
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use:

NeuralBeds: Neural embeddings for efficient DNA data compression and optimized
similarity search

Suggested Citation:
Sarumi, O. A., Hahn, M., & Heider, D. (2024). NeuralBeds: Neural embeddings for efficient DNA data
compression and optimized similarity search. Computational and Structural Biotechnology Journal , 23,
732–741. https://doi.org/10.1016/j.csbj.2023.12.046

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20250131-103507-5

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Oluwafemi A. Sarumi, Maximilian Hahn, Dominik Heider

Article - Version of Record

Computational and Structural Biotechnology Journal 23 (2024) 732–741

Contents lists available at ScienceDirect

Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

Research Article

NeuralBeds: Neural embeddings for efficient DNA data compression and

optimized similarity search

Oluwafemi A. Sarumi a,b,1, Maximilian Hahn a,1, Dominik Heider a,b,∗

a Department of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, Marburg, D-35043, Germany
b Institute of Computer Science, Heinrich-Heine-University Duesseldorf, Graf-Adolf-Str. 63, Duesseldorf, D-40215, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

DNA similarity

Neural embeddings

Artificial intelligence

The availability of high throughput sequencing tools coupled with the declining costs in the production of DNA
sequences has led to the generation of enormous amounts of omics data curated in several databases such
as NCBI and EMBL. Identification of similar DNA sequences from these databases is one of the fundamental
tasks in bioinformatics. It is essential for discovering homologous sequences in organisms, phylogenetic studies
of evolutionary relationships among several biological entities, or detection of pathogens. Improving DNA
similarity search is of outmost importance because of the increased complexity of the evergrowing repositories
of sequences. Therefore, instead of using the conventional approach of comparing raw sequences, e.g., in fasta
format, a numerical representation of the sequences can be used to calculate their similarities and optimize
the search process. In this study, we analyzed different approaches for numerical embeddings, including Chaos
Game Representation, hashing, and neural networks, and compared them with classical approaches such as
principal component analysis. It turned out that neural networks generate embeddings that are able to capture
the similarity between DNA sequences as a distance measure and outperform the other approaches on DNA
similarity search, significantly.
1. Introduction

The rapid progress in high-throughput Next Generation Sequencing
(NGS) tools and technologies, exemplified by platforms like Illumina or
Nanopore, has ushered in an unprecedented era of biological data gen-

eration. This surge encompasses diverse types of biological information,
including DNA, RNA, and protein sequences. The transformation in the
generation and analysis of biological datasets has led to a remarkable
proliferation of omics data. These extensive datasets find their curation
in various databases, notable among them being the National Center
for Biotechnology Information (NCBI), Ensembl, the European Molecu-

lar Biology Laboratory (EMBL) sequence repository, and UniProt.

These databases serve as valuable resources for numerous essen-

tial bioinformatics tasks, such as DNA similarity search [1], sequence
alignments [2], gene annotation [3,4], gene prediction [5,6], and motif
finding [7,8]. However, as these databases store vast volumes of se-

quences, performing these bioinformatics tasks is becoming increasingly
challenging and complex. Towards reducing the complexities involved
in searching large biological databases for similar DNA sequences and

* Corresponding author at: Institute of Computer Science, Heinrich-Heine-University Duesseldorf, Graf-Adolf-Str. 63, Duesseldorf, D-40215, Germany.

E-mail address: dominik.heider@hhu.de (D. Heider).

other bioinformatics tasks, various vector embedding techniques can be
explored to generate lower dimensional vectors of the sequences for ef-

ficient storage and retrieval from a vector database. Vector databases
[9,10] have become more popular among researchers, providing plat-

forms for data points to be embedded in a vector space using embedding
functions [11,12] instead of storing the data in tables using the usual re-

lational databases. Some of the widely used embedding techniques for
biomedical applications are Local Sensitive Hashing (LSH [13]), Prin-

cipal Component Analysis (PCA [14]), Frequency Matrix Chaos Game
Representation (FCGR [15]), and Artificial Neural Networks (ANNs
[16]).

LSH allows for approximate similarity search, which can be benefi-

cial in scenarios where exact matches are not strictly required [13]. This
can speed up the search process, especially in large genomic databases.
Also, LSH can significantly reduce the computational complexity of
similarity search compared to traditional methods like brute-force pair-

wise comparison, especially when dealing with large datasets. While
LSH provides speed and efficiency, it comes at the cost of approximate
Available online 15 January 2024
2001-0370/© 2024 The Author(s). Published by Elsevier B.V. on behalf of Research
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 Contributed equally.

https://doi.org/10.1016/j.csbj.2023.12.046

Received 27 October 2023; Received in revised form 28 December 2023; Accepted 2
Network of Computational and Structural Biotechnology. This is an open access

8 December 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/csbj
mailto:dominik.heider@hhu.de
https://doi.org/10.1016/j.csbj.2023.12.046
https://doi.org/10.1016/j.csbj.2023.12.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.12.046&domain=pdf
http://creativecommons.org/licenses/by/4.0/

O.A. Sarumi, M. Hahn and D. Heider

matching. The degree of approximation needs to be carefully consid-

ered based on the specific requirements of the application.

The PCA can help filter out noise and highlight the most significant
patterns in the data [14]. This is particularly useful in DNA sequence
analysis, where noise may arise from sequencing errors or variations.
Also, PCA is computationally efficient, making it suitable for large
datasets. It can handle a large number of DNA sequences and reduce
the computational burden of subsequent analyse. Nevertheless, PCA in-

volves projecting data onto a lower-dimensional space, leading to some
loss of information. The reduced dimensions may not capture all the
intricacies of the original DNA sequences. PCA also assumes linearity
in the data, which may not hold for complex relationships in DNA se-

quences.

FCGR is efficient in reducing the dimensionality of DNA sequences,
making it suitable for visualization and clustering analyses by employ-

ing fractal representation [15]. It suitable for transforming of complex
sequence data into a simpler representation. FCGR is generally robust
to variations in DNA sequences. However, FCGR have limitations re-

lated to loss of sequence order information and sensitivity to sequence
length, and this may limit its ability to capture certain types of sequence
relationships.

ANNs can discover non-linear relationships and intricate patterns
in DNA sequences, which are difficult to identify using traditional
methods. Furthermore, they can also learn relevant features from raw
DNA sequences, eliminating the need for manual feature engineering
when analyzing large datasets [16]. Additionally, ANNs can efficiently
scale to handle datasets with large amounts of sequences with vary-

ing lengths, a common occurrence with DNA sequences. Furthermore,
end-to-end learning with ANNs allows the model to learn hierarchical
representations directly from the raw DNA sequence. This enables them
to capture both local and global dependencies among the sequences.
However, ANNs, especially when dealing with highly complex data such
as DNA sequences, are prone to overfitting, where the model may mem-

orize training examples instead of generalizing well to unseen data.
ANNs, particularly deep models, are often considered black-box models,
making it challenging to interpret the learned features or understand
how the model arrives at a particular prediction. Deep Learning (DL)
methods such as Convolutional Neural Networks (CNN) are used as em-

bedding functions to create embeddings where similar data points are
placed close to each together in a vector space so that similarity search
can be highly optimized. For instance, Bee et al. used neural embed-

dings for images directly encoded into DNA sequences [17] thereby
maintaining similarity of the DNA sequences for similar images but
without compression.

