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Abstract: Introduction: The use of 3D-printed aortic models for the creation of surgeon-modified
endoprostheses represents a promising avenue in aortic surgery. By focusing on the potential impact
of sterilization on model integrity and geometry, this report sheds light on the suitability of these
models for creating customized endoprostheses. The study presented here aimed to investigate
the safety and viability of 3D-printed aortic models in the context of sterilization processes and
subsequent remodeling. Methods: The study involved the fabrication of 3D-printed aortic models
using patient-specific imaging data and established additive manufacturing techniques. Five identical
aortic models of the same patient were printed. Two models were subjected to sterilization and
two to disinfection using commonly employed methods, and one model remained untreated. The
models were checked by in-house quality control for deformation (heat map analyses) after the
sterilization and disinfection processes. Three models (sterilized, disinfected, and untreated) were
sent for ex-house (Lufthansa Technik, AG, Materials Technologies and Central Laboratory Services,
Hamburg, Germany) evaluation and subsequent quantification of possible structural changes using
advanced imaging and measurement technologies (macroscopic and SEM/EDX examinations). After
sterilization and disinfection, each aortic model underwent sterility checks. Results: Based on macro-
scopic and SEM/EDX examinations, distinct evidence of material alterations attributed to a treatment
process, such as a cleaning procedure, was not identified on the three implants. Comparative material
analyses conducted via the EDX technique yield consistent results for all three implants. Disin-
fected and sterilized models tested negative for common pathogens. Conclusions: The evaluation of
3D-printed aortic models’ safety after sterilization as well as their suitability for surgeon-modified en-
doprostheses is a critical step toward their clinical integration. By comprehensively assessing changes
in model integrity and geometry after sterilization, this research has contributed to the broader
understanding of the use of 3D-printed models for tailor-made endovascular solutions. As medical
technologies continue to evolve, research endeavors such as this one can serve as a foundation for
harnessing the full potential of 3D printing to advance patient-centered care in aortic surgery.

Keywords: patient-specific implant; aortic reconstruction; in-house 3D-printing

1. Introduction

Over the past decades, significant technological advancements in the endovascular
surgery have revolutionized the options available to vascular surgeons, allowing them
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to offer modern therapeutic solutions for a variety of vascular conditions [1]. As a result,
(thoracic) endovascular aortic repair ((T)EVAR) has emerged as the preferred primary
method for treating most aortic disorders [2,3].

Managing complex aortic pathologies, defined as aneurysms or penetrating aortic
ulcers (PAUs) that include the renovisceral segment, presents a particular challenge [4]. The
use of fenestrated and branched stent grafts during complex endovascular aortic procedures
has been shown to be a safe and viable treatment option in patients with complex abdominal
aortic aneurysm (AAA) or thoracoabdominal aortic aneurysm (TAAA) [5]. Multicenter
experiences and systematic reviews have consistently demonstrated high technical success
rates and lower mortality and morbidity in the short-term when compared to traditional
open surgical repair [6,7]. Endovascular therapy has proven to be particularly crucial in
the management of acute and ruptured aortic pathologies.

Symptomatic aortic aneurysms with an impending rupture require timely surgical
or endovascular therapy. Open surgical treatment is associated with high perioperative
morbidity, leading to an increasing focus on endovascular treatment [8,9]. However, in
the case of complex aortic pathologies, the adjacent organ arteries must also be treated
or secured to ensure perfusion of vital organs. Nevertheless, the customization process
for these fenestrated stent grafts is time-consuming, typically taking approximately 4 to
6 weeks [10]. Thus, this option hardly seems appropriate for patients with symptomatic
complex aortic aneurysms.

This concern has led to the development of off-the-shelf fenestrated/branched stent-
grafts (OSFGs) for most common anatomic variations of the aorta [6,11]. Despite this
development, such OSFGs are not suitable for a large number of patients.

