
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use:

A verified low-level implementation and visualization of the adaptive exterior light and
speed control system

Suggested Citation:
Krings, S., Körner, P., Dunkelau, J., & Rutenkolk, K. (2024). A verified low-level implementation and
visualization of the adaptive exterior light and speed control system. International Journal on Software
Tools for Technology Transfer, 26(3), 403–419. https://doi.org/10.1007/s10009-024-00750-5

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20250121-103017-9

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Sebastian Krings, Philipp Körner, Jannik Dunkelau & Kristin Rutenkolk

Article - Version of Record

International Journal on Software Tools for Technology Transfer (2024) 26:403–419
https://doi.org/10.1007/s10009-024-00750-5

GENERAL

Special Section: ABZ 2020/2021

A verified low-level implementation and visualization of
the adaptive exterior light and speed control system

Sebastian Krings1 · Philipp Körner2 · Jannik Dunkelau2 · Kristin Rutenkolk2

Accepted: 29 April 2024 / Published online: 27 May 2024
© The Author(s) 2024

Abstract
In this article, we present an approach to the ABZ 2020 case study that differs from those usually presented at ABZ:
Rather than using a (correct-by-construction) approach following a formal method, we use C for a low-level implementation
instead. We strictly adhere to test-driven development for validation, and only afterwards apply model checking using CBMC
for verification. While the approach has several benefits compared to the more rigorous approaches, it also provides less
mathematical clarity and overall less thorough verification. In consequence, our realization of the ABZ case study serves
as a baseline reference for comparison, allowing to assess the benefit provided by the various formal modeling languages,
methods and tools.

Keywords Model checking · Formal methods · Verification · Case study · Test-driven development · MISRA C

1 Introduction

The ABZ 2020 Case Study [28] describes two assistants com-
monly found in modern cars. The overall system consists of
two loosely coupled components, the adaptive exterior light
system (ELS) and the speed control system (SCS). The ELS
controls head- and taillights, while the SCS controls the vehi-
cle’s speed. Both have to take into account the environment
and parameters defined by the driver. Obviously, both are
safety critical components, rendering safety and security a
development priority.

In this article, we present our implementation of ELS
and SCS. Our approach differs from the other case study
implementations in that we do not employ a fully formal de-
velopment method. Instead, we attempted an approach closer
to what might happen in industry, where formal methods are

not common, yet. To do so, we implemented both the ELS
and the SCS directly in (MISRA) C, following a test-driven
development workflow. Only afterwards, we attempted for-
mal verification directly on the C code, using the CBMC
model checker [18]. Both MISRA C and CBMC will be in-
troduced more thoroughly in Sects. 2.1 and 6.2, respectively.
Test-driven development and mocking of test objects will be
presented in Sect. 2.2.

Rationale Sometimes formal methods’ practitioners claim
to hold a high ground over “traditional” software devel-
opment or at least claim that there rarely are disadvan-
tages [11, 24]. The argument seems convincing; yet, only
a few case studies have compared two teams working on the
same project, one employing a formal approach and the other
working “traditionally”.

One such study has been performed by Fitzgerald et
al. [12, 22] in cooperation with British Aerospace Systems
and Equipment Ltd. The authors show that the teams behave
and develop differently, i.e., they focus on different areas
of the system in development. While the formal approach
used in the study shows its merits, the authors also identify
drawbacks due to the so far unknown methodology and a
requirement for training.

Furthermore, Larsen et al. [35] have discussed how to in-
tegrate formal methods in a step-wise fashion. Comparable to
our approach, the authors incrementally add formal aspects
to an already existing development process. Their incremen-
tal approach is also verified by comparing two groups of

� P. Körner
p.koerner@hhu.de

S. Krings
sebastian.krings@hhu.de

J. Dunkelau
jannik.dunkelau@hhu.de

K. Rutenkolk
kristin.rutenkolk@hhu.de

1 Independent researcher, Düsseldorf, Germany
2 Institut für Informatik, Heinrich-Heine-Universität,

Universitätsstr. 1, D-40225 Düsseldorf, Germany

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00750-5&domain=pdf
mailto:p.koerner@hhu.de
mailto:sebastian.krings@hhu.de
mailto:jannik.dunkelau@hhu.de
mailto:kristin.rutenkolk@hhu.de

404 S. Krings et al.

developers, one working with traditional tools for require-
ment analysis and one working with the workflow supported
by formal specification. Again, formal methods proof to be
beneficial if integrated into an existing workflow both delib-
erately and thoroughly.

For this case study, we aim at providing a baseline for com-
parison with fully formal approaches or other approaches
combining formal and informal verification, e.g., as sug-
gested for spacecrafts [43].

We opted to postpone verification as much as possible, to
allow a fair evaluation of (dis-)advantages of the individual
approaches. Our aim is to examine whether a rigorous ap-
proach is beneficial in the context of the case study. If so,
we hope to add to the body of evidence that formal methods
actually are beneficial compared to “traditional” software
development.

Distinctive features Several features render our approach
unique: Firstly, as the implementation is written in C, it could
be directly deployed to an embedded system. Models written
in formal specification languages would have to be refined
to an implementation level before code can be generated.
Furthermore, code generators usually are not proven and
might introduce new errors. In cases where code generation
is not easily applicable, side-by-side development of code is
suggested. However, this approach is error-prone as well.

Secondly, the implementation is close to actual hardware.
Code that interacts with sensors or user input is separated,
i.e., it could immediately be linked to real sensors. Addi-
tionally, our implementation makes use of threads, just as
the subcomponents of the system would run in parallel. We
expect that most specifications using formal methods simply
allow some nondeterminism concerning the ordering of state
transitions.

In consequence, our implementation allows real-time sim-
ulation of the system, whereas state transitions in formal
methods usually happen instantly and do not amount for any
time elapsed. This also allows usage of our implementation
for hardware-in-the-loop tests, which are common for auto-
motive software [21, 41].

Thirdly, C together with the MISRA rules restricting its
usage stems from the automotive industry and is widely used
in practice. Thus, our implementation closely mimics real-
world development conditions.

Team overview Our team comes from a formal methods
background: While all members are very familiar with the
B method [1, 2], we did not have particular expertise with
C development or verification tooling for C. The basic code
structure and the fixture for the test scenarios were developed
by SK and PK in a synchronous meeting. Afterwards, SK
implemented the ELS, JD was responsible for the SCS, and
tests were provided by PK and KR. Formal verification was

Fig. 1 Meeting in a Virtual Seminar Room. The added avatars and
higher immersion are supposed to increase collaboration during the
COVID-19 pandemic

done by SK and PK. Both the ad-hoc and 3D visualization
was provided by KR due to her individual knowledge in this
area.

Collaboration We believe the ways and techniques for
collaboration can influence the overall quality of the results
produced by a team of developers, especially when it comes
to safety critical software. As we were working from different
locations, we used asynchronous messaging via Mattermost1
for coordination and progress reports. The code was version-
controlled using Git and GitHub. Finally, during the COVID-
19 pandemic, we additionally employed the software Gather2
for synchronous meetings discussing progress and next steps.
In Gather, one controls an avatar through a virtual world,
and video conferences are started automatically based on
predefined rooms or proximity. A screenshot of the authors
meeting in Gather is shown in Fig. 1.

Additional contributions This article is based on our
case study submission [34] and extends it by

• a discussion on how the given requirements are represented
and how far we can trace the impact of requirements on
the implementation,

• a thorough presentation of our approach to development,
• improved visualization,
• additional information on the development team, as well

as the tools and techniques used,
• an evaluation of readability and comprehensibility of our

implementation, and
• a comparison to the other case studies.

1 https://mattermost.com/.
2 https://www.gather.town/.

Springer

https://mattermost.com/
https://www.gather.town/

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 405

2 Background on used methodology and
tools

Our implementation complies with MISRA C and was de-
veloped in a test-driven manner. Afterwards, CBMC was
employed for formal verification. Below, we briefly intro-
duce these methods and tools.

Since the actual code was C, we were also able to make
full use of common development tools and for example indi-
vidually choose a preferred IDE or Editor, such as Qt Creator
and Visual Studio Code.

2.1 MISRA C

MISRA C is a set of development and style guidelines for C,
introduced by MISRA, the Motor Industry Software Relia-
bility Association. The standard [40] defines a subset of C
meant to be used for safety critical systems, in particular in
the automotive sector. In fact, both ISO 26262 [29] and the
software specification by AUTOSAR [23] suggest the usage
of MISRA C for automotive applications.

