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Abstract
We show that non-trivial two-dimensional topological insulators protected by an odd
time-reversal symmetry have absolutely continuous edge spectrum. To accomplish
this, we establish a time-reversal symmetric version of the Wold decomposition that
singles out extended edge modes of the topological insulator.

Keywords Time-reversal symmetry · Topological insulator · Absolutely continuous
edge spectrum · Wold-von-Neumann decomposition
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1 Introduction

Hall insulators support extended chiral edge modes [17]. In a free electron description,
these edge modes are associated with absolutely continuous spectrum filling the bulk
gap of the single particleHamiltonian. The presence of absolutely continuous spectrum
has been proven for the Landau Hamiltonian with weak disorder and a steep edge
potential or appropriate half-plane boundary conditions using Mourre estimates [9,
12, 15, 18, 24], and recently for Hall insulators on the lattice using index theory [8].

The question naturally arises whether such extended modes are also present in
topological insulators that are protected by an odd time-reversal symmetry, and for
which the Hall conductance vanishes. Because of the time-reversal symmetry any left
moving edge mode has a companion right moving edge mode so Mourre estimates,
which apply only when the edge modes are strictly chiral, cannot be applied in a
straighforward way to answer this question. In this note, we use index theory to show
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that absolutely continuous edge spectrumfilling the bulk gap follows from a non-trivial
Z2-valued bulk index.

We appeal to the bulk-edge correspondence for time-reversal invariant topological
insulators [2, 7, 14, 16] which links the bulk index to an edge index associated with a
time-reversal symmetric unitary acting on the edgemodes, the “edge unitary,” which is
a smooth function of the edgeHamiltonian. Inspired by [4],weprove a symmetricWold
decomposition for such unitaries which, when applied to the edge unitary, identifies
counter propagating edge channels which are localized near the edge. This implies
in particular that the absolutely continuous spectrum of this unitary covers the whole
unit circle if the edge index is non-trivial. The Hamiltonian describing the system
with edge is then shown to inherit this absolutely continuous spectrum from the edge
unitary.

The symmetric Wold decomposition is the crucial technical novelty presented in
this paper. This decomposition applies to any unitary U and projection P such that
U∗PU − P is compact, and τUτ ∗ = U∗ while τ Pτ ∗ = P for an anti-unitary τ with
τ 2 = −1. To any such pair, we can assign a Z2-valued index which counts the parity
of Kramers pairs moved by U into/out of the range of P . If this Z2-valued index is
non-trivial, then we can find a unitary W which is a compact perturbation of U , and
the symmetric Wold decomposition identifies a shift and counter shift in W , i.e. one
can decomposeW � S⊕ S∗ ⊕Wtriv where S is the bilateral shift andWtriv is a unitary
that leaves the range of P invariant. If U∗PU − P is actually trace-class then we can
take W to be a trace-class perturbation of U . Since W contains a shift its absolutely
continuous spectrum covers the whole unit circle, and since absolutely continuous
spectrum is stable under trace-class perturbations [20, 25], the same is true for U .

2 Setup and results

2.1 Edge spectrum of time-reversal symmetric topological insulators

We consider free electrons moving on the latticeZ2 modeled by a bulk Hamiltonian H
on �2(Z2,Cn) that is exponentially local in the sense that there are constants C < ∞,
ξ > 0 such that

‖P�x H P�y‖ ≤ Ce−‖�x−�y‖/ξ (2.1)

for all �x, �y ∈ Z
2, where P�x denotes the projection onto the site at �x .

Moreover, we take H to be invariant under an odd time-reversal symmetry,
i.e. there is an anti-unitary operator τ with τ 2 = −1 such that τHτ ∗ = H . The
time-reversal symmetry is further assumed to act “on-site” meaning that τ Xiτ

∗ = Xi

for i = 1, 2 where Xi denotes the position operator in the i-direction. We further
assume that H has a bulk gap, i.e. that for some open interval � ⊂ R

� ∩ σ(H) = ∅.

