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A complex interplay between various processes underlies the neuropathology of Alzheimer’s disease
(AD) and its progressive course. Several lines of evidence point to the coupling between Aβ
aggregation and neuroinflammation and its role in maintaining brain homeostasis during the long
prodromal phase of AD. Little is however known about how this protective mechanism fails and as a
result, an irreversible and progressive transition to clinical AD occurs. Here, we introduce a minimal
model of a coupled system of Aβ aggregation and inflammation, numerically simulate its dynamical
behavior, and analyze its bifurcation properties. The introduced model represents the following
events: generation of Aβmonomers, aggregation of Aβmonomers into oligomers and fibrils, induction
of inflammation by Aβ aggregates, and clearance of various Aβ species. Crucially, the rates of Aβ
generation and clearance aremodulated by inflammation level following aHill-type response function.
Despite its relative simplicity, themodel exhibits enormously rich dynamics ranging from overdamped
kinetics to sustained oscillations. We then specify the region of inflammation- and coupling-related
parameters spacewhere a transition to oscillatory dynamics occurs and demonstrate how changes in
Aβaggregationparameters could shift this oscillatory region in parameter space.Our results reveal the
propensity of coupled Aβ aggregation-inflammation systems to oscillatory dynamics and propose
prolonged sustained oscillations and their consequent immune system exhaustion as a potential
mechanism underlying the transition to a more progressive phase of amyloid pathology in AD. The
implications of our results in regard to early diagnosis of AD and anti-AD drug development are
discussed.

Alzheimer’s disease (AD) is the most common cause of dementia, char-
acterized by a progressive and irreversible loss of memory, cognitive func-
tions, and language skills1. Two neuropathological hallmarks of AD are the
extracellular deposition of amyloid-β (Aβ) peptide as senile plaques and
intracellular deposition of tau protein as neurofibrillary tangles (NFTs)2.
More recently, neuroinflammation has been suggested as another patho-
logical hallmark of AD3. Several lines of evidence support the amyloid
cascade hypothesis, according to which Aβ aggregation is the key initial
event in the pathogenesis of AD, triggering a cascade of pathological events
including tau protein hyperphosphorylation and aggregation into NFTs,
inflammation, reactive oxygen species generation, synaptic dysfunction,
and neuronal death4.

Aβ peptides are 39–43 residue-long peptides produced through two
consecutive proteolytic cleavages of a transmembrane protein called amy-
loid precursor protein (APP) by membrane-bound proteases β- and γ-

secretases5. Aβ is degraded via Aβ-degrading proteases (AβDPs) such as
neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme6,
or cleared from the brain through transport to blood via blood-brain-barrier
or secretion to cerebrospinalfluid (CSF)7. TheAβ concentration in the brain
is determined by a subtle balance between its production anddegradation or
clearance rates. Aβ has a concentration-dependent propensity to form oli-
gomeric and fibrillar aggregates, which, especially in the case of oligomeric
aggregates, exhibit neurotoxic properties8. Familial forms of AD are often
caused by mutations that increase the rate of total Aβ generation or the
fraction of more aggregation-prone Aβ variants such as Aβ42, or lead to a
change in Aβ sequence and alter its aggregation properties9. The molecular
mechanisms underlying the sporadic forms of AD are much less known.
However, the potential role of aberrations in the clearance mechanisms of
Aβ and tau protein and mechanisms associated with neuroinflammation
have been proposed10,11.
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In addition to aggregation-related proteopathy, the AD brain exhibits
the hallmarks of pathological inflammation12. As in other systems, the
dynamics of the inflammatory response to an injury involves temporally
coordinated transformation of pro-inflammatory to anti-inflammatory
cells and, consequently, a concerted shift from pro-inflammatory to anti-
inflammatory cytokines, hence the self-control of inflammatory response13.
Several lines of evidence indicate the existence of feedback and feedforward
mechanisms between Aβ (and tau protein) aggregation and inflammation,
as implied in the amyloid cascade hypothesis. For example, Aβ aggregates
activate astrocytes and trigger an inflammatory response through secretion
ofMCP-1, attractionofmonocytes fromblood, differentiationofmonocytes
to pro- and then anti-inflammatory macrophages, and coordinated acti-
vation of pro- and anti-inflammatorymicroglia14–16. On the other hand, the
activated astrocytes produce Aβ17, and the activated macrophages and
microglia promote Aβ clearance mechanisms18. Clearly, the coupling
between Aβ aggregation and inflammation generates mechanisms com-
pensating for the adverse effects of Aβ aggregates and maintaining brain
homeostasis during the long prodromal phase of AD. Only when these
compensatorymechanisms become inefficient, irreversible, and progressive
transition topre-clinical andclinical phases ofADoccur19.Despite its crucial
importance, the nature of this transition and its potential underlying
molecular factors have remained elusive.

It is widely believed that amyloid aggregation of protein follows a
nucleation-dependent polymerization model (NPM), in which the slow
formation of growth nuclei from protein monomers precedes rapid elon-
gation of the formed nuclei to amyloid fibrils. The actual mechanism of
protein amyloid aggregation is, however, often more complex than the
classical NPM20. For example, the formation of nuclei of aggregation may
occur through alternative routes depending on whether only monomers
(primary nucleation), only fibrils (fragmentation), or both monomers and

fibrils (secondary nucleation) are involved. In addition, the formation of
growth-competent nuclei may occur through one or more steps. The
elongation stepmay also occur throughmonomer addition and end-to-end
association of fibrils. In the case of Aβ, several kinetic models have been
proposed to describe its in vitro aggregation, including models by Lomakin
et al.21, Pallitto and Murphy22, Morris et al.23, and several models by Linse,
Vendruscolo, and Knowles et al.24,25, among others. These models had
proven remarkably successful in reproducingdynamics ofAβ aggregation in
closed invitro systems, especiallywhen theywere constructed on thebasis of
highly reproducible experimental data25. Little, however, is known about
how the coupling with inflammation may affect the dynamics of Aβ
aggregation in the in vivo context, where the rates of Aβ aggregation, as well
as generation and degradation, aremodulated by the existing inflammation.

Here, we present a minimal mathematical model of a coupled open
system of Aβ aggregation and inflammation and analyze its dynamics by
searching its parameter space. Our results demonstrate that the model can
show a range of behavior—a pattern observed in nonlinear dynamical sys-
tems. The in vitro version of the model—closed and uncoupled with the
immune system—reproduces the kinetic behavior observed in biochemical
experiments. The open system—with reported monomeric Aβ generation
and degradation rates—reproduces the physiological concentration of
monomer, oligomer, and fibril. The in vivo version of themodel is both open
and coupled to the immune system; that is, the kinetic parameters are
modulated by inflammation induced byAβ oligomers andfibrils. Thismodel
shows the rangeof behaviors encompassing theprevious two scenarios, but in
addition, complex oscillatory behavior depends upon kinetic and coupling-
relatedparameters. The steadyoscillations over prolongedperiodsmight lead
to immune system reprogramming, exhaustion, and eventual failure26, which
may have detrimental consequences regarding compensatory mechanisms
and contribute to a transition to a more progressive phase of amyloid
pathology in AD. Besides, the different roles played by the set of kinetic and
coupling-related parameters in displaying oscillations might provide new
candidates as potential targets for therapeutic interventions.