The overall goal of MISRA C is to increase both safety and
security by avoiding common pitfalls. Thus, the rules pro-
hibit or discourage the use of unsafe constructs, try to avoid
ambiguities, and so on. The MISRA C standard distinguishes
between three kinds of rules: those that are mandatory, those
that are required but could be ignored if a rationale is given,
and rules that are advisory only. For instance, there is a re-
quired rule stating that any switch statement should have
a default label and a mandatory rule stating that any path
through a nonvoid function should end in a return statement.

While most rules could be checked by hand, we used cp-
pcheck3 to verify compliance of our implementation. Given
that some rules are undecidable, the result is only an indica-
tion and manual review is required as well.

Despite its prevalence, MISRA C has been criticized re-
garding both efficiency and ease of use. In particular, the
possibilities of false positives [27] and of introducing new
errors by (thoughtlessly) changing code to adhere to the
rules [9] should be carefully considered. Despite the criti-
cism, MISRA C remains the de facto standard in the auto-
motive industry and is used throughout all production code
in this case study.

2.2 Test-driven development and mocking

Test-driven Development is an approach to software develop-
ment that follows a certain development cycle: before imple-
menting a new feature or fixing an issue, an appropriate test
case is formulated and executed [7]. Without code change,
the test is expected to fail.

3 http://cppcheck.sourceforge.net.

Afterwards, the code is extended and improved to make
the test pass. As a result, a high test coverage and result-
ing confidence is achieved. Furthermore, the test suite helps
during later refactorings.

To simplify formulating tests and to allow testing program
parts in isolation, mocks can be used. A mock is an object
or library that simulates the input and output behavior of
program parts [7]. However, rather than implementing the
full functionality, mocks are usually much simpler than the
code they replace. For instance, mocks often behave deter-
ministically or even to provide constant outputs. For testing
purposes, mocks can record their inputs and provide them to
assertions.

2.3 CBMC

CBMC [18] is a model checker for programs written in C. It
uses bounded model checking [8] to verify a default set of
properties, mostly related to common programming errors,
such as:

• memory safety, including bounds checks and pointer
safety,

• occurrence and treatment of exceptions, and
• absence of undefined behavior due to C quirks.

While those are worthwhile to find and correct, they only
ensure general correctness but not adherence to the require-
ments.

To check individual properties, CBMC can be used to
verify user-given assertions stated as C-style assertions using
the macros in assert.h.

3 Case study overview

The proposed case study for the ABZ 2020 [28] concerns
itself with two software-realized assistant systems from the
automotive domain, namely an adaptive exterior light system
(ELS) and a speed control system (SCS). The two software
systems are parameterized with configuration options that
account for different vehicle specifications either based on
country-specific regulations or individual orders. These pa-
rameters are:

• an indicator on which side the driver seat is placed to
distinguish between left- or right-hand traffic,

• a market code specifying whether the car was build for the
USA, Canada, or the EU, and

• the information whether the vehicle is armored,

and are referenced throughout the listed requirements. While
these parameters are shared by both subsystems, the case
study specification defines further sensors, actuators, user
interface, and functional requirements for the ELS and the
SCS individually.

Springer

http://cppcheck.sourceforge.net

406 S. Krings et al.

3.1 Adaptive exterior light system

The ELS specification concerns itself with the exterior light-
ing of the vehicle. This includes low and high beam head-
lights, a cornering light when turning left or right, the turn
signal, and the emergency brake light. The driver controls
it via a rotary switch, a control lever (referred to as pitman
arm), a hazard warning light switch, and a darkness switch
(which only exists in armored vehicles).

The ELS has 49 functional requirements specified (ELS-1
to ELS-49) which are grouped into 8 categories:

• Direction blinking (ELS-1 to ELS-7),
• Hazard warning light (ELS-8 to ELS-13),
• Low beam headlights and cornering light (ELS-14 to ELS-

29),
• Manual high beam headlights (ELS-30 to ELS-31),
• Adaptive high beam headlights (ELS-32 to ELS-38),
• Emergency brake light (ELS-39 to ELS-30),
• Reverse light (ELS-41), and
• Fault handling (ELS-42 to ELS-49).

Exemplary specifications include duration of flashing
light cycles (ELS-10: flashing cycle duration is 1 second), sit-
uational light activations (ELS-27: in reverse gear, both cor-
nering lights are active), default brightness factors (ELS-29:
100% for all lights), or behavior based on time-sensitive user
input (ELS-2 vs. ELS-4: different flashing behavior when
holding the pitman arm for less than 0.5 seconds or longer).

3.2 Speed control system

The specification for the SCS outlines behavior and func-
tionality for a cruise control and an adaptive cruise control,
a distance warning, emergency brake assist, a speed limit,
traffic sign recognition, and traffic jam following. The driver
interacts with the SCS by means of a cruise control lever,
the brake pedal, the gas pedal, and the instrument cluster.
Meanwhile the vehicle can give feedback and notifications
by means of a visual and an acoustic signal.

The SCS comprises 43 requirements (SCS-1 to SCS-41)
grouped into 8 categories:

• Setting and modifying desired speed (SCS-1 to SCS-12),
• Cruise control (SCS-13 to SCS-17),
• Adaptive cruise control (SCS-18 to SCS-24),
• Distance warning (SCS-15 and SCS-26),
• Emergency brake assistant (SCS-27 and SCS-28),
• Speed limit (SCS-29 to SCS-35),
• Traffic Sign Detection (SCS-36 to SCS-39), and
• Fault handling and general properties (SCS-40 to SCS-43).

Exemplary specifications include behavior changes of the
SCS given user input (SCS-4: pushing lever above 7◦ point

increases desired speed by 10 km/h) which might be time-
sensitive (SCS-8: holding lever above 7◦ point for 2 seconds
increases speed every 2 seconds to next ten’s place), reactions
of the SCS to braking (SCS-16: turn cruise control off when
brake is pushed), or reaction to predicted collisions (SCS-28:
if time to impact is less than time for standstill, activate brake
at 100%).

4 Requirements and modeling strategy

In this section, we give an overview on how we transformed
the requirements into code and test, our validation strategy
and the limitations of our implementation.

4.1 Process from requirements to code and
assertions

We used the requirements given in the case study descrip-
tion without further modification or transformation. For each
requirement we covered, we generated:

• Unit tests, which are used for test-driven development. See
Sect. 6.1 for details.

• Assertions to be checked via CBMC as presented in Sect. 6.
These assertions are meant to verify that properties hold
in general rather than just in the test scenarios.

The validation sequences were taken from an Excel file
and encoded in integration tests, using the same techniques
as the unit tests.

Using CBMC to verify assertions can, of course, result
in counterexamples. Those are given as traces, which can
be used to create additional validation sequences by replac-
ing erroneous steps by desired ones. Again, these tests can
then be used to improve the implementation and ensure the
absence of the counterexample.

The combined approach using both testing for validation
and model checking for verification has its merits and pro-
vides a high degree of certainty. However, it also has its
drawbacks. In particular, the double meaning of assertions
can lead to confusion: C-style asserts are used both to encode
properties for CBMC and to fail tests. Yet, there is no com-
bined methodology to react on failing assertions and errors
uncovered by model checking have to be handled differently
from failing tests.

4.2 Code structure

The overall architecture of our implementation is depicted in
Fig. 2. We follow a structure that is fairly similar to that the
specification provides. Since two subsystems are specified,
the code is separated into two folders, one for the cruise
control and the other for the light system. This is to help

Springer

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 407

Fig. 2 System Architecture and
Internal Communication. ELS
and SCS are strictly decoupled;
clock, sensors, and driver input
are external to the controlling
system itself

ensure that the systems are independent of each other. Shared
type definitions, e.g., the pedal deflection, the sensor state
enumeration, and shared sensors, are stored separately. An
artificial time sensor was introduced for testing, but can easily
be replaced by an actual clock.

Each of the subsystems is split into three header files and
implementations. The first header file declares the accessible
and shared sensors for the subsystem, and contains relevant
type definitions. Another header file defines the user inter-
face, e.g., how the pitman arm may be moved or what input
the pedals for gas and brakes may yield. The last header file
contains definitions for the actuators, i.e., what the system is
allowed to do. Only the latter two header files are actually
implemented, eventually resulting in three C files:

• A state struct that contains all the data relevant to the
subsystem.

