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Abstract
The integration of artificial intelligence (AI) and machine learning (ML) has shown potential for various applications in the 
medical field, particularly for diagnosing and managing chronic diseases among children and adolescents. This systematic 
review aims to comprehensively analyze and synthesize research on the use of AI for monitoring, guiding, and assisting 
pediatric patients with chronic diseases. Five major electronic databases were searched (Medline, Scopus, PsycINFO, ACM, 
Web of Science), along with manual searches of gray literature, personal archives, and reference lists of relevant papers. All 
original studies as well as conference abstracts and proceedings, focusing on AI applications for pediatric chronic disease 
care were included. Thirty-one studies met the inclusion criteria. We extracted AI method used, study design, population, 
intervention, and main results. Two researchers independently extracted data and resolved discrepancies through discussion. 
AI applications are diverse, encompassing, e.g., disease classification, outcome prediction, or decision support. AI generally 
performed well, though most models were tested on retrospective data. AI-based tools have shown promise in mental health 
analysis, e.g., by using speech sampling or social media data to predict therapy outcomes for various chronic conditions. 
Conclusions: While AI holds potential in pediatric chronic disease care, most reviewed studies are small-scale research 
projects. Prospective clinical implementations are needed to validate its effectiveness in real-world scenarios. Ethical con-
siderations, cultural influences, and stakeholder attitudes should be integrated into future research.

What is known:
• Artificial Intelligence (AI) will play a more dominant role in medicine and healthcare in the future and many applications are already being 

developed.
What is new:
• Our review provides an overview on how AI-driven systems might be able to support children and adolescents with chronic illnesses.
 • While many applications are being researched, few have been tested on real-world, prospective, clinical data.
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LSTM  Long Short-Term Memory
ML  Machine Learning
PRISMA  Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses
RNN  Recurrent neural networks

Introduction

Since the advent of research on artificial intelligence (AI) and 
its subfield machine learning (ML), medicine has been viewed 
as a field with ample possibilities of its applications [1]. Much 
of the research conducted involved diagnostic imaging in 
radiology and pathology, as well as tools to assist physicians 
and medical staff in making diagnoses. As AI can process and 
analyze large quantities of data in a short amount of time, it 
might play a crucial role in establishing personalized care and 
targeted treatments [2]. A systematic review by Rahimi et al. 
found that AI can be useful in primary healthcare settings with 
limited available resources for treatment planning and patient 
education as well as self-management of chronic diseases, 
allowing patients to track their symptoms and get personal-
ized recommendations and health alerts [3]. This is particularly 
important considering the anticipated shortage of physicians 
and care especially in rural areas [4].

However, there are some particularities to consider when 
minors are involved. They might not be able to participate in 
decisions concerning the use of their healthcare data and agree-
ment to the use of AI-based applications [5]. Young patients are 
oftentimes much more adept at the use of digital applications, 
generating larger amounts of non-traditional medical data in 
addition to electronic health care records or vital sign monitor-
ing [6].

Considering this, there might be great potential in using 
AI-based applications not only in diagnostics, but also in 
day-to-day care for pediatric patients with chronic diseases. 
In this systematic review, we provide a comprehensive over-
view of research being conducted on the use of AI for moni-
toring, guiding, and assisting children and adolescents with 
chronic diseases.

Methods

Design

This systematic review followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [7].

It was registered with the International Prospective Reg-
ister of Systematic Reviews (PROSPERO; registration ID: 
CRD42022344316).

Search strategy

Five electronic databases (Medline, Scopus, PsycINFO, 
ACM, and Web of Science) were searched using the terms 
(artificial intelligence*) AND (chronic disease*) AND 
((child*) OR (adolescen*)). The first 1000 results on Google 
and on Google Scholar were manually searched for gray lit-
erature and complemented by the search of personal archives 
and manual screening of reference lists. The searches were 
conducted on 07 July 2022 and updated on 06 February 
2024. There were no restrictions regarding year of publica-
tion and no restriction for language other than using English 
search terms (see Appendix 2).