Results
The minimal model used in this study is illustrated in Fig. 1. It contains
processes of Aβ monomer generation, aggregation of Aβ monomers into
oligomers and fibrils, clearance or degradation of Aβ monomers and
aggregates, induction of inflammation by Aβ aggregates, and modulatory
effect of inflammation on these processes. Aβ aggregation involves four
steps: primary nucleation, conversion (of oligomers into elongation-
competent fibrillar particles), elongation (by addition of monomers into
growing ends of fibrils), and secondary nucleation (by the surface of fibrils),
as described and validated in literature25. To represent themodulatory effect
of inflammation, the rates of the above-mentioned processes were assumed
to be in principle inflammation-dependent and vary from the intrinsic value
in the absence of inflammation to a final value at an infinite level of
inflammation according to a Hill function. The model is represented by a
system of coupled ordinary differential equations (ODE). The parameters
and values of the model, henceforth called standard parameter values, are
listed inTable 1 (furtherdetails in “Methods”). Below,wedescribe themodel
in detail, including its constituting steps and the corresponding ODEs.

Equation for Aβmonomer
The Aβmonomers (am) are generated and secreted at the rate kþ into the
extracellular space of the brain and cleared with a first-order rate constant
k� with respect to Aβ monomer concentration (am). The aggregation-
related consumption of monomeric Aβ occurs through four distinct
molecular mechanisms: (a) primary nucleation governed by the rate con-
stant j1, duringwhichAβmonomers formoligomers capable of progressing
towards fibrillar aggregation. The kinetic order of oligomerization reaction
with respect to am is n1. The Aβ oligomers (ao) dissociate with a first-order
rate constant j�1, (b) the irreversible conversion of Aβ oligomers to
elongation-competentfibrillar particles. This process is governedby the rate
constant j2 with the reaction order nconv with respect to am and one to ao,
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Fig. 1 | A schematic representation of the minimal model of coupled Aβ aggre-
gation and inflammation used in this study. The following events (and related
parameters) are shown: (i) generation of Aβ monomers by neurons and astrocytes
(rate, kþ), (ii) clearance (degradation) of Aβ (rate constant for Aβ monomers, k� ,
scaled down by factors γo for oligomers and γf for fibrils), (iii) primary nucleation
(forward rate constant, jn11 , with the superscript n1 representing the molecular order
with respect to Aβ monomers; reverse rate constant, j1�1, with superscript repre-
senting the molecular order of 1 with respect to Aβ oligomers), (iv) oligomer con-
version (rate constant, jnconv;12 , with the superscripts nconv and 1 representing
molecular orders with respect to Aβ monomers and oligomers, respectively), (v)
elongation (rate constant, j1;13 , with the superscripts 1 and 1 representing molecular
orders with respect to Aβ monomers and fibrils, respectively), (vi) secondary
nucleation (rate constant, jn2;14 , with the superscriptsn2 and 1 representingmolecular
orders with respect to Aβ monomers and fibrils, respectively), (vii) generation of
inflammation by Aβ oligomers and fibrils (governed by the weight factors δo and δf ,
respectively), (viii) modulation of rates of Aβ generation and clearance by inflam-
mation, and (ix) self-inhibitory mechanisms of inflammation (represented by kinfl).

https://doi.org/10.1038/s41540-024-00408-7 Article

npj Systems Biology and Applications |           (2024) 10:80 2



(c) The irreversible elongation process is governed by the rate constant j3,
during which Aβ monomers are added to the growing ends of fibrillar
particles (afp), and (d) the irreversible secondarynucleationoccurringon the
surface ofAβfibrils (af ), leading to the formation of newAβ oligomers. This
process is governed by the rate constant j4 with the reaction order n2 with
respect to am and one to af . Equation 1 below describes the time-dependent
changes in Aβ monomer concentration ( _am) according to the above-
mentioned generation, degradation, and aggregation process:

_am ¼ kþ � k�am � j1a
n1
m þ j�1ao

� nconv
1þnconvð Þ j2a

nconv
m ao � j3amafp � j4a

n2
m af

ð1Þ

Equation for Aβ oligomer
The Aβ oligomers (ao) are generated through reversible primary and irre-
versible secondary nucleation processes governed by the rate constants j1,
j�1, and j4, as described in processes (a) and (d) above. TheAβoligomers are
consumed through the irreversible aggregation-related conversion process
governed by rate constant j2, as in process (b) described above, and cleared
following the rate constant k� scaled by an oligomer-specific factor (γo).
Equation 2 below describes the time-dependent changes in Aβ oligomer
concentration ( _ao) according to the processes:

_ao ¼ j1a
n1
m � j�1ao �

1
1þ nconvð Þ j2a

nconv
m ao þ j4a

n2
m af � γok�ao ð2Þ

Equation for Aβ fibril and fibril particle
Time-dependent changes in concentration of Aβ fibrils are described
through two variables, afp and af , respectively, representing the number and
mass concentration of Aβ fibrils. In our model, Aβ fibril particles, afp, are
generated from Aβ oligomers and monomers through the irreversible
conversion process, as described in process (b) above, according to:

_afp ¼ j2a
nconv
m ao ð3Þ

The irreversible elongation process (process c above) does not change
the number concentration of fibril particles; however, it increases the mass
concentration of Aβ fibrils (af ). In addition, we assume a clearance process
for Aβ fibrils which reduces af (but not afp), following the rate constant k�,
scaled by a fibril-specific factor (γf ).

_af ¼ j2a
nconv
m ao þ j3amafp � γf k�af ð4Þ

Equation for inflammation level
In our minimal model, the level of inflammation is simply represented by a
single variable infl. It is assumed that inflammation is induced in a
concentration-dependentmanner byAβ oligomers (ao) and fibril (af ), each
weighted by a factor representing their inflammation-inducing propensity
(δo and δf , respectively). The complex self-control of inflammation is
simply modeled by a linear control mechanism involving only a propor-

Table 1 | The list of parameters and their standard values used in our simulations (unless the use of other values is explicitly
stated)*

Parameter Description Value

kþ Rate of Aβmonomer generation:

kþ0 At zero inflammation level 10−12 (7.34 × 10−12)**

kþ1 At infinite inflammation 0

k� Rate constant of Aβmonomer clearance:

k�0 At zero inflammation level 2.78 × 10−5 (2.78 × 10−4)**

k�1 At infinite inflammation 1.39 × 10−4 (1.39 × 10−3)**

γo Attenuation factor for Aβ clearance due to oligomer formation 0.05

γf Attenuation factor for Aβ clearance due to fibril formation 0.01

j1 Primary nucleation: association rate constant for Aβ oligomer formation 6.7 × 10−8

j�1 Primary nucleation: dissociation rate constant 9.7 × 10−5

n1 Primary nucleation: kinetic order with respect to Aβmonomers 0.8

j2 Oligomer conversion: forward rate constant 1.9 × 10+9

j�2 Oligomer conversion: backward rate constant 0

nconv Oligomer conversion: kinetic order with respect mmatory potentials of the oligomto Aβmonomers 2.7

j3 Fibril elongation: forward rate constant 6.0 × 10+6

j�3 Fibril elongation: backward rate constant 0

j4 Secondary nucleation: association rate constant for Aβ oligomer formation 2

j�4 Secondary nucleation: dissociation rate constant 0

n2 Secondary nucleation: kinetic order with respect to Aβ monomers 0.9

δo Inflammation induction factor by Aβ oligomers 800,000

δf Inflammation induction factor by Aβ fibrils 200,000

kinfl Auto-regulation constant for inflammation 0.01

infl ref Reference inflammation level corresponding to a response function of 0.5 0.1

steep Steepness of the response function 50

*Source: the values of Aβ aggregation-related parameters were mainly taken from model 3 in reference25.
**To shorten the time required to reach thesteady state, theparameter values in parentheseswereused in calculations in theopencoupled state (shown in Figs. 3 and4). Theuseof these valuesdid not lead
to a significant change in the steady state calculated for the open uncoupled state (as shown in Fig. 2f).
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tional term with the proportionality constant kinfl .