• The user interface to simulate inputs. This changes some
internal variables that keeps track of the state of the UI;
in a deployed system, this can be replaced by additional
sensors. The attributes correspond to the signals that the
subsystem has to communicate.

• The realization of the state machine with several guarded
state transitions. This is the actual implementation of the
specified safety properties.

For the test cases, sensors are mocked. In order to get
an actual executable, real sensors have to be linked during
compilation. The time spend for development, validation and
verification is given in Table 1.

For the sake of brevity, we will only show small code
snippets in this paper. The full implementation is available at
https://github.com/wysiib/abz2020-case-study-in-c-public.

Table 1 Development Time

Task Time (h)

basic implementation and code structure 2
ELS implementation, tests and scenarios 30
SCS implementation, tests and scenarios 22
model checking 3
refactoring and code cleanup 2
state visualization 6
domain-specific visualization 25

4.3 Traceability of requirements

As the other case studies, we do not employ a fully for-
mal approach to traceability. The only form of traceabil-
ity we provide is by using naming patterns. Our unit tests
in general contain the requirement they are concerned
with in the name of the test routine. Larger integration
tests also reference the validation sequence they represent,
which in turn contains the requirements justifying individual
steps.

As a consequence, we can only trace which test cases are
validating certain requirements and to what extent require-
ments are covered. An example is given in listing 5, in which
we called the test els3_a_left. This indicates it is a test for
first part (a) of the requirements ELS-3, which focuses on the
left-hand side direction blinking. Comments aside, we have
no link between a requirement and the individual part of the
code realizing it. One could argue that there is a such a link
due to the nature of test-driven development and the use of

Springer

https://github.com/wysiib/abz2020-case-study-in-c-public

408 S. Krings et al.

a version control system (VCS): the VCS would allow us to
spot the code written immediately after the test case, i.e., the
code that made the test case pass for the first time. Ideally,
the code would be in the same commit as the test case or in
the one immediately after.

However, this link is weak, as both test cases and code
might be changed later on in subsequent commits. Further-
more, a subsequent code change might be related to one
or more already existing code changes. Refactorings add an
additional layer of complexity that the simple immediate
test-to-source link could not follow.

4.4 Variability of requirements

The specification document gives requirements for cars with
different features. Examples include the driver position,
which can be on the left- or right-hand side of the car; a
market code (USA, Canada, or EU), which influences how
direction blinking works (European cars have a dedicated
tail-lamp which American cars do not); and armored vehi-
cles, which have an additional darkness switch in order to
suppress certain light features.

In our current implementation, we handled the require-
ments’ variability by introducing artificial sensors. These
sensors produce a constant value for each of the above fea-
ture and are assigned to local variables during the system’s
initialization. While this approach was easy to implement on
top of our initial system, it also pollutes both the code and
program state to some extent.

In the automotive industry, a commonly used approach
for handling variability is software product line develop-
ment [19, 32]. If the variability had been larger, we could
have split ELS and ECS into a common base product used
for all market segments and used a software product line ap-
proach to develop individual manifestations, e.g., for Canada
vs. USA.

Given that the variability in the requirements was not that
large, we opted for the simpler implementation in order to
concentrate on validation and verification.

4.5 Properties addressed & limitations

Due to time constraints, we opted not to implement every sin-
gle requirement but tried to cover as much as possible. Aside
from the emergency brake light, all requirements have been
taken into account for the ELS. For the SCS, we implemented
about two-thirds of the requirements, up to (including) SCS-
28. While it would be nice to have a more complete imple-
mentation, we do not think that it would impact our gathered
conclusions.

A feature of the requirements that is not addressed satis-
fyingly are timers. We are convinced that any modern CPU
to be used in cars is fast enough to execute an iteration of

the state machine within a reasonable time frame. Thus, any
real system realized following our approach should be able to
guarantee execution within the smallest time resolution that
is relevant to the subsystems and their respective require-
ments.

Yet, it is hard to give any real-time guarantees. The only
evidence that can be given is to run the system often enough
and measure whether execution is kept in the specified tol-
erances. However, this is still better than what we expect of
more formal approaches, which usually do not account for
wall time at all.

5 Model details

In the following, we will detail implementation idioms we
employed to simplify handling and verification of the in-
volved state machine, and explore some snippets of our code
to showing these idioms in practice.

5.1 Formalization approach

As stated, we postponed verification as much as possible.
Instead, as our first step, we set up the validation sequences
as test cases. Then, following test-driven development, we
added to the implementation code by only considering the
first failing assertion in a scenario. Once the test passed,
we moved on to the next. In a second step, we added test
cases that are directly related to one or sometimes several
requirements.

Finally, we set up CBMC and tried to verify the properties
described by the requirements. As stated, we use the same
code for testing and formal verification, avoiding any trans-
lation between verification and testing environments as done
for instance by Chen et al. [16] and others. However, both
approaches remain distinct rather than being combined into
a single verification procedure [44].

5.2 Modeling idioms

Besides sticking to the MISRA C guidelines and test-driven
development we also adopted two further idioms during
modeling: only use enumeration types, and do not expose
mutability. We will motivate and elaborate on these in the
following subsections.

5.2.1 Use enumeration types

We opted to define all types as enumeration types. This is
to be expected for some data types, which are true enumera-
tions, such as:
typedef enum {Ready, Dirty, NotReady}

sensorState;

Springer

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 409

Yet, we also defined integer types as enumerations:
typedef enum {

percentage_low = 0,

percentage_high = 100

} percentage;

The reasons for this are twofold: first, we can easily iden-
tify thresholds and the value range for each type. While
percentages are straightforward, other values such as the
steering wheel angle are not easily represented in a human-
understandable format. An excerpt of the corresponding type
definition is as follows (analogously for turning the steering
wheel to the right):
typedef enum {

st_calibrating = 0,

st_hard_left_max = 1, /* 1.0 deg */

st_hard_left_min = 410,

st_soft_left_max = 411, /* 0.1 deg */

st_soft_left_min = 510,

st_neutral_maxl = 511, st_neutral = 512,

... /* analogous for the right side */

} steeringAngle;

Such a type definition renders it easier to identify, e.g., in
what direction the steering wheel is turned and how far. For
instance,
st_hard_left_max <= angle &&

angle <= st_hard_left_min

can be used to check if the wheel has been turned far to the
left.

C behavior is undefined if a value that is out of range of
the corresponding enumeration is passed. Thus, our second
intention was that model checking tools could easily deduce
the actual value range rather than having to consider integers
exhaustively. This will be discussed further in Sect. 6.2.

5.2.2 Do not expose mutability

It is easy to write broken code when using mutable structs,
especially if they are used in order to communicate between
threads. Instead, we pass values to and from interface func-
tions. This means, that values are copies of the data which
are not referenced from anywhere else in the program and the
receiver may do however they please with it. An example is
that the state from the light subsystem can be queried (for test
cases). The returned value will never change unless the test
case chooses to do so; no action in the ELS influences it. This
also allows reading multiple output variables consistently.

On the other hand, frequently changing internal variables,
are declared as local (using the static keyword). They are
always stored in the same “place” and may not be exposed;
in particular, there are no getter functions for these variables.

Listing 1 Sensor Reads and CBMC Assumptions
keyState ks = get_key_status();
__CPROVER_assume(ks == NoKeyInserted || ks ==

KeyInserted || ks ==
KeyInIgnitionOnPosition);

bool engine_on = get_engine_status();
__CPROVER_assume(engine_on == true ||

engine_on == false);
voltage voltage_battery = get_voltage_battery

();
__CPROVER_assume(voltage_battery >=

voltage_min && voltage_battery <=
voltage_max);

...
__CPROVER_assume(implies(ks ==

KeyInIgnitionOnPosition, engine_on ==
true));

__CPROVER_assume(implies(engine_on == true,
ks == KeyInIgnitionOnPosition));

5.3 Coding examples

Below, we present some key snippets of our implementation.
We focus on the concept of the ELS systems, as the SCS is
structured the same way.

The core of our ELS is the light_do_step function,
spanning over almost 300 lines of C code, that is called in a
loop. Some auxiliary functions exist to properly set the high
beam light, blinkers, etc., where it was appropriate to heed
the DRY principle. The light_do_step function can be
divided in three major parts, described below.

