of varied fitting parameters for NNLS.

Parameter Variation

SNR 50, 100, 110, 120, 130, 140, 600

Equidistant b-value distribution 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750

Interval b-value distribution 0, 5, 10, 15, 20, 30, 50, 100, 150, 200, 250, 350, 450, 550, 650, 750

M 100, 200, 250, 300, 350, 400, 600

Shortened Dmin and Dmax [0.8–200] × 10−3 mm2/s

Extended Dmin and Dmax [0.5–500] × 10−3 mm2/s

2.8. Statistics

In order to compare the quality of the simulation results and depict the deviation from
the gT, the Median Absolute Percentage Deviation (MAPD) was computed. The MAPD is
determined by calculating the absolute difference between the parameter estimates d and f
and the gT values for all n = 1000 iterations, expressed as a percentage:

MAPD(xi) =
100
gTi

median(|xi − gTi|).

Here xi represents one diffusion parameter estimate and gTi the corresponding ground
truth value.

To ensure more robust results, the utilization of the median was preferred to traditional
mean values. This approach bypasses the strong influence of outliers, themselves heavily
biased by the choice of constraint boundaries, the latter only being applicable to NNLS
algorithms [21,24].

Moreover, statistical analysis was carried out using appropriate MATLAB implemen-
tations. Visualization of the data and additional statistical measures were executed using
in-house developed software in R (version 4.1.3, R Foundation for Statistical Computing,
Vienna, Austria).

3. Results
3.1. Evaluation of Simulated NNLS Fitting

An exemplary NNLS analysis of n = 100 signals is shown in Figure 2. This simulation
was performed using standard parameters (Table 1). Three distinct peaks of the slow,
intermediate, and fast component can be distinguished clearly, reflecting the three diffusion
compartments employed as gT for the synthetic signal decay. Additionally, minor peaks
caused by wrongly interpreted noisy signal data by the NNLS algorithm are also noticeable.
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Figure 2. NNLS spectrum, representing a simulation of 100 modelled signals with an SNR of 120.
Three distinctive peaks are clearly distinguishable, corresponding to the slow (left peak), interme-
diate (middle peak), and fast (right peak) components. These peaks align with the three diffusion
compartments of the ground truth. Additionally, minor peaks caused by wrongly interpreted noisy
signal data by the NNLS algorithm are also noticeable.

3.2. Parameter Variation
3.2.1. Signal-to-Noise Ratio

In this simulation, the SNR was varied and ranged from 50 to 600, with a primary
focus on the interval between 100 and 140. The results of the simulations conducted are
depicted in Figure 3A,B (for diffusion coefficients d and volume fractions f, respectively),
with an optimal SNR of 600 serving as a reference. In addition to the variation in SNR, the
standard simulation parameters outlined in Table 1 were employed.

The accuracy of the fitting results strongly correlates with the signal quality and,
consequently, with SNR. Even in the instance of poor signal quality, with an SNR of 100 or
less, differentiation of the three diffusion components remains possible with NNLSAUC and
the standard NNLS algorithm. For the non-linear methods NLLS and NLLS*, a distinction
between the slow and intermediate diffusion components can only be achieved for SNRs
surpassing 130 (Figure 3). The NLLS* algorithm, up until an SNR of 600, is not capable of
distinguishing the three components at any routinely achieved SNR levels.

Looking at the volume fractions (Figure 3B), the results are similar. While techniques
involving non-rigid fitting possess the ability to differentiate all three compartments at
SNRs of 100 and over, the results of the approaches incorporating the non-linear fitting
overlap for intermediate and fast volume fractions.

In our study, NLLS methods demonstrated the highest standard derivation, partic-
ularly with respect to the slow and intermediate diffusion coefficients. Only the NNLS
methods managed to distinguish all three diffusion compartments consistently.

A simplified visualization of the MAPD development with regard to increasing SNR
values is illustrated in Figure A1. NLLS and NLLS* exhibit a mean MAPD of 16.46% and
18.83%, respectively. The NNLS approaches demonstrate a significantly lower average
MAPD value, with plain NNLS at 12.49% and NNLSAUC at 10.39%. The minimum overall
MAPD values concerning the routinely relevant SNR interval were observed for NNLSAUC,
reaching 9.2% at the highest SNR level of 140.
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3.2.2. Distribution of b-Values

The evaluation of b-value distributions covers three different compositions. Figure 4
presents the findings regarding the utilized standard, equidistant, and interval distribution of
b-values affecting the fitting accuracy and, consequently, the diffusion parameter estimates.
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Figure 4. Simulation results of diffusion coefficients and volume fractions under variation of the
b-value distribution (standard, interval, and equidistant), grouped by methods. The boxplots display
the median value (round dot), interquartile range (thick line), and whiskers (thin line), the latter
containing 95% of the data distribution.

