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Abstract

This dissertation is cumulative; it consists of three parts that deal with representation
growth of infinite groups. We study the asymptotic behaviour of representations in three
different contexts. Namely, for quasi-semisimple profinite groups, compact p-adic analytic
groups, and Baumslag-Solitar groups.

In the first part of the thesis, we give some preliminaries that will help to understand
the subject of the following chapters.

In the second part of the thesis, we examine quasi-semisimple profinite groups. Notably,
we prove that every positive real number occurs as the abscissa of convergence for a suitable
group within this class.

The third part of the thesis focuses on the representation zeta functions of principal
congruence subgroups and certain extensions of the group SLm

2 (O), the m-th principal
congruence subgroup of the special linear group of degree 2 over a compact discrete valuation
ring O of characteristic 0 and residue characteristic p, for permissible m. We show that the
considered zeta functions have the zeta function of SLm

2 (O) as a factor. This research has
been conducted in collaboration with Moritz Petschick.

In the fourth and final part, we address Baumslag-Solitar groups, investigating their
absolutely irreducible representations over finite fields. The primary outcome is the
enumeration and description of absolutely irreducible representations of dimension n for a
Baumslag-Solitar group BS(x, y) with coprime parameters. This work has been conducted
in collaboration with Iker de las Heras.
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Abstract

Questa dissertazione è cumulativa; consiste di tre parti che trattano della crescita delle
rappresentazioni dei gruppi infiniti. Studiamo il comportamento asintotico delle rappre-
sentazioni in tre contesti diversi. In particolare, per i gruppi profiniti quasi-semisemplici, i
gruppi analitici p-adici compatti e i gruppi di Baumslag-Solitar.

Nella prima parte della tesi, forniamo alcune nozioni preliminari che aiuteranno a
comprendere l’argomento dei capitoli successivi.

Nella seconda parte della tesi, esaminiamo i gruppi profiniti quasi-semisemplici. In par-
ticolare, dimostriamo che ogni numero reale positivo si verifica come ascissa di convergenza
per un gruppo adeguato all’interno di questa classe.

La terza parte della tesi si concentra sulle funzioni zeta di rappresentazione dei sot-
togruppi di congruenza principali e di alcune estensioni del gruppo SLm

2 (O), il m-esimo
sottogruppo di congruenza principale del gruppo speciale lineare di grado 2 su un anello
compatto O di valutazione discreta di caratteristica 0 e caratteristica residua p, per valori
ammissibili di m. Dimostriamo che le funzioni zeta considerate hanno la funzione zeta
di SLm

2 (O) come fattore. Questa lavoro è stato condotto in collaborazione con Moritz
Petschick.

Nella quarta e ultima parte, affrontiamo i gruppi di Baumslag-Solitar, investigando le
loro rappresentazioni assolutamente irriducibili su campi finiti. Il risultato principale è
l’enumerazione e la descrizione delle rappresentazioni assolutamente irriducibili di dimen-
sione n per un gruppo di Baumslag-Solitar BS(x, y) con parametri coprimi. Questo lavoro
è stato condotto in collaborazione con Iker de las Heras.
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. . . la mathématique, de ce point de vue, n’est pas autre chose qu’un art;
une espèce de sculpture dans une matière extrêmement dure et résistance
(comme certains porphyres employés parfois, je crois, par les sculpteurs).

André Weil

Tu parles d’art et de matière dure; mais je ne puis concevoir en quoi consiste cette matière.
Les arts proprement dits ont une matière qui existe au sens physique du mot. La poésie

même a pour matière le langage regardé comme ensemble de sons. La matière de l’art
mathématique est une métaphore; et à quoi répond cette métaphore?

. . . la matière de ton travail, ne serait-ce pas l’ensemble des travaux mathématiques
antérieurs, avec le langage et le système de signes qui en résulte?

Simone Weil
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Introduction

This dissertation explores the representation growth of infinite groups, focusing on quasi-
semisimple profinite groups, compact p-adic analytic groups, and Baumslag-Solitar groups.
It consists of three distinct parts, each examining the asymptotic behaviour of representations
within these varied contexts. We begin the introduction with an ample overview over different
concepts and themes that enter and inform the more specific research problems which
we are about to discuss. In this way we establish in a straight and practical way a basic
framework for our work. Following this, we detail our specific contributions within this
wider context.

General concepts and themes

Roughly speaking, asymptotic group theory can be thought of as groups viewed from
some distance. The finer details disappear, and the rough lines become the main focus.
If in group theory one often aims at full classification (say, classifying finite simple
groups or doubly transitive permutation groups), then in asymptotic group theory we
would be happy with a classification up to finitely many (unspecified) exceptions. If in
group theory one often likes to compute certain invariants, in asymptotic group theory
we would be happy with finding out the asymptotic behavior of these invariants. If in
group theory one often studies a single finite group, in asymptotic group theory we
often study an infinite family of finite groups or sometimes the set of finite quotients
of some given infinite group.

Aner Shalev, April 2001 [115]

Profinite groups

A profinite group is formed by considering an inverse limit of a suitably coherent collection of
finite groups. From one perspective, investigating a profinite group is equivalent to studying
an infinite family of finite groups. However, a profinite group is also a compact topological
group, and this compactness simplifies the handling of infinite number of problems by
bringing them, with its usual magic, to a more tractable scale.

The concept of profinite groups was introduced into number theory in the early 20th

century. Initially, the group of p-adic integers Zp was utilized as a tool to study congruences,
simplifying the analysis by consolidating infinitely many congruences modulo pn, where
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n ∈ N∗, with a single equation over Zp. In this way, a profinite group replaces infinitely
many hypotheses concerning various small objects with a single hypothesis about one large
object. The large object - the group of p-adic integers in this case - can then be examined
using algebraic or arithmetic techniques. This process of “mathematical reification” has
a long tradition - as in the construction of the complex numbers - and continues to be a
fundamental strategy in modern mathematical research - such as in category theory, where
mathematical structures are treated as objects in a category, and relationships between
them are treated as morphisms or in algebraic geometry with Grothendieck’s introduction
of schemes.

Profinite groups gained complexity through Krull’s work, revealing that the Galois
group of an infinite algebraic Galois extension is naturally a profinite group. This group
is a compact topological group, whose structure is fully determined by the finite Galois
groups of all its finite Galois subextensions. This realization led to the sophisticated modern
formulations of class field theory by Chevalley, Artin, and Tate.

Nowadays, most questions concerning profinite groups posed by group theorists arise in
contexts that either connect information about a suitable collection of finite groups forming
an inverse system, lead to new results about abstract groups, or treat them as topological
groups in their own right. Some relevant resources on this topic are [132], [105], and [111].

Finite simple groups and finite p-groups

The classification of finite simple groups is one of the most significant mathematical
achievements of the past century. These groups exhibit a high degree of structure and
are relatively infrequent. A rather weak way to express this rarity is to state that, for
any given order, there are at most two non-isomorphic simple groups. Since every finite
group can be constructed by gluing together simple groups, it is often possible to reduce a
group theoretic problem to a question on simple groups. The classification of finite simple
groups has revolutionized the study of finite groups, which in turn has led to numerous
results concerning infinite groups with various finiteness conditions. One notable class
is residually finite groups. Often, questions about these groups can be reduced to the
asymptotic properties of their finite images, with profinite groups serving as a natural tool
for this analysis.

The classification states that every non-abelian finite simple group falls in one of the
following families

(1) Alternating groups of rank at least 5;
(2) Finite simple groups of Lie type;
(3) Sporadic groups.

For an introductory overview of finite simple groups we refer to Wilson [133] and the
references therein. We will also give some more information in Section 1.3.

2
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When the classification had a realistic hope to be completed, the main experts on the
subject reunited in a conference in Santa Cruz in 1979. Here is an extract from the preface
of the proceeding of the conference, cf. [24].

In the last year or so there have been widespread rumors that group theory is finished,
that there is nothing more to be done. It is not so. While it is true that we are
tantalizingly close to that pinnacle representing the classification of finite simple
groups, one should remember that only by reaching the top can one properly look back
and survey the neighbouring territory. It was the task of the Santa Cruz conference
not only to describe the tortuous route which brings us so close to the summit of
classification, but also to chart out more accessible paths, ones which might someday
be open to the general mathematical public.

Santa Cruz conference Geoffrey Mason
Chicago, June 1980

At the other side of the extensive spectrum of all finite groups are the groups known
as finite p-groups, where p is a prime number. In general, finite p-groups have numerous
normal subgroups. Since all the composition factors of a finite p-group are cyclic and of
order p, understanding these factors provides no additional information beyond the group’s
order. The Polynomial On Residue Classes (PORC) conjecture pertains to the enumeration
of these groups. Let f(n) denote the number of groups of order n. In 1969, Higman proved
that for any positive integer n, the number of groups of order pn is bounded by a polynomial
in p. Additionally, he formulated his renowned PORC conjecture regarding the form of the
function f(pn), which specifies the number of groups of order pn. Higman conjectured that
for each n, there exists an integer N (depending on n) such that for p in a fixed residue
class modulo N , the function f(pn) is a polynomial in p. The conjecture has been proved
correct for n � 7. See Vaughan-Lee’s seminal paper [125] for an overview on the subject.

Quasi-semisimple profinite groups and compact p-adic analytic groups

The profinite groups that in some sense can be called “low and wide” and “very non-abelian”
are the so called quasi-semisimple profinite groups. Following [86], we say that a profinite
group Q is quasi-semisimple if it is perfect, that is, Q equals the closure of its derived
group, and if Q modulo its center that is Q/Z(Q) is isomorphic to a Cartesian product
of finite non-abelian simple groups. A semisimple profinite group is a quasi-semisimple
profinite group with trivial center.

On the contrary, compact p-adic analytic groups are “tall and thin” and in a certain
sense “close to nilpotent”. These groups were examined at length by Lazard [78] as the
non-archimedian counterparts to Lie groups, i.e. the compact topological groups which
are analytic over Zp. Lazard’s significant accomplishment was demonstrating that the
class of compact p-adic analytic Lie groups can be characterized in a relatively simple

3
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group-theoretic manner, thus resolving the p-adic counterpart of Hilbert’s fifth problem.
The group-theoretic elements of his research were revisited and reinterpreted in the 1980s
by Lubotzky and Mann. By introducing the concept of unifomly powerful pro-p groups,
they were able to derive most of the group-theoretic outcomes of Lazard’s theory without
relying on complex “analytic” methods. This approach, along with further advancements, is
detailed in the book [31]. However, the class of uniformly powerful pro-p groups turned out
to differ from what Lazard originally intended. Klopsch [73] clarified this by recovering
saturable groups as envisioned by Lazard, thereby generalizing the concept of uniformly
powerful pro-p groups. Lazard’s method focuses on creating a correspondence between
saturated pro-p groups and specific Zp-Lie lattices through the use of exponential and
logarithm maps. This correspondence was clarified by Klopsch [73] and further studied by
González-Sánchez [40]. We refer to [75, Chapter 1] for a gentle introduction to compact
p-adic Lie groups.

S-arithmetic groups and congruence subgroup property

Some compact p-adic analytic groups can be seen as “local” parts of suitable S-arithmetic
groups.

Let k be a number field and S be a finite set of places of k including all archimedean
ones. Let O be the ring of integers of k and consider the ring of S-integers OS consisting of
all the elements of k which have absolute value smaller than or equal to 1 at the places
outside S. For instance, if S consists only of archimedean places, then OS coincides with O.
Let G be a connected simply connected simple linear algebraic group. In Chapter 1, we will
discuss in more details linear algebraic groups. Although Chapter 1 focuses on the linear
algebraic groups defined over an algebraically closed field of prime characteristic p, and here
we consider fields of characteristic zero, many definitions and a large part of the basic theory
are the same or rather similar, irrespective of the underlying characteristic. For our purpose
it is convenient to fix an embedding of G into GLn. The principal S-congruence subgroups
of G(OS) are of the form ker(G(OS) → G(OS /i)) for non zero ideals i � OS , where the
S-arithmetic group G(OS) is the group of OS-rational points with respect to the chosen
embedding of G into GLn. It is interesting to compare the profinite completion Ĝ(OS) and
the so called congruence completion G(OS) of G(OS), given by the S-congruence subgroups.
There exists a short exact sequence

1→ C(G, S)→ Ĝ(OS)→ G(OS)→ 1

where C(G, S) is called the congruence kernel. We say that the group G has the congruence
subgroup property (CSP) with respect to S is the congruence kernel C(G, S) is finite. Let ÔS

denote the profinite completion of the ring OS . Then ÔS =
∏

ν �∈S Oν , where Oν is the

4
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completion of OS with respect to the place ν. The Strong Approximation Theorem yields

G(OS) ∼=
∏
ν �∈S

G(Oν).

The groups G(Oν) are prototypes of compact p-adic analytic groups, where p coincides
with the residue characteristic of Oν . Considering this picture, they are considered as the
inverse limit of the “local” part of the global S-algebraic groups G(OS) which we picture as
G(OS /pm), where p is the prime ideal corresponding to the place ν.

Although the representation theory of S-arithmetic groups yields beautiful results
connecting the “global” picture with the “local” one, we will not delve further into the
structure of S-arithmetic groups, as our research focuses more on the compact p-adic
analytic side. For more references on the congruence subgroup property consult [124]
and [103].

Representation and character theory

At its core, representation theory seeks to understand groups by studying their actions on
vector spaces. A representation of a group G is a homomorphism from G to the group of
invertible matrices, GL(V ), where V is a vector space over a field. This allows the abstract
elements of G to be represented concretely as matrices, facilitating the application of linear
algebraic techniques to group theory.

A fundamental tool in representation theory is the character of a (finite dimensional)
representation, which is a function that assigns to each group element the trace of the
corresponding matrix. The theory of group characters, initiated and developed by Frobenius
at the end of the 19th century, has played a crucial role in understanding the structure
of finite groups. The collection of characters of all irreducible representations of a finite
group forms the character table, which encodes significant information about the group’s
structure. For instance, the number of irreducible characters of degree 1 is equal to the
index of the commutator subgroup of the group. Consequently, a group is perfect if and
only if the only irreducible character of degree 1 is the trivial character.

The insights provided by advanced methods from character theory have profound
implications. They allow mathematicians to classify groups, understand their properties,
and explore the symmetries in various mathematical and physical contexts. Representation
theory not only provides a powerful framework for addressing problems in pure mathematics,
but also finds applications in physics, chemistry, and beyond, where the symmetry and
structure of systems play a crucial role.
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Character tables of finite groups of Lie type

We give a brief overview of the evolution of the study of charcater tables of finite groups of
Lie type by following the detailed account given by Bonnafé [15].

The hystory of charcater tables of groups of Lie type dates back to the beginning of
the 20th century when, as early as 1907, Schur [109] and Jordan [67] determined in a
uniform way the character tables of the infinite families of general linear groups GL2(q)

and special linear groups SL2(q). In 1951, Steinberg [121] expanded on this by computing
the character tables of GL3(q) and GL4(q) though general constructions of representations
of GLn(q), now known as unipotents, see [120]. Then, in 1955, Green [49] achieved a
significant combinatorial accomplishment by algorithmically determining the character
table of GLn(q) for all degrees n ∈ N∗ and all field sizes q. Progress on understanding
the special linear group was slower. The character table of PSL3(q) was obtained in 1921
by Brinkmann. Lehrer’s 1971 thesis provides part of the character table for SL4(q). The
character table of SL3(q) was completed in 1973, and Lehrer’s subsequent work addressed
the group SLn(q) all degrees n ∈ N∗ and all field sizes q. Although not explicitly stated,
his work provided all the necessary information to complete the character table of SLn(q)

all prime degrees n ∈ N∗ and all field sizes q.
A seminal paper by Deligne and Lusztig [29] in 1976 marked significant progress in

the character theory of finite groups of Lie type. Here, finite groups of Lie type means
the groups of fixed points of a connected simple algebraic group G under a Steinberg
endomorphism F . Deligne and Lusztig’s approach was inspired by a calculation of Drinfeld
showing that the discrete series of SL2(q) appears in the l-adic cohomology of the variety
defined by the equation xyq − yxq = 1. It involved the idea and means for using the
geometric structure of G to produce varieties on which the finite group GF acts in a way
that provides access to all its irreducible characters. Since 1975, building on this approach,
Lusztig has produced several thousand pages of densely written research on the subject.
He achieved a major breakthrough in 1984 [89] where he successfully parametrized the
irreducible characters of GF in the spirit of Langlands’ program, [18].

Subgroup growth

Before delving into the world of representation growth, let us take a little diversion to talk
about subgroup growth, which is somewhat antecedent and an elder sibling to the growth
of representations.

For every positive integer n ∈ N∗, let an(G) denote the number of subgroups of index n

of a group G. If G is a topological group we count only open subgroups. The subgroup
growth of G is determined by the arithmetic function n �→ an(G). Over the past four
decades, efforts to understand and describe the relationship between a group’s algebraic
structure and its subgroup growth have evolved into a full fledged branch of infinite group
theory. A key result in this field is the characterization of finitely generated residually finite
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groups of polynomial subgroup growth as those that are virtually soluble of finite rank,
cf. [79, Theorem 5.1].

A profinite group G is said to have polynomial subgroup growth if it has at most na

open subgroup of finite index n for some a ∈ N across all n ∈ N∗. Profinite groups with
polynomial subgroup growth were characterised by Segal and Shalev [112] as groups having
closed normal subgroups S,G1 �c G with S � G1 such that S is prosoluble of finite
rank, G/G1 is finite, and G1/S is a quasi-semisimple group of bounded type such that
the sequence of the orders of the finite simple groups satisfy some combinatorial condition
called “gcd”, cf. [79, Theorem 10.3]. A profinite quasi-semisimple group Q is said to be
of bounded type if the sequence of finite non-abelian simple groups that appears in the
Cartesian product isomorphic to Q/Z(Q) is a sequence of finite simple groups of Lie type
of bounded rank, each occurring with bounded multiplicity. For example the Cartesian
product

∏∞
i=1 PSL2(pi) for a strictly increasing sequence of primes pi.

On the other hand, the finitely generated pro-p groups with polynomial subgroup
growth are precisely the pro-p groups of finite rank, i.e. the p-adic analytic pro-p groups,
cf. [82, Theorem B].

As a reference for an exposition of subgroup growth see the monograph [86].

Dirichlet generating functions

“A generating function is a clothesline on which we hang up a sequence of numbers for
display”, cf. [131]. With this idea in mind, Dirichlet generating functions are the perfect
tools to study the growth of arithmetic sequences. Some of the pioneers of the application of
Dirichlet generating function on the study of groups are Grunewald, Segal, and Smith [55]
who introduced a zeta function for the purpose of studying the subgroup growth in some
specific classes of infinite groups. With the successful outcome of their investigation, the
subject of subgroup growth became a flourishing area of research.

Igusa zeta functions

Let k and n be two positive integers and consider k polynomials with integer coefficients
in n variables, i.e. f1, . . . , fk ∈ Z[x1, . . . , xn]. Let p be a prime and consider Ni,p to be
the number of common solutions of the congruences fj ≡ 0 mod pi for every j ∈ [k]. We
consider the Poincaré series

Pf1,...,fk,p(T ) =

∞∑
i=0

Ni,pT
i.

Igusa [61, 62] proved for k = 1 that the Poincaré series is a rational function, i.e. a quotient
of two polynomials in T . Furthermore, Igusa illustrated how to express Poincaré series
associated with p-adic varieties as integrals with respect to the additive Haar measure
on Zp. In many instances, the problem of computing local Dirichlet generating functions
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can be transformed into the problem of computing certain Poincaré series, which are, in
turn, described through suitable p-adic integrals generalising Igusa local zeta functions.

Representation growth

The primary focus of this thesis is on representation growth, which refers to the increase in
the number of irreducible representations of a group in relation to the dimension of the
underlying spaces.

Let rn(G) denote the number of isomorphism classes of n-dimensional complex irre-
ducible representations of a group G. The Dirichlet zeta function that encodes this sequence
is called the representation zeta function of G and we denote it by ζG(s). If the sequence
grows polynomially, the zeta function converges absolutely on some complex half-plane.
When rn(G) is non-zero for infinitely many n, the abscissa of convergence provides the
polynomial degree of the growth of the summative sequence (

∑N
n=1 rn(G))N∈N∗ . This is

one of the most studied invariants in the subject and the correlation with values and groups
is still somehow mysterious. Many other analytic aspects of zeta functions could give some
introspective information on groups. Namely the existence of a meromorphic continuation
in the entire complex plane, or the existence and location of zeros and poles. The whole
subject is relatively new, as very few papers on representation zeta functions of infinite
groups are older than twenty years, so much is left to discover. For an introductory survey
on this subject, see [73].

Representation growth of S-arithmetic groups. Local and global

We consider the arithmetic subgroups of semisimple algebraic groups defined over number
fields, as we did before. More precisely, we consider groups Γ which are commensurable
to G(OS), where G is a connected, simply connected semisimple algebraic group defined
over a number field K and OS is the ring of S-integers in k for a finite set S of places of k
including all the archimedean ones. Let Γ be of this form. Lubotzky and Martin showed
that Γ has PRG if and only if Γ has the congruence subgroup property CSP, modulo a
standard conjecture, see [84]. Suppose that Γ possesses these properties. Then according
to a result of Larsen and Lubotzky [77, Proposition 1.3], the representation zeta function
of Γ admits an Euler product decomposition. Indeed, if Γ = G(OS) and if the congruence
kernel of Γ is trivial, this decomposition takes the form

ζΓ(s) = ζG(C)(s)
|k:Q| ·

∏
ν �∈S

ζG(Oν)(s), (0.0.1)

where the product extends over all places ν of k which are not in S. Here each archimedean
factor ζG(C)(s) enumerates the finite-dimensional, irreducible rational representations of
the algebraic group G(C) and their contribution to the Euler product reflects Margulis
super-rigidity. By Oν we denote the ring of integers in the completion kν of k at the
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non-archimedean place ν. The Euler product over the factors captures the representations
of Γ with finite image. The groups are FAb compact p-adic analytic groups. An important
family of examples of arithmetic groups with the CSP are the special linear groups of degree
at least 3. Several of the results of [77] concern the abscissae of convergence of the local
representation zeta functions occurring as Euler factors on the right-hand side of (0.0.1) for
suitable arithmetic groups Γ. Of particular interest is the dependence of these abscissae on
natural invariants, such as the Lie rank of the ambient group of Γ or the place ν at which Γ

is completed. With regard to abscissae of convergence of the global representation zeta
functions for arithmetic groups, Avni proved in [9] that, for an arithmetic group Γ with the
CSP, the abscissa of convergence of is always a rational number. Moreover, Avni, Klopsch,
Onn, and Voll [12] showed that the abscissae of convergence of representation zeta functions
of S-arithmetic groups are invariant under base extensions of the underlying number field
and so the invariant α(G(OS)) is determined by the absolute root system of G.

Summary of main results and outline of the thesis

We reproduce here our contributions divided into their respective chapters. More refined
introductions are given in the corresponding introductions to the individual chapters.

Chapter 1: Representation growth of quasi-semisimple profinite groups

In the first chapter, we study the representation growth of quasi-semisimple profinite
groups. Recall that a profinite group G is called quasi-semisimple if G is perfect and
G/Z(G) ∼=∏i Si, where each Si is a finite non-abelian simple group. A semisimple profinite
group is a quasi-semisimple profinite group with trivial center.

Kassabov and Nikolov [68] studied Cartesian products of alternating groups and they
proved that for every positive real number a, there exists a Cartesian product of alternating
groups which has polynomial representation growth of the chosen degree a. This is achieved
by constructing a finitely generated Cartesian product of alternating groups using a function
f : N�5 → N that controls the number copies f(n) of the alternating groups Alt(n) of
degree n appearing in the Cartesian product. By choosing carefully the function so that the
group is finitely generated, one can “play” with it and achieve every degree of representation
growth.

Cartesian products of finite (simple) groups of Lie type, offer a richer variety of choices.
One can vary the root systems, Lie ranks, and/or the defining fields. Avni, Klopsch,
Onn, and Voll [12] considered some quasi-semisimple profinite groups in their study of the
representation zeta functions of S-arithmetic groups. To explain it, consider the example of
the ring of S-integers ZS of the field Q for a finite set of places S including the archimedean
place and at least the primes 2 and 3. The S-arithmetic group SL2(ZS) has the congruence

9



l

subgroup property, leading to the profinite completion

̂SL2(ZS) ∼= SL2(ẐS) ∼=
∏
p �∈S

SL2(Zp).

Thus, we naturally find a quasi-semismple profinite group by considering the short exact
sequence

1→ K → SL2(ẐS)→
∏
p �∈S

SL2(p)→ 1,

where K =
∏

p �∈S Kp and Kp is the principal congruence subgroup ker(SL2(Zp)→ SL2(p)).
Inspired by the work of Avni, Klopsch, Onn, and Voll, Klopsch and García Rodríguez

constructed Cartesian products of simple groups of the form SLpβ (p
γ) or SUpβ (p

γ) for fixed p

and fixed β, and across infinitely many values of γ, or products of Sp2η(2γ), Spin
+
2η(2

γ), or
Spin−2η(2

γ) for fixed η and growing γ, achieving PRG of any chosen degree a ∈ R>0.
Our work aims to generalise this result by allowing more flexibility in the choice of

quasi-semisimple profinite groups. Additionally, Kassabov and Nikolov provided a criterion
for semisimple profinite groups to be profinite completion. A finitely generated profinite
group G is a profinite completion if there exists an abstract finitely generated residually
finite group H such that its profinite completion is isomorphic to G. The finitely generated
Cartesian products of alternating groups, based on Kassabov and Nikolov’s result, are
naturally profinite completions. Our result shows that semisimple profinite groups can have
a specified degree of PRG. Specifically, we prove the following result.

Theorem A. For every real number a > 0, there exist quasi-semisimple profinite groups G

such that α(G) = a. Additionally, G can be chosen with flexibility concerning the root system,
the Lie ranks, and the defining field of the non-abelian composition factors. Furthermore,
there are semisimple profinite groups with α(G) = a that are profinite completions.

This is Theorem 1.1.1 in Chapter 1.

Chapter 2: Representation growth of compact p-adic analytic groups

Representation zeta functions of p-adic analytic groups arise as local factors of representation
zeta functions of arithmetic groups. One of the landmark results of the theory is given by
Jaikin-Zapirain [66] who proved that the representation zeta function of a FAb compact
p-adic analytic group can always be expressed in terms of finitely many rational functions
in p−s over Q. Unfortunately, the explicit calculation of the integrals arising from concrete
examples is a very hard task. Although the representation zeta functions of SL2(Zp) and
SL3(Zp) are known [10, 11, 66], the higher-rank examples remain mysterious; even the
abscissae of convergence of the groups SLn(Zp) for n � 5 have not been computed, though
there exist partial results for SL4(Zp) and some general bounds, cf. [2, 10,17,77,134].

In a joint project with Jan Moritz Petschick, we aimed to provide new examples of
representation zeta functions of compact p-adic analytic groups. This is our attempt to
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break the logjam of explicit computations of representation zeta functions by considering
new kinds of compact p-adic analytic groups. Before stating our theorem, let p denote a
fixed prime number, and use the symbol p to indicate the prime p if it is odd, or 4 in the
case where the prime is 2. Our main result is the following.

Theorem B. Let O be a compact discrete valuation ring of characteristic 0 and residue
characteristic p. Let H be a potent subgroup of SL1

2(O), let V be an OH-module of finite
O-rank n, and let σ : H → GLm

n (O) be a faithful finite-dimensional O-representation of H
on V such that Hσ ∩GLm+1

n (O) ≤ (Hσ)p, for a permissible m. Assume furthermore that
the semi-direct product G = H �σ V is FAb. Then

ζG(s) = ζH(s) · ζGH(s− 1),

where ζGH(s) is the zeta function associated to the representation IndGH(�).

This is Theorem 2.1.1 in Chapter 2.
The representation IndGH(�) is an example of an admissible representation. Zeta functions

associated with admissible representations of p-adic analytic groups were recently defined
by Kionke and Klopsch [70] as generalizations of representations zeta functions of groups.
Some of the tools of our investigation are the Kirillov orbit method, p-adic integration, and
the study of representations of semidirect products.

Moreover, using the product given by Theorem B, we computed the following represen-
tation zeta functions of non-semisimple compact p-adic analytic groups.

Theorem C. Let O be a compact discrete valuation ring of characteristic 0, residue
characteristic an odd prime p, and residue field cardinality q. Then in the different settings
described below the following hold.

(a) Let Hm
n = SLm

n (O) with permissible m ∈ N∗ and n ∈ N�2, and consider
Gm

n = Hm
n � O2, where the semidirect product is formed with respect to the nat-

ural action. Then

ζ
Gm

n
Hm

n
(s) = qmn (1− q−n(1+s))

(1− q−ns)
.

In particular, for n = 2 we obtain

ζGm
2
(s) = ζHm

2
(s)ζ

Gm
2

Hm
2
(s− 1) = q5m

(1− q−2s)(1− q−2−s)
(1− q1−s)2(1 + q1−s)

.

(b) For simplicity, only in this case, let O be an unramified extension of Zp and let p � 7.
For k ∈ N�1, consider Gk of the form Hk � O2, where

Hk =

{(
a b

c d

)
∈ SL1

2(O) | a ≡ d ≡ 1 mod pk, c ≡ 0 mod pk

}
.
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Then

ζGk
Hk

(s) = q2+ks (1− q−1−s)(1− q−s − q−1−2s + q−1−(k+1)s)

(1− q−s)2(1 + q−s)
,

and we have

ζGk
(s) = q5+ks (1− q−2−s)(1− q−s)(1− q1−s − q1−2s + qk−(k+1)s)

(1− q1−s)3(1 + q1−s)
.

(c) For Gm
n = SLm

2 (O)� O2n with n ∈ N∗ and permissible m ∈ N∗, where we regard O2

as the natural module and consider the diagonal action of SLm
2 (O) on O2n ∼=⊕n

i=1 O
2,

we have

ζGm
n
(s) = q2nm−1

(1− q−s)(1 + q − (qn−1 − 1)q2−2s − qn+2−3s − qn+2−4s)
(1− q(n+1)−2s)(1− q2n−3s)

ζSLm
2 (O).

In particular, depending on the value of n, the abscissa of convergence may be de-
termined by either of the two uniformly varying factors in the denominator, i.e. for
n � 3 the abscissa of convergence is α(Gm

n ) = n+1
2 , and for n � 3 the abscissa of

convergence is α(Gm
n ) = 2n

3 .
(d) For Gm

n = SLm
2 (O)� (Sym2(O2))n and Hm = SLm

2 (O) with permissible m ∈ N∗ and
n ∈ N�2, we have

ζ
Gm

n
Hm(s) = q3nm−1(1−q−s)(1−q−1−s)

(q−s + qn−2s + (1 + q−s)q + (1 + q−s)qn−1−2s)
(1− qn−2s)(1− q3(n−1)−3s)

.

(e) For Gm = SLm
2 (Z2) � Sym2(Z2

2) and Hm = SLm
2 (Z2) with permissible m ∈ N∗, we

have

ζG
m

Hm(s− 1) = 23m+1 (1− 2−s)(23−s + (1− 2−s))
1− 23−s

.

This is Theorem 2.1.2 in Chapter 2, where some of the notation is explained in more
detail.

Chapter 3: Representation growth of Baumslag-Solitar groups

In the last chapter, we write on a work conducted in collaboration with Iker de las Heras,
which has a different flavour with respect to the previous ones. We focus on absolute
irreducible representations over finite fields of Baumslag-Solitar groups. A Baumslag-Solitar
group is a two-generator one-relator group given by the presentation

BS(x, y) = 〈a, b | ax = b−1ayb〉,

where x, y ∈ Z \{0}.
These groups were introduced in 1962 by Baumslag and Solitar in [14] to provide the

first examples of finitely presented non-Hopfian groups, and have since been a rich source
of examples and counterexamples in group theory (recall that a group G is called Hopfian
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if it does not have any proper quotient that is isomorphic to G).
Let rabsn (G,Fq) be the number of non-isomorphic absolutely irreducible n-dimensional

representations of a group G over Fq, where q is a power of a prime. We prove the following
result.

Theorem D. Let x, y ∈ Z be such that gcd(x, y) = 1. Then

rabsn (BS(x, y),Fq) =
q − 1

n

∑
l

ϕ(l),

where l runs through all the positive integers satisfying the following conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gcd(l, xy) = 1,

qn ≡ 1 (mod l),

xn ≡ yn (mod l),

xm �≡ ym (mod l), for every m ∈ [n− 1],

yr ≡ xrq (mod l), for some r ∈ [n];

and ϕ is Euler’s totient function.

This is Theorem 3.1.1 in Chapter 3.
This work was inspired by the work of Mozgovoy and Reineke [97], who studied the

absolute representation growth over finite fields of free groups. They found some polynomials
that describe this growth and, moreover, they related those polynomials to the formula
describing the subgroup growth. Baumslag-Solitar groups are not free, but they are somehow
close to being so, as they satisfy just one relation. However, the methods Mozgovoy and
Reineke are using, do not seem to apply to other kind of groups such as Baumslag-Solitar
groups, so we use different methods.

We conclude the chapter with an application to a different type of representation zeta
function. More specifically, we look at zeta functions akin to the classic Weil zeta functions,
called the Weil representation zeta functions defined in 2024, by Corob Cook, Kionke, and
Vannacci [26] as

ζWG (s) = exp

⎛⎝∑
p∈P

∑
n≥1

∑
j≥1

rabsn (G,Fpj )

j
· p−snj · p

nj − 1

pj − 1

⎞⎠ .

Statement on the author’s contribution to shared research

I declare that the research and creation of ideas for Chapters 2 and 3 were equally shared
between myself and the respective coauthors at all levels. Initially we worked together
“at the blackboard” and then we carried our the “solidification process” in close exchange
with one another. The writing of Chapters 2 and 3 in this thesis is based on manuscripts
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that were written jointly by the coauthors and subsequently improved by me during the
preparation of this thesis. A previous account of the joint work presented in Chapter 2
appears in Jan Moritz Petschick’s thesis [102].
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Preliminaries

In this chapter, we introduce some notation and present standard definitions and useful
results that will be used throughout the thesis. We divide the chapter as follows. In the
first section, we present general notations on rings and groups. In the second section, we
fix the notations for local fields of characteristic 0 and we discuss some classical results
regarding O-lattices. The main sources are [100] and [76]. In the third section, we provide
a brief overview of profinite groups with a few of the main results on the subject, and at
the end we introduce the notion of Haar measure for topological groups. As references we
use the monographs [132] and [105] for profinite groups, and [34] for the Haar measure. In
the fourth and fifth sections, we introduce the universe of representations and characters
for both, finite and infinite (topological) groups. We rely on the monographs [63] and [60]
for finite groups, and on [123] and [35] for locally compact topological groups. In the
subsequent section, we outline the theory of central extensions of finite groups based on
the monographs [63], [57], and [60]. In the seventh and last section, we introduce Dirichlet
generating functions in different contexts. We give an overview of some of the main results
in the area and we focus on the Dirichlet generating functions related to representations of
groups, known as representation zeta functions. We refer to the monographs [64], [100], [96],
and [107], the seminal papers [74], [126] and references therein.

0.1 General notation

We write N = {0, 1, 2, 3, . . . } for the set of natural numbers (non-negative integers) and
N∗ = N \ {0} = {1, 2, 3, . . . } for the set of the non-zero natural numbers (positive integers).
For every n ∈ N∗, we write [n] for the set {1, . . . , n}. As is customary, Z, Zp, Q, R, C, and Qp

are respectively the rings of integers and p-adic integers, the fields of rational, real, complex,
and p-adic numbers. For q a power of a prime p, let Fq be the finite field of q elements. An
algebraic closure of Fq is denoted by F; its characteristic and the inclusion Fq ⊆ F will be
clear from the context. We will mainly use the letter k for a generic field, O for a compact
discrete valuation ring of characteristic 0 and residue characteristic p, a prime, and K for
the field of fractions of O, which constitutes a finite extension of Qp. If l is an extension
of a field k, then |l : k| is the degree of the extension. If i is an ideal of O then we write i � O.
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Let G be a group. As usual H � G indicates that H is a subgroup of G and,
if H is normal in G, we write H � G. The index of a subgroup H in G is denoted
by |G : H|. For two elements g, h of G, we write hg = g−1hg and gh = hg

−1
= ghg−1

for the conjugation action, the commutator of two elements is [h, g] = h−1hg, the center
of G is Z(G) = {g ∈ G | gh = hg for all h ∈ G}, and the centralizer of an element g ∈ G

is CG(g) = {h ∈ G | gh = hg}. The Frattini subgroup Φ(G) is the intersection of all
maximal subgroups of G, and equals G if G has no maximal subgroups. It is well-known
fact that Φ(G) is equal to the set of all “non-generating” elements of G. The lower central
series of a group G is defined by γ1(G) = G and γk(G) = [γk−1(G), G] for k � 2.

0.2 Topological groups and profinite completions

A topological group is a set G which is equipped with the structure of both, a group and a
topological space, and for which the map

G×G→ G, (x, y)→ xy−1

is continuous. A tolopological group G satisfies the following elementary properties, cf. [132,
Lemma 0.3.1].

• If H is a subgroup containing a non-empty open subset U of G then H is open in G.
• G is Hausdorff if and only if {1} is a closed subset of G; and if K is a normal subgroup

of G then G/K is Hausdorff if and only if K is closed in G. If G is totally disconnected,
then G is Hausdorff.

If a subgroup H is normal and open in G, we write H �o G and when it is closed we
write H �c G.

A profinite group is a compact totally disconnected topological group; its open subgroups
form a base of neighbourhoods of the identity. Let C be a non-empty class of finite groups.
We call a group G a pro-C group if it is an inverse limit of C-groups. The topology of G is
inherited from the product topology on the Cartesian product of the C-groups into which G

embeds as a closed subgroup. For example, C could be the class of all finite groups. In this
case, a pro-C group is simply a profinite group. Other examples are when C is the class
of finite p-groups, where p is a fixed prime, when C is the class of finite cyclic groups, or
when C is the class of finite solvable groups. In these cases, a pro-C group is commonly
called a pro-p, procyclic, or prosolvable group, respectively.

We have the following result, cf. [132, Theorem 1.2.3], [31, Proposition 1.3], and [105,
Theorem 2.1.3]

Lemma 0.2.1. Let G be a topological group and let us assume that C is a non-empty
class of finite groups that is closed for subgroups, direct products, and quotients. Put
N = {N | N �o G,G/N ∈ C}. Then the following are equivalent:
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(i) G is pro-C group;
(ii) G is isomorphic (as a topological group) to a closed subgroup of a Cartesian product

of C-groups;
(iii) G is compact and

⋂
N∈N N = 1;

(iv) G is compact and totally disconnected, and G/L ∈ C for every L �o G;
(v) G is isomorphic (as a topological group) to lim←−N∈N G/N .

Let G be an abstract group and let C be a non-empty class of finite groups. Put

N = {N � G | |G : N | <∞, G/N ∈ C}.

We call a subset of G open if and only if it is a union of cosets Kg of subgroups K ∈ N

with g ∈ G. Then G becomes a topological group, for the pro-C topology.
The pro-C completion of G is the inverse limit

ĜC = lim←−
N∈N

G/N.

The profinite completion Ĝ of a group G is the completion of G with respect to the family
of all normal subgroups of finite index. A group G is residually finite if the intersection of all
its subgroups of finite index is trivial. The natural map from G to its profinite completion
is injective if and only if G is residually finite.

Let G be a profinite group. For a subset X of G, we denote by X the topological closure
of X, i.e. X =

⋂
N�oG

XN. A subset X of G is said to generate G topologically if G is
the closure of the abstract subgroup generated by X, i.e. if the abstract subgroup 〈X〉
of G generated by X is dense in G. We say that G is finitely generated if there exists
a finite set X that generates G topologically. A profinite group G is called procyclic if
it contains an element x which generates the group G. We have the following result,
see [132, Proposition 4.1.1 and Lemma 4.1.5] or [105, Lemma 2.4.1].

Lemma 0.2.2. (a) Let G be a profinite group and let X be a subset of G. Consider the
projection maps πN : G→ G/N , where N runs over all open normal subgroups of G.

(i) If X generates G topologically, then πN (X) generates G/N , for each open normal
subgroup N of G.

(ii) If πN (X) generates G/N for each open normal subgroup N of G, then X

generates G topologically.