Sensor reads and type information for CBMC First, all
relevant sensors are read and stored locally. For verification
with CMBC (as discussed in Sect. 6.2), it is necessary to
provide type information for integer ranges and enums. List-
ing 1 shows this for three examples: first, all possible states
of the key are enumerated. Second, as C represents booleans
as integers, boolean values must be specified to be exactly
true or false. Third, integer ranges such as the possible val-
ues for the battery voltage have to be provided as an axiom.
Additionally, we add assumptions based on the specification,
e.g., that the engine state is linked to the key position.

As noted, we implemented time as a sensor as well. List-
ing 2 shows that we also had to add assumptions that the
timestamp only increases.

Implementation of requirements Requirements are en-
coded by a collection of if-statements. Interestingly, no else-
branch exists in the function — most likely because the spec-
ification does not contain the words “else” or “otherwise”.

Springer

410 S. Krings et al.

Listing 2 Time as a Sensor
size_t tt = get_time();
__CPROVER_assume(tt >= when_light_on);
__CPROVER_assume(tt >= blink_timer);
__CPROVER_assume(tt >= ambi_light_timer);
__CPROVER_assume(tt >= pitman_arm_move_time);

Listing 3 Implementation of two Requirements
// ELS-16 (has priority over ELS-17)
if(!engine_on && (last_lrs != lrs_auto)

&& (get_light_rotary_switch() == lrs_auto
)) {
set_all_lights(0);

}
...
// ELS-41: reverse gear
if(reverse_gear) {

set_reverse_light(100);
}
if(!reverse_gear) {

set_reverse_light(0);
}

Listing 4 Verification of two Requirements
// ELS-22: low beam => tail lights
assert(implies(blinking_direction != hazard,

implies(get_light_state().lowBeamLeft >
0, get_light_state().tailLampLeft > 0 ||
get_light_state().tailLampRight > 0)));

...
// ELS-41: reverse gear turns on reverse

lights
assert(implies(reverse_gear, get_light_state

().reverseLight > 0));
assert(implies(!reverse_gear, get_light_state

().reverseLight == 0));

In the snippet in listing 3, we show how two smaller require-
ments are realized.

Assertions The last part of the light_do_step function
contains code for invariant verification. Listing 4 contains
assertions that can be checked using CBMC to verify two
requirements.

5.4 Modeling of time constraints

When writing code that takes time into account, one is easily
tempted to access the current time provided by the operating
system. This is a bad when time-based properties are to
be tested, as tests would have to be enriched with sleep
statements to achieve proper timing for the situation under
test.

Instead, we introduced an artificial sensor reporting the
current time in milliseconds, comparable to a unix times-
tamp. For testing, this sensor is mocked, and some artificial
time is provided. The code does not know anything about
time, it just reads a sensor returning an integer value.

The only assumption made is that one cannot go back in
time. In consequence, the step functions can be called in a
continuous loop, independent of the computing speed and
time needed for a single iteration. On fast hardware, there
might even be several executions within the same times-
tamp (e.g., if the resolution is milliseconds) or timestamps
might pass without an execution following (e.g., when using
nanoseconds). Mocking the sensor also has the advantage
that test scenarios, which would take several minutes of wall
time, can be executed in milliseconds instead.

If the entire piece of software was to be shipped, it would
be trivial to swap out the sensor: One only has to link an
implementation that provides the real time, which may be
provided by the operating system.

5.5 Readability and comprehensibility

MISRA C is already designed to improve readability [5], and
given that C is a widely used language we assume our im-
plementation to still be accessible for nonexpert developers
unfamiliar with formal methods. Of course, the usual coding
guidelines for increasing readability apply to this case study
as well, e.g., naming conventions, limits on line length or
nesting depths, consistent indentation, and the like.

In the following, we will revisit our implementation and
discuss the readability of the code and hold it against this
assumption.

5.5.1 Readability metrics over ELS and SCS

An intuitive metric for readability seems to be the number
of lines of code (LOC). ELS and SCS include 605 and 642
LOC, respectively, not counting 328 blank and 200 comment
lines. However, more precise metrics for readability have
been suggested.

Buse and Weimer [13] show that the average number of
identifiers per line, the average line length, or average nesting
depth are negatively correlated with readability. Simultane-
ously, the average number of comment lines, and the average
number of semantically breaking blank lines are positively

Springer

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 411

correlated with readability. The negative impact of nesting
on readability is further pointed out by Johnson et al. [31].
Taking this into account, our code still seems to be read-
able. We observe a minimum amount of nesting, with only
if-constructs introducing mostly only one extra level of in-
dentation, nesting for at most two levels. The average line
lengths for the ELS and SCS are 34.37 and 36.27 characters,
respectively, with maxima of 170 and 125 characters. These
numbers suggest that the majority of lines is short and com-
prehensible, with some outliers rendering individual parts of
the code less readable.

5.5.2 Subjective readability of ELS and SCS

Besides readability metrics, a more subjective way of esti-
mating the code readability is to simply try reading it again.
The main interest hereby lies within our step functions, which
are continuously looped over. For the ELS and SCS modules,
these functions consist of 276 and 127 LOC, respectively.
Both start by accessing all the sensors, partly without pro-
cessing their return values. The rest of the implementation
follows a clear pattern: if-statements checking for a con-
dition to act upon. While the code lacks some comments
which explain why certain things are done, the references
to the respective requirement from the case study accom-
pany the code fragments as annotations. Overall, as the code
is not written in a high-level specification language which
more closely captures natural language, the overall readabil-
ity seems to be limited by the general readability of (MISRA)
C code. While this can be seen as a drawback, one could also
argue that no further understanding of higher mathematics or
set theory is required as, for instance, in certain formal lan-
guages. Thus, we believe the code remains equally readable
to experts and nonexperts alike.

5.5.3 Readability of the unit tests

Following, we want to take a closer look at our tests’ read-
ability. Each unit tests follows a pattern of arrange, act, assert,
as shown in listing 5. As this is a well-known technique, we
assume the tests are comprehensible by nonexperts.

However, we can observe two points negatively impacting
readability. Firstly, some tests involve multiple assertions.
Especially in terms of time-sensitive behaviors, we observe
patterns where the test advances the timer, asserts a specific
property (e.g., light on or off) then repeats the process to
assert the property change after a certain time.

Secondly, as this was such a common pattern specifically
in the ELS, we introduced macros which reduced boiler-
plate code, but might have reduced readability. The macro
progress_time_partial in listing 5, line 31, for instance,
advances time for a given time frame and asserts that a

property retains a given value along the way. While incred-
ibly valuable for writing the tests, we acknowledge that the
macro’s name is not descriptive enough as it does not convey
its role as an assert statement. Hence, the readability of the
test itself decreases.

5.5.4 Code pollution due to CMBC annotations

As C is not designed for formal verification, we found that
some annotations for CMBC started to pollute the code.
While adding asserts into the code to introduce invariants is
straightforward and immerses into the C code quite well, we
needed to add further axioms to the code so CMBC was able
to properly work with our enum types. This resulted in clut-
tering of the sensor reads as can be seen in listing 1. Here, we
ended up with one big block of sensor read and value axiom
pairs which impacts readability. However, in most formal
languages, this would be a nonissue as they were designed
with invariants and axioms in mind and include them as first
class citizens appropriately. Furthermore, we added these
axioms at the very end of the development process whereas
they are much more involved in early development stages in
fully formal methods.

6 Validation & verification

We tried to validate our implementation throughout the
whole development process by using test-driven develop-
ment, as we will discuss in Sect. 6.1. In addition, we used
the CBMC model checker to fully verify different proper-
ties of our implementation directly on the C code as we will
describe in Sect. 6.2.

6.1 Test-driven development using cmockery

We used test-driven development based on the provided sce-
narios. For this, we rely on Google’s cmockery library,4
which provides a unit testing framework and allows mocking
functions. Since we did not want to execute all tests in real-
time, we mocked functions that extract sensor data and the
current time in our test cases. We used two different kinds of
test cases for a first quick validation:

• The provided scenarios were automatized and used as in-
tegration tests.

• In addition, we implemented unit tests for all requirements
given in the specification document. Of course, each unit
test only covers a minimal scenario that shows how the
requirement is supposed to be understood and automatizes
the verification of that single scenario.

4 https://github.com/google/cmockery.