Study selection

Inclusion criteria

All original studies (i.e., randomized controlled trials, non-
controlled trials, qualitative studies, case reports) on the use 
of artificial intelligence in monitoring, and assisting children 
and adolescents with chronic diseases. For a more compre-
hensive overview, conference abstracts and proceedings 
were included.

Exclusion criteria

Non-AI-based digital health interventions and descriptions 
of diagnostic tools and processes. All non-original records 
such as commentaries, editorials, reviews, and position 
papers.

Screening process

Records were imported into EndNote X9 (Clarivate Ana-
lytics, Philadelphia, PA, USA). A pilot screening was con-
ducted jointly by two researchers for ten records for clarifi-
cation and specification of inclusion and exclusion criteria.

After removal of duplicates, titles and abstracts were 
screened by two researchers individually. If the available 
information did not suffice or the decision was not unani-
mous, full text was assessed. Full texts were assessed for 
eligibility, and disagreement between the researchers was 
resolved through discussion with a third researcher.

Data extraction

Data were extracted for year of publication, journal, country 
of study, language of publication, AI method used, study 
design, population, methods and/or intervention, and main 
results. A short summary was included. Piloting included 
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five full texts and led to refinements of categories and docu-
mentation requirements. Data extraction was carried out 
independently by two researchers.

Risk of bias assessment

Risk of bias was assessed using the Joanna Briggs Insti-
tute’s checklists for critical appraisal [8]. Bias was assessed 
individually by two researchers after piloting. Discrepancies 
were resolved through debate without the need to involve 
another researcher. No inclusion or exclusion decisions were 
to be based on this assessment.

Data synthesis

Data were synthesized quantitatively when reasonable and 
meaningful, but as there was a broad variation in reporting 
of the results as well as research methodology, pooling of 
data was neither feasible nor adequate. We chose a narrative, 
qualitative approach to summarize findings. Studies were 
characterized as described above, commonalities described, 
and studies grouped accordingly.

Results

Our searches yielded 358 records; after removal of dupli-
cates, 344 titles and abstracts were screened for eligibility 
out of which 111 full texts were examined. We identified 36 
studies on the use of AI in monitoring, assisting, or guiding 
children and adolescents with chronic diseases (see Fig. 1). 
Most studies determined diagnostic accuracy for certain 
outcome parameters computed by an AI application, often 
compared to a gold standard or judgment by expert physi-
cians. Level of implementation was generally low across 

the included studies (see Supplementary Information 1). 
Although many had been tested with real patient data—
usually retrospective—no broad clinical application was 
described for any of the tools. Characteristics of included 
studies are shown in Fig. 2 and Table 1, Risk of Bias Assess-
ments in Supplementary Information 3.

Most studies described tools for the use by healthcare 
professionals (classification, outcome prediction, and deci-
sion support tools) while there were few tools for the use 

Fig. 1  PRISMA flowchart depicting the literature screening process

Fig. 2  Characteristics of the 
included studies, depicting 
number of publications per 
country, year, category, and 
condition/disease
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by patients and their families [9–12]. Data from electronic 
health records and data generated specifically for the tool 
were most widely used.

Monitoring children with chronic diseases

Classification of disease stages

Two studies used AI models for classification of diseases 
stages in individual patients. One compared classification 
of chronic kidney disease stages by different AI methods 
to an expert physician; the decision tree model performed 
best with 92% accuracy [13]; another study found that the 
developed algorithm was able to correctly classify asthma 
exacerbation in all tested cases [14].

Analysis of psychological distress and quality of life

A standardized questionnaire assessed Quality of Life 
(QoL) in individuals with irritable bowel disease (IBD). 
Utilizing AI for analysis, the study unveiled correlations 
between specific pre-existing conditions and psychologi-
cal distress. Patients with elevated symptom levels were 
more prone to encountering psychological symptoms [15]. 
One article described a method using speech sampling of 
children with mental health issues to classify quality and 
intensity of emotions [16]. Two studies used social media 
data to evaluate psychological distress. One analyzed Face-
book posts on diabetes support groups and found that the 
model performed best when taking not only the primary 

post into account, but also reactions from others [17]. The 
other found that a language-processing model was able to 
predict suicidal behavior from posts on the platform Red-
dit [18].