infl ¼ δoao þ δf af � kinflinfl ð5Þ

Coupling between inflammation and kinetic parameters
To model the effect of inflammation on various kinetic parameters, we
introduce a Hill-type response function (resp),

resp ¼ inflsteep

infl ref steep þ inflsteep
ð6Þ

which varies between 0 (at infl ¼ 0) and 1 (as infl ! 1). The parameter
infl ref determines a reference inflammation level at which the response
function is half-maximum (i.e., resp ¼ 0:5), and the parameter steep
determines the steepness of resp variation around this reference inflamma-
tion level. The inflammation dependence of the kinetic parameters c
(c: kþ; k�; j1etc:) is in principle controlled in our model through the
following relations:

c ¼ c0 þ c1 � c0
� �

resp ð7Þ

in which c0 represents the intrinsic value of the kinetic parameter in the
absence of inflammation and c1, its value when infl ! 1. While our
model is capable of containing themodulatory effect of inflammation on all
the interested kinetic parameters, for the sake of simplicity, we focus here on
its effects on generation and degradation rate constants, kþ and k�. Except
for a few small differences introduced because of mass conservation
requirements in the closed system, the minimal model is reduced to the
kinetic model introduced in the literature25 for in vitro aggregation of Aβ,
i.e., when kþ ¼ k� ¼ 0 (the system is closed) and no inflammation is
present (infl ¼ 0). Below, we describe the kinetic behavior of the minimal
model in different systems.

The closed uncoupled system
First, we investigated the behavior of the model when it is closed
(kþ ¼ k� ¼ 0) and in the absence of inflammation (infl ¼ 0), as shown in
Fig. 2. Aβ aggregation under this condition resembles the in vitro aggre-
gation of Aβ, which has been extensively studied through various experi-
mental approaches21–25. Here, we have chosen parameter values reported in
the literature25, where the choice of Aβ aggregation model and related
parameter values was based on rigorous mass quantification of in vitro Aβ
aggregation through 3H labeling and natural abundancemass spectrometry
measurements (Table 1). The time-dependent variation in the relative
amount of Aβmonomers (Fig. 2a), oligomers (Fig. 2b), and fibrils (Fig. 2c)
was determined based on a range of initial monomer concentration varying
from 0.01 μM up to 100 μM. The Aβ fibril formation is an irreversible
process, so all the monomer is eventually converted to fibril in the course of
the simulation. However, during the simulation period, Aβ oligomers were
transiently formed and consumed, either dissociating back into monomers
or aggregating into fibrils. The relative population and lifetime of oligomers
are maximum at the lowest initial monomer concentration of 0.01 μM. At
this starting concentration, the relative oligomer population reaches 2.5%
from 105 s to beyond 107 s. On the other hand, at the highest initial
monomer concentration of 100 μM, the relative population of oligomers
reached only 0.5% over a much shorter period between 102 s and 104 s. At
1 μM, 2 μM, and 5 μM of Aβ monomer concentrations, the relative popu-
lation of oligomers peaked at about 2% and fell rapidly afterward. The
concentration-dependent change in the relative population and lifetime of
Aβ oligomers reflect the changing relative contribution of the aggregation
pathways, that is, dominated by primary nucleation at lower concentration
and secondary nucleation at higher concentration. Accordingly, a transition
in the calculated size of the individualfibrils was evident (Fig. 2d). Thefibrils
were the largest but took the longest time to reach the length of 4× 105

molecules as themonomer concentration dropped to 0.05 μM.On the other

hand, at concentrations above 1 μM, the fibrils did not grow beyond 50,000
monomers in length. At concentrations lower than 0.05 μM, the fibrils did
not reach their full length within the simulation time of 107 s.

The slopes in the Double-Logarithmic plot were then used to deter-
mine the molecular order for aggregation rate and lag time (Fig. 2e). The
molecular order (exponent) was 1.59 for the aggregation rate and−1.39 for
the lag time, in agreement with previous reports24,25. Overall, our model
captures the kinetics of in vitro Aβ aggregation when the system is closed
and in the absence of inflammation.

The open uncoupled system
Next, we opened the system by switching on the generation/degradation
events (kþ and k�, respectively) and simulated the kinetic behavior of the
model in the absence of inflammation or coupling with it. For kþ, a value of
10�12M:s�1 was used,which considering the total neuronnumber of ca. 1011

in human brains and a brain volume of ca. 1.5 L, corresponds roughly to 10
Aβ molecules per neuron per second, close to experimental reports27,28. For
k�, we assumed a fractional clearance rate of 10% h�1, close to the values of
6–9% h�1 previously reported10,29, which corresponds to k� of
2:78× 10�5M�1s�1. For the clearance of Aβ oligomers and fibrils, we used
scaling factors γo of 0.05 and γf of 0.01, respectively, representing the
expectedly higher resistance of Aβ oligomers and especially fibrils to degra-
dation and clearancemechanisms, when compared toAβmonomers30.With
the used values of kþ and k�, a quasi-steady-state value of about 35 nM for
monomeric Aβ was reached within 105 s when the initial monomeric Aβ
varied in the range 0–10 μM (Fig. 2f, the initial concentration for oligomeric
and fibrillar Aβ concentration was zero). The steady-state level of oligomeric
Aβwas3-4orders ofmagnitude smaller than thatofmonomericAβ, andonly
a small fraction of monomeric Aβ (about 1% when starting from 1 μM
monomer)was converted tofibrils during the course of the simulation. These
values are in reasonable qualitative agreement with the level of various Aβ
species in young non-AD brains31. The steady-state concentration of Aβ lies
close but below the range of 50–500 nM in which the synaptic- (but not
neuro-) toxic effects of Aβ starts,28,32 therefore it can represent the boundary
between the health state and the earliest stages of the long prodromal phase of
AD. Notably, the calculated final concentration of Aβmonomers, oligomers,
and especially fibrils showed relatively high sensitivity to parameters kþ and
k�, when compared with the other model parameters (Table 1).

The open-coupled system
Having established the intrinsic values of kinetic parameters for Aβ gen-
eration, aggregation, and degradation, the open Aβ aggregation system was
subsequently coupled to the inflammation system. The oligomers and, to a
smaller extent, fibrils of Aβwere allowed to induce inflammation (δo>δf >0,
see Eq. 5 above), which, in turn, canmodulate the kinetic parameters of the
generation and degradation of Aβ through a Hill-type response function
(see Eqs. 6 and 7 above). The higher propensity of small Aβ oligomers than
fibrils to induce in vivo inflammation33,34 and the inflammation-induced
increase in Aβ clearance rates11,13,18 are in line with previous reports. The
simulated kinetic of the open coupled system using standard values of
system parameters (see Table 1) showed convergence to a homeostatic state
(Fig. 2g). Notably, asmore clearly seen in their phase space behavior, the Aβ
monomer and oligomer concentrations showed overdamping features;
despite starting fromdifferent initial states and some initial spikesduring the
transient phase, they converged to a fixed steady-state point (Fig. 2h).When
compared with the open uncoupled system, the calculated final con-
centration of Aβmonomers and oligomers showed much lower sensitivity
to parameters kþ and k� (Supplementary Table 2), reflecting the homeo-
static nature of the coupled system.