Springer

https://github.com/google/cmockery

412 S. Krings et al.

Listing 5 Test of Requirement ELS-3
1 void els3_a_left(void **state) {
2 init_system(leftHand, false, EU, false, false);
3 sensors_and_time sensor_states = {0};
4
5 assert_light_state(((light_state) {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}));
6
7 // ignition: key inserted + ignition on
8 sensor = update_sensors(sensor, sensorTime, 1000);
9 sensor = update_sensors(sensor, sensorBrightnessSensor, 500);

10 sensor = update_sensors(sensor, sensorKeyState, KeyInIgnitionOnPosition);
11 sensor = update_sensors(sensor, sensorEngineOn, 1);
12
13 mock_and_execute(sensor_states);
14
15 sensor = update_sensors(sensor, sensorTime, 2000);
16 pitman_vertical(pa_Downward5);
17 mock_and_execute(sensor_states);
18
19 assert_partial_state(blinkLeft, 100, blinkRight, 0);
20 pitman_vertical(pa_ud_Neutral);
21 sensor = update_sensors(sensor, sensorTime, 2000);
22 mock_and_execute(sensor);
23
24 pitman_vertical(pa_Upward7);
25
26 progress_time_partial(2000, 2499, blinkLeft, 100, blinkRight, 0);
27 progress_time_partial(2500, 2999, blinkLeft, 0, blinkRight, 0);
28
29 int i;
30 for (i = 3; i < 6; i++) {
31 progress_time_partial(i*1000, i*1000 + 499,
32 blinkLeft, 0, blinkRight, 100);
33 progress_time_partial(i*1000 + 500, i*1000 + 999,
34 blinkLeft, 0, blinkRight, 0);
35 }
36 }

A snippet taken from the test case of the requirement ELS-
3 is shown in listing 5. The system is initialized to belong
to an EU-based car with left-hand drive and without any
extras such as ambient light, followed by the initialization
and assertions regarding the correctness of the initial state.
Afterwards, in lines 8 to 15, we update the sensors to the
values they should hold at the start of the test scenario and the
code setting up the mocked functions is called. In particular,
we set the time sensor used to simulate the actual clock as
described in Sect. 5.4. Overall, the test setup phase ensures
that our artificial sensors report the required values.

Line 16 shows the difference between sensors and driver
interaction: While sensors have to be mocked in order to
simulate an actual system, user input is given directly. This
corresponds to what will happen in an actual car: the system
has to react to user input immediately, while it can read sensor
data arbitrarily.

Line 19 asserts that the left blinker is on 100% and
the right one is on 0% once the step function was exe-
cuted after the user input was given. We use the function
assert_partial_state, since we only make an assertion
regarding the two variables blinkLeft and blinkRight,
rather than making an assertion over all state variables.

Finally, Lines 26–27, as well as 31–34, assert that for each
millisecond in the time interval, the provided values remain
the same, i.e., that the step function does not change output
values during that time frame.

As can be seen, we have implemented different C macros
to simplify test case development:

• assert(_partial)_state which checks if the internal
states of ELS and SCS correspond to given assertions. The
assertions can specify the state both partially, as done in
the listing, and fully.

• progress_time(_partial) combines assertions on the
state with a progression of time as reported by the time
sensor.

Validation results As expected, using test-driven devel-
opment provided the usual benefits:

• having to formulate test cases helped us gain an under-
standing of the requirements and how they are supposed
to work,

• refactoring was made easier and more secure, and
• the implementation was closer to the actual specification

from the start.

The fact that we are working with an actual implementa-
tion made test-driven development come naturally. However,
different ways of combining formal methods with test-driven
development have been discussed [6] as well. In addition,
developing specifications using continuous testing has been
suggested for former ABZ case studies in the context of the
B method [25, 26].

Influences on code Using the macros above, our initial
design of splitting sensors, user input, and actuators did not
have to be adapted further to be testable. Yet, it created a
vast amount of code entirely dedicated to testing. Of 5223
source code lines (including a Makefile and code used for
visualization but not counting comments and blank lines),
3786 lines are test code. In general, we needed quite a lot
of code for the tests as we had to create the appropriate
infrastructure to be able to handle the progression of time in
the test cases. Thus, future additional test will probably not
increase the number of lines of code needed for testing as
much.

6.2 Model checking using CBMC

As stated above, we used CBMC to verify properties of
our implementation directly on the C code. Depending on
where we place C-style assertions, they correspond to differ-
ent kinds of properties commonly used in state-based formal
methods:

• If placed at the end of the loop implemented by the ELS
and the SCS state machines depicted in Fig. 2, assertions
correspond to safety invariants that have to hold in every
state reachable by one of the subsystems.

• If placed anywhere inside the loop, assertions can be used
as invariants on intermediate states.

Springer

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 413

• If placed outside the loop, we can check if properties hold
after a certain number of iterations (controlled by CBMC’s
unrolling preferences).

• By using additional variables for unrolling state traces,
we can implement a lightweight verification of temporal
properties. Of course, this is not as powerful as LTL or
CTL.

Examplary verification of ELS-22 Requirement ELS-22
is a great example for an invariant. It states “Whenever the
low or high beam headlights are activated, the tail lights are
activated, too”. For this, we can add an assertion such as:
implies(get_light_state().lowBeamLeft > 0,

get_light_state().tailLampLeft > 0 ||

get_light_state().tailLampRight > 0)

The disjunction in the second part of the implication is
important for American cars: as tail lamps are used for indi-
cators, it is accepted behavior if one tail lamp is temporarily
deactivated during a flashing cycle. When running CBMC,
it immediately came up with a counterexample. A part of the
output trace can be found in listing 6.

The counterexample shows how the two system variables
ks, i.e., the key state, and engine_on, i.e., the engine’s
ignition state, change while light_do_step is executed.

The main issue with such a counterexample is that each
variable assignment, function call, and return from a function
introduces a new state. While this representation mimics the
internal workings of the C code, it does not correspond to the
mental model: comparable to common state-based formal
methods, we regarded a state change to include multiple
variables at once.

Hence, as we were only interested in comparing state
variables per full iteration of light_do_step, the output
was barely readable to us (the counterexample consists of
more than 200 lines and 50 low-level states).

CBMC can optionally reduce the output by removing as-
signments unrelated to the property. This did not work well
for us, as the assignment of signals for the low beam head-
lights was removed as well. We ended up manually writing
state variables in a spreadsheet to comprehend the scenario
and ultimately created our own visualization which we will
present in Sect. 7.2. A (condensed) version of the trace be
found in Table 2 (using “NoKey” for “NoKeyInserted” and
“KeyIn” for “KeyInIgnitionOnPosition”). Here, the (high-
level) state changes between two full iterations of our step
function are shown, rather than changes of individual vari-
ables during the execution. This representation aligned better
to our mental model of the implementation and was thus more
helpful for debugging.

The error in our code was that, based on ELS-17, only the
low beam headlights were activated due to activated daytime
running light. This was not uncovered by the test scenarios,

Listing 6 Partial CBMC Output
State 59 file light/light-impl.c line 242

function light_do_step thread 0

ks=/*enum*/NoKeyInserted

(00000000000000000000000000000000)

State 63 file light/light-impl.c line 242
function light_do_step thread 0

ks=/*enum*/KeyInIgnitionOnPosition

(00000000000000000000000000000010)

State 65 file light/light-impl.c line 244
function light_do_step thread 0

engine_on=FALSE (00000000)

State 69 file light/light-impl.c line 244
function light_do_step thread 0

engine_on=TRUE (00000001)

Table 2 Example Trace Violating ELS-22

State Variable Iteration 1 Iteration 2

key_state NoKey KeyIn
engine_on FALSE TRUE
all_doors_closed FALSE TRUE
brightness 0 37539
speed 0 936

daytime_light_was_on FALSE TRUE
low_beam_left 0 100
low_beam_right 0 100
last_engine FALSE TRUE
last_key_state NoKey KeyIn
last_all_door_closed FALSE TRUE

tail_lamp_left 0 0
tail_lamp_right 0 0

since daytime light was only tested by night, where, coinci-
dentally, other triggers activated the tail lamps. As this trace
did not contain assignments of the tail lamp variables, we
had to look up their initial (unchanged) values and add them
to the table manually.

Verification results However, the assertion still failed to
verify. Upon further analysis of the property, we discovered

Springer

414 S. Krings et al.

a conflict between ELS-22 and hazard blinking in Canadian
and US cars. In those cases, hazard blinking deactivates both
tails lights for the dark cycle, thus violating the property. We
extended our assertion by checking our variable for blinking
direction beforehand:
assert(implies(blinking_direction != hazard,

/* old assertion */));

Afterwards, we were able to successfully verify the property
using CBMC.