Therefore, the need for an alternative method has arisen, involving the utilization of
available conventional stents with modifications made by surgeons for the treatment of
acute patients [12]. An essential part of the manufacturing process of a surgeon-modified
stent graft (SMSG) involves detailed planning of the positioning of the target vessel ostia
on the SMSG to ensure their perfusion following the endovascular procedure [13].

Utilizing three-dimensional (3D) aortic templates is anticipated to elevate the precision
and effectiveness of SMSGs as an integral component of personalized medicine. This
strategy tailors interventions with exceptional accuracy to address distinct vascular issues
specific to each patient [14]. In the context of a sterile operating room, surgeons integrate
the aortic 3D template with a standard aortic stent graft, enabling precise marking of
fenestration locations [15].

The use of 3D printing to guide the creation of fenestrations in SMSG for the treatment
of complex AAAs or TAAAs has recently gained significance in an increasing number
of vascular centers [14,16]. A sterile 3D model of the diseased section of the aorta al-
lows surgeons to accurately mark the position of important arterial branches on the stent
graft and incorporate corresponding openings on the stent graft itself before the SMSG is
implanted [17,18].

The main questions that have arisen during the establishment of this method concern
the standardization of the process—segmentation and preparation of the aortic portion of
interest for 3D printing, as well as the sterilization and durability of the 3D aortic model
after sterilization.

2. Materials and Methods

To create an accurate 3D digital aortic model, we used patient-specific aortic anatomical
data acquired from computed tomography angiography (CTA) scans. The DICOM data
from such a scan were segmented with computer-aided design (CAD) software to delineate
the aortic geometry. The generated stereolithography (STL) file was transferred to a 3D
printer to produce a patient-specific aortic resin model via additive manufacturing using
computer-aided manufacturing (CAM) technology.

In detail, radiologic data sets for the patient’s thoracic and abdominal regions (soft-
tissue window with contrast medium at arterial phase, axial sections, 1-mm slice thickness)
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were exported from the hospital‘s PACS server in DICOM format. The data set was im-
ported into Brainlab Elements (backbone release 1.5.0.208, Brainlab AG, Munich, Germany).
After aligning the data set, segmentation was performed using the “smart brush” software
tool. This tool allows semi-automatic, three-dimensional object segmentation, which is
conducted after manual segmentation of the desired object in two perpendicular planes;
the result is calculated within seconds and can be reviewed and edited by the observer
to ensure faultless segmentation without cutouts, especially near the vascular wall. Seg-
mentation of the complete aorta (ascending portion, arch, descending portion including
juxtarenal aortic aneurysm) including the proximal few centimeters of the main abdominal
branches (celiac trunk, superior mesenteric artery, right and left renal arteries) could be
conducted following the contrasted inner vascular lumen (Figure 1).
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Figure 1. Screenshot of 3D aortic model after the segmentation process in Brainlab Elements
(backbone release 1.5.0.208) using the “smart brush” tool. Upper left corner—fully sequenced
aorta highlighted in red. In the upper right corner—axial view of the aorta marked in red with the
mesenteric artery. In the lower left corner—sagittal view of the aorta with the initial portion of the
mesenteric artery and part of the celiac trunk marked in red. In the lower right corner—coronary
view of the aorta with the aortic segments IV and V marked in red.

To establish a model of the aortic wall, a second object was constructed by copying
the segmented model and adding a centrifugal margin of 2.5 mm with the “safety margin”
tool. By subtracting the first from the second model, the final 3D object representing the
aortic vascular wall with a hollow intravascular lumen was built. The final 3D object
was exported in STL file format at the high-quality setting. STL editing for 3D printing
was performed using the freeware Autodesk Meshmixer (v3.5, Autodesk Research, San
Francisco, CA, USA). Using the “transform” function, the 3D object was cut to reduce
the model to the desired region of the first abdominal portion of the descending aorta,
including the main abdominal branches (Figure 2). Final polishing and fixing of holes in
the STL mesh was performed with the “inspector” software function to obtain a manifold
model ready for 3D printing.
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Figure 2. Screenshot of finalized 3D aortic model. The screenshot of the finalized 3D aortic model
includes the outlets of the reno-visceral arteries (celiac trunk, superior mesenteric artery, right and
left renal artery) in MeshMixer. The model serves as the basis for 3D printing.

