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Abstract

This thesis creates a link between Tropical Geometry and Difference Alge-
bra. The main result is a difference version of Kapranov’s Theorem. In this
theorem, we extend Kapranov’s Theorem to the case of a Laurent differ-
ence polynomial with coefficients from a multiplicative valued difference
field, where the residue field is an algebraically closed field with a generic
automorphism (ACFA). A result of this thesis that plays a critical role in
the proof of the Difference Kapranov Theorem, is a difference version of
Newton’s Lemma.

In other results, we provide a combinatorial intuition for some dif-
ference tropical objects, namely a difference tropical plane curve and a
difference tropical hypersurface.
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ii CHAPTER 0. ABSTRACT

Kurzfassung

Diese Dissertation schafft eine Verbindung zwischen der Tropischen Ge-
ometrie und der Differenzenalgebra. Das Hauptresultat ist eine Differen-
zversion von Kapranovs Theorems. In diesem Theorem erweitern wir das
Kapranov-Theorem auf den Fall eines Laurent-Differenzpolynoms mit Ko-
effizienten aus einem multiplikativ bewerteten Differenzkörper, dessen
Restklassenkörper ein algebraisch geschlossener Körper mit einem gener-
ischen Automorphismus (ACFA) ist. Ein Ergebnis dieser Dissertation, das
eine wichtige Rolle beim Beweis des Differenz-Kapranov-Theorems spielt,
ist eine Differenzversion des Newton-Lemmas.

Außerdem geben wir eine kombinatorische Intuition für einige differenz-
tropische Objekte, nämlich eine differenz-tropische Ebene Kurve und eine
differenz-tropische Hyperfläche.
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Chapter 1
Introduction

In this thesis, we establish a difference version of tropical geometry that con-
nects tropical geometry to difference algebra. In this difference version, in-
stead of studying polynomials, we study difference polynomials. In a dif-
ference polynomial, the variables are x1, . . . ,xn for n ∈N, along with various
iterations of an automorphism of the field, σ , on these variables.

Certain objects of difference algebra, such as difference polynomials
are complex objects to study. Determining the roots of a difference poly-
nomial, if possible, is no easy task.
Tropical arithmetic and a procedure called tropicalization enable us to find
tropical analogues of classical mathematical objects, for instance poly-
nomials. Polynomials may have complicated graphs, but tropicalization
turns them into piecewise linear graphs, which are much easier objects to
study.
This aspect served as a motivation for our project, in which we utilize
tropical tools to gain a deeper understanding of difference polynomials
and their roots.

This thesis consists of two main parts. In the first part, we define dif-
ference tropical polynomials. Then we apply graph theory to describe the
combinatorial intuition of a difference tropical curve.

Subsequently, we define further difference tropical objects. In partic-
ular, we define the tropicalization of a Laurent difference polynomial in n
variables, and difference tropical hypersurfaces. Then by using polyhedral
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2 CHAPTER 1. INTRODUCTION

geometry, we describe the combinatorics of a difference tropical hypersur-
face.

In the second part, we prove a difference version of Kapranov’s Theo-
rem. For a Laurent polynomial f in K[x±1

1 , . . . ,x±1
n ], Kapranov’s Theorem

builds a bridge between its associated classical hypersurface V (f ) and the
associated tropical hypersurface trop(V (f )). The main goal of this part is
to extend Kapranov’s Theorem to the case where f is a Laurent difference
polynomial with coefficients from a multiplicative valued difference field.

Tropical geometry is a field that studies polynomials and their geomet-
ric properties in the tropical semiring (R∪{∞},⊕,⊙), with ⊕ being the
minimum and⊙ being classical addition. This structure is also called the
min-plus algebra. Although, in this thesis, we work in this setting, but some
people work with another isomorphic structure called max-plus algebra, in
which the addition is defined to be the maximum.
The adjective "tropical" has no deep meaning and it was chosen in honor
of Imre Simon who first introduced this structure on N. Since he was a
professor at the university of São Paulo near the Tropic of Capricorn, his
French colleagues coined this adjective to honor him. Efforts to consoli-
date the definitions of the theory began in the late 1990’s. Imre Simon,
Grigory Mikhalkin, and Bernd Sturmfels, along with many other mathe-
maticians, made significant contributions in this area.

Tropical geometry redefines rules of arithmetic and this results in use-
ful mathematics. Using tropicalization, algebro-geometric problems can
be converted to combinatorial problems. Then the obtained data in the
combinatorial world can be lifted back to the classical case. Therefore,
tropical geometry has been a useful tool. For an overview of this field, see,
for example, [14].

One of the important theorems that builds this connection is Kapra-
nov’s Theorem. It forges a connection between algebraic hypersurfaces and
tropical hypersurfaces in R

n. The statement of this theorem is as follows:
Theorem (Kapranov’s Theorem) If (K,v) is an algebraically closed valued
field, with nontrivial valuation, and if f ∈ K[x±1

1 , . . . ,x±1
n ], then the following

sets coincide:

1. trop(V (f )) which is a subset of Rn;
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2. the set of all points in R
n for which the initial form of f is not a monomial;

3. the topological closure of {(v(y1), . . .v(yn))∣ (y1, . . . ,yn) ∈ V (f )} in R
n.

The proof of this theorem can be found, for instance, in [18] and in
[17]. The connection made by this theorem is generalized to arbitrary va-
rieties in the Fundamental Theorem of Tropical Algebraic Geometry which is
a central theorem in this field. In fact, Kapranov’s Theorem is considered
as a critical step in the proof of the Fundamental Theorem. For further
information on this topic, helpful references include [17] and [19].

Difference algebra is an area in mathematics which studies difference
fields and difference polynomials. A difference field is a field K together
with a field automorphism σ . A difference polynomial with coefficients
from K in n variables x1, . . . ,xn, is a polynomial in infinitely many formal
variables σ j(xi), for i ∈ {1, . . . ,n} and j ∈ N with σ j being the j-th itera-
tion of σ . In this case, we say that f is an element of the ring of difference
polynomials and use the notation f ∈Kσ [x1, . . . ,xn]. Even a very simple dif-
ference polynomial, such as x−xσ , defines a variety that is an infinite field
containing Q. So it is challenging to study these objects.

Difference algebra is considered as an analogue to Differential Algebra,
but in this area difference equations are studied rather than differential
equations. difference algebra was first introduced as an independent field
of study by Joseph Ritt and Richard Cohn. Later on, Hrushovski applied
it in proving The Manin-Mumford Conjecture in 2001 [10]. Another inter-
esting application appears in the connection between algebraic dynamical
systems and difference fields. In fact the knowledge about difference fields
leads to a better understanding of algebraic dynamical systems, [20] pro-
vides valuable insights on this topic.

A valued difference field K , is a valued field together with an automor-
phism which takes the valuation ring to the valuation ring. The valuation
and the automorphism of K can interact in different ways which are ex-
plained in Remark 2.0.11. In this thesis, we work with the case of mul-
tiplicative valued difference fields. In this case the value group is a Z[ρ]-
module for ρ being a positive real number and we have

∀x ∈K× ∶ v(σ(x)) = ρ ⋅v(x).
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In this project, we assume that the value group Γ is a divisible subgroup
of R. Therefore, it is not difficult to show that any automorphism σΓ on Γ

is of the following form:

∀x ∈K× ∶ σΓ (v(x)) = ρ ⋅v(x),

with ρ being a positive real number. Moreover, as we will see in Remark
2.0.8, the automorphism σ of K induces an automorphism σΓ on Γ such
that ∀x ∈ K× ∶ σΓ (v(x)) = v(σ(x)). This gives the above property of the
multiplicative case. We call ρ the scaling exponent of σ .
In addition, we assume that Γ is a Q(ρ)-module for ρ being transcenden-
tal over Q. Thus it is a Z[ρ]- module. Hence, we work with the case of
multiplicative valued difference fields.

For further exploration of difference algebra, we recommend referring
to [23], [5], and [16].

Main Results

Here, we present a list of the main results of this thesis. We start with the
main results of the first part. There are analogues of these results in the
classical nondifference case.

In this theorem, we describe the combinatorics of a difference tropical
plane curve which is a subset of R2 defined by a difference tropical poly-
nomial in two variables.
Theorem: Any difference tropical plane curve which is not a straight line is a
DBWR graph, and vice versa.

"DBWR" is an abbreviation for "difference balanced weighted rectilin-
ear" graph. It is an object consisting of finitely many vertices and edges
(segments and halfrays), such that each edge has a weight. Moreover, there
are some conditions on the edges and vertices of a DBWR graph. For the
detailed definition see Definition 3.2.14.

See Theorem 3.2.15 for the precise statement and the proof of this re-
sult.

Another result of this part is the following proposition:
Proposition: For a Laurent difference polynomial f , its associated difference
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tropical hypersurface trop(V (f )) is the support of a pure (Γ ,Q(ρ))-polyhedral
complex of dimension (n−1).

This proposition describes the combinatorics of a difference tropical
hypersurface. Its exact statement which also presents a more precise de-
scription of trop(V (f )) is Proposition 4.3.1.

In the second part of this thesis, we aim to prove a difference version
of Kapranov’s Theorem. To achieve this goal, we assume some conditions
on the valued difference field K . See Assumption 2.0.45. The Difference
Kapranov Theorem (Theorem 6.2.1) states
Theorem: Suppose f ∈Kσ [x±1

1 , . . . ,x±1
n ] is a Laurent difference polynomial.The

following sets coincide:

1. trop(V (f )) ⊆Rn which is the difference tropical hypersurface associated
to f ;

2. the set of all the points w ∈Rn for which the initial form inw(f ) is not a
monomial;

3. the closure of the set A = {(v(y1), . . . ,v(yn)) ∶ (y1, . . . ,yn) ∈ V (f )} in R
n.

The most challenging part in the proof of this theorem is to prove that
the set in (1) is included in the set in (3). This is done with the help of
Proposition 6.1.9, which states
Proposition: Let f ∈ Kσ [x±1

1 , . . . ,x±1
n ] be a Laurent difference polynomial, and

w = (w1, . . . ,wn) ∈ Γ n such that inw(f ) is not a monomial. Suppose ᾱ is a root
of inw(f ) in (k∗)n. Then there exists an element y in (K∗)n which is a root of
f , and satisfies the following conditions:

• v(y) =w,

• ∀i, 1 ≤ i ≤ n ∶ t−wi ⋅yi = ᾱi .

In the classical case, in [17], induction is used to prove the analogue
of this proposition . In the base case, the assumption of K being an alge-
braically closed field plays an important role. By using this assumption, it
is possible to decompose f into linear factors which finally results in the
existence of a root with the desired conditions. In contrast, in our context,
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concerning Laurent difference polynomials, we do not have such a decom-
position. As a solution, we proved the Difference Newton Lemma(5.0.1) to
guarantee the existence of a root of a difference polynomial in one vari-
able.
Theorem: (Difference Newton Lemma) Assume the same setting as in As-
sumption 2.0.45. Given f ∈Kσ [x] is not constant and suppose b ∈K such that
f (b) ≠ 0.
We define ε ∶=max

J
∣J ∣≥1

εJ , where

εJ ∶=
1
∣J ∣ρ
(v(f (b))−v(f(J)(b))) .

There exists a root a ∈K of f such that v(a−b) = ε.

The definitions of ∣J ∣ρ and f(J)(b) are given later in the first chapter.
An essential ingredient to prove this Theorem as well as the Difference

Kapranov Theorem, is Theorem 2.0.42. Its statement is given below.

Theorem: Let k be an ACFA. Suppose f is in kσ [x±1
1 , . . . ,x±1

n ], and is not a
monomial. Then f has a root in (k∗)n.

One of the main assumptions in this thesis is that the difference residue
field is an ACFA. This concept comes from model theory and model theo-
rists say that a field is a model of ACFA, which is an abbreviation for Al-
gebraically Closed Field with a generic Automorphism. A field k is a model
of ACFA if σ is an automorphism of k, and it satisfies the conditions of
Theorem 2.0.30 which are the axioms presented in 3.1 of [4]. As in this
thesis we do not use the model theoretic approach, we simply say that a
field is an ACFA. This concept can be considered as a difference version of
algebraically closed fields. For the precise definition see Definition 2.0.26.

Outline

• Chapter 1

This chapter is devoted to some preliminaries in difference algebra.
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We start with definitions of a difference ring and a difference field.
Further, we state the definition of the difference polynomial ring and
a Laurent difference polynomial. An interesting result of this chap-
ter is Theorem 2.0.42. It guarantees the existence of a root for a
nonmonomial Laurent difference polynomial in n variables with co-
efficients from an ACFA. The significance of this theorem becomes
evident in the proof of the Difference Kapranov Theorem. The key
step in the proof of Theorem 2.0.42 is the one variable case which is
Lemma 2.0.28. We finish this chapter by fixing our general setting
in Assumption 2.0.45.

• Chapter 2

The main result of this chapter is Theorem 3.2.15. It describes the
combinatorics of a difference tropical plane curve. To obtain this re-
sult, we use graph theory. This chapter consists of two sections. In
the first one, we present all graph theory needed. We discuss some
basics about planar graphs and duality. In the second section, we
start establishing a connection between tropical geometry and dif-
ference algebra by introducing difference tropical polynomials and
difference tropical plane curves. In particular, we define a difference
version of the concept of weight for the edges of a difference tropical
plane curve.
Finally, the definition of a DBWR graph is given. In Theorem 3.2.15,
we use this object to show what a difference tropical plane curve
looks like.

• Chapter 3

This chapter consists of three sections. In the first one, by introduc-
ing more difference tropical objects, we expand the connection we
made between tropical geometry and difference algebra. Specifically,
we define the tropicalization of a Laurent difference polynomial, a
difference tropical hypersurface, and the initial form of a Laurent
difference polynomial.

The second section is devoted to the prerequisites in polyhedral ge-
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ometry. Particularly, the definitions of a polyhedral complex, and the
regular subdivision are given. We also define a difference polyhedral
object which is a (Γ ,Q(ρ))- polyhedral complex. In the last section,
we prove the main result of this chapter which is Proposition 4.3.1.

• Chapter 4

Our main objective is to prove the Difference Newton Lemma (The-
orem 5.0.1). This theorem plays a critical role in our proof of the Dif-
ference Kapranov Theorem. To prove the Difference Newton Lemma,
we follow two main steps. Firstly, in Lemma 5.0.4, we prove that we
can have a better estimation of a possible root of f ∈ Kσ [x] around a
nonroot b ∈ K . Finally, in Proposition 5.0.5, we use the assumption
of spherical completeness to find a root for f . In a spherically com-
plete field, any pseudocauchy sequence has a pseudolimit, see [13].
In Proposition 5.0.5, we construct a pseudocauchy sequence whose
pseudolimite is a root of f .

• Chapter 5

The main result of this thesis is proved in the second section of
Chapter 5, namely the Difference Kapranov Theorem (Theorem 6.2.1).
The main tool to prove this theorem is Proposition 6.1.9, which is
the goal we pursue in the first section of this chapter. To prove this
proposition, we start by proving the same statement for a Laurent
difference polynomial in one variable. This is done in Lemma 6.1.1
and Lemma 6.1.3. In this case Difference Newton Lemma plays a
highlighted role. Afterwards, we assume f is a Laurent difference
polynomial in n variables and we impose a condition on it, and in
Proposition 6.1.4, we prove a similar statement for f . In Lemma
6.1.6, we prove that this imposed condition does not cause a serious
restriction. In other words, if f is in Kσ [x±1

1 , . . . ,x±1
n ], we can associate

a Laurent difference polynomial g to f which has that imposed con-
dition and for which the statement above holds. In the proof of the
Difference Kapranov Theorem, the tricky part is to prove that the set
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appearing in (a) is included in the set appearing in (c) and this is
done by Proposition 6.1.9.



Chapter 2
Preliminaries

This chapter provides the difference algebra needed for this thesis. The
main references here are [23], [21],[4], and [9]. [23] is a well-written lec-
ture note on this topic and is used as a reference in this chapter. Any
material presented from this source can also be found in [5] or [9]. Ad-
ditionally, we establish our general assumptions and present all necessary
definitions in this setting.

Definition 2.0.1 ([23], Definition 1.1.1 and Definition 1.1.14). Let R be a
commutative ring, and σ ∶ RÐ→ R be an endomorphism. Then R together
with σ is a difference ring. It is denoted by (R,σ).

If σ is an automorphism, then (R,σ) is called an inversive difference
ring.

Definition 2.0.2 ([23], Definition 1.1.2). Let (R,σ) and (S,σ̃) be two dif-
ference rings. Then φ ∶ R Ð→ S is a morphism of difference rings, if it is a
morphism of rings for which we have φσ = σ̃φ.

Proposition 2.0.3 ([23], Proposition 1.1.18 ). Let (R,σ) be a difference ring.
Then there exists an inversive difference ring (R∗,σ∗), and a morphism of dif-
ference ringsφ ∶RÐ→R∗ such that the following universal property is satisfied:
If T is an inversive difference ring , and φ′ ∶RÐ→ T is a morphism of difference
rings, then there exists a unique morphism ψ ∶R∗Ð→ T such that the following
diagram commutes:

10
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R R∗

T

φ′

φ

ψ

The difference ring R∗ is unique up to isomorphism, and is called the inversive
closure of R.

Proof. Define
S ∶= {(n,f ) ∣ n ∈N and f ∈R}1.

Then (n,f ) is said to be equivalent to (m,g) if and only if there exist i, j ∈
N, such that

(n+ i,σ i(f )) = (m+ j,σ j(g)).

This is an equivalence relation on S. The set of all equivalence classes is
denoted by R∗, and satisfies the intended properties of the statement. For
the detailed proof, see [23] Proposition 1.1.18. ◻

Remark 2.0.4. If R is a field then R∗ is a field. This is clear from the con-
struction of R∗ in the proof of Proposition 1.1.18 in [23].

The following definition is extracted from [4], Definition 2.1.

Definition 2.0.5. A difference field is a field K together with an automor-
phism σ ∶K Ð→K . It is denoted by (K,σ).
Sometimes, for simplicity, we write K is a difference field instead of (K,σ)
is a difference field.

Remark 2.0.6. In this thesis, we primarily focus on difference fields, where
σ is assumed to be an automorphism. We will state explicitly whenever we
work with a difference ring, where σ is not necessarily an automorphism.

Definition 2.0.7 ([21], §1). A valued difference field is a valued field K to-
gether with an automorphism σ satisfying σ (OK) = OK , where OK is the
valuation ring.

Remark 2.0.8. The automorphism of a valued difference field induces two
important automorphisms as follows:

1In this thesis, we assume that the set of natural numbers N contains 0.
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• Let Γ be the value group of K . Then σ induces an automorphism σΓ
on Γ as below:

σΓ ∶Γ Ð→ Γ ,

γ z→ v (σ(a)) ,

where a is an element of K such that v(a) = γ .
In this case, Γ is called the difference value group of K .

The property σ (OK) =OK guarantees that σΓ is well-defined. To see
this, assume a and a′ are two elements of K such that v(a) = γ = v(a′).
We want to prove that v (σ(a)) = v (σ(a′)). v(a) = v(a′)means v ( aa′ ) =
0, or equivalently a

a′ ∈ OK . From σ (OK) = OK , we have σ ( aa′ ) ∈ OK .
This means, v (σ ( aa′ )) ≥ 0 which means v (σ(a)) ≥ v (σ(a′)). Simi-
larly, we can show v (σ(a′)) ≥ v (σ(a)). Hence, v (σ(a′)) = v (σ(a))
and σΓ is well-defined.
σΓ is also order preserving. Assume γ > γ ′ with γ = v(a) and γ ′ =
v(a′) for a,a′ ∈K . This means v ( aa′ ) > 0 or equivalently a

a′ ∈M, where
by M we mean the maximal ideal of OK . As M contains all non-
invertible elements, a

a′ is not invertible. Therefore, σ ( aa′ ) is not in-
vertible, which means σ ( aa′ ) ∈M or equivalently v (σ ( aa′ )) > 0. This
gives v (σ(a)) > v (σ(a′)), in fact σΓ (γ) > σΓ (γ ′).

• σ also induces an automorphism σ̄ on k, the residue field of K , as
follows:

σ̄ ∶kÐ→ k,

āz→ σ(a).

Then (k, σ̄) is called the difference residue field of K . Again, from the
property σ (OK) =OK , σ̄ is well defined. To see this, assume for two
elements ā and b̄ of k, we have ā = b̄. This means a− b ∈M. In other
words v (a−b) > 0. As we discussed for σΓ , we have v (σ(a−b)) > 0.
Thus, σ(a)−σ(b) ∈M. Hence, σ(a) = σ(b).
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Notation 2.0.9. We fix the notations above for the rest of this work. Ex-
plicitly, from now on, for a valued field K , we denote the value group of K
by Γ , its residue field by k, and the valuation ring by Ok.

As a clarification, we consider an example of a Hahn-field. In general,
if a field k and an ordered abelian group Γ are given, then one can define
a valued field whose residue field is k and whose value group is Γ . This
field is called a Hahn-field and it is defined as follows:

K = k((tΓ )) ∶= {f (t) = ∑
γ∈Γ
aγ tγ ∣ aγ ∈ k, and supp(f ) is well-ordered},

where supp(f ) = {γ ∈ Γ ∣ aγ ≠ 0}. K is a field with a natural addition and
multiplication, and it is a valued field with the following valuation:

v ∶K Ð→ Γ ,

∑
γ∈Γ
aγ tγ z→min{γ ∣ aγ ≠ 0} .

Suppose k is a field and σ̄ is an automorphism on k. Also assume that
an ordered abelian group Γ with an order preserving automorphism σΓ
on it are given. Using these automorphisms, an automorphism on the
corresponding Hahn-field is defined. This automorphism σ ofK is defined
as follows:

σ ∶K Ð→K,

∑
γ∈Γ
aγ tγ z→ ∑

γ∈Γ
σ̄(aγ)tσΓ (γ).

The following is a concrete example of a Hahn-field.

Example 2.0.10. Let k be the field of complex numbers, C, and Γ be R,
regarded as an ordered abelian group. As it is defined above, the corre-
sponding Hahn-field is

K =C((tR)) = {f (t) = ∑
γ∈R

aγ tγ ∣ aγ ∈C, and supp(f ) is well-ordered}.

Assume C is considered with the identity automorphism; in this case,
(C, id) is called a constant difference field. If we consider R as an ordered
abelian group, then any automorphism σΓ on R is of the following form:

x↦ σΓ (x) = ρ ⋅x for some fixed ρ > 0.
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To see this, refer to Remark 2.0.12. Using these two automorphisms, we
can define an automorphism σ on the Hahn-field K as follows:

σ ∶K Ð→K,

∑
γ∈R

aγ tγ z→ ∑
γ∈R

aγ tρ⋅γ .

Then (K,v,σ) is a valued difference field.

Remark 2.0.11. The valuation and the automorphism of a valued differ-
ence field can interact in different ways. This interaction results in differ-
ent cases of valued difference fields. Below, we consider three interesting
cases:

• The isometric case in which we have

∀x ∈K× ∶ v(σ(x)) = v(x).

• The contractive case in which ∀x ∈K× with v(x) > 0, we have

∀n ∈N ∶ v(σ(x)) > nv(x). (2.0.1)

The eager reader can see [3] to learn more about the isometric case,
and [1] to know more about contractive valued difference fields.

• The multiplicative case in which the difference value group is a Z[ρ]-
module with ρ being a positive real number, and we have

∀x ∈K× ∶ v(σ(x)) = ρ ⋅v(x).

This case is well studied in [21].
Note that the isometric case is a special case of the multiplicative
case.

The following remark is well-known. We present a proof for clarity.

Remark 2.0.12. Let Γ be a divisible subgroup of R. Let σ be an automor-
phism of the ordered abelian group Γ . Then for a fixed positive real num-
ber ρ, we have

∀x ∈ Γ , σ(x) = ρ ⋅x. (2.0.2)
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Proof. Without loss of generality, we assume that Γ contains 1. Otherwise,
we rescale ρ and a similar proof works. We make a case distinction, and
we show that 2.0.2 holds for ρ = σ(1).

1. x ∈Q :

A rational number x can be written as x = mn where m,n ∈Z and n ≠ 0.
Based on the properties of an automorphism, we have

σ(1) = σ(n ⋅ 1
n
) = n ⋅σ(1

n
),

which means
σ(1
n
) = σ(1)

n
. (2.0.3)

From (2.0.3), for x = mn , we can write

σ(m
n
) = σ(m ⋅ 1

n
) =m ⋅σ(1

n
) =m ⋅ σ(1)

n
= m
n
⋅σ(1).

Since σ is an automorphism of ordered abelian groups, it preserves
order. This means that in this case 2.0.2 holds for ρ = σ(1) > 0.

2. x ∈Qc :

To discuss this case, firstly, we claim that σ is a continuous map.

Claim 2.0.13. If σ is an automorphism of an ordered abelian group Γ ,
then it is a continuous map.