Influences on code At first glance, using CBMC only re-
quired to add assertions to the code. As assertions are often
introduced as part of understanding certain scenarios, this
does not change the modeling strategy itself. Some addi-
tional assertions were required to let CBMC detect integer
ranges that are defined by an enum (as otherwise, counterex-
amples would find, e.g., percentage values larger than 100,
cf. Sect. 5.2), and that consecutive timestamps cannot get
smaller.

A huge issue we encountered very late is that, by default,
the tool only is able to work with internal state changes, i.e.,
state that the implementation adds. External state changes,
i.e., state that is modified by user interaction or the environ-
ment, were not part of our first verification attempts. This
can be imagined as verification of a car whose engine cannot
be started.

CBMC can incorporate such external state changes if the
corresponding function has nondet_ as a prefix of its name
(which, naturally, collided with our naming conventions).
Two modeling issues come with that: first, constant values
(such as the market code or installed features) might change
on every call now. Thus, we had to refactor so that the values
are retrieved once and the getter functions were replaced by
using these local variables. Second, we now cannot express
certain orderings of external states: an example is the light
rotary switch that has to move from the off position via the
auto position before it can be set to on. We found no way to
encode this behavior.

7 Other observations

Our implementation work allowed us to identify several flaws
in the specification, as well as shortcomings of our imple-
mentation strategy. In the following, we document such is-
sues and give suggestions and solutions.

7.1 Specification ambiguities, flaws, and
suggested improvements

During development, we identified several shortcomings or
ambiguities within the specification. These issues were found

during analysis of the requirements and during implement-
ing test cases. As we only performed validation steps after
implementation, the validation steps just uncovered short-
comings of our own implementation and noncompliances
with respect to the specification. Due to page limitations, we
will only present some of them:

ELS-37 is somewhat broken or at least highlights an in-
completeness in the specification. For now, there is no way
to discern whether an adaptive cruise control is part of the
vehicle; from the specification, we had to assume that it is
installed in every system. Then, according to SCS-1, there
does not even have to be a desired speed at all times: right
after engine startup no previous desired speed is available.
We think that, in order to make sense at all, it rather should
be “is active” than “is part of the vehicle”. Also, this is the
only part of the specification that refers to an advanced cruise
control.

ELS-42 to ELS-46 only partially specify what should
happen in case of subvoltage. Instead, information should
be given for all light components how the software should
react or whether they remain unaffected. Only the require-
ment ELS-43 mentions a single unaffected component. In
particular, turn signals, the regular low beam headlights and
the emergency break light remain unspecified. Additionally,
ELS-43 references ELS-31 for a situation where the light ro-
tary switch is in position Auto and the pitman arm is pushed;
ELS-31, however, describes behavior if that switch is in the
On position and the pitman arm is pulled.

ELS-19 contains a contradiction: first, it states that am-
bient lighting prolongs already active low beam headlights.
Later, it says that the headlamps “remain active or are acti-
vated”. We think that some actions are reasonable to activate
the headlight even if it was not on before (e.g., opening the
doors). Others definitely should not activate the headlight
(e.g., if the brightness falls below the specified threshold, as
passing cars and the setting sun might trigger the brightness
sensor). Also, it does not have any constraints regarding the
light rotary switch: if the switch is in the “off” position, we
think the ambient light should not activate at all.

While currentSpeed is specified as a sensor in the ELS,
it is not clear how the SCS accesses this value. No sensor is
provided according to the specification, and only the brake
pressure is mentioned as actuator but not the gas pedal. Thus,
the SCS as specified appears to only be responsible for de-
termining the desired speed but not for actually deploying
it to the current speed? To our understanding, the measured
current speed should be a sensor to the SCS to allow it to
work properly.

SCS-23 specifies a safety distance for the adaptive cruise
control of 2.5 s · currentSpeed when the current speed is
below 20 km/h, and a safety distance of 2 m if both vehicles
are standing. Assuming currentSpeed < 2.88, however, the

Springer

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 415

safety distance according to SCS-23 is below 2 m and effec-
tively approaches 0 the closer the vehicle gets to a standstill,
e.g., 2.5 s · 2.8 km/h = 2.5 s · 0.77 m/s = 1.925 m < 2 m . But
once a standstill is reached, the safety distance is reset to 2 m
and thus violated instantly. It remains unclear whether this
2 m distance is meant as minimum or intended to delay the
reaction to eventual acceleration of the vehicle in front.

SCS-28 specifies an acoustic signal which is to be played
if the time to reach a standstill with maximum deceleration
is greater than the time until impact. SCS-21, however, al-
ready specified another acoustic signal to be played when
maximum deceleration of 3 m/s2 is insufficient to prevent
impact. As it is not specified what SCS-28 considers as max-
imum deceleration value these signals might overlap if 3 m/s2

can be assumed again. While the specification does state the
maximum brake-implied deceleration to be 6 m/s2, it is un-
clear whether this is the deceleration to be considered for
SCS-28.

7.2 Improvements to our employed
methodology

We are surprised how easy it was to implement the case
study in C, given that none of the authors is a professional
C developer. While we were unsure during implementation,
given our test harness and the results of CBMC, we now
have more confidence in the correctness of our implementa-
tion. However, CBMC’s output was hard to interpret as we
discussed above. Performance not being a primary concern,
our result turned out simple enough to not warrant further
optimization.

To improve, we created different visualizations. One such
visualization is a state visualization based on PlantUML5

(cf. Fig. 5). A second visualization was a domain-specific vi-
sualization in C++ with OpenGL, using the existing sources
directly as part of the compilation.

However, development was incomplete and thus omitted
for the initial article. Revisiting the visualizations for this
extended article, we found that both are not fully satisfactory:
The PlantUML-based visualization is very technical, directly
referring to implementation details. While it is still beneficial
for understanding test failures, it relies on knowledge about
the internal workings of the implementation and is thus not
presentable to external stakeholders.

In contrast, the C++ visualization is domain-specific, i.e.,
it shows a car and its actuators, and is thus understandable
without knowing implementation details (cf. Fig. 3). How-
ever, as the visualization was directly linked to the C sources,
it proved rather inflexible and prone to breakage when im-
plementation details changed. While it was still useful as

5 https://plantuml.com/.

Fig. 3 OpenGL based domain-specific visualization, showing the car
and its current speed

a mere demonstration tool, its value for development was
diminished.

To improve, we decided to further separate implementa-
tion and visualization. Our goal was to keep interacting with
the implementation simple, but also allow replacing it with
a new version straightforwardly.

To achieve this, we added a small sensor implementation,
to be controlled from the outside and linked as a shared
library. On top, we used F# to develop a visualization using
the RayLib library. This approach worked well, reducing
the communication of the two components to a simple and
somewhat stable C interface.

While the older OpenGL-based Visualization looked
pleasing, it almost completely omitted numerical feedback.
This decision struck us as too extreme in retrospect, so we
opted for a more minimal look, but including both a domain-
specific visualization and values of state variables. For exam-
ple, the steering angle directly corresponds to the displayed
image of a steering wheel, as well as to the traced out path the
vehicle is currently headed (cf. Fig. 4). We found the visuals
very helpful in gaining a quick understanding of the imple-
mentation’s behavior. The geometric intuition provided by
the 3D view was a welcome addition.

In contrast to the old visualization, we included an in-
teractive component, enabling the user to experiment and
explore the behavior. By default, an automatically animated
car will perform a lemniscate around an attractor point. This
was surprisingly effective in finding behavior that does not
conform with expectations: For instance, when using the
pedals some reaction is to be expected. Yet, even though the
pedal position indeed changed as seen in the visualization,

Springer

https://plantuml.com/

416 S. Krings et al.

Fig. 4 Newly Developed
RayLib Visualization, showing
the car and visually representing
the status of its actuators

nothing happened with respect to the car’s movement. In con-
sequence, we noticed that neither does the gas pedal cause
acceleration, nor does the brake pedal decelerate the vehi-
cle. As far as the SCS is concerned, the brake pedal merely
disables cruise control as mandated by SCS-16.

Using C for implementation proved very flexible, as there
exists a plethora of ways to interact with other languages.
Thus, it would have been easy to use other ways of animation.
For instance, we were able to execute our implementation
in a browser by compiling it to wasm via the Emscripten
Compiler Frontend (emcc) and then interact with it using
JavaScript.

