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Abstract
The degree of commutativity of a finite group is the probability that two uniformly
and randomly chosen elements commute. This notion extends naturally to finitely
generated groups G: the degree of commutativity dcS(G), with respect to a given
finite generating set S, results from considering the fractions of commuting pairs of
elements in increasing balls around 1G in the Cayley graph C(G, S). We focus on
restricted wreath products of the form G = H � 〈 t〉, where H �= 1 is finitely generated
and the top group 〈 t〉 is infinite cyclic. In accordance with a more general conjecture,
we show that dcS(G) = 0 for such groups G, regardless of the choice of S. This
extends results of Cox who considered lamplighter groups with respect to certain
kinds of generating sets. We also derive a generalisation of Cox’s main auxiliary
result: in ‘reasonably large’ homomorphic images of wreath products G as above, the
image of the base group has density zero, with respect to certain types of generating
sets.
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1 Introduction

Let G be a finitely generated group, with finite generating set S. For n ∈ N0, let
BS(n) = BG,S(n) denote the ball of radius n in the Cayley graph C(G, S) of G with
respect to S. Following Antolín, Martino and Ventura [1], we define the degree of
commutativity of G with respect to S as

dcS(G) = lim sup
n→∞

|{(g, h) ∈ BS(n)× BS(n) | gh = hg}|
|BS(n)|2 .

We remark that this notion can be viewed as a special instance of a more general
concept, where the degree of commutativity is defined with respect to ‘reasonable’
sequences of probability measures onG, as discussed in a preliminary arXiv-version
of [1] or, in more detail, by Tointon in [13].

If G is finite, the invariant dcS(G) does not depend on the particular choice of S, as
the balls stabilise and dc(G) = dcS(G) simply gives the probability that two uniformly
and randomly chosen elements of G commute. This situation was studied already by
Erdős and Turán [4], and further results were obtained by various authors over the
years; for example, see [5, 6, 8, 9, 11]. For infinite groups G, it is generally not known
whether dcS(G) is independent of the particular choice of S.

The degree of commutativity is naturally linked to the following concept of density,
which is employed, for instance, in [2]. The density of a subset X ⊆ G with respect
to S is

δS(X) = δG,S(X) = lim sup
n→∞

|X ∩ BS(n)|
|BS(n)| .

If the group G has sub-exponential word growth, then the density function δS is bi-
invariant; compare with [2, Proposition 2.3]. Based on this fact, the following can be
proved, initially for residually finite groups and thenwithout this additional restriction,
even in the more general context of suitable sequences of probability measures; see
[1, Theorem 1.3] and [13, Theorems 1.6 and 1.17].

Theorem 1.1 (Antolín, Martino and Ventura [1]; Tointon [13]) Let G be a finitely
generated group of sub-exponential word growth, and let S be a finite generating set
of G. Then dcS(G) > 0 if and only if G is virtually abelian. Moreover, dcS(G) does
not depend on the particular choice of S.

The situation is far less clear for groups of exponential word growth. In this context,
the following conjecture was raised in [1].

Conjecture 1.2 (Antolín, Martino and Ventura [1]) Let G be a finitely generated group
of exponential word growth and let S be a finite generating set of G. Then, dcS(G) = 0,
irrespective of the choice of S.

In [1] the conjecture was already confirmed for non-elementary hyperbolic groups,
and Valiunas [14] confirmed it for right-angled Artin groups (and more general graph
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products of groups) with respect to certain generating sets. Furthermore, Cox [3]
showed that the conjecture holds, with respect to selected generating sets, for (gener-
alised) lamplighter groups, that is for restricted standard wreath products of the form
G = F � 〈 t〉, where F �= 1 is finite and 〈 t〉 is an infinite cyclic group. Wreath products
of such a shape are basic examples of groups of exponential word growth; in Sect. 2 we
briefly recall the wreath product construction, here we recall that G = N � 〈 t〉 with
base group N = ⊕

i∈Z Fti. In the present paper, we make a significant step forward
in two directions, by confirming Conjecture 1.2 for an even wider class of restricted
standard wreath products and with respect to arbitrary generating sets.

Theorem A Let G = H � 〈 t〉 be the restricted wreath product of a finitely generated
group H �= 1 and an infinite cyclic group 〈 t〉 ∼= C∞. Then G has degree of commu-
tativity dcS(G) = 0, for every finite generating set S of G.

One of the key ideas in [3] is to reduce the desired conclusion dcS(G) = 0, for the
wreath products G = N � 〈 t〉 under consideration, to the claim that the base group
N has density δS(N ) = 0 in G. We proceed in a similar way and derive Theorem A
from the following density result, which constitutes our main contribution.

Theorem B Let G = H � 〈 t〉 be the restricted wreath product of a finitely generated
group H and an infinite cyclic group 〈 t〉 ∼= C∞. Then the base group N = ⊕

i∈Z Hti

has density δS(N ) = 0 in G, for every finite generating set S of G.

The limitation in [3] to special generating sets S of lamplighter groups G is due
to the fact that the arguments used there rely on explicit minimal length expressions
for elements g ∈ G with respect to S. If one restricts to generating sets which allow
control over minimal length expressions in a similar, but somewhat weaker way, it is,
in fact, possible to simplify and generalise the analysis considerably. In this way we
arrive at the following improvement of the results in [3, Section 2.2], for homomorphic
images of wreath products.

Theorem C Let G be a finitely generated group of exponential word growth of the form
G = N � 〈 t〉, where
(a) the subgroup 〈 t〉 is infinite cyclic;
(b) the normal subgroup N = 〈⋃ {Hti | i ∈ Z}〉 is generated by the 〈 t〉-conjugates of

a finitely generated subgroup H of N;
(c) the 〈 t〉-conjugates of this group H commute elementwise: [Hti, Ht j ] = 1 for all

i, j ∈ Z with Hti �= Ht j.

Suppose further that S0 is a finite generating set for H and that the exponential growth
rates of H with respect to S0 and of G with respect to S = S0 ∪ { t} satisfy

lim
n→∞

n
√|BH ,S0(n)| < lim

n→∞
n
√|BG,S(n)|. (1.1)

Then N has density δS(N ) = 0 in G with respect to S.
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For finitely generated groups G of sub-exponential word growth, the density of a
subgroup of infinite index, such as N in G = N � 〈 t〉 with 〈 t〉 ∼= C∞, is always 0;
see [2]. Thus Theorem C has the following consequence.

Corollary 1.3 Let G = A� 〈 t〉 be a finitely generated group, where A is abelian and
〈 t〉 ∼= C∞. Then A has density δS(A) = 0 in G, with respect to any finite generating
set of G that takes the form S = S0 ∪ {t} with S0 ⊆ A.

Next we give a very simple concrete example to illustrate that the technical con-
dition (1.1) in Theorem C is not redundant: the situation truly differs from the one
for groups of sub-exponential word growth. It is not difficult to craft more complex
examples.

Example 1.4 Let G = F×〈 t〉, where F = 〈x, y〉 is the free group on two generators
and 〈 t〉 ∼= C∞. Then F has density δS(F) = 1/2 > 0 inG for the ‘obvious’ generating
set S = {x, y, t}.

Indeed, for every i ∈ Z we have

BG,S(n) ∩ Fti =
{
BF,{x,y}(n − |i |) t i if n ∈ N with n � |i |,
∅ otherwise,

and hence, for all n ∈ N,

|BG,S(n) ∩ F | = |BF,{x,y}(n)|

and

|BG,S(n)| = |BF,{x,y}(n)| + 2
n∑

i=1

|BF,{x,y}(n − i)|.