(b) Let {Gi | i ∈ I} be a family of finite groups and let H be a closed subgroup of
G =
∏

i∈I Gi. For each i ∈ I write πi : G→ Gi for the projection map. Then

(i) H = G if and only if for each finite subset {i1, . . . , ir} of I of size r, the map

H → Gi1 × · · · ×Gir , h �→ (πi1(h), . . . , πir(h))
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is surjective.
(ii) Suppose in addition that for all pairs of distinct elements i, j ∈ I, the groups

Gi, Gj have no isomorphic composition factors. Then H = G if and only if for
each i ∈ I the restriction of πi to H, i.e. the map

H → Gi, h �→ πi(h),

is surjective.

Example 0.2.3. The groups
∏

n�5Alt(n) and
∏

p∈P PSL2(p) are 2-generator profinite
groups, where P is the set of primes greater than or equal to 5. This follows essentially
from Lemma 0.2.1.

Let G be a profinite group. If G is finitely generated, we define the minimal number of
generators of G as

d(G) = min{|X| | X ⊆ G,X generates G}.

If a profinite group G is not finitely generated, then we write d(G) =∞.
If G is a finitely generated profinite group, the (Prüfer) rank of G is defined as

rk(G) = sup{d(H) | H �c G}.

Usually, for a closed subgroup H of G one can say little about d(H). Nevertheless, there
are groups for which the rank is finite. It is a theorem that a profinite group G is p-adic
analytic if it contains an open pro-p subgroup U such that rk(U) <∞, cf. [31, Theorem 8.1].
A representative example of such groups is GLn(Zp), see [31] for more details. We will work
with compact p-adic analytic groups in Chapter 2.

0.2.1 Haar measure for locally compact groups

A non-empty collection of sets, which is closed under countable unions and comple-
ments, is called a σ-algebra. For a topological space X, the σ-algebra generated by
its open sets is called the Borel σ-algebra associated to X. The sets in the Borel σ-
algebra are called measurable sets. A measure on the Borel σ-algebra B, is a func-
tion μ : B → [0,∞] with μ(∅) = 0 which is countably additive, i.e. if {Bj}∞j=1 is a
sequence of disjoint sets in B, then μ(

⋃∞
j=1Bj) =

∑∞
j=1 μ(Bj). For convenience we

assume without further mentioning that all measures are neither trivial (that is all
sets have measure 0), nor assign the measure ∞ to all non-empty sets. A subset B

is called inner regular if μ(B) = sup{μ(K) | K ⊆ B, K compact}, and outer regular
if μ(B) = inf{μ(U) | B ⊆ U, U open}. The measure μ is called regular if every open subset
is inner regular and every measurable subset is outer regular. For a topological group G, a
left Haar measure μ on G is a regular measure that is left invariant, i.e. for every g ∈ G

and B ⊆ G measurable, we have μ(gB) = μ(B). Haar [56] and von Neumann [101] proved
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that for locally compact second countable groups, a left Haar measure exists and if μ and ν

are left Haar measures, then there exists c > 0 such that μ = cν. The general case for
locally compact groups was settled by Weil. See [34, Theorem 10.5, Theorem 10.14, and
Section 10.4] and the references therein. A group is called unimodular if the left Haar
measure is also a right Haar measure. Compact groups are unimodular, see [34, Propo-
sition 10.16]. For this reason we do not need to distinguish between left and right Haar
measure on profinite groups.

0.3 Local fields and O-lattices

Let K be a finite extension field of Qp and O its ring of integers. By [100, Proposition 5.2],
the finite extensions of Qp produce all (non-archimedean) local fields of characteristic zero
up to isomorphism. Let p be the unique maximal ideal of O, κ = O/p the residue class
field of cardinality q, O∗ the group of units, and π an uniformizer so that p = πO. The
normalized (exponential) valuation is denoted by vp : K → Z ∪ {∞}, and the normalized
absolute value by

| · |p = q−vp(·).

For n ∈ N we consider the subgroups U (n) of O∗, called groups of principal units, which are
defined as U (0) = O∗ and for n � 1 as

U (n) = 1 + pn =

{
x ∈ K∗ | |1− x|p < 1

qn−1

}
.

The descending chain
O∗ = U (0) ⊇ U (1) ⊇ U (2) ⊇ · · ·

is a base of neighbourhoods of the element 1 of K∗ := K \ {0} consisting of compact open
subgroups. Then there is a uniquely determined (non-injective) continuous homomorphism
log : K∗ → K such that log(p) = 0 and

log(1 + x) =

∞∑
i=1

(−1)i−1x
i

i
, for (1 + x) ∈ U (1),

see [100, Proposition 5.4]. Let e = e(O,Zp) be the ramification index of O so that pO = pe.
We have the following result, cf. [100, Proposition 5.5].

Proposition 0.3.1. Let O be the ring of integers of a local field K of characteristic zero,
ramification index e, and with maximal ideal p � O. For every n ∈ N∗, let U (n) = 1+ pn be
the group of principal units. Then the power series

exp(x) =
∞∑
i=0

xi

i!
and log(1 + x) =

∞∑
i=1

(−1)i−1x
i

i
,
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yield, for n > e/(p− 1), mutually inverse isomorphisms of groups

pn
exp−−⇀↽−−
log

U (n).

Let d ∈ N∗. An O-lattice Λ in Kd is a free O-submodule of Kd of rank d. We present
the Cartan decomposition, cf. [76, Theorem 7.39].

Theorem 0.3.2. Let K be a non-archimedean local field with a ring of integers O. Let π
be an uniformizer of O and n ∈ N∗. Then every element A of the group GLn(K) has a
decomposition A = PDQ with P,Q ∈ GLn(O) and D a diagonal matrix of the form

D = diag(πk1 , . . . , πkn),

for some integers ki ∈ Z. Up to permutation of diagonal entries, the matrix D is unique.

Let g be an O-lattice and h an O-sublattice of g. Let ξ : g → h be an O-linear
isomorphism between g and h. We can represent ξ by a matrix A of GLn(K) with respect
to an O-basis for g. By Theorem 0.3.2, there are two O-bases for g such that with respect
to these bases ξ is represented by a diagonal matrix D = diag(πk1 , . . . , πkn). From this we
obbtain the following corollary.

Corollary 0.3.3. Let g be an O-lattice and h an O-sublattice. Let ξ : g→ h be an O-linear
isomorphism between g and h. Then ξ extends to an endomorphism of the K-vector space
K ⊗O g such that

| det ξ|−1p = |g : h|.

0.4 Representation theory

Let G be a group, and let k be a field. A (finite dimensional) k-representation of G is a
group homomorphism

ρ : G→ GL(V )

where V is a (finite dimensional) k-vector space.
The dimension of the space V is called the dimension of the representation or its

degree. Two representations ρ1 and ρ2 of G, supported on the same space V , are said
to be isomorphic if there exists an invertible linear transformation P of V such that
ρ2(g)(v) = (P ◦ρ1(g)◦P−1)(v) for all g ∈ G and v ∈ V . Representations on different spaces
V1 and V2 are isomorphic if there is an equivalent linear isomorphism between V1 and V2.
A representation is called irreducible if the supporting space V is non-trivial and has no
proper non-zero subspaces that are stable under the action of the representation. For a
finite group G, Maschke’s Theorem states that if the characteristic of the scalar field k of V
does not divide the order of G, then every representation can be described as a direct sum
of irreducible representations. The set of finite dimensional irreducible k-representations of
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G, up to equivalence, is denoted by Irrk(G). When k is the field of complex numbers, we
simply write Irr(G).

The kernel of a representation ρ of a group G on V is ker ρ = {g ∈ G | ρ(g) = idV } as
expected. If N is a normal subgroup of a group G and ρ is a k-representation of G with
N ⊆ ker ρ, then there is a unique k-representation ρ̄ of G/N defined by ρ̄(gN) = ρ(g). Note
that ρ is irreducible if and only if ρ̄ is. Sometimes we will make no distinction notationally
between ρ and ρ̄.

When the scalar field k is not algebraically closed, an irreducible k-representation can
become reducible as an l-representation, where l is a field extension of k. If an irreducible
representation stays irreducible over all algebraic field extensions, it is called absolutely
irreducible.

From now on, let us assume that the field k is the field of complex numbers C, unless
specified otherwise.

If G is a finite group, the study of representations (and characters) of G is a well
established research area, see for example [63] and [60]. If the group G is infinite and we
consider a topology on it, then we require ρ to be continuous. We say that ρ is finite if
it has finite image. In the case of profinite groups, the following lemma shows that every
representation has finite image.

Lemma 0.4.1. Let G be a profinite group. Then every continuous finite dimensional com-
plex representation of G factors over an open normal subgroup. Hence, every representation
of G has finite image.

Proof. Let ρ : G→ GL(V ) be a continuous finite dimensional complex representation of G.
Consider a neighbourhood B of the identity in GL(V ) such that the only subgroup contained
in B is the trivial group containing the identity element. Such a neighbourhood B exists
because GL(V ) has “no small subgroups”, as defined in [123, Definition 6.13 and Section 21].
Since G is a profinite group, ρ−1(B) is an open neighbourhood of the identity in G, which
contains an open normal subgroup N . Then ρ(N) ⊆ B and so it is trivial. In conclusion, ρ
factors through G/N , which is finite.

From now on, if G is a topological group it is tacitly understood that representations
are continuous.

Moreover, for compact groups, Weyl proved that all finite dimensional complex repre-
sentations are unitary, i.e. given a finite dimensional complex representation ρ of a compact
group G, the underlying complex vector space admits an inner product such that ρ(g) is
a unitary operator for every g ∈ G. Compare with [128, Section 22] or [123, Section 14].
This leads to an analogous result of Maschke’s Theorem for compact groups as every
unitary representation of a compact group G is a direct sum of irreducible representations,
see [35, Theorem 5.2].
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0.4.1 Representations of semi-direct products

Let A and H be two subgroups of the finite group G, with A normal in G. Let us assume
the following extra conditions:

(i) A is abelian.
(ii) G is the semidirect product of H by A, i.e. G = H �A.

Since A is abelian, its irreducible representations are of degree one and form a group
X = Hom(A,C∗). The group G acts on X as follows

(χg)(a) = χ(gag−1) for g ∈ G, χ ∈ X, a ∈ A.

Let (χi)i∈X/H be a system of representatives for the orbits of H in X. For each i ∈ X/H,
let Hi be the stabilizer of χi, i.e. the subgroup of H consisting of those elements h such
that χh

i = χi; and let Gi = Hi · A be the corresponding subgroup of G. Extend the
function χi to Gi by setting

χi(ha) = χi(a) for a ∈ A, h ∈ Hi.

Since χh
i = χi for all h ∈ Hi, χi becomes a representation of degree one of Gi. Now, let ρ be

an irreducible representation of Hi; by composing ρ with the canonical projection Gi → Hi,
we obtain an irreducible representation ρ̃ of Gi. Finally, by taking the tensor product of χi

and ρ̃, we obtain an irreducible representation ρ̃⊗ χi of Gi; let θρ,i be the corresponding
induced representation of G as defined in Section 0.5.2. We have the following result,
see [113, Proposition 25].

Proposition 0.4.2. (a) θρ,i is irreducible.
(b) If θρ,i and θρ′,i′ are isomorphic, then i = i′ and ρ is isomorphic to ρ′.
(c) Every irreducible representation of G is isomorphic to one of the θρ,i.

0.5 Character theory

Let ρ be a (finite dimensional) C-representation of a group G. The (C-)character χ of G,
afforded by ρ, is the function derived from the trace of χ(g), i.e. defined as χ(g) = tr(ρ(g)).
Equivalent C-representations of G afford equal characters, since the trace operator is
invariant under conjugation by an invertible transformation. The degree of a a character χ

is χ(1) and equals the dimension of ρ, where χ is afforded by ρ. Additionally, the character
of an irreducible representation is called an irreducible character. It is convenient to use
Irr(G) also to refer to the set of irreducible characters of G. For profinite groups this is
justified by the fact that equivalent classes of irreducible representations over C are in
one-to-one correspondence with irreducible characters.
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For a finite group G, the number of irreducible characters equals the number of conjugacy
classes of G, see [63, Corollary 2.5] or [60, Theorem 3.12]. Moreover, the relation

|G| =
∑

χ∈Irr(G)

χ(1)2

holds, see [63, Corollary 2.7] or [60, Theorem 3.7]. The inner product of two characters χ

and ϑ of G is defined as
〈χ, ϑ〉G =

1

|G|
∑
g∈G

χ(g)ϑ(g). (0.5.1)

For a finite group G with a character χ, the kernel of χ is defined as

kerχ = {g ∈ G | χ(g) = χ(1)}.

If χ is afforded by the representation ρ, then kerχ = ker ρ.
Let N be a normal subgroup of G, and χ a character of G with N ⊆ kerχ. Then χ

is constant on cosets of N in G. In this case, the induced function χ̄ on G/N defined by
χ̄(gN) = χ(g) is a character of G/N . Moreover, χ ∈ Irr(G) if and only if χ̄ ∈ Irr(G/N),
see [63, Lemma 2.22]. It follows that a non-trivial group G is simple if and only if kerχ = 1

for all non-trivial irreducible characters χ of G.
The first orthogonality relation for finite groups (“row orthogonality”) is the following,

see [63, Corollary 2.14] or [60, Thereom 3.4].

Proposition 0.5.1. Let Irr(G) = {χ1, . . . , χr} be the set of irreducible characters of a
finite group G. Then the following equality holds

〈χi, χj〉G =
1

|G|
∑
g∈G

χi(g)χj(g
−1) = δij ,

where δij denotes the Kronecker delta.

The second orthogonal relation (“column orthogonality”) is the following, see [63,
Theorem 2.18] or [60, Theorem 3.10].

Proposition 0.5.2. Let g, h be elements of a finite group G. If g is not conjugate to h

in G, then ∑
χ∈Irr(G)

χ(g)χ(h) = 0.

If g is conjugate to h in G, the sum is equal to |CG(g)|, the cardinality of the centralizer
of g.

Recall from Section 0.2.1 that for a compact group G, there exists a Haar measure μ. We
normalize μ so that μ(G) = 1. Let Cc(G) be the space of compactly supported continuous
functions on G. A linear functional I is called positive on Cc(G) if I(f) � 0 whenever f � 0.
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The Riesz representation Theorem [34, Theorem 7.2] says that if I is a positive linear
functional on Cc(G), there is a unique measure μ on G such that I(f) =

∫
fdμ. In the

case of compact groups this is our normalized Haar measure μ. Thus “averaging over G”,
which for a function f on a finite group G is simply 1

|G|
∑

t∈G f(t), can be achieved for
a compact group G by means of the integral

∫
G f(t)dμ with respect to the normalized

Haar measure μ. Most of the properties of representations and characters of finite groups
carry over to representations and characters of compact groups with the integral formalism
replacing sums. For example, the inner product of two characters χ and ϑ of G is

〈χ, ϑ〉G =

∫
G
χ(t)ϑ(t)dt.

Compare with [35, Proposition 5.3, Theorem 5.8, Peter-Weyl Theorem 5.12, and Proposition
5.23].

0.5.1 Characters of direct products

Let H and K be two finite groups, and let G = H ×K be their direct product. Let ϕ

and ϑ be characters of H and K, respectively, and let V and W be the C-vector spaces
supporting the corresponding representations. Define χ = ϕ� ϑ by χ(hk) = ϕ(h)ϑ(k) for
h ∈ H and k ∈ K. The character χ is a character of G and corresponds to a natural “tensor
product” representation of G = H ×K supported by the C-vector space V ⊗C W . This
leads to the following theorem, see [63, Theorem 4.21] or [60, Theorem 8.1].

Theorem 0.5.3. Let G = H×K be a finite group. Then the characters ϕ�ϑ for ϕ ∈ Irr(H)

and ϑ ∈ Irr(K) are precisely the irreducible characters of G.

0.5.2 Induced characters and Clifford theory

A frequently used method for constructing characters of a finite group G is the process of
induction introduced by Frobenius. Let H be a subgroup of G and let ϑ be a character
of H. The induced character IndGH(ϑ) on G, is given by

IndGH(ϑ)(g) =
1

|H|
∑
x∈G

ϑ◦(xgx−1) for g ∈ G,

with ϑ◦ being defined as ϑ◦(h) = ϑ(h) if h ∈ H and ϑ◦(y) = 0 if y /∈ H . Given a character χ
of G, we obtain the character ResGH(χ) of H by restriction.

The following result is also known to be the Frobenious reciprocity theorem, see [63,
Lemma 5.2] or [60, Theorem 17.3].

Theorem 0.5.4. Let H � G be finite groups and suppose that ϑ is a character of H and χ

is a character of G. Then

〈ϑ,ResGH(χ)〉H = 〈IndGH(ϑ), χ〉G.
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Clifford theory aids in understanding the representations of a group G in terms of the
representations of its normal subgroups. If N � G and ϑ ∈ Irr(N), we define for each g ∈ G

a character ϑg of N by setting ϑg(x) = ϑ(xg
−1
) where x ∈ N and we call ϑg a G-conjugate

of ϑ. The following theorem is due to Clifford, see [63, Theorem 6.2] or [60, Theorem 19.3].

Theorem 0.5.5. Let N � G be finite groups and let χ ∈ Irr(G). Let ϑ be an irreducible
constituent of ResGN (χ) and suppose ϑ = ϑ1, . . . , ϑt are the distinct G-conjugates of ϑ. Then

ResGN (χ) = e
t∑

i=1

ϑi,

where e = 〈ResGN (χ), ϑ〉N .

A consequence of this theorem is given by the following result, see [63, Corollary 6.7].

Corollary 0.5.6. Let H � G be finite groups and suppose that χ ∈ Irr(G) with
〈ResGH(χ), 1H〉H �= 0. Then H ⊆ kerχ.

In the same setting of Theorem 0.5.5, let

IG(ϑ) = {g ∈ G | ϑg = ϑ},

called the inertia subgroup of ϑ in G.
Let N � G and suppose that ϑ ∈ Irr(N) is G-invariant, i.e. IG(ϑ) = G. For each

irreducible constituent χ of IndGN (ϑ), it holds that ResGN χ = e(χ)ϑ, where e(χ) is a positive
integer called the ramification of χ. In general, the values e(χ) are the degrees of irreducible
projective representations of G/N that we discuss in Section 0.6.1.

0.6 Central extensions of groups

A central extension (Γ, π) of a group G is a (possibly infinite) group Γ together with
a homomorphism π from Γ onto G such that kerπ ⊆ Z(Γ). For a finite group G, we
say that G̃ is a covering group of G if G̃ is a central extension of G with the property
that Z(G̃) ⊆ [G̃, G̃] and G̃/Z(G̃) is isomorphic to G. If the centre has order 2, 3, etc., then
the covering group is often referred to as a double, triple, etc., cover as appropriate.

0.6.1 Projective representations and Schur multipliers

For a group G, let V be a C-vector space of dimension n, where n ∈ N∗. Let ρ : G→ GL(V )

be such that for all g, h ∈ G, there exists a scalar α(g, h) ∈ C such that

ρ(g)ρ(h) = ρ(gh)α(g, h).

Then ρ is a projective (C-)representation of G. We call a projective representation ρ

irreducible if it is non-trivial and has no proper non-zero subspaces that are stable under
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the action of the representation ρ. Two projective representations ρ1 and ρ2 of G, on
the same vector space V are isomorphic if there exists an invertible linear transforma-
tion P of V and b(g) ∈ C∗, for g ∈ G, such that for all g ∈ G and all v ∈ V we have
ρ2(g)(v) = b(g)(P ◦ ρ1(g) ◦ P−1)(v). The degree of a projective representation is the
dimension of the vector space V , and the function α : G×G→ C is the associated factor
set of ρ. The latter is a special instance of a more general notion which we briefly recall.
Consider an abelian group A and a group G. We regard A as a G-module with respect to
the trivial action. An A-factor set of G is a function α : G×G→ A such that

α(gh, x)α(g, h) = α(g, hx)α(h, x),

for all g, h, x ∈ G; it is easily seen that this implies

α(g, 1) = α(1, g) = α(1, 1),

for all g ∈ G.
The set of A-factor sets of G forms a group under pointwise multiplication. In the

context of group cohomology, this group is denoted by Z2(G,A), the group of 2-cocycles.
If μ : G→ A is an arbitrary function, we can define δ(μ) : G×G→ A by

δ(μ)(g, h) = μ(g)μ(h)μ(gh)−1.

It is easily checked that δ is a homomorphism from the group of A-valued functions on G

into Z2(G,A). The image of δ is the subgroup B2(G,A) ⊆ Z2(G,A) which is called the
group of 2-coboundaries . The factor group

Z2(G,A)/B2(G,A)

is isomorphic to the second cohomology group H2(G,A). We say that two A-factor sets
of G are equivalent if they are congruent modulo B2(G,A), making H2(G,A) the set of
equivalence classes of A-factor sets on G. If we take A to be the group C∗, we define the
Schur multiplier of G as the group H2(G,C∗), denoted by M(G).

We have the following result which connects the Schur multiplier M(G) of a group G

to a central extension, cf. [60, Remark 20.9] or [57, Theorem 1.2].

Lemma 0.6.1. For every finite perfect group G there exists a covering group G̃ such that

H/K ∼= G,

where K � Z(G̃) and K ∼= M(G).

Example 0.6.2. Consider the alternating groups Alt(n), which are simple, i.e. for n � 5.
The order of the Schur multiplier of Alt(n) is two for all n � 5, except for n = 6, 7,
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where the Schur multipliers have order 6, see [63, Problem 11.17] or [48, Theorem 5.2.3]
or [57, Theorem 2.11]. When the order of the Schur multiplier of Alt(n) is two, we denote
its double cover by 2 ·Alt(n).

Example 0.6.3. Let n ∈ N∗ and consider the symmetric group Sym(n). The Schur
multiplier is trivial if n � 3 and it is cyclic of order 2 otherwise. For n � 4 there exist
two non isomorphic (except when n is equal to 6) covering groups ˜Sym(n) and Sym(n) of
Sym(n). See [57, Theorem 2.7, Theorem 2.8, Theorem 2.9, and Theorem 2.11].

Remark 0.6.4. A complete list of all Schur multipliers of all finite simple groups can be
found in [44, Table 4.1].

Schur multipliers of direct products of perfect groups are direct products of Schur
multipliers, cf. [59, Theorem 25.10].

Theorem 0.6.5. Let H and G be two perfect groups. Then

M(G×H) ∼= M(G)×M(H)

The following result is based on [63, Lemma 11.9].

Lemma 0.6.6. Let (Γ, π) be a central extension of G, with A = ker(π). Let X be a set of
representatives for G modulo A in Γ, and write X = {xg | g ∈ G}, where π(xg) = g. Define
α : G × G → A by xgxh = α(g, h)xgh. Then α ∈ Z2(G,A), and its equivalence class is
independent of the choice of X.

Let (Γ, π) be a central extension such that A = ker(π) is finite. Let X and α ∈ Z2(G,A)

be as in Lemma 0.6.6. We construct the homomorphism

η : Irr(A)→M(G)

by defining η(λ) = λ(α), where λ(α) ∈ Z2(G,C∗) is defined by λ(α)(g, h) = λ(α(g, h))

and the bar denotes the canonical map Z2(G,C∗) → H2(G,C∗) = M(G). The map η is
independent of the choice of X and it is called the standard map.

Let (Γ, π) be a finite central extension of G. Let ρ be a projective C-representation
of G. We say that ρ can be lifted to Γ if there exists an ordinary representation θ of Γ and
a function μ : Γ→ C∗ such that

θ(x) = ρ(π(x))μ(x)

for all x ∈ Γ. Furthermore, (Γ, π) has the projective lifting property for G if every projective
C-representation of G can be lifted to Γ.

We end this section with a result of Schur, see [63, Theorem 11.17].
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Theorem 0.6.7. Given G, there exists a finite central extension (Γ, π) which has the
projective lifting property for G. Furthermore, (Γ, π) can be chosen such that

ker(π) = A ∼= M(G)

and the standard map η : Irr(A)→M(G) is an isomorphism.

0.7 Dirichlet generating functions

The Riemann zeta function is defined for s ∈ C with �(s) > 1, using the infinite series

ζ(s) =
∞∑
n=1

1

ns
.

Originally it was introduced by Euler with real values of s, who observed that for real s > 1

the following holds
∞∑
n=1

1

ns
=
∏

p prime

(1− p−s)−1. (0.7.1)

The present notation and the notion of ζ(s) as a function of the complex variable s are
due to Riemann, who wrote only one paper [106] on number theory, but that one was truly
epoch making and justifies ζ(s) being called the “Riemann zeta function”.

The Riemann zeta function has been a crucial tool in exploring number-theoretic
properties, particularly those related to prime numbers. It can be analytically continued to
the entire complex plane, cf. [64, Theorem 1.2] or [100, Corollary 1.7], and it plays a key
role in the proof of the Prime Number Theorem, cf. [64, Theorem 12.2], that was given
independently by Hadamard and de la Vallée Poussin.

Dirichlet generalized the Riemann zeta function by attaching a coefficient an to each
term n−s. Using as coefficients Dirichlet characters, he proved that for any two coprime
positive integers a and d, there are infinitely many primes of the form a+ nd, where n is
also a positive integer, cf. [100, Dirichlet’s Prime Number Theorem 5.14].

An example of a Dirichlet generating function is the Dedekind zeta function

ζK(s) =
∑
a�O

N(a)−s =
∞∑
n=1

a�n (O)n
−s,

where O is the ring of integers of a number field K, N(a) = |O : a| is the norm of the
ideal a, and a�n (O) is the number of ideals of O of norm n. The Dedekind zeta function
of Q is in fact the Riemann zeta function. A Dedekind ring O has the property that every
non-zero ideal factorizes uniquely as a product of non-zero prime ideals. We denote by PO

the set of non-zero prime ideals of O. As for the Riemann zeta function, we have the Euler
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product decomposition
ζK(s) =

∏
p∈PO

ζK,p(s),

where for a non-zero prime ideal p of O, the Euler factor is defined as

ζK,p(s) =
∞∑
i=0

N(pi)−s = (1−N(p)−s)−1.

One result that illustrates the power of a generating function is the class number formula
which relates some invariants of the number field K to the residue of its Dedekind zeta
function ζK(s) at s = 1, cf. [100, Corollary 5.11].

0.7.1 Analytic number theoretic background

We commence this section with a basic summation result, which is often used in analytic
number theory, see [64, Appendix A.21].

Proposition 0.7.1. Let M,N be real numbers with M < N . Let x1, . . . , xr be real
numbers with M � x1 < · · · < xr � N , let a(x1), . . . , a(xr) be complex numbers, and put
A(t) =

∑
xk�t a(xk) for t ∈ [M,N ]. Further, let g : [M,N ]→ C be a differentiable function.

Then
r∑

k=1

a(xk)g(xk) = A(N)g(N)−
∫ N

M
A(t)g′(t)dt.

An arithmetic function is a function f : N∗ → C. It is called multiplicative if it is not
the zero function and f(mn) = f(m)f(n) for all coprime positive integers m and n; it is
called strongly multiplicative if it is not the zero function and f(mn) = f(m)f(n) for all
positive integers m and n. Consider the Dirichlet generating function associated with f ,

Lf (s) =
∞∑
n=1

f(n)n−s.

In order to see that the series Lf (s) converges uniformly in a certain half plane of C, possibly
empty, we use Proposition 0.7.1 on partial summation. First, let us exclude the case of
the empty set of convergence for Lf (s). It is in fact happening when there is no s ∈ C for
which Lf (s) converges. Assume then that Lf (s) converges for some s ∈ C and define

α(f) = inf{σ | there exists s ∈ C with �(s) = σ and such that Lf (s) coverges}.

Clearly by definition Lf (s) diverges if �(s) < α(f). To prove that Lf (s) converges for
�(s) > α(f), take such a complex number s and choose s0 such that �(s) > �(s0) > α(f)

and Lf (s0) converges. Write s = s′ + s0. Moreover, there is a constant C > 0 such that
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|∑N
n=1 f(n)n

−s0 | � C for all N � 1. Let us now take a positive integer N and put

A(x) =
∑
n�x

f(n)n−s0 for x ∈ R.

Then, by Proposition 0.7.1, we obtain

N∑
n=1

f(n)n−s =
N∑

n=1

f(n)n−s0n−s
′
= A(N)N−s′ −

∫ N

1
A(t)(−s′)t−s′−1dt.

Consider a compact subset of {s ∈ C | �(s) > �(s0)}. Then there are σ > 0, B > 0 such
that �(s′) � σ, |s′| � B for s′ such that s = s′ + s0 and s is in the chosen compact set.
Thus we have∣∣∣∣∣

N∑
n=1

f(n)n−s
∣∣∣∣∣ � |A(N)N−s′ |+ |s′|

∫ N

1
|A(t)t−s

′−1|dt

� C ·N−σ +B

∫ N

1
C · t−σ−1dt = C ·N−σ +B · C · σ−1(1−N−σ)

� C +B · C · σ−1,

which is an upper bound independent of s and N . Hence, Lf (s) converges for all s ∈ C

with �(s) > α(f).
We showed that there exists a number α(f) ∈ R ∪ {±∞} such that Lf (s) converges for

all s ∈ C with �(s) > α(f) and diverges for all s ∈ C with �(s) < α(f). The number α(f)

is called the abscissa of convergence for Lf (s).
The Dirichlet functions associated with multiplicative or strongly multiplicative functions

can be written as Euler products, see [96, Theorem 1.9].

Theorem 0.7.2. Let f be a multiplicative function. Let s ∈ C be such that
Lf (s) =

∑∞
n=1 f(n)n

−s converges absolutely. Then

Lf (s) =
∏

p prime

⎛⎝ ∞∑
j=0

f(pj)p−js

⎞⎠ .

Further, Lf (s) �= 0 as soon as
∑∞

j=0 f(p
j)p−js �= 0 for every prime p.

Moreover, if the function f is strongly multiplicative, then we have

Lf (s) =
∏

p prime

(
1− f(p)p−s

)−1
.

The Dirichlet functions that we are interested in have non-negative coefficients. Landau
proved that such Dirichlet function cannot be continued to an analytic function beyond
the boundary of their half-plane of convergence. We have indeed the following result,
cf. [96, Theorem 1.7]
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Lemma 0.7.3. Let f : N∗ → R be an arithmetic function with f(n) � 0 for all n. Suppose
that Lf (s) =

∑∞
n=1 f(n)n

−s has abscissa of convergence α. Then Lf (s) cannot be continued
to an analytic function on any open set containing {s ∈ C | �(s) > α} ∪ {α}.

0.7.2 Zeta functions of groups

Dirichlet zeta functions are used in the context of group theory to study the asymptotic
behaviour of algebraic information related to a group. As we have seen in the introduction,
the pioneers of this field include Grunewald, Segal, and Smith [55], who introduced a zeta
function for the purpose of studying the subgroup growth in certain classes of infinite
groups. The study of subgroup growth was further explored in various classes of groups,
see the monograph [86].

As we pointed out in the introduction, one of the most significant achievements in
the study of subgroup growth was made in 1993 by Lubotzky, Mann, and Segal [83],
who characterized among finitely generated residually finite groups those with polynomial
subgroup growth as the virtually solvable groups of finite rank.

With the successful outcome of these early investigations, the subject of subgroup
growth matured quickly, leading to studies of other algebraic information about groups
through “zeta function methods”.

A couple of valuable resources offering an overview of the subject are [126] and [127].

0.7.3 Representation zeta functions

A representation over C of a profinite group G is a continuous homomorphism from our
group G to the group of automorphisms of a C-vector space.

Let rn(G) be the number of irreducible n-dimensional complex representations of G
up to equivalence, and let Rn(G) =

∑n
j=1 rj(G), be the summatory function. A group

is representation rigid if rn(G) is finite for every n ∈ N∗. It is easy to see that if a
profinite group G is rigid, then it is FAb, meaning: every open subgroup H of G has
finite abelianization H/[H,H]. However, the converse is generally not true, except in
the case of finitely generated profinite groups. Indeed, we have the following result,
cf. [13, Proposition 2].

Proposition 0.7.4. A finitely generated profinite group is representation rigid if and only
if it is FAb.

In the realm of compact p-adic analytic groups, being FAb corresponds to the associated
Qp-Lie algebra log(G) being perfect, cf. Section 2.1. On the other hand, every finitely
generated quasi-semisimple profinite group is rigid, as it is FAb, cf. Section 1.1.

If the growth rate of Rn(G) is polynomial, i.e., there exists a constant a such that
Rn(G) = O(na), then G is said to have polynomial representation growth (PRG). For a rigid
groups G, we encode the sequence (rn(G))n�1 in a Dirichlet generating function, called the
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representation zeta function of G, which is of the form

ζG(s) =

∞∑
n=1

rn(G)n−s,

where s is a complex variable. Whenever the sequence (rn(G))n�1 grows polynomially,
the zeta function ζG(s) converges in a right half-plane of the complex plane C defined as
{s ∈ C | �(s) > α}, as we have seen in Section 0.7.1. The abscissa of convergence α(G)

of ζG(s) is the infimum α ∈ R for which convergence occurs. If G admits only finitely
many isomorphism classes of irreducible complex representations, then α(G) = −∞ and the
representation zeta function ζG(s) is holomorphic on the entire complex plane. Otherwise,
the abscissa of convergence satisfies

α(G) = lim sup
n→∞

logRn(G)

log n
.

Hence, a group G has PRG if and only if α(G) is finite, and α(G) is indeed the minimal
polynomial degree of growth, i.e. Rn(G) = O(nα(G)+ε) for ε > 0.

This value is one of the most studied invariants in the subject, yet its correlation
with group properties remains somehow mysterious. Various analytic aspects of zeta
functions could provide some insights into groups. Namely the existence of a meromorphic
continuation to the entire complex plane or the existence and location of zeros and poles.
The field is relatively new, as very few papers on representation zeta functions of infinite
groups are dating back more than twenty years, indicating that much remains to be explored.

Rationality

In the context that is considered in [42], a Dirichlet function Lf (s) is said to be finitely
rational with respect to a prime p if it has non-empty domain of convergence and admits a
meromorphic continuation of the form

Lf (s) =
r∑

i=1

m−si Fi(p
−s),

where m1, . . . ,mr are finitely many suitable positive integers and F1, . . . , Fr ∈ Q(X)

are rational functions. In [66], Jaikin-Zapirain established rationality results for the
representation zeta functions of FAb compact p-adic analytic groups using tools from model
theory. Specifically, the representation zeta function of a FAb compact p-adic analytic
pro-p group is rational in p−s in the above sense. This result was extended by Stasinski
and Zordan [119] for the prime 2 case.

In [70, Section 5] Kionke and Klopsch proved that the zeta functions of induced
representations of potent pro-p groups are finitely rational with respect to p. Additional
examples for rationality are found in [70, Proposition 6.5.].
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0.7.4 Weil representation zeta functions

In 1949, André Weil formulated a series of significant conjectures about counting points on
varieties over finite fields, cf. [129].

Let q be a prime power. For each integer n ≥ 1, let Fqn be the extension of Fq of
degree n. Let V/Fq be a projective variety, defined as the set of solutions to

f1(x0, . . . , xn) = · · · = fm(x0, . . . , xn) = 0,

where f1, . . . , fm are homogeneous polynomials with coefficients in Fq. Then V (Fqn) is the
set of Fqn-rational points of V , i.e. points which admit coordinates in Fqn . We encode the
number of points of V (Fqn), across all n ≥ 1, into a generating function. The Weil zeta
function of V/Fq is the power series

Z(V/Fq;T ) = exp

( ∞∑
n=1

#V (Fqn)T
n

n

)
.

We have the following result, cf. [116, Theorem 2.2].

Theorem 0.7.5. Let V/Fq be a smooth projective variety of dimension n.

(a) Rationality:
Z(V/Fq;T ) ∈ Q(T ).

(b) Functional Equation: There exists an integer ε = ε(V ), called the Euler characteristic
of V , such that

Z(V/Fq; 1/q
nT ) = ±qnε/2T εZ(V/Fq;T ).

(c) “Riemann Hypothesis”: The zeta function factors as

Z(V/Fq;T ) =
P1(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )
,

with each Pi(T ) ∈ Z[T ], where

P0(T ) = 1− T and P2n(T ) = 1− qnT,

and such that for every 0 ≤ i ≤ 2n, the polynomial Pi(T ) factors over C as

Pi(T ) =

bi∏
j=1

(1− αijT ) with |αij | = qi/2.

The quantity bi, i.e., the degree of Pi(T ), coincides with the i-th Betti number of V .

This theorem was posed as a conjecture by Weil in 1949 in the previously mentioned arti-
cle [129] and proven by him for curves and abelian varieties. In 1960 Dwork [32] established
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the rationality of the Weil zeta function. Shortly thereafter, the �-adic cohomology theory
developed by M. Artin, Grothendieck and others, see [54], [3], [4], [5], [53], [52], and [28],
was used to provide another proof of rationality and to establish the functional equation.
In 1973, Deligne [27] proved the last of the Weil Conjectures, the Riemann hypothesis for
the Weil zeta function.

We will use zeta functions akin to the classic Weil zeta functions to encode the repre-
sentation growth of the metabelian Baumslag-Solitar group BS(1,−1) in Section 3.3.
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Chapter 1

Representation growth of
quasi-semisimple profinite groups

1.1 Introduction

A profinite group G is said to be quasi-semisimple if G is perfect, i.e. G is equal to the
closure of its derived group, and G/Z(G) ∼=∏i Si where Si is a family of finite non-abelian
simple groups. A semisimple profinite group is a quasi-semisimple profinite group with
trivial center. We denote the class of semisimple profinite groups by CS. According to
the classification of finite simple groups, every finite non-abelian simple group is either an
alternating group Alt(n), for n � 5, or a simple group of Lie type, or else one of 26 sporadic
groups, cf. [133]. In the context of this discussion, we further narrow our focus to two distinct
subclasses within CS. These subclasses are AS and LS, comprising Cartesian products of
alternating groups Alt(n) with n � 5 and finite simple groups of Lie type, respectively.
Quasi-simple groups are central extensions of finite simple groups, cf. Section 0.6. Moreover,
for finite perfect groups, the Schur multiplier of a direct product of groups is the direct
product of their Schur multipliers, cf. Theorem 0.6.5. It follows that quasi-semisimple
profinite groups are quotients of Cartesian products of quasi-simple groups. We denote the
class of Cartesian products of quasi-simple groups of Lie type by LQ.

For a (profinite) group G and n ∈ N∗, let rn(G) be the number of non-isomorphic
irreducible n-dimensional complex representations of G. We have seen in Section 0.7.3,
that a finitely generated profinite group is representation rigid if and only if it is FAb, i.e.
every open subgroup H of G has finite abelianization H/[H,H], see Proposition 0.7.4. In
particular, finitely generated semisimple profinite groups G are always representation rigid
so that rn(G) is finite for all n ∈ N∗. More generally, since quasi-semisimple profinite
groups are quotients of Cartesian products of quasi-simple groups, we can deduce that also
finitely generated quasi-semisimple groups are always representation rigid.
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If G is rigid we encode the sequence (rn(G))n�1 in the representation zeta function

ζG(s) =

∞∑
n=1

rn(G)n−s,

where s is a complex variable. The abscissa of convergence α(G) is the infimum positive
real number such that ζG(s) converges in a right half-plane of C, possibly empty, delimited
by �(s) > α(G).

Kassabov and Nikolov [68] proved that for every positive real number a, there exists a
group G ∈ AS such that G has PRG and α(G) = a. Moreover, they proved that such groups
are profinite completions in the following sense. A finitely generated profinite group G is a
profinite completion if there exists a finitely generated abstract group H such that G is
isomorphic to the profinite completion Ĥ. Even if it is generally difficult to understand
if a profinite group is a profinite completion, Kassabov and Nikolov found a criterion for
that to happen in the class of semisimple profinite groups CS. We will report their result in
more detail in Section 1.8.

Let ZS be the ring of S-integers of the field Q, with respect to a finite set of places S.
If S contains the archimedean place and at least one non-archimedian place (i.e. a prime),
the S-arithmetic group SL2(ZS) has the congruence subgroup property so its profinite
completion ̂SL2(ZS) is isomorphic to

SL2(ẐS) ∼=
∞∏
p �∈S

SL2(Zp).

We consider the short exact sequence

1→ K → SL2(ẐS)→
∏
p �∈S

SL2(p)→ 1.

The kernel is the group K =
∏

p �∈S Kp, where Kp is the principal congruence subgroup
ker(SL2(Zp) → SL2(p)). Avni, Klopsch, Onn, and Voll [12] use this connection, more
generally for other Lie types with different rank and finite extensions of Q, in order to study
the representation growth of S-arithmetic groups. Their analysis of the representation
growth of groups of the form

∏
p �∈S SL2(p), for a suitable set S, has inspired and led our

work on representation of more general quasi-semisimple profinite groups.
Our main result is the following generalization of a result by Klopsch and García

Rodríguez [37].