7.3 Note about deriving a software
implementation

As we have started from a low-level implementation in C,
the software implementation was always readily available.
Hence, in our case, the “model” can be directly compiled
and executed. However, testing the executable would still be
interesting if we look beyond our simple tests, i.e., with an
actual implementation at hand, hardware-in-the-loop tests
would be desirable.

8 Comparison

In the 2020 ABZ Proceedings, five other contributions were
published, all of them providing verified formal models
rather than implementations:

• Arcaini et al. [4], who utilized abstract state machines
(ASMs) [10] and the ASMETA framework [3],

• Cunha et al. [20], who modeled their solution in Elec-
trum [37], an extension to Alloy [30],

Fig. 5 Visualization using PlantUML

• Leuschel et al. [36], who developed their solution in clas-
sical B [1] and later translated to Event-B for proof [2],

• Mammar et al. [38, 39], used Event-B for two distinct
models of the ELS [39] and the SCS [38].

Springer

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 417

The main difference between our approach and the other
case studies is that we tried to verify an existing low-level
implementation after it has been developed. In comparison,
the formal approaches undertaken by the other case studies
tend towards following a correct-by-construction approach.
That is, they later derive an implementation from the formal
model by code generation, e.g., as possible for B [42].

The case study implemented using ASMs by Arcaini et
al. [4] uses a formalism of a much higher abstraction level
than our concrete implementation. However, code generation
is available for ASMs as outlined by the authors. As a result,
a C++ (rather than plain C) implementation could be derived
from the formal models and might look somewhat like our
direct implementation.

Furthermore, ASMETA allows doing conformance test-
ing, i.e., deriving unit tests from the formal model rather than
writing them by hand as we did.

The actual implementation aside, Arcaini et al. designed
their models in roughly the same fashion as we designed
our implementation. ELS and SCS are coupled very loosely
and developed as independently as possible. At the same
time, they share some signals, comparable to the actuators
we defined above. During development, features were added
gradually while keeping a (proven) refinement chain intact.
While we added features in roughly the same fashion and
order, we had no access to a formal proof of refinement.
Thus, we had to rely on our test cases entirely.

The approach followed by Arcaini et al. does not verify
timing issues, as there is no continuous time in ASM. This is
a weakness when compared to our low-level implementation
which could be executed in realtime.

The case study performed by Cunha et al. [20] follows
an approach to verification and validation that is similar to
ours. Initially, the authors use test case given as animation
scenarios (i.e., small test cases) and reference scenarios (i.e.,
the execution sequences given in the specification). This is
comparable to the test-driven development we employed as
discussed in Sect. 6.1.

Formal verification of the requirements is performed after
(some of) the development steps. This is again is compara-
ble to our approach of using CBMC on an already existing
implementation (cf. Sect. 6.2).

The case study by Leuschel et al. [36] models time in the
same way we did. There is a dedicated model implementing
timers based on elapsed milliseconds. In contrast to our sim-
ple clock module shown in Fig. 2, Leuschel et al. use a more
involved timer, supporting deadlines and even triggers.

The case study also uses a domain specific visualiza-
tion tailored specifically for the case study. Here, using a
well-established formal method shows its merits. For B and
Event-B, a multitude of animation frameworks and tools is
available and can be used without much overhead. In the
case study, a visualization tool called “VisB” is used, which

allows modifying SVG graphics based on state variables.
While this approach is comparable to our visualization, no
custom implementation aside from some glue code connect-
ing the image to the state values was needed.

Visualization and timers aside, the B and Event-B models
are much more formal than our implementation and rely
heavily on proof (by Rodin) and model checking (by ProB)
rather than testing.

The two articles by Mamar et al. concentrate on the
ELS [39] and the SCS [38] individually. A particular focus
is on the model’s differentiation between the two systems
and the environment. The model for the environment closely
resembles the sensors and inputs modules shown in Fig. 2.

Again, the case study uses ProB for model checking.
Given that the authors intentionally tried to avoid rather
costly LTL model checking and proof, their properties re-
semble what we check using CBMC. In particular, simple
properties on states sequences are rendered model checkable
by storing the prestate in individual variables available for
comparison with the current state.

Further related work An alternative to both our imme-
diate low-level implementation and to the code generation
approaches that would usually follow with the other case
studies is to embed the formal models in runtime code di-
rectly, i.e., without compiling them to some other language.

For B, this has been outlined in a demonstration of the
ETCS hybrid level 3, where a classical B model is able to
control real trains [26]. The approach uses the ProB Java
API [33] to connect the formal model to the outside world
and allows interacting with it.

9 Conclusions

To summarize, we have implemented a low-level version of
the ABZ 2020 case study in MISRA C, a language commonly
used in the automotive industry. We relied on test-driven
development for validation as well as on formal verification
using model checking.

Compared to case studies using more rigorous ap-
proaches, our approach shows both advantages and disad-
vantages. In particular, our implementation stays close to the
actual system, can easily be deployed to an actual car, and
could be used for simulation and hardware-in-the-loop tests.
Furthermore, due to the popularity of C in the automotive
industry, it is more approachable by developer untrained in
formal methods. However, while CBMC is an excellent tool,
we seemed to have hit every pitfall and in many instances
actually did not verify anything. Overall, for an untrained de-
veloper, it is very easy to show “the wrong thing” and obtain
a “proven correct” signal while the code may still be faulty.

Springer

418 S. Krings et al.

In our attempts to address the (eventually) uncovered is-
sues, we certainly missed the expressiveness and mathemat-
ical clarity of more rigorous approaches. In particular, the
semantics of a guard substitutions would have been very
useful, as different actions (e.g., controlling the low beam
headlights and the cornering light) can be regarded in isola-
tion instead of considering 300 lines of a single step function.
Further, having invariants and other properties as first class
citizens rather than inserting them artificially via macros and
external functions is clearer and more convenient. Compared
to a formal method, we were only able to do very lightweight
verification of temporal properties and would certainly have
favored to be able to model check LTL or CTL properties.
Thus, while we were able to verify our implementation to
a certain degree, we suspect that a more thorough approach
would be able to provide stronger guarantees.

Furthermore, we currently do not validate any properties
on time constraints aside from simulating an external clock
in the test cases. As part of possible future work, we intend
to use CBMC to try to provide real-time guarantees and to
verify the correct behavior in presence of scheduling and
limited by the actual specifications of an embedded device.

Both could be verified by providing a Verilog model
of the hardware, sensors and connections. Afterwards, co-
verification of the implementation with the Verilog circuit
model can be performed by CBMC [17]. Additionally, we
would like to consider other tools that work directly on the
C code, e.g., Symbiotic [15] or Klee [14].

Further future research could be done in the combination
of formal and informal approaches, e.g., when thinking about
code generators: proven invariants on a high-level model
could be compiled to C assertions. Then, they could be veri-
fied on the low-level code as well, effectively demonstrating
the correctness of the code generators.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineer-
ing. Cambridge University Press, New York (2010)

3. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-
driven process for engineering a toolset for a formal method. Softw.
Pract. Exp. 41(2), 155–166 (2011)

4. Arcaini, P., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra,
P.: Modelling an automotive software-intensive system with adap-
tive features using ASMETA. In: Raschke, A., Méry, D., Houdek,
F. (eds.) Proceedings ABZ, pp. 302–317. Springer, Cham (2020)

5. Bagnara, R., Bagnara, A., Hill, P.M.: The MISRA C coding stan-
dard and its role in the development and analysis of safety- and
security-critical embedded software. In: Podelski, A. (ed.) Pro-
ceedings Static Analysis, pp. 5–23. Springer, Cham (2018)

6. Baumeister, H.: Combining Formal Specifications with Test Driven
Development. Proceedings XP/Agile Universe, LNCS, vol. 3134.
Springer, Berlin (2004)

7. Beck, K.: Test-Driven Development: By Example. Kent Beck Sig-
nature Book, Addison-Wesley (2003)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model check-
ing without BDDs. In: Proceedings TACAS, LNCS, vol. 1579,
pp. 193–207. Springer, Berlin (1999)

9. Boogerd, C., Moonen, L.: Assessing the value of coding standards:
an empirical study. In: Proceedings ICSM, pp. 277–286. IEEE,
New York (2008)

