
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use: 

Mortality of type 2 diabetes in Germany: additional insights from Gompertz models

Suggested Citation:
Kuß, O., Baumert, J., Schmidt, C., & Tönnies, T. (2024). Mortality of type 2 diabetes in Germany: additional
insights from Gompertz models. Acta Diabetologica, 61(6), 765–771.
https://doi.org/10.1007/s00592-024-02237-w

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20250110-110810-3

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Oliver Kuss, Jens Baumert, Christian Schmidt & Thaddäus Tönnies

Article - Version of Record



Vol.:(0123456789)

Acta Diabetologica (2024) 61:765–771 
https://doi.org/10.1007/s00592-024-02237-w

ORIGINAL ARTICLE

Mortality of type 2 diabetes in Germany: additional insights 
from Gompertz models

Oliver Kuss1,2,3  · Jens Baumert4  · Christian Schmidt4  · Thaddäus Tönnies1 

Received: 30 August 2023 / Accepted: 9 January 2024 / Published online: 11 March 2024 
© The Author(s) 2024

Abstract
Aims The Gompertz law of mortality proclaims that human mortality rates in middle to old ages grow log-linearly with age 
and this law has been confirmed at multiple instances. We investigated if diabetes mortality in Germany also obeys to the 
Gompertz law and how this information helps to communicate diabetes mortality more intuitively.
Methods We analyzed all statutory health-insured persons in Germany in 2013 that were aged 30 years or older. Deaths in 
2014 were recorded and given in 5-year age groups. We fitted weighted linear regression models (separately for females and 
males and for people with and without diabetes) and additionally computed the probability that a person with diabetes dies 
before a person of the same age and sex without diabetes, and the “diabetes age”, that is, the additional years of mortality 
risk added to an individual’s chronological age due to diabetes-related excess mortality.
Results We included N = 47,365,120 individuals, 6,541,181 of them with diabetes. In 2014, 763,228 deaths were recorded, 
among them 288,515 with diabetes. Diabetes mortality followed nearly perfectly Gompertz distributions. The probability 
that a person with diabetes dies before a person without diabetes was 61.9% for females and 63.3% for males.
Conclusions Diabetes mortality for females and males aged 30 years or older in Germany in 2014 followed the Gompertz 
law of mortality. The survival information of the population with diabetes during a large part of the lifespan can thus be 
reduced to the two parameters of the Gompertz distribution.

Keywords Epidemiology · Type 2 diabetes · Mortality · Germany · Gompertz distribution

Introduction

In 1825, the British actuary Benjamin Gompertz discovered 
a strikingly simple relation between the mortality rate and 
age [1]. He had analyzed death records in Sweden, Eng-
land and France and found that the natural logarithm of the 

mortality rate between ages of 20 and 60 years grows lin-
early with age [2].

In mathematical terms, the “Gompertz Law of Mortality” 
can be written as

where µ(x) denotes the mortality rate, that is, the hazard 
of death at age x, and α and β are constants that can be 
estimated from reported life tables or other survival infor-
mation. That is, the Gompertz law effectively reduces the 
survival information of a complete population during a large 
part of the possible lifespan to just two parameters (α and 
β). In addition, it was found that the Gompertz law applies 
nearly universally, especially also across time, and even 
across species [3], but of course with varying age ranges.
With respect to mortality among people with diabetes there 
is some evidence for the log-linear association of mortality 
rates with age [4–8] although this has not always explicitly 
attributed as following the Gompertz law.

μ(x) = �e�x,
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In the following we report on an analysis of a claims data 
set from all statutory health-insured persons in Germany in 
2013 aged 30 years or older, with the vital status in the study 
population ascertained from the same data set in 2014. This 
work has several aims. First, we check if diabetes mortality 
in Germany also follows the Gompertz law. Second, as we 
find this to be the case, we propose two underused measures 
for describing diabetes mortality, (i) the probability that a 
person with diabetes dies before one without diabetes and 
(ii) the “diabetes age”, that is, the additional years of mortal-
ity risk added to an individual’s chronological age if diabetes 
is present. Third, we quantify the strength of the association 
between mortality rates and age and thus the goodness of the 
Gompertz fit by computing  R2 statistics. Finally, we assess 
if two other mechanistically plausible distributions (Weibull 
and Logistic) are superior to the Gompertz fit.

Methods

We use the data set from a recent publication on excess 
mortality in adults with documented diabetes in Germany 
[9]. This includes all statutory health-insured persons in 
Germany in 2013 (roughly 90% of the German population) 
that were aged 30 years or older. Diabetes was defined by 
the ICD-10 codes E10-E14, documented in 2013 in at least 
two-quarters on an outpatient setting or at least once on an 
inpatient setting.