A noticeable decline in accuracy can be observed when employing an equidistant dis-
tribution of b-values. Greater deviation from the gT values (12.37% mean MAPD for NNLS)
across all components becomes apparent when compared to the standard distribution.
However, the same is not necessarily true for the b-value composition that prioritizes the
diffusion intervals. In this case, the mean MAPD for NNLS is 8.80%, slightly underperform-
ing the standard distribution. The standard distribution, on the other hand, demonstrates
the most precise results, with an average MAPD of 8.56%. In particular, the non-linear
methods seem to be strongly affected by variation in the b-value distributions. In contrast,
the NNLS methods exhibit more consistent results across b-value compositions.

3.2.3. Number of Logarithmically Spaced Diffusion Coefficients

For this simulation, the number of logarithmically spaced diffusion coefficients M
was varied in increments of 50, resulting in a range of 100 to 600 possible exponential
components for the free NNLS fitting methods. When modifying the logarithmically spaced
diffusion coefficients, only NNLS and NNLSAUC are influenced by varying M values.
Results for the diffusion coefficients are illustrated in Figure 5.
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Figure 5. Simulation results for the diffusion coefficients (A) and volume fractions (B) for all variations
of M, grouped by methods. The design of the boxplots is analogous to the one in prior variation figures.

Both free fitting approaches are able to distinguish the three compartments at all levels
of M. While altering M only slightly affects the deviation of the results for the diffusion
coefficients, it comes along with an increase in the standard derivation of the estimates for
the fast component, especially in the case of NNLS. Considering f, the standard derivation
remains constant, but the estimates for the intermediate and fast component vary in their
derivation to the gT. The most accurate results are achieved when M is approximately 350
for NNLS and NNLSAUC. Data for different numbers of logarithmically spaced diffusion
coefficients are demonstrated in Figure A2.

The value of 350 logarithmically spaced diffusion coefficients seems most promising,
with minimal deviation for both NNLS and NNLSAUC. At M = 350, the total MAPD for the
standard NNLS algorithm is 10.41%, decreasing to 8.36% for NNLSAUC.
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3.2.4. Diffusion Fitting Range

To investigate the impact of altering the discrete fitting range for non-negative
approaches, different ranges were applied for the NNLS algorithm, namely a standard
([0.7–300] × 10−3 mm2/s), a shortened ([0.9–200] × 10−3 mm2/s), and an extended
([0.5–500] × 10−3 mm2/s) range, as shown in Figure 6.
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Figure 6. Simulation results of diffusion coefficients and volume fractions under variations of the
diffusion fitting range, grouped by methods.

Previously used standard values for Dmin and Dmax produce the most accurate results,
while the estimates of the shortened and extended fitting ranges deviate from the gT values.
NNLSAUC surpasses the standard NNLS algorithm for all fitting ranges, with its total
MAPD for the standard range being 8.4%. The shortened and extended ranges result in
12.31% and 18.32% deviation, respectively. The MAPD stats for standard NNLS exhibit the
same tendencies but with lower accuracy.

3.3. Simulation with Optimal Simulation Parameters

For this simulation, a total of 1000 iterations were performed using the optimal param-
eters that have been previously evaluated. Consequently, an SNR of 140 was employed, the
number of logarithmically spaced diffusion coefficients M was set to 350, and the diffusion
fitting range was chosen based on the standard distribution (Table 2).

Alongside the plain NNLS algorithm, the results from NNLSAUC, NLLS*, and standard
NLLS algorithms are presented in Figure 7. The distributions of fitted values for d and f
are represented by half-violin plots, while the minimalistic boxplots underneath specify
the scattering by providing a visual depiction of the interquartile range (with whiskers
indicated as lines and a gap in the line representing the interquartile range) and median
values. The three peaks observed along the diffusion coefficient and volume fraction axis
correspond to the three diffusion decay components present in the synthetic DWI signal for
d and f, respectively.
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underneath specify the scattering by visualizing the associated quartile ranges and indicating the
median values.

