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The availability of high throughput sequencing tools coupled with the declining costs in the production of DNA 
sequences has led to the generation of enormous amounts of omics data curated in several databases such 
as NCBI and EMBL. Identification of similar DNA sequences from these databases is one of the fundamental 
tasks in bioinformatics. It is essential for discovering homologous sequences in organisms, phylogenetic studies 
of evolutionary relationships among several biological entities, or detection of pathogens. Improving DNA 
similarity search is of outmost importance because of the increased complexity of the evergrowing repositories 
of sequences. Therefore, instead of using the conventional approach of comparing raw sequences, e.g., in fasta 
format, a numerical representation of the sequences can be used to calculate their similarities and optimize 
the search process. In this study, we analyzed different approaches for numerical embeddings, including Chaos 
Game Representation, hashing, and neural networks, and compared them with classical approaches such as 
principal component analysis. It turned out that neural networks generate embeddings that are able to capture 
the similarity between DNA sequences as a distance measure and outperform the other approaches on DNA 
similarity search, significantly.
1. Introduction

The rapid progress in high-throughput Next Generation Sequencing 
(NGS) tools and technologies, exemplified by platforms like Illumina or 
Nanopore, has ushered in an unprecedented era of biological data gen-

eration. This surge encompasses diverse types of biological information, 
including DNA, RNA, and protein sequences. The transformation in the 
generation and analysis of biological datasets has led to a remarkable 
proliferation of omics data. These extensive datasets find their curation 
in various databases, notable among them being the National Center 
for Biotechnology Information (NCBI), Ensembl, the European Molecu-

lar Biology Laboratory (EMBL) sequence repository, and UniProt.

These databases serve as valuable resources for numerous essen-

tial bioinformatics tasks, such as DNA similarity search [1], sequence 
alignments [2], gene annotation [3,4], gene prediction [5,6], and motif 
finding [7,8]. However, as these databases store vast volumes of se-

quences, performing these bioinformatics tasks is becoming increasingly 
challenging and complex. Towards reducing the complexities involved 
in searching large biological databases for similar DNA sequences and 
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other bioinformatics tasks, various vector embedding techniques can be 
explored to generate lower dimensional vectors of the sequences for ef-

ficient storage and retrieval from a vector database. Vector databases 
[9,10] have become more popular among researchers, providing plat-

forms for data points to be embedded in a vector space using embedding 
functions [11,12] instead of storing the data in tables using the usual re-

lational databases. Some of the widely used embedding techniques for 
biomedical applications are Local Sensitive Hashing (LSH [13]), Prin-

cipal Component Analysis (PCA [14]), Frequency Matrix Chaos Game 
Representation (FCGR [15]), and Artificial Neural Networks (ANNs 
[16]).

LSH allows for approximate similarity search, which can be benefi-

cial in scenarios where exact matches are not strictly required [13]. This 
can speed up the search process, especially in large genomic databases. 
Also, LSH can significantly reduce the computational complexity of 
similarity search compared to traditional methods like brute-force pair-

wise comparison, especially when dealing with large datasets. While 
LSH provides speed and efficiency, it comes at the cost of approximate 
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matching. The degree of approximation needs to be carefully consid-

ered based on the specific requirements of the application.

The PCA can help filter out noise and highlight the most significant 
patterns in the data [14]. This is particularly useful in DNA sequence 
analysis, where noise may arise from sequencing errors or variations. 
Also, PCA is computationally efficient, making it suitable for large 
datasets. It can handle a large number of DNA sequences and reduce 
the computational burden of subsequent analyse. Nevertheless, PCA in-

volves projecting data onto a lower-dimensional space, leading to some 
loss of information. The reduced dimensions may not capture all the 
intricacies of the original DNA sequences. PCA also assumes linearity 
in the data, which may not hold for complex relationships in DNA se-

quences.

FCGR is efficient in reducing the dimensionality of DNA sequences, 
making it suitable for visualization and clustering analyses by employ-

ing fractal representation [15]. It suitable for transforming of complex 
sequence data into a simpler representation. FCGR is generally robust 
to variations in DNA sequences. However, FCGR have limitations re-

lated to loss of sequence order information and sensitivity to sequence 
length, and this may limit its ability to capture certain types of sequence 
relationships.

ANNs can discover non-linear relationships and intricate patterns 
in DNA sequences, which are difficult to identify using traditional 
methods. Furthermore, they can also learn relevant features from raw 
DNA sequences, eliminating the need for manual feature engineering 
when analyzing large datasets [16]. Additionally, ANNs can efficiently 
scale to handle datasets with large amounts of sequences with vary-

ing lengths, a common occurrence with DNA sequences. Furthermore, 
end-to-end learning with ANNs allows the model to learn hierarchical 
representations directly from the raw DNA sequence. This enables them 
to capture both local and global dependencies among the sequences. 
However, ANNs, especially when dealing with highly complex data such 
as DNA sequences, are prone to overfitting, where the model may mem-

orize training examples instead of generalizing well to unseen data. 
ANNs, particularly deep models, are often considered black-box models, 
making it challenging to interpret the learned features or understand 
how the model arrives at a particular prediction. Deep Learning (DL) 
methods such as Convolutional Neural Networks (CNN) are used as em-

bedding functions to create embeddings where similar data points are 
placed close to each together in a vector space so that similarity search 
can be highly optimized. For instance, Bee et al. used neural embed-

dings for images directly encoded into DNA sequences [17] thereby 
maintaining similarity of the DNA sequences for similar images but 
without compression.