This yields

|BG,S(n)∩ F |
|BG,S(n)| = 2 ·3n − 1

2 ·3n − 1 + 2
∑n

i=1(2 ·3n−i − 1)

= 2 ·3n − 1

4 ·3n − 2n − 3
→ 1

2
as n → ∞.

We remark that in this example F and G have the same exponential growth rates:

lim
n→∞

n
√

|BF,{x,y}(n)| = lim
n→∞

n
√|BG,S(G)| = 3.

Furthermore, the argument carries through without any obstacles with any finite gen-
erating set S0 of F in place of {x, y}.

Finally, we record an open question that suggests itself rather naturally.
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Question 1.5 Let G be a finitely generated group such that dcS(G) > 0 with respect
to a finite generating set S. Does it follow that there exists an abelian subgroup A � G
such that δS(A) > 0?

For groups G of sub-exponential word growth the answer is “yes”, as one can
see by an easy argument from Theorem 1.1. An affirmative answer for groups of
exponentialwordgrowth could be a step towards establishingConjecture 1.2 or provide
a pathway to a possible alternative outcome. At a heuristic level, an affirmative answer
to Question 1.5 would fit well with the results in [12, 13].

Notation Our notation is mostly standard. For a set X , we denote by P(X) its power
set. For elements g, h of a group G, we write gh = h−1gh and [g, h] = g−1gh in line
with our preferred use of right actions. For a finite generating set S of G, we denote
by lS(g) the length of g with respect to S, i.e., the distance between g and 1 in the
corresponding Cayley graph C(G, S) so that

BS(n) = BG,S(n) = {g ∈ G | lS(g) � n} for n ∈ N0.

Given a, b ∈ R and T ⊆ R, we write [a, b]T = {x ∈ T | a � x � b}; for instance,
[−2,

√
2]Z = {−2,−1, 0, 1}. We repeatedly compare the limiting behaviour of real-

valued functions defined on cofinite subsets ofN0 which are eventually non-decreasing
and take positive values. For this purposewe employ the conventional Landau symbols;
specifically we write, for functions f , g of the described type,

f ∈ o(g), or g ∈ ω( f ), if lim
n→∞

f (n)

g(n)
= 0, equivalently lim

n→∞
g(n)

f (n)
= ∞.

As customary, we use suggestive short notation such as, for instance, f ∈ o(log n) in
place of f ∈ o(g) for g : N�2 → R, n �→ log n.

2 Preliminaries

In this section, we collect preliminary and auxiliary results. Furthermore, we briefly
recall the wreath product construction and establish basic notation.

2.1 Groups of exponential word growth

We concern ourselves with groups of exponential word growth. These are finitely
generated groups G such that for any finite generating set S of G, the exponential
growth rate

λS(G) = lim
n→∞

n
√|BS(n)| = inf

{
n
√|BS(n)| | n ∈ N0

}
(2.1)
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of G with respect to S satisfies λS(G) > 1. Since the word growth sequence |BS(n)|,
n ∈ N, is submultiplicative, i.e.,

|BS(n + m)| � |BS(n)||BS(m)| for all n,m ∈ N,

the limit in (2.1) exists and is equal to the infimum as stated, by Fekete’s lemma [7,
Corollary VI.57]. We will use the following basic estimates:

λS(G)n � |BS(n)| for all n ∈ N0,

and, for each ε ∈ R>0,

|BS(n)| � (λS(G) + ε)n for all sufficiently large n ∈ N.

In the proof of Theorem C, the following two auxiliary results are used.

Lemma 2.1 For each α ∈ [0, 1]R, the sequences n
√(n+�αn�

�αn�
)
and n

√( n
�αn�

)
, n ∈ N,

converge, and furthermore

lim
α→0+

(

lim
n→∞

n

√(
n + �αn�

�αn�
))

= lim
α→0+

(

lim
n→∞

n

√(
n

�αn�
))

= 1.

Consequently, if f : N → R>0 satisfies f ∈ o(n), then the sequence
(n+� f (n)�

� f (n)�
)
, n ∈ N,

grows sub-exponentially in n, viz. n
√(n+� f (n)�

� f (n)�
) → 1 as n → ∞.

Proof For each α ∈ [0, 1]R, Stirling’s approximation for factorials yields

(
n + �αn�

�αn�
)

∼
√
2π(n + �αn�) ((n + �αn�)/e)(n+�αn�)

√
2π�αn� (�αn�/e)�αn� √

2πn (n/e)n

=
√
n + �αn�√
2πn�αn� · �n + αn��n+αn�

�αn��αn�nn
, as n → ∞,

i.e., the ratio of the left-hand term to the right-hand term tends to 1 as n tends to infinity.
Moreover, for all n ∈ N,

�n + αn��n+αn�

�αn��αn� nn
� (n + αn)n+αn

(αn + 1)αn+1 nn
= n−1

(
(1 + α)1+α

(α + 1/n)(α+1/n)

)n

and similarly

�n + αn��n+αn�

�αn��αn� nn
� (n + αn + 1)n+αn+1

(αn)αn nn
= n

(
(1 + α + 1/n)(1+α+1/n)

αα

)n
.
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This shows that

lim
n→∞

n

√(
n + �αn�

�αn�
)

= (1 + α)1+α

αα
.

Since limα→0+ αα = 1, we conclude that

lim
α→0+

(

lim
n→∞

n

√(
n + �αn�

�αn�
))

= 1.

A similar computation yields that the second sequence n
√( n

�αn�
)
, n ∈ N, converges.

Again directly, or by virtue of

1 � n

√(
n

�αn�
)

� n

√(
n + �αn�

�αn�
)

,

we conclude that also the second limit, for α → 0+, is equal to 1. ��
Proposition 2.2 Let G be a finitely generated group of exponential word growth, with
finite generating set S. Then there exists a non-decreasingunbounded functionq : N →
R�0 such that q ∈ o(n) and

|BS(n)|
|BS(n − q(n))| → ∞ as n → ∞.

Proof We put λ = λS(G) > 1 and write |BS(n)| = λ
∑n

i=1 bi , with bi ∈ R�0 for i ∈ N,
so that the sequence

∑n
i=1 bi , n ∈ N, is subadditive and

lim
n→∞

1

n

n∑

i=1

bi = 1.

In this notation, we seek a non-decreasing unbounded function q : N → R�0 such
that, simultaneously,

q(n)

n
→ 0 and

n∑

i=n−�q(n)�+1

bi → ∞ as n → ∞. (2.2)

We show below that for every m ∈ N,

n∑

i=n−�n/m�+1

bi → ∞ as n → ∞. (2.3)
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From this we see that there is an increasing sequence of non-positive integers c(m),
m ∈ N, such that, for each m,

c(m) � m2 and for all n ∈ N�c(m) :
n∑

i=n−�n/m�+1

bi � m.

Setting q1(n) = �n/m� for n ∈ N with c(m) � n < c(m + 1) and

q(n) = max
{
q1(k) | k ∈ [1, n]Z

}
,

we arrive at a function q : N → R�1 meeting the requirements (2.2).
It remains to establish (2.3). Let m ∈ N and put ε = εm = (6m)−1 ∈ R>0. We

choose N = Nε ∈ N minimal subject to

1 − ε � 1

n

n∑

i=1

bi � 1 + ε for all n ∈ N�N .