Next, we studied the open-coupled system with respect to three
parameters related to inflammation response, namely, steep, infl ref
and kinfl . Depending upon the values of these three coupling-related
parameters, the system showed more complex behavior than pre-
viously observed in closed or open uncoupled systems above. While
the coupled system reproduced the overdamped and damped
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oscillations observed in the uncoupled systems, the steady oscilla-
tions were also observed at specific values of the inflammatory
parameters. Therefore, we investigated the transition from over-
damped and damped oscillation to steady-oscillation (i.e., bifurca-
tion) with respect to these coupling-related parameters as well as
parameters related to Aβ aggregation system, as follows.

Oscillation related to the inflammation parameters
To investigate the effect of coupling-related parameters on the kinetic of
systems, we varied the three parameters steep, infl ref and kinfl over a rea-
sonably broad range, and simulated the systemkinetics.A richdiversity in the
kinetic behavior of the system was observed over the studied region of this
three-parameter space, includingmonotonic kinetics, overdamped, damped,

Fig. 2 | Simulated kinetics of Aβ aggregation.
a–d Time-dependent changes in concentration of
Aβ monomers (a), oligomers (b), and fibrils (c) in
the closed model, i.e., with no generation and no
clearance of Aβ and no inflammation or coupling
with it, shown for initial Aβmonomer concentration
varying from 0.01 μM to 100 μM. In d, the time-
dependent changes in the average fibrillar length are
demonstrated. e The log–log plots of aggregation
rate and lag time vs initial Aβ monomer con-
centration yield apparent molecular orders (expo-
nents) in close agreement with previous reports.
f Time-dependent changes in concentration of Aβ
monomers, oligomers, and fibrils in the openmodel,
i.e., with generation and clearance of Aβ switched on
but no inflammation or coupling with it allowed.
The system approaches physiologically reasonable
steady-state levels for Aβmonomers and oligomers,
while gradual slight accumulation of Aβ fibrils is
observed. With the two sets of generation (kþ) and
clearance (k�) rates used, no significant change was
observed in the steady-state concentration of Aβ
monomers and oligomers. g Time-dependent
changes in concentration of Aβ monomers, oligo-
mers, and fibrils (top panel) and inflammation level
(bottom panel) in the open coupled model, i.e., an
openmodel inwhich induction of inflammation and
coupling between Aβ generation/clearance and
inflammation are allowed. The example shown here
is calculated for the initial Aβ monomer con-
centration of 0.6 μM. h Two-dimensional phase
planes showing Aβ fibril (top panel) or oligomer
(bottom panel) vs Aβ monomer concentration
changes in the open coupled model with initial Aβ
monomer concentrations of 0–1.2 μM. Despite dif-
ferent initial states, the trajectories converge to a
fixed steady-state point.
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and steady oscillations. Parts of our results are shown in Fig. 3a as a contour
map corresponding to Aβ monomer concentration (z-axis, represented as
colors) as a function of time (the inner x-axis) with respect to a range of
parameter values (steep and infl ref , respectively, as theouter and innery-axis
and kinfl , as the outer x-axis). In the contour map, the flat colors signify
monotonic behavior, the few ridges ending in flat colors imply overdamped
or damped oscillation, while consecutive ridges signify steady oscillation. In
general, the most pronounced steady oscillations were observed when the
steep was 20 or higher, the kinfl was 0.001, and the infl ref varied over
0.002–0.2 (the four top-left subfigures). For example, the top left subfigure
with steep value of 50 shows a curving of the ridges forming a ripple pattern,
indicating that the period of oscillation is sensitive to the infl ref parameter
varying along the y-axis. Furthermore, the period of oscillation appears not to
be constant along the same trajectory but reduces as time progresses.

To better characterize the effect of these coupling-related parameters
on the properties of concentration oscillations, we focused on the later part
of trajectories andmonitored the effect of these three parameters separately,
as follows:

The kinfl parameter
The kinfl was varied over the range 0:1� 6× 10�3 while maintaining fixed
values for steep and infl ref at 50 and 0.005, respectively. As shown in
Fig. 3a, b, the period of concentration-oscillations reduced from about
7000 s at kinfl of 0:1 × 10

�3 to about 2000 s at kinfl of 3× 10
�3, before losing

the regular oscillatory behavior at higher kinfl values. Interestingly, the
normalized amplitude of oscillations in concentrations (normalized con-
cerning average concentration) showed a similar behavior decreasing in an
inverse sigmoidal manner from the maximum possible value of 2 at kinfl of
0:1× 10�3 to negligibly small values at kinfl of 3× 10

�3. Overall, a gradual
shift from large-amplitude slow oscillations towards large-amplitude fast
and finally small-amplitude fast oscillations were observed when kinfl varied
between 0:1× 10�3 and 3 × 10�3. The regular oscillatory behavior was lost
at kinfl above 3× 10

�3.

The steep parameter
The oscillatory potential of steep parameter was investigated by keeping the
values of infl ref and kinfl fixed at 0.005 and 3 × 10

�3, respectively. The steep
parameter showed oscillatory behavior above the value of 20 and reached
the maximum amplitude by the value of 30 and above. The regular period
exhibiteda slight dependenceon steep value, increasing fromabout 4500 s at
steep of 20 to the saturating value of around 5500 s at steep of 100 (Sup-
plementary Fig. 1).Overall, a shift fromsmaller-amplitude fasteroscillations
to larger-amplitude slower oscillation was observed over the steep values
of 20− 30.

The infl_ref parameter
The same analysis was carried out for infl ref by keeping the values of steep
and kinfl fixed at 50 and 1× 10�3, respectively. The regular period of oscil-
lation reduced from around 8000 s to about 4000 s as the infl ref varied
from 0.001 to 0.1. The steady amplitude dropped steeply from maximum
values of 2 to zero as infl ref approached 0.1 (Supplementary Fig. 2). The
system entered a non-oscillatory regime at infl ref above 0.1. Overall, a shift
from large-amplitude slow oscillations to small-amplitude fast oscillations
was observed when the infl ref parameter increased from 0.001 to 0.1. This
effect is similar to that of kinfl but opposite to that of steep parameter.

Oscillations related to generation and degradation parameters
The above analysis showed the propensity of system to exhibit steady
oscillation within specific regions of the coupling-related parameter sub-
space. To examine the effect of parameters related to generation and
clearance, namely kþ and k� on the kinetic behavior of system, we fixed the
coupling-related parameters steep, infl ref and kinfl at 50, 0.01, and 0.003,
respectively, where the systemdoes not show an oscillatory kinetics with the
so-called standard values of kþ and k� (Table 1). Then evaluated the effect
of variation of these two parameters, as follows:

The kþ parameter
This parameter represents the rate of Aβmonomer generation, supposedly
decreasing from an intrinsic value kþ0 at zero inflammation to a value of
kþ1 at infinite inflammation. Several familial AD-related mutations are
known to increase the rate of Aβmonomer generation, e.g., by favoring the
amyloidogenic pathway in the proteolytic cleavage of APP9. It is therefore
interesting to evaluate its effect on the kinetics of coupled aggregation-
inflammation system. To this end, we varied kþ0 in the range 10−12 to 10−8

(the standard value of kþ0 was 10
−9) while keeping kþ1 ¼ 0. Within the

range of 2× 10�10 till 6× 10�9, the system showed steady oscillations with
period of ~ 2500 s and maximum normalized amplitude of up to 1.5.
Interestingly, however, the system entered non-oscillatory regime at
6× 10�9 (Fig. 4a, b).