Proof. Let x0 be an arbitrary element of Γ . Assume ε > 0 is given.
There exists n > 0 such that 1

n < ε. Define δ ∶= σ−1(1
n). If ∣x − x0∣ < δ,

then we have

∣x−x0∣ < δ ⇐⇒ −σ−1(1
n
) < x−x0 < σ−1(1

n
)

⇐⇒ −1
n
< σ(x−x0) <

1
n

⇐⇒ −1
n
< σ(x)−σ(x0) <

1
n

⇐⇒ ∣σ(x)−σ(x0)∣ <
1
n
< ε,

where the second equivalence results from the fact that σ is an order
preserving map. ∎
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For the irrational number x, there exists a sequence {xn}n∈N in Q ⊂ Γ
converging to x. Thus, from continuity of σ , we can write

σ(x) = σ( lim
n→∞

xn) = lim
n→∞

σ(xn) = lim
n→∞

xn ⋅σ(1) = σ(1) ⋅ limn→∞
xn = σ(1) ⋅x.

Therefore, in this case, 2.0.2 holds for ρ = σ(1) > 0.

◻

Throughout this thesis, we will assume that the difference value group
is a divisible subgroup of R. If we consider the induced automorphism on
Γ , for a fixed ρ, we have

∀x ∈K× ∶ v (σ(x)) = σΓ (v(x)) = ρ ⋅v(x).

This means that, in this thesis, we work with multiplicative valued differ-
ence fields. See Assumption 2.0.45. We call ρ the scaling exponent of the
automorphism σ .

Remark 2.0.14. In Assumption 2.0.45, we will make further assumptions
about Γ . Specifically, we assume that Γ is a Q(ρ)-module.

Definition 2.0.15 ([23], Subsection 1.1.4). Let (K,σ) be a difference field.
The difference polynomial ring over K , in difference variables x = (x1, . . . ,xn),
is denoted by Kσ [x]. It is the polynomial ring over K in formal variables
σ i(xj) for i ∈ N and j ∈ {1, . . . ,n} where σ0(xj) ∶= xj . In other words, we
have

Kσ [x] =K [σ i(xj) ∣ i ∈N, j ∈ {1, . . . ,n}] .

Any element of a difference polynomial ring is called a difference polyno-
mial.

Note that here by x we mean (x1, . . . ,xn), even though in some parts of
this work, x may refer to a single variable, which will be clear from the
context.

Similarly, we can define the ring of Laurent difference polynomials in n

difference variables over K , which is denoted by Kσ [x±1
1 , . . . ,x±1

n ]. Any el-
ement of this ring is called a Laurent difference polynomial. From the no-
tation, it is clear how to evaluate a Laurent difference polynomial f at an
element a of the field K .
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There is a natural way to extend the automorphism σ of K , to an endo-
morphism σ of the difference polynomial ring. It is the unique endomor-
phism satisfying the following condition:

σ(σ i(xj)) ∶= σ i+1(xj).

Considering this extension, (Kσ [x],σ) is a difference ring.

Notation 2.0.16. We commonly use the notation σ(x) = xσ . By using this
notation, the difference monomial xaoσ(x)a1 . . .σm(x)am in one variable x
can be written as xa0+a1σ+⋅⋅⋅+amσm .

If Z[σ] denotes the set

{
m

∑
i=0
aiσ

i ∣ ∀i, ai ∈Z and σ i is the i-th iteration of σ},

by using this notation, all the exponents appearing in a Laurent difference
polynomial in n variables are elements of (Z[σ])n, which are called σ -
powers. Note that in this case, we use the notation xu(σ) ∶= xu1(σ)

1 ⋯xun(σ)n .
This means, if f is a Laurent difference polynomial in variables x1, . . . ,xn,
it can be written as

f (x) = ∑
u(σ)∈Λ

cu(σ)x
u(σ),

where Λ is a finite subset of (Z[σ])n.
If we consider the subset N[σ] of Z[σ] in which for each i, ai is an

element of N, then the σ -powers appearing in a difference polynomial
in n variables are elements of (N[σ])n. This means that any difference
polynomial f , in variables x1, . . . ,xn can be written as follows:

f (x) = ∑
u(σ)∈Λ

cu(σ)x
u(σ),

with Λ being a finite subset of (N[σ])n.

The following example clarifies Notation 2.0.16.

Example 2.0.17. Consider

f (x1,x2) = x2
1x2 +σ(x1)4 +x1σ3(x2)x2.
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If we use Notation 2.0.16, it can be rewritten as:

f (x1,x2) = x2
1x2 +x4σ

1 +x1xσ
3+1

2 .

This is a difference polynomial in Cσ [x], with x = (x1,x2).

Remark 2.0.18. In the case of a difference polynomial in one variable,
sometimes it is more convenient to use the following notations (namely
Remark 2.0.21) rather than the one defined in Notation 2.0.16.

Notation 2.0.19. J is called a multi-index, if it is an element of Nn+1. For
J = (j0, j1, . . . , jn), its length which is denoted by ∣J ∣ is defined as follows:

∣J ∣ = j0 + j1 + ⋅ ⋅ ⋅ + jn.

For a positive real number ρ, the ρ-length of J which is denoted by ∣J ∣ρ, is
defined as follows:

∣J ∣ρ = ρ0 ⋅ j0 +ρ1 ⋅ j1 + ⋅ ⋅ ⋅ +ρn ⋅ jn.

Throughout the rest of this thesis, when we write ∣J ∣ρ, ρ refers to the scal-
ing exponent of σ .

Notation 2.0.20. For an automorphism σ , and an nwhich is clear from the
context, by σ(x) we mean the following tuple:

σ(x) = (σ0(x),σ(x), . . . ,σn(x)) .

For a multi-index J = (j0, j1, . . . jn), by σ J(x), we mean

σ J(x) = xj0 ⋅σ(x)j1⋯(σn(x))jn

= xj0+j1σ+⋅⋅⋅+jnσ
n
.

Remark 2.0.21. Let f be a difference polynomial in one variable. Using
Notation 2.0.20, f is of this form

f (x) =∑
J∈Λ
cJσ J(x),

where Λ is a finite subset of Nn+1.
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Remark 2.0.22. As an example, the difference monomial xσ(x) can be writ-
ten as σ (1,1)(x) using Notation 2.0.20, and it can also be expressed as x1+σ

using Notation 2.0.16. Throughout this work, for difference polynomials
in one variable, we will switch between these two notations.

Remark 2.0.23. Suppose f ∈ Kσ [x±1] is a Laurent difference polynomial.
Then it is of the form f (x) = ∑

J∈Λ
cJσ J(x) where Λ is a finite subset of Zn+1.

Given Λ as above, define Jmax to be the multi-index such that

∀i, 0 ≤ i ≤ n, (Jmax)i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if ∀J ∈Λ ji ≥ 0,

max{∣ji ∣ ∣ ji < 0} if ji < 0 for some J ∈Λ.

Multiplying f (x) by σ Jmax(x) gives a difference polynomial g(x). In other
words, we have

f (x) ⋅σ Jmax(x) = g(x) ∈Kσ [x].

As explained in Remark 2.0.18, in the case of difference polynomials
in one variable, we may use the notation defined in Remark 2.0.21 for
convenience. Therefore, we present a similar remark to Remark 2.0.23
using this notation.

Remark 2.0.24. If f is a Laurent difference polynomial in difference vari-
ables x = (x1, . . . ,xn), using Notation 2.0.16, it is of the following form:

f (x) = ∑
u(σ)∈Λ

cu(σ)x
u(σ),

where Λ is a finite subset of (Z[σ])n. Suppose u(σ) = (u1(σ), . . . ,un(σ)) is
one of the exponents appearing in f . For each i, 1 ≤ i ≤ n, we have

ui(σ) =
mi

∑
ji=0

ajiσ
ji ,

where for each ji , aji ∈ Z. Define ∣ui ∣○(σ) =
mi
∑
ji=0

ãjiσ
ji such that ãji = ∣aji ∣ if

aji is negative, and ãji = 0 otherwise. Set ∣u∣○(σ) = (∣u1∣○(σ), . . . , ∣un∣○(σ)).
Multiplying f (x) by ∏

u(σ)∈Λ
x∣u∣○(σ) gives a difference polynomial g(x). In

other words, we have

f (x) ⋅ ∏
u(σ)∈Λ

x∣u∣○(σ) = g(x) ∈Kσ [x1, . . . ,xn].
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Definition 2.0.25 ([21], §3). To any difference polynomial in a single vari-
able, f (x) = ∑

J∈Λ
cJσ J(x), a polynomial P (x) = ∑

J∈Λ
cJxJ is associated, where

x = (x0, . . . ,xn), so that f (x) = P (σ(x)).
We use the notation I ! ∶= i0!i1! . . . in! with I = (i0, . . . , in). Then for the multi-
index I and a point a, f(I)(a) is defined as follows:

f(I)(a) = P(I)(σ(a)) =
∂∣I ∣P (a,σ(a), . . . ,σn(a))

∂xi00 ∂x
i1
1 . . .∂x

in
n

⋅ 1
I !
.

Note that for any multi-index I , we have f(I)(0) = cI .
Similarly, to any Laurent difference polynomial f , a Laurent polyno-

mial P is associated.

Definition 2.0.26. A difference field (k,σ) is called an ACFA, if for any
finite system of difference polynomial equations over k with a solution in
an extension k′ of k, this system has a solution in k. This concept can be
considered as a difference version of algebraically closed fields.

To know more on this topic, see [4].

Remark 2.0.27. In the same way as one constructs the algebraic closure of
a field, one constructs a difference algebraic closure of a difference field;
this is an ACFA.

Unlike the algebraic closure of a field, a difference algebraic closure of
a difference field is not unique.

It is clear from the definition of an ACFA that any ACFA is an alge-
braically closed field.

In the next few pages, we present an important lemma concerning
ACFA, which directly follows. We prove it using two distinct methods.
Both proofs have their own interest, as each considers ACFA from a differ-
ent perspective. Prior to each proof, we will provide the necessary mate-
rials required for that proof.

Lemma 2.0.28. Let k be an ACFA. Suppose f is a Laurent difference poly-
nomial in one variable with coefficients from k that is not a monomial.
Then f has a nonzero root in k.
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• The materials for the first proof:

The main reference for this part is [4].

Definition 2.0.29. Let (K,σ) be a difference field. Then σ extends
canonically to an automorphism of K[x1, . . . ,xn] ( For all i, 1 ≤ i ≤
n ; σ(xi) = xi). It is denoted by the same notation as σ .

Let K be an algebraically closed field. By a variety, we mean an irre-
ducible Zariski closed subset of Kn.

Suppose U is a variety over K . For I(U) = {f ∈ K[x1, . . . ,xn] ∣ f (U) =
0}, σ (I(U)) is defined as follows:

σ (I(U)) = {σ(f ) ∣ f ∈ I(U)}.

In this case, the variety V (σ (I(U))) is denoted by Uσ .

Suppose V is another variety over K , such that V ⊆U ×Uσ , and two
projection maps are given as follows:

π1 ∶U ×Uσ →U
π2 ∶U ×Uσ →Uσ .

Then the projection of V to U (to Uσ ) is called generically onto, if
π1(V ) ( if π2(V )) is Zariski dense in U (in Uσ ).

The following theorem is not a result of this thesis. It is derived from
the axioms in 3.1 and Theorem 3.2 of [4].

Theorem 2.0.30. Let (k,σ) be a difference field. Then it is an ACFA if
and only if for any two varieties U and V over k, with V ⊆ U ×Uσ , k
satisfies the following conditions:

1. k is algebraically closed;

2. If V projects generically onto U and Uσ , then there exists a point
a = (a1, . . . ,an) ∈ kn, such that (a,σ(a)) ∈ V .

Proof. For the proof, see Theorem 3.2 in [4]. ◻
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Below, in the first proof, we use Theorem 2.0.30 as the main ingredi-
ent to prove Lemma 2.0.28.

• The first proof of Lemma 2.0.28:

Proof. Let f be a Laurent difference polynomial, such that σn(x) is
the greatest iteration of σ appearing in f . If n = 0, f is a Laurent
polynomial in one variable with coefficients from an ACFA. Since
any ACFA is an algebraically closed field and f is not a monomial, it
has a nonzero root in k. Therefore, we assume that n ≠ 0. We say that
the order of f is n. From Definition 2.0.25, there exists a Laurent
polynomial P in k[y±1

0 , . . . ,y±1
n ], for which we have

f (x) = P (x,σ(x), . . . ,σn(x)).

By Remark 2.0.23, we can multiply f by σ Jmax(x), and convert it to a
difference polynomial in kσ [x]. Therefore, from now on, we assume
that f is in kσ [x], and is irreducible.
We define the three following sets:

U = {(r,s0) ∣ P (r) = 0, r0⋯rns0 −1 = 0};
σ(U) = {(t,w0) ∣ σ(P )(t) = 0, t0⋯tnw0 −1 = 0};

V = {(r,s0, t,w0) ∈U ×σ(U) ∣ ti = ri+1 for 0 ≤ i ≤ n−1},

where r = (r0, . . . , rn), and t = (t0, . . . , tn).

To find a nonzero root of f , we apply Theorem 2.0.30. If we prove
that V projects generically onto U and σ(U), then from this theo-
rem, there exists a point a = (a0, . . . ,an,b0) such that (a,σ(a)) ∈ V .
Finally, we prove that a0 is a root of f .

Now, we prove that V projects generically onto U . Since f , and con-
sequently P , is irreducible, and as the order of f is n ≠ 0, there are at
least two monomials in σ(P ) with different powers of yn. Suppose l
and m are two different powers of yn appearing in σ(P ). Regarding
σ(P ) as a polynomial in yn with coefficients in k[y0, . . . ,yn−1], it can
be written as

σ(P ) =∑
i∈I
gi(y0, . . . ,yn−1)yin,
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where I is a finite subset of N. Define

h(y0, . . . ,yn−1) = gl(y0, . . . ,yn−1) ⋅ gm(y0, . . . ,yn−1). (2.0.4)

Using the following claim, we prove that V projects generically onto
U . Similarly it can be proven that V projects generically onto σ(U).

Claim 2.0.31. Let (r,s0) be in U , such that h(r1, . . . , rn) ≠ 0. Then (r,s0)
is in π1(V ).

Proof. In order to show that (r,s0) ∈π1(V ), we look for a point (t,w0),
such that (r,s0, t,w0) is in V . For any i, 0 ≤ i ≤ n−1, set ti = ri+1. There-
fore, we have

h(t0, . . . , tn−1) = h(r1, . . . , rn) ≠ 0.

From (2.0.4), we obtain gl(t0, . . . , tn−1) ≠ 0, and gm(t0, . . . , tn−1) ≠ 0.
This means that σ(P )(t0, . . . , tn−1,yn) is a polynomial in yn with co-
efficients in k, with at least two monomials. Since k is an ACFA, it is
an algebraically closed field. Hence, this polynomial has a nonzero
root tn in k. This gives the nonzero root (t0, . . . , tn) of σ(P ). Also set
w0 =

r0s0
tn

. Then, we have

t0⋯tn−1tnw0 −1 = r1⋯rntn
r0s0
tn
−1

= r0⋯rns0 −1 = 0.

Thus, (t,w0) ∈ σ(U), and consequently (r,s0, t,w0) ∈ V . ∎

Remark 2.0.32. LetD(h) = kn+2∖V (h) be the Zariski open set defined
by h. Then D(h)∩U is nonempty.

Proof. As we discussed on the previous page, there are at least two
monomials in σ(P ) with different powers of yn. Similarly, P has at
least two monomilas with different powers of yn. Suppose l and m

are two different powers of yn appearing in P . Regard P as a polyno-
mial in one variable yn with coefficients in k[y0, . . . ,yn−1]. Then P is
of the following form:

P =∑
i∈I
qi(y0, . . . ,yn−1)yin,
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where I is a finite subset of N. Define

h′(y0, . . .yn−1) = ql(y0, . . .yn−1) ⋅qm(y0, . . .yn−1) ⋅y0⋯yn−1.

Since h and h′ are nonzero polynomials, h⋅h′ has a nonroot (r0, . . . rn−1).
Therefore, we have h(r0, . . . , rn−1) ≠ 0, which means that this is a point
in D(h). On the other hand, we have h′(r0, . . . , rn−1) ≠ 0. This means
that P (r0, . . . rn−1,yn) is a nonzero polynomial with coefficients in k.
Since k is an algebraically closed field, and P (regarded as a polyno-
mial in one variable yn) has at least two monomials, it has a nonzero
root rn in k. Hence, (r0, . . . , rn−1, rn) is a root of P . From the definition

of h′, it is clear that for all i, 1 ≤ i ≤ n−1, we have ri ≠ 0. Set s0 =
1

r0⋯rn
,

then (r0, . . . , rn, s0) is a point inU , which is also a point ofD(h). Thus,
D(h)∩U is nonempty.

∎

From the previous claim, we have

D(h)∩U ⊆π1(V ).

By taking the Zariski closure, we obtain the following relation:

D(h)∩U ⊆π1(V ).

Since Zariski open sets are dense, we have U ⊆ π1(V ). Moreover,
from π1(V ) ⊆ U , we obtain π1(V ) = U . This means that π1(V ) is
Zariski dense inU , and V projects generically ontoU . With a similar
argument, V projects generically onto σ(U). Hence, from Theorem
2.0.30, there exists a point a = (a0, . . . ,an,b0), such that (a,σ(a)) ∈ V ,
where σ(a) = (σ(a0), . . .σ(an),σ(b0)), and ai+1 = σ(ai). This means
that

f (a0) = P (a0,σ(a0), . . .σn(a0)) = P (a0,a1, . . . ,an) = 0.

Since a ∈U , we have a0 ≠ 0. Hence, f has a nonzero root a0 in k.

◻
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• The materials for the second proof:

The reader can consult [23] as the reference of this part.

Definition 2.0.33. Let (R,σ) be a difference ring. Then I is called a
difference ideal, if it is an ideal of R such that σ(I) ⊆ I .

The intersection of difference ideals is a difference ideal of R. If F is
a subset of R, the intersection of all difference ideals containing F is
the smallest difference ideal containing F. It is called the difference
ideal generated by F, and is denoted by [F].

Definition 2.0.34. Let I be a difference ideal of a difference ring
(R,σ). Then I is called perfect if for any element a of R, aσ(a) ∈ I
implies a ∈ I .

The intersection of perfect difference ideals is perfect. Let F be a
subset of R. Then the perfect difference ideal generated by F, or the per-
fect closure of F is defined as the intersection of all perfect difference
ideals containing F, and is denoted by {F}.

The perfect closure of a subset F of R is described in a recursive way
which is explained in the following remark:

Remark 2.0.35. Let I be a difference ideal of a difference ring (R,σ).
Then the set I ′ is defined as follows:

I ′ ∶= {a ∈R ∣ σ i1(a) . . .σ in(a) ∈ I for some i1 . . . in ∈N}.

Let F be a subset of R. Then F{1} is defined as [F]′, and F{i} is defined
as follows:

F{i} ∶= [F{i−1}]′ for i ≥ 2.

We have {F} = ⋃
i≥1
F{i}. The truth of this equality is discussed in [23].

Definition 2.0.36. A difference ideal I of a difference ring (R,σ) is
called transformally prime, if it is a prime ideal of R for which we
have σ−1(I) = I .
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Definition 2.0.37. The difference spectrum of R, denoted by Specσ(R),
is the set of all transformally prime difference ideals of R. This set
is usually considered with a topology called Cohn topology whose
closed sets are as follows:

V (I) ∶= {p ∈ Specσ(R) ∣ p contains I},

where I is a difference ideal of R.

Remark 2.0.38. Let (R,σ) be a difference ring, and p be a transfor-
mally prime ideal of R. Denote the complement of p by S. This is
a multiplicatively closed subset of R, and we have σ(S) ⊂ S. Then
Rp ∶= S−1R is a difference ring, and S−1p is its unique maximal ideal.

Consider the quotient of Rp by S−1p. This is denoted by k(p). It is a
field together with an endomorphism which is defined naturally. By
Proposition 2.0.3, the inversive closure of k(p) is a difference field.
We denote it by k(p)∗, and call it the residue difference field at p.

Lemma 2.0.39 ([23], Lemma 1.2.21). Let (R,σ) be a difference ring.
Suppose A is the set of all proper perfect difference ideals of R. Let
I be a maximal element of A. Then I is transformally prime.

Proof. For the proof, see Lemma 1.2.21 of [23] or page 88 of [5]. ◻

Lemma 2.0.40 ([23], Proposition 1.2.35). Let (R,σ) be a difference
ring. Suppose A is the set of all perfect difference ideals of R, and B
is the set of all closed subsets of Specσ(R). Consider the following
map:

φ ∶AÐ→ B
I ↦ V (I).

Then φ is an inclusion-reversing bijection.

Proof. The proof can be found in [23], Proposition 1.2.35(ii) or [9],
subsection 3.1. ◻
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The following theorem is obtained from Proposition 3.3.4 and Theo-
rem 3.3.8 of [23] and is not a result of this thesis.
One can also see the same result by considering Lemma 2.0.40, The-
orem II and Theorem V in Chapter 3 of [5].

Theorem 2.0.41. Let (R,σ) be a difference ring, and Rσ [x] for x =
(x1, . . . ,xn) be the difference polynomial ring as defined in Defini-
tion 2.0.15. If Specσ(R) is a Noetherian topological space, then
Specσ(Rσ [x]) is a Noetherian topological space.

Proof. Proposition 3.3.4 and Theorem 3.3.8 of [23] together provide
the proof of this theorem. ◻

Here, we prove Lemma 2.0.28 with another method. The main idea
of this proof is to use the definition of an ACFA field (Definition
2.0.26).

• The second proof of Lemma 2.0.28:

Proof. Similar to what we did at the beginning of the first proof, we
use again Remark 2.0.23, and we assume that f is an irreducible
difference polynomial in kσ [x].

To find a nonzero root of f , we apply the definition of ACFA. This
means that it suffices to find an extension L of the field k such that f
has a nonzero root in L. Then by Definition 2.0.26 f has a root in k,
and we show that this root is nonzero.

Consider the following system of difference equations in kσ [x,y]:

⎧⎪⎪⎨⎪⎪⎩

f (x) = 0,

g(x,y) = xy −1 = 0,
(2.0.5)

Set F = {f ,g} which is a subset of the difference polynomial ring
kσ [x,y]. By Remark 2.0.35, we consider the perfect difference ideal
{F} generated by F which is a proper difference ideal. We make a
case distinction:



28 CHAPTER 2. PRELIMINARIES

1. {F} is maximal: By Lemma 2.0.39, {F} is transformally prime.
Consider k({F})∗, the residue difference field at {F}. This is
a difference field. As (x+{F},y +{F}) is a solution of 2.0.5 in
k({F}), this system has a solution in k({F})∗. Since k is an
ACFA, 2.0.5 has a solution (x0,y0) in k. This means that x0y0 −
1 = 0, and consequently x0 is a nonzero root of f (x).

2. {F} is not maximal: In this case, there exists a proper perfect
difference ideal I1 such that {F} ⊂ I1. If I1 is maximal, then
by repeating the procedure in the first case, 2.0.5 has a solu-
tion in k(I1)∗ which gives a nonzero root of f (x). Otherwise,
there exists another proper perfect difference ideal I2 such that
{F} ⊂ I1 ⊂ I2. Continuing the same method, as long as we do not
obtain a maximal perfect difference ideal, we obtain an ascend-
ing chain {F} ⊂ I1 ⊂ I2 ⊂ . . . of proper perfect ideals containing
{F}. Since k is a difference field, we have Specσ(k) = ∅. There-
fore, Specσ(k) is a Noetherian topological space. By Theorem
2.0.41, Specσ(kσ [x,y]) is a Noetherian topological space. Using
the inclusion-reversing bijection of Lemma 2.0.40, any ascend-
ing chain of proper perfect difference ideals of kσ [x,y] is finite.
This means that this chain stops, and we obtain a maximal per-
fect difference ideal M such that {F} ⊂M. Thus, 2.0.5 has a
solution in k(M)∗, this gives a nonzero root of f (x) in k.

◻

In the following theorem, we extend Lemma 2.0.28 to the case where f is
a Laurent difference polynomial in n variables.

Theorem 2.0.42. Let k be an ACFA. Suppose f is in kσ [x±1
1 , . . . ,x±1

n ], and is
not a monomial. Then f has a root in (k∗)n.

Proof. Remark 2.0.23 enables us to convert a Laurent difference polyno-
mial to a difference polynomial. Therefore, we assume that f is an element
of kσ [x1, . . . ,xn].
Since f is not a monomial, we assume that cu(σ)x

u1(σ)
1 ⋯xun(σ)n and
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cu′(σ)x
u′1(σ)
1 ⋯xu

′

n(σ)
n are two distinct monomials of f . Therefore, for some i,

1 ≤ i ≤ n, we have ui(σ) ≠ u′i(σ). Without loss of generality, we assume that
i = n, and we have at least two monomials with different σ -powers of xn.
Regard f as a difference polynomial in one variable xn, with coefficients in
kσ [x1, . . . ,xn−1]. We write f as follows:

f =
N

∑
k=1
gk (x1, . . . ,xn−1)x

u
(n,k)(σ)
n ,

where u(n,k)(σ) denotes distinct σ -powers of xn appearing in f .
Define h(x1, . . . ,xn−1) = g1 (x1, . . . ,xn−1)⋯gN (x1, . . . ,xn−1). The difference
polynomial h is nonzero. In the following claim, we want to find
(a1, . . . ,an−1) ∈ (k∗)n−1 such that h(a1, . . . ,an−1) ≠ 0. In this case,
f (a1, . . . ,an−1,xn) is a difference polynomial in one variable with co-
efficients from an ACFA which is not a monomial. Therefore, from
Lemma2.0.28 it has a nonzero root an. Hence, (a1, . . . ,an−1,an) is a root
of f in (k∗)n, and the proof is complete.