For any μ ∈ � we denote the Fermi projection by PF = χ≤μ(H).
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We define a unitary that models the insertion of a unit of magnetic flux at the origin
in the bulk of the system:

UB := ei arg
�X (2.2)

with �X = (X1, X2) the vector of position operators and arg(x1, x2) = arctan(x2/x1).
It follows from the discussion around Lemma 1 in [1] that the difference AB :=
UB PFU∗

B − PF is compact, so we can define a Z2-valued bulk index

ind B
2 (H ,�) := dim ker(AB − 1) mod 2. (2.3)

This bulk index for odd time-reversal invariant topological insulators was first defined
in an equivalent form in [26], the form given here first appeared in [21]. It is a non-
commutative extension of the Kane-Mele invariant [19] and related to the index of a
pair of projections introduced in [6]. Note that this index only depends on the gap �

but not on the choice of μ ∈ �.
With the bulk Hamiltonian H , we associate a half-space Hamiltonian Ĥ on the

half-space �2(Z × N,Cn) that is also exponentially local and agrees with the bulk
Hamiltonian in the bulk in the sense that

‖P�x (ι†H ι − Ĥ)P�y‖ ≤ Ce−‖�x−�y‖/ξ−y2/ξ ′
(2.4)

for some C < ∞, ξ, ξ ′ > 0 and all �x, �y ∈ Z × N. Here ι : �2(Z × N,Cn) →
�2(Z × Z,Cn) denotes the injection that is induced by the natural inclusion of the
half-space lattice Z × N in the bulk lattice Z × Z. Since the time-reversal symmetry
τ acts on-site, it naturally restricts to the half-space and we denote this restriction
also by τ . We assume that the half-space Hamiltonian is also time-reversal invariant,
i.e. τ Ĥτ ∗ = Ĥ .

The main result of the paper is the following:

Theorem 2.1 If ind B
2 (H ,�) = 1 then

� ⊂ σac(Ĥ), (2.5)

i.e. the half-space Hamiltonian Ĥ has absolutely continuous spectrum everywhere in
the bulk gap.

Remark 2.2 We recall that the classification of gapped free-fermion systems that are
constrained by on-site unitary, time-reversal, particle-hole and/or chiral symmetries
reduces to the classification of gapped free-fermion systems belonging to one of the
symmetry classes of the tenfold way [3]. The classification is summarized in the
periodic table of topological insulators and superconductors of [23] of which we
reproduce the entries for two-dimensional systems in Table 1.

Note that all symmetry classes with a potentially non-trivial Z2-valued index in
two dimensions have an odd time-reversal symmetry, and have their Z2-index given
by the same bulk index (2.3), see Theorem 2 of [22]. It follows that our Theorem 2.1
applies to all these classes.
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Table 1 The symmetry classes S of the tenfold way for two-dimensional topological insulators and super-
conductors

The first row indicates the presence of a time-reversal symmetry, and whether this time-reversal symmetry
squares to 1 or to −1. Our main theorem applies to those classes for which τ2 = −1, i.e. classes with
an odd time-reversal. The second row gives the index group I(S) that classifies the gapped phases within
each symmetry class. Red: the symmetry classes with an odd time-reversal symmetry for which we show
absolutely continuous edge spectrum for non-trivial Z2-index. Blue: symmetry classes with a potentially
non-trivial Chern invariant for which absolutely continuous edge spectrum was proved in [8]. Note that
while class CII has a well-defined Z2-index due to the presence of odd time-reversal symmetry, it always
vanishes due to the other symmetries in the class

Similarly, for all symmetry classes with a Z-valued index in two dimensions the
index is given by the bulk Chern number, see [22, Theorem 1]. For all those symmetry
classes absolute continuity of the edge spectrum follows from [8]. Theorem 2.1 above
togetherwith [8] therefore covers all non-trivial cases of two-dimensional free-fermion
topological insulators and superconductors, see Table 1.

2.2 Time-reversal symmetricWold decomposition

In order to prove Theorem 2.1 we will construct in Sect. 3.1 an edge unitary UE that
acts on the edge modes of the half-space Hamiltonian Ĥ . The main theorem will
then follow from an application of the following time-reversal symmetric extension
of Theorem 2.1 of [4] to the edge unitary:

Theorem 2.3 Let U be a unitary and P a projection acting on a separable Hilbert
space H such that A = U PU∗ − P is compact. Moreover, assume that τUτ ∗ = U∗
and τ Pτ ∗ = P for an odd time-reversal symmetry τ . Then there exists a unitary W
with U − W compact and τWτ ∗ = W ∗ such that:

• If dim ker(A − 1) mod 2 = 0, then [W , P] = 0.
• If dim ker(A − 1) mod 2 = 1, then there is a decomposition of the Hilbert space
H = H′ ⊕ H′′ such that the projection P decomposes as P = P ′ ⊕ P ′′ and the
unitary W decomposes as W = S⊕Wtriv where [Wtriv, P ′′] = 0 and the unitary S
which we define in Eq. (2.7) consists of two opposite shift operators and therefore
has absolutely continuous spectrum covering the whole unit circle.