The k_- parameter
This parameter represents the clearance or degradation rate of Aβ mono-
mers directly (andAβoligomers andfibrils indirectly after the applicationof
a scaling factor), which we suppose it increases from k�0 at zero inflam-
mation to k�1 at infinite inflammation. Several lines of evidence point to
the altered rate of protein degradation in neurodegenerative diseases, e.g., as
a consequence of disease-related mutations or posttranslational
modifications35,36. To evaluate the effect of variation in this parameter, we
fixed the above kþ0 and kþ1 values, respectively at 7× 10�12 and 0, where
the system was outside but not far from the oscillatory regime, then varied
k�0 in the range from 10−6 to 5× 10�4 (the standard value of k�0 was
2:78× 10�4, and kept k�1 ¼ 5k�0. Despite this large variation, the system
did not exhibit steady oscillations (Supplementary Fig. 3). Thus, the effect of
Aβ monomer degradation rate on the bifurcation of the system is in clear
contrast with the effect of its generation rate (see below for the effect of
degradation rate for Aβ oligomers and fibrils).

Oscillations related to oligomerization and reverse-
oligomerization processes
Subsequently, we investigated the effect of changes in aggregation-related
parameters on the kinetics of the system.We started with the parameters j1
and j�1, which control the oligomerization and reverse-oligomerization
process during primary nucleation. Several AD-related mutations and
posttranslational modifications of Aβ are known to enhance Aβ
oligomerization37,38 and alter the thermodynamic and kinetic stability of its
aggregates39,40. In addition, anti-AD antibodies and drug candidates are
often targeted at the oligomerization process andmodulate these rates41. To
simulate the effect of changes in these parameters, we fixed the values of
coupling-related parameters at the level described in the “The k_- para-
meter” section and allowed generation and degradation rates to follow their
assumed inflammation dependence.We then varied j1 in steps from 10−8 to
10−6 (the standard value of j1 was 6:7 × 10

�8), assuming that this parameter
itself was inflammation-independent, i.e., j10 ¼ j11 ¼ j1. The Aβ aggre-
gation system started showing oscillatory behavior from the j1 value of 10

−7

and reached a steady oscillation of about 2500 s period and 1.5 normalized
amplitude (Fig. 4c, d). The system retained its oscillatory kinetics
till j1 ¼ 10�6.

A similar analysis was performed for the reverse-oligomerization rate
j�1, by varying j�1 from 10−5 to 2 × 10−3 in steps, while keeping
j1 ¼ 6:7× 10�8. The system showed relatively weak oscillatory behavior
between j�1 of 10

−3 and3× 10�3, having amaximumnormalizedamplitude
of 0.8 and showing a decrease in the period from 2000 s to 1000 s (Sup-
plementary Fig. 4).

Oscillations related to fibrillation and elongation processes
In ourmodel, thefibrils growbyprimary or secondary nucleationprocesses,
followed by elongation. The effects of the kinetic parameters related to
fibrillation were studied after fixing the coupling-related parameters as
described above and setting j1 ¼ 6:7 × 10�8 and j�1 ¼ 9:7× 10�5. With
these starting parameters the system showsmild oscillation with a period of
about 1940 s and a normalized amplitude of 0.342. We varied the rate
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constants j2 (related to oligomer conversion) from 10−9 to 10−11, j3 (related
to fibril elongation) from 105 to 107, and j4 (related to secondary nucleation)
from 2 to 200 in steps. In our model, all these steps are irreversible, that is,
j�2 ¼ j�3 ¼ j�4 ¼ 0. No considerable change in the mild oscillatory
behavior of the systemwas observed in this rather broad range of values for
fibrillation-related parameters (Supplementary Fig. 5).

Oscillations related to the clearance of Aβ aggregates
Aβ oligomers and fibrils are potentially cleared by the recruited macro-
phages and to a lower extent, activated microglia via degradation
mechanism over and above proteasomal degradation pathways42. Muta-
tions and modifications in the Aβ sequence may alter the stability of its
aggregates against proteolytic pathways35. Besides, new therapeutic

Fig. 3 | Bifurcation analysis for the coupled Aβ
aggregation-inflammation with respect to
inflammation- and coupling-related parameters.
a Contour maps representing temporal changes in
Aβmonomer concentration in dependence on three
parameters: kinfl (outer x-axis), steep (outer y-axis),
and infl ref (inner y-axis). Changes in these three
parameters lead to distinct kinetic behaviors. As an
example, a slice of contour maps at steep ¼ 50 and
infl ref ¼ 0:005, demonstrates how changes in the
kinfl parameter affects oscillatory changes in Aβ
monomer concentration (bottom of the panel).
b Changes in the steady-state (relative) amplitude
(primary axis, blue) and period (secondary axis,
orange) of oscillations caused by variation in kinfl
parameter (at steep ¼ 50 and infl ref ¼ 0:005).
When kinfl increases, a transition from large-
amplitude slow oscillation to small-amplitude fast
oscillation is observed. Oscillations with very small
amplitudes represent damped oscillations, in which
the calculated spacing between peaks (period) can
frequently become irregular and unreliable.
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interventions, including monoclonal antibodies, modify the kinetics of
clearance of the Aβ aggregates43,44. In our model, the clearance kinetics of
oligomers andfibrils is described by the degradation rate k�, scaled downby
constant factors γo for oligomers and γf forfibrils. To investigate the effect of
oligomer clearance rate on the system kinetics, we varied the parameter γo
from 0.01 (corresponding to highly stable oligomers against proteolytic
degradation, k� is attenuated to 1%) to 1.0 (corresponding to highly sus-
ceptible oligomers to proteolytic degradation, or when clearing is enhanced
by therapy) in steps. Interestingly, the system shows weak but steady
oscillation between the values of γo = 0.01–0.2, with the maximum

normalized amplitude of 0.6 and period reducing from about 2000 s to
about 1000 s with increasing value of γo (Fig. 4e, f). The system becomes
non-oscillatory above γo ¼ 0:2 and remains so till the value of 1.0.

Subsequently, we examined the effect of fibrillar clearance rate by
setting γo ¼ 0:05, such that the system showsmild oscillation with a period
of about 1940 s and normalized amplitude of 0.342 (as in the “Oscillations
related to fibrillation and elongation processes” section). The attenuation
factor of fibril clearance, γf was then varied between 0.01 (corresponding to
highly stable fibrils against proteolysis) to 1 (corresponding to highly sus-
ceptible fibrils to proteolysis) in steps. Remarkably, this variation had no
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Fig. 4 | Bifurcation analysis for the coupledAβ aggregation-inflammation system
with respect to Aβ generation, aggregation, and clearance parameters.
a–f Contour map representing temporal changes in Aβmonomer concentration in
dependence of Aβ monomer generation rate constant kþ (a), rate constant for Aβ
oligomer formation during primary nucleation (c), and attenuation factor, γo for
clearance rate constant of Aβ oligomers relative to monomers (e). The corre-
sponding changes in the steady-state (relative) amplitude (primary axis, blue) and

period (secondary axis, orange) of oscillations caused by variation in these three
parameters are shown in (b, d, and f). Pronounced changes in the oscillatory
dynamics of the system are observed as a consequence of variations in these para-
meters (in these simulations, the values of inflammation-related parameters were:
steep ¼ 50, infl ref ¼ 0:01 and kinfl ¼ 0:003). In panels b, d, and f, oscillations with
very small amplitudes represent damped oscillations, inwhich the calculated spacing
between peaks (period) can frequently become irregular and unreliable.
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considerable effect on theoscillatory behavior of the system (Supplementary
Fig. 6).