A biocompatible and sterilizable thermoplastic material (surgical guide resin V1;
Formlabs Inc., Somerville, MA, USA) was chosen for printing the aortic models. The
3D printing was performed using the SLA printer Form 2 from Formlabs (Formlabs Inc.,
Somerville, MA, USA). The STL file for 3D printing was imported into the PreForm software
(version 3.27.1, Formlabs Inc., Somerville, MA, USA) choosing the surgical guide resin V1
(Formlabs Inc., Somerville, MA, USA) and a slice thickness of 0.05 mm. Support structures
were calculated automatically and manually edited to remove any support structures near
the vascular outlet of the main aortic branches. The final print job was uploaded to the
3D printer and started. After printing was finished, the aortic model was post-processed
according to the manufacturer’s protocol (Formlabs Inc., Somerville, MA, USA). Using
the “form wash” function, the model was washed in 99% isopropyl alcohol for 20 min,
air-dried for 30 min, and cured in the “form cure” function at 60 ◦C for 30 min. Further
post-processing included the removal of the support structures and polishing at the sites of
the removed support structures.

Five aortic 3D-printed models were post-processed according to the manufacturer’s
protocol (Formlabs Inc., Somerville, MA, USA). Two models were subjected to sterilization
and two models to disinfection using commonly employed methods. Another model
remained untreated as a control sample.

For sterilization, the 3D-printed models were subjected to autoclaving, according to
established protocols. The models were enclosed in sterilization pouches and exposed
to standard autoclave conditions, including exposure to a temperature of 135 ◦C and a
pressure of 3.116 mbar for 5 min. After autoclaving, the models were allowed to cool
before further analysis. For disinfection, the subjected models were exposed to a maximum
temperature of 95.9 ◦C using Neodisher® Mediclean Forte Universal Cleaner (Dr. Weigert,
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Hamburg, Germany). All models were checked by in-house quality control for deformation
(heat map analysis) following the sterilization or disinfection process.

After sterilization and disinfection, the aortic models were sent to the Institute for Med-
ical Microbiology and Hospital Hygiene at the University Hospital, Düsseldorf, Germany
for a sterility control.

One sterilized model, one disinfected model, and the untreated model were sent
for ex-house (Lufthansa Technik, AG, Materials Technologies and Central Laboratory
Services, Hamburg, Germany) evaluation of possible structural changes. The models
were quantitatively analyzed using advanced imaging and measurement technologies.
The 3D-printed aortic models were subjected to thorough analysis to assess changes in
structural properties and material composition using scanning electron microscopy (SEM)
coupled with energy-dispersive X-ray spectroscopy (EDX). SEM imaging was conducted to
visualize surface morphology changes, while EDX was employed to identify any variations
in elemental composition resulting from the sterilization processes.

2.1. In-House Quality Control of the Deformation and Sterilization Process

To evaluate the deformation of the CAD/CAM aortic model after the sterilization
process, we performed a heatmap analysis. For this analysis, the final aortic model was
scanned using a CBCT before and after the sterilization process. The data sets were
imported into iPlan CMF (version 3.0, Brainlab AG, Munich, Germany) and a threshold-
based segmentation of the aortic model was performed using an interval of Hounsfield
units between −213 and + 2252 HU (Figure 3). The pre- and post-sterilization models were
exported as STL files and imported into Geomagic Control X (software version 2020.1.1,
Oqton, Los Angeles, CA, USA) for further analysis. The two imported STLs were aligned
using the “best fit” option. The pre-sterilization model was defined as the reference data. A
3D heatmap analysis was performed using a range of +1/−1 mm for the color bar option
and setting the tolerance at +0.5/−0.5 mm. A further detailed analysis of the strategically
important areas of vessel outlets in the main branches was performed. For this analysis,
measurements at four single coordinates circularly distributed along the surface mesh of
the inner outlet of the four main branches (celiac trunk, superior mesenteric artery, right
and left renal arteries) were performed three times. The mean and standard deviations of
the absolute values of the measured discrepancies between the two meshes were calculated
using Microsoft Excel (version 14.0, Microsoft Corporation, Washington, DC, USA).
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Figure 3. Screenshot of pre-sterilized aortic model. Screenshot of threshold-based segmentation of
the pre-sterilized printed aortic model in iPlan CMF3.0 (version 3.0, Brainlab AG, Munich, Germany).