In our study, we investigated the potential of deep learning models 
to create neural embeddings that capture DNA sequence similarity as a 
distance measure while maintaining a reasonable degree of dimension-

ality reduction that produces viable embeddings suitable for optimizing 
DNA similarity search, and provide a proof-of-concept for the detection 
of antimicrobial resistance (AMR) genes in pathogens.

The rise of AMR poses a significant risk to global health, food se-

curity, and societal progress. It is estimated that without action against 
AMR, annual global deaths could reach 10 million by 2050 [18]. In 
clinical settings, antimicrobial susceptibility testing (AST) is commonly 
employed for AMR analysis, but it necessitates specialized facilities and 
trained technicians, limiting its use to bacteria that can be cultured 
[19]. Recent research has been exploring the use of computational 
techniques for AMR prediction, combining genomic sequencing with 
established databases and phenotypic data on AMR [19,20].

Our findings show that CNN trained with ladder loss show a great 
potential in creating semantic neural embeddings for DNA sequences 
that optimize DNA similarity search. DNA similarity search is pivotal 
to discovering homologous sequences in organisms and phylogenetics 
study of evolutionary relationships among several biological entities.

Prior to the use of AI algorithms for DNA similarity search, the 
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Needleman-Wunsch [21] and Smith-Waterman [22] algorithms have 
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been widely used in computing DNA sequence similarity either as a 
global or local alignment. The Needleman-Wunsch algorithm is de-

signed to find the optimal global alignment between two sequences, 
while the Smith-Waterman algorithm is used for local alignment, i.e., 
for finding motifs within the sequences. Although the Needleman-

Wunsch and Smith-Waterman generate optimal global and local align-

ments respectively; nevertheless, the algorithms’ running time complex-

ity is the key limitation when dealing with large sequence databases. 
Heuristic algorithms such as Basic Local Alignment Search Tool (BLAST) 
[23,24], FASTA [25], and DIAMOND [26] have been widely embraced 
for obtaining DNA similarity in a timely way.

BLAST employs a seed-and-extend algorithm, which breaks the 
query sequence into small segments (seeds) and quickly identifies 
matches in the database before extending the alignment. FASTA, on 
the other hand, uses a word search algorithm that compares segments 
(words) of the sequences in a pairwise manner. Both BLAST and FASTA 
use scoring matrices to assign scores to matches and mismatches dur-

ing sequence alignment. However, the specific scoring matrices used 
can vary. BLAST often utilizes the BLOSUM [27] as the substitution 
matrix for protein sequences, but users can specify other protein scor-

ing matrices such as PAM [28]. FASTA typically employs the PAM or 
substitution matrices derived from its own alignments. Both tools pro-

vide statistical measures like E-values to estimate the significance of 
sequence similarities. BLAST is generally faster and more sensitive for 
large-scale database searches, while FASTA is often favored for custom 
databases and specific research needs. Despite the potential of BLAST 
and FASTA algorithms, the low accuracy of their search results due to 
the heuristic nature of the algorithm is a drawback.

To increase the speed and accuracy of DNA similarity search and 
other related bioinformatics tasks, ML techniques have been proposed 
as a sturdy approach for developing viable computational tools. ML 
techniques [29], especially deep learning [30], have been explored to 
develop models for DNA sequence analysis and similarity search. This 
study explored two ANN approaches in creating neural embeddings; the 
fully connected networks (FCN) [31] and CNN [32] trained with both 
triplet loss and ladder loss. FCNs and CNNs are two prevalent types of 
ANN used in deep learning models. While both types of networks can 
learn and make predictions, they have different architectures.

In an FCN, also known as a dense network or multi-layer percep-

tron (MLP), each neuron is connected to every neuron in the previous 
and subsequent layers. This means that the input to each neuron is a 
weighted sum of the outputs of all neurons in the previous layer, fol-

lowed by an activation function such that predictions are made based 
on the high-level features extracted by the previous layers. Also, each 
parameter (weight) in FCN is unique to a specific connection between 
two neurons. This means that the number of parameters in an FCN can 
grow rapidly as the size of the input increases and can be computed 
using matrix multiplication.

On the other hand, CNNs are specifically designed to process grid-

like data such as images. They consist of multiple layers, including 
convolutional, pooling, and fully connected layers. The convolutional 
layers apply filters to the input data, extracting features by perform-

ing convolutions. The pooling layers reduce the spatial dimensions of 
the data, reducing the computational complexity leveraging on param-

eter sharing and local connectivity. Also, in the convolutional layers, a 
small set of weights (kernel/filter) is shared across all spatial locations 
of the input. This significantly reduces the number of parameters, mak-

ing CNNs more efficient for processing grid-like data. Both CNN and 
FCN architectures require training to optimize their parameters. The 
FCNs must find the optimal values for their matrices and biases, while 
the CNN needs to learn the best kernels.