Discussion
Here, we have presented a minimal model of a coupled aggregation-
inflammation system for Aβ peptide, in which Aβ monomers proceed
toward aggregation through primary and secondary nucleation and elon-
gation processes, the generated Aβ oligomers and fibrils induce inflam-
mation, and the inflammation in turn enhancesAβ clearance and reduces its
generation (Fig. 1).Despite its simplicity, themodel exhibits remarkably rich
dynamics, especially a large propensity for oscillatory kinetics depending on
the parameters controlling the coupling between aggregation and inflam-
mation (Fig. 3). Several Aβ aggregation-related parameters, esp. rates of
generation and clearance of Aβ monomers (kþ and k�), rate of Aβ oligo-
merizationduring primary nucleation (j1), and the parameter governing the
stability of Aβ oligomers against proteolytic degradation (γo), are shown to
modulate the oscillatory regime of system dynamics (Fig. 4).

Biochemical oscillations are rather commonandoccur in a broad range
of cellular biological contexts underlying circadian rhythms, DNA synthesis
and mitosis, development and so on45. The main requirements for (bio)
chemical oscillators are negative feedback loops accompanied by implicit or
explicit time delays and a high level of nonlinearity in system equations
(often involving interaction between chemical species), which are not
uncommon to be fulfilled in biochemical systems45. The oscillatory response
of the immune system to antigenic stimulation has been reported decades
ago46 and a growing body of evidence during past decades has demonstrated
that many aspects of the immune response follow oscillatory kinetics47. It is
well known that Aβ aggregates especially oligomers can trigger a cascade of
inflammatory response by activating microglia and astrocytes, involving
recruitment of peripheral macrophages to the sites of Aβ deposition and
promoting removal of Aβ aggregates by recruited macrophages and, to a
lower extent, activated microglia13. In addition, the temporally regulated
emergence of pro- and anti-inflammatory microglia and macrophages and
the corresponding cytokines control the temporal evolution of the immune
response, leading to the endof the immune response after re-establishing the
homeostatic state without Aβ aggregates13,19. Unlike several published
models of the immune system ofAD47–50, theminimalmodel presented here
does not attempt to capture the complex internal dynamics of the immune
response to Aβ aggregates, instead, represents the generated inflammation
simply as a time-dependent state variable, infl, capable of modulating the
production and clearance rates of Aβ, respectively kþ and k�, according to a
Hill-type response function (resp). In coupling between inflammation and
Aβ system, the model is based on two simple premises, that inflammation
promotes clearance of Aβ, as supported by a vast body of experimental
data11,13,18, and that inflammation suppresses Aβ generation. The latter
premise admittedly goes against reports suggesting the presence of vicious
cycles of Aβ generation enhancement by inflammation17,51, but is supposed
here to represent a physiological state of the system more robust against
progression to a pathological state. Despite the very simple structure of our
model, it exhibits a rich dynamical behavior depending on the coupling-
related parameters, most notable a pronounced propensity for steady
oscillations. The oscillatory potential of the system can be attributed to the
presence of a general oscillatorymotif, the negative feedbackwith time delay
introduced by a series of intermediate steps between Aβ monomer and
inflammation45. As expected, the emergence of significant oscillations
depended on appropriate time constants underlying the production and
consumption of various Aβ species and inflammation. Interestingly, the
periodicity and relative amplitude of oscillations depended on the coupling-
related parameters, e.g., within the oscillatory basin of parameter space, an
increase in the parameter kinfl representing higher tendency of inflammation
response to control itself led to a gradual shift from large-amplitude slow
oscillations to small-amplitude fast oscillations.A similar trendwasobserved
for the parameter infl ref representing the general sensitivity of the coupled
system to inflammation levels, while the parameter steep representing the
steepness of the system response to inflammation had an opposite effect.

In relation with the above-mentioned coupling-related parameters,
many molecular factors are naturally involved in how the Aβ clearance
pathways (e.g., in macrophages, microglia, or in relation to transport to
blood or CSF) and Aβ generation (by neurons and astrocytes) respond to
inflammation and how the inflammation response governs its self-limiting
kinetics (e.g., by a variety of pro- and anti-inflammatory macrophages and
microglia and the corresponding cytokines)11,13,15,16. Consequently, altera-
tions in these molecular factors have the potential to push the system away
from its homeostatic state towards oscillatory kinetics. Besides, our data
shows that the AD-related mutations and posttranslational modifications
which affect the intrinsic rates ofAβ generation (throughparameter kþ), Aβ
oligomerization (through parameter j1), and Aβ clearance (through a
parameter k�), esp. clearance of Aβ oligomers (through a parameter γo),
shift the oscillatory regime and induce oscillatory kinetics at normally non-
oscillatory regionof coupling-relatedparameter space.Therefore, a complex
interplay of molecular factors related to Aβ aggregation, inflammation and
coupling between them seem to underlie the rich dynamics of the system,
including its pronounced propensity for steady oscillations. Notably, rich
dynamics of protein aggregation systems have previously been modeled
based on the coupling between Aβ and tau protein aggregation in AD52, or
based on the coexistence of kinetically distinct aggregates in prion systems53.
Based on our data, we argue that such steady oscillations could lead to
immune system exhaustion over prolonged periods and eventually lead to
the failure of compensatorymechanisms, hence contributing to a transition
to a more progressive phase of amyloid pathology in pre-clinical AD.
Accordingly, we propose that detection of such oscillations in levels of Aβ
species or neuroinflammation could be considered as potential biomarkers
for the early diagnosis of AD in normal, mild cognitive impairment or
preclinical AD cases, especially considering the relatively long periodicities
(in the order of tens ofminutes to fewhours) andpotentially large amplitude
of oscillations shown here.

The complex interplay between cancer and the immune system has
been the subject of extensive studies in the past decades and oscillations in
cancer pathology (remission–recurrence) or inflammation have been pre-
dictedandexperimentally detected54,55. InAD, the altered level andkinetic of
systemic and neuroinflammation are shown by numerous reports based on
blood (plasma) and CSF markers of inflammation and neuroimaging
methods56–61, however, to our best knowledge, there is no report of experi-
mental detection of oscillatory dynamics in different stages of AD.Our data
indicate the potential presence of oscillations in amyloid pathology or
inflammation in AD and propose that with vigilant monitoring of related
biomarkers at proper time intervals such oscillations could be detected.
Notably, several neuro-imaging techniques (including PET, MRS, and
fMRI) are available to monitor neuroinflammation and amyloid pathology
at sufficiently short time intervals59–62, and someneuroimaging observations
already point to an oscillating amyloid burden in a mouse model of AD63.
Furthermore, oscillations in the coupled Aβ aggregation and inflammation
system may be related to perturbations in circadian rhythms and sleep
disturbances frequently associatedwith pre-clinical and early stages ofAD64.
We, therefore, propose that the search for oscillatory dynamics in AD be
included in epidemiological studies that search for early biomarkers of AD.