In the following we deal repeatedly with sums of the form

β(k) =
kN+N∑

i=kN+1

bi ,

for k ∈ N, and using subadditivity, we obtain

β(k) � β(0) � (1 + ε)N for all k ∈ N.

We consider n ∈ N with n � (1 + ε)ε−1N � N and write n = lN + r with
l = ln ∈ N and r = rn ∈ [0, N − 1]Z. Furthermore, we set

t = tn = |{k ∈ [0, l − 1]Z | β(k) > εN }|
l

∈ [0, 1]R.

From our set-up, we deduce that

1 − ε � 1

n

n∑

i=1

bi � 1

lN

(( l−1∑

k=0

β(k)

)

+ β(l)

)

�
(
t(1 + ε) + (1 − t)ε

) + 1 + ε

l
� t + 2ε,

hence t � 1 − 3ε and consequently

∣
∣
{
k ∈ [0, l − 1]Z | β(k) > εN

} ∩ {
k ∈ [0, l − 1]Z | �(1 − 6ε) l� + 1 � k

}∣
∣

� tl + (l − �(1 − 6ε) l� − 1) − l � (1 − 3ε − (1 − 6ε)) l − 2 = 3εl − 2.
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Since

n − �n/m� = �(1 − 6ε)n� � �(1 − 6ε)(l + 1)�N � (�(1 − 6ε) l� + 1)N ,

this gives

n∑

i=n−�n/m�+1

bi �
l−1∑

k=�(1−6ε)l�+1

β(k) � (3εl − 2)εN ,

which tends to infinity as l → ∞. This proves (2.3). ��
In [10, Lemma 2.2], Pittet seems to claim that

lim inf
n→∞

|BS(n)|
|BS(n − 1)| > 1,

from which Proposition 2.2 could be derived much more easily. However, we found
the explanations in [10] not fully conclusive and thus opted to work out an independent
argument. Naturally, it would be interesting to establish a more effective version of
Proposition 2.2, if possible.

2.2 Wreath products

We recall that a group G = H �K is the restricted standard wreath product of two
subgroups H and K , if it decomposes as a semidirect product G = N �K , where the
normal closure of H is the direct sum N = ⊕

k∈K Hk of the various conjugates of
H by elements of K ; the groups N and K are referred to as the base group and the
top group of the wreath product G, respectively. Since we do not consider complete
standard wreath products or more general types of permutational wreath products, we
shall drop the terms “restricted” and “standard” from now on.

Throughout the rest of this section, let

G = H � 〈 t〉 = N � 〈 t〉 with base group N =
⊕

i∈Z
Hti (2.4)

be thewreath product of afinitely generated subgroupH and an infinite cyclic subgroup
〈 t〉 ∼= C∞. Every element g ∈ G can be written uniquely in the form

g = g̃ tρ(g),

where ρ(g) ∈ Z and g̃ = ∏
i∈Z(g| i ) t

i∈ N with ‘coordinates’ g| i ∈ H . The support
of the product decomposition of g̃ is finite and we write

supp(g) = { i ∈ Z | g| i �= 1}.
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Furthermore, it is convenient to fix a finite symmetric generating set S of G; thus
G = 〈S〉, and g ∈ S implies g−1 ∈ S. We put d = |S| and fix an ordering of the
elements of S:

S = {s1, . . . , sd}, with s j = s̃ j t
ρ(s j ) for j ∈ [1, d]Z, (2.5)

where s̃1, . . . , s̃d ∈ N . We write rS = max {ρ(s j ) | j ∈ [1, d]Z} ∈ N.

Definition 2.3 An S-expression of an element g ∈ G is (induced by) a word W =∏l
k=1 X ι(k) in the free semigroup 〈X1, . . . , Xd〉 such that

g = W (s1, . . . , sd) =
l∏

k=1

sι(k); (2.6)

here W determines and is determined by the function ι = ιW : [1, l]Z → [1, d]Z. In
this situation the standard process of collecting powers of t to the right yields

g = g̃ t−σ(l) with g̃ =
∏l

k=1
s̃ι(k)

tσ(k−1)
, (2.7)

where σ = σS,W is short for the negative1 cumulative exponent function

σS,W : [0, l]Z → Z, k �→ −
k∑

j=1

ρ(sι( j)).

We define the itinerary of g associated to the S-expression (2.6) as the pair

It(S,W ) = (ιW , σS,W ),

and we say that It(S,W ) has length l, viz. the length of the word W . For the purpose
of concrete calculations it is helpful to depict the functions ιW and σS,W as finite
sequences. The term ‘itinerary’ refers to (2.7), which indicates how g can be built
stepwise from the sequences ιW and σS,W ; see Example 2.4 below. In particular, g is
uniquely determined by the itinerary It(S,W ) = ( ι, σ ) and, accordingly, we refer to
g as the element corresponding to that itinerary. But unless G is trivial and S is empty,
the element g has, of course, infinitely many S-expressions which in turn give rise to
infinitely many distinct itineraries of one and the same element.

For discussing features of the exponent function σS,W , we call

maxi(It(S,W )) = max (σS,W ) and mini(It(S,W )) = min (σS,W )

the maximal and minimal itinerary points of It(S,W ). Later we fix a representative
function W : G → 〈X1, . . . , Xd〉, g �→ Wg which yields for each element of G an

1 At this stage the sign change is a pricewepay for not introducingnotation for left-conjugation;Example 2.4
illustrates that σ plays a convenient role in the concept of itinerary.
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Fig. 1 An illustration of the itinerary of g in (2.9) associated to the S-expression in (2.8); the support of g̃
is also indicated

S-expression of shortest possible length. In that situation we suppress the reference to
S and refer to

ItW(g) = It(S,Wg), maxiW(g) = maxi(ItW(g)), miniW(g) = mini(ItW(g))

as theW-itinerary, themaximal W-itinerary point and theminimal W-itinerary point
of any given element g.

To illustrate the terminology we discuss a concrete example.

Example 2.4 A typical example of the wreath products that we consider is the lamp-
lighter group

G = 〈
a, t | a2 = 1, [a, at

i ] = 1 for i ∈ Z
〉 =

⊕

i∈Z
〈ai 〉� 〈 t〉 ∼= C2 �C∞,

where ai = t−i at i for i ∈ Z. We consider the finite symmetric generating set

S = {s1, . . . , s5}

with

s1 = a4t
−3, s2 = t−2, s3 = s −1

1 = a1t
3, s4 = s −1

2 = t2, s5 = a0 = s −1
5 .

Let g = g̃ t3 be such that g| i = a for i ∈ {−1, 1, 2, 6} and g| i = 1 otherwise. Then
we have ρ(g) = 3, supp(g) = {−1, 1, 2, 6}, and

g = t−2 ·a0 ·a4t−3 ·( t2) 2 ·a0 · t2 ·a0 · t2 = s2 s5 s1 s
2
4 s5 s4 s5 s4 (2.8)

is an S-expression for g of length 9, based on W = X2X5X1X 2
4 X5X4X5X4. The

itinerary I = It(S,W ) associated to this S-expression for g is

I = (ι, σ ) = (
(2, 5, 1, 4, 4, 5, 4, 5, 4), (0, 2, 2, 5, 3, 1, 1,−1,−1,−3)

)
, (2.9)

where we have written the maps ι and σ in sequence notation. Furthermore, we see
that maxi(I ) = 5 and mini(I ) = −3. Figure1 gives a pictorial description of part of
the information contained in I .
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25 Page 12 of 28 I. de las Heras et al.