Triplet loss [33] and ladder loss [34] functions have been proposed 
in previous studies for training neural network architectures. The triplet 
loss is typically used for data with class labels with the key idea of 
pulling samples of the same class closer together in latent space while 

simultaneously pushing away samples of different classes. To accom-
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Fig. 1. Visualization of the DNA data distribution with sequence lengths spanning from 162 to 3,594 nucleobases. Majority of sequences exhibit similar sizes, 
clustering around 800 to 1,200 nucleobases, as highlighted in the boxplot diagram.
plish this, data is processed as triplets of samples (𝑥, 𝑥+, 𝑥−), where 𝑥 is 
called the anchor, and 𝑥+ and 𝑥− are the positive and negative samples, 
respectively. 𝑥 and 𝑥+ are selected to be from the same class, while 𝑥−
is a sample from a different class. One major limitation of utilizing the 
triplet loss for semantic embedding is the strict and binary distinction 
between positive and negative samples. By doing so, not all the infor-

mation provided by the data is utilized. This becomes evident when 
considering the triplets (A, A, B) and (A, A, C), where 𝑠(𝐴, 𝐵) ≫ 𝑠(𝐴, 𝐶). 
A has a very high similarity to itself, so B and C are negative samples. 
Even though A and B are much more similar than A and C, the triplet 
loss approach will push the sequences B and C away from A by the 
same margin. Thus, B and C are valued equally, although pushing the 
more dissimilar sequence C further away would be more appropriate. 
Therefore, this effect is reduced when learning on the triplet (A, B, C). 
Nevertheless, training an ANN does not guarantee finding an optimal 
solution, making this a difficult scenario.

A technique that addresses this oversight in the triplet loss is ladder 
loss. To apply the ladder loss, all data samples must first be ranked in 
order of similarity. Also, the ladder loss involves joint optimization of 
the reconstruction loss and classification loss. The reconstruction loss 
helps the network to learn robust features, while the classification loss 
ensures good performance on labeled data.

2. Material and methods

The dataset used in the study was retrieved from the Comprehen-

sive Antibiotic Resistance Database (CARD) database [35]. Identifying 
similar DNA sequences from this dataset can benefit Antimicrobial Re-

sistance (AMR) [36] [37] research by providing insights into pathogens’ 
characteristics and their genetic relationship to other pathogens. Also, a 
quick identification of AMR class for unknown pathogens can drastically 
improve treatment by providing knowledge about the antibiotics that 
are likely to be the most effective for the pathogen. The dataset contains 
33, 860 DNA plasmids from 263 pathogens structured as a collection of 
sequences and their corresponding GenBank sequence identifier as a la-

bel. To remove all potential outliers and noises from the dataset, all 
pathogens with ten or fewer nucleotide sequences were filtered out. 
Thus, the cleaned dataset contained 3, 549 DNA sequences from 47 dis-

tinct pathogens with lengths ranging from 162 to 3, 594 nucleotides and 
most sequences of a similar size, around 800 to 1, 200 nucleotides, with 
only a few exceptionally long sequences, as shown in Fig. 1.

Also, given that the DNA sequences are of varying lengths and com-

prised of non-digit characters, it is necessary to convert them to a form 
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suitable for machine learning operations. Therefore, we transformed 
them into a uniform representation using the chaos game representa-

tion (CGR) [38] such that all the sequences are represented as CGR 
images with the same resolution. The main idea of using the CGRs is 
to map a one-dimensional sequence of categorical values into a two-

dimensional polygon, where every vertex represents one of the unique 
categorical values. First, a regular polygon with as many vertices as 
there are unique values that compose the sequences is created. Each 
unique categorical input value is then assigned to a vertex. Starting 
from the center of the polygon, a marker is placed. For every value in 
the sequence, the marker is moved halfway between its current posi-

tion and the vertex corresponding to the sequence’s current value. Its 
position is marked with a dot in the polygon, and the maker’s move-

ment creates the CGR images by iterating through the whole sequence. 
It has been shown recently that CGR-encoding can lead to superior per-

formance in subsequent machine learning [15,39].

In Fig. 2, the flowchart illustrates the algorithmic process for gener-

ating neural embeddings. To apply the data to similarity search prob-

lems effectively, it is essential to determine the ground truth similarity 
between sequences for accurate ranking. Therefore, we computed the 
ground truth among sequences utilizing the Needleman-Wunsch (NWS) 
algorithm with the scoring values of +1 for a match, 0 for mismatches 
and −1 for gaps (either gap opening or extension). Then, the obtained 
NWS data and CGRs were combined to generate the input dataset for 
the ANN; such that each entry has the structure (𝑞, (𝑎1, 𝑠1), ..., (𝑎𝑛, 𝑠𝑛)). 
Where, 𝑞 refers to the anchor sequence, whose embedding will be com-

pared to the embeddings of sequences 𝑎1 to 𝑎𝑛. Also, 𝑠𝑖 ∶= 𝑠(𝑞, 𝑎𝑖)
represent the computed NWS, where 𝑠𝑖 ≥ 𝑠𝑗 for 𝑖 < 𝑗. Hence, the or-