Claim 2.0.43. Let k be an ACFA. Suppose h is a nonconstant difference poly-
nomial in kσ [x1, . . . ,xn−1]. Then h has a nonroot in (k∗)n−1.

Proof. We prove this claim by induction over n − 1. Suppose n − 1 = 1,
and consider the difference polynomial h(x1)+ b, where 0 ≠ b ≠ −c0 for c0

being the constant term of h. This is an element of kσ [x1], which is not a
monomial. Since k is an ACFA, Lemma 2.0.28 implies that this polynomial
has a nonzero root α1. This means that h(α1) + b = 0, and consequently
h(α1) ≠ 0.
We assume that the statement holds, if the number of variables is less
than n− 1. We prove the statement for h in kσ [x1, . . . ,xn−1]. We write h as
a polynomial in one variable xn−1, with coefficients from kσ [x1, . . . ,xn−2].
More precisely, h is of the following form:

h =
M

∑
k=1
hk (x1, . . . ,xn−2)x

u
(n−1,k)(σ)
n−1 .

For each k, 1 ≤ k ≤ M, we have hk ∈ kσ [x1, . . . ,xn−2]. By induction as-
sumption, for each k, there exists (α(k,1), . . . ,α(k,n−2)) in (k∗)n−2 that is
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a nonroot of hk. Therefore, there exists a point (a1, . . . ,an−2) such that
h(a1, . . . ,an−2,xn−1) is a nonzero difference polynomial in one variable xn−1.
Thus, from the first step of the induction, it has a nonroot an−1. This means
that (a1, . . . ,an−2,an−1) is a nonroot of h. ∎

As explained before this claim, using the nonroot (a1, . . . ,an−1) of h
from the previous claim, we find a root (a1, . . . ,an−1,an) ∈ (k∗)n of f . ◻

In this thesis, we assume that the field K we work with is spherically
complete. Below, we present the definition of spherical completeness.
This concept is well known, and one can consult [22] as a reference.

Definition 2.0.44. Let (K,v) be a valued field. We consider a totally or-
dered collection {Bi}i∈I of balls in K . Then K is called spherically complete,
if for every such collection we have ⋂

i∈I
Bi ≠∅.

Hahn fields are spherically complete, see [15] and [13].

Assumption 2.0.45. (General assumptions) Here are some of the general
assumptions we make throughout the present work:

• (K,σ) is a multiplicative valued difference field which is spherically
complete and of characteristic zero. We also assume that ρ, the scal-
ing exponent of σ is transcendental.(The importance of this assump-
tion is explained in Definition 4.1.1.)

• The valuation has a splitting. This splitting ψ ∶ Γ → K interacts with
σΓ as follows:

∀a ∈ Γ ∶ψ (σΓ (a)) = σ (ψ(a)) .

We also use the notation ψ(a) = ta.

• The difference residue field is an ACFA and is of characteristic zero.

• The difference value group Γ is a subgroup of R that is a Q(ρ)-
module.

Example 2.0.46. Let k be an ACFA of characteristic zero. Assume R is
considered as an ordered abelian group with an automorphism σΓ such
that

∀x ∈R ∶ σΓ (x) = ρ ⋅x
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where ρ is a fixed positive real number which is transcendental. Then
K = k((tR)) satisfies the assumptions in Assumption 2.0.45.
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Chapter 3
Difference Tropical Polynomials

In this thesis, we assume that the reader is familiar with tropical geometry,
and we establish its difference version.

In this chapter, we define difference tropical polynomials and difference
tropical plane curves. These are the initial objects based on which difference
tropical geometry is founded. Then, we provide the definition of a differ-
ence balanced weighted rectilinear graph, which we abbreviate as DBWR.
Finally, in Theorem 3.2.15, we prove that there is a one to one correspon-
dence between difference tropical plane curves and difference balanced
weighted rectilinear graphs. To prove this theorem, we apply graph the-
oretical tools. Hence, we start this chapter with some preliminaries in
graph theory.

3.1 Graph-Theoretical Prerequisites

In this section, we present graph-theoretical background necessary for the
proof of Theorem 3.2.15. The main reference for this section is [2].

3.1.1 Planar Graphs

Planar graphs are broadly discussed in section 10.1 of [2] which is the
reference of this subsection.

Definition 3.1.1. A graphG is called planar if it can be drawn in the plane,

33
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G

Figure 3.1: The planar graph G obtained from deleting two edges of K5.
G̃

Figure 3.2: G̃ is a planar embedding of G.

such that the edges do not cross each other. This drawing is called a planar
embedding of G, and is denoted by G̃.

Notation 3.1.2. Let G be a graph. We denote the set of all its vertices by
V (G), and the set of all its edges by E(G).

Remark 3.1.3. Let G be a planar graph. Consider V (G̃) to be the set of all
points representing the vertices ofG, and E(G̃) to be the set of all segments
(possibly curved) representing the edges of G. Each vertex of G̃ is only
incident with the edges that contain it. In this way, G̃ can be regarded as a
graph that is isomorphic to G. It is commonly refereed to as a plane graph.

Example 3.1.4. In Figure 3.1, a planar graphG is illustrated. It is obtained
from deleting two edges of K5. The plane graph G̃, in Figure 3.2, is its
planar embedding.

In order to review more about planar graphs, we need to recall some
definitions from topology.
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Definition 3.1.5. • Let f ∶ I → X be a continuous map, where I is a
closed unit interval and X is a topological space. Then im(f ) is a
curve.

• If f is defined on a circle, then im(f ) is a closed curve.

• If f is one to one, then the curve is called simple. Intuitively, this
means that the curve does not intersect itself.

Definition 3.1.6. Let A be a subset of the plane. It is said to be arcwise
connected if and only if any two points of A can be connected via a curve
such that the curve lies completely within A.

Theorem 3.1.7 (The Jordan Curve Theorem). Let C be a simple closed curve
in the plane. Then, it partitions the rest of the plane into two disjoint open sets,
each of which is arc-wise connected.

Remark 3.1.8. The two open subset of the plane, mentioned in the previ-
ous theorem, are called the interior and the exterior of C. They are denoted
by int(C) and ext(C) respectively.
This theorem implies that if a ∈ int(C) and b ∈ ext(C), then any arc con-
necting a and b intersect C at least once.

3.1.2 Duality

This subsection provides the necessary background on duality in graph
theory. All definitions can be found in Section 10.2 of [2]. Finally, by prov-
ing Lemma 3.1.22, we obtain Corollary 3.1.25, which plays an important
role in the proof of Lemma 3.2.19.

Definition 3.1.9. Suppose G is a plane graph. The Jordan Curve Theorem
guarantees that G partitions the rest of the plane into finitely many arc-
wise connected open sets. Each of these open sets is called a face. We
denote the set of all faces of G by F(G).

Example 3.1.10. The plane graph G̃ from Example 3.1.4 partitions the rest
of the plane into 5 arcwise connected open sets. See Figure 3.2. Therefore,
we have F(G̃) = {f1, f2, . . . , f5}.
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G̃

f1

f2 f3 f4

f5

v5

v1

v2 v3

v4

e1

e2

e3

e4e7e6
e5

e8

Figure 3.3: The faces of G̃ from Figure 3.2.

The unbounded face f1, shown in Figure 3.3, is called an outer face.
Any plane graph has exactly one outer face.

Definition 3.1.11. Let G be a plane graph, and f be one of its faces. Since
f is an open set, it makes sense to talk about its boundary from the topo-
logical point of view. So the boundary of a face is its boundary in the topo-
logical meaning. It is denoted by ∂(f ). It is commonly said that a face is
incident with the edges and vertices in its boundary. Two faces fi and fj of
G are said to be adjacent, if e is a common edge in their boundaries. In this
case, we use the notation e ⊂ ∂(fi)∩∂(fj).

Example 3.1.12. The outer face f1 of Figure 3.3 is incident with e1,e2,e3,e8

and v1,v2,v3,v4. Moreover, f2, f3, f4 and f5 are adjacent to f1.

Definition 3.1.13. Let G be a plane graph. We associate a graph G∗ to G,
which is defined as follows:

• For any face f of G, there exists a corresponding vertex f ∗ of G∗;

• for any edge e of G, there exists a corresponding edge e∗ of G∗;

• the vertices f ∗ and g∗ of G∗ are linked by an edge e∗ if and only if f
and g, the corresponding faces in G, are separated by the edge e of
G.

The graph G∗ defined as above is called the dual graph of G.
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Remark 3.1.14. If G is a plane graph, its dual graph G∗ can be embedded
in the plane naturally. It suffices to draw each vertex f ∗ of G∗ inside the
corresponding face f of G. If e∗ connects two vertices f ∗ and g∗, we draw
it in a way that it crosses the corresponding edge e only once. Considering
this drawing it is intuitively clear that G∗ is planar. This specific drawing
of G∗ is plane and is called the plane dual of G. See [2], page 252. For ease
of use throughout this thesis, whenever we refer to the dual of a plane
graph, we consider the plane dual.

Example 3.1.15. In Figure 3.4, the plane dual G̃∗ of the plane graph G̃

from Example 3.1.4 is illustrated in bold.

Proposition 3.1.16 ([2], Proposition 10.9). Let G be a plane graph, and G∗

be its dual. Then G∗ is connected.

Proof. For the proof, see [2], Proposition 10.9. ◻

Lemma 3.1.17 ([8], Corollary 6.2.1). Let G be a connected plane graph, and
G∗ be its dual. Then we have G∗∗ =G.

Assumption 3.1.18. Throughout this thesis, by a subgraph H of a graph
G, we mean a subgraph obtained by deleting some edges of G and leaving
the vertices intact. In fact, we have V (H) = V (G). So all the subgraphs are
assumed to be spanning. Otherwise, it will be stated.

Definition 3.1.19 ([2], section 4.3). Let G be a connected graph, and T be
a spanning tree of G. A cotree is denoted by E ∖T , and is defined to be the
set of all edges in G which are not an edge of T .

Similarly, we can define E ∖H , for any spanning subgraph H of G.

The following notation is borrowed from [2].

Notation 3.1.20. Let G be a plane graph, and G∗ be its dual. Suppose
A ⊆ E(G) by A∗, we mean the following set:

A∗ = {e∗ ∈ E(G∗) ∣ e ∈A}.

Below, we state a theorem which is well-known in graph theory, but we
did not find a good reference for its proof. So, for the convenience of the
reader we present a proof.
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G̃

f1

f2 f3 f4

f5

v5

v1

v2 v3

v4

e1

e2

e3

e4e7e6
e5

e8
f ∗5

f ∗4
f ∗3

f ∗2

f ∗1

G̃∗

Figure 3.4: The dual graph of G̃ is shown in bold.
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Theorem 3.1.21. Let G be a connected plane graph, and T be a subgraph of G.
Consider the subgraph T ′ of G∗, which is induced by (E∖T )∗. T is a spanning
tree of G if and only if T ′ is a spanning tree of G∗.

Proof. Ô⇒)
Suppose T is a spanning tree of G. We want to prove that T ′ is a span-

ning tree of G∗. Equivalently, we prove that it is connected and has no
cycle (is acyclic).

• Connectedness:

Consider the subgraph T of G. As we have assumed, it is a tree.
Therefore, it has no cycle. This means that it has one face, namely
R

2 ∖ T (the set of all points in R
2, which are neither on an edge nor

on a vertex of T ). By definition, a face is an arc-wise connected open
set. Thus any two points of R2 ∖T can be joined via a curve without
crossing T .

As we fixed in Remark 3.1.14, whenever we refer to G∗, we consider
the plane dual. If f ∗ and g∗ are two vertices of G∗, they are drawn
in their corresponding faces f and g in F(G). Since T is a subgraph
of G, f ∗ and g∗ are neither on an edge nor on a vertex of T . This
means that they are in R

2 ∖T . Therefore, they can be connected via
a curve without crossing T . Without loss of generality, we assume
that this curve crosses each edge finitely many times. Considering
the faces of G, this curve starts from the face f0 = f , passes through
a finite sequence of adjacent faces f1, . . . , fn−1 and ends in fn = g. If
we denote the edge separating the faces fi and fi+1 by ei,i+1, then this
curve crosses the edges ei,i+1, with 0 ≤ i ≤ n−1. Therefore, these edges
do not belong to E(T ). That is to say

∀i 0 ≤ i ≤ n−1 ∶ ei,i+1 ∈ E ∖T .

Thus, this curve gives a walk from f ∗ to g∗ on the graph induced by
(E ∖T )∗, which consists of the edges e∗i,i+1.

This means that for any two arbitrary vertices f ∗ and g∗ of G∗, there
is a walk, and consequently a path onG∗ connecting them. This path
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consists of the edges in (E ∖T )∗. Hence, T ′ is a connected subgraph
of G∗.

• T ′ is acyclic:

Assume the opposite. Suppose C is a cycle in G∗ consisting of the
edges in (E ∖T )∗.

Let f ∗0 , f
∗

1 , . . . , f
∗
m , f

∗
0 be the sequence of vertices on C. So this se-

quence corresponds to the sequence f0, f1, . . . , fm, fm+1 = f0 of faces in
G. Denote the edge connecting the vertices f ∗i and f ∗i+1 by e∗i,i+1. As
C consists of the edges in (E ∖T )∗, for each i, with 0 ≤ i ≤ m, e∗i,i+1
corresponds to the edge ei,i+1 ∈ E ∖T .

Since C is a cycle, it can be regarded as a closed curve. Moreover, it
is a subgraph of G∗, which is a plane graph, and therefore it is non-
intersecting. Thus C can be regarded as a simple curve. Applying
Jordan Curve Theorem, we know that C partitions the rest of the
plane into two arc-wise connected open sets.

Let e∗i,i+1 be an edge of this cycle whose corresponding edge in G

is ei,i+1. Based on the explanation in Remark 3.1.14, we know that
e∗i,i+1, and so C crosses ei,i+1 only once. Suppose ei,i+1 connects the
vertices u and v of G. Without loss of generality, we assume that
u ∈ int(C), and v ∈ ext(C).

Since u and v are vertices of G, they are also vertices of T . As we
assumed, T is a spanning tree. So it is connected. Therefore, there
is a path from u to v on T . In other words, there is a path on T

from inside of C to outside of C. So this path crosses C. This means
that C crosses an edge of T . Hence, it contains an edge of T ∗. This
contradicts the assumption that C consists of the edges in (E ∖ T )∗.
Thus, T ′ is acyclic.

⇐Ô)
From Remark 3.1.14 and Proposition 3.1.16, G∗ is a connected plane

graph. To prove this direction, we apply the first direction for the con-
nected plane graph G∗. That is to say, if T ′ is a spanning tree of G∗, then
the graph induced by (E∗ ∖T ′)∗ is a spanning tree of G∗∗. From Lemma
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3.1.17, this means that (E∗ ∖T ′)∗ induces a spanning tree of G. To com-
plete the proof, we show that (E∗ ∖T ′)∗ induces T , and therefore T is a
spanning tree of G.

Suppose e∗∗ = e ∈ (E∗ ∖T ′)∗. From Notation 3.1.20, this means that
e∗ ∈ (E∗ ∖T ′). In other words, we have e∗ ∈ E∗ and e∗ ∉ E(T ′). This gives

e∗ ∉ E(T ′) ⇐⇒ e∗ ∉ (E ∖T )∗

⇐⇒ e ∉ E ∖T
⇐⇒ e ∈ E(T ).

So (E∗ ∖T ′)∗ gives the set of all edges in T , and induces the graph T . ◻

The following lemma will be needed in the proof of Corollary 3.1.25,
which is one of the main ingredients of the proof of Lemma 3.2.19.

Lemma 3.1.22. Suppose G is a plane graph, and H is a subgraph of G con-
tained in a spanning tree T of G. Assume that H satisfies the following
condition:

∀v ∈ V (H) ∶ #{e ∈ E(H) ∣ e is adjacent to v} ≠ 1. (3.1.1)

Then H has no edges.

Proof. Assume the opposite. Suppose E(H) ≠ ∅. Let e1 be an edge of H
connecting v0 and v1. Note that degree of v0 and v1 is not one. Therefore,
there is another edge e2 adjacent to v1 and a vertex v2. We have finitely
many vertices, and the degree of each vertex is not equal to one. So if
we continue like this, we will find a vertex v which appears twice on this
path. Therefore, H contains a cycle, and this contradicts the fact that it is
contained in a tree T . Hence, H does not have any edge.

◻

Remark 3.1.23. Let G be a plane graph, and H be a subgarph of G con-
tained in a spanning tree T . Then H satisfies the condition (3.1.1), if and
only if for each vertex v of G, and {e1, . . .ek} the set of all edges adjacent to
v, we have the following condition:

If e1, . . . ,ek−1 ∉ E(H), then ek ∉ E(H). (3.1.2)
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Proof. SupposeH satisfies the condition (3.1.1), and v is a vertex ofG, such
that the set of all the edges adjacent to v is {e1, . . . ,ek}, but the condition
(3.1.2) does not hold. Thus, v as a vertex of H has degree 1, and this
contradicts the condition (3.1.1).

Conversely, assume that the condition (3.1.2) holds, but there exists a
vertex v0 of H , such that #{e ∈ E(H) ∣ e is adjacent to v0} = 1. Suppose e0 is
the single edge adjacent to v0. This means that all but one edge e0 are not
edges of H , so condition (3.1.2) implies that e0 is not an edge of H , which
is a contradiction. ◻

Remark 3.1.24. Consider the assumptions of the previous remark, and as-
sume G is connected. From Lemma 3.1.17, we have G∗∗ = G. This means
that, to each vertex v in V (G), a face f of F(G∗) is associated. Besides, to
each edge ei in E(G), an edge e∗i of E(G∗) is associated. Suppose, H ′ is the
graph induced by (E ∖H)∗. If ei is an edge of G adjacent to v, such that
ei ∉ E(H), we have ei ∈ E ∖H . This means that e∗i ∈ (E ∖H)∗. Thus, for any
face f of F(G∗), if e∗1 , . . . ,e

∗
k are all the edges in ∂(f ), then the dual version

of the condition (3.1.2) is as follows:

If e∗1 , . . . ,e
∗
k−1 ∈ E(H

′

), then e∗k ∈ E(H
′

). (3.1.3)

Corollary 3.1.25. Let G be a connected plane graph, and H be a subgraph of
G. SupposeG∗ is the plane dual ofG. AssumeH

′

is the subgraph ofG∗ induced
by (E∖H)∗. If H

′

contains a spanning tree T ′ of G∗, and the condition (3.1.3)
holds, then H

′ =G∗.

Proof. Since T ′ is a spanning tree of G∗, Theorem 3.1.21 implies that (E∗∖
T
′)∗ induces a spanning tree T of G. Moreover, H is contained in T . To

see this, we have:

e ∈ E(H)⇒ e ∉ E ∖H ⇒ e∗ ∉ (E ∖H)∗

⇒e∗ ∉ E(H
′

)⇒ e∗ ∉ E(T
′

)⇒ e∗ ∈ E∗ ∖T
′

⇒ e = e∗∗ ∈ (E∗ ∖T
′

)∗.

Since (E∗ ∖T ′)∗ induces T , e is an edge of T . Therefore, H ⊂ T .
That is to say that H is a subgraph of G contained in the spanning

tree T . As we assumed, condition (3.1.3) holds. From Remark 3.1.24,
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this condition is dual to the condition (3.1.2). Therefore, Remark 3.1.23
together with Lemma 3.1.22 imply that E(H) = ∅. In other words (E ∖
H)∗ = E∗, which means that (E ∖H)∗ induces G∗. Hence, H

′ =G∗. ◻

3.2 Difference Tropical Polynomials and Curves

In this section, we introduce difference tropical objects based on the frame-
work presented in [11], Section 3. In [11], similar objects in the classical
case are discussed. We extend these concepts to the difference case. This is
a fundamental step in establishing a connection between tropical geome-
try and difference algebra. We will define more difference tropical objects
in Section 4.1.

Definition 3.2.1. Let (R∪{∞},⊕,⊙) be the tropical semiring. Assume σ
is an automorphism of ordered abelian groups on R. A difference tropical
monomial in x1, . . . ,xn is a product of variables x1, . . . ,xn and some iterations
of σ on these variables with a real coefficient.

To clarify this definition, we consider the following example, where we
observe how a difference tropical monomial in one variable looks like.

Example 3.2.2. A difference tropical monomial in the variable x is of the
following form:

a⊙x⊙r0 ⊙σ(x)⊙r1 ⊙σ2(x)⊙r2 ⊙ ⋅⋅ ⋅ ⊙σn(x)⊙rn , (3.2.1)

where a ∈R and by σ i(x) with 1 ≤ i ≤ n, we mean the i-th iteration of σ . If
we evaluate (3.2.1) in classical arithmetic, then we have

a+ r0x+ r1σ(x)+ r2σ2(x)+ ⋅ ⋅ ⋅ + rnσn(x). (3.2.2)

Since σ is an automorphism of ordered abelian groups on R, by using
Remark 2.0.12, (3.2.2) can be written as

a+r0x+r1ρ ⋅x+r2ρ2 ⋅x+⋅ ⋅ ⋅+rnρn ⋅x = a+(r0+r1ρ+r2ρ2+⋅ ⋅ ⋅+rnρn)x = a+g(ρ)x.

Here by g(ρ), we mean an element of Z[ρ], which is the following set:

Z[ρ] = {
m

∑
i=0
aiρ

i ∣ ∀i, ai ∈Z and m ∈N},
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and ρ is assumed to be transcendental over Q. See Assumption 2.0.45.
From now on, for simplicity, we avoid using ⊙ in the exponent, and it will
be clear from the context whether the operation is tropical or not.

Example 3.2.3. The following is an explicit example of a difference tropi-
cal monomial in variables x1,x2 and x3:

3⊙x2
1 ⊙x2⊙σ(x1)3⊙σ2(x3) = 3+2x1 +x2 +3ρ ⋅x1 +ρ2 ⋅x3

= 3+ (2+3ρ)x1 +x2 +ρ2 ⋅x3.

In fact, a difference tropical monomial in variables x1, . . .xn can be eval-
uated in classical arithmetic as follows:

a+ g1(ρ)x1 + ⋅ ⋅ ⋅ + gn(ρ)xn,

where a ∈ R, and for each i ∈ {1, . . . ,n}, we have gi(ρ) ∈Z[ρ]. A difference
tropical monomial is a function from R

n to R, and if we evaluate it in
classical arithmetic, it is linear.

Definition 3.2.4. A difference tropical polynomial is a tropical sum of finitely
many difference tropical monomials. We denote it by P .

Note that, as in the classical tropical geometry, distinct difference trop-
ical polynomials can define the same function.

Example 3.2.5. A difference tropical polynomial in one variable x is of
the following form:

P (x) =
k

⊕
i=1
ai ⊙xri,0 ⊙σ(x)ri,1 ⊙σ2(x)ri,2 ⊙ ⋅⋅ ⋅ ⊙σn(x)ri,n

=min{a1 + g1(ρ)x,a2 + g2(ρ)x, . . . ,ak + gk(ρ)x} .

Here n is the greatest iteration of σ among these k difference tropical
monomials. If for some j, 0 ≤ j ≤ n, and for some i, 1 ≤ i ≤ k, σ j(x) does not
appear in i-th monomial, this means that ri,j is zero. For each i ∈ {1, . . . ,k},
we have ai ∈R and gi(ρ) ∈Z[ρ].

A difference tropical polynomial in n variables is a function P ∶Rn→R.
As P is the minimum of linear functions, it is concave and piecewise linear.
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Definition 3.2.6. Let P be a difference tropical polynomial. A point a is
a root of P , if the minimum in definition of P at the point a is attained at
least twice.

Definition 3.2.7. The set of the roots of a difference tropical polynomial
in two variables is called a difference tropical plane curve.

To have a better intuition about difference tropical plane curves, we
first see how a difference tropical polynomial in two variables looks like.

A difference tropical monomial in variables x and y is of the follow-
ing form:

a⊙xr0 ⊙σ(x)r1 ⊙ ⋅⋅ ⋅ ⊙σn(x)rn ⊙ys0 ⊙σ(y)s1 ⊙ ⋅⋅ ⋅ ⊙σm(y)sm

= a+ g(ρ)x+h(ρ)y.

where a ∈ R, m,n ∈ N and g(ρ),h(ρ) ∈ Z[ρ]. Similarly, by evaluating a
difference tropical polynomial in x and y in classical arithmetic, we can
see that it is the minimum of finitely many such terms. In other words, it
is of the following form:

P (x,y) = min
i∈{1,...,k}

{ai + gi(ρ)x+hi(ρ)y}.

For each i with 1 ≤ i ≤ k, we have z = ai+gi(ρ)x+hi(ρ)y is a plane in R
3. If at

a point (x0,y0) the minimum is attained more than once, this means that
(x0,y0,P (x0,y0)) is on a line (or a vertex) where two planes (or more) meet.
Otherwise, it is on one of these k planes. This means that P (x,y) represents
a polyhedral surface in R

3. If we project this polyhedral surface on R
2, we

obtain a collection of vertices and edges. These edges can have two end
points (segments) or just one end point (half rays). For the points on these
edges and vertices, P is not linear. In fact, we obtain the set of all points
where at least two planes attain the minimum, and this is by definition
the difference tropical plane curve associated to P . It is denoted by TP .