Theorem 1.1.1. For every real number a > 0, there exist quasi-semisimple profinite
groups G such that α(G) = a. Additionally, G can be chosen with flexibility concerning
the Chevalley type, the defining field, and the Lie ranks of the composition factors that are
simple groups of Lie type. Furthermore, there are even semisimple profinite groups with
α(G) = a that are profinite completions.
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This generalizes the work of Klopsch and García Rodríguez, who proved that for every
real number a > 0, there exists a group in LQ having PRG of degree a. Their construction
involves Cartesian products of some specific groups of Lie type with fixed Lie rank. More
precisely, they considered products of SLpβ (p

γ) or SUpβ (p
γ) for a fixed prime p and positive

integer β, and across infinitely many values of γ, or products of Sp2η(2γ), Spin
+
2η(2

γ), or
Spin−2η(2

γ) for a fixed η and increasing γ.
Our Theorem 1.1.1 improves this result by constructing groups with PRG such that

α(G) = a which could involve Cartesian products of quasi-simple and properly simple
groups of Lie type of any preferred Chevalley type, with corresponding field of cardinality
of any power of a prime, or with any preferred Lie rank. Furthermore, with the freedom of
the choice of ranks of the finite simple groups involved, we can construct finitely generated
semisimple profinite groups which are profinite completions.

Additionally, we prove in Section 1.8 that the representation theory of semisimple
profinite groups that are profinite completions is equivalent to the representation theory of
corresponding abstract groups.

Blueprint of the chapter

The chapter is structured as follows. In Section 1.2, we provide an overview of algebraic
groups. Then, in Section 1.3, we present finite groups of Lie type and finite simple groups of
Lie type. We also prove some standard results regarding the number of generators for finite
products of groups of Lie type, see Theorem 1.3.19. Next, in Section 1.4, we give an overview
of the representation theory of finite groups of Lie type, highlighting the connection with
representations of finite simple groups of Lie type, as shown in Proposition 1.4.10.

The technical core of the chapter is presented in Section 1.5, where we approximate the
Dirichlet polynomials associated with the representations of finite (quasi-)simple groups
of Lie type, in Theorem 1.5.6. We then provide an illustrative example involving SL2(q)

and PSL2(q) in Section 1.6. In Section 1.7, we explore the connection between polynomial
representation growth and finite generation. In particular, we prove Proposition 1.7.2
and Theorem 1.7.3. Then, in Section 1.8, we discuss Kassabov and Nikolov’s results on
profinite completions of semisimple profinite groups, Theorem 1.8.1, and we prove that
the representation theory of the abstract groups and their profinite completions given by
(quasi)-semisimple profinite groups is the same, as explained in Proposition 1.8.5. Finally,
in the last section, we prove our main result: Theorem 1.1.1.

1.2 Algebraic groups

Algebraic groups can be defined over a general field k. However, here we focus on the
case when the underlying field k is algebraically closed of characteristic p, a prime. Affine
algebraic groups are defined as affine varieties which are equipped with a group structure
in such a way that the binary group operation and inversion are continuous maps. The
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topology is induced by the Zariski topology which is defined on kn. It can be shown that
affine algebraic groups are exactly the closed subgroups of the general linear group GLn

over F with n ∈ N∗, hence in this setting the concepts of linear and affine coincide. The
structure theory of semisimple linear algebraic groups was developed in the mid-20th
century and culminated in the classification of semisimple linear algebraic groups over an
algebraically closed field, a result attributed to Chevalley. This work was first made available
via the “Séminaire sur la classification des groupes de Lie algébriques” at the École Normale
Supérieure in Paris between 1956 and 1958 [22]. Similar to the classification of complex
semisimple Lie algebras by Cartan and Killing, Chevalley demonstrated that semisimple
linear algebraic groups are determined up to isomorphism by a set of combinatorial data,
mainly based on a root system (as with semisimple Lie algebras) and a dual root system.
Importantly, this set of combinatorial data is independent of the characteristic of the
underlying field.

In this section, we present an overview of the theory of linear algebraic groups
defined over an algebraically closed field of positive charactersitic following mainly the
monographs [92], [38], [30], and [21].

Let F = Fp be an algebraic closure of Fp, where p is a prime. We consider linear
algebraic groups G over F and we drop the word linear for the rest of the text. As
first examples, we mention the additive group Ga isomorphic to F and the multiplicative
group Gm isomorphic to F×. Since algebraic groups are exactly the closed subgroups of the
general linear group GLn over F with n ∈ N∗, we see that every element g of an algebraic
group G over F has finite order. We define g to be semisimple if the order of g is prime to p

and unipotent if the order of g is a power of p. Then for every g ∈ G, there exists a unique
decomposition g = gsgu = gugs where gs is semisimple and gu is unipotent, called the
Jordan decomposition of g. If an algebraic group G consists entirely of unipotent elements
we say that G is a unipotent group. For instance, the additive group Ga is a unipotent
group and the multiplicative group Gm is a group that consists of semisimple elements. We
define a torus T to be an algebraic group isomorphic to a direct product of copies of Gm.
The connected component of G containing the identity, denoted by G◦, is a closed normal
subgroup of finite index in G. Moreover, G is the union of finitely many cosets gG◦ of the
irreducible subgroup G◦, cf. [92, Proposition 1.13]. The dimension of an algebraic group G

is dim(G) = dim(G◦). A Borel subgroup of an algebraic group G, is a closed, connected,
solvable subgroup B of G which is maximal with respect to all these properties. All Borel
subgroups of G are conjugate [92, Theorem 6.4]. Let T be a maximal torus of G, i.e. a
subtorus of G which is maximal with respect to inclusion. Then all maximal tori of G are
conjugate as they are contained in Borel subgroups. We define the rank of an algebraic
group G as the dimension of a maximal torus T of G and we denote it by rk(G).

An algebraic group G is called reductive if the maximal closed connected normal
unipotent subgroup Ru(G) of G, called the unipotent radical, is trivial. The maximal
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closed connected solvable normal subgroup R(G) of an algebraic group is called the radical
of G and Ru(G) � R(G) � G◦. We say that a connected reductive algebraic group G is
semisimple if R(G) = 1. Finally, we say that an algebraic group is simple if it is connected,
non-trivial, and if it has no closed connected normal subgroups other than {1} and G. We
remark that simple groups G are connected and semisimple, and that semisimple groups G

are connected and reductive. We have the following properties for connected reductive and
semisimple groups, cf. [92, Proposition 6.20, Theorem 8.21, and Corollary 8.22].

Theorem 1.2.1. Let G be a connected reductive algebraic group. Then

(a) R(G) = Z(G)◦ is a torus;
(b) R(G) ∩ [G,G] is finite;
(c) [G,G] is semisimple;
(d) G = R(G)[G,G] = Z(G)◦[G,G].

Moreover, if G is also semisimple, then

(e) G = [G,G];
(f) there exist (connected) simple algebraic groups G1, . . . ,Gr such that G = G1 · . . . ·Gr.

Let us consider a connected reductive group G and let T be a maximal torus of G. Let
X = X(T) = Hom(T,Gm) be the character group of T and Y = Y (T) = Hom(Gm,T) the
cocharacter group of T. Associated with X, we have a finite set of roots Φ = Φ(T), called
root system, and for Y we have a finite set of coroots Φ∨ = Φ∨(T), called coroot system.
We consider the finite dimensional real vector spaces XR = X ⊗Z R and 〈Φ〉R = ZΦ⊗Z R.
When G is connected and semisimple, then 〈Φ〉R = XR, see [92, Proposition 9.2]. The root
system Φ has a subset Δ which is a base of the real vector space 〈Φ〉R and such that any
element of Φ can be written as linear combination of elements of the base with coefficients
which are all non-negative or all non-positive integers. This involves a choice, and based on
this choice we introduce the subset Φ+ of Φ given by roots which are non-negative linear
combinations of Δ is called the system of positive roots of Φ with respect to the base Δ. The
Weyl group of G with respect to T is W = NG(T)/CG(T). The quadruple (X,Φ, Y,Φ∨)
forms a root datum with perfect pairing 〈·, ·〉 : X × Y → Z. One of the characterizations
of a root datum is that there exists a bijection Φ → Φ∨ such that 〈α, α∨〉 = 2. For
every element w of the Weyl group W , let ẇ be a representative in NG(T). The Weyl
group W acts naturally on X by (w.χ)(t) := χ(tẇ) for all w ∈ W, χ ∈ X, t ∈ T, and
on Y by (w.γ)(c) := γ(c)ẇ

−1 for all w ∈ W, γ ∈ Y, c ∈ Gm. Using this action we can
identify W as a subset of Aut(X) and of Aut(Y ). The set of roots Φ = Φ(T), is W -stable,
by [92, Proposition 8.4]. Let sα be a reflection on XR along the root α stabilizing Φ. Then
we can write W = 〈sα | α ∈ Φ〉, cf. [92, Proposition 8.20 and Proposition 9.2].

Let S be the set of reflections {sα | α ∈ Φ}, let S∗ be the free monoid on S; that is
the set of words on S. We define the length function l : W → N with respect to S in the
following way. We set l(1) = 0 and we consider a word s1 · · · sk ∈ S∗ which express a
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non-trivial element w ∈ W . The word s1 · · · sk ∈ S∗ is called a reduced expression for w

if it has minimal length among the words representing w. We then write l(w) = k. Note
that we do not have to take into account inverses since s2 = 1 for all s ∈ S. Moreover,
by [92, Proposition A.21], we have an equivalent description of the length function that is

l(w) = |{α ∈ Φ+ | w.α ∈ Φ−}|.

We have the following structure theorem for connected reductive groups, cf. [92, Theo-
rem 8.17].

Theorem 1.2.2. Let G be a connected reductive algebraic group and T be a maximal torus
of G with associated root system Φ. Then

(a) dimG = |Φ|+ rk(G);
(b) For each α ∈ Φ there exists a morphism of algebraic groups uα : Ga → G, which

induces an isomorphim onto uα(Ga) such that tuα(c)t−1 = uα(α(t)c), for all t ∈ T,

c ∈ F. If u′ is a morphism with the same properties, then there is a unique a ∈ F×

with u′(c) = uα(ac) for all c ∈ F;
(c) G = 〈T ∪⋃α∈ΦUα〉, where Uα := im(uα) for α ∈ Φ;
(d) For w ∈W with preimage ẇ ∈ NG(T), we have ẇUαẇ

−1 = Uw.α;
(e) Z(G) =

⋂
α∈Φ kerα.

The subgroup Uα = im(uα) for α ∈ Φ of G is called the root subgroup associated with α.

Remark 1.2.3. If the set of roots is the empty set, that is in the case when our connected
reductive group is a torus T, then the intersection of the kernels of roots described in
Theorem 1.2.2 (e) is the empty intersection which we interpret as T. Hence, the center is
equal to the whole torus T, as expected since tori are abelian.

Connected semisimple algebraic groups are classified by isomorphism classes of root
data, by a fundamental result of Chevalley. We report this result in the formulation given
in [92, Theorem 9.13].

Theorem 1.2.4. Two connected semisimple algebraic groups are isomorphic if and only if
they have isomorphic root data. For each root datum there exists a connected semisimple
algebraic group which realizes it. This group is simple if and only if its root system is
indecomposable.

Indecomposable root systems are classified up to isomorphism. The types are called An

with n � 1, Bn with n � 2, Cn with n � 3, Dn with n � 4, E6, E7, E8, F4, and G2,
see [92, Theorem 9.6]. The types of root systems correspond to the Dynkin diagrams listed
in Table 1.1.

To describe all the possible root data for connected semisimple algebraic groups, we
introduce Ω = Hom(ZΦ∨,Z), and we view X as a subgroup of Ω, since X ∼= Hom(Y,Z)
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An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Table 1.1: Dynkin diagrams of indecomposable root systems

by [92, Proposition 3.6] and the homomorphism from Hom(Y,Z) to Ω is injective. In this
way, we have that ZΦ ⊆ X ⊆ Ω. The root data with fixed root system Φ are classified by
subgroups X/ZΦ of Ω/ZΦ. The two extremes of the spectrum of possibilities for a fixed
root system Φ, are when X = Ω (which is equivalent to Φ∨ spanning Y over Z), in which
case G is said to be simply connected, and when X = ZΦ, in which case G is said to be
of adjoint type. An isogeny of connected algebraic groups is a surjective homomorphism
with finite central kernel. If such a morphism exists between two algebraic groups G

and H, then the groups G and H are called isogenous. We have the following result stated
as [92, Proposition 9.15], cf. [38, Proposition 1.5.8].

Proposition 1.2.5. Let G be a semisimple algebraic group with maximal torus T and
associated root system Φ. Let Gsc be a simply connected semisimple algebraic group with
maximal torus T1 and let Gad be an adjoint semisimple algebraic group with maximal
torus T2 both with associated root system Φ. Then there exist natural isogenies

Gsc
π1−→ G

π2−→ Gad

such that π1(T1) = T and π2(T) = T2.

The semisimple algebraic groups corresponding to the same root system Φ are called
the isogeny types corresponding to Φ. If G is connected reductive, then we say that G is
simply connected (resp. adjoint) if the semisimple group [G,G] is simply connected (resp.
adjoint).

1.2.1 Duality of algebraic groups

We introduce now the dual of a compact reductive algebraic group that we will use for the
description of the decomposition of characters of finite groups of Lie type.

Let G be a connected reductive algebraic group, T a maximal torus of G with associated
root datum (X,Φ, Y,Φ∨). Then (Y,Φ∨, X,Φ) is also a root datum, see for example [21,
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Proposition 4.2.1] or [38, Lemma 1.2.3]. A connected reductive algebraic group G∗ is said
to be in duality with G if there exists a maximal torus T∗ of G∗ such that the associated
root datum (X∗,Φ∗, Y ∗, (Φ∗)∨) is isomorphic to (Y,Φ∨, X,Φ). More precisely, if there
exists an isomorphism δ : X → Y ∗ such that δ(Φ) = (Φ∗)∨ and 〈χ, α∨〉 = 〈δ(α)∨, δ(χ)〉 for
all χ ∈ X and α ∈ Φ. The dual of a connected semisimple algebraic group is connected
and semisimple, and the dual of a connected semisimple algebraic group of adjoint type
is of simply connected type and conversely. If G with maximal torus T is in duality
with G∗ with maximal torus T∗, and if W = 〈sα | α ∈ Φ〉 is the Weyl group of G

with respect to T and W∨ = 〈s∨α | α ∈ Φ〉 is the Weyl group of G∗ with respect to T∗,
then there exists an isomorphism δW : W → W∨ such that δW (sα) = s∨α for all α ∈ Φ

and 〈w−1χ, γ〉 = 〈χ, δW (w)(γ)〉 for all w ∈W,χ ∈ X, and γ ∈ Y , see [38, Lemma 1.2.3 and
Remark 1.5.19].

1.2.2 Centralizers of semisimple elements

The centralizer of a semisimple element gs is a closed subgroup of an algebraic group G

by [92, Proposition 5.2], and it is in general not connected. By [92, Corollary 6.11], every
semisimple element gs of a connected algebraic group G lies in a maximal torus T. Let w

be an element of the Weyl group W associated with T and write ẇ for a choice of preimage
in NG(T) mapping to w ∈W = NG(T)/CG(T). We have the following structure theorem
for centralizers of semisimple elements, see [92, Proposition 14.1 and Theorem 14.2], [21,
Proposition 3.5.2, Theorem 3.5.3, and Theorem 3.5.4], [38, Subsection 2.2.13], or [30,
Proposition 3.5.1 and Proposition 3.5.3].

Theorem 1.2.6. Let G be a connected reductive algebraic group and let gs ∈ G be a
semisimple element. Then gs lies in C◦G(gs). Moreover, let T be a maximal torus of G
containing gs, Φ the root system of G associated with T, and W the Weyl group associated
with T. Let Ψ = {α ∈ Φ | α(gs) = 1} and Uα be the root subgroup associated with α ∈ Φ.
Then

(i) C◦G(gs) = 〈T ∪
⋃

α∈ΨUα〉.
(ii) CG(gs) = 〈T ∪

⋃
α∈ΨUα ∪

⋃
w∈W,gws =gs

〈ẇ〉〉.
Furthermore, C◦G(gs) is reductive of maximal rank with root system Ψ.

Consider G, gs, and T as in the setting of Theorem 1.2.6. We then have that the
centralizer CG(gs) is determined by Ψ ⊆ Φ and by the subgroup {w ∈W | gws = gs}. For
both of these, there are just finitely many possibilities and they are all just depending on
the root system Φ. Thus we have the following result, cf. [92, Corollary 14.3].

Corollary 1.2.7. Let G be a connected reductive algebraic group. Then up to conjugation,
there exist only finitely many different centralizers of semisimple elements in G. Moreover,
the number of centralizers of semisimple elements is bounded by a constant that depends
only on the root system Φ of G.
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We have a sufficient criterion for when CG(gs) is connected due to Steinberg. We
refer to the formulation given in [21, Theorem 3.5.6], cf. [92, Theorem 14.16] and [38,
Theorem 2.2.14].

Theorem 1.2.8. Let G be a connected reductive algebraic group whose derived subgroup is
simply connected. Let gs be a semisimple element of G. Then CG(gs) is connected.

As an application of this theorem, we report the following result. It uses the duality
to connect the condition of having connected centralizers of semisimple elements in G∗

with the condition for the center of G being connected, cf. [21, Theorem 4.5.9] or [38,
Subsection 2.5.10].

Theorem 1.2.9. Let G be a connected reductive algebraic group in which Z(G) is connected.
Let G∗ be the dual group of G and gs be a semisimple element of G∗. Then CG∗(gs) is
connected.

The following result takes into consideration centralizers of two algebraic groups G

and H that are isogenous, see [38, Subsection 1.3.10 (e)].

Lemma 1.2.10. Let ϕ : G→ H be an isogeny between algebraic groups. If g ∈ G then ϕ

maps C◦G(g) onto C◦H(ϕ(g)).

Lastly, we have the following result on the number of connected components of a
centralizer of a semisimple element that follows from Theorem 1.2.8, see [92, Proposi-
tion 14.20], [38, Theorem 2.2.14], or [30, Remark 3.5.2].

Proposition 1.2.11. Let G be a semisimple algebraic group, π : Gsc → G the natural
isogeny from a simply connected group of the same type as G. Then for every semisimple
element gs ∈ G, the group of connected components CG(gs)/CG(gs)

◦ is isomophic to a
subgroup of ker(π) � Z(Gsc), which is finite. Moreover, the exponent of CG(gs)/CG(gs)

◦

divides the order of gs.

1.2.3 Parabolic and Levi subgroups

Let G be a connected reductive algebraic group, T � G a maximal torus contained in a
Borel subgroup B of G. We have the following structure theorem, cf. [92, Theorem 11.1].

Theorem 1.2.12. Let G be a connected reductive algebraic group with maximal torus T

contained in a Borel subgroup B. Let X be the associated character group, Φ the root system,
and W the Weyl group. For every α ∈ Φ, let Uα be the root subgroup associated with α.
Then the following hold.

(a) There exists a base Δ of Φ with positive root system Φ+ ⊆ Φ such that

B = T ·
∏

α∈Φ+

Uα

for every fixed order of the factors Uα.
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(b) W = 〈sα | α ∈ Δ〉.
(c) G = 〈T ∪⋃α∈±ΔUα〉.

Let S = {sα | α ∈ Δ} be the set of generating reflections of the Weyl group W . For
every subset I ⊆ S, the standard parabolic subgroup WI of W is

WI = 〈s | s ∈ I〉.

Any conjugate of a standard parabolic subgroup is a parabolic subgroup of W . The
corresponding parabolic subsystem of roots is

ΦI = Φ ∪
∑
α∈ΔI

Zα,

where ΔI = {α ∈ Δ | sα ∈ I}. A standard parabolic subgroup PI of G is given by

PI = 〈T ∪
⋃

α∈Φ+∪ΦI

Uα〉.

A parabolic subgroup of G is any subgroup conjugate of a standard parabolic subgroup. For
I ⊆ S define

UI =
∏

α∈Φ+\ΦI

Uα and LI = 〈T ∪
⋃

α∈ΦI

Uα〉.

In this situation, LI is a complement to UI . We have the following structure theorem for
parabolic subgroups, cf. [92, Proposition 12.6].

Proposition 1.2.13. Let S = {sα | α ∈ Δ} be the set of generating reflections of the
Weyl group W . Let I ⊆ S and PI be a standard parabolic subgroup of G with respect to I.
Then Ru(PI) = UI , and LI is a complement to UI , so PI = UI �LI . In particular, LI is
reductive with root system ΦI . Moreover, all closed complements to UI are conjugate to LI

in PI and LI = CG(Z(LI)
◦).

The decomposition PI = UI � LI is called the Levi decomposition of the parabolic
subgroup PI , and LI is called the standard Levi complement of PI . The conjugates
of standard Levi complements are called Levi subgroups of G.

Remark 1.2.14. The Proposition 1.2.13 is telling us in particular that a Levi subgroup L is
the centralizer of its central torus Z(L)◦. Moreover, [92, Proposition 12.10] states that also
the converse is true: if S is a torus of a connected reductive algebraic group G, then CG(S)

is a Levi subgroup of G.

1.3 Finite (quasi-)simple groups of Lie type

Finite simple groups can be traced back to Galois who introduced the concept of normal
subgroups and knew that the alternating groups Alt(n) are simple for n � 5. With the
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Jordan-Hölder theorem, finite simple groups became central in the study of finite groups
as they constitute a set of invariants of a finite group. The classification of the finite
simple groups was announced somewhat prematurely around 1980 as a result of several
decades of extraordinary work by many mathematicians. Part of the original proof is
covered by a two-volume exposition by Gorenstein [45, 46] which provides an outline of
what is entailed rather than detailed proofs. Unfortunately, Gorenstein passed away before
completing the third volume of the series. The proof of the classification of finite simple
groups is not an ordinary proof due to its complexity and its length, which is around
10, 000 pages. Therefore, many mathematicians at the time were quite distrustful of the
truthfulness of the classification. Indeed, in the next twenty years, some gaps were found.
The majority of them were quickly fixed, but the so-called “quasithin groups” were not
adequately dealt with in the original proof. At last, in 2004, Aschbacher and Smith [7,8]
classified quasithin groups closing all the remaining gaps in the classification of finite simple
groups, see [6]. The history of the classification is rich and multifaceted, with numerous
monographs offering comprehensive insights and analyses. One of the articles in this area is
“A Brief History of the Classification of the Finite Simple Groups” by Ronald Solomon [117],
where he provides a concise yet comprehensive summary of the classification theorem and
its historical context. Lastly, we mention the comprehensive multi-volume series by Daniel
Gorenstein, Richard Lyons, and Ronald Solomon that provides a detailed account of the
proof of the classification theorem for finite simple groups, see for example [47] and [48].

In this section, we give an introduction to finite (simple) groups of Lie type, mainly
following [38], [30], and [92].

Finite simple groups of Lie type can be described as quotients of some finite groups
of Lie type, which are quasi-simple, by their center. As we have seen in Section 1.2,
algebraic groups are affine varieties over an algebraically closed field F of characteristic p,
a prime; and they are closed subgroups of GLn for some n � 1. Let q be a power of the
prime p and Fq ⊆ F be a finite subfield of q elements. Let G be an algebraic group and
let ι : G → GLn be an injective homomorphism for some n � 1. We say that G has a
Fq-structure if ι(G) is stable under the standard Frobenius map.

Fq : GLn → GLn, (aij) �→ (aqij).

In this case, there is a group homomorphism F : G → G such that ι ◦ F = Fq ◦ ι. The
homomorphism F is called Frobenius endomorphism corresponding the the Fq-structure, see
[38, Section 1.4] or cf. [30, Section 4.1]. The group of fixed points GF = {g ∈ G | F (g) = g}
is a finite group. If G is a connected reductive algebraic group, then GF is called a finite
group of Lie type. Note that we are not considering in this exposition the finite groups
of Lie type called Suzuki groups and Ree groups since we are restricting to Frobenius
endomorphisms instead of considering more general Steinberg maps. We define the Lie
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rank of a finite group of Lie type GF to be equal to the rank of G. We want to consider
groups of Lie type of growing Lie rank so we exclude Suzuki and Ree groups. Moreover
it was noted by Avni, Klopsch, Onn, and Voll that Ree groups may behave differently,
cf. [12, Remark 3.6].

A subgroup H of G is said to be F -stable if F (h) ∈ H for all h ∈ H. Let T be an
F -stable maximal torus, X the character group of T, Y the group of cocharacters of T,
and Φ, Φ∨ the roots and coroots with respect to T. The action of F on the character
group X = X(T) and the cocarachter group Y = Y (T) is given by F (χ)(t) := χ(F (t))

for χ ∈ X and t ∈ T and by F (γ)(c) := F (γ(c)) for γ ∈ Y and c ∈ F. Consider the
real vector space XR = X ⊗Z R. By [92, Proposition 22.2], [30, Proposition 4.2.3 and
Lemma 4.2.5], or [38, Lemma 1.4.17 and Proposition 1.4.19 ], there exists a positive integer β
and φ ∈ Aut(XR) of order β such that F = qφ on XR and F β |X = qβ idX . In particular,
F induces a graph automorphism φ on the Dynkin diagram of Φ. Let ΓΦ be the Dynkin
diagram associated to the root system Φ. The non-trivial groups of diagram automorphisms
of connected Dynkin diagrams given by the action of a Frobenius endomorphism are
collected in Table 1.2, cf. [92, Table 11.1].

Φ An(n � 2) Dn(n � 5) D4 E6

Aut(ΓΦ) C2 C2 Sym(3) C2

Table 1.2: Graph automorphisms of connected Dynkin diagrams

Remark 1.3.1. If G is simple, we can classify the finite groups of Lie type GF according
to their isogeny type, root system Φ, and the parameters q and β, see [92, Section 22.2].
In the literature, the parameter β of the classification that we report here, corresponds to
to the automorphism τ of the root system Φ stabilising Φ+; compare [12, Section 3.1] and
references therein. If G is additionally of simply connected type, then the finite groups of Lie
type GF are parametrized by q, Φ, and β. Moreover, the groups GF are quasi-simple groups
(i.e. it is perfect and the quotient by its centre is simple), except in a few cases described
in the following remark, cf. [92, Theorem 24.17] or [30, Remark 4.3.4 and Classification
4.3.6].

Remark 1.3.2. Let G be a simply connected simple algebraic group with Frobenius endo-
morphism F . Then, unless GF is one of

SL2(2), SL2(3), SU3(2), Sp4(2), G2(2),

the group GF is perfect and GF /Z(GF ) is a finite simple group.

Remark 1.3.3. In the setting of the previous remark, GF is a covering group of the simple
group GF /Z(GF ) and Z(GF ) is the Schur multiplier M(GF /Z(GF )) of GF /Z(GF ),
cf. [92, Remark 24.19] and [48, Tables 6.1.2 and 6.1.3].
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For a simple algebraic group G, we have

Z(GF ) = Z(G)F , (1.3.1)

see [92, Corollary 24.13] or [21, Proposition 3.6.8]. Moreover for G of simply connected
type, the center Z(GF ) is a cyclic group whose order we denote by z in the table below,
except for the case of root systems Dn with n � 4 even and β equal to 1, where we have
a product of two cyclic groups both of order (2, q − 1). According to Remark 1.3.1, we
denote by L(q) the quasi-simple groups, where by L we mean a choice of the root system Φ

and the order β of the graph automorphism of the Dynkin diagram, which are associated
to the corresponding quasi-simple groups GF . Moreover, we denote by S(q) the simple
group given by the quotient of L(q) by their center. Table 1.3 describes the correspondence
with the classical names of groups of Lie type, cf. [133, Section 1.2] or [92, Table 22.1 and
Table 24.2].

Φ β L(q) z S(q) Exceptions

An−1 1 n � 2 SLn(q) (n, q − 1) PSLn(q) PSL2(2),PSL2(3)
Bn 1 n � 3, q odd Spin2n+1(q) (2, q − 1) PΩ2n+1(q)
Cn 1 n � 2 Sp2n(q) (2, q − 1) PSp2n(q) PSp4(2)
Dn 1 n � 4 even Spin+2n(q) (2, q − 1)2 PΩ+

2n(q)
Dn 1 n � 5 odd Spin+2n(q) (4, q − 1) PΩ+

2n(q)

E6 1 (E6)sc(q) (3, q − 1) E6(q)
E7 1 (E7)sc(q) (2, q − 1) E7(q)
E8 1 E8(q) 1 E8(q)
F4 1 F4(q) 1 F4(q)
G2 1 G2(q) 1 G2(q) G2(2)

An−1 2 n � 3 SUn(q) (n, q + 1) PSUn(q) PSU3(2)
Dn 2 n � 4 even Spin−2n(q) (2, q − 1) PΩ−2n(q)
Dn 2 n � 5 odd Spin−2n(q) (4, q − 1) PΩ−2n(q)

D4 3 3D4(q) 1 3D4(q)
E6 2 (2E6)sc(q) (3, q + 1) 2E6(q)

Table 1.3: Simple and quasi-simple groups of Lie type

The following theorem of Lang and Steinberg, cf. [92, Theorem 21.7] or [30, Theo-
rem 4.2.9], serves as the essential means for extending results from algebraic groups G to
the finite groups GF consisting of fixed points under a Frobenius endomorphism F .

Theorem 1.3.4. Let G be a connected algebraic group over F with a Frobenius endomor-
phism F : G→ G. Then the morphism

L : : G→ G, g �→ F (g)g−1,
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is surjective.

Let G be a connected reductive algebraic group, T a maximal torus, and F : G→ G

a Frobenius endomorphism. We recall the action of F on the character group X = X(T)

and the cocarachter group Y = Y (T) is given by F (χ)(t) = χ(F (t)) for χ ∈ X and
t ∈ T, and by F (γ)(c) = F (γ(c)) for γ ∈ Y and c ∈ F. We have the following result,
cf. [92, Corollary 21.8] or [38, Lemma 1.4.14 and Lemma 1.4.15].

Corollary 1.3.5. Let G be a connected reductive algebraic group with a Frobenius endo-
morphism F : G → G and consider the cyclic group 〈F 〉 generated by F . Then, in the
semidirect product G� 〈F 〉, the coset G.F of F consists of a single conjugacy class, that
is, G.F = FG. In particular, the groups of fixed points GgF and GF are G-conjugate for
every g ∈ G.

We have seen in Proposition 1.2.5, that for a fixed root system Φ, we have different
semisimple groups corresponding to the different isogeny types. Moreover, by [92, Propo-
sition 22.7], all the Frobenius endomorphism of semisimple algebraic groups are induced
by Frobenius endomorphisms of simply connected groups, cf. [38, Proposition 1.5.9]. By
abuse of notation, we will call all Frobenius endomorphisms of different isogeny types
corresponding to the same root system Φ by the same F . We have the following result,
see [92, Proposition 24.21].

Proposition 1.3.6. Let G be a simple algebraic group and π : Gsc → G the natural
isogeny from a group of simply connected type with central kernel. Let F be a Frobenius
endomorphism on Gsc normalizing ker(π). Then

π(GF
sc)
∼= GF

sc/ ker(π)
F .

In particular, if GF
sc is perfect then [GF ,GF ] = π(GF

sc)
∼= GF

sc/ ker(π)
F , and [GF

ad,G
F
ad] is

simple.

Corollary 1.3.7. If G is simple of adjoint type, then ker(π) = Z(Gsc), where π is the
map of Proposition 1.3.6. Using (1.3.1), we have that

[GF
ad,G

F
ad]
∼= GF

sc/Z(GF
sc).

1.3.1 Duality of finite groups of Lie type

We have seen in Section 1.2.1 the concept of duality for connected reductive algebraic
groups. Now we extend this notion to finite groups of Lie type. Let G and G∗ be connected
reductive algebraic groups with Frobenius maps F and F ∗ respectively. An F -stable
maximal torus T of G is called maximally split if it is contained in an F -stable Borel
subgroup of G. The pairs (G, F ) and (G∗, F ∗) are in duality if there exist a maximally
split torus T0 of G and a maximally split torus T∗0 of G∗, with associated root data
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(X,Φ, Y,Φ∨) and (X∗,Φ∗, Y ∗, (Φ∗)∨), such that G and G∗ are in duality with respect
to T0 and T∗0 and the isomorphism δ : X → Y ∗ satisfies δ(χ ◦ F |T0) = F ∗|T∗

0
◦ δ(χ) for

all χ ∈ X, see [38, Definition 1.5.17] and [21, Section 4.3].

1.3.2 Cardinalities

Recall that we are considering algebraic groups defined over an algebraically closed field F

of characteristic p, a prime. A finite group of Lie type is defined as the group of fixed
points of G by a Frobenius endomorphism F . The order of a finite group of Lie type is
given by a polynomial in q, where q is a power of the prime p, defined by the Frobenius
endomorphism. First, we present a result that describes the order of F -fixed points of
maximal tori, see [92, Proposition 25.2], [21, Proposition 3.3.5], or [38, Proposition 1.6.6].

Proposition 1.3.8. Let G be a connected reductive algebraic group with Frobenius endo-
morphism F defining an Fq-structure. Let T be an F -stable maximally split torus and let
X = X(T) be the group of characters of T. Then

|TF | = |detXR
(F − 1)| = |detXR

(qφ− 1)|,

where XR = X ⊗Z R, and F |X = qφ. In particular, |TF | is a monic polynomial in the
variable q with non-zero constant term and degree dim(T).

We now report a classical bound for the cardinality of a torus in a finite group of Lie
type. This is a well know result that we record here with its proof.

Corollary 1.3.9. Let T be an F -stable maximal torus of a connected reductive algebraic
group G. Then

(q − 1)dimT � |TF | � (q + 1)dimT.

Proof. Let X = X(T) be the group of characters of T and XR = X(T)⊗Z R the real vector
space associated to X. The action of F on X is given by F (χ)(t) = χ(F (t)) for χ ∈ X and
t ∈ T. We have seen that we can describe the action of F on XR as the product of q and
φ ∈ Aut(XR). Then we write F |X = qφ. The possible orders of φ are collected in Table 1.2.
Since φ has finite order, all its eigenvalues are roots of unity. Let r be the dimension of T.
By Proposition 1.3.8, the order of the group of F -fixed points in T is given by a monic
polynomial in q with non-zero constant term. Moreover, since the morphism φ has finite
order, then there exist roots of unity ε1, . . . , εr such that

|TF | = (q − ε1) · · · (q − εr).

Hence the result follows immediately by taking absolute values of the factors of the right-
hand suce and using the triangle inequality.

The number of F -stable maximal tori of G is given by the following theorem due to
Steinberg, cf. [92, Theorem 25.5] or [21, Theorem 3.4.1].
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Theorem 1.3.10. Let G be a connected reductive algebraic group with Frobenius endomor-
phism F : G→ G. Then the number of F -stable maximal tori of G is q2|Φ+|.

Let H be a group and σ an (abstract group) automorphism of H. We say that h1, h2

are σ-conjugate if there exists an element x ∈ H with h2 = σ(x)h1x
−1. The equivalence

classes for this relation are called σ-conjugacy classes.
Let G be a connected reductive algebraic group with Frobenius endomorphism

F : G→ G, T � G an F -stable maximally split torus with Weyl group W . We have seen
in Corollary 1.3.5 that the coset G.F of F in G� F consists of a single conjugacy class.
Now, let w ∈W and fix a representative ẇ ∈ NG(T) of w. We define

wF : T→ T

g �→ ẇ−1F (g)ẇ.

Since T is F -stable, so is NG(T). Hence F induces naturally an automorphism
σF : W → W , which for very g ∈ NG(T) sends gT to F (g)T. Moreover, σF satisfies the
condition σF (w) = φ−1 ◦w ◦φ, for w ∈W , see [38, Section 1.6.1]. Thus, we can regard φ as
an automorphism of W and consider the semidirect product W̃ = W � 〈φ̃〉. We interpret W
as a subgroup of W̃ and φ̃ ∈ W̃ is essentially φ. Hence, in W̃ , we have the identity

φ̃wφ̃
−1

= φ(w) for all w ∈W.

Note that φ̃(wφ̃)φ̃
−1

= w−1(wφ̃)w for w ∈W . The φ-conjugacy classes of W corresponds
to usual conjugacy classes of W̃ via the map w �→ wφ̃, cf. [38, Remark 2.1.9].

There is a connection between certain conjugacy classes of maximal tori and φ-conjugacy
classes in the Weyl group. More precisely, we have the following result, see [92, Proposi-
tion 25.1] or [21, Proposition 3.3.3].

Proposition 1.3.11. Let G be connected reductive algebraic group with Frobenius endo-
morphism F : G→ G, T � G an F -stable maximal torus with Weyl group W and X group
of characters of T. There is a natural bijection{

GF-conjugacy classes of

F -stable maximal tori of G

}
←→ {φ-conjugacy classes in W} ,

where F |X = qφ.

Remark 1.3.12. Let T and T1 be two F -stable maximal tori of G. All maximal
tori are conjugate, hence there exists g ∈ G such that T1 = g−1Tg. Thus we have
F (g−1)TF (g) = F (T1) = T1 = g−1Tg. Using Theorem 1.3.4, F (g)g−1 is an element of G
and in particular F (g)g−1 ∈ NG(T). Let wg = F (g)g−1T be the corresponding element of
the Weyl group W = NG(T)/CG(T). The torus T1 corresponds to the φ-conjugacy class
of wg ∈W . We write Twg = T1 = g−1Tg.
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If T is also maximally split, the φ-conjugacy class of wg is called the type of the F -stable
maximal torus Twg . If Twg is of type wg, the pair (Twg , F ) is sent by g−1-conjugation to
the pair (T, wF ). Compare with [30, Section 4.2], [38, Section 1.6.4], or [92, Section 25.1].

If we want to compute the cardinality of TF
w , one uses Proposition 1.3.8 to get the

following result, cf. [92, Proposition 25.3], [30, Proposition 4.4.9], or [38, Proposition 1.6.6].

Proposition 1.3.13. Let G be a connected reductive algebraic group with Frobenius endo-
morphism F : G→ G, T � G an F -stable maximal torus with Weyl group W and character
group X. Then for w ∈W we have

|TF
w | = |detXR

(wF − 1)| = |detXR
(q − (wφ)−1)|,

where XR = X(T)⊗Z R, and F |X = qφ.

As for the order of a finite group of Lie type, we have the following result, see [38,
Theorem 1.6.7 and Remark 1.6.15] or [92, Corollary 24.6].

Proposition 1.3.14. Let G be a connected reductive algebraic group with Frobenius endo-
morphism F defining an Fq-structure. Let T be an F -stable maximally split torus and Φ be
the associated root system. Then there exists a monic polynomial r(x) ∈ Q[x] with non-zero
constant term and of degree |Φ|/2 which is independent of q, but depends on the Weyl
group W and the graph automorphism φ associated to F , such that

|GF | = q|Φ|/2 |TF | r(q).

In particular, |GF | is a monic polynomial in the variable q and of degree dim(G).

We have the following result on the dual, see [21, Proposition 4.4.4] or [38, Exam-
ple 1.6.19].

Proposition 1.3.15. Let G be a connected reductive algebraic group with Frobenius endo-
morphism F defining an Fq-structure. If (G, F ) is in duality with (G∗, F ∗), then

|GF | = |G∗F ∗ |.

In conclusion of this section, we introduce the complete root datum
G = ((X,Φ, Y,Φ∨), φW ) for a finite group of Lie type GF given by the root da-
tum of G with respect to a maximal torus T with group of characters X = X(T),
and the coset φW = {φ ◦ w | w ∈ W}, where W is the Weyl group of G and φ is the
automorphism of XR = X ⊗Z R induced by F , cf. [38, Definition 1.6.10] or [92, Definition
22.10]. If we fix the root complete root datum, it make sense to talk about a “series of
finite groups of Lie type” {G(q)}, indexed by a parameter q which is a power of a prime p,
cf. [38, Remark 1.6.12].
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1.3.3 Regular elements

Let G be a connected reductive algebraic group. An element g ∈ G is called regular if
the dimension of its centralizer is minimal among all the elements of G. The connected
centralizer of a semisimple regular element g is a maximal torus T that contains g and
a semi-simple element is regular if and only if it is contained in only one maximal torus,
see [30, Proposition 12.1.6] and [92, Corollary 14.10]. Moreover, regular semisimple elements
are dense in G, see [30, Corollary 12.1.9] and [92, Corollary 14.10]. This implies that,
considering a Frobenius endomorphism F which defines an Fq-structure on G, the set
of regular elements in GF is non-empty for q large enough. More precisely we have the
following result, cf. [38, Lemma 2.3.11].