der of the comparison sequences 𝑎1 to 𝑎𝑛 is equivalent to the ranking 
by highest similarity. Since the dataset has 3, 549 entries, each of the 
original DNA sequences is used as an anchor sequence exactly once. 
Also, since neural embeddings need training data to adjust the ANN’s 
weights, we obtained 80% of all the data for training and 20% for test-

ing. The train-test split is based only on the anchor sequence 𝑞 and does 
not consider the comparison sequences 𝑎1, ..., 𝑎𝑛. We explored two ANN 
techniques (FCN and CNN) with two loss functions (triplet loss, and 
ladder loss) to create vector representations of DNA sequences using a 
Siamese Neural Network (SNN) [40] architecture as shown in Fig. 3. 
SNNs are designed for binary classification tasks in which input data 
comes in pairs and the goal is to determine similarity or dissimilarity. 
Usually they consist of two mirrored sub-networks sharing weights, but 
can alternatively feature several sub-networks. Our approach involves 
two sub-networks consisting of CNNs or FCNs. Each sub-network is pre-

sented with a different input and then the outputs are processed with 

a loss function (triplet loss or ladder loss), adjusting the weights so the 
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Fig. 2. Visualization of the system flowchart encompassing the preprocessing of input DNA sequences and the utilization of ANN to generate neural embeddings 
stored in the vector database. Figure was created with Biorender.com.
Fig. 3. Visualization of the Siamese Neural Network Structure used for training 
the CNN and FCN with the triplet loss and ladder loss functions.

SNN minimizes the loss. This produces embeddings that maintain sim-

ilarity in latent space. Then the models are trained by running input 
data through the network, calculating a loss based on similarity in la-

tent space, and backpropagating the error through the network. This 
pulls similar sequences together and pushes dissimilar sequences apart 
in the latent space.

2.1. Embedding techniques

2.1.1. Triplet loss function with FCN and CNN

The application of FCN and CNN with triplet loss function required 
training of the input sequence. Table 1 provides details on the architec-

tural layouts and optimal hyperparameter settings for training both the 
CNN and FCN. Also, dropout layers serves as a regularization technique 
incorporated into the models to mitigate the risk of overfitting during 
training. Additionally, early stopping is employed, which intervenes in 
the training process if the validation loss begins to rise, signaling po-

tential overfitting of the model to the training data. However, models 
using the triplet loss cannot be trained directly on samples in the form 
of (𝑞, (𝑎1, 𝑠1), ..., (𝑎𝑛, 𝑠𝑛)). The training of the two ANN models requires 
triplets of the form (𝑥, 𝑥+, 𝑥−), where 𝑥 is the anchor sequence, 𝑥+ is a 
positive sample, and 𝑥− is a negative sample. Therefore, for each anchor 
sequence 𝑞, the corresponding comparison sequences are used to create 
a set of triplets 𝑇𝑞 =𝑈

𝑦

𝑖=1𝑈
𝑛
𝑗=𝑖+1(𝑞, 𝑎

+
𝑖
, 𝑎−

𝑗
). This set encompasses all pos-

sible triplets for anchor 𝑞, where the similarity of the positive sample 
is higher than that of the negative sample, such that the dataset of the 
triplets for all anchors 𝑇𝑞 = 𝑈𝑞𝑇𝑞 was employed to train the triplet loss 
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models. Let 𝑇 be the dataset of all possible triplets, with a cardinality 
Table 1

Optimal-performing CNN and FCN Architectures layout along with their 
corresponding hyperparameter configurations.

Layers CNN FCN

Convolutional Neurons: 1024 Not Applicable

Kernel Size: 5

Activation Function: ReLU

Pooling Padding: 0 Not Applicable

Strides: 1

Flattening None Not Applicable

Fully Connected Neurons:512 Neurons: 512

Activation Function : ReLU Activation Function: ReLU

Dropout: 0.2 Dropout:0.2

Kernel size: 3 Kernel size: 3

Output Activation Function: tanh Activation Function : ReLU

Learning rate: 6e-7 Learning rate: 6e-7

of 𝑁 . The loss 𝐿 aims to minimize the distance from the anchor to the 
positive sample and to maximize the distance to the negative sample 
for all triplets in 𝑇 as shown in Eq. (1).

𝐿 =
𝑁∑
𝑖

[||𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖
+)||22 − ||𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖

−)||22 + 𝛼]+ (1)

Where 𝑓 stands for the embedding function, represented by the net-

work, and 𝛼 is a margin that defines how significant the distance be-

tween positive and negative samples should be. Also, a closer look at 
Eq. (1) makes it apparent that the loss is minimized when the distance 
between the anchor and positive sample is small and between the an-

chor and negative sample is high. Using the non-negative portion of 
each summand ensures that the loss cannot be improved by pushing the 
negative sample infinitely far away.