There is currently no cure for AD, but palliative treatment. An active
approach in searching for efficient anti-AD treatment is to develop agents
targeting Aβ aggregation at different steps, e.g., reducing its generation,
inhibiting its aggregation, orpromoting its clearance44. The results presented
here based on aminimalmodel of coupled aggregation-inflammation show
the potential of such interventions in profoundly altering the kinetics of the
system, e.g., inducing oscillations, in the in vivo context. It is not clear what
the effect of suchoscillatory kineticswould be on the outcomeof therapeutic
interventions, but we suggest that this hitherto largely neglected aspect
shouldbe taken into consideration in clinical trials of potential anti-ADdrug
candidates. The presence and characteristic features of oscillations in treated
and non-treated groups could then provide additional information on the
efficacy of anti-AD agents and facilitate the interpretation of trial results.
Finally, it is worth mentioning that the mutual interplay between a
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pathological process and the immune system is a rather generic phenom-
enon and complex dynamical patterns could emerge in a broad range of
pathophysiological systems. The modeling approach presented here is
therefore potentially applicable to many such systems, including non-AD
neurodegenerative and other diseases.

To summarize, we introduce a minimal model of AD-related Aβ
aggregation coupled to inflammation, basedonawell-validatedmodel ofAβ
aggregation in vitro. The simulated behavior of this simple model in
dependence of various parameters related to Aβ aggregation and the cou-
pling between inflammation and Aβ aggregation demonstrates the rich
dynamics of this system, including a pronounced propensity to steady
oscillations. We search for regions of coupling-related parameter space in
which a drastic shift in system dynamics towards oscillatory dynamics, i.e.,
bifurcation, occurs anddemonstrate howchanges inAβ aggregation-related
parameters can shift such bifurcations. Our data provides a simple
mechanism for potential steady oscillations in Aβ and inflammation levels
and suggests that such steady oscillations could lead to eventual exhaustion
of the immune system and failure of compensatory mechanisms over
prolonged periods and contribute to the transition of AD into a more
progressive amyloid pathology phase. Furthermore, we propose that the
presence and features of suchoscillations shouldbe taken into account in the
search for early biomarkers of AD and potential drugs in anti-AD clinical
trials.

Methods
The system was modeled by monitoring the species concentrations using a
system of coupled ODEs. Our model describes the early phase of ADwhen
there is no significant build-upof plaques. Therefore, inourmodel, the brain
is considered a homogeneous compartment of fixed volume with respect to
the concentrations of Aβ aggregation species. In our simulations the Aβ
monomer concentration is 0 at t ¼ 0, however,wehave checked the validity
of the results starting from initial Aβ monomer concentrations at the
physiologically relevant levels (Supplementary Fig. 7).

We translated the equations into Mathematica notebooks (version
12.3.1.0)65,66 and used the numerical differential equation solver (NDSolve)
to generate an interpolating function for the system that approximates the
behavior within the boundaries of 0–107 s (115 days, 17 h, and 47min).We
haveused the automatic optionof theNDSolve for the adaptive procedure to
determine the step size and number of steps to satisfy the default Accur-
acyGoal and PrecisionGoal parameters. In standard workstations (AMD
Ryzen 7 2700, eight-core 3.2 GHz processor, 64 GB RAM) the generation
and plotting of the time-course in the Mathematica notebook required
about 10min withmarginal improvement upon parallelization ofNDSolve.

To calculate the aggregation rates and lag times for systems with var-
ious initialmonomer concentrations (as shown in Fig. 2e), we used a logistic
function for the fitting process (Least Square Method, SciPy). The growth
constant in the logistic function corresponds to the aggregation rate and the
t-axis intercept with the tangent at the inflection point gives us the lag time.

Time course simulations were performed till 107 s at 1 s time intervals
using the deterministic numerical method of lines algorithm. The early
behaviorof themodelwas established fromtheknowledgeof the steady-state
concentrations of theAβ species and the reported kinetics of the aggregation
process. The FindPeaks function withinMathematica was utilized to mea-
sure the peak-to-peak distance as period (Supplementary Fig. 8). The
baseline in the latter part of the steadyoscillationor thedampedoscillation at
50,000 swas determined in away that themid-point between the valleys and
troughs was one (Supplementary Fig. 9a). The amplitudes were normalized
with respect to the baseline (Supplementary Fig. 9b). The three-dimensional
surfaces of the contour maps were plotted with the ArrayPlot function in
Mathematica with the default density gradient color function.

The system contained five state variables, am, ao, afp, and af , respec-
tively, representing concentrations of the monomer, oligomer, fibril parti-
cles, and fibrils of Aβ, and infl, representing the inflammation level. The
dynamics of the systemweremodeled using a systemof coupledODE (Eqs.
1–5).The inflammation level inflwas calculatedusing adifferential equation

that depends on the concentrations and the inflammatory potentials of
different aggregation states of Aβ (Eq. 5). We have used a numerical dif-
ferential equation solver (NDSolve) withinMathematica for the time course
of 107 s withMaxSteps = 108. The value ofMaxSteps was a balance between
the accuracy and compilation time of theMathematica notebook.We have
generated the time course for each situation with differing values of the
parameter under investigation using ParallelTable, which improves the
compilation time.

The closed uncoupled system
To simulate the closed uncoupled system, the rate of generation of Aβ
monomers and the rate of degradation of Aβ monomers were fixed at 0,
kþ ¼ k� ¼ 0. The initial Aβ monomer concentration was varied from
0.01 μM, 0.02 μM, 0.05 μM, 0.1 μM, 0.2 μM, 0.5 μM, 1.0 μM, 2.0 μM,
5.0 μM,10.0 μM,20.0 μM,50 μM,and100 μM,while the initialAβoligomer
(ao), fibril particle (afp) and fibril (af ) concentrations were set to 0. The
initial level of inflammation was set to infl ¼ 0, and the inflammatory
potential of the aggregation species was set to δo ¼ δf ¼ 0. All other
parameters are as described in Table 1.

The open uncoupled system
In theopenuncoupled system, the rate of generationofAβmonomerswas set
to kþ ¼ 10�12; and the rate of Aβ clearance was set to k� ¼ 2:78× 10�5

(Table 1 and Fig. 2f). The choice of these parameter values was supported by
previous reports and validated based on the steady-state concentration of
differentAβ species. The simulationwas startedwith the concentration ofAβ
monomer, oligomer, fibril particle and fibrils set to 0. The initial level of
inflammation was set to infl ¼ 0, and the inflammatory potential of the
aggregation species was set to δo ¼ δf ¼ 0. The use of a second set of values
for generation and clearance rates (kþ ¼ 7:34× 10�12 and
k� ¼ 2:78× 10�4) did not lead to a significant difference in the steady state
(Fig. 2f).

The open-coupled system
The system was coupled with the inflammation by setting the inflammatory
potentials of the oligomer to δo ¼ 800; 000 andof thefibril to δf ¼ 200; 000,
reflecting the higher potential of Aβ oligomers than fibrils to induce
inflammation. In response to generated inflammation, the rates of Aβ
monomer generation (kþ) and degradation (k�) were varied between their
intrinsic values (kþ0 and k�0) andpost-inflammation values (kþ1 and k�1)
according to a Hill-type response function (see Eqs. 6 and 7). The response
function (resp) varied between 0 and 1. The simulation was started with the
concentration of Aβ monomer, oligomer, fibril particle, and fibrils set to 0.
The initial level of inflammationwas set to infl ¼ 0. All other parameters are
as shown inTable 1.All subsequent calculationswere performed in the open-
coupled system.