Guiding children with chronic diseases

Prediction of disease outcomes

Several studies developed tools to predict the outcome or 
progression of a chronic disease. One study analyzed date 
from a cystic fibrosis registry [19]. The model was tested 
against real outcome data from the registry and performed 
well. Another model was able to accurately predict delayed 
serum creatinine decrease after kidney transplant [20]. One 
study identified markers for systemic inflammation as a key 
predictor for the need of dialysis in children with chronic 
kidney disease [21]. An algorithm to predict outcomes in 
patients with hypertension identified a set of variables and 
performed better than established outcome scores [22] and 
another was able to quickly identify wounds at risk for slow 
healing using quantitative data from a large dataset [23].

Three studies used asthma as a model disease to develop 
a tool predicting disease-related events; one identified risk 
factors for hospital readmission [24], another used a mix of 
patient and environmental factors to predict attacks [25]. 
Yu et al. developed a system that used multiple data sources 
both from patients and hospitals as well as various analysis 
methods to predict the absence or presence of health prob-
lems [26].

Table 1  Overview of AI methods used in the included studies: sub-categories, examples/algorithms, applications, and references. Studies were 
categorized into classical data science approaches and neural networks

Sub-category/method Examples/algorithms Application References (examples)

1. Classical data science approaches
1.1 Coded algorithms/conditionals/

if–then-approaches
Rule-based conditional framework Real-time monitoring applications 

(e.g., asthma monitoring)
[11, 12, 21, 28]

1.2 Classical machine learning 
statistics

Naive Bayes, Bayesian network, 
regressions, SVMs, Gaussian Pro-
cesses, Decision Trees

Predictive modeling and diagnosis [36, 37]

1.3 Ensemble learning methods Random Forest, XGBoost, AdaBoost Improving prediction accuracy by 
aggregating outputs of multiple 
models

[13, 17, 26, 37]

1.4 Case-based reasoning Database of similar past cases Real-time decision-making, control-
ling blood glucose levels in type 1 
diabetes

[31]

2. Neural networks
2.1 Convolutional Neural Networks 

(CNN)
Convolutional Neural Networks, scis-

paCy, Natural Language Processing
Interpretation of images (e.g., MRI 

scans), analyzing unstructured data 
from social media

[13, 16, 22]

2.2 Recurrent Neural Networks (RNN) Recurrent Neural Networks, Long 
Short-Term Memory (LSTM)

Processing complex sequential data 
(e.g., electronic medical records), 
predicting disease progression

[10, 18, 23]
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Other studies focused on predicting the development of 
secondary diseases or impairments related to a chronic disease 
or an injury. Two studies investigated outcomes after brain 
injury. One was able to predict outcomes [27], the other inves-
tigated the risk for attention deficit disorders [28]. In children 
with cerebral palsy, an algorithm found meaningful variables 
identifying those at risk of developing autism spectrum dis-
orders [29]. An algorithm developed to predict development 
of chronic kidney disease after kidney injury was trained and 
performed well on retrospective data but performed poorly 
on prospective data [30]. The risk of chronicity for children 
with immune thrombocytopenia could be accurately predicted 
using a set of four AI models [31]. An algorithm for the early 
prediction of bronchopulmonal dysplasia in very low birth-
weight infants from a transcriptomic genetic signature per-
formed well [32].

Prediction of therapy effectiveness

A model to predict improvement of hearing in patients with 
chronic otitis media after undergoing surgery made accurate 
predictions [33]. One in vitro study applied AI to predict the 
response of HIV positive patients to the influenza vaccine [34].

Image analysis techniques were used in two instances. 
One group developed an algorithm to assess effectiveness 
of treatment in children with chronic non-bacterial osteo-
myelitis and compared it to the rating by expert radiologists 
[35]. While the AI tool was able to detect all changes that 
had occurred over time, the overall accuracy evaluating suc-
cess of treatment was lower than that of the radiologists. 
Another study used standardized photos to detect facial fea-
tures predicting the persistence of an obstructive sleep apnea 
syndrome after surgery and identified several features [36].