Remark 3.2.8. As we explained above, (x0,y0) ∈ TP if and only if it is a root
of P . Thus, any point (x,y) ∈ R2 ∖ TP is not a root, and the minimum at
this point is attained only once. In other words, for (x,y) ∈ R2 ∖TP , there
exists i ∈ {1, . . . ,k} such that P (x,y) = ai + gi(ρ)x + hi(ρ)y. More precisely,
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φR5
(x,y)

Figure 3.5: The graph of P (x,y) looks like a tent.

(x0 , y0)

(x,y)

(x1 , y1)

R5 R2R4

R1

R3

Figure 3.6: TP is obtained from projecting the graph in Figure 3.5 on R
2.

TP partitions R
2 into k regions R1, . . .Rk. Let (x1,y1) be a point in R

2 ∖TP
such that (x,y) and (x1,y1) are in the same region Ri . Then P (x1,y1) and
P (x,y) are on the same plane. We denote this plane by φRi . This means
that P (x1,y1) = ai + gi(ρ)x1 +hi(ρ)y1.

We illustrate this, in an example in Figure 3.5 and Figure 3.6 .

Definition 3.2.9. To each difference tropical polynomial P (x,y), we asso-
ciate a polygon, which is called a difference Newton polygon. Let

P (x,y) = min
i∈{1,...,k}

{ai + gi(ρ)x+hi(ρ)y}

be a difference tropical polynomial, then the difference Newton polygon
associated to P is the convex hull of the points (gi(ρ),hi(ρ)) ∈ R2 with
i ∈ {1, . . . ,k}.

Definition 3.2.10. Let P (x,y) be a difference tropical polynomial, and TP
be its difference tropical plane curve. We associate a weight to each edge
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of TP . To do so, we assume e is an edge of Tp, which separates two regions
Ri and Rj . See Figure 3.7. In this case, Ri and Rj are called adjacent or
neighbour regions. As we denoted in Remark 3.2.8, φRi and φRj are the
planes which attain the minimum on Ri and Rj respectively. Here, we
have

φRi(x,y) = gi(ρ)x+hi(ρ)y +ai
φRj(x,y) = gj(ρ)x+hj(ρ)y +aj .

The weight of e is the length of the segment connecting (gi(ρ),hi(ρ)) and
(gj(ρ),hj(ρ)). We denote it by wσ(e).

Remark 3.2.11. In the classical tropical geometry, the definition of weight
for an edge e of a tropical plane curve TP is slightly different. In this case,
let e be adjacent to the regions Ri and Rj such that

φRi = rix+ siy +ai
φRj = rjx+ sjy +aj ,

where ri , rj and also si , sj are integers and ai ,aj are in R. Then the weight
of e is defined to be the integer length of the segment connecting (ri , si)
and (rj , sj) (see [11], page 5).
In the difference case, if σ appears in the presentation of P , then the slope
of the segment connecting the points (gi(ρ),hi(ρ)) and (gj(ρ),hj(ρ)) is
an element of Q(ρ). Therefore, this segment does not necessarily pass
through an integer point, and it is not meaningful to talk about the integer
length.

Lemma 3.2.12. Let P (x,y) be a difference tropical polynomial, and TP be its
difference tropical plane curve. Suppose e is an edge of TP , which is separat-
ing the regions Ri and Rj . Assume φRi and φRj are defined as in Definition
3.2.10. If v⃗ is the vector from (gi(ρ),hi(ρ)) to (gj(ρ),hj(ρ)), then e and v⃗ are
orthogonal.

Proof. From the definition of v⃗, we have v⃗ = (gj(ρ)− gi(ρ),hj(ρ)−hi(ρ)).
Since e is an edge of Tp, which is between the regions Ri and Rj , it is the
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e RiRj

Figure 3.7: If φRi and φRj are the ones defined in Definition 3.2.10, we
have wσ(e) = ∣(gj(ρ)− gi(ρ),hj(ρ)−hi(ρ))∣.

set of all points where φRi and φRj are equal and they attain the minimum
in P (x,y). Therefore, we have

∀(x,y) ∈ e, φRi(x,y) = gi(ρ)x+hi(ρ)y +ai = gj(ρ)x+hj(ρ)y +aj =φRj(x,y).

This gives the following equation:

y = (
gj(ρ)− gi(ρ)
hi(ρ)−hj(ρ)

)x+
aj −ai

hi(ρ)−hj(ρ)
.

From this equation, the slope of e is
gj(ρ)− gi(ρ)
hi(ρ)−hj(ρ)

. Thus, it is parallel to

the vector u⃗ = (hi(ρ)−hj(ρ),gj(ρ)− gi(ρ)). It suffices to show that v⃗ and u⃗
are orthogonal, or in other words v⃗ ⋅ u⃗ = 0. We have

v⃗ ⋅ u⃗ = (gj(ρ)− gi(ρ),hj(ρ)−hi(ρ)) ⋅ (hi(ρ)−hj(ρ),gj(ρ)− gi(ρ))

= gj(ρ)hi(ρ)− gj(ρ)hj(ρ)− gi(ρ)hi(ρ)+ gi(ρ)hj(ρ)
+hj(ρ)gj(ρ)−hj(ρ)gi(ρ)−hi(ρ)gj(ρ)+hi(ρ)gi(ρ) = 0.

This means v⃗ ⊥ u⃗. Therefore, v⃗ is orthogonal to e. ◻

Notation 3.2.13. We denote the unit vector along the edge e by e⃗. So the
previous lemma implies that v⃗ ⊥ e⃗.

Definition 3.2.14. Assume
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• V is a finite collection of points in R
2;

• εb is a finite collection of segments with their end points in V ;

• εn is a finite collection of half rays whose end points are in V ;

and for any two elements of εb ∪ εn, their intersection is either an element
of V or is empty. We define a function wσ ∶ εb ∪ εn →R∖ {0}, and for each
e ∈ εb∪εn, we call wσ(e) the weight of e. Then the quadruplet (V ,εb,εn,wσ)
is called a difference weighted rectilinear graph. The elements of V are called
vertices, and the elements of εb ∪ εn are called edges of G = (V ,εb,εn,wσ).
A difference weighted rectilinear graph is called balanced if it satisfies the
following properties:

1. For a fixed real number ρ, which is transcendental over Q, the slope
of each edge e ∈ εb ∪ εn is an element of Q(ρ).

2. There is no vertex v ∈ V , which is adjacent to exactly two edges of
εb ∪ εn.

3. ( The Balancing Condition): For each vertex v ∈ V , we have

∑
ei∈ε(v)

wσ(ei) ⋅ e⃗i = 0,

where ε(v) ⊂ εb ∪ εn is the set consisting of all the edges, which are
adjacent to v, and e⃗i is the unit vector along the edge ei pointing in
the direction away from v.

We abbreviate difference balanced weighted rectilinear graph as DBWR
graph. By a curve associated to a DBWR graph, we mean the union of its
vertices, segments and half rays.

Theorem 3.2.15. Let TP be a difference tropical plane curve, which is not a
straight line, then there exists a DBWR graph whose associated curve is TP .
Inversely, the associated curve to any DBWR graph is a difference tropical plane
curve.
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Proof. The proof of this theorem consists of two main parts. The first one
is easier. In this part, we assume TP is a difference tropical plane curve,
and we prove that it is a DBWR graph. The difficult part is to consider a
DBWR graph G and find a tropical polynomial P such that TP =G.

Now, we start with the easier part. Let TP be a difference tropical plane
curve defined by the difference tropical polynomial P (x,y). We prove that
there exists a DBWR graph such that its associated curve is TP .

We define a difference weighted rectilinear graph G = (V ,εb,εn,wσ)
such that V is the set of vertices in TP , εb is the set of its segments and
εn is the set of its half rays. We also assume that for any e ∈ εb ∪ εn, wσ(e)
coincides with its weight as an edge of TP .

We want to prove that G is balanced. In order to prove this, it suffices
to check whether it satisfies the properties 1,2 and 3 of Definition 3.2.14.

1. Let e be an edge of TP , which is between two regions Ri and Rj .
Assume φRi = gi(ρ)x + hi(ρ)y + ai and φRj = gj(ρ)x + hj(ρ)y + aj are
their corresponding planes. Similar to the calculations in the proof
of Lemma 3.2.12, we can use the equation below to calculate the
slope of e.

∀(x,y) ∈ e ∶ P (x,y) =φRi(x,y) =φRj(x,y). (3.2.3)

This equation gives the slope of e, which is (
gj(ρ)− gi(ρ)
hi(ρ)−hj(ρ)

). So the

slope of e is an element of Q(ρ), and the first property is satisfied.

2. As we discussed earlier, when we project the polyhedral surface de-
fined by P (x,y) on R

2, we obtain TP . This means that any vertex v
of TP corresponds to the shadow of a vertex u from this polyhedral
surface. Since u is a vertex, it is the point where at least three planes
and consequently three edges intersect. Therefore, v is also adjacent
to the projections of these edges, satisfying the second property.

3. The last property to check is the balancing condition. Let v be a
vertex in TP . In Figure 3.8, TP is illustrated locally at the vertex v.
Suppose v is adjacent to the edges e1,e2, . . . ,en−1,en such that they
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v e1

e2

en−1

en
Rn

R1

Rn−1

Figure 3.8: The vertex v and all its adjacent edges.

are adjacent to the regions R1,R2, . . . ,Rn−1,Rn respectively. Assume
that for any i ∈ {1, . . . ,n}, φRi(x,y) = gi(ρ)x + hi(ρ)y + ai is the plane
corresponding to the monomial that obtains the minimum in P (x,y)
for any (x,y) ∈Ri . From Definition 3.2.10 and Lemma 3.2.12, for any
edge ei , there exists a vector v⃗i = (gi(ρ)− gi−1(ρ),hi(ρ)−hi−1(ρ)) such
that ei ⊥ v⃗i . That is to say,

∀i ∈ {2, . . . ,n}, wσ(ei) = ∣v⃗i ∣ = ∣(gi(ρ)− gi−1(ρ),hi(ρ)−hi−1(ρ))∣,

and

wσ(e1) = ∣v⃗1∣ = ∣(g1(ρ)− gn(ρ),h1(ρ)−hn(ρ))∣.

If we consider the segment connecting (g1(ρ),h1(ρ)) to (g2(ρ),h2(ρ)),
and then the segment connecting (g2(ρ),h2(ρ)) to (g3(ρ),h3(ρ)), etc,
then we see that the end of each one is the initial of the next one. This
gives

v⃗1 + v⃗2 + ⋅ ⋅ ⋅ + v⃗n = 0.

From Notation 3.2.13, e⃗i is a unit vector, which is orthogonal to v⃗i .
Therefore, for each i ∈ {1, . . . ,n}, if we rotate all v⃗is by 90○ all in the
same direction, we obtain

wσ(e1)e⃗1 +wσ(e2)e⃗2 + ⋅ ⋅ ⋅ +wσ(en)e⃗n = 0.

Hence, the balancing condition holds at vertex v.

So G = (V ,εb,εn,wσ) is the DBWR graph whose associated curve is TP .
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The challenging part of the proof lies ahead. Now, suppose that G =
(V ,εb,εn,wσ) is a DBWR graph. Then, we define a difference tropical poly-
nomial P , such that TP =G.

Since G is a finite collection of vertices, segments and half rays in R
2,

it partitions R2 into finitely many sections. We call each of them a region.
Assume G partitions R2 into n regions.

The general idea to prove this part is to fix a pattern to assign an affine
function φR to each region R. To do this, we use graph theory. For the
prerequisites in graph theory, see Section 3.1. Finally, we show that the
tropical sum of these affine functions is the tropical polynomial P we are
looking for.

• Step 1) Choosing a pattern and assigning an affine function to
each region:

Given that G = (V ,εb,εn,wσ) is a DBWR graph. For each half ray
e ∈ εn, we regard it as an edge with an end point in infinity. Then G
can be regarded as a plane connected graph G̃, such that V is the set
of its vertices together with the point at infinity, and εb ∪εn is the set
of its edges. We denote its dual graph by G̃∗.
Note that we treat a point at infinity just like a vertex that is far from
all other vertices. Therefore, everything that we presented in the
graph theory section naturally generalizes to such a graph.

From this point of view, associating affine functions to the regions
of R

2 ∖G means associating affine functions to the faces of G̃, and
equivalently to the vertices of G̃∗. See Figure 3.9.

Let T be a spanning tree of G̃∗. See Figure 3.10. Choose a vertex of
T , and label it as 1, and also label the corresponding face of G̃ as R1.
Associate an arbitrary affine function φR1 to 1, and equivalently to
R1, as follows:

φR1 ∶R2Ð→R

(x,y)↦ k1x+ l1y +a1,

such that k1, l1 ∈Q(ρ). Choose one of the adjacent vertices to 1, and
label it as 2, and label the corresponding face in G̃ as R2. Suppose e is
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the common edge in ∂(R1)∩∂(R2). We associate the affine function

φR2 ∶R2Ð→R

(x,y)↦ k2x+ l2y +a2

to 2, and also to R2, such that (k1 − k2

wσ(e)
,
l1 − l2
wσ(e)

) is a unit vector normal

to e pointing to R2, and φR1 ∣e =φR2 ∣e.
Since k1, l1 and e are given, it is easy to find k2, l2 such that

(k1 − k2

wσ(e)
,
l1 − l2
wσ(e)

) satisfies the intended conditions. Suppose (x0,y0)

is a point on e. If we define a2 = (k1 − k2)x0 + (l1 − l2)y0 + a1, then
we have φR1(x0,y0) = φR2(x0,y0). As it is shown below in Remark
3.2.18,this implies that φR1 ∣e = φR2 ∣e. This means that we can define
φR2 with the above conditions.
Similarly, we label the other vertices adjacent to 1, and with the same
method, we associate an affine function to each of them. We repeat
the same procedure for these vertices to assign affine functions to
their adjacent vertices. If we continue similarly, we can finally as-
sign an affine function to each vertex of G̃∗, and therefore to each
region of R2 ∖G.

Definition 3.2.16. Let Ri and Rj be two regions of R
2 ∖G. We say

these two regions are neighbour if the boundaries of their corre-
sponding faces in G̃ have an edge in common.

Definition 3.2.17. Suppose we fix a spanning tree of G̃∗, and similar
to the above procedure, use it as a pattern to assign an affine function
to each region of R

2 ∖G. Let Ri and Rj be two neighbor regions.
Assume φRi and φRj be their associated affine functions. Suppose
that e ⊂ ∂(Ri)∩∂(Rj), where e is an edge of G̃. We say that the normal
vector condition holds for (Ri ,Rj), and we abbreviate this condition as

NVC, if we have (
ki − kj
wσ(e)

,
li − lj
wσ(e)

) is a unit vector normal to e pointing

to Rj , and φRi ∣e = φRj ∣e. We also say that (i, j) is a good pair in G̃∗, if
the corresponding regions Ri and Rj satisfy NVC.
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Remark 3.2.18. Let the assumptions be as above. Assume Ri and Rj
are two neighbour regions, and e ⊂ ∂(Ri)∩∂(Rj). Suppose φRi = kix+
liy + ai and φRj = kjx+ ljy + aj are the corresponding affine functions,

and v⃗ = (
ki − kj
wσ(e)

,
li − lj
wσ(e)

) is a unit vector normal to e. If φRi ∣e ≠ φRj ∣e
then there is no point p on e such that φRi(p) =φRj(p).

Proof. Assume the opposite. Suppose p = (x0,y0) is a point on e such
that φRi(p) =φRj(p). This means

(φRi −φRj)(p) = 0 (3.2.4)

⇔(ki − kj)x0 + (li − lj)y0 = aj −ai . (3.2.5)

Let q = (x,y) be an arbitrarily chosen point on e. Since v⃗ =

(
ki − kj
wσ(e)

,
li − lj
wσ(e)

) is a unit vector normal to e, we have

⟨(
ki − kj
wσ(e)

,
li − lj
wσ(e)

) ,(x−x0,y −y0)⟩ = 0

⇔(ki − kj)(x−x0)+ (li − lj)(y −y0) = 0

⇔(ki − kj)x+ (li − lj)y = (ki − kj)x0 + (li − lj)y0.

Together with the equation (3.2.5), we have

(ki − kj)x+ (li − lj)y = aj −ai . (3.2.6)

That is to say φRi(x,y) = φRj(x,y). Since q is arbitrarily chosen,
(3.2.6) means that φRi ∣e = φRj ∣e, which is a contradiction. Therefore,
for any point p on e, we have φRi(p) ≠φRj(p). ∎

• Step 2) Defining a difference tropical polynomial whose differ-
ence tropical plane curve is G ∶

In this step, we want to prove that the tropical sum of the affine
functions φR gives a difference tropical polynomial P , such that TP =
G. This is the content of Claim 3.2.20. As an intermediate step to
prove this claim, we need Lemma 3.2.19.
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G̃

G̃∗

Figure 3.9: G is regarded as a plane connected graph G̃, and its dual graph
G̃∗ is shown in bold

4

1

2

35
T

Figure 3.10: We choose and fix a spanning tree T of G̃∗ to determine a
pattern.
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In this Lemma, we prove that in any DBWR graph G, if we use a
fixed spanning tree of G̃∗ as the pattern to assign an affine function
to each region of R

2 ∖G, then for any two neighbour regions NVC
holds.

Lemma 3.2.19. LetG be a DBWR graph. Assume a numbering on the re-
gions of R2∖G is chosen. Applying the same method as in Step 1, suppose
an affine function is assigned to each region. Then any two neighbour re-
gions of R2 ∖G, satisfy NVC.

Proof. The general idea of the proof is to apply Corollary 3.1.25. Re-
call that it states

Let G be a connected plane graph, and H be a subgraph of G. As-
sume H ′ is the subgraph of G∗ induced by(E ∖H)∗, and contains a
spanning tree of G∗. If for any face f of G∗, and all edges e∗1 , . . . ,e

∗
m in

∂(f ), we have the following condition:

If e∗1 , . . . ,e
∗
m−1 ∈ E(H ′), then e∗m ∈ E(H ′). (3.2.7)

Then, H ′ =G∗.

Note that the above corollary is a general statement in graph theory,
and in this context G refers to a plane graph. This should not be
confused with G mentioned in the statement of this lemma, which
refers to a DBWR graph.

Regard the DBWR graph G as a plane connected graph G̃. Assume
we number the faces of G̃ and vertices of G̃∗ based on the chosen
numbering of the regions of R2 ∖G.

Suppose H ′ is a subgraph of G̃∗, which is defined as follows:

(i, j) ∈ E(H ′) ⇐⇒ (i, j) is a good pair.

As we have seen before, in order to assign affine functions to the
regions, we fix a spanning tree T of G̃∗, and we use it as our pattern.
Clearly, any two adjacent vertices of T make a good pair. Therefore,
T is contained in H ′.
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Define the subgraph H of G̃ as follows:

e ∈ E(H) ⇐⇒ e ⊂ ∂(Rs)∩∂(Rt), where (s,t) is not a good pair.

This means that if e is an edge of H , the corresponding edge e∗ of
G̃∗ is not an edge of H ′. In other words, we have (E ∖H)∗ = E(H ′),
which means that (E ∖H)∗ induces the subgraph H ′ of G̃∗.

Define T̃ to be the subgraph of G̃ as follows:

e ∈ T̃ ⇐⇒ e∗ ∉ T .

Apply Theorem 3.1.21, for G̃∗ and its spanning tree T . Then, we
have T̃ is a spanning tree of (G̃∗)∗ = G̃. Moreover, for any edge e of
H , we have e∗ ∉ H ′, and consequently e∗ ∉ T . This means that e ∈ T̃ ,
or equivalently H is contained in T̃ .

Let v be a vertex in G̃. Without loss of generality, we can assume
that the chosen numbering is such that v is the common vertex of
∂(R1), . . . ,∂(Rm). Suppose {e1, . . .em} is the set of all edges adjacent
to v, and we have

e1 ⊂ ∂(R1)∩∂(R2)
⋮

em−1 ⊂ ∂(Rm−1)∩∂(Rm)
em ⊂ ∂(Rm)∩∂(R1).

Assume the assigned function to the region Ri , with 1 ≤ i ≤ m, is
φRi = kix+ liy +ai . Since G is a DBWR graph, the balancing condition
holds for v. More precisely, we have

m

∑
i=1
wσ(ei)e⃗i = 0. (3.2.8)

For an edge ei of G̃, we use the notation e∗i to denote the correspond-
ing edge in G̃∗. Since G̃∗∗ = G̃, there exists a face f of G̃∗, which cor-
responds to v and f is incident with e∗1 , . . . ,e

∗
m. Suppose e∗1 , . . . ,e

∗
m−1

are the edges in H ′. This means that (1,2), . . . ,(m − 1,m) are good
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pairs. We want to see if (m,1) is a good pair, or in other words e∗m is
an edge of H ′. From these good pairs, we know that

∀1 ≤ i <m−1 ∶ v⃗i = (
ki − ki+1

wσ(ei)
,
li − li+1

wσ(ei)
) ,

is a unit vector normal to ei pointing to Ri+1. If we rotate each v⃗i by
90○, then we obtain e⃗i . Assume R is the rotation matrix by 90○. This
means e⃗i =Rv⃗i . Hence, (3.2.8) can be written as follows:

0 =
m

∑
i=1
wσ(ei)e⃗i =

m−1
∑
i=1

wσ(ei)e⃗i +wσ(em)e⃗m =
m−1
∑
i=1

wσ(ei)Rv⃗i +wσ(em)e⃗m

=
m−1
∑
i=1
Rwσ(ei)(

ki − ki+1

wσ(ei)
,
li − li+1

wσ(ei)
)+wσ(em)e⃗m

=
m−1
∑
i=1
R(ki − ki+1, li − li+1)+wσ(em)e⃗m

=R(
m−1
∑
i=1

ki − ki+1,
m−1
∑
i=1

li − li+1)+wσ(em)e⃗m

=R(k1 − km, l1 − lm)+wσ(em)e⃗m.

This means that

(lm − l1,k1 − km)+wσ(em)e⃗m = 0.

From this e⃗m is obtained as

e⃗m = (
l1 − lm
wσ(em)

,
km − k1

wσ(em)
) ,

which is a unit vector along the edge em pointing in the direction
away from v. Rotating e⃗m by 90○, we obtain

v⃗m = (
km − k1

wσ(em)
,
lm − l1
wσ(em)

) ,

which is a unit vector normal to em pointing to R1. If we show that
φR1 ∣em =φRm ∣em , we deduce that (m,1) is a good pair, and e∗m is an edge
of H ′. This is clear from Remark 3.2.18. Since (1,2), . . . ,(m−1,m) are
good pairs, for any i with 1 ≤ i <m−1, we have

φRi ∣ei =φRi+1 ∣ei .
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We know that v as a vertex of G is a common point on the edges
e1 . . .em. Therefore, we have

φR1(v) =φR2(v) = . . .φRm−1(v) =φRm(v),

or simply we have φRm(v) = φR1(v). From Remark 3.2.18, we con-
clude that φR1 ∣em =φRm ∣em . This means (m,1) is a good pair, and e∗m is
an edge of H ′.

This shows that the condition (3.2.7) holds. Thus, from Corollary
3.1.25, H ′ = G̃∗. This means that for any two adjacent vertices i and
j of G̃∗, (i, j) is a good pair. That is to say, for any two neighbour
regions of R2 ∖G, NVC holds. ◻

Claim 3.2.20. The assumed DBWR, G is the difference tropical plane
curve associated to the following difference tropical polynomial:

P (x,y) = ⊕
R is a region of R2∖G

aR⊙x⊙kRy⊙lR .

Proof. Suppose R
2 ∖G has n regions, and we choose a numbering on

them. In order to prove that TP = G, it suffices to show that on each
region Ri , we have φRi <φRj , where 1 ≤ j ≤ n and j ≠ i. In other words,
we need to show that these affine functions define a polyhedral sur-
face Σ, such that on each region Ri the affine function φRi attains the
minimum. If we prove that Σ is concave, the proof is complete.

Throughout this proof, in order to improve readability, we will be
somewhat imprecise. For instance, by φRi , we sometimes mean the
function and sometimes its graph. Additionally, whenever we in-
tersect a two-dimensional object with a three-dimensional one, we
mean considering the two-dimensional object in R

3 and then taking
the intersection.

Let Q ∶ x = x0 be a plane parallel to yz-plane. From the definition
of Σ, we know that Q ∩Σ is a piecewise linear curve γ . See Figure
3.11 and Figure 3.12. To prove that Σ is concave, equivalently we
prove that γ is concave. By concavity of γ , we mean that if we move
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x

yx = x0

Σ

φRj

ei,j

φRi

Figure 3.11: A top view of the polyhedral surface Σ and its intersection
with the plane Q ∶ x = x0.

γ

(x0,yi,j)

pi,j

γi

γj

p = (x0,y) p′ = (x0,y′)

Q∩Ri Q∩Rj

Figure 3.12: The intersection of the polyhedral surface Σ with the plane
Q ∶ x = x0 is a piecewise linear curve γ .
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along γ in the direction of the positive y-axis, the slopes of the pieces
decrease.