2.1.2. Ladder loss function with FCN and CNN

A train-test split dataset is also required for utilizing the ladder loss 
function in FCN and CNN architectures. However, while the triplet loss 
requires triplets (𝑥, 𝑥+, 𝑥−) to train, the ladder loss requires groups of 
similar sequences 𝑁−𝑞

𝑖
ranked in order of similarity. Given an anchor 𝑞, 

the remaining data can be divided into 𝑀 groups 𝑁−𝑞

1 , ..., 𝑁−𝑞

𝑀
, where 

the samples in 𝑁−𝑞
𝑖

are more similar to 𝑞 than samples in 𝑁−𝑞
𝑗

for 𝑖 < 𝑗

such that 𝑁−𝑞

𝑎∶𝑏 := 𝑈−𝑞
𝑖=𝑎

𝑁
−𝑞
𝑖

, 1 ≤ 𝑎, 𝑏 ≤𝑀 ∈ ℕ. The loss in each group 
𝐿𝑖

𝑙𝑎𝑑
can be calculated as a triplet loss where the group’s samples are 

considered positive, samples of more dissimilar groups are considered 
negative, and 𝑞 remains the anchor which represents a general case as 

shown in Eq. (2)
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𝐿𝑖
𝑙𝑎𝑑

(𝑞) =
∑

𝑥+∈𝑁
−𝑞

𝑖−1

∑
𝑥−∈𝑁

−𝑞
𝑖∶𝑀

[𝛼𝑖 − 𝑠(𝑞, 𝑥+) + 𝑠(𝑞, 𝑥−)]+, 𝑖 ∈ {2, ...,𝑀} (2)

In the second scenario of 𝐿1
𝑙𝑎𝑑

, all the samples aside from 𝑞 are con-

sidered as negative; representing a special case since the only positive 
sample is 𝑞 itself, and thus, all other samples are pushed away equally 
as shown in Eq. (3)

𝐿1
𝑙𝑎𝑑

(𝑞) =
∑

𝑥−∈𝑁
−𝑞
𝑖∶𝑀

[𝛼1 − 𝑠(𝑞, 𝑥+) + 𝑠(𝑞, 𝑥−)]+ (3)

After calculating the losses for each group, they can be used to create 
the final loss, which is used to measure the model’s error. As shown 
in Eq. (4), the final ladder loss for a given anchor 𝑞 is the weighted 
sum of each group’s loss. The weights 𝛽1, ..., 𝛽𝑀 , as well as the margins 
𝛼1, ..., 𝛼𝑀 are optimizable hyperparameters that influence the impor-

tance of correct ordering between different groups and determine how 
far the groups are pushed apart. Also, ladder loss allows the data points 
to freely organize themselves by not grouping them with other data 
points and offers a flexible approach to ranking the DNA sequences.

𝐿𝑙𝑎𝑑 (𝑞) =
𝑀∑
𝑖=1

𝛽𝑖𝐿
𝑖
𝑙𝑎𝑑

(𝑞) (4)

2.2. Evaluation metrics

In this study, one of our goals is to determine the veracity of neu-

ral embeddings in extracting and compressing the necessary similarity 
information contained within the CGR image to capture DNA sequence 
similarity in a latent space. Therefore, the embedding methods were 
evaluated based on the information retrieval task by employing the gen-

erated embeddings of each model to calculate their similarity in latent 
space. Given the ground truth sequence similarity and the sequences’ 
calculated similarities, the sequences’ actual ranking can be compared 
to the predicted ranking. The predicted ranking of these sequences is 
obtained by calculating the similarity between embeddings and sorting 
the data based on this measurement. Since all the embeddings are vec-

tor representations of the sequences, the cosine similarity was used to 
obtain the similarity score of the vectors as shown in Eq. (5).

𝑠𝑐𝑜𝑠(𝑎, �⃗�) ∶= cos𝜃 = 𝑎.�⃗�

||𝑎||||�⃗�|| (5)

Also, the quality of the embedding techniques can be measured by 
quantifying their ranking performance. Therefore, we utilized the Nor-

malized Discounted Cumulative Gain (NDCG), based on the Discounted 
Cumulative Gain (DCG) as shown in Eq. (6), to obtain the ranking per-

formance of the embedding techniques. The NDCG calculates a ranking 
score in a way that gives more importance to correct predictions on 
higher ranks rather than valuing each rank the same.

𝐷𝐶𝐺 =
|𝑅|∑
𝑖=1

𝑟𝑒𝑙𝑖

𝑙𝑜𝑔(𝑖+ 1)
(6)

where 𝑅 is the set of embedded sequences ordered by predicted simi-

larity, and 𝑟𝑒𝑙𝑖 represent the importance of the embedding at position 
𝑖𝑖𝑛𝑅. In this study, 𝑟𝑒𝑙𝑖 was calculated as the reversed rank of the em-

bedding: 𝑛 − 𝑖 +1. However, the NDCG does not give a direct indication 
of how good the ranking is for the most similar sequences, which is a 
vital parameter when considering semantic embeddings. Therefore, we 
calculated the positional rank score as shown in Eq. (7) for predicting 
a position 𝑝 similar to the mean squared error but punishes the errors 
more severely due to the exponential term.

1
𝑁∑ 1
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𝑠𝑐𝑜𝑟𝑒𝑝 = 𝑁
𝑖=1 𝑒|𝑝−𝑡𝑟𝑢𝑒𝑖𝑝|

(7)
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Where 𝑁 is the number of entries in the dataset, and 𝑝 − 𝑡𝑟𝑢𝑒𝑖𝑝 is the 
true rank of the CGR at position 𝑝 of the 𝑖 − 𝑡ℎ data entry. Therefore, 
this score takes into account the prediction for rank 𝑝 of every dataset 
entry and measures how far they deviate from their true rank.