Moreover, if A is Schatten-p, then so is U − W.

Since the absolutely continuous spectrum of an operator is stable under trace-class
perturbations, Theorem 2.3 immediately implies

Corollary 2.4 Let U be a unitary and P a projection such that A = U PU∗ − P is
trace-class. Moreover, assume that τUτ ∗ = U∗ and τ Pτ ∗ = P for an odd time-
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reversal symmetry τ . Then, if dim ker(A − 1) mod 2 = 1 the absolutely continuous
spectrum of U covers the whole unit circle.

The unitary S appearing in the statement of Theorem 2.3 is defined as follows: Con-
sider the Hilbert space �2(Z,C2) = �2(Z) ⊗ C

2 with orthonormal basis {|x,±〉}x∈Z
labeled by position and σz-eigenstates. On this Hilbert space, consider the odd time-
reversal symmetry

τ =
⊕

x∈Z

[
0 −1
1 0

]
K , (2.6)

where K is complex conjugation with respect to the basis {|x,±〉}x∈Z. Then S acts as
the right shift on the spin-up sector and the left shift on the spin-down sector, i.e.

S|x,±〉 = |x ± 1,±〉 (2.7)

for all x ∈ Z. Since S contains two copies of the shift operator, it has absolutely
continuous spectrum covering the whole unit circle. Moreover, it is straightforward to
verify that the τ above is an odd time-reversal symmetry for S, i.e., that τ Sτ ∗ = S∗.

3 Proof of absolute continuity of edge spectrum

3.1 Edge index and bulk-edge correspondence

In the proof of Theorem 2.1, we will also appeal to the bulk-boundary correspondence,
which we briefly recall here.

Let g : R → [0, 1] be a smooth non-increasing function interpolating from 1 to 0
such that its derivative is supported in the bulk gap �. We have

PF = g(H). (3.1)

Consider now the edge unitary UE := Wg(Ĥ) where Wg is the function

Wg : R → C : x �→ e2π ig(x). (3.2)

This unitary is local and supported near the edge of the half-space. We denote by 
̂1
the projection on the upper right quadrant {�x ∈ Z × N | x1 ≥ 0}, then
Lemma 3.1 The commutator [UE , 
̂1] is trace class.

This lemma follows immediately fromLemmasA.2. andA.3. in [13]. It follows that
AE := UE
̂1U∗

E − 
̂1 = [UE , 
̂1]U∗
E is also trace class and in particular compact

so the index
ind E

2 (H ,�) := dim ker(AE − 1) mod 2 (3.3)

is well defined. This edge index was first defined in [14].
By bulk-boundary correspondence, the bulk and edge indices are equal:
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Theorem 3.2 (Theorem 2.11 of [14]) Under the above assumptions on H we have

ind B
2 (H ,�) = ind E

2 (H ,�). (3.4)

Remark 3.3 • The edge indexmay a priori depend on the boundary conditions defin-
ing the half-space Hamiltonian Ĥ . The bulk-edge correspondence, Theorem 3.2,
implies that this is not the case, justifying our notation ind E

2 (H ,�).
• In [14], the bulk and edge indices are given as (odd) Fredholm indices [5, 26].
If [U , P] is compact then F = PU P + P⊥ is a Fredholm operator and its
odd Fredholm index is dim ker F mod 2. The equivalence to our dim ker(A −
1) mod 2 with A = U PU∗ − P is easily established by noting that ψ ∈ ker F if
and only if Uψ ∈ ker(A − 1).

3.2 Proof of theorem 2.1

The following is a verbatim copy of the corresponding proof in [8], except for the
remark that now σac(UE ) = S

1 follows, through Corollary 2.4, from an odd time-
reversal symmetry and a non-trivial Z2-valued edge index.

By Theorem 3.2, ind B
2 (H ,�) = 1 implies ind E

2 (H ,�) = dim ker(UE
̂1U∗
E −


̂1 − 1) mod 2 = 1. Since τ acts locally, τ
̂1τ
∗ = 
̂1, and from τ Ĥτ ∗ = Ĥ we

get τUEτ ∗ = τWg(Ĥ)τ ∗ = Wg(Ĥ) = U∗
E . Moreover,UE
̂1U∗

E − 
̂1 is trace-class
by Lemma 3.1. It therefore follows from Corollary 2.4 that the absolutely continuous
spectrum of the edge unitary UE is the whole unit circle.