In our study, we investigated the potential of deep learning models
to create neural embeddings that capture DNA sequence similarity as a
distance measure while maintaining a reasonable degree of dimension-

ality reduction that produces viable embeddings suitable for optimizing
DNA similarity search, and provide a proof-of-concept for the detection
of antimicrobial resistance (AMR) genes in pathogens.

The rise of AMR poses a significant risk to global health, food se-

curity, and societal progress. It is estimated that without action against
AMR, annual global deaths could reach 10 million by 2050 [18]. In
clinical settings, antimicrobial susceptibility testing (AST) is commonly
employed for AMR analysis, but it necessitates specialized facilities and
trained technicians, limiting its use to bacteria that can be cultured
[19]. Recent research has been exploring the use of computational
techniques for AMR prediction, combining genomic sequencing with
established databases and phenotypic data on AMR [19,20].

Our findings show that CNN trained with ladder loss show a great
potential in creating semantic neural embeddings for DNA sequences
that optimize DNA similarity search. DNA similarity search is pivotal
to discovering homologous sequences in organisms and phylogenetics
study of evolutionary relationships among several biological entities.

Prior to the use of AI algorithms for DNA similarity search, the
733

Needleman-Wunsch [21] and Smith-Waterman [22] algorithms have
Computational and Structural Biotechnology Journal 23 (2024) 732–741

been widely used in computing DNA sequence similarity either as a
global or local alignment. The Needleman-Wunsch algorithm is de-

signed to find the optimal global alignment between two sequences,
while the Smith-Waterman algorithm is used for local alignment, i.e.,
for finding motifs within the sequences. Although the Needleman-

Wunsch and Smith-Waterman generate optimal global and local align-

ments respectively; nevertheless, the algorithms’ running time complex-

ity is the key limitation when dealing with large sequence databases.
Heuristic algorithms such as Basic Local Alignment Search Tool (BLAST)
[23,24], FASTA [25], and DIAMOND [26] have been widely embraced
for obtaining DNA similarity in a timely way.

BLAST employs a seed-and-extend algorithm, which breaks the
query sequence into small segments (seeds) and quickly identifies
matches in the database before extending the alignment. FASTA, on
the other hand, uses a word search algorithm that compares segments
(words) of the sequences in a pairwise manner. Both BLAST and FASTA
use scoring matrices to assign scores to matches and mismatches dur-

ing sequence alignment. However, the specific scoring matrices used
can vary. BLAST often utilizes the BLOSUM [27] as the substitution
matrix for protein sequences, but users can specify other protein scor-

ing matrices such as PAM [28]. FASTA typically employs the PAM or
substitution matrices derived from its own alignments. Both tools pro-

vide statistical measures like E-values to estimate the significance of
sequence similarities. BLAST is generally faster and more sensitive for
large-scale database searches, while FASTA is often favored for custom
databases and specific research needs. Despite the potential of BLAST
and FASTA algorithms, the low accuracy of their search results due to
the heuristic nature of the algorithm is a drawback.

To increase the speed and accuracy of DNA similarity search and
other related bioinformatics tasks, ML techniques have been proposed
as a sturdy approach for developing viable computational tools. ML
techniques [29], especially deep learning [30], have been explored to
develop models for DNA sequence analysis and similarity search. This
study explored two ANN approaches in creating neural embeddings; the
fully connected networks (FCN) [31] and CNN [32] trained with both
triplet loss and ladder loss. FCNs and CNNs are two prevalent types of
ANN used in deep learning models. While both types of networks can
learn and make predictions, they have different architectures.

In an FCN, also known as a dense network or multi-layer percep-

tron (MLP), each neuron is connected to every neuron in the previous
and subsequent layers. This means that the input to each neuron is a
weighted sum of the outputs of all neurons in the previous layer, fol-

lowed by an activation function such that predictions are made based
on the high-level features extracted by the previous layers. Also, each
parameter (weight) in FCN is unique to a specific connection between
two neurons. This means that the number of parameters in an FCN can
grow rapidly as the size of the input increases and can be computed
using matrix multiplication.

On the other hand, CNNs are specifically designed to process grid-

like data such as images. They consist of multiple layers, including
convolutional, pooling, and fully connected layers. The convolutional
layers apply filters to the input data, extracting features by perform-

ing convolutions. The pooling layers reduce the spatial dimensions of
the data, reducing the computational complexity leveraging on param-

eter sharing and local connectivity. Also, in the convolutional layers, a
small set of weights (kernel/filter) is shared across all spatial locations
of the input. This significantly reduces the number of parameters, mak-

ing CNNs more efficient for processing grid-like data. Both CNN and
FCN architectures require training to optimize their parameters. The
FCNs must find the optimal values for their matrices and biases, while
the CNN needs to learn the best kernels.

Triplet loss [33] and ladder loss [34] functions have been proposed
in previous studies for training neural network architectures. The triplet
loss is typically used for data with class labels with the key idea of
pulling samples of the same class closer together in latent space while

simultaneously pushing away samples of different classes. To accom-

Computational and Structural Biotechnology Journal 23 (2024) 732–741O.A. Sarumi, M. Hahn and D. Heider

Fig. 1. Visualization of the DNA data distribution with sequence lengths spanning from 162 to 3,594 nucleobases. Majority of sequences exhibit similar sizes,
clustering around 800 to 1,200 nucleobases, as highlighted in the boxplot diagram.
plish this, data is processed as triplets of samples (𝑥, 𝑥+, 𝑥−), where 𝑥 is
called the anchor, and 𝑥+ and 𝑥− are the positive and negative samples,
respectively. 𝑥 and 𝑥+ are selected to be from the same class, while 𝑥−
is a sample from a different class. One major limitation of utilizing the
triplet loss for semantic embedding is the strict and binary distinction
between positive and negative samples. By doing so, not all the infor-

mation provided by the data is utilized. This becomes evident when
considering the triplets (A, A, B) and (A, A, C), where 𝑠(𝐴, 𝐵) ≫ 𝑠(𝐴, 𝐶).
A has a very high similarity to itself, so B and C are negative samples.
Even though A and B are much more similar than A and C, the triplet
loss approach will push the sequences B and C away from A by the
same margin. Thus, B and C are valued equally, although pushing the
more dissimilar sequence C further away would be more appropriate.
Therefore, this effect is reduced when learning on the triplet (A, B, C).
Nevertheless, training an ANN does not guarantee finding an optimal
solution, making this a difficult scenario.

A technique that addresses this oversight in the triplet loss is ladder
loss. To apply the ladder loss, all data samples must first be ranked in
order of similarity. Also, the ladder loss involves joint optimization of
the reconstruction loss and classification loss. The reconstruction loss
helps the network to learn robust features, while the classification loss
ensures good performance on labeled data.