Lemma 1.3.16. Let T be an F -stable maximal torus of a connected reductive algebraic
group G and let Treg be the subset of regular elements contained in T. Then there is a
constant C > 0, that depends only on the root datum of G such that

|TF
reg|/|TF | � 1− C/q.

1.3.4 Generation

Let G be a group. We denote by d(G) the minimal number of generators of G.

Proposition 1.3.17. Let G be a finite perfect group. Then the center Z(G) is contained
in the Frattini subgroup Φ(G).

Proof. Suppose that the center Z(G) is not contained in the Frattini subgroup Φ(G). The
Frattini subgroup of G is the intersection of all maximal proper subgroups of G. Then
there exists a maximal subgroup M of G that does not contain Z(G). By maximality of M ,
it follows that G = MZ(G). This leads to a contradiction with G being perfect, since
[G,G] = [MZ(G),MZ(G)] ⊆M which is strictly contained in G.

As a consequence of the classification of finite simple groups, every finite non-abelian
simple group is 2-generated, cf. [86, Window 2, Theorem 3]. Using the previous proposition
we have the following result.

Corollary 1.3.18. Every covering group of a finite non-abelian simple group is 2-generated.

We will consider Cartesian products of finite quasi-simple and non-abelian simple groups.
Let G be a finite group, and S1, S2, . . . , Sr the different non-abelian simple groups (if any)
that are images of G. Let λi, with i ∈ {1, . . . , r} be the highest power of Si such that Sλi

i

is an image of G. Then by [130], we have

d(Gb) = max
(
d(G), b d(G/[G,G]), d(Sλ1b

1 ), . . . , d(Sλrb
r )
)

for b ∈ N∗. (1.3.2)
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If G is a finite non-abelian simple group, then the number of generators of G|G|b for ev-
ery b ∈ N, is given by the theorem in [130]. If G is not simple, then the number of generators
of Gb for every b ∈ N, can be obtained by a combination of Corollary 1.3.18, (1.3.2), and
the theorem in [130]. We combine them in the following result.

Theorem 1.3.19. Let G be a non-abelian finite simple group or more generally any central
cover of a such group. Then d(G|G|b) = b+ 2 for all b ∈ N.

1.4 Characters of finite (simple) groups of Lie type

The characters of finite groups of Lie type are described by the theory of Deligne and
Lusztig which decomposes the set of irreducible characters into series. Such a partition is
indexed by representatives of conjugacy classes of semisimple elements in the dual group.
We give an overview of Deligne-Lusztig theory and of the most relevant results. We refer
the reader to [21], [30], and [38] for more details.

Let G be a connected reductive algebraic group, F a Frobenius endomorphism, T

an F -stable maximal torus, and θ ∈ Irr(TF ). A virtual character of a group G is an
integral linear combination of irreducible characters of G. Deligne and Lusztig, in [29], [87],
and [88], constructed a virtual character denoted by RG

T (θ), that is called a Deligne-Lusztig
character. Two Deligne–Lusztig characters are either equal or orthogonal to each other,
see [38, Corollary 2.2.10], [30, Corollary 9.3.1 (iii)], or [21, Corollary 7.3.7 and Theorem 7.3.8].
If T1 and T2 are two F -stable maximal tori of G and θ1 ∈ Irr(TF

1 ) and θ2 ∈ Irr(TF
2 ), we have

RG
T1

(θ1) = RG
T2

(θ2) if and only if there exists some g ∈ GF such that Tg
1 = T2 and θg1 = θ2.

Moreover, there are a scalar product and a degree formula, which we present in the following
proposition, cf. [30, Corollary 9.3.1, Lemma 7.1.6, and Proposition 10.2.2], [38, Theorem 2.2.8,
Corollary 2.2.9, Theorem 2.2.12, and Proposition 2.5.18], or [21, Theorem 7.3.4 and
Theorem 7.5.1].

Proposition 1.4.1. Let G be a connected reductive algebraic group and let F be a Frobenius
endomorphism corresponding to an Fq-structure, where q is a power of a prime p. For an
F -stable maximal torus T, let W be the Weyl group associated to it.

• Scalar product formula. Let T1 and T2 be F -stable maximal tori. Let θ1 ∈ Irr(TF
1 )

and θ2 ∈ Irr(TF
2 ). Then

〈RG
T1

(θ1), R
G
T2

(θ2)〉GF =
∣∣{g ∈ GF | gT1g

−1 = T2 and gθ1 = θ2}
∣∣ /|TF

1 |.

• Degree formula. Let T be an F -stable maximal torus of type w ∈ W and
θ ∈ Irr(TF ). Then

RG
T (θ)(1) = (−1)l(w)|GF : TF |p′ ,

where l(w) is the length of w.
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• Bounds for Deligne-Lusztig characters. For every χ ∈ Irr(GF ) and θ ∈ Irr(TF ),
we have

−|W |1/2 � 〈RG
T (θ), χ〉 � |W |1/2.

The number of χ ∈ Irr(GF ) that occur in RG
T (θ) is at most |W |.

A notable insight in Deligne-Lusztig theory was to point out the relevance of the
dual group G∗. It is made clear in the following result, cf. [21, Proposition 4.4.1], [38,
Lemma 2.5.7], or [30, 11.1.7 and 11.1.14].

Proposition 1.4.2. Let G be a connected reductive algebraic group, F a Frobenius endo-
morphism, and T an F -stable maximal torus of G. Let G∗ be a connected reductive group
with maximal torus T∗ and let F ∗ be a Frobenius endomorphism of G∗ such that (G, F )

and (G∗, F ∗) are in duality. Then the dual map δ : X → Y ∗ gives rise to an isomorphism
between T∗F

∗
and Irr(TF ).

Using this result, one can relate a pair of the form (T, θ) with a corresponding semisimple
element gs in T∗F

∗
, leading to a corresponding pair of the type (T∗, gs). More precisely,

we have the following result, see [30, Proposition 11.1.16] and cf. [38, Corollary 2.5.14].

Proposition 1.4.3. There is a canonical bijection between the GF-orbits of pairs (T, θ),
where T is an F -stable maximal torus of G and θ ∈ Irr(TF ), and G∗F ∗

-orbits of pairs
(T∗, gs), where gs is a semisimple element of G∗F ∗

and T∗ is an F ∗-stable maximal torus
containing gs.

Using Proposition 1.4.3, given a pair (T, θ) and a corresponding pair (T∗, gs) in the
dual group, we denote the Deligne-Lusztig character by

RG
T∗(gs) = RG

T (θ).

The rational series E(GF , gs) of irreducible characters of GF associated with gs is the set
of irreducible characters of GF which occur in some Deligne-Lusztig character RG

T∗(gs),
for some F ∗-stable maximal torus T∗, where gs ∈ T∗F

∗
is semisimple. The series E(GF , 1)

corresponding to the trivial element is the set of unipotent characters of GF . We have
the following decomposition of characters, cf. [30, Proposition 11.3.2], [38, Theorem 2.6.2],
or [30, Proposition 12.4.4].

Theorem 1.4.4. If g1, g2 ∈ G∗F ∗
are semisimple and conjugate in G∗F ∗

, then
E(GF , g1) = E(GF , g2). There is a partition

Irr(GF ) =
⊔
gs

E(GF , gs),

where gs runs over a set of representatives of the conjugacy classes of semisimple elements
in G∗F ∗

.
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The non-unipotent characters of GF are related to unipotent characters of a (usually)
smaller reductive group, which is the centralizer CG∗(gs)

F ∗ of the semisimple element gs of
the corresponding rational series. If the centre Z(G) is not connected, then the central-
izer CG∗(gs) may not be connected, see Theorem 1.2.9. We denote by E(CG∗(gs)

F ∗
, 1) the

set of irreducible constituents of the induced unipotent characters of the connected part of
the centralizer, see the discussion before [30, Theorem 11.5.1] and in [38, Remark 2.6.26].

The relation between non-unipotent characters and unipotent characters of centralizers
of semisimple elements is called Jordan decomposition of characters of the finite group GF .
Recall, for (G, F ) and (G∗, F ∗) in duality, that the cardinality of the group GF equals
to G∗F ∗

, cf. Proposition 1.3.15. We state the Jordan decompostion in the following theorem,
cf. [30, Theorem 11.5.1 and Proposition 11.5.6] or [38, Theorem 2.6.22 and Remark 2.6.26].

Theorem 1.4.5. Let G be a connected reductive algebraic group with a Frobenius endo-
morphism F . For every semisimple element gs ∈ G∗F ∗

, there is a bijection

ψgs : E(G
F , gs)→ E(CG∗(gs)

F ∗
, 1).

Moreover, for every χ ∈ E(GF , gs) we have

χ(1) = |G∗F ∗
: CG∗(gs)

F ∗ |p′ ψgs(χ)(1), (1.4.1)

where | · |p′ denotes the p-prime part of a natural number.

It is natural to further investigate the unipotent characters, as we have just seen
that many questions about arbitrary irreducible characters can be reduced to problems
concerning unipotent characters. The study of unipotent characters of GF can be reduced
to the case when G is simple of adjoint type, cf. [38, Proposition 2.3.15 and Remark 4.2.1].
A detailed description of unipotent characters can be found in [21, Sections 13.8 and 13.9]
or in [38, Chapter 4]. In particular, the degrees of all irreducible unipotent characters have
been determined. We summarize the results on unipotent characters that are relevant to us
in the following remarks.

Remark 1.4.6. For each finite group of Lie type GF , the number of irreducible unipotent
characters kG depends only on the associated root system Φ. Furthermore, there exist kG
polynomials fGF ,1(x), . . . , fGF ,kG(x) ∈ Q[x], depending only on Φ such that the degrees of
the unipotent characters are precisely fGF ,1(q), . . . , fGF ,kG(q). Additionally, among these
polynomials, only one has degree zero. This is the constant polynomial 1, indicating the
degree of the trivial character, see [21, Sections 13.8 and 13.9] or [38, Sections 4.3, 4.4,
and 4.5].

Example 1.4.7. For the type An, the polynomials that describe the degrees of the unipotent
characters are parametrized by partitions of n+ 1. Let α = (α1, α2, . . . , αm) be a partition
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of n+ 1, with α1 � α2 � · · · � αm, and let

λ1 = α1, λ2 = α2 + 1, λ3 = α3 + 2, . . . , λm = αm +m− 1.

Then the degree of the unipotent character χα corresponding to α is given by

χα(1) =

∏n+1
i=1 (q

i − 1)
∏

i<j(q
λj − qλi)

q(
m−1

2 )+(m−2
2 )+···+1∏m

i=1

∏λi
k=1(q

k − 1)
,

where m is the number of parts of α, see [21, Section 13.8] or [38, Proposition 4.3.2].

Remark 1.4.8. The trivial character and the Steinberg character of a finite group of Lie
type GF are unipotent, see [38, Example 2.3.9].

We are interested in the irreducible representations of finite simple groups of Lie type.
In view of Remark 1.3.2, we are investigating

Irr(GF /Z(GF )) = {χ ∈ Irr(GF ) | Z(GF ) ⊆ kerχ}. (1.4.2)

For every irreducible character χ ∈ Irr(GF ), there exists a pair (T, θ) such that
〈RG

T (θ), χ〉 �= 0, see [38, Corollary 2.2.19]. Moreover, the character values of an irre-
ducible character χ of GF on the elements of the centre Z(G)F are completely determined
by the character values of the corresponding irreducible representation θ of a torus T such
that χ is a non-trivial irreducible component of RG

T (θ). More precisely we have the following
result, see [38, Proposition 2.2.20].

Proposition 1.4.9. Let G be a connected reductive algebraic group, T ⊆ G an F -stable
maximal torus, and θ ∈ Irr(TF ). Let χ ∈ Irr(GF ) be such that 〈RG

T (θ), χ〉 �= 0. Then
χ(z) = θ(z)χ(1) for all z ∈ Z(G)F .

The following proposition describes the connection between representations whose kernel
contains the center and rational series.

Proposition 1.4.10. Let G be a simply connected simple algebraic group and let F be a
Frobenius endomorphism. Let χ ∈ Irr(GF ) and let gs ∈ G∗F ∗

be a semisimple element such
that χ is contained in the rational series E(GF , gs). Then

Z(GF ) ⊆ kerχ ⇐⇒ gs ∈ [G∗F ∗
,G∗F ∗

].

Proof. Let T∗ be a F ∗-stable maximal torus of G∗ such that gs ∈ T∗F
∗

and χ ∈ RG
T∗(gs).

By the duality described in Proposition 1.4.3, the pair (T∗, gs) corresponds to a pair (T, θ),
where T is an F -stable maximal torus of G and θ ∈ Irr(TF ). Recall that RG

T∗(gs) = RG
T (θ).

By Proposition 1.4.9, we have

Z(GF ) ⊆ kerχ ⇐⇒ Z(GF ) ⊆ ker θ.
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Our claim follows by using [99, Lemma 4.4 (ii)], which states that for a semisimple element gs
of [G∗F ∗

,G∗F ∗
] and if |Z(GF

sc)| = |GF
sc/[G

F
ad,G

F
ad]| then all χ ∈ E(GF , gs) restrict trivially

on Z(GF
sc). The equality between the cardinality of the center and of the abelianisation

of GF
sc follows from Corollary 1.3.7, which gives [GF

ad,G
F
ad]
∼= GF

sc/Z(GF
sc).

Let us restrict to the setting of Remark 1.3.2, i.e. we consider the groups of fixed
points of a simply connected simple algebraic group under a Frobenius endomorphism. As
before, we denote such groups by L(q). A lower bound for the dimension of any non-trivial
irreducible representation of such groups of Lie type is given by the following proposition,
cf. [80, Proposition 3.1 (ii)].

Proposition 1.4.11. There is an absolute constant d > 0 such that for any finite quasi-
simple group L(q) as defined above of rank r = rkΦ, where Φ is the root system associated
with L(q), every non-trivial irreducible character χ of L(q) satisfies

χ(1) > dqr.

Remark 1.4.12. Observe that, simply by (1.4.2), this lower bound for non-trivial repre-
sentations of groups of Lie type L(q), is valid also for S(q).

1.5 Approximations

A Dirichlet generating function associated to an arithmetic sequence {an}∞n=1 is given by

∞∑
n=1

ann
−s,

where s is a complex variable, cf. Section 0.7.
We introduce a notion of approximating Dirichlet generating functions with non-negative

integer coefficients, as defined in [12, Definition 2.4], which we will use to study representation
zeta functions.

Let f(s) =
∑∞

n=1 ann
−s and g(s) =

∑∞
n=1 bnn

−s be Dirichlet generating functions with
non-negative integer coefficients and with abscissae of convergences αf and αg. Let C ∈ R

and let σ0 ∈ R with σ0 ≥ max{αf , αg, 0}. We write

f �C g for σ > σ0

if f(σ) ≤ C1+σg(σ) for every σ ∈ R with σ > σ0. If αf = αg and if f �C g for
σ > max{0, αf}, then we do not specify the domain and we write f �C g. If f �C g and
g �C f then we write

f ∼C g.
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Representation zeta functions of quasi-semisismple profinite groups can be “approxi-
mated by” products of Dirichlet polynomials. We denote by A the collection of all finite
subsets a ⊂ Z�0 × Z>0 ∪ {(0, 0)} and A+ = {a ∈ A | (0, 0) /∈ a}. Define for a ∈ A and for
q ∈ N�2, the Dirichlet polynomial

ξa,q(s) =
∑

(m,n)∈a
qm−ns. (1.5.1)

For a, b ∈ A, we can compare the associated Dirichlet polynomials by studying the inclusions
of the “north-west”-Newton polytopes N(a) and N(b) associated with a and b respectively,
i.e. the convex hulls of

⋃{u+ (R�0 × R�0) | u ∈ a} and of
⋃{u+ (R�0 × R�0) | u ∈ b}.

Remark 1.5.1. As noted in [12, Remark 2.7], we have N(a) ⊂ N(b) if and only if there
exits C ∈ R such that ξa,q(s) �C ξb,q(s) for all q ∈ N�2. Moreover, if N(a) ⊂ N(b) we can
take C = |a|.

We will use these approximations to compute the abscissa of convergence of the repre-
sentation zeta functions of Cartesian products of groups. In particular, we will make use of
the following result, see [12, Lemma 2.5].

Lemma 1.5.2. Let f, g be Dirichlet generating functions with abscissae of convergence
αf , αg. Suppose we can find two sequences {fm}∞m=1 and {gm}∞m=1 of Dirichlet generating
functions with vanishing constant terms, such that f =

∏∞
m=1(1+fm) and g =

∏∞
m=1(1+gm).

Let βm denote the abscissa of convergence of gm for every m ∈ N∗. Furthermore, assume
that for each ε > 0, there is C(ε) ∈ R>0 such that, for all m, fm �C(ε) gm for σ > βm + ε.
Then αf � αg.

Remark 1.5.3. For any two sequences (xj)j∈N∗ and (yj)j∈N∗ of positive real numbers, the
product

∞∏
j=1

(1 + xj + yj)

converges if and only if
∏∞

j=1(1 + xj) and
∏∞

j=1(1 + yj) converge individually.

The following result concerns the Dirichlet polynomial of a finite group of Lie type GF ,
given in [12, Theorem 3.1]. Our notation of GF replaces the notation used in [12] of G(Fq).
Moreover, as in [12], a Lie type refers to a pair (Φ, τ), where Φ is a root system and τ is an
automorphism preserving a choice of positive roots Φ+. A finite group of Lie type GF has
Lie type (Φ, τ) if the algebraic group G has root system Φ and the action of the Frobenius
endomorphism induces the same action of τ on the root system Φ; compare [30, Chapter 4]
and [118, Chapter 15]. We report on [12, Theorem 3.1] in the special case of interest to us.

Theorem 1.5.4. Let Φ be a non-trivial irreducible root system, and let LΦ denote the
collection of Lie types with underlying root system Φ. Let Q be the set of all prime powers.
Then there exist a constant C ∈ R, a finite set a(Φ) ∈ A+, and a((Φ, τ), q) ∈ A+ for
((Φ, τ), q) ∈ LΦ × Q such that the following hold:
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(i) a((Φ, τ), q) ⊆ a(Φ) for all ((Φ, τ), q) ∈ LΦ × Q,
(ii) for every finite group of Lie type GF which has Lie type (Φ, τ) ∈ LΦ and where G is

a connected simply connected simple algebraic group defined over an algebraic closure
F of Fq, and F is a Frobenius endomorphism defining an Fq-structure (with q > 3),

ζGF (s)− 1 ∼C ξa((Φ,τ),q),q(s).

Moreover, (rk(Φ), |Φ+|) ∈ a(Φ), and we have

ζGF (s) ∼C 1 + qrk(Φ)−|Φ+|s.

The proof of this theorem uses the Deligne-Lusztig decomposition of characters of finite
groups of Lie type discussed in Section 1.4. Indeed, using Theorem 1.4.4, we can write the
representation zeta function of a finite group of Lie type GF as follows

ζGF (s) =
∑
gs∈Gs

∑
χ∈E(GF ,gs)

χ(1)−s,

where Gs is a set of representatives of G∗F ∗
-conjugacy classes of semisimple elements gs

of G∗F ∗
. We write

ζunip
GF (s) =

∑
χ∈E(GF ,1)

χ(1)−s

for the sum of degrees of unipotent characters. This sum can be approximated by 1 with
an appropriate constant by the following result, cf. [12, Proposition 3.5].

Proposition 1.5.5. Let Φ be a non-trivial root system. Then there exist a constant C ∈ R,
and a finite set b(Φ) ∈ A+ such that for every G a connected reductive algebraic group with
underlying root system Φ, and F a Frobenius endomorphism defining an Fq-structure, there
exists a finite set b(Φ, τ) ∈ A+ such that b(Φ, τ) ⊆ b(Φ) and

ζunip
GF (s)− 1 ∼C ξb(Φ,τ),q(s) and ζunip

GF (s) ∼C 1.

The proof of this result is based on the study of unipotent characters. By Remark 1.4.6,
we know that for each GF , there exists a number kG ∈ N, that depends only on Φ and F ,
such that GF has kG irreducible unipotent characters. Then we can choose

b(Φ, τ) = {(0, deg fGF ,i) | 2 � i � kG} ∈ A+.

Now, we use Proposition 1.4.10 and the ideas from the proof of Theorem 1.5.4 to
demonstrate that we achieve the same approximation with a different constant for finite
simple groups of Lie type. We follow the framework developped in [12, Section 3]. Unlike
in [12], we employ rational series instead of geometric ones. This choice was influenced by
a mistake in a previous version of [30], which was subsequently corrected. Additionally, we
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provide more details in some critical passages concerning certain counting bounds. Finally,
our setting necessitates different conditions, which are then resolved and bounded similarly
to the approach in [12].

Theorem 1.5.6. Let Φ be a non-trivial irreducible root system, and let LΦ denote the
collection of Lie types with underlying root system Φ. Let Q be the set of all prime powers.
Then there exist a constant C ∈ R, a finite set d(Φ) ∈ A+, and d((Φ, τ), q) ∈ A+ for
((Φ, τ), q) ∈ LΦ × Q such that the following hold:

(i) d((Φ, τ), q) ⊆ d(Φ) for all ((Φ, τ), q) ∈ LΦ × Q,
(ii) for every finite simple group of Lie type GF /Z(GF ), where GF has Lie type (Φ, τ) ∈ L

and where G is a connected simply connected simple algebraic group defined over an
algebraic closure F of Fq, F is a Frobenius endomorphism defining an Fq-structure
(with q > 3),

ζGF /Z(GF )(s)− 1 ∼D ξd((Φ,τ),q),q(s).

Furthermore, (rk(Φ), |Φ+|) ∈ d(Φ), and we have

ζGF /Z(GF )(s) ∼D 1 + qrk(Φ)−|Φ+|s.

Proof. Let Gs be a set of representatives for the G∗F ∗
-conjugacy classes of semisimple

elements gs of G∗F ∗
. Then we can write the representation zeta function of GF as

ζGF (s) =
∑
gs∈Gs

∑
χ∈E(GF ,gs)

χ(1)−s.

Note that Irr(GF /Z(GF )) = {χ ∈ Irr(GF ) | Z(GF ) ⊆ kerχ}. By Proposition 1.4.10, the
representation zeta function of the group GF /Z(GF ) is

ζGF /Z(GF )(s) =
∑
gs∈Ḡs

∑
χ∈E(GF ,gs)

χ(1)−s, (1.5.2)

where Ḡs is a set of representatives of G∗F ∗
-conjugacy classes of semisimple elements

gs ∈ G∗F ∗
such that gs ∈ [G∗F ∗

,G∗F ∗
]. Without loss of generality we assume that 1 ∈ Ḡs.

Unipotent characters always restrict trivially to Z(GF ), and so the representation zeta
function of GF /Z(GF ) restricted to unipotent characters is

ζunip
GF /Z(GF )

(s) =
∑

χ∈E(GF ,1)

χ(1)−s = ζunip
GF (s). (1.5.3)

Moreover, by Proposition 1.5.5, there exists a constant D0 ∈ R that depends only on Φ,
and a finite set b(Φ, τ) ∈ A+ such that

ζunip
GF /Z(GF )

(s)− 1 = ζunip
GF (s)− 1 ∼D0 ξb(Φ,τ),q(s) and ζunip

GF (s) ∼D0 1.
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We are then left to deal with the non-unipotent characters

ζnu
GF /Z(GF )(s) =

∑
gs∈Ḡs\{1}

∑
χ∈E(GF ,gs)

χ(1)−s.

By (1.4.1), we can decompose the characters in the following way

ζnu
GF /Z(GF )(s) =

∑
gs∈Ḡs\{1}

|G∗F ∗
: CG∗(gs)

F ∗ |−sp′ · ζunip
CG∗ (gs)F∗ (s).

When Z(G) is not connected, the unipotent characters of CG∗(gs)
F ∗ are the irre-

ducible constituents of the induced unipotent characters of the connected part of the
centralizer C◦G∗(gs)

F ∗
, as we discussed in Section 1.4. Moreover, note that the index

|CG∗(gs) : C
◦
G∗(gs)| is bounded by a constant D1 ∈ R that depends only on Φ by Proposi-

tion 1.2.11. Hence, employing again Proposition 1.5.5 for the unipotent part with a constant
D2 ∈ R, we have

ζnu
GF /Z(GF )(s) ∼D1D2

∑
gs∈Ḡs\{1}

|G∗F ∗
: C◦G∗(gs)

F ∗ |−sp′ .

Let K1, . . . ,KN be algebraic subgroups of G∗ with associated root systems Ψ1, . . . ,ΨN

respectively, which form a set of representatives for the G∗F ∗
-conjugacy classes of connected

parts C◦G∗(gs) of the centralizers of non-trivial semisimple elements gs ∈ G∗F ∗
. By Corol-

lary 1.2.7, the number of centralizers CG(gs) of semisimple elements gs is bounded by a
constant that depends only on the root system Φ of G. Every semisimple element gs lies
in C◦G(gs) by Theorem 1.2.6, and the torus C◦G(gs) is an F -stable maximal torus of CG(gs)

and also of G. Using Proposition 1.3.11, the number of GF-conjugacy classes of F -stable
maximal tori of G is bounded by the size of the Weyl group W , which depends only on Φ.
Hence, the number N is bounded by a constant depending only on Φ. By Proposition 1.3.14
and Theorem 1.2.2 part (a), there is a constant D3 such that

|G∗F ∗
: C◦G∗(gs)

F ∗ |p′ ∼D3 qdimG−|Φ+|−dimKi+|Ψ+
i | = q|Φ

+|−|Ψ+
i |.

Here the notation ∼ means that the quantities on the different sides differ by a constant.
With D4 := D1D2D3, we have

ζnu
GF /Z(GF )(s) ∼D4

N∑
i=1

|Gi| q−(|Φ+|−|Ψ+
i |)s, (1.5.4)

where Gi is a set of representatives gs of a G∗F ∗
-conjugacy class such that gs ∈ [G∗F ∗

,G∗F ∗
]

and C◦G∗(gs) is G∗F ∗
-conjugate to Ki. Fix i ∈ {1, . . . , N}. If gs ∈ Gi, then there exists an

element g′s which is a G∗F ∗
-conjugate of gs and such that C◦G∗(g′s) = Ki. Any other different

element in the G∗F ∗
-conjugacy class of gs, such that their connected centralizer is equal to Ki,
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is a conjugate by an element of NG∗F∗ (C◦G∗(g′s))\C◦G∗(g′s)F
∗ . Employing [80, Lemma 2.2(ii)],

there exists a constant D5 which depends only on Φ, that bounds the number of elements
of the form of g′s. Thus

|Gi| ∼D5 |{gs ∈ G∗F ∗ | gs semisimple, gs ∈ [G∗F ∗
,G∗F ∗

], and C◦G∗(gs) = Ki}|. (1.5.5)

We denote the set on the right by Hi. Let G∗
sc be the simply connected cover of G∗.

Then by Proposition 1.2.5, we have an isogeny π : G∗
sc → G∗ with central kernel and by

Proposition 1.3.6, whenever G∗
sc
F ∗

is perfect, then π(G∗
sc
F ∗

) = [G∗F ∗
,G∗F ∗

], so we can
find an element hi ∈ G∗

sc
F ∗

such that π(hi) = gs for gs ∈ Hi. By Lemma 1.2.10, the
isogeny π maps C◦G∗

sc
(hi) onto C◦G∗(gs). Write Hi = C◦G∗

sc
(hi) and consider the set

Hsc
i = {hs ∈ G∗

sc
F ∗ |hs semisimple and C◦G∗

sc
(hs) = Hi}.

The set Hsc
i is non-empty because hi ∈ Hsc

i .
Let Ti be a maximal torus of Hi and so also maximal in G∗

sc. Let Δi be the set of
roots of Hi with respect to the torus Ti and Λi be the set of roots of G∗

sc with respect
to Ti. Note that Λi is isomorphic to Φ. For every α ∈ Δi, the identity α(hi) = 1 holds,
and by Theorem 1.2.6, we have

Hi = 〈Ti ∪
⋃

α∈Δi

Uα〉.

Consider hs in Hsc
i , and observe that hs ∈ Z(Hi)

F ∗ . The algebraic group Hi is a connected
reductive group by Theorem 1.2.6. Hence, R(Hi) = Z(Hi)

◦ is a torus, [Hi,Hi] is semisimple,
Z(Hi)

◦ ∩ [Hi,Hi] is finite, and Hi = Z(Hi)
◦[Hi,Hi], by Theorem 1.2.1. Thus, we can

describe the center of Hi as Z(Hi) = Z(Hi)
◦A where A � Z([Hi,Hi]). Since [Hi,Hi] is

semisimple, the group Z([Hi,Hi]) is finite and so is A. The order and the exponent e of A
are bounded by a constant that depends on Δi. Recall that the exponent of a group is the
least common multiple of the orders of all elements of the group.

We distinguish between three cases. If the dimension of Z(Hi) is zero, we have just
finitely many elements in Hsc

i , and this number is bounded by the cardinality of Z(Hi),
which is finite and bounded by a constant that just depends on Δi. Thus there exists a
constant C1 such that

|Hsc
i | ∼C1 1.

In the second case, we assume that dim(Z(Hi)) > 0, and that Hi is a Levi subgroup
of G∗

sc. Then by Proposition 1.2.13, Hi = CG∗
sc(Z(Hi)

◦) holds. Since |Z(Hi)/Z(Hi)
◦| � |A|

is bounded by some constant depending on Λi, by [51, Corollary 9.7.9], we count first the
elements in

TH = Z(Hi)
◦ \ {g ∈ Z(Hi)

◦ | C◦G∗
sc
(g) �= Hi}. (1.5.6)
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If C◦G∗
sc
(g) �= Hi, this means that C◦G∗

sc
(g) � Hi, and we have that β(g) = 1 for all β ∈ Δi

and for some β ∈ Λi \Δi. By Theorem 1.2.2, we have that Z(Hi) =
⋂

α∈Δi
kerα, so we

can rewrite (1.5.6) as
(
⋂

α∈Δi

kerα)◦ \
⋃

β∈Λi\Δi

kerβ.

If dim(kerβ ∩ Z(Hi)) = dim(Z(Hi)) for some β ∈ Λi, then Z(Hi)
◦ ⊆ kerβ, and hence

Uβ ⊆ CG∗
sc
(Z(Hi)

◦) = Hi,

which leads to a contradiction to our assumption. Thus for every β ∈ Λi \ Δi we have
that dim(kerβ ∩ Z(Hi)) � dim(Z(Hi)). Using the bound given by Corollary 1.3.9 for the
torus Z(Hi)

◦F ∗
, there exists a constant C2 that depends only on Δi such that

|Hsc
i | ∼C2 qdimZ(Hi).

In the third case, we have dim(Z(Hi)) > 0 and we have that the subgroup Hi is
not a Levi subgroup of G∗

sc. Then, again by Proposition 1.2.13 and Remark 1.2.14,
the subgroup CG∗

sc(Z(Hi)
◦) is a Levi subgroup of G∗

sc that we denote by Li. In par-
ticular, Hi � CG∗

sc(Z(Hi)
◦) = Li. Moreover, note that for every t ∈ Z(Hi)

◦ we
have C◦G∗

sc
(t) � CG∗

sc(Z(Hi)
◦) = Li � Hi. Then the elements in Hsc

i corresponds to
elements in Z(Hi) of the form x = ta where t ∈ Z(Hi)

◦ and a is a non-trivial element
of A and such that C◦G∗

sc
(x) = Hi. The latter condition is satisfied if C◦Li

(a) = Hi

and C◦G∗
sc
(te) = Li, where e is the exponent of A since

Hi � C◦G∗
sc
(at) � C◦G∗

sc
((at)e) ∩ C◦G∗

sc
(at) = C◦G∗

sc
(te) ∩ C◦G∗

sc
(at)

= Li ∩ C◦G∗
sc
(at) = C◦Li

(a).

This means that we need to count the elements ls in Z(Hi)
◦ such that CG∗

sc(ls) = Li.
Equivalently, we need to count the elements in

TL = Z(Hi)
◦ \ {g ∈ Z(Hi)

◦ | C◦G∗
sc
(g) �= Li}. (1.5.7)

As for TH , and using again Corollary 1.3.9 for the torus Z(Hi)
◦F ∗

, there is a constant CL

which depends only on Δi which is such that

|TF ∗
L | ∼CL

qdimZ(Hi).

The subset of A whose elements have centralizers in Li which are equal to Hi, is still a
finite set. Lastly the condition te ∈ TL does not influence the count of elements in Z(Hi)

of the form x = ta with C◦G∗
sc
(x) = Hi, since dim(TL) = dim(Z(Hi)

◦). Hence there exists
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a constant C3 such that
|Hsc

i | ∼C3 qdimZ(Hi).

Put C = C1C2C3 to have all the cases covered, and we see that for every fixed Hi the
approximation

|Hsc
i | ∼C qdimZ(Hi)

holds. By Proposition 1.3.6, in the case when G∗
sc
F ∗

is perfect, we have
π(G∗

sc
F ∗

) = [G∗F ∗
,G∗F ∗

]. Thus we have a surjection Hsc
i � Hi induced by π, whose fibres

have order at most |Z(G∗
sc)|. Note that dimZ(Li) = dimZ(Ki), and so it follows that

|Hi| ∼C|Z(G∗
sc)| q

dimZ(Ki).

Using (1.5.4) and (1.5.5), and defining D6 to be the product D5C|Z(G∗
sc)|, we obtain

ζnu
GF /Z(GF )(s) ∼D4D6

N∑
i=1

qdimZ(Ki)−(|Φ+|−|Ψ+
i |)s.

Since dimZ(Ki) � rkΦ for 1 � i � N and moreover, using [80, Lemma 2.5], we have

dimZ(Ki)

|Φ+| − |Ψ+| �
rkΦ

|Φ+| . (1.5.8)

By Lemma 1.3.16, we see that for q large enough (depending on Φ), there exist regu-
lar semisimple elements in G∗

sc
F ∗

. Employing again Proposition 1.3.6, the regular ele-
ments in G∗

sc
F ∗

are sent by π to regular elements in [G∗F ∗
,G∗F ∗

]. Then there exists
an i ∈ {1, . . . , N} such that

(dimZ(Ki), |Φ+| − |Ψ+
i |) = (rkΦ, |Φ+|). (1.5.9)

Let a∗((Φ, τ), q) be the set {(dimZ(Ki), |Φ+| − |Ψ+
i |) | 1 � i � N}. Then we have

ζnu
GF /Z(GF )(s) ∼D4D6N

∑
(m,n)∈a∗((Φ,τ),q)

qm−ns, (1.5.10)

where N is added because we could have different Ki and Kj for i �= j which lead to the
same data. The decomposition of characters of Theorem 1.4.4 and (1.5.2) imply that

ζGF /Z(GF )(s) = ζunip
GF /Z(GF )

(s) + ζnu
GF /Z(GF )(s).

Using (1.5.3) in combination with (1.5.10), Proposition 1.5.5 yields b(Φ, τ) ⊂ b(Φ) ∈ A+,
and a constant D ∈ R such that

ζGF /Z(GF )(s)− 1 ∼D ξb(Φ,τ)∪a∗((Φ,τ),q),q(s).
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We set d((Φ, τ), q) = b(Φ, τ) ∪ a∗((Φ, τ), q) and this concludes part (ii) of the theorem.
Assertion (i) follows from the observation that d((Φ, τ), q) ⊂ a((Φ, τ), q) of Theorem 1.5.4

for all ((Φ, τ), q) ∈ LΦ × Q and by setting d(Φ) = a(Φ).
As for the last part, we define the set d0((Φ, τ), q) = d((Φ, τ), q) ∪ {(0, 0)} ∈ A and

f(Φ) = {(0, 0), (rk(Φ), |Φ+|)}. Then by (1.5.9), we have ξd0((Φ,τ),q),q(s) 	N+1 ξf(Φ),q(s)

and by Remark 1.5.1 and (1.5.8) we have ξd0((Φ,τ),q),q(s) �N+1 ξf(Φ),q(s) noting that
|d0((Φ, τ), q)| � N + 1. Thus, for the same constant D as before, we have

ζGF /Z(GF )(s) ∼D 1 + qrk(Φ)−|Φ+|s.

The work of Avni, Klopsch, Onn, and Voll was a refiniment of the results of Liebeck and
Shalev in [79] and [80], who proved some asymptotic results on the Dirichlet polynomials of
finite (quasi-)simple groups. We highlight the following, cf. [80, Theorem 1.1].

Theorem 1.5.7. Let Φ be a non-trivial irreducible root system and τ an automorphism
of Φ stabilising a choice of Φ+. For every G a connected simply connected simple algebraic
group over with underlying root system Φ, and F a Frobenius endomorphism inducing τ ,
write L(q) for GF , as in the notation of Table 1.3, to underline the dependency on q. Then
for every real number t > 2 rk(Φ)/|Φ|, it holds that

ζL(q)(t)→ 1 as q →∞.

Moreover, for t < 2 rk(Φ)/|Φ|, we have ζL(q)(t)→∞ as q →∞.

Furthermore, there is a result for groups of Lie type of the form L(q) with unbounded
Lie rank, cf. [80, Theorem 1.2].

Theorem 1.5.8. Fix a real number t > 0. Then there is an integer r(t) such that for
quasi-simple groups L(q) of Lie rank r � r(t), we have

ζL(q)(t)→ 1 as |L(q)| → ∞.

For alternating groups, the following holds, cf. [79, Corollary 2.7]; the latter follows
from a result on symmetric groups, cf. [79, Theorem 1.1].

Theorem 1.5.9. Fix a real number t > 0. Then

ζAlt(n)(t)→ 1 as n→∞.

Moreover, ζAlt(n)(t) = 1 +O(n−t).

Regarding the central covers of alternating groups Alt(n), the Schur multiplier has
order 2 for n � 5, except for n = 6 and n = 7, where the Schur multipliers have order 6, as
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noted in Example 0.6.2. We consider alternating groups Alt(n) with Schur multiplier of
order 2 and we refer to such double covers by 2.Alt(n).

The irreducible representations of 2.Alt(n) correspond to projective representations
of Alt(n), cf. Section 0.6.1. The projective representations of the symmetric and alter-
nating groups were first examined by Schur [108]. He proved that we can distingush
between two types of irreducible representations of 2.Alt(n): the irreducible representa-
tions χ ∈ Irr(2.Alt(n)) with Z(2.Alt(n)) ⊆ kerχ, which correspond to the irreducible
representations of Alt(n), cf. Section 0.5; and remaining irreducible representations that
we call irreducible spin representations, following [122], and we denoted the set of them
by Irrs(Alt(n)). By [122, Corollary 7.5], we see that the irreducible spin representations
of 2.Alt(n) are parametrized by the partitions of n with distinct parts, i.e. the partitions
of n for which no number occurs more than once and a possible sign choice. More precisely,
if we denote by p(n) the number of partitions of n then the number of spin representations
is bounded by 2 times p(n). Then we use a weak form of a theorem proved by Hardy and
Ramanujan in 1918, which gives an estimation of p(n), cf. [98, Theorem 6.10] and we get

| Irrs(Alt(n))| � 2 · p(n) � 2 · exp(π
√

2n/3) � 3π
√

2/3n1/2
,

for all sufficiently large n. The degree of an irreducible spin representation is at least 2(n−3)/2,
by [72, Corollary 3.2]. Hence∑

χ∈Irrs(2.Alt(n))

χ(1)−s � 3π
√

2/3n1/2
2−(n−3)s/2 � 3−ns/3

for all sufficiently large n. Hence we proved the following result.

Lemma 1.5.10. Fix a real number t > 0. Then

ζ2.Alt(n)(t)→ 1 as n→∞.

Moreover, ζ2.Alt(n)(t) = 1 +O(n−t).

By considering Theorem 1.5.7, Theorem 1.5.8, Theorem 1.5.9, and Lemma 1.5.10, we
obtain the following corollary, cf. [80, Corollary 1.4 (ii)].

Corollary 1.5.11. Let G be the set of alternating groups Alt(n), double covers of alternating
groups 2.Alt(n), finite simple groups of Lie type of unbounded Lie rank S(q), and quasi-
simple groups of Lie type of unbounded Lie rank L(q). Given any ε > 0, there exists
m = m(ε), such that if G ∈ G of rank at least m, then

rn(G) < nε for all n ∈ N∗.