We can choose g in such a way that x �→ Wg(x) := e2π ig(x) is a smooth function
that satisfies � = W−1

g

(
S
1\{1}) and such that Wg is invertible on �.

Now, let P� = χ�(Ĥ) be the spectral projection of Ĥ on the interval �. Since
the absolutely continuous spectrum of Wg(Ĥ) covers the whole unit circle and
Wg differs from 1 only on �, there is an absolutely continuous spectral measure
μac of Wg(P� Ĥ P�) that is supported on the whole unit circle. By spectral map-
ping (Proposition 8.12 of [11]), we have that μac ◦ Wg is a spectral measure for
(Wg)|−1

� (Wg(P� Ĥ P�)) = P� Ĥ P�. The function Wg is smooth and maps the inter-
val � into the unit circle, so we see that μac ◦Wg is an absolutely continuous measure
supported on the entire closed interval �. (Supports of measures are closed sets.) This
means that σac(P� Ĥ P�) = �, and hence, � ⊂ σac(Ĥ) as required. ��

4 Proof of the symmetric Wold decomposition

In this section, we prove Theorem 2.3. We fix a unitaryU and a projection P such that
A = U PU∗ − P is compact. Moreover, we require τUτ ∗ = U∗ and τ Pτ ∗ = P for
some odd time-reversal symmetry τ . We further write Q = U PU∗, and for I ⊂ Rwe
denote by EI the range of the spectral projection χI (A) of A. We also write Eλ = E{λ}
for the λ-eigenspace of A.
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4.1 Spectral symmetry and Kramers degeneracy

Following [6], we introduce the operator B = 1−P − Q. One easily checks that

A2 + B2 = 1, and AB + BA = 0. (4.1)

Lemma 4.1 For λ /∈ {−1, 0,+1} the operator B maps Eλ isomorphically to E−λ. In
particular, dim Eλ = dim E−λ.

Proof Let Aφ = λφ for λ /∈ {−1, 0,+1}. Since AB = −BA we have

ABφ = −BAφ = −λφ (4.2)

and since B2 = 1−A2 we have that B2φ = (1 − λ2)φ �= 0, because λ /∈ {−1,+1}.
Thus Bφ �= 0, and B maps Eλ injectively into E−λ and vice versa. Since A is compact,
Eλ is finite dimensional and it follows that B maps Eλ isomorphically to E−λ ��

Define τ̃ = Uτ which satisfies τ̃ 2 = UτUτ = UU∗τ 2 = −1. From straightfor-
ward calculations we get

Lemma 4.2 We have
τ̃ P τ̃ ∗ = Q, τ̃Qτ̃ ∗ = P. (4.3)

It follows that τ̃ Bτ̃ ∗ = B and τ̃ Aτ̃ ∗ = −A, hence τ̃ Eλ = E−λ for all eigenvalues λ

of A.

Lemma 4.3 For λ /∈ {−1, 0, 1}, the spaces Eλ have even dimension.

Proof From Lemma 4.1 we have that B is a linear isomorphism from Eλ to E−λ so
(B∗B)−1/2B is a unitary from Eλ to E−λ. By Lemma 4.2, τ̃ maps E−λ to Eλ so the
anti-unitary θ = (B∗B)−1/2Bτ̃ maps Eλ to itself and is odd:

θ2 =
(
(B∗B)−1/2Bτ̃

)2 = (B∗B)−1B2τ̃ 2 = −(B∗B)−1B∗B = −1 (4.4)

where we used τ̃ 2 = −1 and Bτ̃ = τ̃ B (cf. Lemma 4.2). By Lemma A.1 this leads
to Kramers degeneracy, i.e. dim Eλ is even. ��

4.2 Decoupling

The vanishing of A = U PU∗−P means that the unitaryU leaves the subspaces RanP
and RanP⊥ invariant. In this case, we call U “decoupled” (with respect to P). Vice
versa, if A does not vanish,U “couples” RanP and RanP⊥. The following proposition
states that we can always decouple U if the +1-eigenspace of A is even-dimensional
and almost decouple U if it is odd-dimensional:

Proposition 4.4 Let U and P be as above. Then there exists a unitary W with U −W
compact, τWτ ∗ = W ∗ and:
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• If dim ker(A − 1) mod 2 = 0, then W PW ∗ − P = 0.
• If dim ker(A − 1) mod 2 = 1, then

W PW ∗ − P = 
+ − 
− (4.5)

where 
+ and 
− are one-dimensional projections.