2. Material and methods

The dataset used in the study was retrieved from the Comprehen-

sive Antibiotic Resistance Database (CARD) database [35]. Identifying
similar DNA sequences from this dataset can benefit Antimicrobial Re-

sistance (AMR) [36] [37] research by providing insights into pathogens’
characteristics and their genetic relationship to other pathogens. Also, a
quick identification of AMR class for unknown pathogens can drastically
improve treatment by providing knowledge about the antibiotics that
are likely to be the most effective for the pathogen. The dataset contains
33, 860 DNA plasmids from 263 pathogens structured as a collection of
sequences and their corresponding GenBank sequence identifier as a la-

bel. To remove all potential outliers and noises from the dataset, all
pathogens with ten or fewer nucleotide sequences were filtered out.
Thus, the cleaned dataset contained 3, 549 DNA sequences from 47 dis-

tinct pathogens with lengths ranging from 162 to 3, 594 nucleotides and
most sequences of a similar size, around 800 to 1, 200 nucleotides, with
only a few exceptionally long sequences, as shown in Fig. 1.

Also, given that the DNA sequences are of varying lengths and com-

prised of non-digit characters, it is necessary to convert them to a form
734

suitable for machine learning operations. Therefore, we transformed
them into a uniform representation using the chaos game representa-

tion (CGR) [38] such that all the sequences are represented as CGR
images with the same resolution. The main idea of using the CGRs is
to map a one-dimensional sequence of categorical values into a two-

dimensional polygon, where every vertex represents one of the unique
categorical values. First, a regular polygon with as many vertices as
there are unique values that compose the sequences is created. Each
unique categorical input value is then assigned to a vertex. Starting
from the center of the polygon, a marker is placed. For every value in
the sequence, the marker is moved halfway between its current posi-

tion and the vertex corresponding to the sequence’s current value. Its
position is marked with a dot in the polygon, and the maker’s move-

ment creates the CGR images by iterating through the whole sequence.
It has been shown recently that CGR-encoding can lead to superior per-

formance in subsequent machine learning [15,39].

In Fig. 2, the flowchart illustrates the algorithmic process for gener-

ating neural embeddings. To apply the data to similarity search prob-

lems effectively, it is essential to determine the ground truth similarity
between sequences for accurate ranking. Therefore, we computed the
ground truth among sequences utilizing the Needleman-Wunsch (NWS)
algorithm with the scoring values of +1 for a match, 0 for mismatches
and −1 for gaps (either gap opening or extension). Then, the obtained
NWS data and CGRs were combined to generate the input dataset for
the ANN; such that each entry has the structure (𝑞, (𝑎1, 𝑠1), ..., (𝑎𝑛, 𝑠𝑛)).
Where, 𝑞 refers to the anchor sequence, whose embedding will be com-

pared to the embeddings of sequences 𝑎1 to 𝑎𝑛. Also, 𝑠𝑖 ∶= 𝑠(𝑞, 𝑎𝑖)
represent the computed NWS, where 𝑠𝑖 ≥ 𝑠𝑗 for 𝑖 < 𝑗. Hence, the or-

der of the comparison sequences 𝑎1 to 𝑎𝑛 is equivalent to the ranking
by highest similarity. Since the dataset has 3, 549 entries, each of the
original DNA sequences is used as an anchor sequence exactly once.
Also, since neural embeddings need training data to adjust the ANN’s
weights, we obtained 80% of all the data for training and 20% for test-

ing. The train-test split is based only on the anchor sequence 𝑞 and does
not consider the comparison sequences 𝑎1, ..., 𝑎𝑛. We explored two ANN
techniques (FCN and CNN) with two loss functions (triplet loss, and
ladder loss) to create vector representations of DNA sequences using a
Siamese Neural Network (SNN) [40] architecture as shown in Fig. 3.
SNNs are designed for binary classification tasks in which input data
comes in pairs and the goal is to determine similarity or dissimilarity.
Usually they consist of two mirrored sub-networks sharing weights, but
can alternatively feature several sub-networks. Our approach involves
two sub-networks consisting of CNNs or FCNs. Each sub-network is pre-

sented with a different input and then the outputs are processed with

a loss function (triplet loss or ladder loss), adjusting the weights so the

Computational and Structural Biotechnology Journal 23 (2024) 732–741O.A. Sarumi, M. Hahn and D. Heider

Fig. 2. Visualization of the system flowchart encompassing the preprocessing of input DNA sequences and the utilization of ANN to generate neural embeddings
stored in the vector database. Figure was created with Biorender.com.
Fig. 3. Visualization of the Siamese Neural Network Structure used for training
the CNN and FCN with the triplet loss and ladder loss functions.

SNN minimizes the loss. This produces embeddings that maintain sim-

ilarity in latent space. Then the models are trained by running input
data through the network, calculating a loss based on similarity in la-

tent space, and backpropagating the error through the network. This
pulls similar sequences together and pushes dissimilar sequences apart
in the latent space.

2.1. Embedding techniques

2.1.1. Triplet loss function with FCN and CNN

The application of FCN and CNN with triplet loss function required
training of the input sequence. Table 1 provides details on the architec-

tural layouts and optimal hyperparameter settings for training both the
CNN and FCN. Also, dropout layers serves as a regularization technique
incorporated into the models to mitigate the risk of overfitting during
training. Additionally, early stopping is employed, which intervenes in
the training process if the validation loss begins to rise, signaling po-

tential overfitting of the model to the training data. However, models
using the triplet loss cannot be trained directly on samples in the form
of (𝑞, (𝑎1, 𝑠1), ..., (𝑎𝑛, 𝑠𝑛)). The training of the two ANN models requires
triplets of the form (𝑥, 𝑥+, 𝑥−), where 𝑥 is the anchor sequence, 𝑥+ is a
positive sample, and 𝑥− is a negative sample. Therefore, for each anchor
sequence 𝑞, the corresponding comparison sequences are used to create
a set of triplets 𝑇𝑞 =𝑈

𝑦

𝑖=1𝑈
𝑛
𝑗=𝑖+1(𝑞, 𝑎

+
𝑖
, 𝑎−

𝑗
). This set encompasses all pos-

sible triplets for anchor 𝑞, where the similarity of the positive sample
is higher than that of the negative sample, such that the dataset of the
triplets for all anchors 𝑇𝑞 = 𝑈𝑞𝑇𝑞 was employed to train the triplet loss
735

models. Let 𝑇 be the dataset of all possible triplets, with a cardinality
Table 1

Optimal-performing CNN and FCN Architectures layout along with their
corresponding hyperparameter configurations.

Layers CNN FCN

Convolutional Neurons: 1024 Not Applicable

Kernel Size: 5

Activation Function: ReLU

Pooling Padding: 0 Not Applicable

Strides: 1

Flattening None Not Applicable

Fully Connected Neurons:512 Neurons: 512

Activation Function : ReLU Activation Function: ReLU

Dropout: 0.2 Dropout:0.2

Kernel size: 3 Kernel size: 3

Output Activation Function: tanh Activation Function : ReLU

Learning rate: 6e-7 Learning rate: 6e-7

of 𝑁 . The loss 𝐿 aims to minimize the distance from the anchor to the
positive sample and to maximize the distance to the negative sample
for all triplets in 𝑇 as shown in Eq. (1).