Test for convergence of the open-coupled system
We have checked the convergence properties of the equations by fixing the
initial concentrations of the Aβ monomers to
am ¼ 0 μM; 0: 3 μM; 0:6 μM; 0:9 μM; and 1:2 μM. Supplementary Fig.
7 shows the phase space of the Aβ oligomer, ao vs Aβ monomer, am,
converging to an overlapped limit cycle—showing convergence to steady
oscillation. The convergence was achieved within 5× 104 s, within 0.5% of
the time course. The phase space was drawn using ParametricPlot in
Mathematica with MaxRecursion = 5. The MaxRecursion is a balance
between the accuracy and compilation time of theMathematica notebooks.

Exploring the parameter space
The role of the parameterswas explored individually by keeping all the other
parameters fixed. The parameter under investigation was varied in a linear
array consisting of 200 or more values. The range of the parameter was
within one order ofmagnitude, that is, 10-fold less to 10-foldmore than the
base value reported in Table 1. We have checked the parameters steep,
infl ref , kinfl, kþ0 (with kþ1 ¼ 0), k�0 (with k�1 ¼ 5k�0), j1, j�1, j2; j3, j4,
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γo and γf (see Eqs. 1–6 and Table 1 for the definition of parameters). We
investigated each parameter within individual notebooks, which usually
took approximately 10min to compile in standard workstations (AMD
Ryzen 7 2700, eight-core 3.2 GHz processor, 64 GB RAM).

We inspected the time courses of concentrations of Aβ aggregation
species by plotting the time course of 105 s for regular intervals of each
parameter under investigation. For example, we inspected 25 uniformly
distributed plots where we changed the parameter under investigation in
100 equal steps. Themost visible dynamical profiles could be seen in the case
ofAβmonomer concentrationam, while otherAβ species and inflammation
levels showed similar albeit less clear profiles. The results have therefore
been shown mainly on the Aβmonomer concentrations.

The contour maps were created using ArrayPlot by keeping the time
along the x-axis, and the parameter under investigation along the y-axis,
both in linear scale. The z-axis of the plots showed the concentration of the
Aβ monomer. The contour maps were drawn after the initial spike in
concentration to identify the finer features of the stabilized oscillation after
5000 s or more, using the ColorFunction “M10DefaultDensityGradient” in
Mathematica.

We plotted the normalized amplitude of steady oscillation with the
parameterunder investigationand thewaveperiodof steadyoscillationwith
the same parameter. These pairs of plots show the bifurcation properties of
the individual parameters. The trends of the bifurcation properties were
compatible between the pairs of plots.

Effect of the inflammation-related parameters. The steep parameter
was varied from 0.5 to 100 in 200 steps. The kinfl parameter was varied
from 0.00005 to 0.01 in 200 steps. The infl ref parameter was varied from
0.001 to 0.5 in 500 steps.

Effect of the rate of Aβmonomer generation. The kþ0 parameter was
varied from 10−13 to 10−11 in 100 steps and 10−10 to 10−8 in 100 steps,
while kþ1 ¼ 0.

Effect of the rate of Aβmonomer degradation. The k�0 parameter was
varied from 10−6 to 5 × 10−4 in 500 steps. The k�1 parameter was varied
linearly with k�0, with k�1 ¼ 5× k�0.

Effect of the rate of Aβ oligomer formation during primary nuclea-
tion. The j1 parameter was varied from 10−10 to 10−8 in 100 steps and 10−8

to 10−6 in 100 steps. Effect of the rate of Aβ disaggregation, oligomer
dissociation to monomer: The j�1 parameter was varied from 10−10 to
10−8 in 100 steps and 10−8 to 10−6 in 100 steps.

Effect of the rate of irreversible Aβ oligomer conversion. The j2
parameter was varied from 107 to 109 in 100 steps and 109 to 1011 in
100 steps.

Effect the rateof irreversibleAβfibril elongation. The j3 parameter was
varied from 105 to 107 in 100 steps and 107 to 109 in 100 steps.

Effect of the rate of irreversible Aβ oligomer formation during sec-
ondary nucleation. The j4 parameter was varied from 10−2 to 1 in
100 steps and 2 to 200 in 100 steps.

Effect of the rate of clearance of Aβ oligomers. The γo parameter was
varied from 10−4 to 10−2 in 100 steps and 10−2 to 1 in 100 steps.

Effect of the rate of clearance of Aβfibrils: The γf parameter was varied
from 10−4 to 10−2 in 100 steps and 10−2 to 1 in 100 steps.

In all cases, other parameters were fixed at the level shown in Table 1.
We performed the calculations in a modular manner using the note-

book feature ofMathematica. Additional calculationswere performedusing
COPASI67, as described below.

Measuring period of oscillation
The period of the oscillations changed during the time course to asymptotic
values, as seen in Supplementary Fig. 8.We have considered the period after
the stabilization period of 50,000 s when the period reaches the asymptotic
value for steady oscillations. The period was measured as the peak-to-peak
distance in time using the function FindPeak within Mathematica. The
period (and amplitude)weremeasured as themean value of the last 5 peaks,
which allowed us to reliably determine the period (and amplitude) of
fluctuations in sustained oscillations. We have used the algorithm with
maximum sensitivity, that is, with minimal Gaussian blurring for peak
detection. The algorithm used the default Gaussian blurring of

σ ¼ ð Log nð Þ
Log 100ð ÞÞ

2
, where n is the number of data points, which translates to

6.25 s for the 105 data points distributed over 105 s. This sensitive algorithm
also detects peaks in damped oscillations. In such cases, the algorithm
detects progressively smaller peaks, and consequently, the calculated aver-
age amplitude could become negligibly small, and the spacing between
peaks (periods) could become irregular.

Measuring the amplitude of oscillation and normalization
We have fixed the Aβmonomer to 0 at t ¼ 0. The amplitude of the initial
oscillations reduced from a large fluctuation to asymptotic values, as seen in
Supplementary Fig. 9a. We have determined a baseline (= 1 after normal-
ization) as themidpoint between the peaks and troughs of steady oscillation
after the stabilization period. The peak could be found using the FindPeak
command as described in the measurement of periods. We measured the
troughs byfinding the peaks after reflecting the oscillations in concentration
around the timeaxis.Afternormalization, themaximumpossible amplitude
of fluctuations can be 2. The normalized oscillations are shown in Supple-
mentary Fig. 9b. All simulations, calculations, and analyses were performed
using Mathematica (version 12.3.1.0)66.

Sensitivity analysis
The software COPASI (Complex Pathway Simulator, version 4.39, Build
272)67 was used to calculate the system sensitivities in non-oscillatory steady-
states. First, we reproduced all the time series results to ensure compatibility
between numerical solutions of the system of coupled differential equations
solvedusingMathematica andCOPASI. TheCOPASI resultswere calculated
using the basal values of the parameters as tabulated in Table 1 in the main
text. The scaled sensitivities of thenon-constant concentrations of species due
to all parameters were calculated in the time seriesmode after achieving non-
oscillatory steady-states by 106 s. The scaled sensitivity of the state variable y
with respect to parameter x was calculated as ð∂y∂x × x

yÞ. In Supplementary
Tables 1 and2,wehave compared thevaluesof all the rate constants related to
aggregation and inflammation but not the exponents (orders of reactions).

Data availability
Source data, COPASImodels, andPython scripts are provided in this paper.
Mathematica notebooks are available from the first author and corre-
sponding author upon reasonable request.
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