Moreover, if [U , P] is Schatten-p, then U − W is also Schatten-p.

The remainder of this subsection is devoted to construct the W in this proposition.
Taking W to be of the form W = VU we first note that the decoupling condition
[W , P] = 0 translates to

PV = V Q (4.6)

where Q = U PU∗. We call such a V a “decoupler”. The symmetry constraint on W
implies that V has to satisfy τ̃V τ̃ ∗ = V ∗, where τ̃ = Uτ as above. Moreover, since
we want U − W compact, we must have V − 1 compact.

If dim ker(A − 1) mod 2 = 1 we will not be able to find a V satisfying these
requirements. Although we do not prove it here, this is actually impossible.

We construct V in two steps. First, following [10] we construct a decoupler on the
orthogonal complement of E = E+1 ⊕ E−1. In the second step we try to construct a
decoupler on E . This turns out to be possible only if dim ker(A − 1) mod 2 = 0. In
the other case we can only decouple W up to a two-dimensional subspace.

4.2.1 Decoupling on the orthogonal complement of E+1 ⊕ E−1

Define the operator

X = B(1−2Q) = (1−2P)B = 1−P − Q + 2PQ. (4.7)

This operator satisfies the decoupling condition, i.e.,

PX = XQ = PQ, (4.8)

Moreover, X − 1 = PA − AQ is compact because A is, and if [U , P] is Schatten-p,
then so is A = [U , P]U∗ and therefore also X . Yet, X is not unitary:

XX∗ = X∗X = X + X∗

2
= B2. (4.9)

It followshowever from this equation that X is normal and that its spectrum is contained
in the circle {z ∈ C : (Im z)2 + (Re z − 1/2)2 = 1/4}.

The kernel of X is precisely E = E+1 ⊕ E−1 since it coincides with the kernel
of X∗X = B2 = A2 − 1. On its orthogonal complement E⊥ = E(−1,1) we define a
unitary Ṽ by

Ṽ := (X∗X)−1/2|E⊥ X |E⊥ , (4.10)
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which is well-defined because X is normal, and (X∗X)−1/2 is strictly positive on E⊥.
The unitary Ṽ has the same eigenvectors as X |E⊥ but with the eigenvalues rescaled
to have modulus one.

Since X − 1 is compact, the spectrum of X consists of eigenvalues of finite mul-
tiplicity, possibly accumulating at 1. One easily sees that Ṽ − 1 is also compact. In
fact, if X − 1 is Schatten-p, then so is Ṽ − 1, see Lemma B.1. Moreover, since by
(4.8) X maps the range of Q into the range of P , so does its partial isometry. Since Ṽ
is the partial isometry of X |E⊥ it follows that

P|E⊥ Ṽ = Ṽ Q|E⊥ (4.11)

where we use that both P and Q leave E⊥ invariant.
Note now that since τUτ ∗ = U∗, the subspace E⊥ is invariant under τ̃ = τU .

Indeed, by Lemma 4.2, we have τ̃ Eλ = E−λ for any λ ∈ R so in particular, E⊥ =
E(−1,1) is invariant under τ̃ . Moreover, by Lemma 4.2 we have τ̃ X τ̃ ∗ = X∗ which
implies

τ̃ Ṽ τ̃ ∗ = Ṽ ∗ (4.12)

on E⊥. Thus, Ṽ is a decoupler on E⊥ that is compatible with the symmetry condition
of W .

4.2.2 Decoupling on E+1 ⊕ E−1

It remains to find an as-good-as-possible decoupler on the remaining subspace E =
E+1⊕E−1. Since the restriction of Q to E is the projection onto E+1 and the restriction
of P to E is the projection onto E−1, such a decoupler has to swap the spaces E+1 and
E−1. We construct a unitary v on E that achieves this as best as possible. Moreover,
we require that τ̃ vτ̃ ∗ = v∗. This symmetry induced constrant is crucial: without it a
v swapping E+1 and E−1 can always be found because these spaces have the same
dimension by Lemma 4.2.