3. Results

We evaluated the performance of our method by comparing its re-

sults to three embedding techniques: FGCR [15], PCA [14], and LSH 
[13] using three variants [41]: LSH with average hashing (ahash), 
LSH with perceptual hashing (phash), and LSH with wavelet hashing 
(whash). The same dataset and computational setup were used for the 
comparison. The models were compared based on the quality of the 
embeddings they generated, which stems from their ability to encode 
similarity among sequences. Secondly, we assessed the degree to which 
the models can compress the DNA sequence without losing sensitive 
information. Thirdly, we analyzed the time the models took to gener-

ate valuable embeddings. The FCGR was used as the baseline model for 
comparing the performances of other models.

In the assessment of the generated embeddings’ qualities, Fig. 4 illus-

trates the evaluation outcomes of the models based on the NDCG score, 
computed from the evaluation data derived from the source dataset. No-

tably, the baseline model outperforms the majority of other approaches, 
with only neural embeddings using ladder loss achieving higher average 
scores and exhibiting a significant lead in overall performance. Also, to 
generalize our models, we compared the results of NDCG ranking over 
the entire data set with the train-test split method. It is evident from 
the results in Fig. 5 that the triplet-loss models that performed poorly 
over the whole dataset. As for the results of PCA, they do not deviate 
notably from one another, although the performance on the test set ex-

hibits slightly higher variance. In the case of the ladder loss function, 
they continue to demonstrate good results, even on the test set, although 
the ranking performance on the test set is slightly lower than the overall 
performance. Notwithstanding, the results of the CNNs are more stable 
and closer to the overall dataset’s scores than the FCN model. Conse-

quently, the ladder loss CNNs model gives the best output and can be 
regarded as a generalization model for the entire data and the train-split 
dataset. However, for the approaches that utilize the train-test split, the 
performance on the test set becomes a crucial indicator of the tech-

nique’s generalizability.

Moreover, in Fig. 6, instead of the NDCG rank score, we utilized 
positional rank scores for ranks one (left bar), two (center bar), and 
three (right bar). The outcomes reveal that CNN trained with ladder 
loss achieved the highest scores, emerging as the sole model surpass-

ing the baseline model’s performance. While these overall trends align 
with our observations in Fig. 4, there is substantial variation in the per-

formance of FCN trained with ladder loss. Despite FCN’s ladder loss 
showing commendable results with the NDCG score, as depicted in 
Fig. 4, the positional rank scores exhibit considerable variance and an 
overall subpar performance. Thus, while FCN with ladder loss may ex-

hibit reasonably good overall rankings, it proves to be one of the less 
effective approaches in accurately identifying the exact rank of a se-

quence. Additionally, Fig. 6 illustrates that, for most approaches, the 
prediction of rank one surpasses the prediction of rank two, and both 
outperform predictions for rank three. This pattern is disrupted only by 
the least performing approaches, particularly evident for CNNs trained 
with triplet loss.

Secondly, when assessing the models’ ability to compress DNA se-

quences, the rank scores for various embedding dimensions in each 
model, depicted in Figs. 7 and 8, indicate that smaller embedding di-

mensions result in lower rank scores. For example, both PCA and CNNs 
exhibit a gradual decline in scores as sequences are embedded into 
fewer dimensions. While FCN’s rank scores do not strictly conform to 
this pattern, the overall trend aligns with the concept. LSH also con-

forms to the trend of diminished performance with lower-dimensional 

embeddings, akin to random guessing when reducing data to 64 dimen-
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Fig. 4. Visualization of NDCG rank scores for different models reveals that, among the embedding approaches, FCGR serves as the baseline model and outperforms 
other methods, except the neural embeddings. The neural embeddings using ladder loss (convnet-ladder) exhibit the highest overall score, significantly surpassing 
the baseline and all other models. n represents the number of runs. For some approaches, n is smaller, e.g., the hashes, because there is no variance in the results 
compared to the deep learning architectures.

Fig. 5. Visualization of the generalization capacity of models across the entire dataset indicates that models trained with triplet loss, including both CNN and FCN, 
exhibit poor performance. On the contrary, models trained with ladder loss, both CNN and FCN, showcase the highest generalization ability.

Fig. 6. Visualization of positional rank scores for ranks one (left bar), two (center bar), and three (right bar) reveals that CNNs with ladder loss consistently achieve 
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the highest scores. Notably, this technique is the only one that outperforms the baseline model.
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Fig. 7. Visualization illustrating the NDCG scores of the model’s performance in relation to embedding dimensions for compressed DNA sequences. The results 
highlight the superior capacity of neural embeddings to efficiently embed sequences into lower-dimensional latent spaces.

Fig. 8. Visualization of the positional rank scores of the model’s performance relating to embedding dimensions for compressed DNA sequences. The results indicate 
that larger embedding sizes generally result in higher rank scores, with the neural embedding using ladder loss (convnet-ladder) showcasing superior performance 
across all three positions.