10. Börger, E., Gargantini, A., et al.: Proceedings ASM, vol. 2589.
Springer, Berlin (2003)

11. Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods.
IEEE Softw. 12(4), 34–41 (1995)

12. Brookes, T.M., Fitzgerald, J.S., Larsen, P.G.: Formal and infor-
mal specifications of a secure system component: final results in a
comparative study. In: Gaudel, M., Woodcock, J. (eds.) FME ’96:
Industrial Benefit and Advances in Formal Methods, Third Inter-
national Symposium of Formal Methods Europe, Co-Sponsored
by IFIP WG 14.3, Oxford, UK, March 18–22, 1996, Proceedings,
vol. 1051, pp. 214–227. Springer, Berlin (1996)

13. Buse, R.P., Weimer, W.R.: Learning a metric for code readability.
IEEE Trans. Softw. Eng. 36(4), 546–558 (2010)

14. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and
automatic generation of high-coverage tests for complex systems
programs. In: Proceedings OSDI, vol. 8, pp. 209–224. USENIX
Association (2008)

15. Chalupa, M., Vitovská, M., Strejček, J.: Symbiotic 5: boosted
instrumentation. In: Proceedings TACAS, LNCS, vol. 10806,
pp. 442–446. Springer, Berlin (2018)

16. Chen, M., Ravn, A.P., Wang, S., Yang, M., Zhan, N.: A two-way
path between formal and informal design of embedded systems. In:
Proceedings UTP, LNCS, vol. 10134, pp. 65–92. Springer, Berlin
(2017)

17. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C
and verilog programs using bounded model checking. In: Proceed-
ings DAC, pp. 368–371. IEEE, New York (2003)

18. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C
programs. In: Proceedings TACAS, LNCS, vol. 2988, pp. 168–176.
Springer, Berlin (2004)

19. Clements, P., Northrop, L.: Software Product Lines. Addison-
Wesley, Boston (2002)

20. Cunha, A., Macedo, N., Liu, C.: Validating multiple variants of an
automotive light system with electrum. In: Raschke, A., Méry, D.,
Houdek, F. (eds.) Proceedings ABZ, pp. 318–334. Springer, Cham
(2020)

21. Fathy, H.K., Filipi, Z.S., Hagena, J., Stein, J.L.: Review of
hardware-in-the-loop simulation and its prospects in the automo-
tive area. In: Modeling and Simulation for Military Applications,
vol. 6228. SPIE, Bellingham (2006)

22. Fitzgerald, J.S., Brookes, T.M., Green, M.A., Larsen, P.G.: Formal
and informal specifications of a secure system component: first re-
sults in a comparative study. In: Naftalin, M., Denvir, B.T., Bertran,

Springer

http://creativecommons.org/licenses/by/4.0/

A verified low-level implementation and visualization of the adaptive exterior light and speed control. . . 419

M. (eds.) FME ’94: Industrial Benefit of Formal Methods, Second
International Symposium of Formal Methods Europe, Barcelona,
Spain, October 24–18, 1994. Proceedings, Lecture Notes in Com-
puter Science, vol. 873, pp. 35–44. Springer, Berlin (1994)

23. General Specification of Basic Software Modules. AUTOSAR,
Munich (2019)

24. Hall, A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19
(1990)

25. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J.,
Leuschel, M.: Validation of the ABZ landing gear system us-
ing ProB. In: ABZ 2014: The Landing Gear Case Study, CCIS,
vol. 433, pp. 1–17. Springer, Berlin (2015)

26. Hansen, D., Leuschel, M., Schneider, D., Krings, S., Körner, P.,
Naulin, T., Nayeri, N., Skowron, F.: Using a formal B model at
runtime in a demonstration of the ETCS hybrid level 3 concept with
real trains. In: Proceedings ABZ, LNCS, vol. 10817, pp. 292–306.
Springer, Berlin (2018)

27. Hatton, L.: Language subsetting in an industrial context: a compar-
ison of MISRA C 1998 and MISRA C 2004. Inf. Softw. Technol.
49(5), 475–482 (1998)

28. Houdek, F., Raschke, A.: Adaptive Exterior Light and Speed Con-
trol System

29. ISO: Road Vehicles – Functional Safety (2011)
30. Jackson, D.: Software Abstractions: Logic, Language, and Analy-

sis. MIT Press, Cambridge (2012)
31. Johnson, J., Lubo, S., Yedla, N., Aponte, J., Sharif, B.: An empir-

ical study assessing source code readability in comprehension. In:
Proceedings IEEE ICSME, pp. 513–523 (2019)

32. Käköla, T., Duenas, J.C.: Software Product Lines. Springer, Berlin
(2006)

33. Körner, P., Bendisposto, J., Dunkelau, J., Krings, S., Leuschel, M.:
Integrating formal specifications into applications: the ProB Java
API. Form. Methods Syst. Des., 1–28 (2020)

34. Krings, S., Körner, P., Dunkelau, J., Rutenkolk, C.: A verified
low-level implementation of the adaptive exterior light and speed
control system. In: Raschke, A., Méry, D., Houdek, F. (eds.) Pro-
ceedings ABZ, pp. 382–397. Springer, Cham (2020)

35. Larsen, P.G., Fitzgerald, J.S., Brookes, T.M.: Applying formal
specification in industry. IEEE Softw. 13(3), 48–56 (1996)

36. Leuschel, M., Mutz, M., Werth, M.: Modelling and validating
an automotive system in classical B and event-B. In: Raschke,
A., Méry, D., Houdek, F. (eds.) Proceedings ABZ, pp. 335–350.
Springer, Cham (2020)

37. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.:
Lightweight specification and analysis of dynamic systems with
rich configurations. In: Proceedings ACM SIGSOFT, FSE 2016,
pp. 373–383. Association for Computing Machinery, New York
(2016)

38. Mammar, A., Frappier, M.: Modeling of a speed control system
using event-B. In: Raschke, A., Méry, D., Houdek, F. (eds.) Pro-
ceedings ABZ, pp. 367–381. Springer, Cham (2020)

39. Mammar, A., Frappier, M., Laleau, R.: An event-B model of an
automotive adaptive exterior light system. In: Raschke, A., Méry,
D., Houdek, F. (eds.) Proceedings ABZ, pp. 351–366. Springer,
Cham (2020)

40. MISRA C:2012 – Guidelines for the use of the C language in
critical systems. MISRA (2013)

41. Short, M., Pont, M.J.: Assessment of high-integrity embedded
automotive control systems using hardware in the loop simulation.
J. Syst. Softw. 81(7), 1163–1183 (2008)

42. Vu, F., Hansen, D., Körner, P., Leuschel, M.: A multi-target code
generator for high-level B. In: Proceedings IFM, pp. 456–473.
Springer, Berlin (2019)

43. Yang, M., Zhan, N.: Combining Formal and Informal Methods
in the Design of Spacecrafts. LNCS, vol. 9506, pp. 290–323.
Springer, Berlin (2016)

44. Yuan, J., Shen, J., Abraham, J., Aziz, A.: On combining formal
and informal verification. In: Proceedings CAV, LNCS, vol. 1254,
pp. 376–387. Springer, Berlin (1997)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

	Titelblatt_Körner_final
	Körner_A verified
	A verified low-level implementation and visualization of the adaptive exterior light and speed control system
	Abstract
	Introduction
	Rationale
	Distinctive features
	Team overview
	Collaboration
	Additional contributions

	Background on used methodology and tools
	MISRA C
	Test-driven development and mocking
	CBMC

	Case study overview
	Adaptive exterior light system
	Speed control system

	Requirements and modeling strategy
	Process from requirements to code and assertions
	Code structure
	Traceability of requirements
	Variability of requirements
	Properties addressed & limitations

	Model details
	Formalization approach
	Modeling idioms
	Use enumeration types
	Do not expose mutability

	Coding examples
	Sensor reads and type information for CBMC
	Implementation of requirements
	Assertions

	Modeling of time constraints
	Readability and comprehensibility
	Readability metrics over ELS and SCS
	Subjective readability of ELS and SCS
	Readability of the unit tests
	Code pollution due to CMBC annotations

	Validation & verification
	Test-driven development using cmockery
	Validation results
	Influences on code

	Model checking using CBMC
	Examplary verification of ELS-22
	Verification results
	Influences on code

	Other observations
	Specification ambiguities, flaws, and suggested improvements
	Improvements to our employed methodology
	Note about deriving a software implementation

	Comparison
	Further related work

	Conclusions
	References