68



l

1.6 Illustrated example of SL2(q) and PSL2(q)

The character table of SL2(q) was first explicitely described independently by Jordan [67]
and Shur [109] in 1907 with ad hoc arguments. After the development of Deligne-Lusztig
theory, Bonnafé published a book on the representations of SL2(q) over the field k [16]
with the aim of giving an illustrative example of the general theory. He deals with
representations of SL2(q) both in the non-defining and defining characteristic, i.e. when
the characteristic of k is not the characteristic of the group, including the case when k

has characteristic 0, and otherwise. For more references in the defining characteristic
case, we point to [38, Example 2.1.17, Example 2.2.30, Remark 2.6.19, Example 4.3.3, and
Example 4.8.25], and [30, Section 12.5].

The character table of PSL2(p), where p is a prime, was firstly described by Frobenius
in 1896, cf. [38, Table 2.4]. Since PSL2(q) is the quotient of SL2(q) by the center Z(SL2(q)),
the character table of PSL2(q) can be deduced from the one of SL2(q). We explain how to
do so with the degrees of the irreducible characters using Proposition 1.4.10.

Let p be an odd prime, q a power of p, F an algebraically closed field of characteristic p

that contains Fq, the field of q elements, and consider the group SL2(q). This group can be
described as the group of fixed points of the simply connected simple algebraic group SL2

over F, with respect to the standard Frobenius endomorphism F , which raises the matrix
entries to their qth power. The subgroup T of SL2 of diagonal matrices is an F -stable
maximal torus. Let X = X(T) ∼= Z be the character group and Y = Y (T) ∼= Z be the
cocharacter group of T. Since they are infinite cyclic groups we denote by χ the generator
of X and by χ∨ the generator of Y . The character χ is defined as

χ

(
t 0

0 t−1

)
= t,

for t ∈ F. We have just two roots Φ = {±α}, where α

(
t 0

0 t−1

)
= t2, and ZΦ = 〈2χ〉.

The Weyl group W (T) has two elements {1, w} and acts via signed permutation matrices
on T. The element w can be represented by the matrix(

0 −1
1 0

)
.

As we have seen in Section 1.3, the action of F on the character group X = X(T) and
the cocarachter group Y = Y (T) is given by F (χ)(t) = χ(F (t)) for χ ∈ X and t ∈ T and
by F (γ)(c) = F (γ(c)) for γ ∈ Y and c ∈ F. We observe that F |X = q idX .

By Theorem 1.3.10, the group SL2 has q2 F -stable maximal tori, and by Proposi-
tion 1.3.11, we have two SL2(q)-conjugacy classes of F -stable maximal tori.
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We denote by T the set of F -fixed points of T. For the other SL2(q)-conjugacy class
of maximal tori, we have Tw which is the set isomorphic to the set of fixed points TwF .
That is to say, the pair (T, wF ) corresponds to the pair (Tw, F ) where Tw is of type w,
cf. Remark 1.3.12. The group T is formed by diagonal matrices diag(μ, μ−1) where μ ∈ F∗q
and the group Tw is isomorphic to the group formed by diagonal matrices diag(η, ηq)

with ηq+1 = 1 and η ∈ F∗q2 .

Duality

Following Section 1.2.1, the dual group of SL2 with respect to T is the algebraic group
of adjoint type PGL2 over F with maximal torus T∗. When we consider the Frobenius
endomorphism F , note that T is maximally split as it is contained in the Borel subgroup B of
SL2 given by the upper triangular matrices, which is F -stable. Hence, following Section 1.3.1,
the pair of (SL2, F ) and (PGL2, F

∗) are in duality with respect to T and T∗, where F ∗ is
also the standard Frobenius endomorphism which the matrix entries to their qth powers. We
denote by W ∗ = {1, w∗} the Weyl group with respect to T∗. Moreover, W ∗ is isomorphic
to the Weyl group W . Compare with [92, Remark 8.10] and Section 1.2.1.

Cardinalities

In order to compute the cardinality of SL2(q), let us compute the cardinalities of its maximal
tori. As we have seen before, T is an F -stable maximal torus of SL2 and F |X = q idX . Thus,
by Proposition 1.3.8, we have that |T | = |TF | = | detXR

(F−1)| = | detXR
(q idX −1)| = q−1.

As for the torus Tw, we use Proposition 1.3.13 to compute the cardinality. We have
that |Tw| = |TwF | = | detXR

(wF − 1)| = | detXR
(q− (w idX)−1)| = q+ 1. Altogether, using

Proposition 1.3.14, we have that

| SL2(q)| = q(q + 1)(q − 1).

Lastly, by Proposition 1.3.15 we also have that

|PGL2(q)| = | SL2(q)| = q(q + 1)(q − 1).

In the group PGL2(q), we also have two maximal tori T ∗ and T ∗w∗ . By duality we have
that T ∗ ∼= T and T ∗w∗ ∼= Tw.

PGL2(q)-conjugacy classes of semisimple elements

We describe the PGL2(q)-conjugacy classes of semisimple elements in PGL2(q) and we
choose a set of representatives.

• First, the identity element forms a PGL2(q)-conjugacy class just by itself.
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• Now, for a ∈ F∗q , consider the matrices(
1 0

0 a

)
.

If a2 �= 1, then the elements(
1 0

0 a

)
and

(
1 0

0 a−1

)

are different, but they lie in the same PGL2(q)-conjugacy class. Since
|F∗q \ {±1}| = q − 3, we have q−3

2 classes with a representative of that form.
• If a2 = 1, then we either have the identity matrix, which we have already considered,

or the matrix (
1 0

0 −1

)
.

• Let N : F∗q2 → F∗q be the norm map and Tr : Fq2 → Fq be the trace map. The map N

is surjective and has kernel of size q + 1. Let δ ∈ Fq2 \ Fq and such that δq = −δ,
i.e. Tr(δ) = 0. Then the characteristic polynomial of a representative of the form(

0 δ2

1 0

)
,

is x2 − δ2 = x2 +N(δ) and has distinct roots δ and −δ in Fq2 . The number of such
polynomials is q − 1, since the norm map is surjective. Moreover, since in PGL2(q)

the elements (
0 δ2

1 0

)
and

(
0 c2δ2

1 0

)
,

with c ∈ F∗q , are conjugate, we have just one conjugacy class with such a representative.
• As for the last type of semisimple elements, we have q2 − q elements in Fq2 \ Fq.

Moreover, there are q − 1 non-zero elements with Tr(λ) = 0. Thus we have
(q2 − q) − (q − 1) = (q − 1)2 elements λ ∈ Fq2 \ Fq such that Tr(λ) �= 0. Since
λ and λq give rise to the same element of PGL2(q), and the elements(

Tr(λ) −N(λ)

1 0

)
and

(
Tr(λ) −c2N(λ)

1 0

)
,

with c ∈ F∗q , are conjugate, we have q−1
2 conjugacy classes with such representatives.

We define Ω to be a set of representatives of equivalence classes of elements a ∈ F∗q such
that a2 �= 1, where two elements a1 and a2 of F∗q are equivalent if and only if either a1

equals a2 or their product a1a2 equals one. As we have just seen |Ω| = q−3
2 . Moreover, we

define Λ to be a set of representatives of equivalence classes of elements λ ∈ Fq2 \ Fq such
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that λq �= −λ and where λ1 is equivalent to λ2 if and only if Tr(λ1) = Tr(λ2) and there
exists a c ∈ F∗q such that N(λ1) = c2N(λ2). As we have just seen |Λ| = q−1

2 . Finally, we
choose an element δ ∈ Fq2 \ Fq, such that δq = −δ. With these choices, the set

Gs =

{(
1 0

0 1

)
,

(
1 0

0 −1

)
,

(
0 δ2

1 0

)}
∪
{(

1 0

0 a

) ∣∣∣∣∣ a ∈ Ω

}
∪
{(

λ+ λq −λλq

1 0

) ∣∣∣∣∣ λ ∈ Λ

}

is a set of representatives of PGL2(q)-conjugacy classes of semisimple elements in PGL2(q).

Centralizers of semisimple elements in PGL2

We use Theorem 1.2.6 to describe the centralizers of elements in Gs. Among them, the
non-trivial elements which lie in T∗ are(

1 0

0 −1

)
and

(
1 0

0 a

)
.

The first element has a non-connected centraliser as the conjugation by w∗ ∈ W ∗ leaves
the elements invariant, and the latter one has connected centralizer. We have

CPGL2

((
1 0

0 a

))
= C◦PGL2

((
1 0

0 a

))
= C◦PGL2

((
1 0

0 −1

))
= T∗

As for the remaining non-trivial elements of Gs, recall that by Corollary 1.3.5, the group
PGL2(q)(= PGLF ∗

2 ) is PGL2-conjugate to the group PGLgF ∗
2 for every g ∈ PGL2. Let

g0 ∈ PGL2 be the element such that(
λ+ λq −λλq

1 0

)g0

=

(
λ 0

0 λq

)
,

in PGL2. By Theorem 1.3.4, we have a surjective morphism

L : PGL2 → PGL2, g �→ F (g)g−1,

that yields an element ẇ∗ ∈ PGL2 such that ẇ∗ = F (g0)g0
−1. In particular,

ẇ∗ =

(
0 −1
1 0

)

corresponds to the element w∗ of the Weyl group W ∗, justifying our notation. According to
Remark 1.3.12, the torus g−10 T∗g0 is a torus of type w∗, hence g−10 T∗g0 = T∗w∗ . The pair
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(T∗w∗ , F ∗) is sent by g−10 -conjugation to the pair (T∗, w∗F ). The elements(
0 δ2

1 0

)
and

(
λ+ λq −λλq

1 0

)

belong to T∗w∗ . We can now use Theorem 1.2.6 to describe the centralizers. We have that
the centralizer of the first element is not connected as the conjugation by w∗ leaves it
invariant, whereas the centralizer of the latter element is connected. Hence we have

CPGL2

((
λ+ λq −λλq

1 0

))
= C◦PGL2

((
λ+ λq −λλq

1 0

))
=

C◦PGL2

((
0 δ2

1 0

))
= T∗w∗ ∼= T∗.

In particular, all non-trivial semisimple elements are regular, cf. Section 1.3.3.
Finally, we compute∣∣∣∣∣PGL2(q) : CPGL2

((
1 0

0 a

))F ∗ ∣∣∣∣∣
p′
=
∣∣∣PGL2(q) : T

∗F ∗∣∣∣
p′
= (q + 1), (1.6.1)

∣∣∣∣∣PGL2(q) : CPGL2

((
λ+ λq −λλq

1 0

))F ∗ ∣∣∣∣∣
p′
=
∣∣∣PGL2(q) : T

∗
w∗
F ∗∣∣∣

p′
= (q − 1), (1.6.2)

∣∣∣∣∣PGL2(q) : CPGL2

((
1 0

0 −1

))F ∗ ∣∣∣∣∣
p′
=
∣∣∣PGL2(q) : 〈T∗ ∪ 〈ẇ∗〉〉F ∗

∣∣∣
p′
=

q + 1

2
, (1.6.3)

∣∣∣∣∣PGL2(q) : CPGL2

((
0 δ2

1 0

))F ∗ ∣∣∣∣∣
p′
=
∣∣∣PGL2(q) : 〈T∗w∗ ∪ 〈ẇ∗〉〉F ∗

∣∣∣
p′
=

q − 1

2
. (1.6.4)

as w∗ ∈W ∗ has order 2.

Characters of SL2(q)

The torus T is a finite abelian group with q − 1 elements. Hence the number of irreducible
characters of T is equal to the cardinality of T , as the group of irreducible characters of T
isomorphic to T itself. More precisely, the set Irr(T ) is given by the trivial character 1T

(corresponding to the trivial element in F∗q), the character α0 that is the unique linear
character of order 2 of T (corresponding to the element −1 in F∗q), and characters α

with α2 �= 1 (for all the other elements of F∗q). Proposition 1.4.2 tells us that we have
an isomorphism between Irr(T ) and T ∗, and Proposition 1.4.3 gives us the following
identifications

(T, 1T )↔
(
T ∗,

(
1 0

0 1

))
, (T, α0)↔

(
T ∗,

(
1 0

0 −1

))
,
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(T, α)↔
(
T ∗,

(
1 0

0 a

))
where a ∈ F∗q such that a2 �= 1.

The set Irr(Tw) instead is given by the trivial character 1Tw , the character θ0 that is
the unique linear character of order 2 of Tw, and characters θ with θ2 �= 1. By the same
argument as before, we have the following identifications

(Tw, 1Tw)↔
(
T ∗w∗ ,

(
1 0

0 1

))
, (Tw, θ0)↔

(
T ∗w∗ ,

(
0 δ2

1 0

))
,

(Tw, θ)↔
(
T ∗w∗ ,

(
λ+ λq −λλq

1 0

))
,

where δ ∈ Fq2 \Fq is the one that we fixed before and λ ∈ Fq2 \Fq, and such that Tr(λ) �= 0.
Let gs be an element of Gs. The corresponding rational series E(SL2(q), gs) of irreducible

characters of SL2(q) is the set of irreducible characters of SL2(q) which occur in some
Deligne-Lusztig character RG

T∗(gs), for some F ∗-stable maximal torus T∗ where gs is
semisimple and gs ∈ T∗F

∗
. By Proposition 1.4.1, the number of characters in each Deligne-

Lusztig character RG
T∗(gs) is at most 2. Up to PGL2(q)-conjugacy, we have two F ∗-stable

maximal tori, i.e. T∗ and TF ∗
w∗ .

• The trivial element lies both in T ∗ and T ∗w. By Proposition 1.4.1 we have

RPGL2
T∗

((
1 0

0 1

))
(1) = RSL2

T (1T )(1) = (−1)l(1)| SL2(q) : T |p′ = q + 1

RPGL2
T∗

w∗

((
1 0

0 1

))
(1) = RSL2

Tw
(1Tw)(1) = (−1)l(w)| SL2(q) : Tw|p′ = q − 1

The characters involved are the unipotent characters of SL2(q). Example 1.4.7 tells
us that we have two unipotent characters, since the number of unipotent characters
is in bijection with the partitions of 2, namely α = (1, 1) and β = (2). Using the
formula of the degree of χα, having λ1 = 1 and λ2 = 2, we get

χα(1) =

(∏2
i=1(q

i − 1)
)
(q2 − q)∏2

i=1

∏λi
k=1(q

k − 1)
= q.

For the other partition, we have

χβ(1) =

∏2
i=1(q

i − 1)∏2
k=1(q

k − 1)
= 1.

These are exactly the trivial and the Steinberg character that are irreducible unipotent
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characters, cf. Remark 1.4.8. Hence we have

RPGL2
T∗

((
1 0

0 1

))
= RSL2

T (1T ) = 1SL2(q) + St

RPGL2
T∗

w∗

((
1 0

0 1

))
= RSL2

Tw
(1Tw) = St− 1SL2(q).

• The semisimple element

(
1 0

0 −1

)
lies in T ∗. By Proposition 1.4.1 we have

RPGL2
T∗

((
1 0

0 −1

))
(1) = RSL2

T (α0)(1) = (−1)l(1)| SL2(q) : T |p′ = q + 1

〈RSL2
T (α0), R

SL2
T (α0)〉SL2(q) =

∣∣{g ∈ SL2(q) | gTg−1 = T and gα0 = α0}
∣∣ /|T | = 2.

Thus, RSL2
T (α0) is not an irreducible character. As afore mentioned, since by Proposi-

tion 1.4.1 we have at most two irreducible characters for each Deligne-Lusztig character,
we have 2 irreducible characters that we call R+(α0) and R−(α0). Moreover, by
Theorem 1.4.5 and (1.6.3), we have

R+(α0)(1) = R−(α0)(1) =
q + 1

2
.

• The semisimple elements

(
1 0

0 a

)
with a ∈ Ω lie in T ∗. By Proposition 1.4.1 we have

RPGL2
T∗

((
1 0

0 a

))
(1) = RSL2

T (α)(1) = (−1)l(1)| SL2(q) : T |p′ = q + 1

and

〈RSL2
T (α), RSL2

T (α)〉SL2(q) =
∣∣{g ∈ SL2(q) | gTg−1 = T and gα = α}∣∣ /|T | = 1.

Hence RSL2
T (α) is an irreducible character of SL2(q). We denote it by R(α) = RSL2

T (α).
Using (1.6.1), we have

R(α)(1) = q + 1.

• The semisimple element

(
0 δ2

1 0

)
lies in T ∗w. By Proposition 1.4.1 we have

RPGL2
T∗

w∗

((
0 δ2

1 0

))
(1) = RSL2

Tw
(θ0)(1) = (−1)l(w)| SL2(q) : Tw|p′ = q − 1
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and

〈RSL2
Tw

(θ0), R
SL2
Tw

(θ0)〉SL2(q) =
∣∣{g ∈ SL2(q) | gTwg

−1 = Tw and gθ0 = θ0}
∣∣ /|Tw| = 2.

Thus, RSL2
Tw

(θ0) is not an irreducible character. We have 2 irreducible characters that
we call Rw

+(θ0) and Rw−(θ0). Moreover, by Theorem 1.4.5 and (1.6.4), we have

Rw
+(θ0)(1) = Rw

−(θ0)(1) =
q − 1

2
.

• The semisimple elements

(
λ+ λq −λλq

1 0

)
with λ ∈ Λ. By Proposition 1.4.1 we have

RPGL2
T∗

w∗

((
λ+ λq −λλq

1 0

))
(1) = RSL2

Tw
(θ)(1) = (−1)l(w)| SL2(q) : Tw|p′ = q − 1,

and

〈RSL2
Tw

(θ), RSL2
Tw

(θ)〉SL2(q) =
∣∣{g ∈ SL2(q) | gTwg

−1 = Tw and gθ = θ}∣∣ /|Tw| = 1.

Hence RSL2
Tw

(θ) is an irreducible character of SL2(q). We denote it by Rw(θ) = RSL2
Tw

(θ).
Using (1.6.2), we have that

Rw(θ)(1) = q − 1.

Since

| SL2(q)| = 12 + q2 + 2

(
q + 1

2

)2

+
q − 3

2
(q + 1)2 + 2

(
q − 1

2

)2

+
q − 1

2
(q − 1)2, (1.6.5)

we conclude that

Irr(SL2(q)) = {1SL2(q), St} ∪̇ {R+(α0), R−(α0)} ∪̇ {R(α) | α ∈ Irr(T ), α2 �= 1}
∪̇{Rw

+(θ0), R
w
−(θ0)} ∪̇ {Rw(θ) | θ ∈ Irr(Tw), θ

2 �= 1}.

Now, we divide the characters with respect to the rational series as in Theorem 1.4.4.
With an analysis on the degrees that we got so far, we deduce that the series of unipotent
characters is

E

(
SL2(q),

(
1 0

0 1

))
= {1SL2(q), St},
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and the other rational series are

E

(
SL2(q),

(
1 0

0 −1

))
= {R+(α0), R−(α0)}, for α0 ∈ Irr(T ) \ {1T }, α2

0 = 1;

E

(
SL2(q),

(
1 0

0 a

))
= {R(α)}, for a ∈ F∗q , a

2 �= 1, and α ∈ Irr(T ), α2 �= 1;

E

(
SL2(q),

(
0 δ2

1 0

))
= {Rw

+(θ0), R
w
−(θ0)},

for a δ ∈ Fq2 \ Fq, δ
q = −δ,

and θ0 ∈ Irr(Tw) \ {1Tw}, θ20 = 1;

E

(
SL2(q),

(
λ+ λq −λλq

1 0

))
= {Rw(θ)}, for λ ∈ Fq2 \ Fq, λ

q �= −λ,
and θ ∈ Irr(Tw), θ

2 �= 1.

This yields the Lusztig decomposition

Irr(SL2(q)) =
⊔

gs∈Gs

E(SL2(q), gs),

as we stated in Theorem 1.4.4.
For q odd, we write the table of orders and multiplicities in Table 1.4, cf. [16, Table 5.4]

and [30, Table 12.1].

SL2(q), q odd

Character χ Degree n Multiplicity rn(SL2(q))

1SL2(q) 1 1

St q 1

R(α), α2 �= 1 q + 1 q−3
2

Rw(θ), θ2 �= 1 q − 1 q−1
2

Rσ(α0), σ ∈ {±1} q+1
2 2

Rw
σ (θ0), σ ∈ {±1} q−1

2 2

Table 1.4: Representations of SL2(q) for q odd

Characters of PSL2(q)

Using Proposition 1.4.10, we look at the representatives of the PGL2(q)-conjugacy classes
of semisimple elements associated with the characters and we check whether they satisfy
the conditions of being in the commutator subgroup of PGL2(q). By Corollary 1.3.7, there
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is a natural isomorphism between [PGL2(q),PGL2(q)] and the group PSL2(q). Indeed,

[PGL2(q),PGL2(q)] = [GL2(q)/Z(GL2(q)),GL2(q)/Z(GL2(q))]

= [GL2(q),GL2(q)] · Z(GL2(q))/Z(GL2(q))

∼= [GL2(q),GL2(q)]/([GL2(q),GL2(q)] ∩ Z(GL2(q)))

= SL2(q)/Z(SL2(q))

Hence, if we consider a lift g in GL2(q) of a representative of a PGL2(q)-conjugacy class of
a semisimple element gZ(GL2(q)) ∈ PGL2(q), we need to check that g belongs to SL2(q).

Let us discuss each case by studying the representatives in Gs.

• First, let us consider the element

(
1 0

0 −1

)
that corresponds to the representations

R+(α0) and R−(α0), where α0 ∈ Irr(T ) and such that α2
0 = 1. Hence

Z(SL2(q)) ⊆ kerR±(α0) ⇐⇒ there exists b ∈ F∗q such that b2 = −1
⇐⇒ q ≡ 1 mod 4.

• Let us consider the element

(
0 δ2

1 0

)
, with δ ∈ Fq2 \Fq and Tr(δ) = 0. The associated

characters are Rw
+(θ0) and Rw−(θ0), where θ0 ∈ Irr(Tw) and such that θ20 = 1. Note

that δ2 has order q − 1 in F∗q , so it is a generator of the cyclic group F∗q . Then, we
have

Z(SL2(q)) ⊆ kerRw
±(θ0) ⇐⇒ there exists b ∈ F∗q such that b2δ2 = −1

⇐⇒ there exists j ∈ N such that (δ2)2jδ2 = (δ2)
q−1
2

⇐⇒ q ≡ 3 mod 4.

• For the semisimple elements

(
1 0

0 a

)
, where a ∈ F∗q and a2 �= 1, and the corresponding

α ∈ Irr(T ) with α2 �= 1, we have

Z(SL2(q)) ⊆ kerR(α) ⇐⇒ there exists b ∈ F∗q such that ab2 = 1

⇐⇒ a ∈ (F∗q)
2.

◦ If q ≡ 1 mod 4, then −1 ∈ (F∗q)2. Thus we have |(F∗q)2 \{±1}| = q−5
2 possibilities

for a. Moreover, since in PGL2(q) the elements(
1 0

0 a

)
and

(
1 0

0 a−1

)
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are in the same PGL2(q)-conjugacy class, we are left with q−5
4 characters of

degree q + 1.
◦ On the other hand, if q ≡ 3 mod 4 then −1 is not a square in Fq and so we have

q−3
4 characters of degree q + 1.

• Finally, for

(
λ+ λq −λλq

1 0

)
, with λ ∈ Fq2 \Fq and Tr(λ) �= 0, and the corresponding

θ ∈ Irr(Tw) with θ2 �= 1, we have

Z(SL2(q)) ⊆ kerRw(θ) ⇐⇒ there exists b ∈ F∗q such that λq+1b2 = 1

⇐⇒ N(λ) ∈ (F∗q)
2.

The number of elements λ ∈ F∗q2 such that N(λ) ∈ (F∗q)2, is

| ker(N)| · |(F∗q)2| = (q + 1) · q − 1

2
.

Since all the elements of F∗q have the property that their norm is a square, we need to
subtract q − 1 elements from the ones that we have counted so far. Then we have

(q + 1) · q − 1

2
− (q − 1) =

(q − 1)2

2

elements λ ∈ F∗q2 \ F∗q such that N(λ) ∈ (F∗q)2. The last condition that we need to
take into account is for the trace of λ to be non-zero. If that is not true, i.e. Tr(λ) = 0,
then the characteristic polynomial of our representative(

0 −N(λ)

1 0

)

is of the form x2 +N(λ). This polynomial is irreducible in Fq[x] if and only if −N(λ)

is not a square in F∗q .

◦ If q ≡ 1 mod 4, then (−1) ∈ (F∗q)2, so then −N(λ) ∈ (F∗q)2 and so this cannot
happen since we are restricting to elements in F∗q2 \ F∗q . Moreover, since λ and
λq give rise to the same representative, and the elements(

Tr(λ) −N(λ)

1 0

)
and

(
Tr(λ) −c2N(λ)

1 0

)
,

with c ∈ F∗q , are conjugate, we have q−1
4 conjugacy classes with such representa-

tives.
◦ Instead, if q ≡ 3 mod 4, then the characteristic polynomial x2 + N(λ) is irre-

ducible and so we need to subtract q − 1, which corresponds to the number of
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irreducible polynomials of the form x2 +N(λ). Thus we get

(q − 1)2

2
− (q − 1) = (q − 1) · q − 3

2

elements λ ∈ F∗q2 \ F∗q such that N(λ) ∈ (F∗q)2 and Tr(λ) �= 0. By the same
argument as above, we divide this number by 2(q− 1) and we get q−3

4 conjugacy
class with such representatives.

We then have Table 1.5.

PSL2(q), q ≡ 1 mod 4 PSL2(q), q ≡ 3 mod 4

Character χ Degree n Mult. rn Character χ Degree n Mult. rn

1 1 1 1 1 1
St q 1 St q 1

R(α), α2 �= 1 q + 1 q−5
4 R(α), α2 �= 1 q + 1 q−3

4

Rw(θ), θ2 �= 1 q − 1 q−1
4 Rw(θ), θ2 �= 1 q − 1 q−3

4

Rσ(α0), σ ∈ {±1} q+1
2 2 Rw

σ (θ0), σ ∈ {±1} q−1
2 2

Table 1.5: Representations of PSL2(q) for q odd

To verify that everything is correct, for q ≡ 1 mod 4, we compute

|PSL2(q)| = 12 + q2 +
q − 5

4
(q + 1)2 +

q − 1

4
(q − 1)2 + 2

(
q + 1

2

)2

, (1.6.6)

and, for q ≡ 3 mod 4, we compute

|PSL2(q)| = 12 + q2 +
q − 3

4
(q + 1)2 +

q − 3

4
(q − 1)2 + 2

(
q − 1

2

)2

. (1.6.7)

Representation growth

Let q be a prime power congruent to 1 modulo 4. Then

ζPSL2(q)(s) = 1 + q−s +
q − 5

4
(q + 1)−s +

q − 1

4
(q − 1)−s + 2

(
q + 1

2

)−s
.

and

ζSL2(q)(s) = 1 + q−s +
q − 3

2
(q + 1)−s +

q − 1

2
(q − 1)−s + 2

(
q + 1

2

)−s
+ 2

(
q − 1

2

)−s
We consider the quasi-semisimple profinite groups

G1 =
∏
j≥1

PSL2(q
j) and G̃1 =

∏
j≥1

SL2(q
j).
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Note that the center of G̃1 is an infinite group of exponent 2. Their representation zeta
functions are

ζG1(s) =
∏
j≥1

(
1 + q−js +

qj − 5

4
(qj + 1)−s +

qj − 1

4
(qj − 1)−s + 2

(
qj + 1

2

)−s)

and

ζ
G̃1

(s) =
∏
j≥1

(
1 + q−js +

qj − 3

2
(qj + 1)−s +

qj − 1

2
(qj − 1)−s

+ 2

(
qj + 1

2

)−s
+ 2

(
qj − 1

2

)−s)
.

By Remark 1.5.3, for any two sequences (xj)j∈N∗ and (yj)j∈N∗ of positive real numbers, the
product ∏

j≥1
(1 + xj + yj)

converges if and only if
∏

j≥1(1 + xj) and
∏

j≥1(1 + yj) converge individually. Thus, the
abscissae of convergence of ζG1(s) and ζ

G̃1
(s) are the same as the one of the product∏

j≥1 q
j(1−s), which converges if and only if

∑
j≥1 q

j(1−s) does. Therefore we have

α(G1) = α(G̃1) = 1.

Let now P1 be the set of primes congruent to 1 modulo 4 and consider

G2 =
∏
p∈P1

PSL2(p) and G̃2 =
∏
p∈P1

SL2(p).

Then the representation zeta functions are

ζG2(s) =
∏
p∈P1

(
1 + p−s +

p− 5

4
(p+ 1)−s +

p− 1

4
(p− 1)−s + 2

(
p+ 1

2

)−s)

and

ζ
G̃2

(s) =
∏
p∈P1

(
1 + p−s +

p− 3

2
(p+ 1)−s +

p− 1

2
(p− 1)−s

+ 2

(
p+ 1

2

)−s
+ 2

(
p− 1

2

)−s)
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that converge if and only if
∏

p∈P1
(1 + p1−s) does. Since

∏
p∈P1

(1 + p1−s) =
∏

p∈P1
(1− p−(1−s))−1∏

p∈P1
(1− p−2(1−s))−1

,

and by the Chebotarev Density Theorem the set P1 has positive analytic density, we see
that

α

⎛⎝∏
p∈P1

(1 + p1−s)

⎞⎠ = α

(
ζ(s− 1)

ζ(2s− 2)

)
.

From this we conclude that
α(G2) = α(G̃2) = 2.

The groups G1 and G̃1 are the kind of groups that we will consider in the next section,
while G2 and G̃2 are more of the flavour of groups considered by [12].

1.7 Polynomial representation growth

Recall that a group G has polynomial representation growth if the function Rn(G), which
counts the number of irreducible complex representations of G of dimension at most n, up
to isomorphism, grows at most polynomially in n. For quasi-semisimple profinite groups, we
establish that this condition is equivalent to the polynomial growth of the number of simple
factors which occur in G and admit at least one non-trivial representation of dimension at
most n.

Definition 1.7.1. Let G be an infinite countable based quasi-semisimple profinite group,
i.e. a perfect profinite group such that G/Z(G) ∼=∏j∈N∗ Gj where the groups Gj are finite,
non-abelian, and simple. Define

Mn(G) = {j ∈ N∗ | Rn(Gj) > 1} and mn(G) = |Mn(G)|.

We build upon the idea presented in [37, Theorem 6.1] and improve it by proving the
following result.

Proposition 1.7.2. Let G be an infinite countable based quasi-semisimple profinite group,
i.e. a perfect profinite group such that G/Z(G) ∼=∏j∈N∗ Gj where the groups Gj are finite
simple and non-abelian. Then G has polynomial representation growth if and only if mn(G)

is polynomially bounded.

Proof. The function Rn(G) counts the number of irreducible representations of dimension
at most n, up to isomorphism, and mn(G) counts the number of indices in the Cartesian
product isomorphic to G/Z(G) for which the corresponding factor has at least one non-trivial
representation of dimension at most n. Every n-dimensional irreducible representation of
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G/Z(G) is a tensor product of irreducible representations of a finite number of factors Gj

such that the product of the dimensions is n, by Lemma 0.4.1 and Theorem 0.5.3. Thus,

Rn(G) � Rn(G/Z(G)) � mn(G),

and so if Rn(G) grows at most polynomially, so does mn(G).
Conversely, let mn(G) be polynomially bounded, i.e. there exists a constant b ∈ N∗ such

that mn(G) � nb for all n ∈ N∗. As we noticed in the introduction, we can see G as quotient
of the Cartesian product G̃ =

∏
j∈N∗ G̃j of all covers G̃j of the finite non-abelian simple

groups Gj and in particular we have mn(G) = mn(G̃). Let ρ be an irreducible n-dimensional
representation of G̃. Then there is a unique decomposition of ρ such that ρ ∼= ρi1 � · · ·� ρit

for certain distinct i1, . . . , it ∈ N∗, where each ρij is a non-trivial nij -dimensional irreducible
representation of G̃ij and n = ni1 · · ·nit with nij > 1. By [84, Lemma 4.7], there exists a
constant μ ∈ N∗ such that the number of possibilities for n to be written as the product
just described is at most nμ. Moreover, given a configuration (ni1 , . . . , nit), the number of
factors G̃l of G̃ such that G̃l has a representation of dimension nij is at most mnij

(G) � nb
ij

by assumption. Hence, the number of choices for the indices (i1, . . . , it) ∈ (N∗)t is bounded
by
∏t

j=1 n
b
ij

= nb. It remains to prove that rn(G̃l) is polynomially bounded for each
finite quasi-simple group G̃l. For Suzuki and Ree groups, the result follows directly
from [80, Table 1]. For quasi-simple of unbounded ranks, we use Corollary 1.5.11. For quasi-
simple groups of Lie type of bounded rank, the result is given by [80, Corollary 1.4 (i)]. The
remaining groups are just finitely many so we can bound the number of their representations
by a constant, yielding the result.

Now, we proceed to prove the next theorem, following the idea of [37, Theorem 6.4].

Theorem 1.7.3. Let G be a quasi-semisimple profinite group such that G/Z(G) is a
Cartesian product of finite simple groups. If G has polynomial representation growth then G

is finitely generated as a profinite group.

Proof. By Proposition 1.3.17, we know that the elements in the center of G do not contribute
to the number of generators of G. Hence, we consider G/Z(G) and denote it H . According
to Proposition 1.7.2, mn(H) � nb for some constant b ∈ N∗. Let f(S) denote the number of
copies of S appearing as a composition factor of H . Note that we can write H =

∏
S Sf(S),

where S runs along the non-abelian finite simple groups. Since for every finite simple
group S, there exists a non-trivial irreducible representation of dimension less than |S|,
it follows that f(S) � m|S|(H) � |S|b for every S. Using Theorem 1.3.19, we conclude
that Sf(S) is generated by b+ 2 elements. Utilizing Lemma 0.2.2, we then deduce that H

is topologically finitely generated and, by our initial consideration, it follows that also G is
also finitely generated.

The result is reminiscent of a similar phenomenon concerning subgroup growth, which
states that every profinite group with polynomial subgroup growth is finitely generated,

83



l

cf. [86, Theorem 10.6]. While we do not have an analogous result for all profinite groups,
our founding establishes it within the realm of quasi-semisimple profinite groups.

1.8 Profinite completions

A finitely generated profinite group G is termed a profinite completion if there exists a
finitely generated residually finite group H such that its profinite completion Ĥ is isomorphic
to G. It is generally a difficult question whether a finitely generated profinite group is a
profinite completion. One might wonder whether every finitely generated profinite group
can be realized as the completion of a finitely generated residually finite abstract group.
However, a brief consideration reveals that this is not the case: for example, the p-adic
integers Zp are not the profinite completion of any finitely generated group.

An upper composition factor of a group G is a composition factor of some finite image
of G. Segal [110] has shown that any collection of non-abelian finite simple groups can serve
as the upper composition factors of a profinite completion. He was inspired by the work
of Grigorchuk [50] and constructed a branch group H such that its profinite completion
has the desired properties. There are only a few more specific classes of profinite groups
known to be profinite completions. Among them are the exmples given by Pyber [104],
who studied profinite completions similar to

Ẑ×
∏

j odd,
j�7

Alt(j).

Analogously, Lubotzky, Pyber, and Shalev constructed profinite completions of the form

Ẑ×
∞∏
n=1

PSLd(n)(q),

with q a fixed prime power and d(n) an arbitrary strictly increasing sequence of integers
greater than or equal to 2, cf. [85, Proposition 4.2].

Pyber posed the question of whether the factor Ẑ is inevitable when talking about
profinite completions involving a Cartesian product of finite simple groups. This was
disproved by Kassabov, who, together with Nikolov, provided the following characterization
in the realm of semisimple profinite groups, establishing the conditions under which a
profinite group is a profinite completion, cf. [68, Theorem 1.4].

Theorem 1.8.1. Let G =
∏

j∈N∗ Sj where {Sj}∞j=1 is an infinite family of finite non-abelian
simple groups such that rk(Sj) → ∞. If G is topologically finitely generated, then it is a
profinite completion.

In the theorem, the rank rk(G) of a finite non-abelian simple group G is the integer n

for Alt(n) and it is the Lie rank for finite simple groups of Lie type, i.e. if G = GF /Z(GF ),
then the Lie rank is the rank of G.
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Question 1.8.2. Is Theorem 1.8.1 true also for quasi-simsimple profinite groups of un-
bounded rank?

With our Theorem 1.1.1, which we will prove in the next section, and with Theorem 1.8 of
Kassabov and Nikolov [68], we have a construction which for every a > 0, gives a semisimple
profinite group G such that it has PRG of degree a and it is a profinite completion of a
finitely generated group H, cf. Theorem 1.1.1. Clearly, H can be taken to be residually
finite.

The next natural question is to understand the representations of the abstract group H .
All representations of H of finite image factor through representations of G. We prove in
Proposition 1.8.5 that all the representation of H are of finite image, providing a complete
description of the representations of H in terms of representations of G. First, recall that G
is a linear group over a field k if G is a subgroup of GLn(k) for some positive integer n.
If G is finitely generated, then G � GLn(R) where R is some finitely generated subring
of k. First, we report a result by Mal’cev, cf. [86, Window 7, Proposition 8].

Proposition 1.8.3. If G is a finitely generated linear group, then G is residually finite.

Then we report also the following result of Platonov, cf. [86, Window 7, Proposition 9].

Proposition 1.8.4. Let G be a finitely generated linear group over a field k. If char k = p,
then G is virtually residually p-finite. If char k = 0, then G is virtually residually p-finite
for all but finitely many primes.

We are now ready to prove the following result.

Proposition 1.8.5. Let H be a finitely generated residually finite group such that the profi-
nite completion of H is a semisimple profinite group. Then all the complex representations
of H are finite.

Proof. By contradiction, let ρ : H → GLn(C) be an infinite representation of H and let Γ

be the image of H . The group H is finitely generated, hence so is Γ. Using Proposition 1.8.3,
since Γ is a linear group, we have that Γ is residually finite. Applying Proposition 1.8.4 to
the field of the complex numbers, there exists a prime p and a normal subgroup of finite
index N of Γ that is residually p-finite. Let K be a normal subgroup of N such that the
quotient N/K is a non-trivial finite p-group and let M be the core of K in Γ. Hence we
can describe M in the following way

M = Kg1 ∩ · · · ∩Kgr ,

where g1, . . . , gr are cosets representatives for N in Γ. The quotient of N modulo M injects
into the direct product of finite p-groups of the form

N/Kg1 × · · · ×N/Kgr .
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Thus, the finite quotient Γ/M of Γ has composition factors isomorphic to a cyclic group of
order p. By the third isomorphism theorem, also H has such factors, thus violating the
hypothesis that the profinite completion of H is semisimple.

Remark 1.8.6. If Theorem 1.8.1 were true more generally for quasi-semisimple profinite
groups with non-trivial centers, then Proposition 1.8.5 could be easily generalized to quasi-
semisimple profinite groups that have composition factors with centers of bounded order.
One could choose a prime p in the previous proof such that it does not divide the order of
any center of the quasi-simple groups involved in G. Comparing with Table 1.3, the only
type which has centers of unbounded order is the type An.

1.9 Constructing quasi-semisimple profinite groups with
specified representation growth rates

The first result that we prove is an intermediate step that we will use to prove our main
Theorem 1.1.1. We follow the idea of the proof of [37, Theorem 6.3] and we adapt it for
our more general setting.

Theorem 1.9.1. For every a ∈ R>0, there exists a quasi-semisimple profinite group G that
has polynomial representation growth and such that α(G) = a. Moreover, we can choose G

to be a semisimple profinite group involving just one Lie type with fixed rank and increasing
defining field, i.e. of the form G =

∏
j∈N∗ S(q

j)f(j). If G̃ is a quasi-semisimple profinite
group such that there exists a surjection of G̃ onto G, then α(G) = α(G̃).

Proof. Let a ∈ R>0 and let Φ be a non-trivial irreducible root system and τ an au-
tomorphisms of Φ stabilising a choice of Φ+. Let Q denote the set of all powers of a
prime p. Consider a connected simply connected simple algebraic groups defined over an
algebraic closure of characteristic p with associated root system Φ. We consider a family
of Frobenious endomorphisms F defining Fq-structures of G with q ∈ Q and inducing the
automorphism τ on the root system Φ. According to Remark 1.3.1, we are defining a family
{L(q) | q ∈ Q, q �= 2, 3} of quasi-simple groups of Lie type. Denote the simple groups of Lie
type given by the quotient L(q)/Z(L(q)) by S(q), cf. Remark 1.3.2. Let r be the Lie rank
of S(q) which equals to the Lie rank of L(q), i.e. r = rk(G) = rk(Φ). Using Theorem 1.5.7,
we choose Φ such that a > 2r/|Φ|.

Let (aj)j∈N∗ be a sequence of natural numbers such that
∣∣∣ajj − a

∣∣∣ ≤ 1
j for every j ∈ N∗.