Each linear piece of γ is obtained from the intersection ofQwith one
φRi , where 1 ≤ i ≤ n. If for some i, we haveQ∩φRi ≠∅ then we use the
notation Q∩φRi = γi , and we denote the slope of γi by mi . Let Ri and
Rj be two neighbor regions, such that Q ∩φRi ≠ ∅ and Q ∩φRj ≠ ∅.
Without loss of generality, we suppose that if (x0,y) ∈ Q ∩ Ri , and
(x0,y′) ∈ Q ∩Rj , then y < y′. Assume ei,j is the edge between these
two neighbor regions. Since φRi ∣ei,j = φRj ∣ei,j , γi and γj intersect at

a point pi,j . More precisely, we have pi,j = (x0,yi,j ,zi,j), where zi,j =
φRi(x0,yi,j) =φRj(x0,yi,j).

To show that Σ is concave, it suffices to show that mi >mj . Suppose
p = (x0,y) ∈Q∩Ri and p′ = (x0,y′) ∈Q∩Rj . From pi,j and p, the slope
of γi is as follows:

mi =
φRi(x0,yi,j)−φRi(x0,y)

yi,j −y
=
kix0 + liyi,j +ai − kix0 − liy −ai

yi,j −y
= li .

Similarly, we obtain mj = lj from p′ and pi,j .

Since Ri and Rj are two neighbor regions, NVC holds for (Ri ,Rj).

This means that (
ki − kj
wσ(ei,j)

,
li − lj
wσ(ei,j)

) is a unit vector normal to ei,j

pointing to Rj .

As we supposed, moving from Ri∩Q to Rj∩Q the second coordinates
of points increase. Therefore, li > lj that means mi >mj .

Hence γ is a concave piecewise linear curve. We can make a similar
argument to show that if we intersect Σ with Q′ ∶ y = y0, we obtain a
concave piecewise linear curve γ ′. Therefore Σ is a concave polyhe-
dral surface. ◻

Thus, from these two main steps, we conclude that G represents the dif-
ference tropical plane curve defined by the difference tropical polynomial
P (x,y) = ⊕

R is a region of R2∖G
aR⊙x⊙kRy⊙lR , which means TP =G. ◻
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In the second part of Theorem 3.2.15, we assumed that G is the curve
associated with a DBWR graph. We then defined P such that TP =G. Fur-
thermore, in the following proposition, we show that if we fix a numbering
on the regions of R2 ∖G, and similar to Step 1 of the previous theorem as-
sign an affine function φR1 to R1, then the difference tropical polynomial
P from the previous proof is determined uniquely.

Proposition 3.2.21. Let G be a DBWR graph. Assume a numbering on the
regions of R

2 ∖G is arbitrarily chosen. If we apply the same method as in
Step 1 of Theorem 3.2.15, and use a spanning tree T of G̃∗ to assign an affine
function φR to each region R. Then the following statements are equivalent:

1. Using any spanning tree to assign the affine functions to the regions, any
two neighbour regions of R2 ∖G satisfy NVC;

2. If φR and φ′R are assigned to each region R of R2 ∖G, using two distinct
spanning trees T and T ′ of G̃∗, if φR1 =φ′R1

, then φR =φ′R.

Proof. (1)⇒ (2):
Regard G as a plane connected graph G̃. Assume we number the faces

of G̃, and vertices of its dual, G̃∗ based on the chosen numbering of the
regions of R2∖G. Suppose T and T ′ are two distinct spanning trees of G̃∗.
Let Ri be a region of R

2 ∖G, where its corresponding vertex on G̃∗, and
also on T is i. Since both T and T ′ are connected graphs, there exists a
path P on T , and a path P ′ on T ′ to reach i from 1.

Suppose by using T and T ′ as the patterns, we assign affine function
φRi = kix + liy + ai and φ′Ri = k

′
ix + l

′
iy + a

′
i respectively, to each region Ri .

We want to prove that φRi =φ′Ri . We prove this by using induction on the
length of P . Without loss of generality, assume 1,2, . . . , i are the sequence
of vertices on path P , through which we pass, in order to define φRi for the
vertex i.

We assumed, P ′ is a path on T ′ from 1 to i, and also φR1 =φ′R1
.

Considering the path P , we move from 1 to 2 to defineφR2 based onφR1

and NVC. This means that NVC holds for (R1,R2) using the coefficients

appearing in φR1 and φR2 . More precisely, v⃗1 = (
k1 − k2

wσ(e1)
,
l1 − l2
wσ(e1)

) is a unit

vector normal to e1 pointing to R2, where e1 ⊂ ∂(R1)∩∂(R2).
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On the other hand, from the path P , it is clear that 1 and 2 are adjacent
vertices. This means that R1 and R2 are neighbour regions. From the
assumption in (1), if we consider T ′ as a pattern, and the corresponding
defined affine functions φ′R1

and φ′R2
, NVC holds for (R1,R2) using the

coefficients appearing in these affine functions. This means that, v⃗′1 =

(
k′1 − k′2
wσ(e1)

,
l′1 − l′2
wσ(e1)

) is a unit vector normal to e1 pointing to R2.

Since φR1 = φ′R1
, we have k1 = k′1 and l1 = l′1. We can write wσ(e1)v⃗1 =

(k1 − k2, l1 − l2) andwσ(e1)v⃗′1 = (k1 − k′2, l1 − l′2) are vectors of the same length
and normal to e1 pointing to R2. This implies that k2 = k′2 and l2 = l′2. From
NVC, we know that φR1 ∣e1 = φR2 ∣e1 , and also φ′R1

∣
e1
= φ′R2

∣
e1

. Let (x0,y0) be
a point on e1. Thus, we have

k1x0 + l1y0 +a1 = k2x0 + l2y0 +a2, (3.2.9)

and we also have

k1x0 + l1y0 +a1 = k′1x0 + l′1y0 +a′1 = k′2x0 + l′2y0 +a′2. (3.2.10)

Therefore, (3.2.9) and (3.2.10) together give

k2x0 + l2y0 +a2 = k′2x0 + l′2y0 +a′2.

This means that a2 = a′2, and consequently φR2 =φ′R2
. Hence, statement (2)

is valid for a path of length one.
Let R be a region on R

2 ∖G with the following condition:
The length of the path from 1 to the corresponding vertex of R is

i −1.
Then we assume that R satisfies statement (2). We want to prove that

even if the length of this path is i instead, R still satisfies statement (2).
From path P , we know that there is a path of length i−1 from 1 to i−1.

Therefore, by the induction assumption, we have φRi−1 =φ′Ri−1
.

As P is a path on T , φRi is assigned to i based on φRi−1 and NVC. This
means that Ri−1 and Ri satisfy NVC using the coefficients appearing in
φRi−1 and φRi .

Since i and i −1 are adjacent vertices, their corresponding regions are
neighbours. Thus from the assumed statement in (1), if we consider any
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spanning tree as a pattern, for instance T ′, NVC holds forRi andRi−1. That
is to say, NVC holds for these two regions using the coefficients appearing
in φ′Ri and φ′Ri−1

.

With the same argument as in the first step of the induction, since
φRi−1 =φ′Ri−1

, we can deduce that φRi =φ′Ri .

(2)⇒ (1):

Assume that statement (2) is satisfied. We want to prove that if Ri and
Rj are two neighbour regions, such that e ⊂ ∂(Ri)∩∂(Rj), then NVC holds.
Suppose φRi = kix+ liy+ai and φRj = kjx+ ljy+aj are the assigned functions

to Ri and Rj respectively. We aim to show that (
ki − kj
wσ(e)

,
li − lj
wσ(e)

) is a unit

vector normal to e pointing to Rj , and φRi ∣e =φRj ∣e.

We used the introduced method of Step (1) of Theorem 3.2.15 to assign
affine functions to the regions of R2∖G. We assume that T is the spanning
tree that we used as our pattern. Since T is connected, similar to the pre-
vious direction of the proof, assume that 1,2, . . . , i is a path P of T from 1
to i. Also, assume that P ′ is another path on T from 1 to j. Suppose in the
sequence of vertices on this path, k is the vertex adjacent to j, or in other
words we have 1, . . . ,k,j as the sequence of vertices through which we can
reach j from 1. Assume that i and j are not on the same path; otherwise
NVC holds and there is nothing left to prove. From T , we define another
spanning tree T ′. To do so, define E(T ′) by adding eij (the edge connecting
two vertices i and j) to E(T ), and deleting ekj from E(T ). The obtained
graph T ′ is obviously a spanning tree, because these changes in the set of
edges do not change connectivity and do not create any cycle.

Suppose, we use T ′ as another pattern, and assign an affine function to
each region, with the assumption that φR1 =φ′R1

.

Let φ′Rj be the assigned function to Rj , using the pattern T ′. Note that,
the path from 1 to i on T ′ is the same as the path from 1 to i on T . This
means that φRi = φ′Ri . Since on T ′, i and j are adjacent vertices, we have

⎛
⎝

ki − k′j
wσ(e)

,
li − l′j
wσ(e)

⎞
⎠

is a unit vector normal to e pointing to Rj , and φ′Rj ∣e =

φRi ∣e. From the assumption, statement (2) implies that φRj = φ′Rj . That is
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to say, kj = k′j and lj = l′j . Hence, (
ki − kj
wσ(e)

,
li − lj
wσ(e)

) is a unit vector normal to

e pointing to Rj , and φRj ∣e =φRi ∣e. So Ri and Rj satisfy NVC. ◻
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Chapter 4
Difference Tropical Hypersurfaces

In the previous chapter, we introduced some of the key concepts of differ-
ence tropical geometry. In this chapter, we delve deeper into the subject,
focusing on the combinatorics of a difference tropical hypersurface. This is
the content of Proposition 4.3.1. We initiate this chapter by introducing
additional difference tropical objects in Section 4.1. Specifically, in this
section we see what a difference tropical hypersurface is. To describe its
combinatorics, a review of certain concepts in polyhedral geometry be-
comes necessary. This is presented in Section 4.2.

4.1 Difference Tropical Objects

In this section, we introduce additional difference tropical objects. For
clarity, we also present some examples. The reader can find classical ana-
logues of this material in [17].

Definition 4.1.1. Consider a Laurent difference polynomial f ∈
Kσ [x±1

1 , . . . ,x±1
n ]. So f can be written as f (x) = ∑

u(σ)∈(Z[σ])n
cu(σ)xu(σ). To

obtain the tropicalization of f , we replace classical addition and multiplica-
tion operations with tropical ones, ⊕ and ⊙, replace the coefficients with
their respective valuations, and replace σ with the induced automorphism
on the value group, denoted by σΓ . In other words, the tropicalization of

67
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f is defined as follows:

trop(f )(w) = ⊕
u(σΓ )∈(Z[σΓ ])n

(v(cu(σ))⊙wu(σΓ ))

= min
u(σΓ )∈(Z[σΓ ])n

(v(cu(σ))+u(ρ) ⋅w) .

Here by wu(σΓ ) we mean ⊙
i∈{1,...,n}

wui(σΓ )i , for u(σΓ ) = (u1(σΓ ), . . . ,un(σΓ )). By

using Notation 2.0.16, we have wui(σΓ )i = ui(σΓ )(wi) = ui(ρ) ⋅wi .
By tropicalizing a Laurent difference polynomial f , we obtain a trop-

ical polynomial trop(f ). Each tropical monomial appearing in trop(f )
corresponds to a difference monomial in f . In order to keep this corre-
spondence and avoid possible annihilation of some tropical monomials,
we suppose the automorphism of K is such that its scaling exponent, ρ is
transcendental.

Remark 4.1.2. Let f be a difference polynomial in one variable. Using the
notation defined in Remark 2.0.21, the tropicalization of f (x) =∑

J∈Λ
cJσ J(x)

is of the following form:

trop(f )(w) =min
J∈Λ
{v(cJ)+ Jσ Γ (w)} ,

where by σ Γ (w) we mean (w,σΓ (w), . . . ,σnΓ (w)), and Λ is a finite subset of
N
n+1.

Example 4.1.3. Let f ∈C((tR))σ [x±1
1 ,x±1

2 ] be

f (x1,x2) = (1+ t)x1xσ
3

2 + t
2xσ2 +1,

and ρ =π. The tropicalization of f is

trop(f )(w1,w2) =min{w1+ρ3 ⋅w2,2+ρ ⋅w2,0} =min{w1+π3w2,2+πw2,0}.

Definition 4.1.4. Let f be a Laurent difference polynomial in n variables
with coefficients from K . We say w is a tropical root of f , if in trop(f )(w)
the minimum is attained at least twice.

A difference tropical hypersurface, which is denoted by trop(V (f )), is
the set of all tropical roots of a Laurent difference polynomial f . In other
words, we have

trop(V (f )) = {w ∈Rn ∣ in trop(f )(w) the minimum is attained at least twice}.
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Definition 4.1.5. Suppose f (x) = ∑
u(σ)∈(Z[σ])n

cu(σ)xu(σ) is a Laurent differ-

ence polynomial in Kσ [x±1
1 , . . . ,x±1

n ].
The initial form of f with respect to the point w ∈ Rn is a difference poly-
nomial with coefficients in k that is defined as follows:

inw(f ) = ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w

=trop(f )(w)

cu(σ)t
−v(cu(σ)) ⋅xu(σ̄).

In other words, to obtain inw(f ), we consider those monomials of trop(f )
which achieve the minimum at w. Corresponding to each of these mono-
mials, a monomial appears in inw(f ).

Example 4.1.6. Consider f (x1,x2) = (1 + t)x1xσ
3

2 + t2x
σ
2 + 1 from Example

4.1.3. The initial form of f with respect to w = (3π2, −2
π ) is as follows:

inw(f ) = 1̄xσ̄2 + 1̄.

From the definition of the initial form the following lemma can be de-
duced.

Lemma 4.1.7. Suppose f is a Laurent difference polynomial inKσ [x±1
1 , . . . ,x±1

n ].
Then w is a tropical root of f if and only if inw(f ) is not a monomial.

Proof. Ô⇒) Since f is an element of Kσ [x±1
1 , . . . ,x±1

n ], it is of the form
f = ∑

u(σ)∈(Z[σ])n
cu(σ)xu(σ). Suppose w = (w1, . . . ,wn) is a tropical root of f .

By definition, we have

trop(f )(w) = min
u(σ)∈(Z[σ])n

(v(cu(σ))+u(ρ) ⋅w),

and w attains the minimum in at least two different tropical monomials
each of which corresponds to a monomial in inw(f ). Therefore inw(f ) has
at least two monomials, meaning that inw(f ) is not a monomial.
⇐Ô) If inw(f ) is not a monomial, from the definition of the initial form,
each of its monomials corresponds to a tropical monomial in trop(f )(w)
each of which attains the minimum. Thus, trop(f )(w) achieves the min-
imum for at least two different tropical monomials. This means w is a
tropical root of f . ◻



70 CHAPTER 4. DIFFERENCE TROPICAL HYPERSURFACES

The following two lemmas are well-known in the context of tropical
geometry. See [12] Proposition 2.8, and [17] Lemma 2.6.2. The general-
ization that f and g are Laurent difference polynomials does not affect
their validity. Therefore, we can state them in terms of Laurent difference
polynomials.

Lemma 4.1.8. Let f and g be two Laurent difference polynomials in
Kσ [x±1

1 , . . . ,x±1
n ]. Suppose w is an element of Γ n, then we have

trop(f g)(w) = trop(f )(w)+ trop(g)(w).

Lemma 4.1.9. Let f and g be two Laurent difference polynomials in
Kσ [x±1

1 , . . . ,x±1
n ]. Suppose w is an element of Γ n, then we have

inw(f g) = inw(f ) inw(g).

4.2 Polyhedral Geometry

In this section, we provide some preliminaries on polyhedral geometry.
Readers who are familiar with the subject can skip ahead, while those
who want to know more can consult the main references for this section,
which are [7, 17, 24].

Definition 4.2.1 ([17], Section 2.3). A polyhedron is a subset of Rn that is
the intersection of finitely many closed half spaces. It is usually denoted
by P . More precisely, it can be described as:

P = {x ∈Rn ∣A ⋅x ≤ B} ,

where A ∈Md×n(R) and B ∈Rd . Here, A ⋅x ≤ B means that for each i,
1 ≤ i ≤ d, we have (A ⋅x)i ≤ (B)i , where (A ⋅x)i and (B)i denote the i-th
coordinates of A ⋅x and B respectively.

A specific class of polyhedra are polytopes. A polytope is a bounded
polyhedron. See Figure 4.2. Below, in Definition 4.2.4, we see an equiva-
lent definition of a polytope. To see this equivalence, refer to Lecture 1 of
[24].
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Definition 4.2.2 ([17], Definition 2.3.1). LetA be a subset of Rn. A is called
convex if for any two elements a,b ∈A, the straight line segment connecting
a and b is also in A. More precisely, if for a,b ∈A, we have λa+ (1−λ)b ∈A
where 0 ≤ λ ≤ 1.

For U ⊆ Rn the convex hull of U , denoted by conv(U), is defined to
be the intersection of all convex sets containing U , or equivalently is the
smallest convex set containing U .

Remark 4.2.3. The following definition is in fact the definition of a con-
vex polytope. In the literature, a polytope can be convex or nonconvex,
but everywhere in this thesis, by a polytope, we mean a convex polytope.
Therefore, in this definition, we omit the word "convex".

Definition 4.2.4 ([17], Definition 2.3.1). IfU is a finite subset of Rn, namely
U = {u1, . . . ,ur}, then conv(U) is called a polytope. In this case, it can be de-
scribed as:

conv(U) = {
r

∑
i=1
λiui ∣ ∀i, 0 ≤ λi ≤ 1 and

r

∑
i=1
λi = 1} .

Notation 4.2.5. Both polytopes and polyhedra are usually denoted by P ,
and their distinction will be clear from the context.

Notation 4.2.6. Dropping the condition ∀i, 0 ≤ λi ≤ 1 in Definition 4.2.4,
we obtain the affine hull (affine span) of the set U which is denoted by
aff(U).
More generally, affine subspaces which are translates of vector(also called
linear) subspaces can be described as the affine hull of a finite set of points.

Definition 4.2.7 ([17], Section 2.3). A face F of a polyhedron P is a set of
the form

{x ∈ P ∣ ∀y ∈ P , v ⋅x ≤ v ⋅y} ,

where v is a linear functional in (Rn)∨. In this case, we say F is determined
by v, and we use the notation F = facev(P). All faces of P , except for P itself
are called proper faces.
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u1

u2

u3u4

u5

Figure 4.1: The convex hull of the set U = {u1,u2,u3,u4,u5} defines a poly-
tope .

Figure 4.2: The polytope of Figure 4.1 is viewed as the intersection of
finitely many half spaces.
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The dimension of a face F is defined to be the dimension of the affine
span of F. In particular, the dimension of a polyhedron equals to the dimen-
sion of its affine span. The faces of dimension 0 are called vertices and
the set of all vertices of P is denoted by VP . The faces of dimension 1 are
called edges. A face that is not included in any other proper face is called
a facet. Additionally, we consider that ∅ is a face of dimension −1. Note
that faces are topologically closed sets.

Remark 4.2.8. Since a polytope is a bounded polyhedron, it is meaningful
to talk about a face of a polytope. Moreover, a polytope P is a face of itself,
which is of maximal dimension.

Example 4.2.9. The polytope P = conv(U) illustrated in Figure 4.1 is of
dimension two. It has five vertices u1, . . . ,u5, and five edges which are the
segments connecting these vertices.

In [17], the Newton polytope associated with a Laurent polynomial
is discussed. In the following definition, we extend this concept to the
difference case.

Definition 4.2.10. Let f (x) = ∑
u(σ)∈(Z[σ])n

cu(σ)xu(σ) be a Laurent difference

polynomial. We can associate a polytope to f (x). Assume ρ is the scaling
exponent of σ , which is transcendental. For any exponent u(σ) appearing
in f , consider u(ρ) ∈Rn. Then this polytope is defined as follows:

P = conv(U)whereU = {u(ρ) ∣ cu(σ) ≠ 0} .

This polytope is called the Newton polytope associated with f .

Proposition 4.2.11 ([24], Proposition 2.3). Let P ⊆ Rn be a polytope, and F
be a face of P . Then F is also a polytope, and the set of its vertices is VF ∶= VP ∩F.
More generally, the faces of F are those faces of P which are contained in F.

Proof. The reader can find the proof in Proposition 2.3 of [24]. ◻

Definition 4.2.12 ([24], Definition 7.9). Let P ⊆ Rn and Q ⊆ Rm be two
polytopes. Then an affine map

π ∶RnÐ→R
m,

xz→Ax− z,
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with A ∈Mm×n(R) and z ∈ Rm, is called a projection of polytopes, provided
we have π(P ) =Q.

Lemma 4.2.13 ([24], Lemma 7.10). Let π ∶ P Ð→Q be a projection of poly-
topes, and F be a face of Q. Then the preimage of F, π−1(F), is a face of
P .

Proof. The proof can be found in [24], Lemma 7.10. ◻

Definition 4.2.14 ([24], Section 2.3). Let F be a face of a polyhedron (or a
polytope) P , and dim(F) = d for some d ≤ dim(P ). The relative interior of
F, denoted by relint(F), is the set of all the points on F that are not on any
face of dimension less than d.
It can be shown that if F is full dimensional this definition coincide with
the topological interior of F as a set of points. In this case, we write int(F)
instead of relint(F).

Definition 4.2.15 ([17], Section 2.3). A finite collection Σ of polyhedra (all
in the same R

n) is called a polyhedral complex, if it satisfies two following
conditions:

1. For each P ∈Σ, any face F of P is also an element of Σ;

2. for any two elements P ,P ′ ∈Σ, P ∩ P ′ is a face of both P and P ′.

Each polyhedron appearing in a polyhedral complex Σ is called a cell of Σ.
Note that, ∅ is also a cell of Σ.
The dimension of a polyhedral complex is defined to be the maximum of the
dimensions of its cells.
A cell of a polyhedral complex Σ is called a facet of Σ, if it is not a face
of another cell with higher dimension. We say Σ is pure, if all its facets
are of the same dimension. In Figure 4.3, we have a non example for this
concept. In this polyhedral complex P and P ′ are two facets of dimension
two, while P ′′ is a facet of dimension one. So, it is not pure.

Below, we extend Definition 2.3.2 of [17] to the difference case.
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Σ

P

P ′

P ′′

Figure 4.3: Σ is a polyhedral complex of dimension two which is not pure.

Definition 4.2.16. A polyhedron P = {x ∈Rn ∣A ⋅x ≤ B} is called a (Γ ,Q(ρ))-
polyhedron, with ρ being a positive transcendental real number, if A ∈
Md×n(Q(ρ)) and B ∈ Γ d .
Σ is called a (Γ ,Q(ρ))-polyhedral complex, if each of its cells is a (Γ ,Q(ρ))-
polyhedron.

Definition 4.2.17 ([17], Section 2.3). For a polyhedral complex Σ ⊂Rn, its
support is denoted by ∣Σ∣, and is defined as follows:

∣Σ∣ = {x ∈Rn ∣ There is a cell in Σ which contains x} .

Definition 4.2.18 ([17], page 63). Suppose r vectors u1, . . . ,ur in R
n are

given. A vector w = (w1, . . . ,wr) ∈ Rr is called a weight vector. We consider
the two following polytopes:

P = conv{ui ∣ 1 ≤ i ≤ r} ⊆Rn, (4.2.1)

Pw = conv{(ui ,wi) ∣ 1 ≤ i ≤ r} ⊆Rn+1. (4.2.2)

We say F is a lower face of Pw if facev(Pw) = F for some v = (v1, . . . ,vn+1) ∈
(Rn+1)∨, with vn+1 positive.

Suppose π ∶ Rn+1 → R
n is the projection onto the first n coordinates.

Using this map, if we project all lower faces of Pw to R
n, we obtain the

following polyhedral complex:

Σw = {π(F) ∣ F is a lower face ofPw} ,
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for which we have ∣Σw∣ = P . This polyhedral complex gives a subdivision
of P . This is called a regular subdivision of u1, . . . ,ur(or a regular subdivision
of P ) induced by w. See Figure 4.4.

Remark 4.2.19. The projection map defined in Definition 4.2.18 is a pro-
jection of polytopes from the face F to π(F).

Remark 4.2.20. Let v be a vector in R
n. Then for the vector (v,1) ∈ Rn+1,

we can find a nonempty lower face F in Pw such that face(v,1)(Pw) = F.

Proof. Assume φv ∶ Pw → R is defined by φv(x) = (v,1) ⋅ x. Clearly φv is
a continuous map. As Pw is closed and bounded, it is compact. Hence,
φv obtains its minimum on Pw. In other words, there exists a nonempty
subset F of Pw such that for all x in F, (v,1) ⋅x obtains the minimum. This
means

F = {x ∈ Pw ∣ (v,1) ⋅x ≤ (v,1) ⋅y ∀y ∈ Pw}.

By definition, F is a face determined by (v,1) which is a vector with posi-
tive last coordinate, so F is a lower face. ◻

Modifying Definition 2.3.3 from [17], we present the following two def-
initions.

Definition 4.2.21. Let P ⊆Rn be a polytope. To each face F of P , we asso-
ciate the cone NP (F) defined as follows:

NP (F) = {v ∈ (Rn)∨ ∣ facev(P ) ⊇ F}.

