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This comment summarizes and discusses the key findings 
of the recent publication by Loescher, C.M., Freundt, J.K., 
Unger, A. et al. Titin governs myocardial passive stiffness 
with major support from microtubules and actin and the 
extracellular matrix. Nat Cardiovasc Res 2, 991–1002 (2023). 
https:// doi. org/ 10. 1038/ s44161- 023- 00348-1. It introduces 
the background of the addressed issue, highlights the strength 
of the study and discusses remaining questions.

Comment:
The stiffness of the myocardium plays a crucial role in 

determining cardiac function, for which passive diastolic 
filling of the ventricles is essential. It is also important 
for systolic function, due to the load-dependent activation 
through the Frank-Starling mechanism. Myocardial passive 
stiffness is largely determined by the extracellular matrix 
and the sarcomere filament titin, and changes in expression 
and posttranslational modification of both are important for 
pathologically impaired diastolic function [6, 10]. More 
recent studies demonstrated that the intracellular network of 
intermediate filaments and microtubules, which is involved 
in mechanical signaling, intracellular transport, and struc-
tural organization of myofibrils, also contributes to cardio-
myocyte passive stiffness in healthy and diseased hearts [2]. 
This has once again fueled ongoing debates about which of 
the extracellular and intracellular components involved plays 
the key role [1]. At first glance, this debate may appear to be 
of purely academic interest, but it may be of considerable 
clinical importance, as it could set the focus for further stud-
ies and therapeutic approaches to heart failure.

Loescher et al. have revisited the topic with a very elegant 
and comprehensive methodological approach [7]. By using a 
genetic mouse model for titin cleavage [9], the authors were 
able to specifically disrupt the titin filament and investigate 
its involvement in the passive stiffness of ventricular fiber 
bundles and single cardiomyocytes under different load 
conditions. Step by step, the authors specifically removed 
extracellular matrix, microtubules and actin using different 
protocols and analyzed their relative contribution to passive 
stiffness. Importantly, unlike many others before, Loescher 
et al. went one step further and broke down the viscoelastic 
properties of the myocardium into two defined sub-aspects: 
the velocity-insensitive = elastic component and the velocity-
sensitive = viscous component. The results of the study are 
truly exciting and emphasize that all together titin, microtu-
bules, actin and the extracellular matrix significantly influ-
ence passive stiffness. Moreover, the study provides a detailed 
breakdown of the players and their significance for different 
aspects of passive forces. It turns out that microtubules have 
a stronger effect on viscous forces, whereas titin significantly 
contributes under all conditions and dominates the elastic 
forces at both low and high strains. This confirms that titin 
is a major determinant of the passive stiffness relevant for 
diastolic filling and that targeted manipulation of titin is a 
promising concept to counteract pathological changes in both 
the viscous and elastic components of passive stiffness.

Although the study revealed the contribution of differ-
ent players under controlled physiological conditions, it did 
not resolve but rather stimulated the debate on the relative 
contributions during heart failure. In the intact myocar-
dium, all protein networks and filament systems interact in 
a highly complex manner. Therefore, manipulating a single 
component will most likely affect all others. It should fur-
ther be considered that the passive stiffness is dynamically 
modulated during disease progression, e.g. by posttransla-
tional modification [6, 3]. In mouse hearts it was shown 
that titin-mediated passive tension is significantly increased 
within hours after ischemia/reperfusion, whereas changes 
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in collagen expression were observed only a few days after 
the ischemic event [5, 4]. In contrast to these early adapta-
tions, hearts from patients with end-stage ischemic heart 
failure showed increased collagen expression and micro-
tubule-dependent changes to cardiomyocyte passive stiff-
ness, whereas titin-based passive tension was reduced due to 
altered titin isoform composition [3, 8]. These observations 
add a temporal component to the already complex relation-
ship of all contributors, which must be considered when 
developing approaches to improve myocardial passive stiff-
ness. Taken together, it once again holds true what Aristotle 
said: the whole seems to be more than the sum of its parts.
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