Then aj/j converges to a as j tends to infinity. Consider the following function

f : N∗ → N∗

j �→
⎧⎨⎩q

r(aj |Φ|/r−2j)

2 if j ≥ |Φ|
2(r−1)

0 otherwise.
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Define a constant D such that

f(j) = q
r(aj |Φ|/r−2j)

2 ≤ q
j(|Φ|a−2)

2 = qjD,

and consider the groups

G =
∞∏
j=1

S(qj)f(j) and G̃ =
∞∏
j=1

L(qj)f(j).

It suffices to show that G and G̃ have polynomial representation growth and that α(G) equals
α(G̃). By Proposition 1.4.11 and Remark 1.4.12, there exists an absolute constant d greater
than 0 such that, if S(qj) and L(qj) have an irreducible representation of dimension n, then
n > dqjr. Hence, there exists a constant B such that

j <
log(n/d)

r log q
≤ B log n.

Recall that mn(G) counts the number of non-abelian composition factors of a quasi-
semisimple profinite group G for which we have at least one non-trivial representation of
dimension at most n. Thus

mn(G) = mn(G̃) < B (log n) f(B(log n)) ≤ B (log n) qDB logn = B (log n)nDB log q,

which means that mn(G) and mn(G̃) are polynomially bounded. By Proposition 1.7.2, it
follows that G and G̃ have PRG.

Recall the definition of a Dirichlet polynomial (1.5.1). By Theorem 1.5.6, there exist a
constant D ∈ R that depends only on Φ and a finite set d((Φ, τ), qj) ∈ A+ such that

ζS(qj)(s)− 1 ∼D ξd((Φ,τ),qj),qj (s).

Similarly, by Theorem 1.5.4 there exist a constant C ∈ R and a finite set a(Φ) ∈ A+ such
that

ζL(qj)(s)− 1 ∼C ξa((Φ,τ),qj),qj (s).

Let

ξG =
∞∏
j=1

(
1 + ξd((Φ,τ),qj),qj

)
and ξ

G̃
=

∞∏
j=1

(
1 + ξa((Φ,τ),qj),qj

)
.

By Remark 1.5.3, the asbcissa of convergence of ξG and ξ
G̃

respectively is the maximum
of the abscissae of convergence where instead of the Dirichlet polynomials ξa((Φ,τ),qj),qj

and ξd((Φ,τ),qj),qj , we consider only one monomial. Hence, the functions ξG and ξ
G̃

converge
if and only if

∞∏
j=1

(
1 + qj(m−ns)

)
and

∞∏
j=1

(
1 + qj(m̃−ñs)

)
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converge for all (m,n) ∈ a((Φ, τ), qj) and (m̃, ñ) ∈ d((Φ, τ), qj). Hence

α(ξG) = max{m/n | (m,n) ∈
∞⋃
j=1

a((Φ, τ), qj)}

and

α(ξ
G̃
) = max{m̃/ñ | (m̃, ñ) ∈

∞⋃
j=1

d((Φ, τ), qj)}.

Note that the maximum is well defined by Theorem 1.5.4 (i) and Theorem 1.5.6 (i).
Choosing q large enough, we can use (1.5.8), (1.5.9), [12, (3.16)], and [12, (3.17)], to
conclude that

α(ξG) = α(ξ
G̃
) =

r

|Φ+| .

Thus, an application of Lemma 1.5.2 gives

α(G) = α(G̃) = α

⎛⎝ ∞∏
j=1

(1 + qjr(1−
|Φ|
2r

s))f(j)

⎞⎠ .

The latter product converges if and only if the series

∞∑
j=1

f(j) qjr(1−
|Φ|
2r

s) =
∑
j>N

q
r(aj |Φ|/r−2j)

2 qjr(1−
|Φ|
2r

s) =
∑
j>N

q
j|Φ|
2

(
aj
j
−s)

converges, where N = |Φ|
2(r−1) comes from the definition of f . We claim that the latter

series converges if and only if σ > a where σ is the real part of s. Suppose first that σ > a

and recall that aj/j tends to a as j goes to infinity. Then there exist ε > 0 such that
aj
j − σ < −ε and so ∑

j>N

q
j|Φ|
2

(
aj
j
−σ) ≤

∑
j>N

q
j|Φ|
2

(−ε).

Then we have an upper bound with a geometric series of ratio smaller than 1, which
converges.

On the other hand, if σ < a, then we can find ε > 0 such that aj
j − σ > ε and hence

∑
j>N

q
j|Φ|
2

(
aj
j
−σ) ≥

∑
j>N

q
j|Φ|
2

ε

where the latter series diverges.

With Theorem 1.9.1, we constructed groups whose non-abelian composition factors have
fixed rank. This condition for semisimple profinite groups is in contrast with the hypothesis
of Theorem 1.8.1. Therefore, it remains to address groups whose non-abelian composition
factors have unbounded ranks.
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Proof of Theorem 1.1.1. Let (am)m∈N∗ be a sequence positive real numbers that converges
to a from below and let (Hm)m∈N∗ be a sequence of groups as in Theorem 1.9.1 such that the
simple factors are all of the same Lie type with Lie rank rm and α(Hm) = am. Moreover,
let the sequence of ranks (rm)m∈N∗ be a strictly increasing sequence. We construct a
semisimple profinite group H whose non-abelian composition factors have unbounded rank
and with α(H) = a, by taking the product of some quotients of the groups Hm. We write

Hm =

∞∏
j=1

Sm,j .

First, consider the group H1 with factors S1,j ordered by size, and define the sequence
xn = logRn(H1)

logn . By construction, we know that

a1 = lim sup
n→∞

logRn(H1)

log n
= lim sup

n→∞
xn.

By the definition of limit superior in combination with a1 < a, there are at most finitely
many xn greater than a. Deleting those factors in H1, we create a group, that we will call
again H1, such that for all n ∈ N∗ we have

logRn(H1)

log n
� a.

Again by the properties of the limit superior, we know that there exists a subsequence xkn

of xn for which
xkn > lim sup

n→∞
xn − ε = a1 − ε,

for any ε > 0 and for all n ∈ N∗. Thus there exists n(1) ∈ N∗ so that

logRn(1)(H1)

log n(1)
� a1 − 1.

We define H̃1 to be the product of finitely many groups S1,j such that

Rn(1)(H1) = Rn(1)(H̃1).

The next step is to understand how we modify H2, taking into account that we will
have to make the product with H1. As before, we write

H2 =
∞∏
j=1

S2,j ,

such that α(H2) = a2 and rkS2,j = r2 for every j ∈ N∗ with r2 > r1. Note that
α(H̃1 ×H2) = α(H2). We change again H2, and afterwards still call it H2, deleting the
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first finitely many factors with representations of “small” dimension in such way that

Rn(1)(H̃1 ×H2) = Rn(1)(H1
˜ ).

As before, we delete again finitely many factors of H2 so we have that for all n ∈ N∗

logRn(H̃1 ×H2)

log n
� a,

using the fact that a2 < a. Recalling the definition of the limit superior, we find n(2) ∈ N∗
and n(2) > n(1) such that

logRn(2)(H̃1 ×H2)

log n(2)
� a2 − 1

2
.

Finally, we pick a finite subproduct of H2, say H2
˜ , such that

Rn(2)(H̃1 ×H2) = Rn(2)(H̃1 × H̃2).

We repeat this process inductively constructing the group

H =

∞∏
m=1

H̃m

where every factor H̃m is a finite product of finite non abelian simple groups
∏

j∈I Sm,j

for some finite set I ⊂ N∗ with rkSm,j = rm, and where we choose the sequence (rm)m∈N∗

to be strictly increasing. Moreover, there exists a strictly increasing sequence of natural
numbers (n(j))j∈N∗ such that

logRn(j)(H̃1 × · · · × H̃j)

log n(j)
� aj − 1

j
,

and such that for n(j − 1) < n � n(j) with j ∈ N>1, we have

Rn(H) = Rn(H̃1 × · · · × H̃j).

We want to prove that α(H) = a. Observe that

logRn(j)(H)

log n
=

logRn(j)(H̃1 × · · · × H̃j)

log n
� aj − 1

j
,

thus

lim sup
j→∞

logRn(j)(H)

log n
= lim sup

j→∞

logRn(j)(H̃1 × · · · × H̃j)

log n
� lim

j→∞

(
aj − 1

j

)
= a.
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On the other hand, for n(j − 1) < n � n(j) with j ∈ N>1, we have

Rn(H) = Rn(H̃1 × · · · × H̃j)

and by construction, we deduce that logRn(H)
logn � a. This gives α(H) � a.

Hence, we have constructed an infinite countable based semisimple profinite group H that
has polynomial representation growth and hence it is finitely generated by Theorem 1.7.3.
Moreover, its simple factors have unbounded rank and so by Theorem 1.8.1, it is a profinite
completion.
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Chapter 2

Representation growth of compact
p-adic analytic groups

Based on joint work with Jan Moritz Petschick

2.1 Introduction

A topological group G is called representation rigid, or just rigid, if the number of isomor-
phism classes of n-dimensional continuous irreducible complex representations of G is finite
for every positive integer n ∈ N∗. Given a rigid group G, we write rn(G) for the number
of irreducible representations of dimension n and RN (G) for the sum

∑N
n=1 rn(G). It is a

fundamental goal of representation theory to understand the growth and general behaviour
of the resulting arithmetic sequences (rn(G))n∈N∗ and (RN (G))N∈N∗ . If G is such that the
latter sequence grows polynomially, we say that G has polynomial representation growth
(PRG). The study of representation growth is inspired by the study of subgroup growth,
which analyses the growth of the arithmetic sequence an(G), where an(G) denotes the
number of subgroups of index n. Grunewald, Segal, and Smith [55] initiated a systematic
study of groups with polynomial subgroup growth, examining the arithmetic of the sequence
using number theoretic methods. In a similar spirit, for a group G having PRG, we encode
the sequence (rn(G))n∈N∗ using a Dirichlet generating function which is defined on a right
half-plane {s ∈ C | �(s) > α(G)} delimited by the abscissa of convergence α(G). This
function is called the representation zeta function of G and it is given by

ζG(s) =
∞∑
n=1

rn(G)n−s.

By the theory of Dirichlet generating functions, if G has polynomial representation
growth, the abscissa of convergence α(G) coincides with the degree of growth of the
sequence (RN (G))N∈N∗ , cf. Section 0.7 for more details.

We consider the representation zeta functions of certain compact p-adic analytic groups
and, in particular, we consider profinite groups. Zeta functions of this kind appear, for
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instance, as the local factors in the Euler product decomposition of the representation zeta
functions associated to arithmetic groups G with the congruence subgroup property [77],
where the congruence subgroup property ensures polynomial growth of representations for
arithmetic groups, cf. [84]. In the realm of finitely generated profinite groups, rigid groups
are algebraically characterised by the FAb property: a topological group is FAb if every
open subgroup H has finite abelianisation H/[H,H], see [13, Proposition 2]. For a p-adic
analytic group G, this characterisation can be carried over to its Lie algebra, employing
Lazard’s correspondence between saturable pro-p groups and saturable Zp-Lie lattices,
cf. [43, 78]. In particular, a p-adic analytic group G is FAb and hence rigid if and only if it
has an open FAb saturable pro-p subgroup U ; and a saturable pro-p subgroup U is FAb if
and only if the Zp-Lie lattice log(U) is FAb. Furthermore, the latter happens if and only if
the Qp-Lie algebra log(U)⊗Zp Qp is perfect, cf. [11, Proposition 2.1].

According to Jaikin-Zapirain [66] for odd primes and Stasinski and Zordan [119] for the
prime 2 case, the representation zeta function of a FAb compact p-adic analytic group is a
finite sum

r∑
i=1

n−si fi(p
−s),

where n1, . . . , nr are positive integers and f1, . . . , fr ∈ Q(t) are rational functions. There are
only a few examples where this computation has been carried out explicitly, see [10,11,66,134].
Specifically, the representation zeta functions of the groups SL2(Zp) and SL3(Zp), as well as
their principal congruence subgroups and those of SL4(Zp), are known. Nevertheless, already
the groups SLn(Zp) for n > 4 remain mysterious; even the abscissae of convergence of their
respective zeta functions are not determined, although some bounds exist, cf. [2, 10,17,77].

The main technique for the computation of representation zeta functions of com-
pact p-adic analytic groups can be separated into two steps, using two very different
techniques. The first step is to compute the zeta function of a uniformly potent normal
pro-p subgroup of finite index, using the Kirillov orbit method, see e.g. [41,58], by evaluating
a p-adic integral related to the structure of the associated Lie lattice. For any odd prime p,
a pro-p group G is called potent if γp−1(G) ⊆ Gp, where γk(G) denotes the kth term
of the lower central series of G, cf. Section 0.1, and Gk the subgroup generated by kth

powers, for k ∈ N∗. For p = 2, we instead demand that [G,G] ⊆ G4. If G is potent,
finitely generated, and torsion-free, we call it uniformly potent for short; such groups are a
straightforward generalisation of uniformly powerful groups as consider e.g. in [31].

After the p-adic integral associated to a uniformly potent normal pro-p subgroup has
been computed, the second step is to perform (approximative) Clifford theory to extend the
analysis of representations from uniformly potent normal pro-p groups to the encompassing
compact p-adic analytic group. Both steps are described in detail in [11].

Even though the situation for the first step is backed-up by strong theoretical results,
the actual computation of the involved p-adic integrals is highly complicated. Here we
restrict ourselves to the computation of representation zeta functions of uniformly potent
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pro-p groups and ignore the second step that one can take additionally.
As we mention above, a key ingredient in this context is the Lie correspondence between

the groups involved and certain O-Lie lattices. Let O be a compact discrete valuation ring of
characteristic 0 and residue characteristic p, with uniformiser π. Put p = πO, denote by q

the cardinality of the residue field κ = O /p, and let K be the field of fractions of O, which
constitutes a finite extension of Qp. Let g be a Zp-Lie lattice, i.e. a Lie ring over Zp that
is also a free Zp-module of finite rank. A Zp-Lie lattice g is called potent if γp−1(g) ⊆ p g

for p > 2 and γ2(g) ⊆ 4 g for p = 2, as analogously defined for pro-p groups. For every
finite extension K of Qp and every maximal ideal p � O, we consider the O-Lie lattice
gp = g⊗Zp O. For m ∈ N, its principal congruence sublattices are gp,m = πm ·gp. The O-Lie
lattice gp,m is called potent if it is potent as a Zp-Lie lattice. The Hausdorff series defines a
group multiplication on gp,m so then we can define the group exp(gp,m). The Lie lattice gp,m

is potent for all sufficiently large integers m, so that Gp,m = exp(gp,m) is a uniformly potent
pro-p group. We call such positive integers m permissible for gp, cf. [11, Proposition 2.3].
If O is unramified over Zp and p > 2, every m ∈ N∗ is permissible for every O-Lie lattice gp,
and in the same way, if p = 2 every m � 2 is permissible, cf. [11, Section 2.1].

Our main result concerns the representation zeta function of the semi-direct product of
a suitable subgroup H of the first principal congruence subgroup SL1

2(O) of SL2(O) acting
continuously on an OH-module V ∼= On of finite O-rank. Due to the condition for potency,
we introduce the symbol p, signifying p in the odd and 4 in the even case. More precisely,
we prove the following.

Theorem 2.1.1. Let O be a compact discrete valuation ring of characteristic 0 and residue
characteristic p. Let H be a potent subgroup of SL1

2(O), let V be an OH-module of finite
O-rank n, and let σ : H → GLm

n (O) be a faithful finite-dimensional O-representation of H
on V such that Hσ ∩GLm+1

n (O) ≤ (Hσ)p, for a permissible m. Assume furthermore that
the semi-direct product G = H �σ V is FAb. Then

ζG(s) = ζH(s) · ζGH(s− 1),

where ζGH(s) is the zeta function associated to the representation IndGH(�).

In the product, the factor ζGH(s), which is the zeta function associated to the repre-
sentation of G induced from the trivial representation of H, is a kind of zeta function
which was recently introduced and studied in detail by Kionke and Klopsch in [70]. This
kind of zeta function is a generalisation of the representation zeta function related to
a group, see Section 2.2.2 for more details. In the special case of H = SLm

2 (O), for a
permissible m, the specific function appearing as a factor above may be seen as the zeta
function associated to the action of SLm

2 (O) on the cosets of SLm
2 (O) in SLm

2 (O) � V , in
natural correspondence to V . However, the decomposition of the zeta function as such a
product cannot be expected in a more general setting: we give an example of a potent
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pro-p group where the corresponding equation fails to hold, showing that this behaviour is
not universal, cf. Example 2.4.2.

To obtain Theorem 2.1.1, we use the following description of the representation zeta
function of all potent subgroups of SL1

2(O). Consider a potent pro-p-subgroup Hof SL1
2(O),

and let K be a open potent pro-p subgroup of H. Then

ζK(s) = |H : K| · ζH(s).

In fact, we investigate a more general situation in Theorem 2.3.1, using a ‘weak’ analogue
of Lie algebra isomorphisms. It is unclear how to characterise subgroups fulfilling similar
equations – i.e. with ‘asymptotically the same representation theory’ meaning that the zeta
functions differ only by a constant factor – in general. We present a class of subgroups
of SL3(O) of the desired kind in Proposition 2.3.3.

Building on the aforementioned results, we explicitly compute the representation zeta
functions of various semi-direct products, which we present in the following.

Theorem 2.1.2. Let O be a compact discrete valuation ring of characteristic 0, residue
characteristic an odd prime p, and residue field cardinality q. Then in the different settings
described below the following hold.

(a) Let Hm
n = SLm

n (O) with permissible m ∈ N∗ and n ∈ N�2, and consider
Gm

n = Hm
n � O2, where the semidirect product is formed with respect to the nat-

ural action. Then

ζ
Gm

n
Hm

n
(s) = qmn (1− q−n(1+s))

(1− q−ns)
.

In particular, for n = 2 we obtain

ζGm
2
(s) = ζHm

2
(s)ζ

Gm
2

Hm
2
(s− 1) = q5m

(1− q−2s)(1− q−2−s)
(1− q1−s)2(1 + q1−s)

.

(b) For simplicity, only in this case, let O be an unramified extension of Zp and let p � 7.
For k ∈ N�1, consider Gk of the form Hk � O2, where

Hk =

{(
a b

c d

)
∈ SL1

2(O) | a ≡ d ≡ 1 mod pk, c ≡ 0 mod pk

}
.

Then

ζGk
Hk

(s) = q2+ks (1− q−1−s)(1− q−s − q−1−2s + q−1−(k+1)s)

(1− q−s)2(1 + q−s)
,

and we have

ζGk
(s) = q5+ks (1− q−2−s)(1− q−s)(1− q1−s − q1−2s + qk−(k+1)s)

(1− q1−s)3(1 + q1−s)
.

(c) For Gm
n = SLm

2 (O)� O2n with n ∈ N∗ and permissible m ∈ N∗, where we regard O2
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as the natural module and consider the diagonal action of SLm
2 (O) on O2n ∼=⊕n

i=1 O
2,

we have

ζGm
n
(s) = q2nm−1

(1− q−s)(1 + q − (qn−1 − 1)q2−2s − qn+2−3s − qn+2−4s)
(1− q(n+1)−2s)(1− q2n−3s)

ζSLm
2 (O).

In particular, depending on the value of n, the abscissa of convergence may be de-
termined by either of the two uniformly varying factors in the denominator, i.e. for
n � 3 the abscissa of convergence is α(Gm

n ) = n+1
2 , and for n � 3 the abscissa of

convergence is α(Gm
n ) = 2n

3 .
(d) For Gm

n = SLm
2 (O)� (Sym2(O2))n and Hm = SLm

2 (O) with permissible m ∈ N∗ and
n ∈ N�2, we have

ζ
Gm

n
Hm(s) = q3nm−1(1−q−s)(1−q−1−s)

(q−s + qn−2s + (1 + q−s)q + (1 + q−s)qn−1−2s)
(1− qn−2s)(1− q3(n−1)−3s)

.

(e) For Gm = SLm
2 (Z2) � Sym2(Z2

2) and Hm = SLm
2 (Z2) with permissible m ∈ N∗, we

have

ζG
m

Hm(s− 1) = 23m+1 (1− 2−s)(23−s + (1− 2−s))
1− 23−s

.

We prove this result in Section 2.4. These are the first examples of representation zeta
functions of non-semisimple compact p-adic analytic groups.

2.2 Preliminaries

2.2.1 Tensor products, induced representations, inflations, and exten-
sions

Denote by Irr(G) the set of (isomorphism classes of) finite dimensional irreducible complex
representations σ : G→ GL(W ) of a group G, for short (σ,W ). In the following all groups
considered are profinite, and all representations are continuous. In this situation every
representation decomposes as a direct sum of irreducible representations, and all irreducible
representations factor through a finite quotient of G, cf. Section 0.4.

A representation (σ,W ) is smooth if the map G×W → W is continuous when W is
equipped with the discrete topology and G is equipped with its natural topology. It is a well
known fact that for a profinite group G every smooth representation decomposed as a direct
sum of smooth irreducible constituents and that the smooth irreducible representations
of G are precisely the finite dimensional irreducible continuous representations of G, see for
example [70, Lemma 2.1] and the references therein.

Given two representations (σ,W ) and (ϕ,U) of G, their tensor product (σ⊗ϕ,W ⊗CU)

is the unique representation of G on W ⊗C U satisfying

(σ ⊗ ϕ)(g).(w ⊗ u) = σ(g).w ⊗ ϕ(g).u for g ∈ G,w ∈W,u ∈ U.
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For a profinite group G, let C∞(G,W ) be the space of all continuous functions from G

to a C-vector space W equipped with the discrete topology. Given a closed subgroup H of a
profinite group G and a representation (σ,W ) of H , we define a representation � = IndGH(σ)

of G on
Uσ = {f ∈ C∞(G,W ) | ∀h ∈ H ∀x ∈ G : f(hx) = σ(h).f(x)}

via right translation

(�(g).f)(x) = (gf)(x) = f(xg) for g, x ∈ G, f ∈ Uσ.

The representation � is called the representation induced by σ. Following Kionke and
Klopsch [70, Section 2.3] we call the representation ‘induced’ rather than ‘co-induced’,
which is the terminology of Serre in [114, Section I 2.5].

There is a one-to-one correspondence between the isomorphism classes of smooth
irreducible representations of a profinite group G and its irreducible complex characters. If H
is open in G, and χσ is the character associated to a finite dimensional representation (σ,W )

of H, the character corresponding to the induced representation can be expressed as the
function

IndGH(χσ) : γ �→
∑

x∈G/H
γx∈H

χσ(γ
x), for γ ∈ G.

Given a group G, an (arbitrary) homomorphism ϕ : G→ H and a representation σ of H
we define the inflation of σ along ϕ by InfG,ϕ

H (σ) = ϕσ. If ϕ is implicit or its choice clear
from the context, we will drop it from the superscript.

Lastly, given a closed subgroup H of G and a representation σ of H, we say that σ is
extendable if there exists a representation σ̃ of G such that σ̃|H equals σ.

2.2.2 Integral formalism for potent pro-p groups

A smooth representation σ of a profinite group G is called strongly admissible, if its
decomposition into irreducible subrepresentations,

σ =
⊕

ϕ∈Irr(G)

m(σ, ϕ)ϕ,

is such that there are only finitely many constituents (counted with multiplicity) of every
dimension, i.e. that the multipliers m(σ, ϕ) ∈ N in the formula above fulfil∑

ϕ∈Irr(G)
dim(ϕ)=d

m(σ, ϕ) ∈ N

98



l

for all d ∈ N∗. Given a strongly admissible representation σ of G, one forms the formal
Dirichlet series

ζσ(s) =
∑

ϕ∈Irr(G)

m(σ, ϕ) dim(ϕ)−s,

called the zeta function associated to σ. If ρ = IndG1 (�) is the regular representation of a
group G, i.e. the (right) translation action of G on the space of continuous functions G→ C,
then every irreducible representation ϕ of G appears with multiplicity m(ρ, ϕ) = dim(ϕ).
If G is rigid then the regular representation is strongly admissible and we have the formal
identity

ζρ(s) =
∑

ϕ∈Irr(G)

dim(ϕ)1−s = ζG(s− 1), (2.2.1)

as noted in [70, Example 2.5]. In this way, the zeta functions of strongly admissible
representations generalise the representation zeta functions of groups.

Assume that G is finitely generated and let H be a closed subgroup of G. Then,
according to [70, Theorem A], the representation IndGH(�H) is strongly admissible if and
only if the group G is FAb relative to H, i.e. if the quotient K/(H ∩K)[K,K] is finite for
every open subgroup K of G.

Since we are only concerned with representations of the form IndGH(�H) for H ≤c G,
we simplify our notation. We call this function the relative zeta function of G with respect
to H and denote it by ζGH(s).

Recall that for any odd prime p, a pro-p group G is called potent if γp−1(G) ⊆ Gp,
where γk(G) denotes the kth term of the lower central series of G and Gk the subgroup
generated by kth powers, for k ∈ N, and for p = 2, we instead demand that [G,G] ≤ G4. If
the pro-p group G is potent, finitely generated, and torsion-free, we call it uniformly potent.
Every uniformly potent group is a saturable group in the sense of Lazard, see [40,73,78].
González-Sánchez [40] gave a characterization of saturable groups in terms of potent filtra-
tions. For a saturable pro-p group G, one associates a saturable Zp-Lie lattice g = log(G),
which coincides with G as a topological space. There exists a precise Lie correspondence
between G and g; see [43]. Recall that a Zp-Lie lattice is a Lie ring over Zp that is also a free
module of finite rank over Zp. As a consequence of the characterization of González-Sánchez,
uniformly powerful pro-p groups and, more generally, torsion free finitely generated pro-p
groups G with γp(G) ⊆ Φ(G)p are saturable, where Φ(G) denotes the Frattini subgroup
of G, cf. [40, Corollary 5.4].

Furthermore, recall that a Zp-Lie lattice g is potent if γp−1(g) ⊆ p g for p > 2 and
γ2(g) ⊆ 4 g for p = 2. If G is a saturable pro-p group and g the associated Zp-Lie lattice,
then G is potent if and only if g is potent. We remak that every saturable pro-p group of
dimension less than p is potent, cf. [43]. Moreover, Klopsch proved that every insoluble
maximal p-adic analytic just-infinite pro-p group of dimension less than p− 1 is saturable,
see [73].

Recall also that O is a compact discrete valuation ring of characteristic 0 and residue
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characteristic p, with uniformiser π. The valuation ideal of O is p = πO, q denotes the
cardinality of the residue field κ = O /p, and K the field of fractions of O, which constitutes
a finite extension of Qp.

For a finite extension K of Qp with ring of integers O, recall the definition of the O-Lie
lattice gp as the tensor product g⊗Zp O. This Lie lattice gp is potent as a Zp-Lie lattice if
the original Zp-Lie lattice g is potent.

Using the Lie lattices associated to a uniformly potent group G and a closed potent
subgroup H , one can apply the Kirillov orbit method to describe the irreducible representa-
tions of G. This is done by considering the orbits under the co-adjoint action of G on the
Pontryagin dual of the Zp-Lie lattice log(G), with some additional measures necessary to
address the case of the even prime. For a detailed explanation, see [70, Section 4].

To state the p-adic integral that results from this description, we need some further
notation. Assume that the potent O-Lie lattice h is a direct summand of an O-Lie lattice g.
We choose an O-basis Y of h and extend this basis to X∪Y, an O-basis of g. The commutator
matrix of g with respect to X ∪ Y is the skew-symmetric dim(g)-by-dim(g) matrix with
entries in g given by

Com(g,X ∪Y) =
(
[b, b′]
)
(b,b′)∈(X∪Y)2

.

Let w : g → K be an O-linear functional. Write Com(g,X ∪ Y)w for the entry-wise
application of w. This results in a skew-symmetric matrix with entries in K.

For a commutative ring R, recall that the determinant of every skew-symmetric ma-
trix T = (ti,j)1≤i,j≤n ∈ Matn×n(R) is the square (as a polynomial) of the Pfaffian deter-
minant, which must necessarily be trivial in case n is odd, and which, for even numbers
n = 2k, is defined by

pf(T ) =
1

2kk!

∑
σ∈Sym(n)

sgn(σ)
k∏

l=1

t(2l−1)σ,(2l)σ.

A Pfaffian minor of a skew-symmetric matrix T is the Pfaffian determinant of a principal
submatrix given by the rows and columns with index in some fixed subset of [n] of even
cardinality.

We write Pfaff(T ) for the set of all Pfaffian minors of a skew-symmetric matrix T .
Finally, let | · |p be the norm with respect to the p-adic valuation and for a subset S ⊆ K,
define

‖S‖p = max{|s|p | s ∈ S}.
Theorem 2.2.1. [70, Propsition C and Proposition 4.6] Let O be a compact discrete
valuation ring of characteristic 0, residue characteristic p, and residue field cardinality q.
Let p be the valuation ideal, π an uniformiser so that p = πO, and K the field of fractions
of O. Let g be an O-Lie lattice and let m ∈ N be such that G = exp(πmg) is a uniformly potent
pro-p group. Let h be direct summand of the O-Lie lattice which corresponds to the potent
subgroup H = exp(πmh) �c G such that G is FAb relative to H. Write d = dimO g−dimO h.

100



l

Let Y be a basis of h and X ∪Y an O-basis of g. Let KX∗ be the subspace spanned by the
part X∗ of the dual basis of X∪Y belonging to X in the dual space g∗ = HomO(g,K). Then

ζGH(s) = qmd

∫
KX∗

‖Pfaff(Com(g,X ∪Y)w)‖−1−sp dμ(w),

where μ denotes the Haar measure of KX∗ satisfying μ(KX∗ ∩HomO(g,O)) = 1.

As noted in (2.2.1), we have the identity ζG(s) = ζG1 (s + 1), hence one obtains a
corresponding integral formula for the representation zeta function of G, made explicit in
the following corollary.

Corollary 2.2.2. Let G be a uniformly potent FAb pro-p group of dimension d and let X
be a basis of the associated Zp-Lie lattice g. Then

ζG(s) =

∫
g∗
‖Pfaff(Com(g,X)w)‖−2−sp dμ(w),

where g∗ = HomO(g,K) is the dual space of g and μ denotes the Haar measure of g∗,
satisfying μ(HomO(g,O)) = 1.

2.2.3 Representation theory of semi-direct products

We make the following standing assumptions for the remainder of this section. Let G be a
compact topological group and H a closed subgroup such that G decomposes (continuously)
as the semi-direct product G = H � V , where V is an abelian closed normal subgroup of G.
We describe the irreducible (continuous) representations of G in terms of those of H , using
the classic description by Mackey [90] for semi-direct products, cf. Section 0.4.1.

Given a subgroup Δ of Γ and a representation σ of Γ, we say that σ is extendable if
there exists a representation σ̃ of Γ such that σ̃|Δ = σ. In general, such extensions may not
exist; however, for a pair (G, V ) as described above, a representation σ ∈ Irr(V ) can always
be extended to the group Hσ = StabH(σ)� V , where H acts on Irr(V ) by σh(v) = σ(vh

−1
)

for all v ∈ V , h ∈ H, and StabH(σ) is the stabilizer of σ in H. Set

ExtHσ
V (σ)(hv) = σ(v)

for all h ∈ StabH(σ). In fact,

ExtHσ
V (σ)(hvh′v′) = σ(vh

′
v′) = σ(v)σ(v′) = ExtHσ

V (σ)(hv) ExtHσ
V (σ)(h′v′),

so ExtHσ
V (σ)(hv) defines a representation of Hσ = StabH(σ)� V .

Using this terminology, we may describe the structural form of irreducible representations
of G, cf. [113, Proposition 25].
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Proposition 2.2.3. Let G be the semi-direct product H�V . Let X be a set of representatives
of the orbits of the action of H on Irr(V ). Assume that all stabilizers of characters in X

are of finite index in H, and assume that the set X is countable. Since V is abelian, the
irreducible characters coincide with irreducible representations of V . For each character χ

of X, let Kχ be the stabiliser of χ in H. Then every irreducible representation of G is of
the form

IndGKχ�V

(
Inf

Kχ�V
Kχ

(τ)⊗ Ext
Kχ�V
V (χ)

)
, (†)

for some χ ∈ X, and τ ∈ Irr(Kχ). Two representations of this form are equivalent only if
they are given by the same pair (χ, τ).

For compact groups, one may define a generalisation of the usual inner product on the
set of irreducible characters for finite groups, by setting

〈χ, θ〉G =

∫
G
χ(g)θ(g)dμ(g), for χ, θ ∈ Irr(G),

where μ denotes the normalised (left-)Haar measure of G, compare with Section 0.2.1 and
Section 0.5. As in the setting of finite groups, it is still true that, given an irreducible
component θ of χ, the value of 〈χ, θ〉G equals the multiplicity of θ appearing in the
decomposition of χ. For us, the following equality will be of use.

Proposition 2.2.4. In the set-up of the previous proposition, let χ ∈ X, Kχ be the stabilizer
of χ in H, and τ be an irreducible representation of Kχ. Denote by θτ the character associ-
ated to τ and by θτ,χ the character associated to the representation Inf

Kχ�V
Kχ

(τ)⊗Ext
Kχ�V
V (χ)

of Kχ � V . Then we have

〈IndGKχ�V (θτ,χ), Ind
G
H(�H)〉G = 〈IndHKχ

(θτ ),�H〉H .

Proof. Let RKχ be the set of representatives of cosets of Kχ in H. The set RKχ may be
viewed also as the set of representatives of Kχ � V in G. Then for x ∈ RKχ and h ∈ H,
the element hx is contained in Kχ � V precisely when it is contained in Kχ. Since H is
closed, by [35, Theorem 6.10], Frobenius reciprocity yields

〈IndGKχ�V (θτ,χ), Ind
G
H(�H)〉G

= 〈ResGH IndGKχ�V (θτ,χ),�H〉H
=

∫
H

∑
x∈RKχ

(h)x∈Kχ�V

θτ,χ(h
x)dμ(h)

=

∫
H

∑
x∈RKχ

hx∈Kχ

θτ (h
x) · χ(1)dμ(h)

=

∫
H
IndHKχ

(θτ )(h) · �H(h) dμ(h)
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= 〈IndHKχ
(θτ ),�H〉H .

2.3 Zeta functions of subgroups and semi-direct products

2.3.1 A condition for subgroups to be thetyspectral

Let G be a uniformly potent pro-p group. Assume that we understand its representation
zeta function – what can we deduce about the representation zeta function of an open potent
subgroup H? Are there circumstances where G essentially dictates the representation zeta
function of H in terms of its own zeta function? One such case is well-known. Given a
uniformly potent pro-p, the subgroup Gpk generated by the (pk)th powers of G (which is
indeed equal to the set of these powers) gives rise to the same representation zeta function
as the full group G does, up to a constant factor, see [42, Proposition 6]. We call two
groups with this property thetyspectral and two groups with identical representation zeta
functions isospectral.

Let O be a compact discrete valuation ring of characteristic 0 and residue characteristic p,
with uniformiser π. The valuation ideal is p = πO. Denote by q the cardinality of the
residue field κ = O /p, and let K be the field of fractions of O, which constitutes a finite
extension of Qp.

Let g be a potent and saturable O-Lie lattice and let h be a open potent and saturable
O-Lie sublattice of g. Assume that G = exp(g) is a uniformly potent pro-p group (otherwise
choose a permissible m and work instead with πmg) Using the Lazard correspondence,
H = exp(h) is an open uniformly potent subgroup of G. The Lie lattices h and g considered
as Zp-Lie lattices are the Lie lattices associated to H and G. Since the sets underlying
the Lie lattices are equal to the sets underlying the groups and there is a correspondence
between subgroups and Lie sublattices of saturable pro-p groups, see [73, Theorem 1.4], the
index of h in g is the index of H in G. This index is a finite number, hence h has the same
O-dimension as g. Thus, since g is torsion-free, there exists a homomorphism ξ : g→ h of O-
modules, that does (in general) not preserve the Lie bracket. This homomorphism naturally
extends to a K-isomorphism between gK = g⊗OK and hK = h⊗OK. Of course, gK ∼= hK ,
and, for the same reason, g∗ ∼= h∗, where g∗ = HomO(g,K) and h∗ = HomO(h,K).

Let X be a basis for g. If ξ is indeed an isomorphism of Lie lattices, we have

Pfaff(([xi, xj ]w)(xi,xj)∈X×X) = Pfaff(([(xi)ξ, (xj)ξ]ξ
−1w)(xi,xj)∈X×X)

and thus, as seen directly from the integral formulation of Corollary 2.2.2, G and H are
isospectral. However, a weaker condition is sufficient to establish thetyspectrality.

Theorem 2.3.1. Let O be a compact discrete valuation ring of characteristic 0 and with
residue characteristic p. Denote the maximal ideal of O by p and let K be the field of
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fractions of O. Let g be a potent and saturable O-Lie lattice such that g as Zp-Lie lattice is
FAb. Let h be a open potent and saturable O-Lie sublattice of g and write gK = g ⊗O K

and hK = h⊗O K. Assume that G = exp(g) is a uniformly potent pro-p group and consider
H = exp(h), an open uniformely potent subgroup of G. Let β : gK ∧ gK → gK be the linear
map induced by the Lie bracket of g, and let ξ : g→ h be an O-linear isomorphism, which
extends to ξ : gK → hK

If there exists a K-linear map ψ : gK → hK such that

(ξ ∧ ξ)β = βψ,

then G and H are thetyspectral with factor | det(ψξ−1)|−1p .

Proof. We use the integral formalism introduced earlier. Put d = dimO(g), let X be a
O-basis for g and let ϕ be the isomorphism from Kd to g mapping the standard basis B

of Kd to X. Of course, (X)ξ = (B)ϕξ is an O-basis for h, and we may write

ζH(s) =

∫
(Kd)∗

‖Pfaff (([(b)ϕξ, (b′)ϕξ](ϕξ)−1w)(b,b′)∈B×B)‖−2−sp dμ(w)

=

∫
(Kd)∗

‖Pfaff (((b)ϕ ∧ (b′)ϕ)βψξ−1ϕ−1w)(b,b′)∈B×B
)‖−2−sp dμ(w)

= | det((ψξ−1)∗)|−1p

∫
((ψξ−1)ϕ)∗(Kd)∗

‖Pfaff ([(b)ϕ, (b′)ϕ]ϕ−1w)
(b,b′)∈B2)‖−2−sp dμ(w),

where the last step is a simple change of variables induced by the K-linear map
(ϕ(ψξ−1)ϕ−1)∗, and μ is the normalized Haar measure such that μ((Od)∗) = 1. One
easily verifies that ((ϕ(ψξ−1)ϕ−1)∗(Kd)∗ = (Kd)∗ and

det((ϕ(ψξ−1)ϕ−1)∗) = det((ψξ−1)∗) = det(ψξ−1).

Using ϕ, we have an isomorphism between (Kd)∗ and g∗ and so, comparing the last integral
with the one describing ζG(s) from Corollary 2.2.2, we have then proven the theorem.

We mainly apply the above theorem to the mth principal congruence subgroup of SL2(O),
where m is permissible for sl2(O). Recall that the mth principal congruence subgroup
of SL2(O) is given by

ker(SL2(O)→ SL2(O /pm O)), (2.3.1)

and, more generally, the mth principal congruence subgroup of SLn(O) is given by

ker(SLn(O)→ SLn(O /pm O)). (2.3.2)

For n = 2, the groups are special since their Lie lattices have dimension three, whence
the linear map β induced by the Lie bracket is a linear map between spaces of the same
dimension. This is exploited in the following result.
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Corollary 2.3.2. Let Gm = SLm
2 (O) be the mth principal congruence subgroup

where m ∈ N∗ is permissible for sl2(O). Let H be an open potent subgroup of Gm. Then

ζH(s) = |Gm : H| · ζGm(s).

Proof. Using the notation of Theorem 2.3.1, the O-Lie lattice corresponding to Gm is
gm = πm · sl2(O). Let gmK = gm ⊗O K be the associated K-Lie algebra. Since the linear
map β : gmK ∧ gmK → gmK induced by the Lie bracket is non degenerate, the image of gm ∧ gm

is of finite index in gm. Crucially, since dimO(g
m) = 3, the dimension of the exterior

square gm ∧ gm is also 3. Thus as a K-linear map, β is invertible. Let h be a potent O-Lie
sublattice of gm, hK = h⊗O K the K-Lie algebra, H = exp(h) an open potent subgroup
of Gm, ξ : gm → h an isomorphism of O-modules, and ξ : gmK → hK its extension. Clearly
the K-linear map ψ : gmK → hK defined by

ψ = β−1(ξ ∧ ξ)β

meets the conditions of Theorem 2.3.1. Its determinant satisfies

det(ψ) = det(β−1) det(ξ ∧ ξ) det(β) = det(ξ ∧ ξ) = det(ξ)dimO(g)−1 = det(ξ)2,

thus the factor det(ψξ−1) is equal to det(ξ). Using Corollary 0.3.3, we have
| det(ξ)|−1p = |gm : h| = |Gm : H|.