An alternative S-expression for the same element g is

g = a4t
−3 ·( t2)2 ·a0 ·a1t3 ·( t−2)3 ·a0 · t−2 ·a0 · t−2 ·a0 ·(t2)3 ·a0 ·a1t3

= s1 s
2
4 s5 s3 s

3
2 s5 s2 s5 s2 s5 s

3
4 s5 s3.

(2.10)

It has length 18 and is based on the semigroup word

W ′ = X1 X
2
4 X5 X3 X

3
2 X5 X2 X5 X2 X5 X

3
4 X5 X3.

In this case, the itinerary associated to the S-expression (2.10) is

I ′ = (ι′, σ ′) = (
(1, 4, 4, 5, 3, 2, 2, 2, 5, 2, 5, 2, 5, 4, 4, 4, 5, 3),

(0, 3, 1,−1,−1,−4,−2, 0, 2, 2, 4, 4, 6, 6, 4, 2, 0, 0,−3)
)
,

and we observe that maxi(I ′) = 6 and mini(I ′) = −4.

There is a natural notion of a product of two itineraries, and it has the expected
properties. We collect the precise details in a lemma.

Lemma andDefinition 2.5 In the general set-up described above, suppose that I1 =
( ι1, σ1) and I2 = ( ι2, σ2) are itineraries, of lengths l1 and l2, associated to S-
expressions W1,W2 for elements g1, g2 ∈ G. Then W = W1W2 is an S-expression
for g = g1g2; the associated itinerary

I = It(S,W ) = ( ι, σ )

has length l = l1 + l2 and its components are given by

ι(k) =
{

ι1(k) if k ∈ [1, l1]Z,

ι2(k − l1) if k ∈ [ l1 + 1, l]Z,

σ (k) =
{

σ1(k) if k ∈ [0, l1]Z,

σ1(l1) + σ2(k − l1) if k ∈ [ l1 + 1, l]Z.

We refer to I as the product itinerary and write I = I1 ∗ I2.
Conversely, if I is the itinerary of some element g ∈ G associated to some S-

expression of length l and if l1 ∈ [0, l]Z, there is a unique decomposition I = I1 ∗ I2
for itineraries I1 of length l1 and I2 of length l2 = l − l1; the corresponding elements
g1, g2 ∈ G satisfy g = g1g2.

Proof The assertions in the first paragraph are easy to verify from

W = W1W2 =
l1∏

k=1

X ι1(k)

l2∏

k=1

X ι2(k) =
l1∏

k=1

X ι1(k)

l1+l2∏

k=l1+1

X ι2(k−l1)
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and the observation that, for k ∈ [0, l]Z,

σ(k) = −
∑k

j=1
ρ(sι(k))

=
{

−∑k
j=1 ρ(sι1(k)) = σ1(k) if k � l1,

−∑l1
j=1 ρ(sι1(k)) − ∑k

j=l1+1 ρ(sι2(k−l1)) = σ1(l1) + σ2(k − l1) if k > l1.

Conversely, let I be the itinerary of an element g, associated to some S-expression
W = ∏l

k=1 X ι(k) of length l, and let l1 ∈ [0, l]Z. Then W decomposes uniquely
as a product W1W2 of semigroup words of lengths l1 and l − l2, namely for W1 =
∏l1

k=1 X ι(k) and W2 = ∏l
k=l1+1 X ι(k). These are S-expressions for elements g1, g2

and g = g1g2. Moreover, W1 and W2 give rise to itineraries I1, I2 such that I =
I1 ∗ I2. Since W1 and I1, respectively W2 and I2, determine one another uniquely, the
decomposition I = I1 ∗ I2 is unique. ��

For a representative function W : G → 〈X1, . . . , Xd〉, g �→ Wg , as discussed in
Definition 2.3, it is typically not the case that Wgh = WgWh for g, h ∈ G. Conse-
quently, it is typically not true that ItW(gh) = ItW(g)∗ ItW(h).

Lemma 2.6 Let G = H � 〈 t〉 be a wreath product as in (2.4), with generating set S as
in (2.5). Put

C = C(S) = 1 + max
{| i | | i ∈ supp(s) for some s ∈ S

} ∈ N.

Then the following hold:

(i) For every g ∈ G with itinerary I ,

mini(I ) − C < min (supp(g)) and max (supp(g)) < maxi(I ) + C .

(ii) Let u ∈ H. Put mS = max {C, rS} ∈ N and

D = D(S, u) = lS(u) + 2max
{
lS( t

j ) | 0 � j � mS + rS
} ∈ N.

Let g ∈ G with itinerary I , associated to an S-expression of length lS(g). Then, for
every j ∈ Z withmini(I )−mS � j � maxi(I )+mS, the elements h = gut

j+ρ(g)
,

� = ut
j
g ∈ G satisfy ρ(h) = ρ(�) = ρ(g) and the ‘coordinates’ of h, � are given

by

h| i =
{
g| i if i �= j,

g| j u if i = j,
�| i =

{
g| i if i �= j,

u g| j if i = j
for i ∈ Z.

Furthermore,

lS(h) � lS(g) + D and lS(�) � lS(g) + D.
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Proof We write I = ( ι, σ ) for the given itinerary of g, and l denotes the length of I .

(i) From (2.7) it follows that

supp(g) ⊆
⋃

1�k�l

(
σ(k − 1) + supp(sι(k))

)

⊆
⋃

1�k�l

[
σ(k − 1) − C + 1, σ (k − 1) + C − 1

]
Z
;

from this inclusion the two inequalities follow readily.

(ii) In addition we now have l = lS(g). The first assertions are very easy to verify. We
justify the upper bound for lS(h); the bound for lS(�) is derived similarly.

Since mini(I ) − mS � j � maxi(I ) + mS and since itineraries proceed, in the
second coordinate, by steps of length at most rS � mS , there exists k ∈ [0, l]Z such
that | j − σ(k)| � mS . If | j − σ(l)| � mS we put k = l − 1; otherwise we choose
k maximal with | j − σ(k)| � mS . Next we decompose the itinerary I as the product
I = I1 ∗ I2 of itineraries I1 of length l1 = k + 1 and I2 of length l2 = l − k − 1;
compare with Lemma 2.5.

We denote by g1 = g̃1t−σ(k+1) and g2 = g̃2tσ(k+1)+ρ(g) the elements correspond-
ing to I1 and I2 so that g = g1g2 = g̃1g̃2t

σ(k+1)
tρ(g). Moreover, we observe from

| j − σ(k + 1)| � mS + rS that

g3 = ut
j−σ(k+1) = t− j+σ(k+1) u t j−σ(k+1)

has length l3 � lS(u) + 2 lS(t j−σ(k+1)) � D. Our choice of k guarantees that the
support of g̃2 t

σ(k+1)
does not overlap with { j} = supp(ut

j
); compare with (i). Thus

g̃2 t
σ(k+1)

and ut
j
, both in the base group, commute with one another. This gives

h = gut
j+ρ(g) = g̃1g̃2

tσ(k+1)
ut

j
tρ(g) = g̃1u

t j g̃2
tσ(k+1)

tρ(g)

= g1t
− j+σ(k+1)ut j−σ(k+1)g2 = g1g3g2,

and we conclude that lS(h) � l1 + l2 + l3 � l + D = lS(g) + D. ��

3 Proofs of Theorems A and B

First we explain how Theorem A follows from Theorem B. The first ingredient is the
following general lemma.