Table A1 shows the MAPD values for a simulation conducted using the previously
mentioned starting values. With an average MAPD of just 10.9% for the diffusion coeffi-
cients d and 6.4% for volume fractions f, NNLSAUC proved to be the most accurate method
with respect to gT values. Conversely, the fitting algorithms based on non-linear fitting
produced the highest deviation, with an average MAPD of 16.5% and 19.2% for d along
with 12.4% and 14.1% for f, in the case of NLLS and NLLS*, respectively. NNLS pre-fitting
did not yield any benefits when considering the MAPD. Consequently, the results from
NLLS* underperform when compared to those of the standard NLLS algorithm. As seen
before, the non-linear methods encounter difficulties in differentiating the intermediate and
slow components. This is evident in the significant overlaps between NLLS and NLLS*,
particularly when analyzing the distribution plots. Notably, both rigid non-linear methods
poorly fit the intermediate diffusion component, as indicated by the MAPD exceeding 20%
for both the diffusion component and the volume fraction. For NNLS-based evaluations,
on the other hand, the fast component poses the most challenges, with the highest MAPD
within each parameter group reaching 25 for standard NNLS. Remarkably, NNLSAUC was
the only method to achieve a total average deviation of less than 10%.

4. Discussion
4.1. Parameter Variations

In the present study, the NLLS and NNLS multi-exponential fitting methods were
evaluated in multi-parametric simulations utilizing synthetic renal diffusion signal data.
Advanced fitting algorithms based on NLLS and NNLS were implemented, and several
fitting parameters were varied in order to identify the optimal parameter sets to attain the
highest accuracy for the description of the renal DWI signal decay.

In existing studies, the extent of a sufficient SNR value has already been analyzed by
varying the SNR with different magnitudes [13,25]. It has been found that an SNR of at least
100 is required in order to obtain reliable diffusion parameter estimates [25]. Nevertheless, a
comprehensive exploration of the range of expected SNR values for in vivo DWI images is
still absent. This study specifically emphasized SNR values common for DWI. As expected,
a higher SNR generally results in higher output accuracy for all approaches. The NNLS
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algorithms, particularly the advanced NNLSAUC, provided more consistent results when
applied to low SNR signal data. The non-linear fitting techniques exhibited limitations at
SNR values below 130 and encountered difficulties with respect to the distinction of all
three compartments, a phenomenon which might be due to the lack of optimal starting
values for NLLS fitting. Optimization of the starting values for NLLS could improve the
fitting outcomes, but this would require extensive prior work to determine the optimal
parameters for individual patients, rendering it impractical for in vivo applications. NNLS
methods also demonstrated less derivation at all SNR levels and proved to be the superior
fitting algorithm for the SNR interval commonly encountered in routine practice.

Despite the effort to standardize DWI imaging in the kidney [26], an optimal distribu-
tion of b-values has not been established yet. Focusing on the commonly used and widely
accepted b-value range of 0 to 750 s/mm2, and considering the limitations of scan time
in clinical routine, a set of 16 b-values were employed based on the findings of previous
studies [10,11,13,26]. This study compared multiple b-value compositions and evaluated
the impact of different distributions on fitting accuracy. Considering that low b-values are
crucial for a correct and stable fit [27], and that an increased number of b-values below
100 s/mm2 has been proved to be beneficial for fitting [10], the spacing was adjusted ac-
cordingly. Variation in b-value distributions showed superior performance with respect to
the standard logarithmic composition across all different fitting approaches. The non-linear
methods were greatly affected by an altered arrangement of the b-values. The equidistant
distribution, in particular, compromised the fitting and parameter estimation significantly.
The NNLS algorithms consistently provided stable results throughout all b-value compo-
sitions. It should further be noted that the reliability of the interval distribution may be
questionable in real-world scenarios where various physiological conditions or pathologies
can cause the appearance, disappearance, or shifting of different diffusion regimes within
the diffusion spectrum. The study confirmed that it is crucial to cover the full b-value range,
with particular attention devoted to smaller values correlating with fast diffusion motions
in order to adequately represent the diffusion parameters and enable accurate fitting.