Clinical decision support tools

Guidelines were used to provide support for asthma care in 
two studies; one developed a prototype concept that might 
help decide whether therapy should be (de-)escalated [37], 
the other used multiple data sources to make treatment sug-
gestions to improve guideline adherence [38]. In a third 
study, a tool to estimate dry weight of children undergoing 
dialysis was developed and outperformed nephrologists [39].

Assisting children with chronic diseases

Remote care and chronic disease management

An AI-based recommendation system for insulin bolus 
application was developed in an in silico experiment and 

tested with in silico cases against other systems, outperform-
ing those with measurably more time in range [12].

Sendra et al. [11] developed a mobile application to 
aid children and adolescents with various chronic dis-
eases; users were prompted to record data regarding their 
disease and therapy. Data were then reviewed by physi-
cians and recommendations given to patients while an 
algorithm analyzed collected data as well as the recom-
mendations. In a second iteration, recommendations were 
given by the AI tool which, after some training, were 
suitable for the situation. Similarly, another study used 
a data mining approach of individual data to monitor 
asthma and give automated recommendations based on 
expert knowledge [9]. Another in silico experiment pro-
posed a method for structuring patient-generated health 
data to help identify symptoms and induce healthcare 
interventions [10].

Robotics

Robots as assistants were described for two different uses; 
Gosine et al. described the development of a prototype of 
an intelligent end-effector robot to aid physically impaired 
children using multiple sensors [40]. Two studies by an 
Italian-Dutch research group developed a humanoid robot 
to assist children and youth with type 1 diabetes [41, 
42]. The robots were used in waiting rooms and summer 
camps. They played games with the children and helped 
calculate insulin doses.

Acceptability of AI applications

Four studies evaluated the acceptance of AI applications 
by users. The abovementioned humanoid robots assist-
ing children and adolescents with type 1 diabetes mel-
litus were perceived useful, accepted well as companions 
and children liked interacting with them; however, there 
was a notable difference in cultures as Italian children 
interacted more closely and personally with the robot 
and were more expressive verbally than Dutch children 
[41, 42]. Children also played games with the robot and 
accepted their mistakes. A mobile application to monitor 
children with chronic diseases was perceived as useful 
by parents and physicians [11]. A study investigating the 
attitude of clinicians towards AI-based interpretations of 
radiologic images found that they valued the systematic 
reporting, but trustworthiness was an issue. Clinicians 
generally put more trust into the findings if they aligned 
with their own or those of a trusted radiologist. They also 
put limited trust in the AI’s ability to report incidental 
findings [43].
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Performance and accuracy of AI

In most studies that reported prediction or classification 
accuracy, AI performed well compared to reference stand-
ards, expert judgments, or actual clinical data.

There were two instances in which AI did not perform as 
well; one was the classification of disease stages for chronic 
non-bacterial osteomyelitis based on MRI images in which 
AI only correctly classified a third. It was, however, able 
to identify improvement or worsening in all cases [35]. 
Morse et al. described the development of a model to predict 
chronic kidney disease after kidney injury and tested it pro-
spectively on patients admitted to the hospital where it was 
not able to perform similarly well as it had previously with 
the retrospective training data set (AUROC 0.76 vs. 0.63) 
which is an important finding showing that performance on 
training data might not accurately predict the algorithm’s 
performance when deployed [30].

Discussion

This review finds a high number of publications focusing on 
development of AI tools to aid children and adolescents with 
chronic diseases. Overall, however, AI these tools still play a 
minor role in guiding the care of chronically ill children and 
are often limited to parameters for which large amounts of 
data are readily available. Many studies were smaller proof-
of-concept explorations. The observed poor performance 
with prospective clinical data after a successful trial with 
retrospective data in one study aligns well with other similar 
observations outside of pediatric applications, and poses the 
important question whether the promising results will hold 
true when applied broadly [30, 44].