Lemma 3.1 (Antolín, Martino and Ventura [1, Lemma 3.1]) Let G = 〈S〉 be a group,
with finite generating set S. Suppose that there exists a subset X ⊆ G satisfying

(a) δS(X) = 0;
(b) sup

{ |CG (g)∩BS(n)|
|BS(n)| | g ∈ G � X

} → 0 as n → ∞.

Then G has degree of commutativity dcS(G) = 0.
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The second ingredient comes from [3, Section 2.1], where Cox shows the following.
IfG = H � 〈 t〉 is the wreath product of a finitely generated group H �= 1 and an infinite
cyclic group 〈 t〉, with base group N , and if S is any finite generating set for G, then

sup

{ |CG(g) ∩ BS(n)|
|BS(n)|

∣
∣
∣ g ∈ G � N

}

→ 0 as n → ∞.

The idea behind Cox’ proof is as follows. For g ∈ G � N , the centraliser CG(g) is
cyclic and the ‘translation length’ of g with respect to S is uniformly bounded away
from 0. The latter means that there exists τS > 0 such that

inf
n∈N

{
lS(gn)

n

∣
∣
∣ g ∈ G � N

}

� τS .

Consequently, for g ∈ G�N the functionn �→ |CG(g)∩ BS(n)| is bounded uniformly
by a linear function, while G has exponential word growth.

Thus, Theorem B implies Theorem A, and it remains to establish Theorem B.
Throughout the rest of this section, let

G = H � 〈 t〉 = N � 〈 t〉 with base group N =
⊕

i∈Z
Hti

be thewreath product of afinitely generated subgroupH and an infinite cyclic subgroup
〈 t〉, just as in (2.4). The exceptional case H = 1 poses no obstacle, hence we assume
H �= 1. We fix a finite symmetric generating set S = {s1, . . . , sd} for G and employ
the notation established around (2.5). Finally, we recall that G has exponential word
growth and we write

λ = λS(G) > 1

for the exponential growth rate of G with respect to S; see (2.1).
We start by showing that the subset of N consisting of all elements with suitably

bounded support is negligible in the computation of the density of N .

Proposition 3.2 Fix a representative function W which yields for each element of G
an S-expression of shortest possible length and let q : N → R�1 be a non-decreasing
unbounded function such that q ∈ o(log n).

Then the sequence of sets

Rq(n) = RW,q(n) = {
g ∈ N ∩ BS(n) | maxiW(g) − miniW(g) � q(n)

}
,

indexed by n ∈ N, satisfies

lim
n→∞

|Rq(n)|
|BS(n)| = 0.
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The proof of Proposition 3.2 is preceded by some preparations and two auxiliary
lemmata. We keep in place the set-up from Proposition 3.2. For i ∈ Z, we write
Hi = Hti. Using the notation established in Sect. 2.2, we accumulate the ‘coordinates’
of elements of S in a set

S0 = {s| i | s ∈ S, i ∈ Z} = {
(s j )| i | 1 � j � d and i ∈ Z

} ⊆ H = H0,

we set Si = S ti
0 ⊆ Hi for i ∈ Z. Then Si is a finite symmetric generating set of Hi

for each i ∈ Z. Indeed, every element h ∈ H satisfies h = h̃ = h|0 and can thus be
written in the form

h =
( l∏

k=1

s̃ι(k)
tσ(k−1)

)∣
∣
∣
∣
0

=
l∏

k=1

(
s̃ι(k)| −σ(k−1)

)
,

based upon a suitable itinerary I = (ι, σ ) of length l. We conclude that H = 〈S0〉 and
consequently Hi = 〈Si 〉 for i ∈ Z; the generating systems inherit from S the property
of being symmetric.

Moreover, we have |BHi ,Si (n)| = |BH ,S0(n)| for all n ∈ N; consequently,

λS0(H) = λSi (Hi ) for all i ∈ Z.

It is convenient to split the analysis of the set Rq(n) from Proposition 3.2 into two
parts. First we take care of elements whose ‘coordinates’ fall within sufficiently small
balls around 1 in H , with respect to the generating set S0.

Lemma 3.3 In addition to the set-up above, let f : N → R>0 be a non-decreasing
unbounded function such that f ∈ o(n/q(n)).

Then the sequence of subsets

R f
q (n) = R f

W,q(n) = {
g ∈ Rq(n) | g| i ∈ BH ,S0( f (n)) for all i ∈ Z

} ⊆ Rq(n),

indexed by n ∈ N, satisfies

lim
n→∞

|R f
q (n)|

|BS(n)| = 0.

Proof Let C = C(S) ∈ N be as is in Lemma 2.6 (i) and choose C ′ ∈ N such that
λC

′
> λS0(H). Then we have, for all sufficiently large n ∈ N,

∣
∣R f

q (n)
∣
∣ �

∣
∣BH ,S0( f (n))

∣
∣2q(n)+2C � λ2C

′q(n) f (n)+2C ′C f (n) � λ4C
′Cq(n) f (n).

From f ∈ o(n/q(n)) we obtain

4C ′Cq(n) f (n) − n → −∞ as n → ∞
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and hence

|R f
q (n)|

|BS(n)| � λ4C
′Cq(n) f (n)−n → 0 as n → ∞ ��

Next we consider Rq(n) � R f
q (n), for a function f as in Lemma 3.3 and n ∈ N.

For every g ∈ Rq(n) � R f
q (n), we pick i(g) ∈ Z with

miniW(g) − C < i(g) < maxiW(g) + C and g| i(g) /∈ BS0( f (n)),

where C = C(S) ∈ N continues to denote the constant from Lemma 2.6 (i). Let
I = (ι, σ ), viz. Ig = ( ιg, σg), denote the W-itinerary of g. Then

g| i(g) =
lS(g)∏

k=1

(sι(k))| i(g)−σ(k−1).

By successively cancelling sub-products of adjacent factors that evaluate to 1 and have
maximal length with this property (in an orderly fashion, from left to right, say), we
arrive at a ‘reduced’ product expression

g|i(g) =

∏

j=1

(sι(κ( j)))| i(g)−σ(κ( j)−1), (3.1)

for some 
 = 
g ∈ [1, lS(g)]Z and an increasing function κ = κg : [1, 
]Z →
[1, lS(g)]Z that picks out a subsequence of factors. In particular, this means that, for
j1, j2 ∈ [1, 
]Z with j1 < j2,

κ( j2)∏

k=κ( j1)+1

(sι(k))| i(g)−σ(k−1) =
j2∏

j= j1+1

κ( j)∏

k=κ( j−1)+1

(sι(k))| i(g)−σ(k−1)

=
j2∏

j= j1+1

(sι(κ( j)))| i(g)−σ(κ( j)−1) �= 1,

(3.2)

and moreover we have lS(g) � 
 � lS0(g| i(g)) � f (n).

By means of suitable perturbations, we aim to produce from g a collection of 


distinct elements ġ(1), . . . , ġ(
) which each carry sufficient information to ‘recover’
the initial element g. We proceed as follows. For each choice of j ∈ [1, 
]Z we
decompose the itinerary I for g into a product I = I j,1 ∗ I j,2 of itineraries of length
κ( j) and lS(g)−κ( j); compare with Lemma 2.5. Then g = g j,1g j,2, where g j,1, g j,2
denote the elements of G corresponding to I j,1, I j,2. From g ∈ Rq(n) it follows
that maxi(I j,1) − mini(I j,1) and maxi(I j,2) − mini(I j,2) are bounded by q(n); in
particular, ρ(g j,1) ∈ [−q(n), q(n)]Z.
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Fig. 2 An illustration of the factorisation ġ( j) = g j ,1 t
−3q(n)−4C g j,2

We define

ġ( j) = g j,1 t
−3q(n)−4C g j,2 (3.3)

with C = C(S) as above; see Fig. 2 for a pictorial illustration, which features an
additional parameter τ that we introduce in the proof of Lemma 3.4.