It is called the closed normal cone associated to F.
The open normal cone associated to F is also defined as

N̊P (F) = {v ∈ (Rn)∨ ∣ facev(P ) = F}.

Obviously, we have N̊P (F) ⊆NP (F).

Definition 4.2.22. Using the previous definition, we define the normal fan
of a polytope P , which is

NP = {NP (F) ∣ F is a face of P }.
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Note that NP is a polyhedral complex.
The following definition is extracted from the proof of Proposition 3.1.6
from [17].

Definition 4.2.23. Assume P ⊆ Rn, Pw ⊆ Rn+1 and π ∶ Rn+1 → R
n are as

defined in Definition 4.2.18. We write π̃ for the restriction of π to the
following set:

{(v,1) ∣ v ∈Rn}.

We associate the following set to each lower face F of Pw:

π̃(N̊P (F)) = {v ∈Rn ∣ (v,1) ∈ N̊P (F)} .

The collection of all such sets form a polyhedral complex which is called
the dual complex, and is denoted by Σ○w. In other words, we have

Σ○w = {π̃(N̊P (F)) ∣ F is a lower face ofPw} .

Remark 4.2.24. Given the assumptions of Definition 4.2.23, the dual com-
plex Σ○w can intuitively be understood as the complex obtained by inter-
secting the normal fan of Pw with the hyperplane defined by fixing the last
coordinate to be one. See Figure 4.5.

Definition 4.2.25 ([17], page 98). Let Σ be a polyhedral complex of di-
mension n. For k < n, the k-skeleton is the polyhedral complex consisting
of all cells of Σ with dimension at most k.

In the following definition we present some terminology about posets.

Definition 4.2.26. ([24], Definition 2.5).

• By a poset S, we mean a partially ordered set.

• A totally ordered subset of a poset S is called a chain in S. If a chain
has n elements, its length is defined to be n − 1. For a chain with
infinitely many elements, the length is defined to be∞.

• A poset S is called bounded, if it has a unique minimal element which
is usually denoted by 0̂ and a unique maximal element which is usu-
ally denoted by 1̂.
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u1 u2 u3 u4 u5 u6

(u1,w1)

(u2,w2)
(u3,w3)

(u5,w5)

(u6,w6)

(u4,w4)

Pw

P

F1

F2

F3 F4
F5

F6

F7

F8

F9

F10

F11

F12

Figure 4.4: The polytope P is lifted to Pw by using the weight vector
w = (w1, . . .w6). The lower faces of Pw are F1, . . . ,F9. The projection of these
faces yields a subdivision of P , which are shown in the same colors as the
faces.

NPw(F2)

NPw(F4)NPw(F6)

NPw(F8)

NPw(F10)

NPw(F12)

Σ○w

NPw

Figure 4.5: The normal fan NPw of Pw from Figure 4.4 is drawn in xy-
plane. The dual complex Σ○w is obtained from intersection of NPw and
y = 1.
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• A finite poset is called graded, if it is bounded and all its maximal
chains are of the same length.

• For a graded poset S and an element a of S, the rank of a is defined to
be the length of the maximal chain starting with 0̂ and ending with
a. It is denoted by r(a).

• A lattice is a bounded poset S such that for any two elements a,b ∈ S,
there is an infimum (denoted by a∧b) and also a supremum (denoted
by a∨b) in S.

Definition 4.2.27 ([24], Definition 2.6). Let P ⊆Rn be a polytope. The face
lattice of P , denoted by L(P ), is the poset of all faces of P where the partial
order is inclusion.

Theorem 4.2.28 ([24], Theorem 2.7). If P is a polytope, then its face lattice,
L(P), is a graded lattice of length dim(P ) + 1, where the length of a graded
lattice means the length of its maximal chains. Moreover, if F is a face of P ,
then we have r(F) = dim(F)+1.

Proof. The proof can be found in [24], Theorem 2.7. ◻

Definition 4.2.29. Let Σ be a polyhedral complex. Consider the poset of
all its cells, where the partial order is inclusion and denote it by L(Σ).
Then (L(Σ),⊆) is called the cell poset of Σ.

Note that, this poset does not necessarily have a unique maximal el-
ement; in this case, it is not a bounded poset. To turn such cell posets
into a bounded poset, we add an artificial maximal element, 1̂. Define
L̂(Σ) = L(Σ)∪ 1̂, then (L̂(Σ),⊆) is a bounded poset. Thus, for a pure poly-
hedral complex, (L̂(Σ),⊆) is a graded poset.

Remark 4.2.30. Let Σ be a pure polyhedral complex. Then for any cell
F of the graded poset (L̂(Σ),⊆), the rank of F is defined, and we have
r(F) = dim(F)+1.

Below, we state two lemmas which are well-known in polyhedral ge-
ometry. Since we could not find a reference for their proof, we provide a
proof for each here.
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Lemma 4.2.31. Let P ⊆Rn be a full dimensional polytope and F be one of
its faces. For NP (F), we define

dim(NP (F)) ∶= dim(aff(NP (F))) .

Then we have dim(F)+dim(NP (F)) = n.

Proof. In this proof, by L0(P ) we mean the face lattice of P excluding ∅ .
Define the following map

φ ∶ L0(P )Ð→NP ,
F z→NP (F).

Firstly, we prove that φ is an anti-isomorphism, meaning that it is one-to-
one and for any two faces F and F′ in L0(P ), if F ⊂ F′ then NP (F) ⊃NP (F′).
From the definition, NP (F′) can be written as

NP (F′) = {v ∣ facev(P ) ⊇ F′} = {v ∣ ∀x′ ∈ F′ ∀y ∈ P v ⋅x′ ≤ v ⋅y} . (4.2.3)

Suppose u ∈ NP (F′) and F ⊂ F′, from 4.2.3, this means that for any x ∈ F
and for any y ∈ P , we have u ⋅x ≤ u ⋅y. In other words, we have
u ∈ {v ∣ ∀x ∈ F ∀y ∈ P v ⋅x ≤ v ⋅y} and similar to 4.2.3, this means that u ∈
NP (F). Hence, NP (F) ⊇NP (F′).

What remains is to prove that φ is one-to-one. Assume for F ≠ F′, we
have NP (F) = NP (F′). Take an element v of N̊P (F). From the definition,
this means F = facev(P). By assumption, NP (F) =NP (F′) and from 4.2.21
we have N̊P (F) ⊆ NP (F) = NP (F′). This implies v ∈ NP (F′) meaning that
F′ ⊆ facev(P) = F. Similarly, by taking an element v′ of N (F′), we can
deduce F ⊆ F′. Hence, F = F′. Therefore, φ is one to one.

From Theorem 4.2.28, we know that for a given polytope P , its face
lattice L(P ) is a graded lattice of length dim(P ) + 1. This means that all
the maximal chains in L(P ) have the same length, which is dim(P ) + 1.
As we have assumed that L0(P ) is the face lattice excluding ∅, we have
reduced the length of all maximal chains by one. Therefore, all maximal
chains of L(P ) have length dim(P ).
Let F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ Fi ⊂ ⋅ ⋅ ⋅ ⊂ Fn = P be a maximal chain in L0(P ). Let Fi and
Fi+1 be two successive elements of this chain. From Theorem 4.2.28, we
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know that r(Fi) = dim(Fi)+1 and r(Fi+1) = dim(Fi+1)+1. As this chain is
assumed to be maximal, this means that there is no other face F̂i such that
Fi ⊂ F̂i ⊂ Fi+1. Therefore, we can deduce that r(Fi+1) = r(Fi)+1, which gives
dim(Fi+1)−dim(Fi) = 1. In this proof, we supposed that the empty face is
excluded from L(P ). Hence, F0 is a face of dimension 0, which is a vertex.
More precisely, this maximal chain of length dim(P ) = n, starts with a face
of dimension 0, and ends to a face of dimension n. This means that for
any natural number i, 0 ≤ i ≤ n, we can find a face in this chain, namely Fi ,
which is of dimension i.
Apply the map φ on this maximal chain. We obtain a chain

NP (F0) ⊃NP (F1) ⊃ ⋅ ⋅ ⋅ ⊃NP (Fi) ⊃ ⋅ ⋅ ⋅ ⊃NP (Fn),

which is of length dim(P ).
For NP (Fi) and NP (Fi+1) which are two successive elements of this chain,
NP (Fi) ⊃ NP (Fi+1) means NP (Fi+1) is a proper face of the cone NP (Fi).
Therefore, we have dimNP (Fi) > dimNP (Fi+1). As the length of this chain
is dim(P ), it implies dim(NP (Fi)) = dim(P )− i. Hence, for any i, we have
dim(Fi)+dim(NP (Fi)) = i +dim(P )− i = dim(P ) = n.

Note that for F, an arbitrarily given face of P , F is necessarily contained
in such a maximal chain. Otherwise, as we have F ⊂ P , this is a part of a
chain that is not contained in any maximal chain of the described form.
Therefore, this chain is also maximal but not of the length dim(P ), but
this can not happen because L0(P ) is graded. Finally, this means that for
any face F of P , we have dim(F)+dim(NP (F)) = n. ◻

Lemma 4.2.32. Let Σ be a polyhedral complex whose support is Rn. Then
Σ is pure of dimension n.

Proof. Let A be the set of all cells of Σ of dimension n. In other words, we
have

A = {F ∣ F is a cell in Σ such that dim(F) = n} .

First, we want to prove that ⋃
F∈A

int(F) is dense in R
n, which means ⋃

F∈A
int(F) =

R
n. Equivalently, we want to prove that the topological interior of R

n ∖
⋃
F∈A

int(F) = ∣Σ∣∖ ⋃
F∈A

int(F) is empty.
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If we define

B = {F ∣ F is a cell in Σ such that dim(F) < n} ,

we have
∣Σ∣∖ ⋃

F∈A
int(F) = ⋃

F∈B
F.

As B consists of cells of dimension less than n, ⋃
F∈B
F can not contain a n-

ball. Therefore the interior of ⋃
F∈B
F is empty.

Hence, ⋃
F∈A

int(F) =Rn. As cells are polyhedra and therefore are topologi-

cally closed sets, we have

R
n = ⋃

F∈A
int(F) ⊆ ⋃

F∈A
int(F) ⊆ ⋃

F∈A
F = ⋃

F∈A
F ⊆Rn.

So, we have

⋃
F∈A

F =Rn. (4.2.4)

Finally, we choose arbitrarily a facet G of Σ, and we prove dim(G) = n.
To prove this, we assume the opposite, meaning that dim(G) < n. Choose
x ∈G such that x ∈ relint(G) or in other words, x is not on a proper face of
G. As x is also a point in R

n, 4.2.4 implies that there is a cell F of dimension
n such that x ∈ F. Therefore, we have G ∩ F ≠ ∅. From the definition of a
polyhedral complex, G∩F is a face of both G and F. As x was chosen from
an improper face of G, we have G ∩ F = G. This means, G ⊆ F, and this
contradicts the assumption that G is a facet. Hence, dim(G) = n, and Σ is
pure of dimension n. ◻

4.3 Combinatorics

In this section, we describe the combinatorics of a difference tropical hy-
persurface. This is done in Proposition 4.3.1. The proof is similar to the
classical case, as in Proposition 3.1.6 of [17]. All polyhedral geometry
needed to understand this result is presented in Section 4.2.

Proposition 4.3.1. If f = ∑
u(σ)

cu(σ)xu(σ) is a Laurent difference polynomial,

then its associated difference tropical hypersurface, trop(V (f )), is the support
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of a pure (Γ ,Q(ρ))−polyhedral complex of dimension (n−1).
More precisely, it is the (n− 1)-skeleton of the polyhedral complex dual to the
regular subdivision Σval of P , where P is defined as in Definition 4.2.10, and
val is the weight vector given by v (cu(σ)) for cu(σ) ≠ 0.

Proof. We begin the proof by describing Pval , and the dual complex Σ○val . In
the first step, we prove Claim 4.3.2 which allows us to show that trop(V (f ))
is the (n − 1)-skeleton of the dual complex. Subsequently, we establish
Claim 4.3.3, and having this claim in hand, we demonstrate that trop(V (f ))
is a (Γ ,Q(ρ))−polyhedral complex. Finally, we show that ∣Σ○val ∣ =Rn guar-
anteeing that trop(V (f )) is pure.

Based on Definition 4.1.4, we know that trop(V (f )) is the set of all
points for which the minimum in trop(f ) is attained at least twice.
Considering the Newton polytope of f , we define

Pval ∶= conv{(u(ρ),v(cu(σ))) ∶ cu(σ) ≠ 0} ⊂Rn+1.

Suppose π ∶ Rn+1 Ð→ R
n is defined by π(x1, . . . ,xn,xn+1) = (x1, . . . ,xn). As

we discussed in Definition 4.2.18, if we consider π(F) for all lower faces
F of Pval , we obtain the regular subdivision of P induced by v (cu(σ)) for
cu(σ) ≠ 0.
Taking π̃(N̊P (F)) for all lower faces F of Pval , we obtain the polyhedral
complex dual to the regular subdivision of P induced by v (cu(σ)) for cu(σ) ≠
0.
Suppose v = (v1, . . . ,vn,1) ∈ N̊P (F). Then we have

inπ(v)(f ) = ∑
u(σ)∶v(cu(σ))+u(ρ)⋅(v1,...,vn)

=trop(f )(v1,...,vn)

tv(cu(σ)) ⋅ cu(σ)xu(σ). (4.3.1)

Note that, we can write

v (cu(σ))+u(ρ) ⋅ (v1, . . . ,vn) = 1 ⋅v (cu(σ))+u(ρ) ⋅ (v1, . . . ,vn) =
v ⋅ (u(ρ),v (cu(σ))).

So we have

inπ(v)(f ) = ∑
u(σ)∶v⋅(u(ρ),v(cu(σ)))
=trop(f )(π(v))

t−v(cu(σ)) ⋅ cu(σ)xu(σ). (4.3.2)
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Claim 4.3.2. Let u(σ) be an exponent appearing in inπ(v)(f ). Then u(ρ) is in
π(F). Moreover, for each vertex u(ρ) of π(F), u(σ) is an exponent appearing
in inπ(v)(f ).

Proof. First, we suppose u0(σ) is an exponent appearing in inπ(v)(f ), then
we prove that u0(ρ) is in π(F).
As u0(σ) is an exponent appearing in inπ(v)(f ), this means

v ⋅ (u0(ρ),v (cu0(σ))) = trop(f )(π(v)).

In other words, v ⋅(u0(ρ),v (cu0(σ))) obtains the minimum among all trop-
ical monomials of the form v (cu(σ))+u(ρ) ⋅π(v).
Assume y ∈ Pval = conv{(u(ρ),v(cu(σ))) ∶ cu(σ) ≠ 0}, so y can be written as:

y = ∑
u(σ)

λu(σ) (u(ρ),v (cu(σ))) ,

such that ∀u(σ), 0 ≤ λu(σ) ≤ 1 and ∑
u(σ)

λu(σ) = 1.

We also have

v ⋅y = ∑
u(σ)

λu(σ)v ⋅ (u(ρ),v (cu(σ))) (4.3.3)

= λu0(σ)v ⋅ (u0(ρ),v (cu0(σ)))+ ∑
u(σ)≠u0(σ)

λu(σ)v ⋅ (u(ρ),v (cu(σ))) .

(4.3.4)

Since u0(σ) is one of the exponents appearing in inπ(v)(f ), we have

v ⋅ (u0(ρ),v (cu0(σ))) ≤ v ⋅ (u(ρ),v(cu(σ))) ,

so (4.3.4) can be written as

λu0(σ)v ⋅ (u0(ρ),v (cu0(σ)))+ ∑
u(σ)≠u0(σ)

λu(σ) (v ⋅ (u0(ρ),v (cu0(σ)))+αu(σ)) ,

where
αu(σ) = v ⋅ (u(ρ),v(cu(σ)))−v ⋅ (u0(ρ),v (cu0(σ))) ≥ 0.

As

∑
u(σ)

λu(σ) = 1,
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we have
v ⋅y = v ⋅ (u0(ρ),v (cu0(σ)))+ ∑

u(σ)≠u0(σ)
λu(σ)αu(σ).

On the other hand, for all u(σ), we have λu(σ) ≥ 0. Hence, this gives

v ⋅y ≥ v ⋅ (u0(ρ),v (cu0(σ))) . (4.3.5)

As (u0(ρ),v (cu0(σ))) ∈ Pval and v ∈ N̊P (F), (4.3.5) implies (u0(ρ),v (cu0(σ))) ∈
F. Therefore u0(ρ) ∈π(F).

Now, assume a vertex of π(F) is given. We prove that there is an expo-
nent in inπ(v)(f ) associated to this vertex.

From Definition 4.2.18, a vertex of π(F) is of the form u(ρ). Consider
the restriction of the projection map on the face F. Hence, π∣

F
∶ F Ð→π(F)

is a projection of polytopes. Therefore, by Lemma 4.2.13, the preimage of
u(ρ) is a face of F; in fact it is a vertex of F.
To see this, assume π∣−1

F
(u(ρ)) is a face G such that dim(G) ≥ 1. As G

is a face of F and F is a face of Pval , from Proposition 4.2.11, we have
G = conv(µ) where µ = G ∩U for U being the set of vertices of Pval . As
dim(G) ≥ 1, it contains at least two vertices, each of which is a vertex
of Pval . Suppose (ui(ρ),v (cui(σ))) and (uj(ρ),v (cuj(σ))) are two distinct
vertices of G, so we have

u(ρ) =π∣
F
(ui(ρ),v (cui(σ))) = ui(ρ) =π∣F (uj(ρ),v (cuj(σ))) = uj(ρ),

and ui(ρ) = uj(ρ) contradicts the assumption that ρ is transcendental.
Hence, dim(G) = 0 which means G is a vertex of F and by definition we
have G = (u(ρ),v(cu(σ))).
Since v = (v1, . . . ,vn,1) ∈ N̊P (F), for all y ∈ Pval , we have v⋅y ≥ v⋅(u(ρ),v (cu(σ))).
More specifically, for each vertex (u′(ρ),v (cu′(σ))) ∈ Pval , we have

v ⋅ (u(ρ),v (cu(σ))) ≤ v ⋅ (u′(ρ),v (cu′(σ)))

⇐⇒π(v) ⋅u(ρ)+v (cu(σ)) ≤π(v) ⋅u′(ρ)+v (cu′(σ)) .

This last inequality means, in trop(f )(π(v)) the minimum is achieved at
u(σ) and equivalently u(σ) appears as an exponent in inπ(v)(f ). ∎
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Now, by using Claim 4.3.2, we want to prove that trop(V (f )) is the
(n−1)−skeleton of the dual complex Σ○val . Let F be a nonvertex lower face
of Pval , and w ∈ π̃(N̊P (F)). As F is a nonvertex face, π(F) has more than
one vertex. From Claim 4.3.2, we know each of these vertices corresponds
to an exponent in inw(f ). This means inw(f ) is not a monomial, or in
other words from Lemma 4.1.7 , we have w ∈ trop(V (f )).
Now, choosew ∈ trop(V (f )). By Remark 4.2.20, we can set F = face(w,1)(Pval).
This means that w ∈ π̃(N̊P (F)). As we assumed, w ∈ trop(V (f )), equiva-
lently from Lemma 4.1.7, this means inw(f ) is not a monomial. So, at least
two different exponents appear in inw(f ), each of which corresponds to a
point on π(F). Hence, π(F) has more that one vertex, and therefore F is a
face with more than one vertex.
Finally, this gives, w ∈ trop(V (f )) if and only if w ∈ π̃(N̊P (F)) where
F is a face with more than one vertex. As F has at least two vertices,
we have dim(F) ≥ 1, and by Lemma 4.2.31, this means dim(Np(F)) ≤
n − 1. We know that N̊P (F) ⊆ Np(F). This implies that dim(N̊P (F)) ≤
dim(Np(F)) ≤ n−1, meaning that both N̊P (F) and π̃(N̊P (F)) are not full
dimensional. Hence, w ∈ trop(V (f )) if and only if π̃(N̊P (F)) is a cell in
the (n−1)−skeleton of the dual complex which contains w.
Thus, trop(V (f )) is the (n − 1)−skeleton of the dual complex. What re-
mains is to prove that it is a pure (Γ ,Q(ρ))−polyhedral complex.

Suppose v ∈Rn+1 is given arbitrarily. We define

m(v) ∶= inf{v ⋅y ∣ y ∈ Pval}.

Now for m(v), we prove the following claim.

Claim 4.3.3. Let VPval be the set of vertices of Pval . Then for m(v) which is
defined above, we have

m(v) =min{v ⋅u ∣ u ∈ VPval} .

Proof. Put m ∶=min{v ⋅u ∣ u ∈ VPval}. Since VPval is included in Pval , we have
m(v) ≤m.
Now, we prove m ≤m(v). Given y ∈ Pval arbitrarily. From the definition of
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Pval , we have

y = ∑
u∈VPval

λu ⋅u where ∀u, 0 ≤ λu ≤ 1 and ∑
u∈VPval

λu = 1.

This gives

v ⋅y = v ⋅ ∑
u∈VPval

λu ⋅u = ∑
u∈VPval

λu(v ⋅u) ≥ ∑
u∈VPval

λum =m.

Thus, ∀y ∈ Pval v ⋅y ≥m, which means m(v) ≥m. Hence, m(v) =m. ∎

By using Claim 4.3.3, we prove that this (n−1)−skeleton is a
(Γ ,Q(ρ))−polyhedral complex.

Let F be a lower face of Pval . For v ∈ N̊P (F), we have

∀x ∈ F v ⋅x ≤ v ⋅y ∀y ∈ Pval⇒ ∀x ∈ F v ⋅x =m(v) =m. (4.3.6)

If we denote F ∩VPval by VF (4.3.6) means, for any vertex x ∈ VF , we have
v ⋅x =m. In other words, N̊P (F) can be written as:

N̊P (F) = {v ∣ ∀x ∈ VF ∀y ∈ VPval v ⋅x ≤ v ⋅y} .

Therefore, π̃(N̊P (F)), which is a cell in the (n − 1)−skeleton of the dual
complex, can be written as:

π̃(N̊P (F)) = {w ∈Rn ∣ (w,1) ∈ N̊P (F)}

= {w ∈Rn ∣ ∀x ∈ VF ∀y ∈ VPval (w,1) ⋅x ≤ (w,1) ⋅y} .
(4.3.7)

Note that in (4.3.7), x and y are both vertices of Pval . Therefore, for some i
and j, they are of the following form:

x = (ui(ρ),v (cui(σ))) ,

y = (uj(ρ),v (cuj(σ))) .
(4.3.8)

Using (4.3.8), we can rewrite the inequality that appeared in (4.3.7) as
follows:

(w,1) ⋅x ≤ (w,1) ⋅y⇐⇒w ⋅ui(ρ)+v (cui(σ)) ≤w ⋅uj(ρ)+v (cuj(σ))

⇐⇒ v (cui(σ))−v (cuj(σ)) ≤w ⋅ (uj(ρ)−ui(ρ)) .
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As v (cui(σ))−v (cuj(σ)) ∈ Γ and (uj(ρ)−ui(ρ)) ∈Q(ρ)
n, we conclude π̃(N̊P (F))

is a (Γ ,Q(ρ))−polyhedron. Therefore, the (n − 1)−skeleton of the dual
complex is a (Γ ,Q(ρ))−polyhedral complex. To complete the proof, we
show that it is also pure.

To do so, arbitrarily choose a facet F of this (n−1)−skeleton; we prove
that F is of dimension n − 1. Assume the opposite. In fact, we assume
dim(F) =m < n−1.
Suppose v ∈Rn is given. From Remark 4.2.20, we can setG = face(v,1)(Pval).
In other words v ∈ π̃(N̊p(G)) which is a cell of the dual complex Σ○val .
Therefore, v ∈ ∣Σ○val ∣ ⊆ Rn. Hence, ∣Σ○val ∣ = Rn. From Lemma 4.2.32, Σ○val is
pure of dimension n, meaning that, there exists a facet F′ in Σ○val that is of
dimension n and contains F.
Consider the cell poset of Σ○val , and the rank function on the elements of
L̂(Σ○val). We have

r(F′) = dim(F′)+1 = n+1 and r(F) = dim(F)+1 =m+1 < n.

Suppose ∅ ⊂ ⋅ ⋅ ⋅ ⊂ F ⊂ ⋅ ⋅ ⋅ ⊂ F′ is a maximal chain. Note that, r(F) = m+ 1 <
n+1 = r(F′). Since we havem < n−1, there exists a cell F′′ in this chain such
that m+1 < r(F′′) < n+1. This gives dim(F′′) < n. Thus, F′′ is a cell in the
(n−1)-skeleton which contains F. But this is a contradiction, because F is
assumed to be a facet in the (n−1)-skeleton. Hence, dim(F) = n−1, and the
(n−1)-skeleton is pure. Thus, trop(V (f )) is a pure (Γ ,Q(ρ))-polyhedral
complex.