𝐿 =
𝑁∑
𝑖

[||𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖
+)||22 − ||𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖

−)||22 + 𝛼]+ (1)

Where 𝑓 stands for the embedding function, represented by the net-

work, and 𝛼 is a margin that defines how significant the distance be-

tween positive and negative samples should be. Also, a closer look at
Eq. (1) makes it apparent that the loss is minimized when the distance
between the anchor and positive sample is small and between the an-

chor and negative sample is high. Using the non-negative portion of
each summand ensures that the loss cannot be improved by pushing the
negative sample infinitely far away.

2.1.2. Ladder loss function with FCN and CNN

A train-test split dataset is also required for utilizing the ladder loss
function in FCN and CNN architectures. However, while the triplet loss
requires triplets (𝑥, 𝑥+, 𝑥−) to train, the ladder loss requires groups of
similar sequences 𝑁−𝑞

𝑖
ranked in order of similarity. Given an anchor 𝑞,

the remaining data can be divided into 𝑀 groups 𝑁−𝑞

1 , ..., 𝑁−𝑞

𝑀
, where

the samples in 𝑁−𝑞
𝑖

are more similar to 𝑞 than samples in 𝑁−𝑞
𝑗

for 𝑖 < 𝑗

such that 𝑁−𝑞

𝑎∶𝑏 := 𝑈−𝑞
𝑖=𝑎

𝑁
−𝑞
𝑖

, 1 ≤ 𝑎, 𝑏 ≤𝑀 ∈ ℕ. The loss in each group
𝐿𝑖

𝑙𝑎𝑑
can be calculated as a triplet loss where the group’s samples are

considered positive, samples of more dissimilar groups are considered
negative, and 𝑞 remains the anchor which represents a general case as

shown in Eq. (2)

O.A. Sarumi, M. Hahn and D. Heider

𝐿𝑖
𝑙𝑎𝑑

(𝑞) =
∑

𝑥+∈𝑁
−𝑞

𝑖−1

∑
𝑥−∈𝑁

−𝑞
𝑖∶𝑀

[𝛼𝑖 − 𝑠(𝑞, 𝑥+) + 𝑠(𝑞, 𝑥−)]+, 𝑖 ∈ {2, ...,𝑀} (2)

In the second scenario of 𝐿1
𝑙𝑎𝑑

, all the samples aside from 𝑞 are con-

sidered as negative; representing a special case since the only positive
sample is 𝑞 itself, and thus, all other samples are pushed away equally
as shown in Eq. (3)

𝐿1
𝑙𝑎𝑑

(𝑞) =
∑

𝑥−∈𝑁
−𝑞
𝑖∶𝑀

[𝛼1 − 𝑠(𝑞, 𝑥+) + 𝑠(𝑞, 𝑥−)]+ (3)

After calculating the losses for each group, they can be used to create
the final loss, which is used to measure the model’s error. As shown
in Eq. (4), the final ladder loss for a given anchor 𝑞 is the weighted
sum of each group’s loss. The weights 𝛽1, ..., 𝛽𝑀 , as well as the margins
𝛼1, ..., 𝛼𝑀 are optimizable hyperparameters that influence the impor-

tance of correct ordering between different groups and determine how
far the groups are pushed apart. Also, ladder loss allows the data points
to freely organize themselves by not grouping them with other data
points and offers a flexible approach to ranking the DNA sequences.

𝐿𝑙𝑎𝑑 (𝑞) =
𝑀∑
𝑖=1

𝛽𝑖𝐿
𝑖
𝑙𝑎𝑑

(𝑞) (4)

2.2. Evaluation metrics

In this study, one of our goals is to determine the veracity of neu-

ral embeddings in extracting and compressing the necessary similarity
information contained within the CGR image to capture DNA sequence
similarity in a latent space. Therefore, the embedding methods were
evaluated based on the information retrieval task by employing the gen-

erated embeddings of each model to calculate their similarity in latent
space. Given the ground truth sequence similarity and the sequences’
calculated similarities, the sequences’ actual ranking can be compared
to the predicted ranking. The predicted ranking of these sequences is
obtained by calculating the similarity between embeddings and sorting
the data based on this measurement. Since all the embeddings are vec-

tor representations of the sequences, the cosine similarity was used to
obtain the similarity score of the vectors as shown in Eq. (5).

𝑠𝑐𝑜𝑠(𝑎, �⃗�) ∶= cos𝜃 = 𝑎.�⃗�

||𝑎||||�⃗�|| (5)

Also, the quality of the embedding techniques can be measured by
quantifying their ranking performance. Therefore, we utilized the Nor-

malized Discounted Cumulative Gain (NDCG), based on the Discounted
Cumulative Gain (DCG) as shown in Eq. (6), to obtain the ranking per-

formance of the embedding techniques. The NDCG calculates a ranking
score in a way that gives more importance to correct predictions on
higher ranks rather than valuing each rank the same.

𝐷𝐶𝐺 =
|𝑅|∑
𝑖=1

𝑟𝑒𝑙𝑖

𝑙𝑜𝑔(𝑖+ 1)
(6)

where 𝑅 is the set of embedded sequences ordered by predicted simi-

larity, and 𝑟𝑒𝑙𝑖 represent the importance of the embedding at position
𝑖𝑖𝑛𝑅. In this study, 𝑟𝑒𝑙𝑖 was calculated as the reversed rank of the em-

bedding: 𝑛 − 𝑖 +1. However, the NDCG does not give a direct indication
of how good the ranking is for the most similar sequences, which is a
vital parameter when considering semantic embeddings. Therefore, we
calculated the positional rank score as shown in Eq. (7) for predicting
a position 𝑝 similar to the mean squared error but punishes the errors
more severely due to the exponential term.

1
𝑁∑ 1
736

𝑠𝑐𝑜𝑟𝑒𝑝 = 𝑁
𝑖=1 𝑒|𝑝−𝑡𝑟𝑢𝑒𝑖𝑝|

(7)
Computational and Structural Biotechnology Journal 23 (2024) 732–741

Where 𝑁 is the number of entries in the dataset, and 𝑝 − 𝑡𝑟𝑢𝑒𝑖𝑝 is the
true rank of the CGR at position 𝑝 of the 𝑖 − 𝑡ℎ data entry. Therefore,
this score takes into account the prediction for rank 𝑝 of every dataset
entry and measures how far they deviate from their true rank.

3. Results

We evaluated the performance of our method by comparing its re-

sults to three embedding techniques: FGCR [15], PCA [14], and LSH
[13] using three variants [41]: LSH with average hashing (ahash),
LSH with perceptual hashing (phash), and LSH with wavelet hashing
(whash). The same dataset and computational setup were used for the
comparison. The models were compared based on the quality of the
embeddings they generated, which stems from their ability to encode
similarity among sequences. Secondly, we assessed the degree to which
the models can compress the DNA sequence without losing sensitive
information. Thirdly, we analyzed the time the models took to gener-

ate valuable embeddings. The FCGR was used as the baseline model for
comparing the performances of other models.