Varying the number of logarithmically spaced diffusion coefficients M for fitting in
NNLS has a profound impact on the estimation of fitting parameters. When M is set to low
values, similar to a very low sample rate, the ability to reliably determine the most accurate
estimates is compromised. However, a very high number for M also results in divergent
parameters. The choice of M is driven by a compromise between computation time and
accuracy. Excessively high sample rates not only result in very long computation times,
but also lead to an increased number of misinterpreted peaks in the signal data (Figure 2).
If many logarithmically spaced diffusion coefficients are applied, detected regularized
peaks might be split into multiple peaks. In this study, the optimal range was identified
to be between 300 and 400 coefficients, with 350 providing the most accurate results for
NNLS fitting techniques without a significant increase in computation time. Therefore, only
in vivo data with 16 b-values in the specified standard range were considered in this study.

Furthermore, the selection of the diffusion fitting range has a significant effect on
the results obtained by non-negative fitting approaches. This is a common challenge
encountered in the field of multi-exponential fitting. While seeking reproducible results, it
is important to avoid the expansion of the fitting range to prevent distortion of the fitting
estimates. This represents a challenging task when the correct diffusion parameters of the
kidney tissue are not apparent before fitting. In the current study, the NNLSAUC approach
achieved more accurate results compared to the standard NNLS method. Among the
tested diffusion ranges, neither the shortened nor the expanded intervals provided any
improvements over the standard range, which spans from Dmin = 0.7 × 10−3 mm2/s to
Dmax = 300 × 10−3 mm2/s.

The benefits of NNLS with varying numbers of diffusion components were not ex-
plored in this study, as Periquito et al. [13] conducted a complementary simulation approach.
The study extensively investigated the impact of a varying number of diffusion components
caused by pathologies such as hyperfiltration, fibrosis, and cysts. In these cases, the NNLS
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algorithm was found to be superior to NLLS, as it is able to detect a fourth pathological
compartment and reliably distinguish different levels of fibrosis.

4.2. Comparison of Fitting Methods

By applying optimized parameters (Table 3), the differences among the evaluated fit-
ting algorithms become more apparent. The NNLS approaches outperformed the non-linear
methods, especially owing to improved accuracy and smaller variability of the results, even
though NNLS was found to incorrectly identify peaks occasionally (see Figure 2), resulting
in a false fourth component that introduces bias into the results. Misfitted fourth com-
partments also contribute to the poor performance of NLLS*. Following the NNLS pre-fit
process, the NLLS fitting was unable to effectively handle four compartments when based
on a model incorporating only three diffusion coefficients, resulting in significant inaccura-
cies in those instances. To minimize the occurrence of misidentified compartments, further
optimization is required, such as enhancement of the b-value distribution and range [13]
or improvement of the quality of the acquired signal. The SNR variation demonstrates
that applying NNLS to high quality signals mitigates the issue of scattering, with close to
none misinterpreted signals. Thus, ensuring high signal quality for in vivo imaging, either
through optimized sequence parameters or an increased number of averages, is particularly
advantageous for non-negative fitting. The NNLSAUC method partially compensates for
this limitation of the standard NNLS algorithm, including its poor performance at low
SNR values, by re-evaluating the misfitted fourth compartment. This weighting approach
yielded optimal results in this study. The utilization of NNLS fitting algorithms appears
to be the most suitable approach for analyzing in vivo renal DWI signals. Furthermore,
simulation results from this study demonstrate a significant improvement in accuracy with
NNLSAUC as a novel fitting approach, especially when dealing with noisy image data.

Table 3. Recommended parameters for non-negative fitting.

SNR M Dmin Dmax b-Value Distribution

140 350 0.7 × 10−3 mm2/s 300 × 10−3 mm2/s
[0, 5, 10, 20, 30, 40, 50, 75, 100, 150,

200, 250, 300, 400, 525, 750]

4.3. Limitations and Outlook

It is important to note that one disadvantage of NNLS is the increased computational
effort it requires. Depending on the choice of M, fitting with the NNLS algorithm takes up
to 2 s per iteration. In contrast, the rigid NLLS fit is approximately 100 times faster. This
discrepancy may originate from the MATLAB implementation and could potentially be
addressed by employing faster programming languages and advanced implementations of
the fitting algorithms. Further improvement of the code through the implementation of
parallelization techniques is highly desirable to improve the computation time problem.

