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Engineering organoids as cerebral disease models
Alexander Geidies*, Marija LJ Medar* and Hannes M Beyer

Cerebral organoids pioneered in replicating complex brain 
tissue architectures in vitro, offering a vast potential for human 
disease modeling. They enable the in vitro study of human 
physiological and pathophysiological mechanisms of various 
neurological diseases and disorders. The trajectory of 
technological advancements in brain organoid generation and 
engineering over the past decade indicates that the technology 
might, in the future, mature into indispensable solutions at the 
horizon of personalized and regenerative medicine. In this 
review, we highlight recent advances in the engineering of brain 
organoids as disease models and discuss some of the 
challenges and opportunities for future research in this rapidly 
evolving field.
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Introduction
The complexity of the human brain represents a major 
challenge in our aims to disentangle the structure and 
function of the organ and gather a growing understanding 
of neurological processes and diseases. In the past, ex-
perimental model systems, such as 2D cell cultures and 
animal models, have significantly contributed to the cur-
rent knowledge base; however, they reflect the maturity 
and functional networks present in the human brain only 
to a limited extent. To overcome these bottlenecks, sci-
entists aim to reconstruct human 3D brain tissue and 
make organs in vitro, thereby gaining a strong structural 
resemblance to actual brain tissue compatible with 

invasive investigations and with higher clinical relevance 
than animal models [1]. These cerebral organoids (COs) 
derive from human stem cells and are meticulously 
formed by initiating spontaneous or guided cell differ-
entiation programs. Brain organoid technologies bear a 
rising hope in modeling specific structural and functional 
aspects of the human brain, enabling the study of fun-
damental processes and diseases with predictive potential 
for personalized therapy development [2].

A Nobel Prize–winning method developed by Shinya 
Yamanaka, known as cell re-programming, gives rise to in-
duced pluripotent stem cells (iPSCs) formed from somatic 
cells [3]. The impact of this technique laid the foundation 
for personalized therapy and in vitro disease modeling in-
cluding brain organoid protocols, later extending to tissue 
models of other organs [2]. Transitioning naturally sourced 
genetic defects into an organoid model system represents a 
breakthrough technique that opens new possibilities to 
study diseases in vitro, compatible with invasive methods, 
biobanking, and high-throughput drug screening approaches 
[4]. Ever since the first brain organoids were reported, sig-
nificant progress and protocol variations have been devel-
oped, among other achievements. Today, brain organoids 
serve as vital models capable of simulating brain develop-
ment and physiology and offer profound insights into the 
pathophysiological mechanisms underlying a range of neu-
rological diseases [1,2]. The ability to grow human tissue in 
the lab compensates for the low availability of human tissue 
for research purposes and depicts a rather accurate transition 
from the model to the human being. In this review, we 
focus on advances in engineering brain organoids as disease 
models and discuss challenges and perspectives for future 
research in this field.

Development and engineering of brain 
organoids
CO engineering approaches develop at a rapid pace. A 
decade after the first reports on brain organoid protocols 
appeared [1], the current literature witnesses a plethora of 
strategies that mature stem cell–derived spontaneously 
formed neuronal tissue into advanced brain-like in vitro 
model systems with high clinical relevance [2,5]. Al-
though the first brain organoids represented a conceptual 
revolution for the study of the brain under laboratory 
conditions, early and current organoid protocols still entail 
severe limitations. The main challenges encompass both 
structural and biological constraints, notably the lack of an 
aging signature, the need for angiogenesis, the process of 
myelination, and the involvement of functional im-
munocompetent microglia [6].
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An important leap forward in maturing the structural ar-
chitecture of COs was made by modeling regional brain 
identities. Here, precise developmental signals guide the 
maturation of organoid tissues to differentiate into rather 
homogeneous cellular identities representing specific 
brain regions (Figure 1a), such as the cerebellum, mid-
brain, and hypothalamus [7,8]. Access to region-specific 
brain in vitro tissues therefore enables the subsequent 
study of diseases relevant to particular brain areas [8].