In the assessment of the generated embeddings’ qualities, Fig. 4 illus-

trates the evaluation outcomes of the models based on the NDCG score,
computed from the evaluation data derived from the source dataset. No-

tably, the baseline model outperforms the majority of other approaches,
with only neural embeddings using ladder loss achieving higher average
scores and exhibiting a significant lead in overall performance. Also, to
generalize our models, we compared the results of NDCG ranking over
the entire data set with the train-test split method. It is evident from
the results in Fig. 5 that the triplet-loss models that performed poorly
over the whole dataset. As for the results of PCA, they do not deviate
notably from one another, although the performance on the test set ex-

hibits slightly higher variance. In the case of the ladder loss function,
they continue to demonstrate good results, even on the test set, although
the ranking performance on the test set is slightly lower than the overall
performance. Notwithstanding, the results of the CNNs are more stable
and closer to the overall dataset’s scores than the FCN model. Conse-

quently, the ladder loss CNNs model gives the best output and can be
regarded as a generalization model for the entire data and the train-split
dataset. However, for the approaches that utilize the train-test split, the
performance on the test set becomes a crucial indicator of the tech-

nique’s generalizability.

Moreover, in Fig. 6, instead of the NDCG rank score, we utilized
positional rank scores for ranks one (left bar), two (center bar), and
three (right bar). The outcomes reveal that CNN trained with ladder
loss achieved the highest scores, emerging as the sole model surpass-

ing the baseline model’s performance. While these overall trends align
with our observations in Fig. 4, there is substantial variation in the per-

formance of FCN trained with ladder loss. Despite FCN’s ladder loss
showing commendable results with the NDCG score, as depicted in
Fig. 4, the positional rank scores exhibit considerable variance and an
overall subpar performance. Thus, while FCN with ladder loss may ex-

hibit reasonably good overall rankings, it proves to be one of the less
effective approaches in accurately identifying the exact rank of a se-

quence. Additionally, Fig. 6 illustrates that, for most approaches, the
prediction of rank one surpasses the prediction of rank two, and both
outperform predictions for rank three. This pattern is disrupted only by
the least performing approaches, particularly evident for CNNs trained
with triplet loss.

Secondly, when assessing the models’ ability to compress DNA se-

quences, the rank scores for various embedding dimensions in each
model, depicted in Figs. 7 and 8, indicate that smaller embedding di-

mensions result in lower rank scores. For example, both PCA and CNNs
exhibit a gradual decline in scores as sequences are embedded into
fewer dimensions. While FCN’s rank scores do not strictly conform to
this pattern, the overall trend aligns with the concept. LSH also con-

forms to the trend of diminished performance with lower-dimensional

embeddings, akin to random guessing when reducing data to 64 dimen-

Computational and Structural Biotechnology Journal 23 (2024) 732–741O.A. Sarumi, M. Hahn and D. Heider

Fig. 4. Visualization of NDCG rank scores for different models reveals that, among the embedding approaches, FCGR serves as the baseline model and outperforms
other methods, except the neural embeddings. The neural embeddings using ladder loss (convnet-ladder) exhibit the highest overall score, significantly surpassing
the baseline and all other models. n represents the number of runs. For some approaches, n is smaller, e.g., the hashes, because there is no variance in the results
compared to the deep learning architectures.

Fig. 5. Visualization of the generalization capacity of models across the entire dataset indicates that models trained with triplet loss, including both CNN and FCN,
exhibit poor performance. On the contrary, models trained with ladder loss, both CNN and FCN, showcase the highest generalization ability.

Fig. 6. Visualization of positional rank scores for ranks one (left bar), two (center bar), and three (right bar) reveals that CNNs with ladder loss consistently achieve
737

the highest scores. Notably, this technique is the only one that outperforms the baseline model.

Computational and Structural Biotechnology Journal 23 (2024) 732–741O.A. Sarumi, M. Hahn and D. Heider

Fig. 7. Visualization illustrating the NDCG scores of the model’s performance in relation to embedding dimensions for compressed DNA sequences. The results
highlight the superior capacity of neural embeddings to efficiently embed sequences into lower-dimensional latent spaces.

Fig. 8. Visualization of the positional rank scores of the model’s performance relating to embedding dimensions for compressed DNA sequences. The results indicate
that larger embedding sizes generally result in higher rank scores, with the neural embedding using ladder loss (convnet-ladder) showcasing superior performance
across all three positions.

Fig. 9. Visualization illustrating the rank scores relative to the average time taken to create sequence embeddings. This result shows that PCA and LSH emerge as
the fastest methods for generating sequence embeddings. However, these methods produce lower-quality embeddings. In contrast, convnet-ladder generates superior
quality embeddings but requires a longer processing time.
sions. Moreover, Fig. 7 underscores that neural embeddings excel in em-

bedding sequences into lower-dimensional latent spaces. In essence, the
patterns observed in Figs. 7 and 8 underscore the necessity of finding
a balance between substantial data compression and retaining essential
738

information.
Thirdly, another crucial aspect used to assess model performance is
the time taken to embed a given DNA sequence. In Fig. 9, where the
rank score was plotted against the embedding time, the outcomes re-

veal that PCA and LSH stand out as the fastest techniques for embedding

CGR images of DNA sequences. However, it’s noteworthy that they pro-

Computational and Structural Biotechnology Journal 23 (2024) 732–741O.A. Sarumi, M. Hahn and D. Heider

Fig. 10. Visualization depicting the relationship between embedding time and embedding dimensions. The outcomes indicate that PCA, LSH, and fcnet-ladder
maintain a consistent average embedding time across various embedding sizes. Conversely, the convnet-ladder exhibits a gradual increase in processing time as the
embedding size grows.
Fig. 11. Visualization of the retrieval time of NeuralBeds compared to BLAST
demonstrates that NeuralBeds returns similar DNA sequences within a shorter
time frame than BLAST.

duce low-quality embeddings, as illustrated in Fig. 4; this aligns with
expectations since they are lightweight, unparameterized approaches.
In contrast, the CNN model requires the longest time to embed a CGR
image of the sequence. Unlike other techniques, which exhibit slight
variance in their data embedding time, CNN displays significant vari-

ability. Nevertheless, the results presented in Fig. 10, where embedding
time was compared with embedding dimension, indicate that other
models are not affected by the embedding size. In contrast, CNNs be-

come progressively faster at embedding as the dimensionality decreases.
Therefore, it’s clear that for CNNs, the time needed to embed data is in-

fluenced by the embedding dimension.

As a use case, we compared the performance of our CNN neural
embedding with ladder loss (NeuralBeds) to BLAST in terms of re-

trieval speed, disk storage usage and quality of the retrieved sequences.
Fig. 11 illustrates that NeuralBeds achieved a shorter retrieval time than
BLAST. Moreover, NeuralBeds demonstrates an increased sensitivity of
89%, surpassing the 74% sensitivity observed in BLAST. Here, sensi-

tivity describes an algorithm’s proficiency in capturing all pertinent
sequences, thereby minimizing false negatives. This metric is calculated
as the ratio of true positives to the sum of true positives (TPs) and
false negatives (FNs). Within the framework of BLAST, TPs denote out-

comes accurately identified as similar to the query sequence. Hence, it
739

becomes imperative to employ a metric of similarity for the accurate
determination of TPs. The determination of TPs relied on the normal-

ized raw score alignment presented in the BLAST report. This score,
expressed in bits, is derived by considering both the length and quality
of the alignment. Higher scores generally indicate a more robust and
reliable similarity between the query and the database sequence. Fur-

thermore, while the BLAST database consumed 15 GB of disk space,
the NeuralBeds database required only 1.8 GB for the trained embed-

ding. The comparison utilized 1, 265, 047 FASTA DNA sequences of
salmonella bacteria downloaded from the NCBI data repository.