◻
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Chapter 5
Difference Newton Lemma

This section provides an essential tool for proving the Difference Kapra-
nov Theorem: the Difference Newton Lemma. For the notation consult
2.0.20. It states

Theorem 5.0.1. (Difference Newton Lemma) Let K be a multiplicative valued
difference field of characteristic zero which is spherically complete. Assume k,
the difference residue field of K , is an ACFA and of characteristic zero. Suppose
the difference value group Γ is a subgroup of R that is a Q(ρ)-module, where
ρ, the scaling exponent of σ , is transcendental. Given f ∈Kσ [x] is not constant
and suppose b ∈K such that f (b) ≠ 0.
We define ε ∶=max

J
∣J ∣≥1

εJ , where

εJ ∶=
1
∣J ∣ρ
(v(f (b))−v(f(J)(b))) .

Then there exists a root a ∈K of f such that v(a−b) = ε.

From this section on, we keep these assumptions on K .

To prove the Difference Newton Lemma, firstly, we need some defini-
tions. The main reference for them is [6]. Note that these definitions are
well-known and are defined in a more general context. Therefore, the as-
sumptions on the field K stated in Theorem 5.0.1 are not needed for these
definitions.

90



91

Definition 5.0.2. Let K be a valued field, and (aρ) be a sequence of ele-
ments in K . The sequence (aρ) is called well-indexed if the set of indices is
well-ordered without maximal element.

A well-indexed sequence (aρ) is called pseudoconvergent to a point a if
and only if

∃ρ0 ∀δ,ρ ∶ δ > ρ > ρ0Ð→ v(a−aδ) > v(a−aρ).

In this case, we use the notation aρ ↝ a, and a is called a pseudolimit of this
sequence.

Definition 5.0.3. A well-indexed sequence is called pseudocauchy if and
only if

∃ρ0 ∀τ,δ,ρ ∶ τ > δ > ρ > ρ0Ð→ v(aτ −aδ) > v(aδ −aρ).

Lemma 5.0.4 states that if a point b is not a root of a difference poly-
nomial f , we can find a point a in its neighbourhood which is a better
estimation of a possible root. Our approach to proving this lemma is in-
spired by the proof of Lemma 5.4 from [21].

Lemma 5.0.4. Suppose f ∈ Kσ [x] is a nonconstant difference polynomial.
Let b be an element of K which is not a root of f . We define ε ∶=max

J
∣J ∣≥1

εJ

where

εJ ∶=
1
∣J ∣ρ
(v(f (b))−v(f(J)(b))) .

Then

1. there exists a ∈K such that v(a−b) = ε and v(f (a)) > v(f (b)).

2. for any point a ∈ K with the properties in (1), we have ε < ε′ where
ε′ ∶=max

J
∣J ∣≥1

ε′J and ε′J ∶=
1
∣J ∣ρ (v(f (a))−v(f(J)(a))).

Proof. 1. Note that ε is an element of the difference value group Γ . Fix
any a′ ∈K such that v(a′ −b) = ε.
Assume I is a multi-index for which ∣I ∣ ≥ 1.
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Then we have

v(
f(I)(b)σ I(a′ −b)

f (b)
) = v(f(I)(b))+v (σ I(a′ −b))−v(f (b))

= v(f(I)(b))+ ∣I ∣ρv(a′ −b)−v(f (b))
= −∣I ∣ρεI + ∣I ∣ρε
= ∣I ∣ρ (ε− εI) ,

(5.0.1)

which is nonnegative. Obviously, if J is a multi-index for which ∣J ∣ ≥ 1
and εJ = ε, then we have

v(
f(J)(b)σ J(a′ −b)

f (b)
) = ∣J ∣ρ (ε− εJ) = 0,

which means
f
(J)(b)σ J(a′−b)

f (b) ∉M, withM being the maximal ideal of
the valuation ring.
Hence, we can define the following nonconstant difference polyno-
mial in kσ [x]:

φ(x) ∶= 1+∑
I
∣I ∣≥1

(
f(I)(b)σ I(a′ −b)

f (b)
)σ̄ I(x).

Since k is an ACFA, and φ(x) is not monomial, by Lemma 2.0.28,
φ(x) has a nonzero root ū. This means that if u is a lift of ū in the
valuation ring then v(u) = 0.
Define a ∶= (a′ −b)u +b. We have

v(a−b) = v((a′ −b)u) = v(a′ −b)+v(u) = ε+0 = ε.

Consider the Taylor expansion of f (a) around the point b. It is

f (a) = f (b)+∑
I
∣I ∣≥1

f(I)(b)σ I(a−b),

from which we have

f (a)
f (b)

= 1+∑
I
∣I ∣≥1

f(I)(b)σ I(a−b)
f (b)

. (5.0.2)
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Similar to what we did in (5.0.1), we can see that

∀I ∣I ∣ ≥ 1 ∶ v(
f(I)(b)σ I(a−b)

f (b)
) ≥ 0.

Taking the residue of both sides in (5.0.2), and substituting
a = (a′ −b)u +b gives

f (a)
f (b)

= 1+∑
I
∣I ∣≥1

f(I)(b)σ I(a−b)
f (b)

= 1+∑
I
∣I ∣≥1

f(I)(b)σ I(a′ −b)
f (b)

σ̄ I(ū) =φ(ū) = 0.

This implies v(f (a)) > v(f (b)).

2. The proof of this part mainly consists of proof by contradiction. For
this purpose, we need two technical steps which enable us to obtain
the contradiction.

• Step 1: We assume ε = εI where I is the maximal multi-index,
with respect to lexicographical order, for which εI attains the
maximum. Then we prove v(f(I)(a)) = v(f(I)(b)).

• Step 2: If for some multi-index J , we have ε = εJ , then we have
min
I
(∣I ∣ρε+v(f(I)(b))) = ∣J ∣ρε+v(f(J)(b)).

Step 1: Let I is as assumed above. Then v(f(I)(a)) = v(f(I)(b)).

Proof. For an arbitrary nonzero multi-index L ∈Nn+1, we have I <lex
I + L. As we have assumed I is the maximal multi-index for which
ε = εI , we then have εI+L < εI = ε. This means

1
∣I +L∣ρ

(v(f (b))−v(f(I+L)(b)) <
1
∣I ∣ρ
(v(f (b))−v(f(I)(b)))

⇔v(f (b))−v(f(I+L)(b) <
∣I +L∣ρ
∣I ∣ρ

(v(f (b))−v(f(I)(b)))

⇔−v(f(I+L)(b)) < (1+
∣L∣ρ
∣I ∣ρ
)(v(f (b))−v(f(I)(b)))−v(f (b))

⇔−v(f(I+L)(b)) < −v(f(I)(b))+ ∣L∣ρεI

(5.0.3)

⇔v (f(I+L)(b)σL(a−b)) > v(f(I)(b)). (5.0.4)
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Consider the Taylor expansion of f(I)(a) around the point b. It is

f(I)(a) = f(I)(b)+∑
L≠0
f(I)(L)(b)σL(a−b).

This gives

v(f(I)(a)) ≥min
L≠0
{v(f(I)(b)),v(f(I)(L)(b)σL(a−b))} .

Clearly, we have v(f(I)(L)(b)σL(a− b)) = v(f(I+L)(b)σL(a− b)). Thus,
(5.0.4) implies

v(f(I)(a)) ≥min{v(f(I)(b)),v(f(I+L)(b)σL(a−b))} = v(f(I)(b)).

which gives v(f(I)(a)) = v(f(I)(b)). ∎

Step 2: If for a multi-index J , we have ε = εJ , then we have

min
I
(∣I ∣ρε+v(f(I)(b))) = ∣J ∣ρε+v(f(J)(b)).

Proof. Suppose I is arbitrarily chosen. We want to show that

∣J ∣ρε+v(f(J)(b)) ≤ ∣I ∣ρε+v(f(I)(b)).

We have

εI ≤ ε = εJ ⇒ ∣I ∣ρεI +v(f(I)(b)) ≤ ∣I ∣ρε+v(f(I)(b))
⇒ v(f (b)) ≤ ∣I ∣ρε+v(f(I)(b))
⇒ ∣J ∣ρεJ +v(f(J)(b)) ≤ ∣I ∣ρε+v(f(I)(b)).

From εJ = ε, it follows that

min
I
(∣I ∣ρε+v(f(I)(b))) = ∣J ∣ρε+v(f(J)(b)).

∎

Going back to the main statement, we want to prove ε < ε′. We prove
this by contradiction. Suppose ε ≥ ε′, where ε = εI (and I is the maxi-
mal multi-index attaining the maximum). Also assume ε′ = ε′J . Thus,
we have

ε ≥ ε′⇒ ∣I ∣ρε+v(f(I)(b)) ≥ ∣I ∣ρε′ +v(f(I)(b)).
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From what we proved in step 1, for such I we have v(f(I)(b)) =
v(f(I)(a)). Thus, ∣I ∣ρε + v(f(I)(b)) ≥ ∣I ∣ρε′ + v(f(I)(a)). Using Step 2
and the assumption that ε = εI , we can write

v(f (b)) ε=εI== ∣I ∣ρε+v(f(I)(b))
Step1
≥ ∣I ∣ρε′ +v(f(I)(a)

Step2
≥ ∣J ∣ρε′ +v(f(J)(a))

ε′=ε′J== v(f (a)).

This gives v(f (b)) ≥ v(f ((a))which contradicts the condition in part
(1). Hence ε < ε′.

◻

As we proved in Lemma 5.0.4, if b is not a root of f , we can find a
better estimation of a possible root around it. In Proposition 5.0.5, by
using Lemma 5.0.4, we build a pc-sequence. Assuming that the field K

is spherically complete, this pc-sequence has necessarily a pseudolimit
which is a root of f . This implies the main result of this section which is
Theorem 5.0.1. We prove Proposition 5.0.5 by similar techniques to those
in [21], Lemma 5.6.

Proposition 5.0.5. Let f ∈ Kσ [x] be a nonconstant difference polynomial and
assume b ∈K is not a root of f . Define ε ∶=max

J
∣J ∣≥1

εJ where

εJ ∶=
1
∣J ∣ρ
(v(f (b))−v(f(J)(b))) .

Similarly, for a point aη , we define ε(η,J) and also εη ∶=max
J
∣J ∣≥1

ε(η,J).

Then there exists a pc-sequence {aη} in K with the following properties:

1. a0 = b and {aη} has a pseudolimit a ∈K , such that f (a) = 0 and
v(a−b) = ε;

2. {v(f (aη))} is strictly increasing;
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3. v(aη′ −aη) = εη whenever η < η′;

4. For any η < η′ we have εη < εη′ .

Proof. We prove this by contradiction. Suppose no such pc-sequence ex-
ists. Assume a0 = b. For some ordinal λ > 0, by using Lemma 5.0.4, we
inductively construct a sequence {aη}η<λ such that for all η, aη is not a
root of f , and it satisfies properties (2),(3) and (4). Then we use trans-
finite recursion to extend this sequence to an arbitrarily long sequence
which arises a contradiction.
From properties (2), (3) and (4), we conclude that for all η < η′ < η′′ < λ
we have

v(aη −aη′) = εη < εη′ = v(aη′ −aη′′),

which means {aη}η<λ is a pc-sequence. We consider two different pos-
sible cases for λ:

(i) λ is a successor ordinal, which means it can be written as λ = µ+1.
By Lemma 5.0.4, for f ∈ Kσ [x] and aµ ∈ K , there exists aλ ∈ K such
that

• v(aλ −aµ) = εµ and v(f (aλ)) > v(f (aµ));

• εµ < ελ.

If aλ is a root of f , these two properties imply {v(aλ−aη)} is eventu-
ally increasing, which means aλ is a pseudolimit of {aη}η<λ and we
are done. Otherwise, we extend the sequence to {aη}η<λ+1 with the
same properties.

(ii) Let λ is a limit ordinal. As K is spherically complete, {aη}η<λ as a
pc-sequence has a pseudolimit aλ. Assume aλ is not a root of f . We
want to check whether aλ has the properties (2),(3) and (4). If so,
we extend the sequence to {aη}η<λ+1.
We start with checking (3). Since aη ↝ aλ, by definition we have

∃η0 such that ∀ η′,η; η′ > η > η0⇒ v(aλ −aη′) > v(aλ −aη). (5.0.5)
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Thus, we have

λ > η +1 > η > η0⇒ v(aη+1 −aη) = v(aη+1 −aλ +aλ −aη)
≥min{v(aη+1 −aλ),v(aη −aλ)}
= v(aη −aλ).

(5.0.6)
Since the inequality in (5.0.5) is strict, therefore v(aη+1 −aλ) ≠ v(aη −
aλ). Then, we have v(aη −aλ) = v(aη+1 −aη) = εη .
If γ is such that γ ≤ η0 < η, we can write

v(aλ −aγ) = v(aλ −aη +aη −aγ) ≥min{v(aλ −aη),v(aη −aγ)}
=min{εη ,εγ}
= εγ .

(5.0.7)

Therefore, (5.0.6) and (5.0.7) imply that aλ satisfies property (3) for
the sequence.
We continue by checking (2). Consider the Taylor expansion of f (aλ)
around the point aη . This is

f (aλ) = f (aη)+∑
J
∣J ∣≥1

f(J)(aη)σ J(aλ −aη).

By definition, εη =max
J
∣J ∣≥1

ε(η,J) where ε(η,J) ∶= 1
∣J ∣ρ (v(f (aη))−v(f(J)(aη))).

For an arbitrary (η,J) we have

ε(η,J) ≤ εη⇒
1
∣J ∣ρ
(v(f (aη)−v(f(J)(aη))) ≤ εη .

This gives

v(f (aη)) ≤ ∣J ∣ρεη +v(f(J)(aη))
= ∣J ∣ρv(aη+1 −aη)+v(f(J)(aη))
= ∣J ∣ρv(aλ −aη)+v(f(J)(aη))
= v(σ J(aλ −aη) ⋅ f(J)(aη)).

In the Taylor expansion of f (aλ), take the valuation of both sides.
This yields

v(f (aλ)) ≥min
J
∣J ∣≥1

{v(f (aη)),v(f(J)(aη)σ J(aλ −aη))} = v(f (aη)). (5.0.8)



98 CHAPTER 5. DIFFERENCE NEWTON LEMMA

But the equality is impossible. To see this, suppose v(f (aλ)) = v(f (aη))
for some η. As λ is a limit ordinal, we have λ > η + 1 > η. From the
second property of the sequence, this means

v(f (aλ)) = v(f (aη)) < v(f (aη+1)),

and this contradicts (5.0.8). Hence v(f (aλ)) > v(f (aη)).
Finally, we check (4). Apply Lemma 5.0.4 for the difference polyno-
mial f , a nonroot aη and the point aλ which satisfies the properties
of the first part. Thus, the second part of this lemma implies εη < ελ.
Therefore, aλ has all the properties of the sequence {aη}η<λ which
enables us to add aλ to the sequence.
This means, we can build an arbitrarily long sequence {aη}η<∣K ∣+ such
that for all η, aη is not a root of f , and it satisfies properties (2),(3)
and (4). This is a contradiction since all aη are distinct elements in
K . Hence, for some λ, aλ is a root of f .

◻



99



Chapter 6
The Difference Kapranov Theorem

This chapter consists of two sections. We will see the final result, the Dif-
ference Kapranov Theorem, in the second section. In the first one, we
prove Proposition 6.1.9 which is the main ingredient to prove the Differ-
ence Kapranov Theorem.

By extending the ideas from Theorem 3.1.3 and Proposition 3.1.5 of
[17] to our context, we prove the Difference Kapranov Theorem and Propo-
sition 6.1.9.

The general assumption of this section is that K is a multiplicative val-
ued difference field of characteristic zero, and is spherically complete. A
particular setting is given by Example 2.0.10. We also assume that the val-
uation has a splitting and the scaling exponent ρ of σ is transcendental.
Besides, we assume that the difference value group Γ is a subgroup of R
that is a Q(ρ)-module. The difference residue field of K is also assumed
to be an ACFA, and of characteristic zero.

6.1 Lifting Roots

We gradually work towards the goal of this section, which is Proposition
6.1.9 . First, we will prove a simpler version of this proposition for the
case where f is a difference polynomial in one variable.
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Lemma 6.1.1. Suppose f ∈Kσ [x] is a difference polynomial. Assume w ∈ Γ
and inw(f ) is not a monomial. Let ᾱ be a nonzero root of inw(f ) in the
difference residue field k. Then f has a root a ∈ K such that v(a) = w and
t−wa = ᾱ.

Proof. Choose α as a representative of ᾱ and let b = twα ∈K . Then we have
v(b) = v(twα) = v(tw)+v(α) =w+0 =w. Besides t−wb = t−w ⋅ twα = ᾱ.
Applying Theorem 5.0.1, for f ∈ Kσ [x] and b ∈ K , there exists a root a ∈ K
such that v(a−b) = ε (where ε is as defined in the same theorem). It suffices
to prove that this root a satisfies the desired properties.

Claim 6.1.2. Let a ∈ K be a root of f which is obtained by applying Theorem
5.0.1, and ε be as defined in this theorem. If ε > w, then this root satisfies the
following properties:

• v(a) =w;

• t−wa = ᾱ.

Proof. We write

v(a) = v(a−b+b) ≥min{v(a−b),v(b)} =min{ε,w} =w.

Since the minimum is attained uniquely, we have v(a) =w.
Moreover, we have

ε−w > 0⇒ v(a−b)+v(t−w) > 0

⇔ v (t−wa− t−wb) > 0

⇔ t−wa = t−wb = ᾱ.

This means both conditions are satisfied by the root a. ∎

Now, it suffices to prove that ε >w.
As f ∈ Kσ [x], it is of the form f (x) = ∑

J∈Λ
cJσ J(x) where Λ is a finite subset
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of Nn+1. The tropicalization of f at w is

trop(f )(w) =min
J∈Λ
{v(cJ)+ Jσ Γ (w)}

=min
J∈Λ
{v(cJ)+ (j0, j1, . . . , jn) ⋅ (w,ρ ⋅w,. . . ,ρn ⋅w)}

=min
J∈Λ
{v(cJ)+ ∣J ∣ρ ⋅w} .

By the assumptions, inw(f ) is not a monomial. Suppose ∆ ⊆ Λ con-
sists of all those multi-indices whose corresponding monomials appear in
inw(f ). Then ∆ has more than one element.
From the definition of inw(f ), for any I ∈∆, we can write

trop(f )(w) =min
J∈Λ
{v(cJ)+ ∣J ∣ρ ⋅w} = v(cI)+ ∣I ∣ρ ⋅w. (6.1.1)

On the other hand, we have

f (b) =∑
J∈Λ
cJσ J(b).

This implies

v(f (b)) ≥min
J∈Λ
{v(cJ)+v(σ J(b))} =min

J∈Λ
{v(cJ)+ ∣J ∣ρ ⋅w} . (6.1.2)

What we obtained in (6.1.2) and (6.1.1) together gives

∀I ∈∆, v(f (b)) ≥min
J∈Λ
{v(cJ)+ ∣J ∣ρ ⋅w} = v(cI)+ ∣I ∣ρ ⋅w. (6.1.3)

By J ≥ I , we mean, for all r such that 0 ≤ r ≤ n, we have jr ≥ ir . Also consid-
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ering Definition 2.0.25, then for any I ∈∆, we have

f(I)(b) = P(I)(σ(b)) =
∂∣I ∣P (b,σ(b), . . . ,σn(b))

∂xi00 ∂x
i1
1 . . .∂x

in
n

⋅ 1
i0!i1! . . . in!

=
∂∣I ∣ ∑

J∈Λ
cJxJ

∂xi00 ∂x
i1
1 . . .∂x

in
n

⋅ 1
i0!i1! . . . in!

RRRRRRRRRRRRRRRRx=σ(b)

=∑
J≥I
cJ

∂∣I ∣xJ

∂xi00 ∂x
i1
1 . . .∂x

in
n

⋅ 1
i0!i1! . . . in!

RRRRRRRRRRRx=σ(b)

=∑
J≥I
cJ (

J!
(J − I)!

⋅x(J−I) ⋅ 1
I !
)
RRRRRRRRRRRx=σ(b)

=∑
J≥I
cJ ((

J
I
) ⋅x(J−I))

RRRRRRRRRRRx=σ(b)
.

Here by (JI) we mean (j0i0)(
j1
i1
)⋯(jnin). Denoting this coefficient by αJ we

have
f(I)(b) =∑

J≥I
cJ ⋅αJ ⋅σ (J−I)(b).

Let Im be the maximal multi-index in ∆ with respect to lexicographical
order.
Then we have

f(Im)(b) = ∑
J≥Im

cJ ⋅αJ ⋅σ (J−Im)(b). (6.1.4)

Since Im is the greatest element in ∆, there is no element of ∆ appearing in
f(Im)(b). Since αJ is a natural number, we have v(αJ) = 0. Therefore, (6.1.4)
and (6.1.3) imply

v(f(Im)(b)) ≥min
J≥Im
{v(cJ)+v(αJ)+ ∣J − Im∣ρv(b)}

=min
J≥Im
{v(cJ)+ ∣J ∣ρw}− ∣Im∣ρw

= v(cIm)+ ∣Im∣ρw− ∣Im∣ρw = v(cIm).

On the right side of the above inequality, the minimum is attained only
once. Hence,

v(f(Im)(b)) = v(cIm). (6.1.5)
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As Im ∈∆, (6.1.3) gives

v(f (b)) ≥ v(cIm)+ ∣Im∣ρw. (6.1.6)

From (6.1.5) together with (6.1.6), we have

v(f (b))−v(f(Im)(b)) ≥ ∣Im∣ρ ⋅w.

Multiply both sides by
1
∣Im∣ρ

and consider the definition of εIm . Thus, we

have
εIm =

1
∣Im∣ρ

(v(f (b))−v(f(Im)(b))) ≥w.

Therefore, we obtain
ε =max

J
∣J ∣≥1

εJ ≥ εIm ≥w.

Thus far, we have ε ≥ w. We show that this equality can not happen. We
prove this in two steps.

• Step 1: We consider

inw(f )(ᾱ) =∑
I∈∆
t−v(cI)cI σ̄ I(ᾱ). (6.1.7)

From the assumptions, ᾱ is a root of inw(f ), and (6.1.7) is zero.
On the other hand, we consider f (b) = ∑

J∈Λ
cJσ J(b), and divide the

both sides of this equation by tv(cImσ
Im(b)). Since (6.1.6) implies that

v( f (b)
tv(cImσ

Im(b))
) is non negative, we can consider the residue of both

sides. This gives

f (b)
tv(cImσ

Im(b))
=∑
J∈Λ
t−v(cImσ

Im(b))cJσ J(b). (6.1.8)

In this step, we mainly prove that

f (b)
tv(cImσ

Im(b))
= inw(f )(ᾱ) = 0. (6.1.9)

• Step 2: In this final step, we use (6.1.9) to show that ε >w.
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Step 1: We prove (6.1.9).

Proof. Suppose J ∈Λ. Then the valuation of the J-th summand appearing
on the right side of (6.1.8), is

v(t−v(cImσ
Im(b))cJσ J(b)) = −v (cImσ Im(b))+v(cJ)+v(σ J(b))

= −v(cIm)− ∣Im∣ρw+v(cJ)+ ∣J ∣ρw.

As we discussed before, v(cIm)+ ∣Im∣ρw attains the minimum. This means

v(t−v(cImσ
Im(b))cJσ J(b)) is nonnegative.

Also note that for all J ∈Λ∖∆, we have

v(t−v(cImσ
Im(b))cJσ J(b)) > 0.

Hence, (6.1.8) can be written as:

f (b)
tv(cImσ

Im(b))
=∑
I∈∆
t−v(cImσ

Im(b))cIσ I(b). (6.1.10)

We want to show that each summand appearing on the right side of (6.1.10)
coincides with the corresponding summand appearing in inw(f )(ᾱ).
Suppose I ∈ ∆ and t−v(cImσ

Im(b))cIσ I(b) is the corresponding summand in
(6.1.10). From the definition of σ , it can be written as:

t−v(cImσ
Im(b))cIσ I(b) ⋅

σ I(ᾱ)
σ I(ᾱ)

= t
−v(cImσ

Im(b))cIσ I(b)
σ I(t−wb)

⋅σ I(ᾱ)

= t−v(cIm)−∣Im∣ρw+∣I ∣ρwcI ⋅σ I(ᾱ).

(6.1.11)

Since v(cIm)+ ∣Im∣ρw = v(cI)+ ∣I ∣ρw, (6.1.11) equals t−v(cI)cIσ I(ᾱ) which is
the I-th term of inw(f )(ᾱ). This yields

f (b)
tv(cImσ

Im(b))
= inw(f )(ᾱ) = 0.

∎

Step 2: We prove ε >w.
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Proof. From Step 1, we have
f (b)

tv(cImσ
Im(b))

= 0. This means that

v( f (b)
tv(cImσ

Im(b))
) > 0.

Equivalently, this gives

v(f (b)) > v (cImσ Im(b)) = v(cIm)+ ∣Im∣ρw. (6.1.12)

From the equality in (6.1.5), (6.1.12) can be written as:

v(f (b))−v(f(Im)(b)) > ∣Im∣ρw.

Dividing both sides of this inequality by ∣Im∣ρ gives εIm > w. Therefore
ε >w. ∎

◻

In Lemma 6.1.3, we generalize Lemma 6.1.1 to a Laurent difference
polynomial in one variable.

Lemma 6.1.3. Suppose f ∈Kσ [x±1] is a Laurent difference polynomial. As-
sume w ∈ Γ and inw(f ) is not a monomial. Let ᾱ be a nonzero root of
inw(f ) in the difference residue field k. Then f has a root a ∈ K such that
v(a) =w and t−wa = ᾱ.