Another significant engineering concept makes use of 
fusing organoids into assembloid structures (Figure 1b), 
achieved by first initiating the formation of region-spe-
cific tissues such as striatum (Str) and substantia nigra 
(SN) organoids, followed by controlled tissue-fusion [9]. 
This approach enables modeling the various interactions 

between brain regions, crucial for the study of diseases 
that disrupt these connections, such as the Timothy 
syndrome [9,10]. Assembloid technologies have further 
aided in understanding how different parts of the brain 
communicate [9].

Engineering organoid-based disease model systems 
strongly relies on extracellular signal mediators during 
tissue formation and maturation. Here, biomaterials serve 
as extracellular matrices (ECMs) equipped with instructive 
biochemical or mechanical signals that also provide support 
and allow tissue expansion in three dimensions. Material 
architectures can encode instructive cues to enhance the 
translational potential of organoid tissues by providing 
tunable properties to influence cell fates and tissue func-
tions, and aid in establishing reproducible manufacturing 

Figure 1  
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Schematic overview of various brain organoid engineering strategies. (a) Guided differentiation of stem cells into different region-specific brain 
organoids [7,8]. (b) Chimeric brain assembloid tissue engineering with the example of engineering a striato-nigral tissue [9]. (c) Strategies for 
engineering vascularized brain organoids. Forward-programming: ETS variant transcription factor 2 (ETV2) expression [22,54]; culture engineering: 
stem cells co-cultured with human umbilical vein endothelial cells (HUVECs) [55]; fusion of vascular tissues and early COs [56,57] or generation of 
vascularized COs by tissue assembly engineering of neural and mesodermal spheroids [21]; engineering neurovascular organoids in a 3D-printed 
microfluidic chip by using in vitro formed vascular networks and COs [16]. (d) Application of optogenetic sonic hedgehog (SHH) gene-expression 
control for spatiotemporal patterning of organoid tissue with light [24]. LoxP, Cre recombinase target sequence; NG, NeonGreen; T2A, Thosea asigna 
virus 2A peptide.  
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routines [11]. Cell surface mechanosensory and adhesion 
molecules sense various cell-generated and material-de-
rived forces, convert them into biochemical signals, and 
contribute to organogenesis [11,12]. For example, it has 
been shown that the stiffness of ECMs impacts cell pro-
liferation, migration, differentiation, damage response, and 
regeneration, among other essential processes during 3D 
organoid tissue formation. In the brain, such biomechanical 
properties further influence cortical growth and surface 
folding, as well as the formation of outer and inner sub-
ventricular zones [11]. It has also been acknowledged that 
brain stiffness is associated with neuronal disorders [13]. 
Therefore, biomaterial design constitutes an important 
discipline relevant to refining organoid development pro-
tocols. While poorly defined, decellularized natural ECMs 
with little tunability find widespread application in orga-
noid tissue design, synthetic biomaterials bear the potential 
to rationally steer tissue formation processes, for example, 
by engineering material-genetic interfaces and stimulus- 
responsive materials with tunable properties that could be 
applied to organoids [14]. Additionally, microfluidic tech-
nologies offer control of the extracellular milieu and com-
partmentalization of cells and signaling factors to regulate 
the 3D environment, resulting in a technology known as 
‘organoid-on-a-chip’. Among other examples, this tech-
nology helps standardize organoid size using physical 
constraints and supports the development of vascular 
networks [15]. Salmon et al. used spatial interactions be-
tween organoid and vasculature enabled by a custom-de-
signed 3D-printed microfluidic chip allowing a sequential 
and developmentally matched co-culture system [16]
(Figure 1c). The controlled compartmentalization in orga-
noids-on-chips also enables real-time assessments of neu-
ronal electrical activity and to monitor metabolic changes 
using embedded sensors, such as an electrochemical bio-
sensor capable of detecting glutamate release from COs 
[17,18]. Furthermore, biosensors have been developed to 
monitor neuronal activity within organoids, which is crucial 
for assessing neuropathological disorders as well as evalu-
ating pharmaceutical treatments and drug screens [18].