Lemma 3.4 In the set-up above, the elements ġ(1), . . . , ġ(
) defined in (3.3) satisfy
the following:

(i) for each j ∈ [1, 
]Z the element ġ( j) lies in BS(n + (3q(n) + 4C) lS(t));
(ii) for each j ∈ [1, 
]Z the original element g can be recovered from ġ( j);
(iii) the elements ġ(1), . . . , ġ(
) are pairwise distinct.

Proof (i) Lemma 2.5 gives lS(g j,1) + lS(g j,2) = 
 � lS(g) � n, and it is clear that
lS(t−3q(n)−4C ) � (3q(n) + 4C) lS(t).

(ii) Let j ∈ [1, 
]Z, and write G1 = supp(g j,1), G2 = supp(g j,2). Lemma 2.6 (i)
implies that the sets G1 and G2 − ρ(g j,1) = supp(tρ(g j,1)g j,2) lie wholly within the
interval [−q(n) − C, q(n) + C]Z, hence

supp(ġ( j)) = G1 ∪· (
G2 − ρ(g j,1) + 3q(n) + 4C

)
(3.4)

with a gap

τ = min
(
G2 − ρ(g j,1) + 3q(n) + 4C

)

︸ ︷︷ ︸
�−q(n)−C+3q(n)+4C = 2q(n)+3C

−max(G1)︸ ︷︷ ︸
� q(n)+C

� q(n) + 2C,

subject to the standard conventions min∅ = +∞ and max∅ = −∞ in special
circumstances; see Fig. 2 for a pictorial illustration.

In contrast, gaps between two elements in G1 or two elements in G2 are strictly less
than q(n) + 2C � τ . Consequently, we can identify the two components in (3.4) and
thus G1 and G2 − ρ(g j,1), without any prior knowledge of j or g j,1, g j,2. Therefore,
for each i ∈ Z the i th coordinate of g satisfies

g| i =
{
ġ( j)| i ġ( j)| i+3q(n)+4C if i ∈ [−q(n) − C, q(n) + C],
1 otherwise,

and hence g can be recovered from ġ( j).
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(iii) For j1, j2 ∈ [1, 
]Z with j1 < j2 we conclude from our choice of the ‘reduced’
product expression (3.1) and its consequence (3.2) that

ġ( j1)| i(g) = (g j1,1)|i(g) =
κ( j1)∏

k=1

(sι(k))| i(g)−σ(k−1)

�=
κ( j2)∏

k=1

(sι(k))| i(g)−σ(k−1) = (g j2,1)|i(g) = ġ( j2)| i(g)

and hence ġ( j1) �= ġ( j2). ��
For the proof of Proposition 3.2 we now make a more careful choice of the non-

decreasing unbounded function f : N → R>0, which entered the stage in Lemma 3.3:
we arrange that

f ∈ o(n/q(n)) and f ∈ ω
(
(λ + 1)m(n)

)
for m(n) = (3q(n) + 4C) lS(t),

with C = C(S) as in Lemma 2.6 (i). For instance, we can take f = fα for any real
parameter α with 0 < α < 1, where fα(n) = max {kα/q(k) | k ∈ [1, n]Z} for n ∈ N.
Indeed, since q(n) ∈ o(log n) and q(n) � 1 for all n ∈ N, each of these functions
satisfies

lim
n→∞

fα(n)q(n)

n
� lim

n→∞
nαq(n)

n
= 0.

Furthermore, q(n) ∈ o(log n) implies q(n)aq(n) ∈ o(nβ) for all a ∈ R>1 and β ∈ R>0
so that

lim
n→∞

(λ + 1)m(n)

fα(n)
� lim

n→∞
q(n)(λ + 1)m(n)

nα

= (λ + 1)4C lS(t) lim
n→∞

q(n)(λ + 1)3lS(t)q(n)

nα
= 0.

Proof of Proposition 3.2 We continue with the set-up established above; in particular,
we make use of the refined choice of f . In view of Lemma 3.3 it remains to show that

|Rq(n) � R f
q (n)|

|BS(n)| → 0 as n → ∞.

We define a map

Fn : Rq(n) � R f
q (n) → P(BS(n + m(n)))

g �→ {ġ( j) | 1 � j � 
g};

see (3.3) andLemma 3.4 (i). FromLemma 3.4 (ii) we deduce that Fn(g1)∩Fn(g2) = ∅

for all g1, g2 ∈ Rq(n) � R f
q (n) with g1 �= g2. In addition, from 
g � f (n) and

123



25 Page 20 of 28 I. de las Heras et al.

Lemma 3.4 (iii) we deduce that |Fn(g)| � f (n) for all g ∈ Rq(n) � R f
q (n). This

yields

|BS(n + m(n))| � f (n) |Rq(n) � R f
q (n)|,

and hence, by submultiplicativity,

|Rq(n) � R f
q (n)|

|BS(n)| � |BS(n + m(n))|
f (n) |BS(n)| � |BS(m(n))|

f (n)

� (λ + 1)m(n)

f (n)
→ 0 as n → ∞. ��

Remark 3.5 Proposition 3.2 can be established much more easily under the extra
assumption that H has sub-exponential word growth. Indeed, in this case, one can
prove that

lim
n→∞

|Rq(n)|
|BS(n)| = 0

for any non-decreasing unbounded function q : N → R>1 such that q ∈ o(n); the
proof is similar to the one of Lemma 4.1 below.

If we assume that H is finite, it is easy to see that there exists α ∈ R>0 such that

lim
n→∞

|Rq(n)|
|BS(n)| = 0 for q : N → R>1, n �→ 1 + αn.

Next we establish Theorem B, using ideas that are similar to those in the proof of
Proposition 3.2: again we work with perturbations of a given element g in such a man-
ner that the original element can be retrieved easily. We begin with some preparations
to establish an auxiliary lemma.

Fix a representative functionWwhich yields for each element ofG an S-expression
of shortest possible length, and fix an element u ∈ H � {1}. Consider g ∈ N with
W-itinerary I = (ι, σ ), viz. Ig = (ιg, σg). We put

σ+ = σ+
g = maxiW(g) and σ− = σ−

g = miniW(g).

For the time being, we suppose that

k+ = k+
W,g = min

{
k | 0 � k � lS(g) and σ(k) = σ+}

,

k− = k−
W,g = min

{
k | 0 � k � lS(g) and σ(k) = σ−}

satisfy k+ � k−. We decompose the itinerary for g as I = I1 ∗ I2 ∗ I3, where I1, I2, I3
have lengths k+, k− − k+, lS(g) − k−; compare with Lemma 2.5.

If x = xW,g , y = yW,g , z = zW,g denote the elements corresponding to I1, I2,
I3 then g = xyz; observe that the lengths of I1, I2, I3 are automatically minimal, i.e,
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Fig. 3 A schematic illustration of the decomposition g = xyz

equal to lS(x), lS(y), lS(z). All this is illustrated schematically in Fig. 3. Observe that
I1, associated to x , ‘starts’ at 0 and ‘ends’ at σ+, the shifted I2, associated to y, ‘starts’
at σ+ and ‘ends’ at σ−, and the shifted I3, associated to z, ‘starts’ at σ− and ‘ends’ at
0.