Bi-level optimization, as used in NLLS*, offers encouraging opportunities, but it also
has limitations that need to be considered. Firstly, sensitivity to initial estimates and the risk
of overfitting. While using NNLS estimates as starting points can be advantageous, the final
outcome of NLLS* may still be sensitive to these initial values, making reasonably good
results of the NNLS fit essential. Furthermore, the second fitting step of NLLS might not be
able to improve the results significantly. Combining two fitting methods can also increase
the risk of overfitting, especially when the data do not necessarily require such a complex
model in the first place. This can lead to misinterpretation of the results. Additional
limitations encompass the consequences of the regularization applied within the NNLS
algorithm. Although regularization is necessary to enhance fitting results, it comes with
miscalculation and distortion of the fitting results [19]. Given the symmetric nature of the
fittings and the presence of multiple global minima, the fitting results for regularized NNLS
just as NLLS may be prone to spurious minima that may not always be apparent. Despite
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compensation by the high number of iterations or fitted pixels, these misfitted data points
can still distort the accuracy of the outcome.

DWI data are sensitive to arbitrary diffusion processes and flowing fluids, beyond the
mere presence of blood. This issue poses a challenge in the event of indiscriminate adoption
of simulation parameters and may impact the quality of the fit [27]. Consequently, minor
parameter adjustments may be necessary to translate the results into in vivo applications.
Finally, the segmentation of the diffusion intervals for AUC calculations could potentially be
adapted to accommodate other scenarios, as certain studies have assumed slightly different
diffusion distributions [11,25]. The mentioned limitations, particularly their application to
in vivo imaging and related adaptations, should be addressed in future studies.

The scope of this work is limited to basic least-squares approaches, not covering recent
advancements in the bi-exponential IVIM model analysis which may result in improve-
ments to multi-exponential fitting [28–30]. The application of Bayesian, neural network,
and deep learning methodologies could potentially increase accuracy by identifying the
distinct different diffusion components, particularly in the instance of low SNR [31]. How-
ever, these approaches have not yet been successfully tested in tri-exponential modelling.
Additionally, extensive data groups are required to train neural networks, presenting a
challenge to the implementation of this method due to the potential significant variances in
individual patients’ diffusion parameters.

5. Conclusions

To conclude, this simulation study demonstrates the advantages of free NNLS algo-
rithms for multi-exponential fitting of renal DWI data. Modelling without an inherent
number of diffusion components as in NLLS enables the reliable determination of the
actual underlying diffusion compartments in the investigated tissue. NNLS provides the
distribution of diffusion parameters and is less prone to inaccuracies than NLLS when
compared to ground truth values.

Parameter estimates obtained through the bi-level NNLSAUC approach, coupled with
additional area-under-curve weighting, yield further improved results and exhibit the
greatest agreement with the ground truth values of this study compared to other methods.
Therefore, a set of standard parameters for NNLS has been identified as a recommendation
to ensure a more stable fit and reliable results for microstructural analysis of renal DWI data
using multi-exponential signal analysis. The optimized fitting parameters were applied
in a final systematic simulation which demonstrated the advanced accuracy of NNLS.
Nevertheless, further studies are required to evaluate in vivo adaptation and assess the
performance of the presented method applied to the diverse diffusion properties of human
kidneys. This, especially, includes its ability to distinguish physiological and pathophysio-
logical renal tissue, as well as its accuracy in detecting additional diffusion compartments
resulting from pathologies which is of great relevance to clinical application.
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AUC Area-Under-Curve
DWI Diffusion-weighted Imaging
gT Ground Truth
IVIM Intra-voxel Incoherent Motion
MAPD Median Absolute Percentage Deviation
NLLS Non-Linear Least-Squares
NLLS* Approach combining both NLLS and subsequent NNLS fitting
NNLS Non-Negative Least-Squares
NNLSAUC Approach adding AUC constraint after NNLS fitting
SNR Signal-to-Noise Ratio
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Table A1. MAPD for a static simulation (n = 1000) with optimal simulation parameters [in %].

Method dslow dinter dfast Avg fslow finter ffast Avg Total

NNLSAUC 6.7 9.9 16.2 10.9 3.8 7.5 7.9 6.4 8.65
NNLS 6.4 10.3 25.0 13.9 3.9 7.6 9.9 7.1 10.50
NLLS* 15.7 22.4 19.5 19.2 12.3 22.1 8.0 14.1 16.65
NLLS 13.9 20.3 15.4 16.5 10.7 20.0 6.4 12.4 14.45
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