By Lemma 4.2, τ̃ maps E+1 to E−1 and vica versa. Let {φ1, . . . , φ2m+k} be
an orthonormal basis of E+1 and take accordingly {τ̃ φ1, . . . , τ̃φ2m+k} as orthonor-
mal basis of E−1 with k = 0, 1 depending on whether dim E+1 is even or odd.
If dim ker(A − 1) mod 2 = dim E+1 mod 2 = 0 then E+1 and E−1 are both
even dimensional and we take Frest = {0}, F+1 = E+1 and F−1 = E−1. If
dim ker(A − 1) mod 2 = dim E+1 mod 2 = 1 then dim E+1 = dim E−1 = 2m + 1
are odd and we take F+1 = span{φ1, . . . , φ2m} ⊂ E+1, we take F−1 = τ̃ F+1 =
span{τ̃ φ1, . . . τ̃φ2m}, and Frest = span{φ2m+1, τ̃φ2m+1}. In either case, τ̃ leaves
F+1 ⊕ F−1 invariant and in the chosen basis takes the form

τ̃ |F+1⊕F−1 =
[
0 −1
1 0

]
K (4.13)

where K is complex conjugation. According to the decomposition E = Frest⊕(F+1⊕
F−1) we then take v to be
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v = 1⊕

⎡

⎢⎢⎣
0

0 −1
1 0

0 −1
1 0

0

⎤

⎥⎥⎦ . (4.14)

This leaves Frest invariant, swaps F+1 and F−1, and satisfies τ̃ vτ̃ ∗ = v∗.

4.2.3 Proof of Proposition 4.4

Let
V = v ⊕ Ṽ (4.15)

with v the (almost) decoupler on E = E+1⊕ E−1 from (4.14) and Ṽ the decoupler on
E⊥ constructed in Sect. 4.2.1. By construction, τ̃V τ̃ ∗ = V ∗ so thatW = VU satisfies
τWτ ∗ = W ∗. Moreover, since Ṽ − 1 is compact and E is finite dimensional, V − 1
is compact and so is W −U = (V − 1)U . By (4.11) we have that

(WPW ∗ − P)|E⊥ = Ṽ Q|E⊥ Ṽ ∗ − P|E⊥ = 0 (4.16)

where Q = U PU∗.
It remains to see how W ∗PW − P acts on the subspace E . We have

(WPW ∗ − P)|E = vQ|Ev∗ − PE = vqv∗ − p (4.17)

where q = Q|E and p = P|E are the projections on E+1 and E−1, respectively. If
dim ker(A − 1) mod 2 = 0, the unitary v swaps E+1 and E−1 so vqv∗ − p = 0
and therefore WPW ∗ − P = 0. If dim ker(A − 1) mod 2 = 1, we decompose
E = Frest ⊕ (F+1 ⊕ F−1) as above. The unitary v in (4.14) leaves Frest invariant and
swaps F+1 and F−1. Thus (vqv∗ − p)|F+1⊕F−1 = 0 and (vqv∗ − p)|Frest = 
+ −
−
where 
+ and 
− are one-dimensional projections. We conclude that

WPW ∗ − P = 
+ − 
−. (4.18)

Finally, we saw in Sect. 4.2.1 that if [U , P] is Schatten-p then Ṽ −1 is Schatten-p.
Since E is finite dimensional, V −1 is also Schatten-p. ThereforeW−U = (V −1)U
is Schatten-p and so is

[W , P] = [(W −U ), P] + [U , P]. (4.19)

��

4.3 The symmetricWold construction

For two projections P and P ′ we write P � P ′ if RanP ⊂ RanP ′. In the proof of the
symmetric Wold decomposition we will need the following abstract result:
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Proposition 4.5 Let W be a unitary and P a projectionwith τWτ ∗ = W ∗ and τ Pτ ∗ =
P for an odd time-reversal symmetry τ and such that

W PW ∗ − P = 
+ − 
− (4.20)

where 
+ and 
− are one-dimensional projections. For k ∈ Z, let 

(k)
+ :=

Adk−1
W (
+) and 


(k)
− := AdkW ∗(
−). Then:

(1) These projections are mutually orthogonal, i.e.


(k)
σ 


(l)
σ ′ = δk,lδσ,σ ′
(k)

σ (4.21)

for all k, l ∈ Z and σ, σ ′ ∈ {+,−}.
(2) For k ≤ 0 we have 


(k)
+ ,


(k)
− � P while for k ≥ 1 we have 


(k)
+ ,


(k)
− � P⊥.

(3) For all k ∈ Z the projections 

(k)
+ and 


(k)
− form a Kramers pair, i.e.