Next, we put to use the element u ∈ H � {1} that was fixed and define, for any
given J ⊆ [σ−, σ+]Z, perturbations

ẋ(J ) = ẋW,g(J , u), ẏ(J ) = ẏW,g(J , u), ż(J ) = żW,g(J , u)

of the elements x, y, z that are specified by

ρ(ẋ(J )) = ρ(x) = −σ+, ρ(ẏ(J )) = ρ(y) = − σ− + σ+,

ρ(ż(J )) = ρ(z) = σ− (3.5)

and

ẋ(J )| i =
{
x| i u for i ∈ J�0,

x| i otherwise,

ẏ(J )| i =

⎧
⎪⎨

⎪⎩

u −1 y| i for i ∈ Z such that i + σ+ ∈ J�0,

y| i u −1 for i ∈ Z such that i + σ+ ∈ J<0,

y| i otherwise,

ż(J )| i =
{
u z| i for i ∈ Z such that i + σ− ∈ J<0,

z| i otherwise,

(3.6)

where we suggestively write J�0 = { j ∈ J | j � 0} and J<0 = { j ∈ J | j < 0}. We
observe that

g = ẋ(J ) ẏ(J ) ż(J ). (3.7)

Let C = C(S) ∈ N be as in Lemma 2.6 (i). We call

g̈(J ) = ẋ(J ) t−2C ẏ(J )−1 t−2C ż(J )

the J -variant of g; see Fig. 4 for a schematic illustration.
Observe that

g̈(J ) ∈ Ntρ(g̈(J )), where ρ(g̈(J )) = 2(σ−
g − σ+

g ) − 4C � − 4. (3.8)
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Fig. 4 A schematic illustration of the support components of g̈(J )

Up to now we assumed that k+ � k−. If instead k− < k+, a similar construction at
this stage yields elements

g̈(J ) ∈ Ntρ(g̈(J )), where ρ(g̈(J )) = 2(σ+
g − σ−

g ) + 4C � 4; (3.9)

in particular, there is no overlap between elements g̈(J ) arising from these twodifferent
cases.

For our purposes, it suffices to work with subsets J ⊆ [σ−, σ+]Z of size |J | = 2
and we streamline the discussion to this situation.

Lemma 3.6 In the set-up described above, suppose that J ⊆ [σ−, σ+]Z with |J | = 2.
Let D = D(S, u) ∈ N be as in Lemma 2.6 (ii). Then

(i) lS(g̈(J )) � lS(g) + D′ for D′ = 6D + 2 lS( t2C );
(ii) the element g can be recovered from g̈(J ) and any one of σ+, σ−;
(iii) the resulting variants of g are pairwise distinct, i.e., g̈(J ) �= g̈(J ′) for all J ′ ⊆

[σ−, σ+]Z with |J ′| = 2 and J �= J ′.

Proof (i) Since

J�0 ⊆ [0, σ+]Z ⊆ [mini(I1),maxi(I1)]Z,

J − σ+ ⊆ [σ− − σ+, 0]Z = [mini(I2),maxi(I2)]Z,

J<0 − σ− ⊆ [0,−σ−]Z ⊆ [mini(I3),maxi(I3)]Z
we can apply Lemma 2.6 (ii), if necessary twice, to deduce that

lS(ẋ(J )) � lS(x) + 2D, lS(ẏ(J )) � lS(y) + 2D, lS(ż(J )) � lS(z) + 2D.

Since lS(x) + lS(y) + lS(z) = lS(g), this gives

lS(g̈(J )) � lS(g) + D′ for D′ = 6D + 2 lS(t
2C ).

(ii) As in the discussion above suppose that k+ = k+
W,g and k− = k−

W,g satisfy

k+ � k−; the other case k− < k+ can be dealt with similarly. We have to check that g
can be recovered from g̈(J ), if we are allowed to use one of the parameters σ+, σ−.
Indeed, from −ρ(g̈(J )) = 2(σ+ − σ−) + 4C we deduce that in such a case both, σ+
and σ− are available to us. Furthermore, Lemma 2.6 (i) gives

supp(ẋ(J )) ⊆ [σ− − C + 1, σ+ + C − 1]Z,

supp(ẏ(J )−1) ⊆ [−C + 1, σ+ − σ− + C − 1]Z,

supp(ż(J )) ⊆ [−C + 1, σ+ − σ− + C − 1]Z,
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and thus

supp(g̈(J )) = supp(ẋ(J )) ∪· (
supp(ẏ(J )−1) + σ+ + 2C

)

∪· (
supp(ż(J )) + 2σ+ − σ− + 4C

)

allows us to recover ẋ(J ), ẏ(J ) and ż(J ) via (3.5) and

ẋ(J )| i =
{
g̈(J )| i for i ∈ [σ− − C, σ+ + C]Z,

1 for i ∈ Z � [σ− − C, σ+ + C]Z,

(ẏ(J )−1)| i =
{
g̈(J )| i+σ++2C for i ∈ [−C, σ+ − σ− + C]Z,

1 for i ∈ Z � [−C, σ+ − σ− + C]Z,

ż(J )| i =
{
g̈(J )| i+2σ+−σ−+4C for i ∈ [−C, σ+ − σ− + C]Z,

1 for i ∈ Z � [−C, σ+ − σ− + C]Z.

Using (3.7), we recover g = ẋ(J ) ẏ(J ) ż(J ).

(iii) Again we suppose that k+ = k+
W,g and k− = k−

W,g satisfy k+ � k−; the other

case k− < k+ can be dealt with similarly. Let J ′ ⊆ [σ−, σ+]Z with |J ′| = 2 such that
g̈(J ) = g̈(J ′). As explained above, we can not only recover g but even ẋ(J ) = ẋ(J ′),
ẏ(J ) = ẏ(J ′) and ż(J ) = ż(J ′) from g̈(J ) = g̈(J ′) and σ+, say. Since u �= 1 we
deduce from (3.6) that J = J ′. ��

Proof of Theorem B We continue within the set-up established above; in particular,
we employ the J -variants g̈(J ) of elements g ∈ N for two-element subsets J ⊆
[σ−

g , σ+
g ]Z, with respect to a fixed representative function W and a chosen element

u ∈ H � {1}.
Let q : N → R�1 be a non-decreasing unbounded function such that q ∈ o(log n).