Proof. If f ∈ Kσ [x±1], from Remark 2.0.23, there exists g(x) ∈ Kσ [x], such
that

g(x) = f (x) ⋅σ Jmax(x).

By Lemma 4.1.9, we have

inw(g) = inw(f ⋅σ Jmax) = inw(f ) ⋅ inw(σ Jmax).

By the assumptions inw(f ) is not a monomial. Hence, inw(g) is not a
monomial. Moreover,

inw(g)(ᾱ) = inw(f )(ᾱ) ⋅ inw(σ Jmax)(ᾱ) = 0,

which means ᾱ is a root of inw(g). Therefore, we can apply Lemma 6.1.1
to obtain a root a ∈K for g such that
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• v(a) =w and

• t−wa = ᾱ.

Hence, f (a)σ Jmax(a) = g(a) = 0. As ᾱ ∈ k∗ and t−wa = ᾱ, we have a ≠ 0.
This means σ Jmax(a) ≠ 0 which implies f (a) = 0. We also have v(a) =w and
t−wa = ᾱ. ◻

Moving another step forward to obtain Proposition 6.1.9, we prove a
similar statement in Proposition 6.1.4 for a Laurent difference polynomial
f in n variables, with an extra assumption on f .

Proposition 6.1.4. Let f ∈Kσ [x±1
1 , . . . ,x±1

n ] be a Laurent difference polynomial
with different σ -powers of xn in its different monomials (see Notation 2.0.16).
Assume w = (w1, . . . ,wn) ∈ Γ n such that inw(f ) is not a monomial. Suppose
ᾱ = (ᾱ1, . . . , ᾱn) is a root of inw(f ) in (k∗)n. Then there exists an element y =
(y1, . . . ,yn) in (K∗)n that is a root of f , and satisfies the following conditions:

• v(y) =w,

• for all i, 1 ≤ i ≤ n we have t−wi ⋅yi = ᾱi .

Proof. First, we consider the case n = 1. By Lemma 6.1.3, there exists a root
y for f which satisfies the desired conditions. The difference polynomial
f can be regarded as a difference polynomial in one variable xn with coef-
ficients in Kσ [x±1

1 , . . . ,x±1
n−1].

To see this better, we use the following notation.

Notation 6.1.5. Given u(σ) ∶= (u1(σ), . . . ,un−1(σ),un(σ)) ∈ (Z[σ])n. Set
u(σ) ∶= (u1(σ), . . . ,un−1(σ)). This means that for a monomial cu(σ)xu(σ)x

un(σ)
n ,

we have cu(σ) ∈K , and by xu(σ), we mean xu1(σ)
1 ⋯xun−1(σ)

n−1 .

By using this notation each monomial of f takes the form cu(σ)xu(σ)x
un(σ)
n .

We regard f in this manner, and we use it to define a one-variable Laurent
difference polynomial g. Subsequently, we apply the case n = 1 to find a
root for g. This root ultimately yields a root of f that satisfies the desired
conditions.
Suppose for each i, 1 ≤ i ≤ n− 1, wi and ᾱi ≠ 0 are given. Choose αi to be
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a representative of ᾱi . Define yi = twiαi . Then, for each i, 1 ≤ i ≤ n−1, yi
satisfies the following conditions:

• v(yi) =wi ,

• t−wiyi = ᾱi .

Note that, αi ≠ 0, and clearly yi is nonzero.
Since, for each i, we have yi ∈ K∗, and all monomials in f have different
σ -powers of xn, g(xn) = f (y1, . . . ,yn−1,xn) is a nonzero Laurent difference
polynomial. Now we will find yn such that y = (y1, . . . ,yn) is a root of f
satisfying the intended conditions.
Using Notation 6.1.5, g(xn) can be written as:

g(xn) = ∑
u(σ)

du(σ)x
un(σ)
n ,

where du(σ) = cu(σ)yu(σ) and un(σ) ∈ Z[σ] which is of the form un(σ) =
∑mnjn=1ajnσ

jn . So the tropicalization of each monomial of g(xn) is as follows:

trop(du(σ)x
un(σ)
n )(wn) = v(du(σ))+ trop

⎛
⎝

mn

∏
jn=1
(σ jn(xn))

ajn⎞
⎠
(wn)

= v(du(σ))+
mn

∑
jn=1

ajnσ
jn
Γ
(wn)

= v(cu(σ))+v(yu(σ))+
mn

∑
jn=1

ajnρ
jn ⋅wn.

= v(cu(σ))+v(yu(σ))+un(ρ) ⋅wn.

(6.1.13)

As u(σ) ∈ (Z[σ])n−1, and for all i with 1 ≤ i ≤ n−1, we have v(yi) =wi , we
can write

v(yu(σ)) = v(
n−1
∏
i=1
yui(σ)i ) =

n−1
∑
i=1

mi

∑
ji=1

ρjiv(y
aji
i ) =

n−1
∑
i=1

mi

∑
ji=1

ρji ⋅aji ⋅wi =
n−1
∑
i=1
ui(ρ) ⋅wi .

Hence, from (6.1.13), we have

trop(du(σ)x
un(σ)
n )(wn) = v(cu(σ))+

n

∑
i=1
ui(ρ) ⋅wi .
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Suppose for w = (w1, . . . ,wn−1,wn), for all i with 1 ≤ i ≤ n− 1, we have wi =
v(yi), and wn is a variable. Then

trop(du(σ)x
un(σ)
n )(wn) = v(cu(σ))+u(ρ) ⋅w, (6.1.14)

which is a monomial of trop(g)(wn).
On the other hand, consider the tropicalization of a monomial cu(σ)xu(σ)x

un(σ)
n

in f (x1, . . . ,xn−1,xn) =∑cu(σ)xu(σ)x
un(σ)
n , where for each i, we have ui(σ) ∈

Z[σ], i.e ui(σ) =∑miji=1ajiσ
ji . It is of the following form:

trop(cu(σ)xu(σ)x
un(σ)
n )(w) = v(cu(σ))+

n

∑
i=1

trop(xui(σ)i )(wi)

= v(cu(σ))+
n

∑
i=1

mi

∑
ji=1

ajiσ
ji
Γ
(wi)

= v(cu(σ))+u(ρ) ⋅w.

(6.1.15)

The equations in (6.1.14) and (6.1.15) together imply

trop(du(σ)x
un(σ)
n )(wn) = trop(cu(σ)xu(σ)x

un(σ)
n )(w).

So in general, trop(g)(wn) = trop(f )(w).
Moreover, we have

inwn(g) = ∑
u(σ)∶v(du(σ))+un(ρ)⋅wn=trop(g)(wn)

t−v(du(σ))du(σ) ⋅x
un(σ)
n

= ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w+un(ρ)⋅wn=trop(g)(wn)

t−v(cu(σ))cu(σ)t−u(ρ)⋅wyu(σ) ⋅x
un(σ)
n ,

where by w we mean (w1, . . . ,wn−1).
Since v (t−u(ρ)⋅wyu(σ)) = 0, and also v(t−v(cu(σ))cu(σ)) = 0, we have
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inwn(g) = ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w=trop(f )(w)

t−v(cu(σ))cu(σ) t−u(ρ)⋅wyu(σ) ⋅x
un(σ)
n

= ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w=trop(f )(w)

t−v(cu(σ))cu(σ)
n−1
∏
i=1
t−ui(ρ).wiyui(σ)i ⋅xun(σ)n

= ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w=trop(f )(w)

t−v(cu(σ))cu(σ)
n−1
∏
i=1
(t−wi)ui(σ)yui(σ)i ⋅xun(σ)n

= ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w=trop(f )(w)

t−v(cu(σ))cu(σ)
n−1
∏
i=1
(t−wiyi)ui(σ) ⋅x

un(σ)
n .

(6.1.16)
As for all i, 1 ≤ i ≤ n−1, v(yi) =wi , we have

v ((t−wiyi)
ui(σ)) = v

⎛
⎝

mi

∏
ji=1

σ ji ((t−wiyi)
aji )
⎞
⎠

=
mi

∑
ji=1

v (σ ji ((t−wiyi)
aji ))

=
mi

∑
ji=1

ρjiajiv(t
−wiyi) = 0,

that allows us to write

n−1
∏
i=1
(t−wiyi)

ui(σ) =
n−1
∏
i=1
(t−wiyi)

ui(σ). (6.1.17)

The automorphism σ on K induces an automorphism σ̄ on the residue
field, such that for all x̄ ∈ k, we have σ̄(x̄) = σ(x). By abuse of notation, we
denote σ̄ also by σ . Hence (6.1.17) can be written as:

n−1
∏
i=1
(t−wiyi)

ui(σ) =
n−1
∏
i=1
(t−wiyi)

ui(σ) .
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Finally, (6.1.16) can be written as:

inwn(g)(xn) = ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w=trop(f )(w)

t−v(cu(σ))cu(σ)
n−1
∏
i=1
(t−wiyi)ui(σ) ⋅x

un(σ)
n

= ∑
u(σ)∶v(cu(σ))+u(ρ)⋅w=trop(f )(w)

t−v(cu(σ))cu(σ)
n−1
∏
i=1
ᾱui(σ)i ⋅xun(σ)n

= inw(f )(ᾱ1, . . . , ᾱn−1,xn).
(6.1.18)

By the assumptions, ᾱ is a root of inw(f ). This means

inwn(g)(ᾱn) = inw(f )(ᾱ1, . . . , ᾱn−1, ᾱn) = 0.

Note that f is a Laurent difference polynomial with different σ -powers of
xn in its different monomials. From the definition of the initial forms, as
inw(f ) is not a monomial, therefore inw(f )(ᾱ1, . . . , ᾱn−1,xn) is not a mono-
mial. From (6.1.18), it is implied that inwn(g) is not a monomial.
To sum up, we have g which is a Laurent difference polynomial in one
variable xn and wn ∈ Γ is such that inwn(g) is not a monomial. We also
know that ᾱn ∈ k∗ is a root of inwn(g). From the case n = 1, there exists a
point yn ∈K∗ such that

• 0 = g(yn) = f (y1, . . . ,yn−1,yn),

• v(yn) =wn,

• t−wnyn = ᾱn.

Hence, (y1, . . . ,yn) is a root of f which satisfies the desired properties of
the statement. ◻

In Proposition 6.1.4, we imposed a condition on f . Lemma 6.1.6 shows
that this does not lead to loss of generality. More precisely, even if f is
an arbitrary Laurent difference polynomial, associated to f , one can find
a Laurent difference polynomial g with the desired condition.

Lemma 6.1.6. Let f be a Laurent difference polynomial in Kσ [x±1
1 , . . . ,x±1

n ].
For a natural number l, we define the following automorphism:

φ∗l ∶Kσ [x
±1
1 , . . . ,x±1

n ]Ð→Kσ [x±1
1 , . . . ,x±1

n ],
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such that, for all i with 1 ≤ i ≤ n−1, we have φ∗l (xi) ∶= xixl
i

n . We also define
φ∗l (xn) ∶= xn, and φ∗l (xσ) ∶= (φ

∗
l (x))σ , which means that φ∗l (f (x1, . . . ,xn)) ∶=

f (x1xl
1

n , . . . ,xn−1xl
n−1

n ,xn). Then, for a large enough l, g ∶= φ∗l (f ) is a Lau-
rent difference polynomial with different σ -powers of xn in its different
monomials.

Proof. Using Notation 6.1.5, for a monomial xu(σ)xun(σ)n , we have

φ∗l (x
u(σ)xun(σ)n ) =φ∗l (x

u(σ))φ∗l (x
un(σ)
n )

=
n−1
∏
i=1
(xixl

i

n )
ui(σ)

xun(σ)n

= xu(σ)
n−1
∏
i=1
xui(σ)l

i

n ⋅xun(σ)n

= xu(σ)xun(σ)+∑
n−1
i=1 ui(σ)l

i

n .

Suppose xu(σ)xun(σ)n and xu
′(σ)xu

′

n(σ)
n are two monomials. We have

φ∗l (x
u(σ)xun(σ)n ) = xu(σ)xun(σ)+∑

n−1
i=1 ui(σ)l

i

n ,

and also
φ∗l (x

u′(σ)xu
′

n(σ)
n ) = xu

′(σ)x
un(σ)+∑n−1

i=1 u
′

i(σ)li
n .

Consider the following equality

un(σ)+
n−1
∑
i=1
ui(σ)li = un(σ)+

n−1
∑
i=1
u′i(σ)l

i .

This gives
n−1
∑
i=1
(ui(σ)−u′i(σ)) l

i = 0.

The element ∑n−1
i=1 (ui(σ)−u′i(σ)) li of Z[σ][l] has finitely many roots in

N. If we choose l to be a natural number greater than all of them, then the
image of these two monomials under φ∗l would be two monomials with
different σ -powers of xn.
Hence, for a large enough natural number l, φ∗l maps f to a Laurent dif-
ference polynomial with different σ -powers of xn in its different monomi-
als. ◻
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Lemma 6.1.7. Let f be a Laurent difference polynomial in Kσ [x±1
1 , . . . ,x±1

n ].
Suppose w = (w1, . . . ,wn) ∈ Γ n, and ᾱ = (ᾱ1, . . . , ᾱn) ∈ (k∗)n are given.
Assume for a large enough natural number l, φ∗l is defined as in Lemma
6.1.6. If y′ = (y′1, . . . ,y′n) is a root of g =φ∗l (f )with the following properties:

• ∀i, 1 ≤ i ≤ n−1 ∶ v(y′i) =wi − liwn ∶=w
′
i and t−wi+liwny′i = ᾱiᾱ−l

i

n ,

• v(y′n) =wn and t−wny′n = ᾱn.

Then there exists a root y = (y1, . . . ,yn) for f satisfying the following condi-
tions:

• v(y) =w,

• ∀i, 1 ≤ i ≤ n ∶ t−wiyi = ᾱi .

Proof. Let y′ = (y′1, . . . ,y′n) be a root of φ∗l (f ) such that y′1, . . . ,y
′
n ∈K∗, and it

satisfies the following conditions:

• ∀i, 1 ≤ i ≤ n−1 ∶ v(y′i) =w
′
i =wi − liwn and t−wi+liwny′i = ᾱiᾱ−l

i

n ,

• v(y′n) =wn and t−wny′n = ᾱn.

Define y = (y1, . . . ,yn) as follows:

∀i, 1 ≤ i ≤ n−1 yi = y′iy
′
n
li and yn = y′n.

Since φ∗l (f )(y′) = 0, from the definition of φ∗l , we have

0 =φ∗l (f )(y
′
1, . . . ,y

′
n) = f (y′1y′n

l , . . . ,y′n−1y
′
n
ln−1

,y′n) = f (y),

which means y is a root of f . For the root y, we have

v(y) = (v(y1), . . . ,v(yn−1),v(yn))
= (v(y′1)+ l1v(y′n), . . . ,v(y′n−1)+ ln−1v(y′n),v(y′n)) =w.

(6.1.19)

We assumed for the root y′ of φ∗l (f ) that

t−wi+liwny′i = ᾱiᾱ
−li
n for all i, 1 ≤ i ≤ n−1.
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So for all i with 1 ≤ i ≤ n−1, by an easy computation, we obtain

ᾱi = t−wi+l
iwn−wnliy′iy

′
n
li = t−wiyi . (6.1.20)

By (6.1.19) and (6.1.20), the root y of f has the intended properties. ◻

Lemma 6.1.8. Let f be a Laurent difference polynomial in Kσ [x±1
1 , . . . ,x±1

n ].
Suppose w = (w1, . . . ,wn) ∈ Γ n, and ᾱ = (ᾱ1, . . . , ᾱn) ∈ (k∗)n are given. As-
sume that inwf is not a monomial and we have inwf (ᾱ) = 0 .
If for a large enough natural number l, we define φ∗l as in Lemma 6.1.6,
then for g = φ∗l (f ), we have inw′(g) is not a monomial, where w′ = (w1 −
l1wn, . . . ,wn−1 − l(n−1)wn,wn), and ᾱ′ = (ᾱ1ᾱ−l

1

n , . . . , ᾱn−1ᾱ−l
(n−1)

n , ᾱn) is a root
of inw′(g).

Proof. We start by proving that trop(f )(w) = trop(φ∗l (f ))(w′). To do so,
we look at the tropicalization of each monomial in each of them. The
tropicalization of the monomial cu(σ)xu(σ)x

un(σ)
n of f is

trop(cu(σ)xu(σ)x
un(σ)
n )(w) = v(cu(σ))+u(ρ) ⋅w,

and the tropicalization of the corresponding monomial in φ∗l (f ) at the
point w′ is

trop(φ∗l (cu(σ)x
u(σ)xun(σ)n ))(w′) = trop(cu(σ)xu(σ)x

un(σ)+∑n−1
i=1 ui(σ)l

i

n )(w′)

= v(cu(σ))+u(ρ) ⋅w′ +
n−1
∑
i=1
li
mi

∑
ji=1

ajiρ
jiw′n

= v(cu(σ))+u(ρ) ⋅w′ +
n−1
∑
i=1
liui(ρ) ⋅w′n

= v(cu(σ))+ (u1(ρ), . . . ,un−1(ρ),un(ρ))(w1 − l1wn, . . . ,wn−1 − l(n−1)wn,wn)

+
n−1
∑
i=1
liui(ρ) ⋅wn

= v(cu(σ))+
n−1
∑
i=1
ui(ρ)wi − liui(ρ)wn +un(ρ)wn +

n−1
∑
i=1
liui(ρ) ⋅wn

= v(cu(σ))+u(ρ) ⋅w = trop(cu(σ)xu(σ)x
un(σ)
n )(w).
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Hence, we have

trop(f )(w) = trop(φ∗l (f ))(w
′).

Suppose inw(f ) is not a monomial. Let

t−v(cu(σ)) ⋅ cu(σ)xu(σ)x
un(σ)
n

be one of its monomials. From the definition of inw(f ), it follows that

trop(cu(σ)xu(σ)x
un(σ)
n )(w)

attains the minimum. Since trop(f )(w) = trop(φ∗l (f ))(w′), we conclude
that,

trop(φ∗l (cu(σ)x
u(σ)xun(σ)n ))(w′)

attains the minimum in trop(φ∗l (f ))(w′). Therefore, the corresponding
monomial appears in inw′ (φ∗l (f )). Thus, if inw(f ) has more than one
monomial, so does inw′ (φ∗l (f )). More precisely, this corresponding mono-
mial in inw′ (φ∗l (f )) is

t−v(cu(σ))cu(σ)φ
∗
l (x

u(σ)xun(σ)n ) = t−v(cu(σ))cu(σ)xu(σ)x
un(σ)+∑n−1

i=1 ui(σ)l
i

n .

Assume ᾱ is a root of inw(f ). We have

(t−v(cu(σ))cu(σ)xu(σ)x
un(σ)+∑n−1

i=1 ui(σ)l
i

n )(ᾱ′)

= t−v(cu(σ))cu(σ)ᾱ
u1(σ)
1 ᾱ−u1(σ)l1

n ⋯ᾱun−1(σ)
n−1 ᾱ−un−1(σ)l(n−1)

n ᾱ
un(σ)+∑n−1

i=1 ui(σ)l
i

n

= t−v(cu(σ))cu(σ)ᾱ
u1(σ)
1 ⋯ᾱun−1(σ)

n−1 ᾱ
−∑n−1

i=1 ui(σ)l
i

n ᾱ
un(σ)+∑n−1

i=1 ui(σ)l
i

n

= (t−v(cu(σ))cu(σ)xu(σ)x
un(σ)
n )(ᾱ).

Hence, we have inw′(φ∗l (f ))(ᾱ′) = inw(f )(ᾱ) = 0 which means ᾱ′ is a root
of inw′(φ∗l (f )). ◻

By combining Proposition 6.1.4 with the three preceding lemmas, we
derive the main result of this section, which is presented in the following
proposition.
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Proposition 6.1.9. Let f ∈Kσ [x±1
1 , . . . ,x±1

n ] be a Laurent difference polynomial,
and w = (w1, . . . ,wn) ∈ Γ n such that inw(f ) is not a monomial. Suppose ᾱ is a
root of inw(f ) in (k∗)n. Then there exists an element y in (K∗)n which is a
root of f , and satisfies the following conditions:

• v(y) =w,

• ∀i, 1 ≤ i ≤ n ∶ t−wi ⋅yi = ᾱi .

Proof. By Lemma 6.1.6, there exists a Laurent difference polynomial g cor-
responding to f with different σ -powers of xnin its different monomials.
Lemma 6.1.8 guarantees that the assumptions of Proposition 6.1.4 hold
for the Laurent difference polynomial g, w′ and ᾱ′ (where w′ and ᾱ′ are
defined as in Lemma 6.1.8). Hence, from Proposition 6.1.4, we find a root
y′ for g which satisfies the following conditions:

• v(y′) =w′,

• ∀i, 1 ≤ i ≤ n ∶ t−w′i .y′i = ᾱ
′
i .

Finally, Lemma 6.1.7 implies that corresponding to y′, there exist a root y
for f which satisfies the desired conditions.

◻

6.2 The Difference Kapranov Theorem

In this section by using Proposition 6.1.9, we prove the difference version
of Kapranov’s Theorem, which is one of the main results of this thesis.

Theorem 6.2.1. (Difference Kapranov Theorem)
Let K be a multiplicative valued difference field of characteristic zero, which

is spherically complete. Assume its difference residue field is an ACFA of char-
acteristic zero and the scaling exponent ρ is transcendental.
Let the difference value group Γ be a subgroup of R that is a Q(ρ)-module.
Suppose f ∈ Kσ [x±1

1 , . . . ,x±1
n ] is a Laurent difference polynomial.The following

sets coincide:
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1. trop(V (f )) ⊆Rn which is the difference tropical hypersurface associated
to f ;

2. the set of all the points w ∈Rn for which the initial form inw(f ) is not a
monomial;

3. the closure of the set A = {(v(y1), . . . ,v(yn)) ∶ (y1, . . . ,yn) ∈ V (f )} in R
n.

Proof. (1) = (2): As it is defined in Definition 4.1.4, trop(V (f )) is the set
of all tropical roots of f . Therefore by Lemma 4.1.7, the sets in (1) and (2)
are equal.
(3) ⊆ (1): From Proposition 4.3.1, we know that trop(V (f )) is the support
of a polyhedral complex, or equivalently it is the union of some polyhe-
dra. As f has finitely many monomials, trop(V (f )) is the union of finitely
many polyhedra, each of which is closed so trop(V (f )) is closed.
Let (v(y1), . . . ,v(yn)) ∈A. From the definition of A, y = (y1, . . . ,yn) ∈ (K∗)n is
a root of f . This means for any monomial cu(σ)xu(σ) of f , where cu(σ) ≠ 0,
we have v(cu(σ)yu(σ)) < v(f (y)) = v(0) =∞; in fact

v
⎛
⎝ ∑
u(σ)∈(Z[σ])n

cu(σ)y
u(σ)⎞
⎠
≠ min
u(σ)∈(Z[σ])n

cu(σ)≠0

{v(cu(σ))+u(ρ) ⋅v(y)} .

Therefore, there exist two indices u(σ) and u′(σ) for which we have

v(cu(σ))+u(ρ) ⋅v(y) = v(cu′(σ))+u′(ρ) ⋅v(y),

and they achieve the minimum, or in other words trop(f ) attains
its minimum in v(y) at least twice. This means v(y) ∈ trop(V (f )),
so {v(y) ∶ y ∈ V (f )} ⊆ trop(V (f )). As trop(V (f )) is closed, we have
{v(y) ∶ y ∈ V (f )} ⊆ trop(V (f )). It follows that the set in (3) is contained
in the set in (1).
(1) ⊆ (3): Let w ∈ trop(V (f )) ∩ Γ n. Since trop(f ) attains its minimum at
w at least twice, we deduce from the equality of the sets in (1) and (2)
that inw(f ) is not a monomial. Besides, inw(f ) is a Laurent difference
polynomial with coefficients in an ACFA field. Therefore, by Theorem
2.0.42 inw(f ) has a root ᾱ ∈ (k∗)n. So by Proposition 6.1.9, there ex-
ists y ∈ (K∗)n such that f (y) = 0, or equivalently y ∈ V (f ) and v(y) = w.
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This means that trop(V (f ))∩ Γ n ⊆ A. Moreover, trop(V (f ))∩ Γ n is dense
in trop(V (f )). To see this, consider Proposition 4.3.1. From this result,
trop(V (f )) is the support of a pure (Γ ,Q(ρ))−polyhedral complex of di-
mension (n − 1). Suppose P is a facet of this polyhedral complex. So it
is a (Γ ,Q(ρ))−polyhedron of dimension (n − 1). Define the projection
map π on P , which takes each point to its first (n − 1) coordinates. This
map is also bijective. Since the interior of π(p) in R

n−1 is nonempty, we
have π(p)○ = π(p). From this, it is not difficult to show that π(p)∩ Γ n−1 is
dense in π(p). Using the bijection, P ∩ Γ n is also dense in P . Consequently
trop(V (f ))∩ Γ n is dense in trop(V (f )). Thus, we have

trop(V (f )) = trop(V (f ))∩ Γ n ⊆A.

Hence, trop(V (f )) is included in the set in (3) and this implies the equal-
ity of the sets in (1) and (3). ◻
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