The lack of vascularization in organoids limits growth, ma-
turation, and long-term survival due to restricted passive 
diffusion of nutrients and gases, calling for cellular tissue 
engineering solutions [19]. In particular, the concept of stem 
cell forward-programming using suitable transcription factors 
into endothelial cells has furnished brain organoids with 
vascularization despite the fact that both tissues derive from 
different germ layers (Figure 1c) [20–22]. These innovations 
not only advance organoids as a model for studying neuro-
logical diseases but also as chassis for testing defined phar-
macological treatments, including the effects of drugs that 
affect the blood–brain barrier [19].

The high degree of structural complexity across the three- 
dimensional space of the brain calls for methodological 
approaches that enable investigations in in vitro model 

systems, for example, the spatial distribution of neural 
activity. Here, optogenetic technologies open an in-
novative path forward. The generation of organoids from 
iPSCs pairs well with genomic stem cell engineering to 
implant optogenetic genes that can be invoked at any 
desired differentiation state. The in vitro cultivation en-
vironments support spatiotemporal optical induction with 
superior tissue penetration compared with animal models 
[23]. In addition, the tissue compatibility with live ima-
ging enables real-time monitoring of the optogenetic 
regulation effects, among other spatial assessments [24]. 
The integration of the light-sensitive channelrhodopsin-2 
(ChR2) into brain organoids permits the dynamic control 
of specific neuronal populations through light activation 
[23,25]. Legnini et al. used an optogenetic gene-switch 
approach relying on a photoactivatable Cre–Lox system to 
locally induce the expression of the morphogen sonic 
hedgehog (SHH) in a neurodevelopmental organoid 
model to guide tissue patterning with optical stimuli 
(Figure 1d), a concept also compatible with assembloid 
tissue organizers [26]. During brain development, the 
SHH morphogen specifies distinct cellular fates along the 
dorsoventral axis, validated in the in vitro model through 
spatial and single-cell transcriptomic analysis [24]. Spatial 
transcriptomics and spatial proteomics assessments offer 
detailed insight into the spatial organization of gene ex-
pression and protein distribution, for example, to enable 
the mapping of cellular and regional patterns [27].

Along the timeline, as the first brain organoid protocols 
appeared, CRISPR-Cas9 technology co-evolved simulta-
neously [28]. The integration of CRISPR-derived tech-
nologies — including base- and prime-editing derivatives 
— into organoid cultures enables the precise engineering 
of target genes, for instance, to manufacture isogenic 
controls matching personalized model systems or study 
mutations in the validated background of a deeply char-
acterized cell line [1,29,30]. In addition, CRISPR Acti-
vation (CRISPRa) and Interference (CRISPRi) serve as 
regulatory handles to engineer stem cell and organoid 
models by enabling targeted promoter control of en-
dogenous genes. CRISPR technologies have already 
manifested as indispensable elements in specific organoid 
engineering tasks, [30] for example, to model human 
diseases, explore cellular functions, and unlock un-
precedented opportunities in patient-specific neurological 
research and therapeutic development [2,28].

Modeling of neurodegenerative diseases
Currently, two major engineering strategies for organoid- 
based model systems relevant to genetic cerebral 
pathologies exist. The first approach sources naturally 
occurring, disease-associated mutations from the se-
quence space identified from clinical samples to derive 
organoid models, either through stem cell explanation or 
re-programming of somatic cells of patients, suitable, for 
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example, to establish personalized therapies [29]. Al-
ternatively, biological engineering efforts can re-model 
the genetic background of a disease into a healthy stem 
cell genotype [2,30].

Trigger-inducible systems that initiate processes, including 
the onset of a disease, stand at the forefront of stem cell 
and cellular organoid engineering strategies. Such systems 
can initiate disease patterns at specific experimental stages, 
serving as representative models for neurodegenerative 
diseases like Parkinson’s disease (PD) [31,32]. Tradition-
ally, PD pathology has been induced via the application of 
neurotoxins such as 6-hydroxydopamine (6-OHDA) or 1- 
methyl-4-phenylpyridinium (MPP+); these chemicals were 
also used for the simulation of PD in human midbrain 
organoids (hMOs) [33] (Figure 2). The ability to induce a 
PD-related phenotype at a desired time point in hMOs has 
been addressed recently by the use of an optogenetic 
method [34,35]. Kim et al. fused ɑ-synuclein, whose ag-
gregation initiates the formation of Lewy bodies (LBs), 
typically associated with PD, to the plant photoreceptor 
CRY2 [35]. Blue light induces protein oligomerization of 
CRY2, thereby initiating ɑ-synuclein aggregation and LB 
formation. The engineered model system served drug 
identification applications, by assaying the protective 
properties of a compound library in preventing neuron-loss 
upon the optogenetic induction.