4. Discussion

In this study, we delved into the potential of neural embeddings
as a viable strategy for optimizing DNA similarity search and archiv-

ing. Specifically, we harnessed the power of two neural networks
techniques—Convolutional Neural Network (CNN) and Fully Connected
Network (FCN)—trained with triplet loss and ladder loss to construct
an encoded DNA sequence vector database, thereby enhancing the effi-

ciency of DNA similarity search. The study was driven by key research
questions that served as parameters for assessing the feasibility of our
methods and interpreting our research findings. These questions re-

volved around the effectiveness of neural embeddings in capturing DNA
sequence similarity, the optimal degree of dimensionality reduction for
producing high-quality embeddings, and the comparative speed of var-

ious methods in generating DNA embeddings.

Additionally, we conducted a comprehensive comparison of the re-

sults obtained from the neural embedding approach with three alterna-

tive techniques: Locality-Sensitive Hashing (LSH), Principal Component
Analysis (PCA), and Chaos Game Representation (CGR). The evalua-

tion involved a ranking task, where DNA sequences were ordered based
on their distance from a query DNA sequence. After examining the re-

sults, a number of significant findings have come to light. It is apparent
that neural embeddings trained using the ladder loss exhibit superior
suitability for semantically embedding DNA sequences. As evidenced
by the ranking score, they surpass all other approaches. Notably, this
technique stands out as the only one that outperforms unprocessed
Chaos Game Representations (CGRs). Furthermore, it demonstrates ef-

fectiveness in transforming CGR images across various embedding sizes.
However, it is essential to note that the slow embedding time poses a
noteworthy drawback, with the model architecture exerting a strong
influence on this aspect.

On the contrary, unparameterized techniques like PCA and LSH ex-

hibit speed but fall short in creating sufficiently well-structured latent
space embeddings, particularly at higher dimensions. This limitation
renders them inadequate for effectively capturing the similarity of DNA

sequences. Our observations align with the anticipated outcomes for

O.A. Sarumi, M. Hahn and D. Heider

PCA and LSH, given their unparameterized nature, which does not
leverage known similarity information. Consequently, PCA struggles
to systematically outperform unprocessed Chaos Game Representations
(CGRs) because its transformation matrix extraction disregards real
DNA similarities, lacking the incorporation of additional information.
Similarly, LSH, being a data-independent approach, does not adapt
based on provided DNA similarities. In the realm of neural embed-

dings, their training specifically targets the real Needleman-Wunsch
Score (NWS) between sequences, contributing to their superior per-

formance. Interestingly, models trained with the triplet loss exhibit
poor performance, ranking as the least effective among all examined
methods. Despite being trained on the similarity relationships of DNA
sequences, triplet loss models fail to adequately capture their similar-

ity. In contrast, the findings for ladder loss align with the flexibility
and adaptability inherent in ANN for creating neural embeddings. Their
capacity to generate well-structured embedding spaces underpins the
emergence of vector databases.

Additionally, our observations underscore the influence of embed-

ding dimensions on model performance. Larger embedding dimen-

sions tend to excel in capturing intricate patterns and nuances within
DNA sequences, resulting in enhanced overall performance. Conversely,
smaller embedding dimensions contribute to information loss and lower
rank scores. The augmentation of embedding dimensions equips the
model with increased capacity to represent underlying features and re-

lationships in the data. This expanded capacity enables the model to
discern finer-grained distinctions between items, consequently improv-

ing the accuracy of rankings. With larger embedding dimensions, the
model gains the ability to learn more comprehensive representations
that encompass a broader range of characteristics. On the flip side,
smaller embedding dimensions constrain the expressive power of the
model, making it more challenging for the model to capture intricate
relationships and patterns within the data. This limitation manifests in
lower performance, as the model may struggle to accurately differen-

tiate between items. It’s crucial to note that the optimal embedding
dimension may vary based on the specific dataset and task at hand.
While larger dimensions often yield superior results, there are instances
where a smaller dimension suffices or is even preferable, considering
constraints such as computational resources or the simplicity of the
data.

Furthermore, when considering the speed of generating embeddings,
a recurring trade-off between speed and quality becomes apparent, par-

ticularly with respect to different models. Neural embedding methods,
known for their computational intensity, demand substantial resources
for both training and generating embeddings. Consequently, there is
an ongoing endeavor to develop expedited methods that can efficiently
produce embeddings. These accelerated methods may incorporate tech-

niques like approximation algorithms to hasten the embedding genera-

tion process. However, it’s important to acknowledge that these speed
optimizations sometimes come at the expense of embedding quality. For
instance, faster methods might compromise the complexity or depth of
the model, resulting in less expressive embeddings. This compromise
can lead to a loss of crucial information and details in the data, ul-

timately affecting the quality of downstream tasks such as ranking.
It’s crucial to recognize that the specific trade-off between speed and
quality can vary based on the task and the specific requirements of
the application. In certain scenarios, sacrificing a slight amount of
quality for substantial gains in speed may be acceptable or even de-

sirable. Conversely, for tasks where accuracy and quality hold utmost
importance—such as DNA similarity search—it becomes imperative to
prioritize slower but more accurate embedding methods like neural em-

bedding over unparameterized methods like PCA and LSH.

5. Conclusion

This study establishes the feasibility of generating semantic embed-
740

dings for DNA sequences in latent space. We explore diverse embedding
Computational and Structural Biotechnology Journal 23 (2024) 732–741

techniques, investigating their behavior concerning changes in embed-

ding size and the time investment required for their creation. Our
findings highlight that the quality of embeddings, relative to their size,
is significantly influenced by the chosen technique, typically involv-

ing a trade-off between data compression and information retention.
Moreover, the time efficiency of embedding creation varies based on
the method chosen. Unparameterized approaches like PCA and LSH
tend to be faster than neural embedding methods, such as CNN, but
they yield lower-quality embeddings, emphasizing the common trade-

off between speed and quality. A comprehensive analysis of the results
underscores the promise of neural embeddings, particularly those gen-

erated by a CNN trained with ladder loss, for embedding DNA sequences
in similarity searches. Additionally, we observe that the search run-

time for vector representation with neural embeddings is linear, while
the runtime for the Needleman-Wunsch algorithm is cubic. This signif-

icant efficiency gained from utilizing vector representations instead of
traditional Needleman-Wunsch calculations is noteworthy. Once a suit-

able model is trained, the potential time savings can markedly enhance
the efficiency of the search task. To the best our knowledge, this study
represents the first exploration of the potential of a CNN trained with
ladder loss for DNA data compression and similarity search. Future re-

search can explore new techniques and algorithms to achieve a balance
between retrieval time, storage efficiency, and sequence similarity ac-

curacy. Additionally, integration with other bioinformatics tools and
databases can expand the capabilities and usefulness of these similarity
search tools.