Fig. 9. Visualization illustrating the rank scores relative to the average time taken to create sequence embeddings. This result shows that PCA and LSH emerge as 
the fastest methods for generating sequence embeddings. However, these methods produce lower-quality embeddings. In contrast, convnet-ladder generates superior 
quality embeddings but requires a longer processing time.
sions. Moreover, Fig. 7 underscores that neural embeddings excel in em-

bedding sequences into lower-dimensional latent spaces. In essence, the 
patterns observed in Figs. 7 and 8 underscore the necessity of finding 
a balance between substantial data compression and retaining essential 
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information.
Thirdly, another crucial aspect used to assess model performance is 
the time taken to embed a given DNA sequence. In Fig. 9, where the 
rank score was plotted against the embedding time, the outcomes re-

veal that PCA and LSH stand out as the fastest techniques for embedding 

CGR images of DNA sequences. However, it’s noteworthy that they pro-
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Fig. 10. Visualization depicting the relationship between embedding time and embedding dimensions. The outcomes indicate that PCA, LSH, and fcnet-ladder 
maintain a consistent average embedding time across various embedding sizes. Conversely, the convnet-ladder exhibits a gradual increase in processing time as the 
embedding size grows.
Fig. 11. Visualization of the retrieval time of NeuralBeds compared to BLAST 
demonstrates that NeuralBeds returns similar DNA sequences within a shorter 
time frame than BLAST.

duce low-quality embeddings, as illustrated in Fig. 4; this aligns with 
expectations since they are lightweight, unparameterized approaches. 
In contrast, the CNN model requires the longest time to embed a CGR 
image of the sequence. Unlike other techniques, which exhibit slight 
variance in their data embedding time, CNN displays significant vari-

ability. Nevertheless, the results presented in Fig. 10, where embedding 
time was compared with embedding dimension, indicate that other 
models are not affected by the embedding size. In contrast, CNNs be-

come progressively faster at embedding as the dimensionality decreases. 
Therefore, it’s clear that for CNNs, the time needed to embed data is in-

fluenced by the embedding dimension.

As a use case, we compared the performance of our CNN neural 
embedding with ladder loss (NeuralBeds) to BLAST in terms of re-

trieval speed, disk storage usage and quality of the retrieved sequences. 
Fig. 11 illustrates that NeuralBeds achieved a shorter retrieval time than 
BLAST. Moreover, NeuralBeds demonstrates an increased sensitivity of 
89%, surpassing the 74% sensitivity observed in BLAST. Here, sensi-

tivity describes an algorithm’s proficiency in capturing all pertinent 
sequences, thereby minimizing false negatives. This metric is calculated 
as the ratio of true positives to the sum of true positives (TPs) and 
false negatives (FNs). Within the framework of BLAST, TPs denote out-

comes accurately identified as similar to the query sequence. Hence, it 
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becomes imperative to employ a metric of similarity for the accurate 
determination of TPs. The determination of TPs relied on the normal-

ized raw score alignment presented in the BLAST report. This score, 
expressed in bits, is derived by considering both the length and quality 
of the alignment. Higher scores generally indicate a more robust and 
reliable similarity between the query and the database sequence. Fur-

thermore, while the BLAST database consumed 15 GB of disk space, 
the NeuralBeds database required only 1.8 GB for the trained embed-

ding. The comparison utilized 1, 265, 047 FASTA DNA sequences of 
salmonella bacteria downloaded from the NCBI data repository.

4. Discussion

In this study, we delved into the potential of neural embeddings 
as a viable strategy for optimizing DNA similarity search and archiv-

ing. Specifically, we harnessed the power of two neural networks 
techniques—Convolutional Neural Network (CNN) and Fully Connected 
Network (FCN)—trained with triplet loss and ladder loss to construct 
an encoded DNA sequence vector database, thereby enhancing the effi-

ciency of DNA similarity search. The study was driven by key research 
questions that served as parameters for assessing the feasibility of our 
methods and interpreting our research findings. These questions re-

volved around the effectiveness of neural embeddings in capturing DNA 
sequence similarity, the optimal degree of dimensionality reduction for 
producing high-quality embeddings, and the comparative speed of var-

ious methods in generating DNA embeddings.

Additionally, we conducted a comprehensive comparison of the re-

sults obtained from the neural embedding approach with three alterna-

tive techniques: Locality-Sensitive Hashing (LSH), Principal Component 
Analysis (PCA), and Chaos Game Representation (CGR). The evalua-

tion involved a ranking task, where DNA sequences were ordered based 
on their distance from a query DNA sequence. After examining the re-

sults, a number of significant findings have come to light. It is apparent 
that neural embeddings trained using the ladder loss exhibit superior 
suitability for semantically embedding DNA sequences. As evidenced 
by the ranking score, they surpass all other approaches. Notably, this 
technique stands out as the only one that outperforms unprocessed 
Chaos Game Representations (CGRs). Furthermore, it demonstrates ef-

fectiveness in transforming CGR images across various embedding sizes. 
However, it is essential to note that the slow embedding time poses a 
noteworthy drawback, with the model architecture exerting a strong 
influence on this aspect.