Alzheimer’s disease (AD) has been modeled in COs with 
great success [36,37]. AD-typical pathogenic traits reflected 

by COs include increased levels of phosphorylated mi-
crotubule-associated tau protein (p-Tau) and amyloid-β 
(Aβ) aggregates, transcriptomic alterations reminiscent of 
observations in post-mortem AD samples, and reduced 
neuronal activity [38,39]. AD can be induced in COs by 
the addition of small molecules such as Aftin-5, increasing 
Aβ expression and accumulation in the medium [40]. The 
overexpression of pathogenic aβ cleavage peptides Aβ40 
and Aβ42 provides a useful approach for the rapid induction 
of AD pathogenesis in organoid models; however, it does 
not necessarily resemble natural conditions under which 
AD develops. Therefore, Vanova et al. employed healthy 
i3N-iPSCs and CRISPR-engineered them with the pre-
senilin PSEN1A246E mutation. This affects amyloid pre-
cursor protein processing and leads to altered Aβ42/Aβtotal 
and Aβ42/Aβ40 ratios, thus inducing AD pathogenicity, en-
abling the study of familial AD under endogenous, con-
stitutive expression conditions [36]. Reports on the 
successful modeling of neurodegenerative diseases like 
AD or PD encouraged organoid modeling attempts of 
lesser-known diseases, for example, Leigh syndrome, 
which affects mitochondrial metabolism in neural tissue 
[41]. Engineering these diseases, however, requires so-
phisticated gene editing methods compatible with mi-
tochondrial genes, which remains challenging with present 
technologies. Owing to this challenge is the lack of 
methodologies that would enable the import of CRISPR- 
associated ribonucleoproteins, such as the BE3 base editor, 
into mitochondria, limiting the available toolkits to such 
based on TALENs, previously applied in mitochondria 

Figure 2  
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Workflow of engineered organoid manufacturing. (a) Patient-derived stem cells are used as is or genetically engineered, for instance, to carry a 
functional gene or an introduced mutation, for example, to generate pathogenic isogenic cell lines for generating disease model organoids. (b) 
Organoid model tissues are manufactured from (engineered) stem cells using an advanced repertoire of methods, including assembloids, organoid- 
on-a-chip, etc. (c) Organoids are used in appropriate experiments, such as disease induction, therapy development, or developmental control with the 
aim to model diseases of interest 4,22,24,32,33,40,41. (d) Organoids are compatible with a range of functional and analytical methods yielding 
qualitative and quantitative data [9,24,28,29,31,45,58,59].
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[42]. One such example is mitoBE, a base editor, which 
was successfully used for the genetic editing of mi-
tochondrial (mt)DNA [43].

The continuous progress in modeling neurodegenerative 
diseases in COs enables increasing possibilities for high- 
throughput in vitro drug screening applications. Initial 
studies with a focus on drug treatments for AD were 
reported by Park et al. [4]. Moreover, approaches of 
hMOs transplantation into PD mice models, which 
showed restoration of motor functions, highlight the 
applicability of the organoid model for regenerative 
medicine [44]. In this example, high-throughput tran-
scriptomic and fluorescence analysis showed a reduction 
in p-TAU and Aβ aggregation in spontaneous AD-asso-
ciated COs upon drug application. Furthermore, a redox 
biosensor based on 3-mercaptopropionic acid (3-MPA) 
has been utilized for the study of PD in hMOs [45]. This 
biosensor specifically recognizes dopamine (DA), re-
leased from dopaminergic neurons, providing informa-
tion about neuronal activity and neurotransmitter 
release. However, genetically encoded biosensors, for 
example, for Wnt signaling, will represent promising 
components to derive future-engineered model tissues 
with intrinsic sensory capabilities [46].