As part of the clinic’s internal guidelines, the two aortic models were sent to the
Institute of Medical Microbiology and Hospital Hygiene for a sterility check. Both models
were incubated for 4 days at 36 ◦C under aerobic conditions in CASO-Boullion with lecithin,
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Tween 80, histidine, and thiosulfate (LTHth). CASO-Boullion is a trypticase soy medium
that is routinely used for sterility testing as it supports the growth of a large variety of
microorganisms (bacteria, yeasts, fungi). LTHth is added as standard to counteract the
negative effect of residual disinfectant. At the end of the incubation period, no growth of
microorganisms could be detected.

2.2. Ex-House Quality Control of the Deformation and Sterilization Process
Macroscopic Examination and SEM/EDX Analysis

The 3D-printed aortic models were subjected to thorough analysis to assess changes in
structural properties and material composition using scanning electron microscopy (SEM)
coupled with energy-dispersive X-ray spectroscopy (EDX). The surfaces of the implants
were visually inspected at magnifications of up to 30× (Figure 4).
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Figure 4. Ex-house macroscopic examination of three aortic 3D Models. Image on the top—three
aortic models (left: model after disinfection, middle: model after sterilization, right: untreated
model); inspection at magnifications of up to 30×—1.—model after disinfection; 2.—Model after
sterilization; 3.—Untreated model.
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SEM imaging was conducted to visualize surface morphology changes, while EDX was
employed to identify any elemental composition variations resulting from the sterilization
processes. For this segment of the investigation, a sample from the same area at the head
end (smaller diameter) of each implant was extracted and coated with a layer of gold. All
three implants exhibited a certain level of porosity exclusively in the upper edge region
(Figure 5).
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3. Results
3.1. Timeline of CAD/CAM Manufacturing

After clinical emergency assessment and performance of the indicated CT scan, the
manufacturing process of the CAD/CAM aortic model could begin immediately. The
entire procedure of computer-assisted design, including the steps of DICOM data export,
segmentation, and editing of the 3D model, was completed in less than 20 min. 3D printing
required 6 h and 54 min, with 1909 layers of 0.05 mm thickness printed. Post-processing
required 90 min to produce the final 3D aortic model. The sterilization process took 71 min
and 41 s, and the disinfection process took 47 min and 17 s. The entire procedure, from
indication to surgery, required no more than 12 h.

3.2. In-House Analysis
3D Heat Map Analysis of CAD/CAM Aortic Models

The 3D comparison of the five different aortic models showed a stable form consistency
with a root mean square of no less than 0.5 for each model after the sterilization process
(Figure 6). The highest value of RMS reflected aortic model #2, with 81.1% of values within
the set tolerance interval of −0.5/+0.5 mm.