One innovative approach is the analysis of social media 
data for early detection of mental health issues. This data 
is generated in an unstructured way by many users every 
day and is only analyzable with AI technology. The WHO 
emphasizes the role of digital technologies for improve-
ment of mental health care especially in low-resource set-
tings [45]. Our search yielded two examples, showing that 
social media data might be helpful for a holistic care. Mental 
health problems are an important comorbidity of primarily 
somatic chronic diseases and may lead to lower quality of 
life and poor social development and function [46]. This 
should be a focal point for further research and care. It has 
been shown that detecting mental health disorders through 
social media data is feasible and might be able to detect dis-
orders earlier than conventional methods [47, 48]. Despite 
those potential benefits, privacy and the right to withhold 
certain information from parents or guardians need to be 
considered. Moreover, children and adolescents might use 
certain social codes in language that might lead to erroneous 

conclusions. Additionally, cultural, social, and gender fac-
tors might influence how one uses and expresses oneself on 
social media, making such analyses prone to discrimination.

A potentially very useful AI application that might guide 
children, parents, and healthcare professionals is a deci-
sion support tool that suggests treatment according to cur-
rent guidelines aiming to improve physicians’ adherence to 
standardized recommendations [38]. As guideline adherence 
is generally optimizable [49], such tools could prove useful 
to ensure adequate treatment and patient safety especially 
for patients with rare diseases living far from a center spe-
cialized in that condition. An algorithm for the adaption of 
insulin bolus recommendation showed promising results and 
might further improve the rising technology of Automated 
Insulin Delivery (AID) systems [12, 50]. This might serve as 
an example for other conditions that need close monitoring of 
vital functions or blood levels and subsequent treatment deci-
sions. Several studies investigated the outcome of different 
diseases after therapy and developed models to predict effec-
tiveness [33–36] leading the way to personalized therapy deci-
sions avoiding treatment that might be ineffective or harmful.

Trust and accountability are important concepts for the 
ethical use of AI and while AI is often viewed favorably 
and believed to play an important part in the future of care, 
errors, and responsibility are points of concern [51–53]. In 
pediatrics, patient autonomy is limited both for develop-
mental and legal reasons. Parents or legal guardians play 
a crucial role in decision-making. Our search did not yield 
much evidence on parents’ attitudes in regard to children 
or adolescents with chronic diseases. A study with par-
ents of healthy children [54] suggests a moderate openness 
towards AI-driven precision medicine although there are 
concerns regarding privacy. The lack of data investigat-
ing children’s and adolescents’ attitudes shows a need for 
research in this field. Whenever a broader application is 
planned, all stakeholders’ views should be considered.

Limitations of our study might stem from our search strat-
egy. We aimed to gain a broad understanding of AI-based 
health care interventions. We included computer science 
databases, gray literature, and conference contributions. 
However, the use of English search terms may have led to the 
omission of evidence from non-English-speaking countries. 
Apart from India and China, there was a lack of studies from 
countries other than North America and Europe. Evidence 
from other countries might be especially interesting regard-
ing feasibility of technology-driven healthcare interventions 
as well as attitudes which might be culturally driven. Our 
decision to include all studies regardless of their risk of bias 
led to a more comprehensive overview of research activi-
ties in the field. However, confidence in findings concerning 
accuracy of predictive tools might be limited.

This review offers an in-depth exploration of AI appli-
cations spanning the monitoring, guidance, and support of 
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children and adolescents with chronic conditions. However, 
many studies are characterized by their limited scale and 
potential bias, with few having transitioned into genuine 
clinical practice. Consequently, further research and devel-
opment are imperative, given the current restricted use of 
AI applications in the care of young patients with chronic 
illnesses. While its utilization remains largely confined to 
research endeavors, the growing domains of digital medicine 
and AI hint at a more extensive future role. The utility of AI 
is evident in targeted applications, but to progress, a com-
prehensive understanding of patient and healthcare provider 
perspectives is indispensable. To enhance the applicability 
of future studies, large-scale feasibility studies conducted 
in real clinical settings should be prioritized. These studies 
should evaluate not only the effectiveness of AI tools and 
data suitability but also their integration into existing health-
care workflows, facilitating applicability across diverse 
patient populations and different healthcare environments.
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