We make use of the decomposition

N ∩ BS(n) = Rq(n) ∪· R�
q(n), for n ∈ N, (3.10)

where Rq(n) = RW,q(n) is defined as in Proposition 3.2 and R�
q(n) = R�

W,q(n)

denotes the corresponding complement in N ∩ BS(n). Let D′ ∈ N be as in
Lemma 3.6 (i). Below we show that

|BS(n + D′)| >
q(n)

2
|R�

q(n)| for n ∈ N. (3.11)

This bound and submultiplicativity yield

|R�
q(n)|

|BS(n)| <
2|BS(n + D′)|
q(n)|BS(n)| � 2|BS(D′)|

q(n)
→ 0 as n → ∞.
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Together with Proposition 3.2 we deduce from (3.10) that N has density zero:

δS(N ) = lim
n→∞

|N ∩ BS(n)|
|BS(n)| = 0,

properly as a limit.
It remains to establish (3.11). The set R�

q(n) decomposes into a disjoint union of
subsets

R�
q,
(n) = {

g ∈ N ∩ BS(n) | σ+
g − σ−

g = 

}
, 
 > q(n),

and the map

Fn : R�
q(n) → P(BS(n + D′)),

g �→ {
g̈(J ) | J ⊆ [σ−

g , σ+
g ]Z with |J | = 2

}

restricts for each 
 ∈ N with 
 > q(n), to a mapping

Fn,
 : R�
q,
(n) → P

(
(Nt−2
−4C ∪ Nt2
+4C ) ∩ BS(n + D′)

);

see Lemma 3.6 (i), (3.8) and (3.9).
We contend that for every h ∈ (Nt−2
−4C ∪ Nt2
+4C ) ∩ BS(n + D′), where


 > q(n), there are at most 
 + 1 elements g ∈ R�
q,
(n) such that h ∈ Fn(g). Indeed,

suppose that h ∈ Nt2
+4C∩ BS(n+D′), with 
 > q(n), and suppose that g ∈ R�
q,
(n)

such that h = g̈(J ) for some J ⊆ [σ−
g , σ+

g ]Z with |J | = 2. Then σ+
g ∈ [0, 
]Z

takes one of 
 + 1 values, and once σ+ is fixed, there is a way of recovering g, by
Lemma 3.6 (ii). For h ∈ Nt−2
−4C ∩ BS(n + D′) the argument is similar.

From this observation and Lemma 3.6 (ii) we conclude that

∣
∣
(
Nt−2
−4C∪ Nt2
+4C) ∩ BS(n + D′)

∣
∣ � 1


 + 1

(

 + 1

2

)
∣
∣R�

q,
(n)
∣
∣

>
q(n)

2

∣
∣R�

q,
(n)
∣
∣.

Hence

|BS(n + D′)| >
q(n)

2

∑


>q(n)

∣
∣R�

q,
(n)
∣
∣ = q(n)

2

∣
∣R�

q(n)
∣
∣,

which is the bound (3.11) we aimed for. ��
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4 Proof of Theorem C

Throughout this section let G denote a finitely generated group of exponential word
growth of the form G = N � 〈 t〉, where
(a) the subgroup 〈 t〉 is infinite cyclic;
(b) the normal subgroup N = 〈⋃{Hti | i ∈ Z}〉 is generated by the 〈 t〉-conjugates of

a finitely generated subgroup H N ;
(c) the 〈 t〉-conjugates of this group H commute elementwise: [Hti, Ht j ] = 1 for all

i, j ∈ Z with Hti �= Ht j.

Suppose further that S0 = {a1, . . . , ad} ⊆ H is a finite symmetric generating set for
H and that the exponential growth rates of H with respect to S0 and of G with respect
to S = S0 ∪ { t, t−1} satisfy

lim
n→∞

n
√|BH ,S0(n)| < lim

n→∞
n
√|BG,S(n)|. (4.1)

This is essentially the setting of Theorem C; for technical reasons we prefer to work
with symmetric generating sets. Our ultimate aim is to show that δS(N ) = 0.

Using the commutation rules recorded in (c), it is not difficult to see that every
g ∈ N admits S-expressions of minimal length that take the special form

g = t−σ− ·
(σ+−1∏

i=σ−
(wi (a1, . . . , ad) t

−1)

)

·wσ+(a1, . . . , ad) · tσ+
, (4.2)

g = t−σ+ ·
( σ+−1∏

j=σ−
(wσ++σ−− j (a1, . . . , ad) t)

)

·wσ−(a1, . . . , ad) · tσ−
, (4.3)

where the parameters σ−, σ+ ∈ Z satisfy σ− � σ+ and, for every i ∈ [σ−, σ+]Z, we
have picked a suitable semigroup word wi = wi (Y1, . . . ,Yd) in d variables of length
lS0(wi (a1, . . . , ad)). The lengths of the expressions (4.2) and (4.3) are equal to

lS(g) = |σ−| + (σ+ − σ−) + |σ+| +
σ+
∑

i=σ−
lS0(wi (a1, . . . , ad)).

For the following we fix, for each g ∈ N , expressions as described and we use
subscripts to stress the dependency on g: wewrite σ−

g , σ+
g andwg,i for i ∈ [σ−

g , σ+
g ]Z,

where necessary. The notation is meant to be reminiscent of the one introduced in
Definition 2.3, but one needs to keep in mind that we are dealing with a larger class
of groups now.

Lemma 4.1 In addition to the general set-up described above, let q : N → R>0 be a
non-decreasing unbounded function such that q ∈ o(n). Then the sequence of sets

Rq(n) = {
g ∈ N ∩ BS(n) | − q(n) � σ−

g � σ+
g � q(n)

}
,
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indexed by n ∈ N, satisfies

lim
n→∞

|Rq(n)|
|BS(n)| = 0.

Proof For short we set μ = limn→∞ n
√|BH ,S0(n)| and λ = limn→∞ n

√|BG,S(n)|.
According to (4.1) we find ε ∈ R>0 such that (μ + ε)/λ � 1 − ε and M = Mε ∈ N

such that

|BH ,S0(n)| � M(μ + ε)n for all n ∈ N0.

This allows us to bound the number of possibilities for the elements wg,i (a1, . . . , ad)
in an S-expression of the form (4.2) for g ∈ Rq(n) and, writing q̃(n) = 2�q(n)� + 1,
we obtain

|Rq(n)| �
∑

m−�q(n)�,...,m�q(n)�∈N0 st
m−�q(n)�+···+m�q(n)��n

�q(n)�∏

i=−�q(n)�
|BH ,S0(mi )|

�
(
n + q̃(n)

q̃(n)

)

Mq̃(n)(μ + ε)n,

and hence

|Rq(n)|
|BS(n)| � |Rq(n)|

λn
�

(
n + q̃(n)

q̃(n)

)

Mq̃(n)(1 − ε)n for n ∈ N. (4.4)

We notice that q ∈ o(n) implies q̃ ∈ o(n). Thus Lemma 2.1 implies that
(n+q̃(n)

q̃(n)

)
Mq̃(n)

grows sub-exponentially, and the term on the right-hand side of (4.4) tends to 0 as n
tends to infinity. ��

Proof of Theorem C We continue to work in the notational set-up introduced above. In
additionwe fix a non-decreasing unbounded function q : N → R�0 such that q ∈ o(n)

and

|BS(n)|
|BS(n − q(n))| → ∞ as n → ∞; (4.5)

see Proposition 2.2. As in the proof of Theorem B, we make use of a decomposition

N ∩ BS(n) = Rq(n) ∪· R�
q(n), for n ∈ N,

where Rq(n) is defined as in Lemma 4.1 and R�
q(n) denotes the corresponding com-

plement in N ∩ BS(n).
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In view of Lemma 4.1 it suffices to show that

|R�
q(n)|

|BS(n)| → 0 as n → ∞. (4.6)

It is enough to consider sufficiently large n so that n > q(n) holds. For every such n
and g ∈ R�

q(n), with chosen minimal S-expressions (4.2) and (4.3), we have σ− =
σ−
g < −q(n) or σ+ = σ+

g > q(n), hence

{
gt−q(n), gtq(n)

} ∩ BS(n − q(n)) �= ∅.

As each of the right translation maps g �→ gt−q(n) and g �→ gtq(n) is injective, we
conclude that

|R�
q(n)| � 2|BS(n − q(n))|,

and thus (4.6) follows from (4.5). ��
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