Theorem 2.3.1 allows us to recover some known identities. Given an O-Lie lattice g such
that g⊗O K is perfect, and defining gm to be the O-Lie lattice πm · g, we choose m ∈ N

permissible, i.e. big enough so that gm is potent and saturable, cf. [11, Proposition 2.3].
Let d be the O-dimension of the Lie lattice g and let Gm = exp(gm) be the uniformly
potent pro-p group associated with gm. Consider an integer k ∈ N and the uniformly
potent subgroup Gm+k of Gm, i.e. by construction given by Gm+k = exp(πm+k · g). The
representation zeta function of the subgroup of Gm+k is equal to qdk · ζGm(s), where q is
the cardinality of the residue field κ = O / p, and so in particular, a power of p. A similar
behaviour was first described in [66] and then in [11, Proposition 3.1], and a variation of
this result [42, Proposition 6] was used to prove the main result in [42]. We can derive the
statement as follows. We consider the map ξ that is given by scalar multiplication by πk.
Thus

(v ∧ w)(ξ ∧ ξ)β = [πkv, πkw] = π2k[v, w] = (v, w)βξ2, for v, w ∈ gm

i.e. we may choose ξ2 as our ψ. Clearly det(ψξ−1) = det(ξ) = πdk and | det(ξ)|−1p = qdk

and we recover the result mentioned above.
Furthermore, Theorem 2.3.1 can be used to compute the zeta functions of several

subgroups of the group Gm = SLm
3 (O), the mth principal congruence subgroup of SL3(O)

with m permissible for sl3(O), cf. [11, Proposition 2.3], where g = sl3(O) denotes the O-Lie
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lattice of 3 × 3-matrices with trace zero. The ring O is the ring of integers of a finite
extension K of Qp, with maximal ideal p � O generated by an uniformiser π. Put gm = πmg,
so then Gm = exp(gm). For i, j ∈ {1, 2, 3}, let Em

i,j be the 3× 3-matrix with entry πm at
position (i, j) and zero otherwise. We choose X = {h12, h23, e12, e13, e23, f21, f31, f32} as an
O-basis for gm, where

h12 = Em
1,1 − Em

2,2, e12 = Em
1,2, f21 = Em

2,1,

h23 = Em
2,2 − Em

3,3, e13 = Em
1,3, f31 = Em

3,1,

e23 = Em
2,3, f32 = Em

3,2.

In this case gm, regarded as a Zp-Lie lattice, is the lattice associated to Gm. Let h be
a potent O-sublattice of gm. Put H = exp(h) and note that it is an open uniformly
potent subgroup of Gm. Consider the O-linear isomorphism ξ : gm → h. We restrict to
sublattices h that arise from maps ξ which may be represented by a diagonal matrix of the
form diag(πk1 , . . . , πk8) with respect to the O-basis X of gm, for some k1, . . . , k8 ∈ N. It
is easy to see that ξ ∧ ξ may be represented by diag(πk1+k2 , πk1+k3 , . . . , πk7+k8) using the
standard ordering for the basis induced by X on the exterior square. Comparing the matrix
representation of the bracket β and the disturbed (ξ ∧ ξ)β, we find

[(e12)ξ, (f21)ξ] = πk3+k6+mh12 = (πmh12)ψ = ([e12, f21])ψ,

and similarly

(πmh23)ψ = πk5+k8+mh23, (πme12)ψ = πk1+k3+me12, (πme13)ψ = πk1+k4+me13,

(πme23)ψ = πk1+k5+me23, (πmf21)ψ = πk1+k6+mf21, (πmf31)ψ = πk1+k7+mf31,

(πmf32)ψ = πk1+k8+mf32

as necessary conditions for ψ, using the first occurrences of each variable in the commutator
matrix. But every variable appears twice or thrice, thus we find the conditions

k3 + k6 = k4 + k7 = k5 + k8, k1 + k3 = k2 + k3 = k4 + k8,

k1 + k4 = k2 + k4 = k3 + k5, k1 + k5 = k2 + k5 = k4 + k6,

k1 + k6 = k2 + k6 = k5 + k7, k1 + k7 = k2 + k7 = k6 + k8,

k1 + k8 = k2 + k8 = k3 + k7.

A minimal equivalent set of equations is given by

k1 = k2 = k6 − k7 + k8, k3 = k6 − 2k7 + 2k8,

k4 = 2k6 − 3k7 + 2k8, k5 = 2k6 − 2k7 + k8.
(2.3.3)

Considering the above, we have proven the following statement.
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Proposition 2.3.3. Let p be an odd prime and let O be a compact discrete valuation ring
of characteristic 0 with residue field cardinality q, a power of p, valuation ideal p, and choose
an uniformiser π. Put Gm = SLm

3 (O) for permissible m ∈ N, as above, and let H be the
subgroup of Gm corresponding to a potent and saturable O-Lie sublattice generated by

πk1h12, π
k2h23, π

k3e12, π
k4e13, π

k5e23, π
k6f21, π

k7f31, π
k8f32

for some positive integers ki ∈ N for i ∈ {1, . . . , 8}, necessarily adhering to the condi-
tions (2.3.3) and m permissible for sl3(O). Then H is thetyspectral in Gm with factor
|∏8

i=1 π
ki |−1p = q

∑8
i=1 ki = |Gm : H|.

Note that all subgroups arising in this way – i.e. that are subject to the conditions
above – are of index qdimO SL3(O)n in SL1

3(O), for some positive integer n ∈ N∗. Of course,
the proposition above only deals with a very special case. It is an interesting question
which open uniformly potent subgroups of SL1

3(O) are thetyspectral and which factors may
appear aside from 1 and the index of the subgroup. Furthermore, it seems likely that there
are many non-thetyspectral subgroups of SL1

3(O), but no concrete examples are known at a
present state.

2.3.2 Semi-direct products and potency

Lemma 2.3.4. Let H be a uniformly potent pro-p group, and let σ : H → GLm
n (O) be

a finite-dimensional O-representation of H with image in the mth congruence subgroup,
where m is permissible for gln(O), which is the O-Lie lattice of n× n-matrices. Then the
semi-direct product G = H �σ πm On is a uniformly potent pro-p group.

Proof. The semi-direct product G is clearly torsion-free and finitely generated. We have
to prove that γp−1(G) ⊆ Gp for odd primes p and that [G,G] ⊆ G4 in case p = 2. In
the odd case, the (p − 1)st term of the lower central series is generated by γp−1(H) and
[πm On, H, . . . ,H], since [πm On, H] ⊆ πm On, an abelian group; in case p = 2 the same
holds for [H,H] and [πm On, H]. The inclusion γp−1(H) ⊆ Hp ⊆ (H � πm On)p = Gp

(respectively [H,H] ⊆ G4) follows since H is potent. Let h ∈ H and v ∈ πm On. Then

[v, h] = v−1vh = v(h)σ−Idn×n .

But our assumption that (h)σ is contained in GLm
n (O) implies that (h)(σ − Idn×n) = πmg

for some g ∈ Matn(O), hence [v, h] = πmvg ∈ π2m On. The subgroup of pth powers is a
normal subgroup, hence [πm On, H, . . . , H] ⊆ π2m On ⊆ (H � πm On)p ⊆ Gp.

Lemma 2.3.5. Let G be uniformly potent pro-p group. Let H and K ≤ G be two closed
potent subgroups. Then H ∩K is potent.

Proof. Write g for the Zp-Lie lattice log(G). Since H and K are potent, they correspond to
potent Zp-Lie sublattices h and k. It is enough to prove that the intersection h∩ k is potent;
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if it is, it corresponds to a potent subgroup of G, which is necessarily equal to H ∩K, since
the underlying sets of the Lie lattices and groups are the same. But this follows from

γp−1(h ∩ k) ⊆ γp−1(h) ∩ γp−1(k) ⊆ ph ∩ pk = p(h ∩ k),

in case of an odd prime, and similarly in the case p = 2.

Lemma 2.3.6. Let G be a finitely generated torsion-free pro-p group, and let
σ : G → GLm

n (O) be a faithful finite-dimensional O-representation of G such that
Gσ ∩GLm+1

n (O) ≤ (Gσ)p, for a permissible m. Let χ be a (continuous) irreducible repre-
sentation of πm On. Then the stabiliser StabG(χ) with respect to the action induced by σ is
an open potent subgroup of the uniformly potent group G.

Proof. Without loss of generality, we identify G and its image under σ. Looking at the
inclusion

[G,G] = [G ∩GLm
n (O), G ∩GLm

n (O)] ≤ G ∩GLm+1
n (O) ≤ Gp,

we see that G is potent. Since χ is continuous, it factors over some finite-index subgroup
of πm On; hence its kernel contains a subgroup of the form πk+m On for some k ∈ N.
If g ∈ G ∩ GLk+m

n (O), then g stabilises χ, since χ cannot detect the action of g on its
argument. Hence Gk = G ∩GLk+m

n (O) ≤ StabG(χ).
If k = 0, the representation is trivial and the statement follows immediately. If k = 1,

since G is contained in GLm
n (O), the full (potent) group stabilises χ. Thus, assume k > 1.

Since χ factors over πk+m On, it induces a representation of On /πk+m On; which can be
described by an element x ∈ (On /πk+m On)∗ of the dual. The stabiliser of χ fits into the
exact sequence

{1} → Gk → StabG(χ)→ StabG/Gk
(x)→ {1}.

Every orbit of πm On under the action of the group GLn(O) contains an element
of the form (πj+m, 0, . . . , 0) for some j ∈ N. Thus, under conjugation by an
appropriate element of GLn(O), we may assume that x is of this form. It is
easy to see that its stabiliser is the intersection of G/Gk with the general affine
group GAn(O /πk+m O) ∼= GLn−1(O /πk+m O) � πm(O /πk+m O)n−1. Lifting to G, we
find that every element of G is (non-uniquely) a product of an element of Gk and an element
of G ∩ GAn(O). Since GAn(O) ∼= GLn−1(O) � πm On−1, both Gk and G ∩ GAn(O) are
potent groups by Lemma 2.3.4 and Lemma 2.3.5.

As a consequence of our assumption, the intersection Gk = G ∩GLk+m
n (O) is contained

in the subgroup of pth powers of G. Moreover, using that G = Gk ·G ∩GAn(O), we have
that γp−1(G) = [G, . . . , G] ⊆ Gk · γp−1(G ∩GAn(O)) ⊆ Gp. Furthermore,

[G,G] ⊆ [G ∩GAn(O), G ∩GAn(O)] · [G ∩GAn(O), Gk] · [Gk, Gk].

Thus, all together, we find [G∩GAn(O), Gk] ≤ Gp. Since G∩GAn(O) is potent, we deduce
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that StabG(χ) is potent.

The assumptions for the last lemma seem rather technical. It would be interesting to
describe all actions such that the point stabilisers are potent. However, Lemma 2.3.6 is
strong enough to establish that the point stabilisers of irreducible representations under
the action induced by

(1) the natural action of SLm
n (O) or GLm

n (O), for n,m ∈ N with permissible m,
(2) the symmetric square of the natural action of SLm

2 (O), and
(3) the direct sums of representations

fulfil the assumptions.
We are now able to prove our main result.

Theorem 2.3.7. Let O be a compact discrete valuation ring of characteristic 0 and residue
characteristic p, and let V = On be an O-lattice of rank n. Let H be a potent subgroup
of SL1

2(O), and let σ : H → GLm
n (O) be a faithful finite-dimensional O-representation of H

on V , such that Hσ ∩ GLm+1
n (O) ≤ (Hσ)p, for permissible m. Assume furthermore that

the semi-direct product G = H �σ V is FAb. Then

ζG(s) = ζH(s) · ζGH(s− 1),

where ζGH(s) is the zeta function associated to the representation IndGH(�).

Proof. Let X be a set of representatives of the H-orbits in Irr(V ). By Proposition 2.2.3,
all irreducible representations of G are parametrized by the representatives χ ∈ X and the
irreducible representations of each stabilizer Kχ for χ ∈ X, and are of the form

IndGKχ�V (Inf
Kχ�V
Kχ

(τ)⊗ Ext
Kχ�V
V (χ)).

The dimension of such a representation is given by the product |H : Kχ| · dim(τ). Thus

rn(G) =
∑

a,b∈N∗
ab=n

∑
χ∈X

|H:Kχ|=a

rb(Kχ).

By Lemma 2.3.6 the group Kχ is a uniformly potent pro-p group, hence Corollary 2.3.2
implies rb(Kχ) = |H : Kχ| · rb(H).

Now to every χ ∈ X we may associate the |H : Kχ|-dimensional representa-
tion IndGKχ�V (Ext

Kχ�V
V (χ)). In view of Proposition 2.2.4, these are precisely the

|H : Kχ|-dimensional irreducible constituents of IndGH(�H), hence

rn(G) =
∑

a,b∈N∗
ab=n

∑
χ∈X

|H:Kχ|=a

a · rb(H) =
∑

a,b∈N∗
ab=n

ra(G,H) · a · rb(H).
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We see that the numbers rn(G) result from the Dirichlet convolution of the arithmetic
sequences a · ra(G,H), with a ∈ N∗ and rb(H), with b ∈ N∗. The factor a corre-
sponds to a shift in the Dirichlet generating function of the sequence ra(G,H), i.e.∑

a∈N∗ ra(G,H) ·a ·a−s = ζGH(s−1). Since the generating function of a Dirichlet convolution
is the product of the corresponding generating functions, this concludes the proof.

2.4 Examples

In this section we prove Theorem 2.1.2. Each example proves a bullet point of the theorem.
With Theorem 2.1.1 established, we aim to compute the representation zeta functions of

semi-direct products with SLm
2 (O), for permissible m, contributing to the small but growing

library of examples. However, mirroring the difficulties of computing the zeta-functions
(or even the abscissae of convergence) of p-adic analytic groups of higher dimension, the
relative zeta-functions associated to high-dimensional modules of SLm

2 (O) correspond to
p-adic integrals that are cumbersome to compute. To reduce the complexity somewhat, we
restrict ourselves to odd primes, except in the last example.

We begin with some generalities. Using the terminology of Theorem 2.2.1, we find
that the Lie lattice v spanned by X, i.e. such that g = v⊕ h, corresponds to the abelian
subgroup V . Thus, the commutator matrix can be written as a block matrix of the form

Com(g,X ∪Y) =

(
0 A

−Aᵀ Com(h,Y)

)
,

where A is the matrix A = ([x, y])(x,y)∈X×Y. This simplifies the integral described in Corol-
lary 2.2.2. Recall that we integrate over the subspace W = KX∗ spanned by the part X∗

of a dual basis of g, associated to the basis X of v. Moreover, since h is a sublattice, the
entries of Com(h,Y) are elements of in h. Thus, given w ∈W , after entry-wise application
we find a matrix of the form (

0 Aw

−Aᵀw 0

)
.

We have to compute the Pfaffian minors of this matrix. Every principal submatrix is still
of the form

(
0 B

−Bᵀ 0

)
, for some submatrix B of Aw obtained by deleting rows and columns.

The determinant (and hence the Pfaffian determinant) is 0 if B is not a square matrix;
otherwise the determinant of such a matrix is equal to det(B)2, and its Pfaffian determinant
equals det(B). Thus, the set Pfaff(Com(g,X ∪ Y)w) is equal to the set Min(Aw) of all
minors of Aw. All in all, we find

ζGH(s) =

∫
v∗
‖Min(Aw)‖−1−sp dμ(w).

Example 2.4.1. For our first example, we aim to compute the representation zeta function
of the group Gm

2 = SLm
2 (O)� O2 for a suitable m ∈ N∗. The representation zeta function
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of SL2(O) was computed by Jaikin-Zapirain in [66] and the representation zeta functions
of its principal congruence subgroups SLm

2 (O), for permissible m ∈ N, were computed
by Avni, Klopsch, Onn, and Voll in [10]. Hence, using Theorem 2.1.1, it remains to
compute the relative zeta function ζ

Gm
2

SLm
2 (O)(s). Taking a step back, we even compute ζ

Gm
n

Hm
n
(s)

for Gm
n = SLm

n (O)�On and Hm
n = SLm

n (O) for all n � 2 and permissible m simultaneously.
Consider the special affine group G̃n = SLn(O)�On and the embedding into SLn+1(O).

We define the mth congruence subgroup of G̃n as the intersection of SLn(O)�On with the mth

congruence subgroup SLm
n+1(O) of SLn+1(O) defined in (2.3.2), i.e. the mth congruence

subgroup of G̃n equals G̃
m
n = SLm

n (O)�πm On = Hm
n �πm On. If m is permissible for sln(O),

i.e. the group SLm
n (O) = exp(πmsln(O)) is uniformly potent, then, by Lemma 2.3.4, also

the group G̃
m
n is uniformly potent. The group G̃

m
n is isomorphic to Gm

n , thus both groups
have the same representation zeta function.

For hmn = sln(π
m O) , let gmn = hmn ⊕ v be the Lie sublattice of sln+1(π

m O) consisting
of all matrices of the form (

sln(π
m O) πm On

0 0

)
.

Writing Em
i,j for the matrix with entry πm at position (i, j) and all other entries equal to 0,

we define umk = Em
k,n+1 for k ∈ [n], hml = (Em

l,l − Em
l+1,l+1), for l ∈ [n − 1], emi,j = Em

i,j , for
1 ≤ i < j ≤ n, and fm

s,t = Em
s,t, for 1 ≤ t < s ≤ n. Our choice of basis for gmn is given

by X ∪Y, where

X = {umk | k ∈ [n]} and

Y = {hml | l ∈ [n− 1]} ∪ {emi,j | 1 ≤ i < j ≤ n} ∪ {fm
s,t | 1 ≤ t < s ≤ n}.

Note that Y forms a basis for hmn . Moreover, by construction G̃
m
n = exp(gmn ). The

Lie lattice gmn , has O-dimension n2 + n− 1.

In order to simplify the notation we fix m and n, we write G = Gm
n and we drop the

upper notation m from the elements of the basis X ∪Y.
By the considerations above, we may restrict our attention to the partial commutator

matrix A = ([x, y])(x,y)∈X×Y. Note the following identities,

[hl, uk] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πm uk if k = l,

−πm uk if k = l + 1,

0 otherwise,

and

[ei,j , uk] =

⎧⎨⎩πm ui if k = j,

0 otherwise,
[fs,t, uk] =

⎧⎨⎩πm us if k = t,

0 otherwise,
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which yield the following description of A, in which the rows correspond to the ele-
ments u1, . . . , un in the given order, the columns of the matrix Ah correspond to h1, . . . , hn−1,
the columns of Aj correspond to e1,j , . . . , ej−1,j , fj+1,j , . . . , fn,j for j ∈ [n],

A = −πm
(
Ah A1 . . . An

)
with

Ah =

(
diag(u1, . . . , un−1)

0

)
−
(

0

diag(u2, . . . , un)

)
∈ Matn,n−1(v)

and Aj the (n×(n−1))-matrix with all zero entries except for the jth row, which corresponds
to the (n− 1)-ordered tuple of elements u1, . . . , un, excluding uj .

As an example, the matrix A for n = 4 is of the form

−πm

⎛⎜⎜⎜⎜⎝
u1 0 0 u2 u3 u4 0 0 0 0 0 0 0 0 0

−u2 u2 0 0 0 0 u1 u3 u4 0 0 0 0 0 0

0 −u3 u3 0 0 0 0 0 0 u1 u2 u4 0 0 0

0 0 −u4 0 0 0 0 0 0 0 0 0 u1 u2 u3

⎞⎟⎟⎟⎟⎠ .

We claim that all minors of A have determinant of the form ±πkm
∏k−1

i=0 uji for ji ∈ [n]

and k ∈ [n] or equal to 0. In particular, we can reach all the products with the same ui

for i ∈ [n]. The statement is easily true for k ∈ [n − 1] by looking at the part of the
matrix A corresponding to

(
A1 . . . An

)
. When the whole matrix A is considered, one

proves the claim by using an inductive argument and noticing that in every row of the
matrix A we have all the elements u1, . . . , un.

Now we may calculate

ζGH(s) =

∫
KX∗

‖Min(Aw)‖−1−sp dμ(w).

First notice that all u∗i ∈ X∗ appear with a factor πm in the integrand. Thus, by change of
variables u∗i �→ πmu∗i , we find

ζGH(s) = qmn

∫
KX∗

‖Min(π−mAw)‖−1−sp dμ(w)

= qmn

∫
KX∗

∥∥∥∥∥
{

l∏
k=0

(ujk)w | l, jk ∈ {0, . . . , n}, jk �= 0 for all k

}∥∥∥∥∥
−1−s

p

dμ(w).

Notice that, since the constant polynomial 1 is a minor of π−mAw, if w ∈ OX∗, the maximal
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valuation is achieved at |1|p = 1. Hence we write

ζGH(s) = qmn

∫
OX∗

1 dμ(w) + qmn

∫
KX∗	OX∗

‖Min(π−mwA)‖−1−sp dμ(w)

= qmn

(
1 +

∫
KX∗	OX∗

‖Min(π−mwA)‖−1−sp dμ(w)

)
.

We consider the following partition

KX∗ 	 OX∗ =
∞⋃
j=1

(π−j OX∗)	 (π1−j OX∗) (2.4.1)

into sets where the minimum of the valuations of the coordinates of the integral is constant
and equal to −j. Thus on each set the maximal possible norm is achieved at a power uni
for some i ∈ [n], and it is equal to qjn. Setting t = q−s, we calculate

ζGH(s) = qmn

⎛⎝1 + ∞∑
j=1

∫
(π−j OX∗)	(π1−j OX∗)

q−jntjndμ(w)

⎞⎠
= qmn

⎛⎝1 + ∞∑
j=1

(qjn − q(j−1)n)q−jntjn

⎞⎠
= qmn

⎛⎝1 + (1− q−n)
∞∑
j=1

tjn

⎞⎠
= qmn (1− q−ntn)

(1− tn)
.

Using [10, Theorem 1.2] for p odd, we have

ζSLm
2 (O)(s) = q3m

(1− q−2t)
(1− qt)

.

Consequently, the representation zeta function of G = SLm
2 (O)� O2, when G is potent, is

given by

ζG(s) = ζH(s)ζGH(s− 1) = q5m
(1− t2)(1− q−2t)
(1− qt)2(1 + qt)

.

In particular, the abscissa of convergence is α(G) = α(H) = 1.

Example 2.4.2. For simplicity, consider an unramified extension O of Zp. In the general
case, we could do similar computations with an extra m to ensure the permissibility. We
continue to use π as uniformiser to maintain consistency with the notation and to emphasize
that the general case can also be handled.

Let G be the group SL1
2(O)� πO2 and consider the O-Lie lattice g generated by the
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elements h, e, f, u, and v, where

h =

⎛⎜⎝π 0 0

0 −π 0

0 0 0

⎞⎟⎠ , e =

⎛⎜⎝0 π 0

0 0 0

0 0 0

⎞⎟⎠ , u =

⎛⎜⎝0 0 π

0 0 0

0 0 0

⎞⎟⎠ ,

f =

⎛⎜⎝0 0 0

π 0 0

0 0 0

⎞⎟⎠ , v =

⎛⎜⎝0 0 0

0 0 π

0 0 0

⎞⎟⎠ .

Then one can check that G = exp(g). We want to construct a subgroup of G which is not
thetyspectral with G.

Let gk be the O-Lie sublattice of g generated by the elements πkh, e, πkf, u, and v. We
can write gk = hk ⊕ v, where hk is the O-Lie sublattice generated by the elements πkh, e,
and πkf . Since g is potent, it easily follows that gk is potent as well, for every k � 1. For the
sake of simplicity, we assume that p � 7 to ensure also the saturability, cf. [43, Theorem 4.6].

Let Gk = exp(gk) and Hk = exp(hk). The group Gk has the structure of a semi-direct
product. Indeed, Gk = Hk �πO2.Now by Theorem 2.1.1 and Corollary 2.3.2, we may write

ζGk
(s) = ζHk

(s) · ζGk
Hk

(s− 1) = |Gk : Hk| · ζSL1
2(O)

(s) · ζGk
Hk

(s− 1).

Consider the quotient of Gk by SLk
2(O)� πk O2. The subgroup Hk(SL

k
2(O)� πk O2) is the

group of upper uni-triangular matrices with one non-trivial entry at position (1, 2). Thus,
the index of Hk in SL1

2(O) is qk−1. It remains to calculate the relative zeta function.
We compute the matrix A = ([a, b])a∈{u,v},b∈{πkh,e,πkf},

A =

(
−πk+1u −πv 0

πk+1v 0 −πk+1u,

)

and the set of minors

Min(wA) =
{
1, w(πk+1u), w(πv), w(πk+1v), w(πk+1uv), w(π2k+2u2), w(πk+2v2)

}
.

After a change of basis u �→ πk+1u, v �→ πv the integral describing the relative zeta function
has the form

ζGk
Hk

(s) = qk+2

∫
K2

‖1, u, v, uv, u2, πkv2‖−1−sp dμ(u, v).

Since |u|p ≤ |u2|p whenever |u2|p ≥ |1|p, the polynomial u is irrelevant. Com-
paring the valuations of the remaining polynomials, we determine that the maximum
is reached by 1 in the area O2, by u2 within

⋃
m∈N π−m O××π−m O, by uv within⋃

m∈N π−m O××π−m−k O	π−m+1 O, by πkv2 within
⋃

m∈N π−m O×π−m−k O×, and by v

in the area O×(π−k O	πO).
These areas overlap. We cut up K2 into pieces on which a fixed polynomial is maximal,
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see Fig. 2.1 for comparison, such that

ζGk
Hk

(s) =

∫
A1

|1|−1−sp dμ(u, v) +

∫
A2

|u2|−1−sp dμ(u, v) +

∫
A3

|uv|−1−sp dμ(u, v)

+

∫
A4

|πkv2|−1−sp dμ(u, v) +

∫
A5

|v|−1−sp dμ(u, v).

0−k ν(v)

0

ν(u)
A1

A2

A4 A5

|πkv2|p maximal |u2|p maximal |1|p maximal

|uv|p maximal |v|p maximal

Figure 2.1: A sketch of the partition of K2 we use for the computation of Example 2.4.2, in
case k = 4. Every circle represents a subset of fixed valuation, i.e. of the form πa O××πb O×

of K2.

Area A1, where |1|p is maximal, is defined as πO2, hence∫
A1

|1|−1−sp dμ(u, v) = q−2.

Area A2 is defined as
⋃

j∈N π−j O××π−j+1 O, such that

∫
A2

|u2|−1−sp dμ(u, v) =
∞∑
j=0

∫
π−j O××π−j+1 O

|u2|−1−sp dμ(u, v)

= (1− q−1)q−1
∞∑
j=0

t2j

= q−1
(1− q−1)
1− t2

,

where t = q−s as in the previous example. We put

A3 =
⋃
j∈N

π−j O××(π−j−k+1 O	π−j+1 O)
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and calculate∫
A3

|uv|−1−sp dμ(u, v) =
∞∑
j=0

∫
π−j O×

|u|−1−sp

k−1∑
l=0

∫
π−j−l O×

|v|−1−sp dμ(v)dμ(u).

Evaluation of the inner sum yields

k−1∑
l=0

∫
π−j−l O×

|v|−1−sp dμ(v) =
k−1∑
l=0

(1− q−1)tj+l = (1− q−1)tj
1− tk

1− t
.

Thus the integral over A3 is equal to the following expression∫
A3

|uv|−1−sp dμ(u, v) = (1− q−1)
1− tk

1− t

∞∑
j=0

tj
∫
π−j O×

|u|−1−sp dμ(u)

= (1− q−1)2
1− tk

(1− t)(1− t2)
.

The fourth area is defined by A4 =
⋃

j∈N π−j O×π−j−k O×, and we compute

∫
A4

|πkv2|−1−sp dμ(u, v) =
∞∑
j=0

∫
π−j O×π−j−k O×

|πkv2|−1−sp dμ(u, v)

=
(1− q−1)tk

1− t2
.

Finally, the last area A5 = πO×(π−k+1 O	πO) gives rise to

∫
A4

|v|−1−sp dμ(u, v) =

∫
π O

dμ(u)

k−1∑
l=0

∫
π−l O×

|v|−1−sp dμ(v) =
1− q−1

q

k−1∑
l=0

tl

=
q − 1

q2
1− tk

1− t
.

The sum of the five integrals calculated above factorises to

ζGk
Hk

(s) = t−kq2
(1− q−1t)(1− t− q−1t2 + tk+1q−1)

(1− t)2(1 + t)
,

and overall, we have

ζGk
(s) = t−kq5

(1− q−2t)(1− t)(1− qt− qt2 + qktk+1)

(1− qt)3(1 + qt)
.

Thus, the subgroup Gk of G and G are not thetyspectral. Indeed, the quotient of the
respective zeta functions is

ζGk
(s)

ζG(s)
= t−k

(1− qt− qt2 + qktk+1)

(1− qt)(1 + t)
.
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Example 2.4.3. Let n ∈ N∗ be a positive integer. We consider the uniformly potent pro-p
group G = SLm

2 (O) � O2n, where the semi-direct product is defined with respect to the
diagonal action of SLm

2 (O) on O2n ∼=⊕n
i=1 O

2 and m is permissible for sl2(O). We shall
calculate ζG(s). In the case n = 1, this (partially) recovers Example 2.4.1.

The Lie lattice g associated to G has O-dimension 3 + 2n. As in the previous examples,
we embed g into πmsl2n+1 as the sublattice generated by {h, e, f, u1, v1, u2, v2, . . . , un, vn},
where the first three basis elements are the block diagonal matrices

h =
n∑

i=1

Em
2i−1,2i−1 − Em

2i,2i, e =
n∑

i=1

Em
2i−1,2i, f =

n∑
i=1

Em
2i,2i−1,

and
ui = Em

2n+1,2i−1, vi = Em
2n+1,2i

for i ∈ [n] are the basis elements corresponding to O2n. For convenience, let

U = {ui | i ∈ [n]}, V = {vi | i ∈ [n]}, X = U ∪V, and Y = {h, e, f}.

We have the following partial commutator matrix −Aᵀ = ([y, x])(y,x)∈Y×X:

−Aᵀ = πm

⎛⎜⎝u1 −v1 · · · un −vn
v1 0 · · · vn 0

0 u1 · · · 0 un

⎞⎟⎠ .

The set of Pfaffian polynomials, ordered by the size of the respective submatrices, is

{1} ∪ {πma | a ∈ X} ∪ {π2mab | a, b ∈ X} ∪ {π3ma det(b, c) | a ∈ X, b, c ∈ U, b �= c},

where we set det(ur, uq) = urvq − uqvr. The monomials of degree 1 do not contribute to
integral, since we have |a|p ≤ max{|1|p, |a2|p} for all a ∈ O. Similarly, the only monomials
of degree 2 that are relevant for the value of the integral are the unmixed ones, i.e. the
monomials of the form π2ma2 for a ∈ X. Thus we set

P1 = {x2 | x ∈ X}, P2 = {a det(b, c) | a ∈ X, b, c ∈ U, b �= c},

and, as it will be useful later,

P ′2 = {det(b, c) | b, c ∈ U, b �= c}.

Distinguishing between O2n – where the maximum is attained by |1|p – and its complement
K2n \O2n and afterwards transforming the integral over the latter area by substituting πmx
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for x, with x ∈ X, we find

ζGH(s) = q2nm

⎛⎝1 + ∞∑
j=1

∫
π−j(O2n \π O2n)

‖P1 ∪ P2‖−s−1p dμ(X)

⎞⎠
= q2nm

⎛⎝1 + ∞∑
j=1

(qn−1t)2jA(t, j, n)

⎞⎠ ,

using again the convention t = q−s and setting

A(t, j, n) =

∫
O2n \π O2n

‖P1 ∪ π−jP2‖−s−1p dμ(X)

=

∫
O2n \π O2n

‖{1} ∪ π−jP ′2‖−s−1p dμ(X).

The second equality is due to the fact that on the area of integration there is at least
one invertible variable x in X, hence the maximum attained on the set P1 is always equal
to |x|p = |1|p, and since |a det(b, c)|p ≤ |x det(b, c)|p = | det(b, c)|p for a, b, c as in P2. To
further evaluate the integral, we partition the area of integration by considering the first
index i ∈ [n] such that either ui or vi is invertible, i.e.

O2n \πO2n =

n⋃
k=1

πO2(k−1)×(O2 \πO2)× O2(n−k) .

Consider one of these subsets, say Ik = πO2(k−1)×(O2 \πO2)× O2(n−k) for some k ∈ [n].
At least one variable among uk and vk is a unit. Consider the integral transformation by
substituting vl with ṽl = det(uk, ul) in case uk is invertible, and ul with ũl = det(ul, uk)

otherwise, for l ∈ [n] \ {k}. Note that this is a concatenation of translations and mul-
tiplications with invertibles, hence the corresponding Jacobian has a determinant with
valuation 1. Furthermore, Ik is invariant under this transformation, i.e. if vl, ul ∈ πO, then
also ṽl, ũl ∈ πO.

We have to rewrite the polynomials det(ul, ur) for l, r ∈ [n] \ {k} with l �= r as
polynomials in the substituted variables. An easy computation shows that

det(ul, ur) = ulvr − urvl = u−1k (ulṽr − urṽl), resp. det(ul, ur) = v−1k (ũlvr − ũrvl).

In both cases it is plain to see that det(ul, ur) is a multiple of ṽr or ṽl (and ũr or ũl,
respectively), hence

| det(ul, ur)|p ≤ ‖{ṽl, ṽr}‖p, resp. | det(ul, ur)|p ≤ ‖{ũl, ũr}‖p.

For convenience, we write zl for the new variables ṽl or ũl in case 0 < l < k, and zl = ṽl+1,
resp. zl = ũl+1 for n > l ≥ k. Set Z = {zl | l ∈ [n − 1]}. Thus the integral over Ik is
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reduced to∫
Ik

‖{1} ∪ π−jZ‖−s−1p dμ(Z) = (1− q−2)q1−k
∫
π Ok−1×On−k

‖{1} ∪ π−jZ‖−s−1p dμ(Z).

The integral on the right will appear, in a similar form, also in Example 2.4.4. Write

B(t, j, n, k) =

∫
π Ok−1×On−k

‖{1} ∪ π−jZ‖−s−1p dμ(Z).

To evaluate such integral, we write it as a difference:∫
On−1

‖{1} ∪ π−jZ‖−s−1p dμ(Z)−
∫
(Ok−1 \π Ok−1)×On−k

‖{1} ∪ π−jZ‖−s−1p dμ(Z).

The first (positive) integral may be computed as follows,∫
On−1

‖{1} ∪ π−jZ‖−s−1p dμ(Z) =

∫
πj On−1

‖1‖−s−1p dμ(Z)

+

j−1∑
r=0

∫
πr(On−1 \π On−1)

‖π−jZ‖−s−1p dμ(Z)

= q−j(n−1) +
(
1− q−(n−1)

)
(q−1t)j

j−1∑
r=0

(q(2−n)t−1)r

= q−j(n−1)
(
1 +
(
1− q−(n−1)

) 1− (q(n−2)t)j

1− q(n−2)t
qn−2t

)
,

and the second integral easily evaluates to∫
(Ok−1 \π Ok−1)×On−k

‖{1} ∪ π−jZ‖−s−1p dμ(Z) = (1− q1−k)(q−1t)j .

Thus we have

B(t, j, n, k) = q−j(n−1)
(
1 +
(
1− q−(n−1)

) 1− qj(n−2)tj

1− q(n−2)t
qn−2t

)
− (1− q1−k)(q−1t)j .

Overall we find

A(t, j, n) =
n∑

k=1

∫
Ik

‖{1} ∪ π−jZ‖p dμ(Z)

= (1− q−n)

(
q−j(n−1)(1 + q−1)

(
1 +
(
1− q−(n−1)

) 1− qj(n−2)tj

1− q(n−2)t
qn−2t

)
−(1− q−(n−1))q−j−1tj

)
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= q−j(n−1)
(
(1− q−n)(1− q−2)

1− qn−2t

)
− (q−1t)j

(
q−1

(1− q−n)(1− q1−n)(1 + qn−1t)
1− qn−2t

)
.

We now multiply this expression with the remaining coefficients and we take the sum over j,
arriving at

∞∑
j=1

(q(n−1)t)2jA(t, j, n) = (1− q−n)
q2 + q3 + (qn+1 − q2)t− (1 + qn)qnt3

(1− q(n−1)t2)(1− q(2n−3)t3)
qn−4t2.

In consequence, the desired function is equal to

ζG(s) = q2nm(1− t)
(1 + q−1 − qt2 + qnt2 − qn+1t3 − qn+1t4)

(1− q(n+1)t2)(1− q2nt3)
ζSLm

2 (O).

By Theorem 2.1.1 we have, for n greater than or equal to 3,

α(SLm
2 (O)� O2n) =

2n

3
,

while α(SLm
2 (O) � O2) = 1 and α(SLm

2 (O) � O4) = 3
2 . Thus the family of groups

SLm
2 (O) � O2n, varying in n, gives rise to zeta functions with two poles each, whose

position behaves regularly with respect to n, and both families of poles possess members
that dictate the abscissae, i.e. the degree of growth, for some groups in the family.

Example 2.4.4. Let p be an odd prime and consider the uniformly potent pro-p group

Gm
n = SLm

2 (O)� (Sym2(O2))n

with the diagonal action, where m is permissible. Denote SLm
2 (O) by Hm. The O-dimension

of the associated Lie lattice gn is 3(n+ 1) so we embed gn into πmsl3n+1 as the sublattice
generated by

{h, e, f, u1, v1, w1, u2, v2, w2, . . . , un, vn, wn},

where the first three basis elements are the block diagonal matrices

h = 2
n∑

i=1

(Em
3i−2,3i−2 − Em

3i,3i),

e =
n∑

i=1

(2Em
3i−2,3i−1 + Em

3i−1,3i), f =
n∑

i=1

(Em
3i−1,3i−2 + 2Em

3i,3i−1),

and the other elements, which correspond to the abelian factor, appear in the last column
of the matrices

ui = Em
3i−2,4, vi = Em

3i−1,4, wi = Em
3i,4.
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We partition the basis elements as follows

U = {ui | i ∈ [n]}, V = {vi | i ∈ [n]}, W = {wi | i ∈ [n]},

X = U ∪V ∪W, and Y = {h, e, f}.

We have the following partial commutators matrix

−Aᵀ =

⎛⎜⎝2π
mu1 0 −2πmw1 · · · 2πmun 0 −2πmwn

2πmv1 πmw1 0 · · · 2πm2vn πmwn 0

0 πmu1 2πmv1 · · · 0 πmun 2πmvn.

⎞⎟⎠ .

The set of Pfaffian polynomials is the following

{1} ∪ {πma | a ∈ X} ∪ {π2mab | a, b ∈ X}
∪ {π3mu det(ui, vj), p

3mv det(vj , wl), p
3mw det(wl, ui),

π3mu det(ui, wl), π
3mv det(vj , ui), π

3mw det(wl, vj),

π3mu det(vi, wl), π
3mv det(wl, ui), π

3mw det(ui, vj),

π3m(uivjwl − ulviwj) | u ∈ U, v ∈ V, w ∈W, i, j, l ∈ [n] pairwise different}

where det(ai, bj) = aibj − ajbi. As in Example 2.4.3, the monomials of degree one do
not play any role in the computation of the representation zeta function as for the mixed
monomials of degree two. Hence, we are left with the following set of Pfaffians monomials
modulo π2m for the first set and π3m for the second one.

P1 ={a2 | a ∈ X}
P2 ={u det(ui, vj), v det(vj , wl), w det(wl, ui),

u det(ui, wl), v det(vj , ui), w det(wl, vj),

u det(vi, wl), v det(wl, ui), w det(ui, vj),

(uivjwl − ulviwj) | u ∈ U, v ∈ V, w ∈W, i, j, l ∈ [n] pairwise different}.