Considering the strategically important regions of the vascular outlets of the main
branches of the abdominal aorta, the evaluation showed an overall mean discrepancy
between pre- and post-sterilization of 0.2214 mm, and no value for mean discrepancy
exceeded 0.5 mm (Figure 7).
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tic Models 1 and 4 were disinfected, 2 and 5 sterilized, and model 3 was untreated. Upper row: Value
distribution of the 3D comparison showing the amount of STL triangles with a certain discrepancy
between the pre- and post-sterilized surface meshes: the red area shows the tolerance interval of
−0.5/+0.5 mm. Middle row: Heat map for each aortic model—on the left a continuous color map
from under-contouring in dark and light red over yellow showing no discrepancy to light and dark
blue indicating over-contouring; on the right side all values within the tolerance of −0.5/+0.5 mm
are colored green. Lower row: Values of 3D comparison for each aortic model—MIN for minimum
value for under-contouring, MTL for total mean value, MAX for maximum value of over-contouring,
RMS for root mean square, STD for standard deviation, VAR for variance, IO% for percentage of
values inside the tolerance interval, NIO% for percentage of values outside the tolerance interval,
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Models 1 and 4 were disinfected, 2 and 5 sterilized, and model 3 was untreated. Top: example of
measurements of four coordinates circumferential at the vascular outlet of the superior mesenteric
artery. Bottom: mean and standard deviation for each aortic model at the vascular outlets of the four
main branches of the abdominal aorta.
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3.3. Ex-House Analysis

The surfaces of the implants were visually inspected at magnifications of up to 30×
(Figure 4). Implant #3 (untreated model) exhibited an additional irregular surface structure,
approximately 1 cm2 in size, adjacent to the arc-shaped grooves present in all three implants.
This particular surface structure was not observable in the corresponding areas of implants
#1 (disinfected) and #2 (sterilized). No other distinguishing anomalies were identified on
the implants.

Based on macroscopic and SEM/EDX examinations, distinct evidence of material al-
terations attributed to a treatment process, such as a cleaning procedure, was not identified
in the three implants. The comparative material analyses conducted via the EDX technique
also yielded consistent results for all three implants (Figure 8).
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and percentage table.

3.4. Evaluation of the Sterilization Process

No microorganisms (bacteria, yeasts, fungi) were detected on the disinfected and
sterilized models during the sterility test.

4. Discussion

The present study focused on evaluating the suitability of 3D-printed aortic models
for the development of SMSGs, with a specific emphasis on sequencing the aortic portion
of interest and examining the impact of sterilization processes and potential material
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changes. The results of this investigation have provided valuable insights into the practical
application of these models in the realm of vascular surgery.

Successful implementation of the described CAD/CAM (computer-aided design/
computer-aided manufacturing) workflow described here for 3D-printed aortic models
hinges on several critical factors, each of which contributes to the overall feasibility and
effectiveness of this approach. This discussion presents the various requirements and
considerations associated with arranging the proposed workflow.

A fundamental requirement for the CAD/CAM process is the availability of personnel
with the necessary expertise in computer-assisted surgery and CAD/CAM techniques. This
expertise extends to both the creation of accurate 3D digital models and their translation
into printable STL files. In addition, a competent team proficient in using the specific
software applications associated with 3D modeling and printing is essential. Given the
time-sensitive nature of certain surgical interventions, particularly in emergency settings,
the availability of skilled staff capable of swiftly and accurately employing CAD/CAM
methodologies becomes paramount.

The CAD/CAM workflow necessitates the use of specialized software applications
tailored for 3D modeling and printing. These applications enable the conversion of patient-
specific anatomical data into digital models and, subsequently, into printable files. However,
the acquisition of such software may require a significant financial investment to purchase
the expensive software licenses. Additionally, successful implementation often involves
collaboration with other groups such as cranio-maxillofacial (CMF), neurosurgery, and
orthopedics departments, particularly in larger medical centers. Alternatively, freeware
solutions such as 3D Slicer for Brainlab, Meshmixer, and CloudCompare for Geomagic
Control X provide cost-effective alternatives without compromising functionality.

The adoption of 3D printing as a critical element of the workflow requires the avail-
ability of suitable hardware, specifically a 3D printer. However, the current landscape
offers a range of 3D printing options that have become increasingly affordable and acces-
sible. Additionally, the maintenance of modern 3D printers is relatively straightforward,
minimizing disruptions to the workflow.