Declaration of competing interest

The authors declare no conflict of interest.

Funding

This work is financially supported by the German Federal Ministry
of Education and Research (BMBF) under grant numbers 031L0288A
and 031L0288C (Deep Legion).

References

[1] Jeong I-S, Park K-W, Kang S-H, Lim H-S. An efficient similarity search based on
indexing in large dna databases. Comput Biol Chem 2010;34:131–6. https://doi .
org /10 .1016 /j .compbiolchem .2010 .03 .007.

[2] Santus L, Garriga E, Deorowicz S, Gudyś A, Notredame C. Towards the accurate
alignment of over a million protein sequences: current state of the art. Curr Opin
Struct Biol 2023;80:102577. https://doi .org /10 .1016 /j .sbi .2023 .102577.

[3] Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta:
rapid and standardized annotation of bacterial genomes via alignment-free sequence
identification. Microb Genom 2021;7.

[4] Martin R, Hackl T, Hattab G, Fischer MG, Heider D. Mosga: modular open-

source genome annotator. Bioinformatics 2021;36:5514–5. https://doi .org /10 .
1093 /bioinformatics /btaa1003.

[5] Riemenschneider M, Hummel T, Heider D. Shiva-a web application for drug resis-

tance and tropism testing in hiv. BMC Bioinform 2016;17(1):314.

[6] Sarumi OA, Leung CK. Adaptive machine learning algorithm and analytics of big
genomic data for gene prediction. In: Intelligent systems reference library, intel-

ligent systems reference library. Cham: Springer International Publishing; 2022.
p. 103–23.

[7] Kingsford C, Zaslavsky E, Singh M. A cost-aggregating integer linear program for
motif finding. J Discret Algorithms 2011;9:326–34. https://doi .org /10 .1016 /j .jda .
2011 .04 .001. Selected papers from the 17th annual symposium on combinatorial
pattern matching (CPM 2006).

[8] Sarumi OA, Leung CK. Exploiting anti-monotonic constraints in mining palindromic
motifs from big genomic data. In: 2019 IEEE international conference on big data
(Big Data); 2019. p. 4864–73.

[9] Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, et al.
VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res
2008;37:D583–7.

[10] Giraldo-Calderón GI, Harb OS, Kelly SA, Rund SS, Roos DS, McDowell MA. Vec-

torbase.org updates: bioinformatic resources for invertebrate vectors of human
pathogens and related organisms. Curr Opin Insect Sci 2022;50:100860. https://
doi .org /10 .1016 /j .cois .2021 .11 .008.

https://doi.org/10.1016/j.compbiolchem.2010.03.007
https://doi.org/10.1016/j.compbiolchem.2010.03.007
https://doi.org/10.1016/j.sbi.2023.102577
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibDB6907EFFF676FA2A97EB18C83F29D72s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibDB6907EFFF676FA2A97EB18C83F29D72s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibDB6907EFFF676FA2A97EB18C83F29D72s1
https://doi.org/10.1093/bioinformatics/btaa1003
https://doi.org/10.1093/bioinformatics/btaa1003
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib0DCB386940BBEC38C923DD4B84A21215s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib0DCB386940BBEC38C923DD4B84A21215s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib2E94C48589477436DEDB970B384387C3s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib2E94C48589477436DEDB970B384387C3s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib2E94C48589477436DEDB970B384387C3s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib2E94C48589477436DEDB970B384387C3s1
https://doi.org/10.1016/j.jda.2011.04.001
https://doi.org/10.1016/j.jda.2011.04.001
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibD648363F4241D504B5489542A6BDE32Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibD648363F4241D504B5489542A6BDE32Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibD648363F4241D504B5489542A6BDE32Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib5DFF2DA3E4D4197EA4CA2C4A3D0092BDs1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib5DFF2DA3E4D4197EA4CA2C4A3D0092BDs1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib5DFF2DA3E4D4197EA4CA2C4A3D0092BDs1
https://doi.org/10.1016/j.cois.2021.11.008
https://doi.org/10.1016/j.cois.2021.11.008

Computational and Structural Biotechnology Journal 23 (2024) 732–741O.A. Sarumi, M. Hahn and D. Heider

[11] Zhou M, Niu Z, Wang L, Gao Z, Zhang Q, Hua G. Ladder loss for coherent visual-

semantic embedding. In: AAAI conference on artificial intelligence; 2019.

[12] Schroff F, Kalenichenko D, Philbin J. Facenet: a unified embedding for face recog-

nition and clustering. In: 2015 IEEE conference on computer vision and pattern
recognition (CVPR); 2015. p. 815–23.

[13] Buhler J. Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics 2001;17:419–28.

[14] Yao F, Coquery J, Lê Cao K-A. Independent principal component analysis for biolog-

ically meaningful dimension reduction of large biological data sets. BMC Bioinform
2012;13:24.

[15] Löchel HF, Eger D, Sperlea T, Heider D. Deep learning on chaos game representation
for proteins. Bioinformatics 2020;36:272–9.

[16] Agibetov A, Blagec K, Xu H, Samwald M. Fast and scalable neural embedding models
for biomedical sentence classification. BMC Bioinform 2018;19:541.

[17] Bee C, Chen YJ, Queen M, et al. Molecular-level similarity search brings computing
to dna data storage. Nat Commun 2021;12:4764. https://doi .org /10 .1038 /s41467 -
021 -24991 -z.

[18] Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, et al. Estimating
the burden of antimicrobial resistance: a systematic literature review. Antimicrob
Resist Infect Control 2018;7:58.

[19] Boolchandani M, D’Souza AW, Dantas G. Sequencing-based methods and resources
to study antimicrobial resistance. Nat Rev Genet 2019;20(6):356–70.

[20] Ren Y, Chakraborty T, Doijad S, Falgenhauer L, Falgenhauer J, Goesmann A, et
al. Prediction of antimicrobial resistance based on whole-genome sequencing and
machine learning. Bioinformatics 2022;38:325–34.

[21] Needleman SB, Wunsch CD. A general method applicable to the search for similari-

ties in the amino acid sequence of two proteins. J Mol Biol 1970;48:443–53. https://

doi .org /10 .1016 /0022 -2836(70)90057 -4.

[22] Smith T, Waterman M. Identification of common molecular subsequences. J Mol
Biol 1981;147:195–7. https://doi .org /10 .1016 /0022 -2836(81)90087 -5.

[23] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search
tool. J Mol Biol 1990;215:403–10. https://doi .org /10 .1016 /S0022 -2836(05)80360 -
2.

[24] Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nu-

cleic Acids Res 1997;25:3389–402. https://doi .org /10 .1093 /nar /25 .17 .3389.

[25] Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science
1985;227:1435–41.

[26] Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using diamond.
Nat Methods 2014;12:59–60. https://api .semanticscholar .org /CorpusID :5346781.