As for the previous examples, by partitioning K3n into

K3n = O3n ∪
∞⋃
j=1

π−j O3n \π−j+1 O3n,

and applying the change of variables y = πmx where x ∈ X, we get the following

ζ
Gm

n
Hm(s) = q3nm

⎛⎝1 + ∞∑
j=1

∫
π−j O3n \π−j+1 O3n

‖P1 ∪ P2‖−s−1p dμ(X)

⎞⎠
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= q3nm

⎛⎝1 + ∞∑
j=1

qj(3n−2)t2jÃ(t, j, n)

⎞⎠ ,

with t = q−s and

Ã(t, j, n) =

∫
O3n \π O3n

‖P1 ∪ π−jP2‖−s−1p dμ(X)

=

∫
O3n \π O3n

‖{1} ∪ π−jP2‖−s−1p dμ(X).

We decompose the domain of integration in to n parts, isolating one triple of variables
(uk, vk, wk) for k ∈ [n] as follows

Ã(t, j, n) =
n∑

k=1

∫
π O3(k−1)×(O3 \π O3)×O3(n−k)

‖{1} ∪ π−jP2‖−s−1p dμ(X).

The triple (uk, vk, wk) is in O3 \πO3, hence at least one of them is invertible. Without loss
of generality, suppose that uk is invertible. Thus for all i, j ∈ [n] with i �= j, and l ∈ [n], we
have

‖{ul det(ui, vj), vl det(ui, vj), wl det(ui, vj)}‖p = |uk det(ui, vj)|p,
‖{ul det(ui, wj), vl det(ui, wj), wl det(ui, wj)}‖p = |uk det(ui, wj)|p,
‖{ul det(vi, wj), vl det(vi, wj), wl det(vi, wj)}‖p = |uk det(vi, wj)|p.

We now perform a linear change of variables whenever uk is involved in those determi-
nants and in this way we obtain 2(n − 1) new variables given by ṽi = det(uk, vi) and
w̃i = det(uk, wi) for i ∈ [n] \ {k}. Rewriting our integrand, we find it to be the minimum
of the norms of the functions

ṽi, w̃i, det(vk, w̃j), det(ui, ṽj), det(ui, w̃j), det(ṽi, w̃j),

uiṽjw̃l − ulṽiw̃j + uiuj det(vk, w̃l)− uiul det(vk, w̃j),

where i, j, l ∈ [n] \ {k} are pairwise different. A comparison of norms shows that the only
relevant polynomials are the monomials vĩ and w̃i with i ∈ [n] \ {k}. Consequently, we may
consider a new set of variables Z = {z1, . . . , z2(n−1)}, yielding

A3n(j, n) = (1− 1

q3
)

n∑
k=1

1

qk−1

∫
π O2(k−1)×O2(n−k)

‖{1} ∪ π−jZ‖−s−1p dμ(Z)

= (1− 1

q3
)

n∑
k=1

1

qk−1
B(j, 2n− 1, 2k − 1),
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where B(j, n, k) is defined as in Example 2.4.3. Thus, by routine calculations we get

A3n(j, n) = q−2j(n−1)
(1− q−3)(1− q−n)(1− q−1t)

(1− q−1)(1− q2n−3t)

− q−jtj(1− q−n)(1− q1−n)
(
q−1

(1 + q−1 + q−n) + (1 + q + qn)qn−2t
1− q2n−3t

)
This leads to

ζ
Gm

n
Hm(s) = q3nm−1(1− t)(1− q−1t)

(t+ qnt2 + (1 + t)q + (1 + t)qn−1t2)
(1− qnt2)(1− q3(n−1)t3)

.

As in Example 2.4.3, the zeta function ζ
Gm

n
Hm associated to the induced representation

Ind
Gm

n
Hm(�Hm) has two poles whose position depends on n. In conclusion, we have

α(SLm
2 (O)� (Sym2(O2))n) = n,

for n greater than or equal to 2, and α(SLm
2 (O)� (Sym2(O2))) = 3

2 .

Example 2.4.5. Finally, we consider a special case of the last example – namely the
representation zeta function of the semi-direct product G = SLm

2 (Zp) � Sym2(Z2
p) for

m ∈ N∗ – but for the case of the prime p = 2.
The image of H = SLm

2 (Z2) under the representation corresponding to the symmetric
square is given by ⎧⎪⎨⎪⎩

⎛⎜⎝a
2 2ab b2

ac ad+ bc bd

c2 2cd d2

⎞⎟⎠ | (a b

c d

)
∈ H

⎫⎪⎬⎪⎭ � GL3(Z2).

Let g be the 6-dimensional Lie lattice associated to G over Z2. We choose as basis X∪Y,
where X = {u, v, z} and Y = {h, x, y} are bases for 2m Z3

2 and 2m·sl2(Z2) as in Example 2.4.1.
We embed this Lie lattice into 2m ·sl4(Z2), and we compute the following partial commutator
matrix with columns corresponding to the elements of Y and rows corresponding to elements
of X

A = 2m

⎛⎜⎝ 2u 2v 0

0 z u

−2z 0 2v

⎞⎟⎠ .

The set of minors of A is given by

Min(A) = {1, 2mu, 2m+1u,2m+1v, 2mz, 2m+1z,

22m+1uv, 22m+2uv, 22m+1uz, 22m+1vz, 22m+2vz,

22m+1u2, 22m+2v2, 22m+1z2}.

Clearly, the polynomials 2m+1u, 2m+1z, 22m+2uv, 22m+2vz are irrelevant, as is 2m+1v. Also,

123



l

‖2mu‖2 ≤ ‖1, 22m+1u2‖2, thus 2mu and, similarly, 2mz may be ignored. Finally, as seen
before, the mixed terms never attain the maximum (alone). After scaling u and z by a
factor 2m and v by a factor 2m+1, it remains to consider the integral

ζGH(s) = 23m+1

∫
Q3

2

‖{1, 2u2, v2, 2z2}‖−1−s2 dμ(u, v, z)

= 23m+1(1 +
∞∑
j=1

23j
∫
Z3
2 \2Z3

2

‖{1, 21−2ju2, 2−2jv2, 21−2jz2}‖−1−s2 dμ(u, v, z)

= 23m+1

⎛⎝1 + ∞∑
j=1

23j(1− 2−2)2(2j−1)(−1−s) + (1− 2−1)22j(−1−s)−2

⎞⎠
= 23m−1

(2− t)(23t− 2t+ 2 + t)

1− 2t2

= 23m−1
(2− t)(23t+ (2− t))

1− 2t2
.

Thus the zeta function of G is

ζG(s) = ζGH(s− 1)ζH(s) = 23m+1 (1− t)(23t+ (1− t))

1− 23t2
· ζH(s).

It is interesting to compare the relative zeta function with the corresponding case n = 1 of
the previous example, which gives (for odd primes p)

ζG(s) = p3m
1− t2

1− p3t2
· ζH(s).

The case of the prime 2 behaves differently from the odd prime cases due to the structure
constants of the associated Lie lattice.
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Chapter 3

Representation growth of
Baumslag-Solitar groups

Based on joint work with Iker de las Heras

3.1 Introduction

A Baumslag-Solitar group is a two-generator one-relator group given by the presentation

BS(x, y) = 〈a, b | ax = b−1ayb〉, (3.1.1)

where x, y ∈ Z \{0}. These groups were introduced in 1962 by Baumslag and Solitar in [14]
to provide the first examples of finitely presented non-Hopfian groups, and have since been
a rich source of examples and counterexamples in group theory (recall that a group G is
called Hopfian if it does not have any proper quotient that is isomorphic to G). In 1940
Mal’cev [91] proved that residual finiteness of a finitely generated group implies Hopficity.
More precisely for Baumslag-Solitar groups it was shown in [14] and [94] that:

• BS(x, y) is residually finite (and hence Hopfian) if and only if |x| = 1 or |y| = 1 or
|x| = |y|.

• BS(x, y) is Hopfian if and only if it is residually finite or π(x) = π(y), where π(x) is
the set of prime divisors of x.

Note that BS(x, y), BS(y, x), and BS(−x,−y) are isomorphic so we can assume, when it is
convenient, that x and y satisfy the condition |y| � x > 0.

A wealth of information about the residual properties of Baumslag-Solitar groups can
be found in [95].

In the last decades, much attention has been devoted to the study of different asymptotic
invariants of the Baumslag-Solitar groups. For instance, a great deal of results concerning
the word growth of such groups can be found in [33], [23], [36], [19], or [1]; furthermore,
explicit computations of several subgroup growth functions were provided in [39], [20],
and [69].
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We set out to study finite dimensional linear representations of Baumslag-Solitar. A
complete characterisation of irreducible representations over C of the Baumslag-Solitar
groups with gcd(x, y) = 1 and not both x and y equal to ±1, was given by McLaury in [93].
McLaury’s strategy is to examine image of a representation ρ : BS(x, y) → GLn(C) and
analyse its Zariski closure as a subgroup of GLn(C), cf. Remark 3.1.3. This work entered the
picture of our research after we completed all the work presented in this chapter. Therefore,
while working, we were unaware of McLaury’s results, which later turned out to align with
our investigation. On the one hand, this is reassuring regarding the validity of our results;
on the other hand, it makes our work seem less innovative. The main difference lies in the
fact that we focus on the absolute representation growth over the field Fq of q elements,
where q is a prime power, for the Baumslag-Solitar groups BS(x, y) with gcd(x, y) = 1. Our
approach is less geometrical than McLaury’s and includes additional information derived
from the different base fields of the considered representations.

Recall that an n-dimensional linear representation over Fq of the Baumslag-Solitar
group BS(x, y) is a group homomorphism

ρ : BS(x, y)→ GLn(Fq),

and that a representation ρ is called absolutely irreducible if it is irreducible over the
algebraic closure of Fq which we denote by F. Two absolutely irreducible representations ρ

and ρ′ of dimension n are equivalent over Fq if there exists an isomorphism of vector
spaces f : Fn

q → Fn
q such that f(ρ(g)(v)) = ρ′(g)(f(v)) for every v ∈ Fn

q and g ∈ BS(x, y).
Compare with Section 0.4.

Let rabsn (BS(x, y),Fq) be the number of non-isomorphic absolutely irreducible
n-dimensional representations of BS(x, y) over Fq. Our main result is the following.

Theorem 3.1.1. Let x, y ∈ Z be such that gcd(x, y) = 1. The number of non-isomorphic
absolutely irreducible representations over Fq of dimension n, where q is a prime power, is

rabsn (BS(x, y),Fq) =
q − 1

n

∑
l

ϕ(l),

where l runs through all positive integers satisfying the following conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gcd(l, xy) = 1,

qn ≡ 1 (mod l),

xn ≡ yn (mod l),

xm �≡ ym (mod l), for every m ∈ [n− 1],

yr ≡ xrq (mod l), for some r ∈ [n];

(3.1.1)

and ϕ is Euler’s totient function.
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Remark 3.1.2. If l satisfies the conditions in (3.1.1), then it also satisfies

xt ≡ ytq (mod l) for some t ∈ [n].

Indeed, we have xr ≡ yrqn−1 (mod l) for some r ∈ [n], which is equivalent to xt ≡ ytq

(mod l) with t = −r + n.

Remark 3.1.3. McLaury’s result [93, Theorem 5.1 and Corollary 5.2] states that there
is an n-dimensional irreducible C-representation ρ such that ρ(a) is a diagonal matrix
diag(λ, λs, . . . , λsn−1

) with λ a primitive l-root of unity and x ≡ ys mod l, and ρ(b) is a
permutation matrix associated to a cycle of length n multiplied by a complex number c, if
and only if l divides xn − yn and does not divide xk − yk for any k ∈ [n− 1]. This analysis
aligns with our result in Theorem 3.1.1 and the findings in Section 3.2.

In the last part of the chapter, we discuss Weil representation zeta functions of Baumslag-
Solitar groups. This type of representation zeta function has been investigated quite
extensively by Corob Cook, Kionke, and Vannacci in [26]. We compute the Weil zeta
function of the metabelian group BS(1,−1). It is an open challenge to transform the explicit
information in Theorem 3.1.1 into a statement about the Weil representation zeta function
of BS(x, y) for more general x, y with gcd(x, y) = 1. See Section 0.7.4 for an introduction
to the classic Weil zeta function.

Notation

We denote by Sym(n) the symmetric group of degree n. We will always write q for a prime
power and F for the algebraic closure of a field Fq of q elements..

3.2 Counting absolutely irreducible representations

Lemma 3.2.1. Let q be a power of a prime p, A and B ∈ GLn(Fq), and x, y ∈ Z such that
gcd(x, y) = 1. Suppose Ax = B−1AyB and that the action of 〈A,B〉 on Fn is irreducible.
Then, A is diagonalizable over F.

Proof. As A, Ax, and Ay commute, there exists a single matrix P such that P−1AP ,
P−1AxP , and P−1AyP are upper triangular matrices of Jordan canonical form over F. We
may choose a basis A = {a1, . . . , an} of Fn such that A, Ax and Ay are upper triangular
matrices with respect to A. Since gcd(x, y) = 1, either x or y is coprime to p. Without loss
of generality, suppose that x is coprime to p. The order of A divides the order of GLn(Fq)

which is
|GLn(Fq)| = qn(n−1)/2(qn − 1)(qn−1 − 1) · · · (q − 1).

Hence, writing q = pf for some f ∈ N∗, we can write the order of A as pak where
a � fn(n − 1)/2 and k is coprime to p. If a is zero, then A is directly diagonalizable.
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Otherwise, since x is coprime to p, the order of Ax is pakx where kx divides k. If y is
not coprime to p then the order of Ay will be a product of a smaller power of p times
some number coprime to p. However this is not possible since Ax and Ay are conjugated
by B. Hence, x and y are both coprime to p. From this it follows that the Jordan blocks
of Ax and Ay are of the same dimension and stand in the same position within the matrix
since Ax and Ay are powers of the same matrix A.

The characteristic polynomials of Ax and Ay may be decomposed into Fq-irreducible poly-
nomials of degree smaller than or equal to n, so all the roots of these polynomials certainly
lie in Fqn! . Note that Ax(qn!−1) and Ay(qn!−1) are upper triangular matrices whose diagonal
entries are all equal to 1 and set W = ker(Ax(qn!−1) − In) and W ′ = ker(Ay(qn!−1) − In).
Clearly W ∩W ′ is not empty since a1 ∈W ∩W ′. We have

(Ay(qn!−1) − In)BW = B(Ax(qn!−1) − In)W = 0,

so BW ⊆ W ′. Similarly B−1W ′ ⊆ W and hence W ′ = BW . Furthermore, since x and y

are coprime to p, we have that W = W ′. It follows that W is a non-zero invariant subspace
of Fn under the action of 〈A,B〉. Hence, the irreducibility of the action of 〈A,B〉 implies
that W = W ′ = Fn. This implies Ax(qn!−1) = Ay(qn!−1) = In.

Since x(qn! − 1) is coprime to p, it follows that A is diagonalizable over F.

Lemma 3.2.2. Let y be a non-zero integer, B ∈ GLn(F), and A = diag(λ1, . . . , λn) with
λ1, . . . , λn ∈ F∗. Then the following assertions are equivalent.

(i) A = B−1AyB and 〈A,B〉 acts irreducibly on Fn;
(ii) The elements λi are pairwise distinct and B is a monomial matrix associated to a

cycle σ ∈ Sym(n) of order n such that λi = λy
σ(i).

Moreover, if one of the equivalent assertion holds, then

{λ1, . . . , λn} = {λ, λy, λy2 , . . . , λyn−1} (3.2.1)

and λyn = λ for every λ ∈ {λ1, . . . , λn}.

Proof. Suppose that A = B−1AyB holds and that 〈A,B〉 acts irreducibly on Fn. By
similarity, A and Ay have the same eigenvalues, so we have equality between the elements
λ1, . . . , λn and λy

1, . . . , λ
y
n, up to reordering. Moreover, we deduce, by the irreducibility

of the action, that the conjugation by B induces a permutation σ ∈ Sym(m) on the
distinct eigenvalues. More precisely, suppose that λ1, . . . , λm are distinct and that for each
j ∈ {m + 1, . . . , n} there exists i ∈ {1, . . . ,m} such that λj = λi. Then the conjugation
by B induces a permutation of the elements λ1, . . . , λm which gives σ ∈ Sym(m). We want
to prove that m equals n. Suppose this is not the case, and without loss of generality
suppose that the algebraic multiplicity k1 of the eigenvalue λ1 is greater than one. Consider
the eigenspace W1 of A associated with the eigenvalue λ1. Let d1 be the dimension of W1.
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Using A = B−1AyB, we see that BW1 is a subspace of the eigenspace W ′
1 of Ay with

eigenvalue λ1 still of dimension d1, since B is invertible. Since 〈A,B〉 acts irreducibly on Fn,
we have that λ1 �= λy

1 and so σ(1) �= 1. Let now W ′
1 be the eigenspace of Ay associated

to the eigenvalue λ1 = λy
σ(1). Then using again A = B−1AyB, we have that B−1W ′

1 is a
subspace of the eigespace W1. Hence, we have an equality W ′

1 = BW1. If we now consider
the eigenspace Wσ(1) of A with eigenvalue λσ(1), we have as before that BWσ(1) is the
eigenspace of Ay with eigenvalue λσ(1). We have that λσ(1) �= λy

σ(1) and λσ(1) �= λ1. Hence,
by an inductive argument, σ must be a cycle of order m, where m is the number of different
eigenvalues. Moreover, we deduce that all the eigenspaces must have the same dimension.
Notice that Bm is a block diagonal matrix, so we can choose v1, an eigenvector of Bm, that
is also an eigenvector of A in an eigenspace W1. Moreover, Brv1 is also an eigenvector of A
for every r ≥ 1, as it is contained in Wσ−r(1). Therefore, the subspace

〈v1, Bv1, B
2v1, . . . , B

m−1v1〉

is invariant under the action of 〈A,B〉. This is a contradiction with the irreducibility of
the action and so it yields m = n, as wanted. Furthermore, this also shows that the blocks
of B have all size 1, so that B is a monomial matrix associated to the cycle σ of order n.

Conversely, suppose that the elements of the diagonal of A are distinct and that B is a
monomial matrix with associated cycle σ of order n. By assumption, we have that λi = λy

σ(i).
Hence, we see that A = B−1AyB holds. For the irreducibility of the action of 〈A,B〉, let
{e1, . . . , en} be the canonical basis for Fn. Then, since all the eigenvalues of A are distinct,
a non-trivial A-invariant subspace of Fn is of the form V = 〈ei1 , . . . , ei�〉 for i1, . . . , i� ∈ [n]

with � ∈ [n]. Since the associated cycle of B is of order n, B is V -invariant if and only if
dimV = n.

In order to prove the equality (3.2.1) in the statement of the lemma, let λ = λ1.
For n = 1, there is nothing to prove, so assume n ≥ 2. Since B is a monomial matrix whose
associated permutation is an n-cycle, we deduce from A = B−1AyB that λ �= λy.

Notice that with respect to the appropriate basis, we can write A = diag(λ, λy, . . . , λyn−1
)

and so the associated permutation of B is the cycle (nn− 1 . . . 1). The permutation matrix
associated to B is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
. . .

...

0 0 · · · 0 1 0

0 0 0 · · · 0 1

1 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Remark 3.2.3. Suppose that one of the equivalent condition of the previous lemma holds.
Let λ ∈ F be such that A = diag(λ, λy, . . . , λyn−1

) and λyn = λ. Suppose that the char-
acteristic polynomial f(X) of A is in Fq[X]. The F[A]-module Fn is cyclic, hence there
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is only one invariant factor, namely f = charpol(A) = minpol(A) and A is conjugate to
the companion matrix of f (which is the Frobenius normal form). If f ∈ Fq[X], then A is
conjugate to an element of GL(Fqn).

Lemma 3.2.4. Let D be the group of invertible diagonal matrices over F, and let
B ∈ GLn(F) be a monomial matrix with associated permutation matrix P correspond-
ing to a cycle σ ∈ Sym(n) of order n. Write b = det(B). Then the orbit of B in GLn(F)

under the conjugation action of D is

{diag(b1, . . . , bn)P | b1, . . . , bn ∈ F, b1 · · · bn = b}.

Proof. Let C = diag(c1, . . . , cn) ∈ D and B = DP with D = diag(d1, . . . , dn). Then

C−1DPC = DC−1PC = D diag(c−11 cσ(1), . . . , c
−1
n cσ(n))P.

Now, take any L = diag(b1, . . . , bn) with det(L) = b, and define c1 = 1 and
cσi+1(1) = d−1

σi(1)
bσi(1)cσi(1) for 0 ≤ i ≤ n − 2. Then, we have C−1DPC = LP , and

since L was arbitrary with determinant b, the result follows.

Lemma 3.2.5. Let A ∈ GLn(Fq), and suppose that A is similar over F to a diagonal
matrix Ã = diag(λ1, . . . , λn) ∈ GLn(F), where λi, λj are distinct for all i, j ∈ [n] with i �= j.
Then, for every c ∈ F∗q, there exists C ∈ CGLn(Fq)(A) such that det(C) = c.

Proof. We will show that for a fixed c ∈ F∗q , there exists a polynomial f ∈ Fq[X] such
that det(f(A)) = c. Let Q ∈ GLn(F) be such that Q−1AQ = Ã. Then, for every
polynomial h ∈ Fq[X], we have

det(h(A)) = det(Q−1h(A)Q) = det(h(Ã)) =
n∏

i=1

h(λi).

On the other hand, let pA ∈ Fq[X] be the characteristic polynomial of A, and write
pA = h1 · · ·hm, where h1, . . . , hm are irreducible polynomials over Fq of degree d1, . . . , dm,
respectively. For every j ∈ [m], we fix a root λrj of hj , where rj ∈ [n]. Let Ndj be the norm
map associated to the field extension Fqdj

∼= Fq[X]/(hj) over Fq. Then,

n∏
i=1

h(λi) =
m∏
j=1

Ndj (h(λrj )).

Consider the isomorphism Fqd1
∼= Fq[X]/(h1) and let l ∈ F∗

qd1
be such that Nd1(l) = c.

Since the elements λi are all distinct, the polynomials h1, . . . , hm are pairwise coprime.
Hence, by the Chinese reminder theorem and the field isomorphism just described, the
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system

h ≡ l (mod h1)

h ≡ 1 (mod h2)

...

h ≡ 1 (mod hm)

has a solution f in Fq[X]. Observe that f(λr1) = l and f(λrj ) = 1 for j = 2, . . . ,m, which
gives det(f(A)) = Nd1(l) = c, as desired.

With these preparations we are ready to establish our main result.

Proof of Theorem 3.1.1. Let us start with the case x = 1. Let ρ be an absolutely irreducible
representation of dimension n of BS(1, y). Write A and B for ρ(a) and ρ(b) in GLn(Fq)

where a and b are the generators of BS(x, y) with regard to the presentation (3.1.1).
Then A = B−1AyB and the action of 〈A,B〉 on Fn is irreducible. Moreover, since the
characteristic polynomial of A lies in Fq[X], Lemma 3.2.1, Lemma 3.2.2, and Remark 3.2.3
show that A is similar in GLn(Fqn) to a matrix Ã = diag(λ, λy, . . . , λyn−1

), where λ ∈ F∗qn .
Let l be the order of λ in F∗qn and consequently the order of Ã in GLn(Fqn). First, since Ã

and Ã
y

have the same order, it follows that

gcd(l, y) = 1. (C1)

Moreover, we have
qn ≡ 1 (mod l). (C2)

We also know from Lemma 3.2.2 that λyi �= λyj for all i, j ∈ [n] with i �= j and that λyn = λ,
which implies

yn ≡ 1 (mod l) (C3)

and
ym �≡ 1 (mod l) for m ∈ [n− 1]. (C4)

Since A ∈ GLn(Fq), we have (X − λ) · · · (X − λyn−1
) ∈ Fq[X], and therefore

yr ≡ q (mod l) for some r ∈ [n] (C5)

(compare with [65, Section 4.13]). Equations (C1)–(C5) show that l satisfies all the
conditions in (3.1.1).

Let us now consider l satisfying (3.1.1) with x = 1. Fix an element λ ∈ F∗qn of order l

and write Ã = diag(λ, λy, . . . λyn−1
). We will show that there are q−1 absolutely irreducible

representations ρ of BS(1, y) over Fq such that ρ(a) is similar to Ã in GLn(Fqn).
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Observe that the third and fourth conditions in (3.1.1) yield λyi �= λyj for all i, j ∈ [n]

with i �= j and λyn = λ. Therefore, by Lemma 3.2.2, the matrices B̃ for which 〈Ã, B̃〉 acts
irreducibly on Fn and Ã = B̃

−1
Ã

y
B̃ are precisely the monomial matrices over F associated

with the permutation (1 . . . n). By Lemma 3.2.4, the isomorphism classes of the associated
representations over F only depend on the determinant of B̃. Moreover, we know that
det(B̃) ∈ F∗q as the characteristic polynomial of the monomial matrix B̃ is Xn − det(B̃).
Let us show that for each element d ∈ F∗q there exists a representation as desired such that
det(B̃) = d.

The last condition in (3.1.1) yields that the characteristic polynomial of Ã is
in Fq[X]. Therefore, there exists a Vandermonde matrix Q ∈ GLn(Fqn) such that
A = Q−1ÃQ ∈ GLn(Fq), which is the companion matrix of the characteristic polyno-
mial of Ã. Concretely, one takes

Q =

⎛⎜⎜⎜⎜⎜⎝
1 λ λ2 · · · λn

1 λy λ2y · · · λny

...
...

...
. . .

...

1 λyn−1
λ2yn−1 · · · λnyn−1

⎞⎟⎟⎟⎟⎟⎠ .

Moreover, because Ã and Ã
y

are similar matrices, it follows that A and Ay are also similar,
which implies that there exists B ∈ GLn(Fq) such that A = B−1AyB. Write B̃ = QBQ−1

so that Ã = B̃
−1

Ã
y
B̃.

Now, from Lemma 3.2.5, for every b ∈ F∗q there exists Cb ∈ CGLn(Fq)(A) such that
det(Cb) = b. Thus, the matrices CbB satisfy the condition A = (CbB)−1Ay(CbB), and in
addition we have det(CbB) = b det(B). We have hence constructed q − 1 non-isomorphic
absolutely irreducible representations of BS(1, y) for a given λ of order l satisfying (3.1.1),
as desired.

Finally, since there are ϕ(l) elements λ in Fqn of order l, and since choosing λyi instead
of λ gives an isomorphic representation, it follows that there are (q − 1)ϕ(l)/n absolutely
irreducible representations for each l satisfying (3.1.1). These are all the isomorphism
classes of representations of dimension n, since we showed at the beginning of our proof
that the relation A = B−1AyB and the irreducibility of the action of 〈A,B〉 on Fn are
equivalent to the conditions (C1)–(C5) applied to the order l of A.

Now remove the assumption that x = 1, and let A,B ∈ GLn(Fq) be such that
Ax = B−1AyB and that the action of 〈A,B〉 on Fn is irreducible. Since Ax and Ay

are similar matrices, they have the same order. Hence, gcd(x, l) = gcd(y, l) for the order l

of A. However, since by assumption x and y are coprime, it follows that the order of
the matrix A ∈ GLn(Fq) is coprime to both x and y. Hence, we can find z ∈ Z such
that (Ax)z = A, and so the condition Ax = B−1AyB is equivalent to A = B−1AyzB.
Moreover, since xz is congruent to 1 modulo the order of A, which we called l. It is
immediate to see that the conditions (3.1.1) for (x, y) are equivalent to the conditions

132



l

(3.1.1) for (1, yz), where z is the inverse of x modulo l. We can thus reduce the problem to
the case x = 1.

3.3 Weil representation zeta function

For a profinite group G and a finite field k, we write rabsn (G, k) to denote the number of
absolutely irreducible representations of G of dimension n and defined over k. We say
that G has unifomly bounded exponential representation growth (over finite fields), in short
UBERG, if there exists a constant c > 0 such that rabsn (G, k) � |k|cn for every finite field k.
Corob Cook, Kionke, and Vannacci [25] investigated the structure of UBERG groups. In
fact, already in 2018, Kionke and Vannacci [71] showed that there is a strict correlation
between the study of UBERG groups and probabilistic generation properties of profinite
groups. This is based on the fact that a profinite group G equipped with its normalized Haar
measure provides a probability space. A profinite group is positively finitely generated(PFG)
if for some positive integer n the probability P (G,n) that n random elements generate G

is positive. A finitely generated profinite group is positively finitely related (PFR) if every
continuous epimorphism f : H → G from every finitely generated profinite group H has its
kernel ker(f) positively finitely normally generated in H, i.e. if there exists some positive
integer n such that n random elements and their H-conjugates generate ker(f) with positive
probability.

Kionke and Vannacci showed that a finitely presented profinite group is PFR exactly if
it has UBERG or equivalently, if the completed group algebra Ẑ[[G]] is positively finitely
generated (PFG) as a Ẑ[[G]]-module, cf. [71, Theorem A and Proposition 6.1].

Moreover, in 2024, Corob Cook, Kionke, and Vannacci [26] introduced the following
representation zeta function of an UBERG group G,

ζWG (s) = exp

⎛⎝∑
p∈P

∑
n≥1

∑
j≥1

rabsn (G,Fpj )

j
· p−snj · p

nj − 1

pj − 1

⎞⎠ .

Upon expansion of the exponential series, this is a formal Dirichlet series. It admits an
obvious Euler product decomposition

ζWG (s) =
∏
p∈P

exp

⎛⎝∑
n≥1

∑
j≥1

rabsn (G,Fpj )

j
· p−snj · p

nj − 1

pj − 1

⎞⎠ ,

and it converges on some complex half-plane, see [26, Corollary 2.3]. The formula for ζWG (s)

resembles the Weil zeta function of an algebraic variety V , where the absolutely irreducible
Fq-representations of G take the place of the Fq-rational points of V . For this reason, ζWG (s)

is called the Weil representation zeta function of G. For more details, see Section 0.7.4. The
factor pnj−1

pj−1 that appears in the definition of ζWG (s) is the cardinality of Pn−1(Fpj ) and it
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appears in the Weil zeta function because for every absolutely irreducible Fq-representation
over the vector space V of dimension n, there are Pn−1(Fq) maximal ideals M in Fq[[G]]

such that Fq[[G]]/M ∼= V , as noted by Corob Cook, Kionke, and Vannacci [26].
As previously discussed, there is a strong correlation between the study of UBERG

groups and probabilistic generation properties of profinite groups. This correlation has
been demonstrated with the Weil zeta function by Corob Cook, Kionke, and Vannacci [26].
They showed that for an UBERG profinite group G and R = Ẑ[[G]] its group ring over Ẑ,
the following equality holds for sufficiently large integers l:

PR(R, l)−1 = ζWG (l),

where PR(R, l) is the probability that l random elements generate the group ring R = Ẑ[[G]],
see [26, Theorem A].

If G is an abstract group, every finite dimensional representation of G over a finite
field Fq factors through a finite quotient. Hence, for a group G whose profinite completion
is UBERG, we define ζWG (s) = ζW

Ĝ
(s).

Example 3.3.1. We compute the Weil representation zeta function for the metabelian
group BS(1,−1) ∼= Z � Z. Let us first suppose that p is odd and consider q = pj

with j ∈ N∗. It is a basic fact that absolutely irreducible representations of abelian groups
are one dimensional. Consider the presentation

BS(1,−1) = 〈a, b | a = b−1a−1b〉. (3.3.1)

The commutator of the generators b and a is [b, a] = a2 and [a, b] = a−2, hence one
can see that the abelianisation of BS(1,−1) is isomorphic to Z/2Z × Z. To shorten our
notation let G = BS(1,−1). All the absolutely irreducible representations of the abelian-
isation G/[G,G] are one dimensional and correspond to the irreducible representations
of dimension 1 of G, cf. Section 0.4. Since we consider irreducible Fq-representations, we
have 2(q − 1) non-isomorphic irreducible representations of G/[G,G] of dimension 1. We
are left with representations which do not contain [G,G] in their kernel. One could refine
the argument given by Corob Cook et. all [26, Example A.5] by considering the normal
abelian subgroup 〈a, b2〉 of BS(1,−1). The counting here needs to account for the field of
definition of the representations. Since this approach does not significantly simplify our
proof, we will present the results directly by applying our Theorem 3.1.1.

• For every n ≥ 3 we have rabsn (BS(1,−1),Fq) = 0, from the fourth condition of (3.1.1).
• For n = 1 the conditions (3.1.1) reduce to⎧⎨⎩ q ≡ 1 (mod l),

2 ≡ 0 (mod l).
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Hence, the only possibilities are with l = 1, 2. Then

rabs1 (BS(1,−1),Fq) = (q − 1)(ϕ(1) + ϕ(2)) = 2(q − 1).

• For n = 2 the conditions (3.1.1) reduce to⎧⎪⎪⎪⎨⎪⎪⎪⎩
q2 ≡ 1 (mod l),

1 �≡ −1 (mod l),

1 ≡ (−1)rq (mod l), for some r ∈ [2].

Since (q − 1, q + 1) = 2, then

rabs2 (BS(1,−1),Fq) =
q − 1

2

⎛⎜⎜⎝∑
l|q−1
l �=1,2

ϕ(l) +
∑
l|q+1
l �=1,2

ϕ(l)

⎞⎟⎟⎠
=

q − 1

2
(q − 1− ϕ(1)− ϕ(2) + q + 1− ϕ(1)− ϕ(2))

=
q − 1

2
2(q − 2)

= q2 − 3q + 2.

Let us now suppose that p = 2. We have a slightly different counting as before since for
example the abelianisation of BS(1,−1) is the product of a cyclic group of order 2 and
the infinite cyclic group Z and so we have 2j − 1 one dimensional representations over the
field F2j . We report the counting based on our Theorem 3.1.1. Then we have the following.

• For every n ≥ 3 and j ≥ 1 one has rabsn (BS(1,−1), 2j) = 0.
• For n = 1 the conditions (3.1.1) reduce to⎧⎨⎩ 2j ≡ 1 (mod l),

2 ≡ 0 (mod l).

So the only possibility is l = 1. Then

rabs1 (BS(1,−1),F2j ) = (2j − 1)ϕ(1) = (2j − 1).

• For n = 2 the conditions (3.1.1) reduce to⎧⎪⎪⎪⎨⎪⎪⎪⎩
22j ≡ 1 (mod l),

1 �≡ −1 (mod l),

1 ≡ (−1)r2j (mod l), for some r ∈ [2].
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Since (2j − 1, 2j + 1) = 1, one has

rabs2 (BS(1,−1),F2j ) =
2j − 1

2

⎛⎜⎜⎝ ∑
l|2j−1
l �=1

ϕ(l) +
∑

l|2j+1
l �=1

ϕ(l)

⎞⎟⎟⎠
=

2j − 1

2

(
2j − 1− ϕ(1) + 2j + 1− ϕ(1)

)
= (2j − 1)(2j − 1).

We can now compute the Weil representation zeta function with all the information that
we collected so far.

ζWBS(1,−1)(s) =
∏
p∈P

exp

⎛⎝∑
n≥1

∑
j≥1

rabsn (BS(1,−1),Fpj )

j
· p−snj · p

nj − 1

pj − 1

⎞⎠
=exp

⎛⎝∑
j≥1

(2j − 1)

j
· 2−sj +

∑
j≥1

(22j − 1)(2j − 1)

j
· 2−2sj

⎞⎠ ·
·
∏
p odd

exp

⎛⎝∑
j≥1

2(pj − 1)

j
· p−sj +

∑
j≥1

(p2j − 1)(pj − 2)

j
· p−2sj

⎞⎠
=exp

⎛⎝∑
j≥1

⎛⎝⎛⎝2(1−s)j

j
+ 2 ·

∑
p odd

p(1−s)j

j

⎞⎠−
⎛⎝2(−s)j

j
+ 2 ·

∑
p odd

p(−s)j

j

⎞⎠⎞⎠⎞⎠
· exp
⎛⎝∑

j≥1

⎛⎝2(−2s)j

j
+ 2 ·

∑
p odd

p(−2s)j

j

⎞⎠⎞⎠
· exp
⎛⎝−∑

j≥1

⎛⎝2(1−2s)j

j
+
∑
p odd

p(1−2s)j

j

⎞⎠⎞⎠
· exp
⎛⎝∑

j≥1

⎛⎝2(3−2s)j

j
+
∑
p odd

p(3−2s)j

j

⎞⎠⎞⎠
· exp
⎛⎝−∑

j≥1

⎛⎝2(2−2s)j

j
+ 2 ·

∑
p odd

p(2−2s)j

j

⎞⎠⎞⎠
Note that we can use the logarithmic expansion given by

log(1− x) = −
∑
i�1

xi

i
,
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to get rid of the exponential function. Thus

ζWBS(1,−1)(s) =
(
1− 2(1−s)

)−1⎛⎝∏
p odd

(
1− p(1−s)

)−2⎞⎠(1− 2−s
)⎛⎝ ∏

p odd

(
1− p−s

)2⎞⎠
· (1− 2−2s

)−1⎛⎝∏
p odd

(
1− p−2s

)−2⎞⎠⎛⎝∏
p∈P

(
1− p(1−2s)

)⎞⎠
·
⎛⎝∏

p∈P

(
1− p(3−2s)

)−1⎞⎠(1− 2(2−2s)
)⎛⎝ ∏

p odd

(
1− p(2−2s)

)2⎞⎠ .

If we multiply ζwBS(1,−1)(s) with a rational function in 2−s, we find an equality that involves
the Riemann zeta function, using the Euler product decomposition (0.7.1).

ζWBS(1,−1)(s) ·
(1− 2−s)
(1− 2(1−s))

· (1− 2(2−2s))
(1− 2−2s)

=
ζ(s− 1)2ζ(2s)2ζ(2s− 3)

ζ(s)2ζ(2s− 2)2ζ(2s− 1)
.

To express this phenomenon, Corob Cook, Kionke, and Vannacci define the following
relation. Given two meromorphic functions f, g on C we write f ∼n g if there is a rational
function h in {p−s | p � n, p prime} such that fh = g. Hence, our results agree with the
computations of Corob Cook, Kionke, and Vannacci in [26, Example A.8].

Example 3.3.2. We want to apply our Theorem 3.1.1 for the case x = 1 and y = p,
i.e. BS(1, p), where p is a prime. In particular, we focus on the case when the finite field has
cardinality pj where j ∈ N∗, i.e. rabsn (BS(1, p),Fpj ). The conditions (3.1.1) in this case are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gcd(l, p) = 1,

pnj ≡ 1 (mod l),

pn ≡ 1 (mod l),

pm �≡ 1 (mod l), for every m ∈ [n− 1],

pr ≡ pj (mod l), for some r ∈ [n].

We distinguish two cases depending on whether j is greater or smaller than n.

(i) If j ≤ n, the last condition has solutions when r = j.
(ii) If j > n, we write j = an + b where a � 0 and n > b � 0. Then the condition pr ≡ pj

(mod l) is satisfied for r = b if b �= 0 or for r = n if b = 0.

Then we have

rabsn (BS(1, p),Fpj ) =
pj − 1

n

∑
t|n

∑
l|pt−1

μ(n/t)ϕ(l)
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=
pj − 1

n

∑
t|n

μ(n/t)(pt − 1).

In order to compute the Weil representation zeta function ζWBS(1,p)(s), we should com-
pute rabsn (BS(1, p),Fq) for q a power of a prime different form p. Already this task seems
quite ambitions due to the complexity of the set of solutions of the conditions (3.1.1).

Final considerations

One of the most intriguing examples would be computing the Weil representation zeta
function for the group BS(2, 3), which is non-Hopfian. However, such computations are
currently beyond our reach. We leave this for future research.

3.4 Relation with subgroup growth

Another intriguing area of research is exploring the potential relationship between represen-
tation growth and subgroup growth. This question is inspired by the work of Mozgovoy and
Reineke [97], who linked the counting polynomials of absolutely irreducible n-dimensional
representations over finite fields Fq with the number of subgroups of index n in the free
groups [97, Lemma 6.4]. They, in turn, were motivated by the concepts of F1-geometry [81],
which interprets the symmetric group Sym(n) as the group GLn over a hypothetical field
with one element. Therefore,it may be possible to establish a connection between these two
types of counting by considering the limit process q → 1.

Baumslag-Solitar groups serve as natural examples of one-relator groups. Although they
are not free groups, they are closely related because they are defined by only a single relation.

Let G be a finitely generated groups and let an(G) denote the number of subgroups
of G of index n. Gelman [39] proved that for x and y non-zero coprime integers, the number
of n-index subgroups of a Baumslag-Solitar group BS(x, y) is

an(BS(x, y)) =
∑
l|n

gcd(l,xy)=1

l.

The explicit count of subgroups of finite index for a Baumslag-Solitar group BS(x, y) and
our formula for the number of n-dimensional absolutely irreducible representations over
finite fields with q elements suggest a potential connection between these two quantities.
However, establishing this connection is more challenging than it appears, raising the
question of whether such a link is even possible.
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