Macroscopic examination of the implants’ surfaces aimed to identify any apparent
irregularities or changes in surface structures. Furthermore, SEM/EDX analysis was
employed to examine the material composition of these implants. The observed porosity,
primarily in the upper edge regions, was consistent across all three implants.

Examination of the implants following sterilization procedures was performed to
ascertain whether the applied treatments had affected the implants’ structural integrity.
Although sterilization methods are crucial for ensuring patient safety and device com-
patibility, they can potentially influence material properties. Importantly, the SEM/EDX
analysis indicated that the sterilization methods did not lead to overt material changes
or structural disruptions. This observation supports the premise that these 3D-printed
aortic models can withstand sterilization processes without compromising their integrity,
aligning with their potential use in the development of surgeon-modified endoprostheses.

In 2019, Rynio et al. conducted a study in which they outlined the fabrication of a
3D-printed aortic arch template using six commonly employed printing materials, namely
polylactic acid (PLA), nylon, polypropylene (PP), polyethylene terephthalate glycol (PETG),
and both rigid and flexible photopolymer resins [15]. This was achieved by using fused
deposition modeling (FDM) and stereolithography (SLA) techniques. The 3D aortic models
underwent sterilization through various methods. Notably, one of these methods involved
autoclaving at 121 ◦C, and it was observed that steam sterilization in an autoclave at
121 ◦C induced significant deformation in the aortic templates constructed from PLA,
PETG, and PP. Conversely, the remaining materials exhibited stable geometries. Moreover,
during mesh comparisons, changes were found to be submillimeter in magnitude, a finding
consistent of our study with dental guide resin.

From the existing literature, transparent and rigid resins have emerged as the preferred
materials within the scope of current technological capabilities. This preference is rooted
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in their ability to offer clear visibility of rings or struts during the process of fenestration
planning. Nonetheless, the inherent rigidity of these materials fails to accommodate
the influence of guidewires on the straightening of the aorta and iliac arteries, a factor
that extends to the final deployed endograft. Consequently, while the integration of 3D-
printed templates holds promise for enhancing the precision of fenestration placement,
it is important to acknowledge that the template’s rigidity does not entirely mitigate the
potential for ostial mismatch [19].

Certain studies have demonstrated favorable clinical outcomes following the implan-
tation of SMSG using 3D aortic models [14,16]. From this information, it can be concluded
that the successful incorporation of 3D printing can be seamlessly integrated into the daily
practice of physicians involved in stent graft modification. This is especially applicable to
acute thoracoabdominal aortic pathologies requiring urgent intervention. As mentioned in
the introduction, custom-made prostheses are necessary for managing such pathologies,
with production typically requiring several weeks. However, after refining the sequencing,
production, and sterilization processes, it is feasible to have a sterilized aortic 3D model
within 10–12 h, enabling surgeons to intraoperatively create a personalized aortic prosthesis
tailored to the patient from the tube prosthesis. Naturally, material and technical require-
ments (such as computers, software, and 3D printers) and trained medical personnel are
essential for the entire process. From our experience, the assistance of additional personnel,
such as IT engineers, is not necessary after the surgeon has received software training
provided by the manufacturer.

It is important to acknowledge the limitations of this study. Its focus was primarily on
macroscopic and microscopic analyses of the implants’ surfaces and material composition.
In-depth mechanical testing and long-term durability studies could provide additional
insights into the implants’ stability.

5. Conclusions

This study has contributed to the growing body of knowledge concerning the practical
use of 3D-printed aortic models in vascular surgery. The absence of significant material
changes following sterilization treatments indicates their potential suitability for the devel-
opment of surgeon-modified endoprostheses. The findings also emphasize the importance
of understanding the nuances of material properties and responses to various processes. As
advancements in both 3D printing technology and material science continue, these models
hold promise for enhancing the precision and customization of endovascular interventions,
ultimately translating to improved patient outcomes. Further research, including extended
clinical trials, could provide a more comprehensive understanding of the applicability of
3D-printed aortic models in surgical practice.
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