τ

(k)
± τ ∗ = 


(k)
∓ . (4.22)

Proof We first prove the last statement of the proposition. Write A = AdW (P)− P =



(1)
+ − 


(0)
− . From the assumptions we have

τ

(1)
+ τ ∗ − τ


(0)
− τ ∗ = τ Aτ ∗ = W ∗PW − P

= −AdW ∗(A) = AdW ∗(
(0)
− ) − AdW ∗(
(1)

+ )

= 

(1)
− − 


(0)
+ (4.23)

so τ

(1)
+ τ ∗ = 


(1)
− and τ


(0)
− τ ∗ = 


(0)
+ and the claim follows for k = 0, 1. For any

other k ∈ Z, Eq. (4.22) follows from

τ

(k)
+ τ ∗ = τAdkW (


(0)
+ )τ ∗ = AdkW ∗(


(0)
− ) = 


(k)
− . (4.24)

Since all these projections are one-dimensional, it further follows by Kramers
degeneracy that



(k)
+ 


(k)
− = 0 (4.25)

for all k ∈ Z, which proves part of the orthogonality claims. We prove the remaining
orthogonality claims in (4.21) and the second statement by induction. The N th induc-
tion hypothesis is that the family of one-dimensional projections {
(k)

+ ,

(k)
− }Nk=−N+1

is mutually orthogonal, and 

(k)
± � P for k = −N − 1, . . . , 0 while 


(k)
± � P⊥ for

k = 1, . . . , N .
Base case N = 1: We must show that {
(0)

± ,

(1)
± } form an orthogonal set, and



(0)
± ⊂ P while 


(1)
± ⊂ P⊥. Since A = 


(1)
+ − 


(0)
− is self adjoint, we get 


(1)
+ ⊥



(0)
− . Since conjugation by τ preserves orthogonality we get from (4.22) that also



(1)
− ⊥ 


(0)
+ . Moreover, 
(0)

+ ⊥ 

(0)
− and 


(1)
+ ⊥ 


(1)
− by (4.25). Finally, since
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A = WPW ∗ − P = 

(1)
+ − 


(0)
− (4.26)

we have 

(0)
− � P and 


(1)
+ � P⊥. Moreover, since P is τ -invariant also 


(0)
+ � P

and 

(1)
− � P⊥, which proves the claims about inclusions in P and P⊥, and also the

remaining orthogonality claims 

(0)
+ ⊥ 


(1)
+ and 


(0)
− ⊥ 


(1)
− .

Induction step: We assume the N th induction hypothesis to hold and derive the
(N + 1)st . Let

P(N ) = P +
N∑

n=1

(



(n)
+ + 


(n)
−

)
. (4.27)

By the Nth induction hypothesis and (4.22) this is a τ -invariant projection and P �
P(N ). Consider

A(N ) := WP(N )W ∗ − P(N ) = 

(N+1)
+ − 


(N )
− . (4.28)

Since this is a difference of projections it follows that 

(N+1)
+ � (P(N ))⊥ � P⊥,

and by τ -invariance also 

(N+1)
− � P⊥. The claims 


(−N )
± � P follow similarly by

setting P(−N ) = P − ∑N−1
n=0

(



(−n)
+ + 


(−n)
−

)
and considering

A(−N ) := WP(−N )W ∗ − P(−N ) = 

(−N+1)
+ − 


(−N )
− . (4.29)

This proves the claims about inclusions in P and P⊥.
To prove the orthogonality claims, note that (τWn)2 = −1 for any n, and since

(τWn)

(m−n)
+ (τWn)∗ = τ ∗
(m)

+ τ = 

(m)
− (4.30)

for any m, we see that 
n+ ⊥ 

(m)
− for all n,m ∈ Z.

It remains to show that {
(n)
+ }N+1

n=−N and {
(n)
− }N+1

n=−N are othogonal families. We

already know that 
N+1± is orthogonal to 
n± for n = −N , . . . , 0 because the former
is a subprojection of P⊥ while the latter are subprojections of P . Similarly, we know
that 
(−N )

± is orthogonal to 

(n)
± for n = 1, . . . , N + 1.