On the contrary, unparameterized techniques like PCA and LSH ex-

hibit speed but fall short in creating sufficiently well-structured latent 
space embeddings, particularly at higher dimensions. This limitation 
renders them inadequate for effectively capturing the similarity of DNA 

sequences. Our observations align with the anticipated outcomes for 
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PCA and LSH, given their unparameterized nature, which does not 
leverage known similarity information. Consequently, PCA struggles 
to systematically outperform unprocessed Chaos Game Representations 
(CGRs) because its transformation matrix extraction disregards real 
DNA similarities, lacking the incorporation of additional information. 
Similarly, LSH, being a data-independent approach, does not adapt 
based on provided DNA similarities. In the realm of neural embed-

dings, their training specifically targets the real Needleman-Wunsch 
Score (NWS) between sequences, contributing to their superior per-

formance. Interestingly, models trained with the triplet loss exhibit 
poor performance, ranking as the least effective among all examined 
methods. Despite being trained on the similarity relationships of DNA 
sequences, triplet loss models fail to adequately capture their similar-

ity. In contrast, the findings for ladder loss align with the flexibility 
and adaptability inherent in ANN for creating neural embeddings. Their 
capacity to generate well-structured embedding spaces underpins the 
emergence of vector databases.

Additionally, our observations underscore the influence of embed-

ding dimensions on model performance. Larger embedding dimen-

sions tend to excel in capturing intricate patterns and nuances within 
DNA sequences, resulting in enhanced overall performance. Conversely, 
smaller embedding dimensions contribute to information loss and lower 
rank scores. The augmentation of embedding dimensions equips the 
model with increased capacity to represent underlying features and re-

lationships in the data. This expanded capacity enables the model to 
discern finer-grained distinctions between items, consequently improv-

ing the accuracy of rankings. With larger embedding dimensions, the 
model gains the ability to learn more comprehensive representations 
that encompass a broader range of characteristics. On the flip side, 
smaller embedding dimensions constrain the expressive power of the 
model, making it more challenging for the model to capture intricate 
relationships and patterns within the data. This limitation manifests in 
lower performance, as the model may struggle to accurately differen-

tiate between items. It’s crucial to note that the optimal embedding 
dimension may vary based on the specific dataset and task at hand. 
While larger dimensions often yield superior results, there are instances 
where a smaller dimension suffices or is even preferable, considering 
constraints such as computational resources or the simplicity of the 
data.

Furthermore, when considering the speed of generating embeddings, 
a recurring trade-off between speed and quality becomes apparent, par-

ticularly with respect to different models. Neural embedding methods, 
known for their computational intensity, demand substantial resources 
for both training and generating embeddings. Consequently, there is 
an ongoing endeavor to develop expedited methods that can efficiently 
produce embeddings. These accelerated methods may incorporate tech-

niques like approximation algorithms to hasten the embedding genera-

tion process. However, it’s important to acknowledge that these speed 
optimizations sometimes come at the expense of embedding quality. For 
instance, faster methods might compromise the complexity or depth of 
the model, resulting in less expressive embeddings. This compromise 
can lead to a loss of crucial information and details in the data, ul-

timately affecting the quality of downstream tasks such as ranking. 
It’s crucial to recognize that the specific trade-off between speed and 
quality can vary based on the task and the specific requirements of 
the application. In certain scenarios, sacrificing a slight amount of 
quality for substantial gains in speed may be acceptable or even de-

sirable. Conversely, for tasks where accuracy and quality hold utmost 
importance—such as DNA similarity search—it becomes imperative to 
prioritize slower but more accurate embedding methods like neural em-

bedding over unparameterized methods like PCA and LSH.

5. Conclusion

This study establishes the feasibility of generating semantic embed-
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dings for DNA sequences in latent space. We explore diverse embedding 
Computational and Structural Biotechnology Journal 23 (2024) 732–741

techniques, investigating their behavior concerning changes in embed-

ding size and the time investment required for their creation. Our 
findings highlight that the quality of embeddings, relative to their size, 
is significantly influenced by the chosen technique, typically involv-

ing a trade-off between data compression and information retention. 
Moreover, the time efficiency of embedding creation varies based on 
the method chosen. Unparameterized approaches like PCA and LSH 
tend to be faster than neural embedding methods, such as CNN, but 
they yield lower-quality embeddings, emphasizing the common trade-

off between speed and quality. A comprehensive analysis of the results 
underscores the promise of neural embeddings, particularly those gen-

erated by a CNN trained with ladder loss, for embedding DNA sequences 
in similarity searches. Additionally, we observe that the search run-

time for vector representation with neural embeddings is linear, while 
the runtime for the Needleman-Wunsch algorithm is cubic. This signif-

icant efficiency gained from utilizing vector representations instead of 
traditional Needleman-Wunsch calculations is noteworthy. Once a suit-

able model is trained, the potential time savings can markedly enhance 
the efficiency of the search task. To the best our knowledge, this study 
represents the first exploration of the potential of a CNN trained with 
ladder loss for DNA data compression and similarity search. Future re-

search can explore new techniques and algorithms to achieve a balance 
between retrieval time, storage efficiency, and sequence similarity ac-

curacy. Additionally, integration with other bioinformatics tools and 
databases can expand the capabilities and usefulness of these similarity 
search tools.
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