Modeling of neurodevelopmental disorders
Neurodevelopmental diseases often affect the early 
stages of brain development. Current organoid model 
systems suffer from a limited degree of maturation but 
can well mimic early developmental conditions, em-
phasizing the suitability of the organoid model for ap-
plication in these disease areas. One prominent example 
of neurodevelopmental diseases is Huntington’s disease 
[47], also known for its neurodegenerative properties in 
multiple brain regions, for example, Str and SN in the 
human brain and impaired neuronal maturation in the 
early stages of brain development. To observe projec-
tions of pathological traits in the circumjacent tissues, a 
recent approach resorted to the assembloid approach to 
engineer a striato-nigral tissue (Figure 1b) [9]. In this 
tissue fusion model, the authors could observe neurite 
extension protruding from the striatal organoid into the 
substantia nigra organoid along with altered electro-
chemical signaling projection assayed with optogenetic 
field potential recording and calcium imaging (Figure 2).

Limitations of organoid models
Despite several reports on successfully engineered CO 
disease models, the technology remains currently in its 
infancy with a list of limitations. Organoids generally 
mimic the early embryonic stages of organ development; 
thus, age-dependent effects are not directly accessible in 
current model systems. While the cellular composition of 
COs resembles the human brain, certain cell types, like 
astrocytes, only appear at around 80 days [48]. The full 

cellular composition of a mature brain remains yet to be 
modeled with sufficient detail, for example, the lack of 
microglia cells or vasculature, which do not originate 
from the ectoderm, require sophisticated engineering 
strategies to develop mature cerebral in vitro models 
(Figure 2). The sample heterogeneity across batches and 
individual specimens remains another significant lim-
itation of CO-derived models [49]. The stochastic dif-
ferences can affect data acquisition and quantitative 
analysis. The source of these variations is versatile. 
Thus, strategies to overcome the heterogeneity have to 
be found at all stages of CO generation. The initial step, 
that is, the embryoid body (EB) formation, requires 
particular attention. Differences in EB size and overall 
cell quality can strongly impact neural induction and 
nutrient availability and, thus, propagate tissue hetero-
geneities. To enhance the viability in stem cell cultures 
and optimize EB formation, the Rho-associated protein 
kinase (ROCK) inhibitor Y-27632 is commonly used. 
Lately, a more potent cocktail of four small molecules 
has been identified, representing a significant advance-
ment in stem cell technologies [50]. Additionally, batch- 
to-batch variability of ECMs limits the comparability of 
COs, as variations in overall protein concentration, 
structural proteins, growth factors, and proteoglycans 
severely influence cell proliferation, nutrient diffusion, 
and cell viability [49].

Future perspectives in brain organoid 
engineering
The recent incorporation of artificial intelligence strate-
gies into biological research extends to the fields of or-
ganoid engineering and disease modeling. Employed as 
a methodological asset in image analysis and high- 
throughput screening, the technology will likely advance 
organoid analysis in interpreting or predicting responses 
to pharmacological treatments [51]. The term ‘organoid 
intelligence’ refers to an emerging multidisciplinary field 
aiming to develop biological computing using brain or-
ganoids and brain–machine interface technologies as 
a powerful and energy-efficient alternative to classical 
data processing units [52]. In addition, advanced orga-
noid control techniques, for example, spatiotemporal 
optogenetic strategies illustrated above, still require ro-
bust engineering and use protocols to advance the ap-
plication of COs. While complex developmental 
features, including forebrain-associated primitive sen-
sory structures resembling cortical-optic vesicles, have 
been observed in COs [53], the field requires reliable 
control handles to precisely regulate the underlying 
molecular events in order to build sophisticated model 
tissues.

In summary, the possibility of manufacturing cerebral 
model tissues, for example, from re-programmed patient 
cells, opens up immense potential for the study of the 
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human brain and associated diseases in vitro, where 
biological samples remain extremely scarce. The steady 
advance of engineering techniques across various fronts 
of organoid biology, ranging from manufacturing condi-
tions and ECMs to cellular engineering and the im-
plementation of synthetic molecular machines, entails 
exciting future prospects for the field and its relevance in 
biomedical applications.
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