To see that 
(N+1)
± is orthogonal to 


(n)
± for n = 1, . . . , N we simply note that by

induction hypothesis for any such n we have 

(0)
± ⊥ 


(N+1−n)
± . Since conjugation

by W preserves orthogonality, we conclude that 

(n)
± ⊥ 


(N+1)
± as required. The

orthogonality of 

(−N )
± with 


(n)
± for n = −N + 1, . . . , 0 is proved in the same

way. This proves all the required orthogonality relations and thereby concludes the
induction step. ��
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4.4 Proof of Theorem 2.3

If dim ker(A − 1) mod 2 = 0, all claims follow directly from Proposition 4.4.
If dim ker(A − 1) mod 2 = 1, then Proposition 4.4 provides a unitary W with

U − W compact, τWτ ∗ = W ∗ and such that

AdW (P) − P = 
+ − 
− (4.31)

with one-dimensional projections 
+ and 
−. Moreover, if [U , P] is Schatten-p,
then so is U − W .

For k ∈ Z, let 

(k)
+ := Adk−1

W (
+) and 

(k)
− := AdkW ∗(
−). Decompose the

Hilbert space as H = H′ ⊕ H′′ where H′ = ⊕
k∈Z,σ∈{+,−} Ran


(k)
σ . By Proposition

4.5, both W and P leave H′ and H′′ invariant so W = W ′ ⊕ W ′′ and P = P ′ ⊕ P ′′.
Since Ran
+,Ran
− ⊂ H′, we have [W ′′, P ′′] = 0, and it only remains to identify
W ′ with the unitary S described at the end of Sect. 2.2.

Let φ1 be a unit vector spanning Ran
(1)
+ and define φk = Wk−1φ1 for all k ∈ Z.

Then φk spans Ran

(k)
+ . For each k ∈ Z, let φk = τφk . Then φk spans Ran


(k)
− and

H′ = span{φk, φk : k ∈ Z}. On this space, the unitary W ′ acts as

W ′φk = φk+1, W ′φk = φk−1 (4.32)

for all k ∈ Z. Indeed, φk+1=Wkφ1=Wφk while φk=τφk=τWk−1φ1=W 1−kτφ1=
W 1−kφ1, so φk−1=W 2−kφ1 = Wφk . The unitary W ′ is equivalent to S in (2.7) by
the isomorphism φx �→ |x,+〉 and φx �→ |x,−〉. This concludes the proof. ��

Appendix A Kramers degeneracy

Lemma A.1 Let θ be an anti-unitary operator on a finite dimensional Hilbert space V
with θ2 = −1. Then V is even-dimensional and has an orthonormal basis consisting
of Kramers pairs, i.e. there is an orthonormal basis {φ1, φ

′
1, . . . φn, φ

′
n} such that

θφi = φ′
i and θφ′

i = −φi for all i = 1, . . . , n.

Proof Let φ1 be any vector in V of unit length, and put φ′
1 = θφ1. Then

〈φ1, φ
′
1〉 = 〈φ1, θφ1〉 = 〈θφ1, θ2φ1〉 = −〈φ1, θφ1〉 = −〈φ1, φ

′
1〉, (A.1)

i.e. φ1 ⊥ φ′
1 and θφ′

1 = θ2φ1 = −φ1. Now pick any vector φ2 in the orthongonal
complement of span{φ1, φ

′
1} and put φ′

2 = θφ2. By the same reasoning as before,
φ2 ⊥ φ′

2 and θφ′
2 = −φ2. Repeating this construction eventually yields the required

basis {φ1, φ
′
1, . . . , φ1, φ

′
n}. ��
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Appendix B Schatten-p Lemma

Lemma B.1 Let X be a normal operator with X − 1 compact, spectrum contained in
the circle {z ∈ C : (Im z)2 + (Re z − 1/2)2 = 1/2} and empty kernel. Let

V := (X∗X)−1/2X . (B.1)

Then if X − 1 is Schatten-p, so is V − 1.

Proof Let {λi }i∈N be the nonzero eigenvalues of the compact operator X − 1 ordered
such that |λi | ≥ |λi+1| for all i . This operator is Schatten-p if and only if

∑

i∈N
|λi |p < ∞. (B.2)

The nonzero eigenvalues of V − 1 are

μi = λi + 1

|λi + 1| − 1. (B.3)

Note that since X −1 has empty kernel, none of the λi equal −1 so the μi are always
well defined.

For μi close to 0 we have |μi | = |λi | + O(|λi |2) so

|μi |s = |λi |s + sO(|λi |2|λi |s−1) = |λi |s + O(|λi |s+1). (B.4)

Both terms on the right-hand side are summable by assumption, so

∑

i

|μi |s < ∞, (B.5)

i.e. V − 1 is Schatten-p. ��
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