[27] Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc
Natl Acad Sci USA 1992;89:10915–9.

[28] Dayhoff M, Schwartz R, Orcutt B. 22 a model of evolutionary change in proteins. In:
Atlas of protein sequence and structure, vol. 5; 1978. p. 345–52.

[29] Mortier T, Wieme AD, Vandamme P, Waegeman W. Bacterial species identifica-

tion using maldi-tof mass spectrometry and machine learning techniques: a large-

scale benchmarking study. Comput Struct Biotechnol J 2021;19:6157–68. https://

doi .org /10 .1016 /j .csbj .2021 .11 .004.

[30] Mathema VB, Sen P, Lamichhane S, Orešič M, Khoomrung S. Deep learning facili-

tates multi-data type analysis and predictive biomarker discovery in cancer precision
medicine. Comput Struct Biotechnol J 2023;21:1372–82.

[31] Structure and performance of fully connected neural networks: emerging complex
network properties. Physica A, Stat Mech Appl 2023;615:128585. https://doi .org /
10 .1016 /j .physa .2023 .128585.

[32] Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Re-

view of deep learning: concepts, CNN architectures, challenges, applications, future
directions. J Big Data 2021;8:53.

[33] Chechik G, Sharma V, Shalit U, Bengio S. Large scale online learning of image simi-

larity through ranking. J Mach Learn Res 2010;11:1109–35.

[34] Wang L, Zhou M, Niu Z, Zhang Q, Zheng N. Adaptive ladder loss for learning co-

herent visual-semantic embedding. IEEE Trans Multimed 2023;25:1133–47. https://

doi .org /10 .1109 /TMM .2021 .3139210.

[35] Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al.
CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic re-

sistance database. Nucleic Acids Res 2019;48:D517–25. https://doi .org /10 .1093 /
nar /gkz935.

[36] Ren Y, Chakraborty T, Doijad S, Falgenhauer L, Falgenhauer J, Goesmann A, et
al. Deep transfer learning enables robust prediction of antimicrobial resistance for
novel antibiotics. Antibiot (Basel) 2022;11.

[37] Bartoszewicz JM, Seidel A, Renard BY. Interpretable detection of novel human
viruses from genome sequencing data. NAR Genomics Bioinform 2021;3:lqab004.

[38] Jeffrey H. Chaos game representation of gene structure. Nucleic Acids Res
1990;18:2163–70. https://doi .org /10 .1093 /nar /18 .8 .2163.

[39] Löchel HF, Heider D. Chaos game representation and its applications in bioinfor-

matics. Comput Struct Biotechnol J 2021;19:6263–71. https://doi .org /10 .1016 /j .
csbj .2021 .11 .008.

[40] Fisichella M. Siamese coding network and pair similarity prediction for near-

duplicate image detection. Int J Multimed Inf Retr 2022;11:159–70.

[41] Buchner J, Coales J, Little vB, Seyler S, Petrov D, djunzu, et al. Imagehash. https://

github .com /JohannesBuchner /imagehash, 2021.
741

http://refhub.elsevier.com/S2001-0370(23)00521-4/bib153E0769BE95561E6B89C8C14AF550C4s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib153E0769BE95561E6B89C8C14AF550C4s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib874D06495EC415A4048A0C53F3057F09s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib874D06495EC415A4048A0C53F3057F09s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib874D06495EC415A4048A0C53F3057F09s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib2418E0D0300CAFF0949F882105974843s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib2418E0D0300CAFF0949F882105974843s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib487DED283590436E9C5A1C87282AC45Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib487DED283590436E9C5A1C87282AC45Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib487DED283590436E9C5A1C87282AC45Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibD148C732EE53F6E2A90B67B70EA8C543s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibD148C732EE53F6E2A90B67B70EA8C543s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib55A2BC5ACB889460C04BA03364D1665Es1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib55A2BC5ACB889460C04BA03364D1665Es1
https://doi.org/10.1038/s41467-021-24991-z
https://doi.org/10.1038/s41467-021-24991-z
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib524A6854A5E7820359929EE71807E89Cs1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib524A6854A5E7820359929EE71807E89Cs1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib524A6854A5E7820359929EE71807E89Cs1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib1A5AEBBE1CB05A7EB6FD0005F259CC5Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib1A5AEBBE1CB05A7EB6FD0005F259CC5Ds1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib46D028539310E1E43687FFFAAED4AEB7s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib46D028539310E1E43687FFFAAED4AEB7s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib46D028539310E1E43687FFFAAED4AEB7s1
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/25.17.3389
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib077626C2CB68B447E09AA09D5A97723Fs1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib077626C2CB68B447E09AA09D5A97723Fs1
https://api.semanticscholar.org/CorpusID:5346781
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibE1E0973FE0DED76F129E444361E69A25s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibE1E0973FE0DED76F129E444361E69A25s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibF2CE10CB32A140BCAB8E3697934007B9s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibF2CE10CB32A140BCAB8E3697934007B9s1
https://doi.org/10.1016/j.csbj.2021.11.004
https://doi.org/10.1016/j.csbj.2021.11.004
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib176ACD5EF2D8FB529704DFB6CAC59132s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib176ACD5EF2D8FB529704DFB6CAC59132s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib176ACD5EF2D8FB529704DFB6CAC59132s1
https://doi.org/10.1016/j.physa.2023.128585
https://doi.org/10.1016/j.physa.2023.128585
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib9E49CC2061C325604F431296306E01C5s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib9E49CC2061C325604F431296306E01C5s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib9E49CC2061C325604F431296306E01C5s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibC8AEDE72D46F1BA0D5C28BE2AE99508Fs1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibC8AEDE72D46F1BA0D5C28BE2AE99508Fs1
https://doi.org/10.1109/TMM.2021.3139210
https://doi.org/10.1109/TMM.2021.3139210
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1093/nar/gkz935
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib1BF2211CA3D2DB4C5C11B86604B1D942s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib1BF2211CA3D2DB4C5C11B86604B1D942s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib1BF2211CA3D2DB4C5C11B86604B1D942s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib05B69634379A8659A24FAE36D7D66BF6s1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bib05B69634379A8659A24FAE36D7D66BF6s1
https://doi.org/10.1093/nar/18.8.2163
https://doi.org/10.1016/j.csbj.2021.11.008
https://doi.org/10.1016/j.csbj.2021.11.008
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibD50CF91A04E458B1A7008047E814055Es1
http://refhub.elsevier.com/S2001-0370(23)00521-4/bibD50CF91A04E458B1A7008047E814055Es1
https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash

	Titelblatt_Heider_final
	Heider_NeuralBeds
	NeuralBeds: Neural embeddings for efficient DNA data compression and optimized similarity search
	1 Introduction
	2 Material and methods
	2.1 Embedding techniques
	2.1.1 Triplet loss function with FCN and CNN
	2.1.2 Ladder loss function with FCN and CNN

	2.2 Evaluation metrics

	3 Results
	4 Discussion
	5 Conclusion
	Declaration of competing interest
	Funding
	References