The vital status of the study population was assessed 
in 2014, and given in 5-year age groups (30– < 35, 
35– < 40,…,> 95). We applied two modifications to the 
original data set. First, we modified the denominator of the 
mortality rates within each group of age, sex and diabetes 
state by adding only half of the observation time (0.5 years) 
under risk for all deaths to the denominator. This reflects 
the assumption that death times are uniformly distributed 
across the observation time. Second, instead of using 5-year 
age group as a categorical variable in the model fit, we 
used the mean age of death in the respective group as a 
continuous variable. We additionally accounted for the fact 
that within age groups people at older ages are more likely 
to die than people at younger ages. To this task, we used the 
most recent (2017) additive correction factors for Germany 
as proposed by the Human mortality database [10], where 
we applied identical correction factors for people with and 
without diabetes. The full data set is given in Table 1, where 
the corrected mean ages of death are given in the second 
column. For example, in the age group 70–74 for females, 
we used the mean age of death of 72.64 years, instead of 
72.5 years which would have been the midpoint of the 
interval.

For primary statistical analysis we fitted Gompertz 
models in four groups, that is, separately for females and 

Table 1  Full analysis data set for the four groups of diabetes state and sex

Age group Mean age 
at death

Number of 
deaths in 
2014

Number of 
survivors in 
2014

Mortality 
rate per 1000 
persons

No diabetes, Female
  30–34 32.66 612 2,041,495 0.30
  35–39 37.72 881 1,939,888 0.45
  40–44 42.70 1628 2,107,408 0.77
  45–49 47.70 3555 2,754,706 1.29
  50–54 52.74 6232 2,787,650 2.23
  55–59 57.67 7902 2,312,260 3.41
  60–64 62.64 10,226 1,950,936 5.23
  65–69 67.67 11,404 1,451,002 7.83
  70–74 72.64 18,929 1,608,154 11.70
  75–79 77.69 28,674 1,468,599 19.34
  80–84 82.69 36,859 884,115 40.84
  85–89 87.56 54,580 602,540 86.66
  90–94 92.31 52,373 280,705 170.7

> 95 96.95 20,553 55,476 312.6
No diabetes, Male

  30–34 32.64 1198 1,932,965 0.62
  35–39 37.65 1547 1,768,244 0.87
  40–44 42.71 2622 1,872,286 1.40
  45–49 47.68 5717 2,436,612 2.34
  50–54 52.74 10,115 2,439,861 4.14
  55–59 57.69 13,255 1,957,523 6.75
  60–64 62.66 16,813 1,553,716 10.76
  65–69 67.62 17,309 1,103,558 15.56
  70–74 72.61 26,659 1,165,921 22.61
  75–79 77.61 34,891 1,002,363 34.21
  80–84 82.60 34,466 520,173 64.13
  85–89 87.45 33,130 264,202 118.0
  90–94 92.21 18,074 76,532 211.2

> 95 96.86 4509 10,336 358.1
Diabetes, Female

  30–34 32.66 45 22,168 2.03
  35–39 37.72 59 31,679 1.86
  40–44 42.70 195 51,784 3.76
  45–49 47.70 446 96,031 4.63
  50–54 52.74 1111 158,758 6.97
  55–59 57.67 2132 229,959 9.23
  60–64 62.64 3703 327,596 11.24
  65–69 67.67 5518 352,288 15.54
  70–74 72.64 11,063 479,304 22.82
  75–79 77.69 21,773 597,348 35.80
  80–84 82.69 28,747 427,773 65.02
  85–89 87.56 35,931 279,490 120.8
  90–94 92.31 28,962 120,278 214.9

> 95 96.95 8806 20,149 358.7
Diabetes, Male

  30–34 32.64 78 18,251 4.26



767Acta Diabetologica (2024) 61:765–771 

males, and for people with and without diabetes. Follow-
ing the proposal of Tai/Noymer [11], we used weighted 
linear regressions with the natural logarithm of the mor-
tality rate in the respective age group (Log[MR]) as the 
outcome, the mean age of death within age groups as the 
only (continuous) covariate, and the absolute number of 
deaths D within age groups as weights. To be concrete, the 
model is a linear regression model

with ε the residual error. The regression parameter β for the 
mean age of death then equals the Gompertz parameter β. 
The Gompertz parameter α is computed via exponentiation 
from the model's intercept Log(α). The four weighted linear 
regression models were fitted by maximum likelihood with 
a common Log-likelihood function to enable comparison 
across groups while properly accounting for the full 
estimation uncertainty.

To assess the fit of the Gompertz models to the 
observed Log(MR)s, we drew scatterplots of Log(MR) 
versus age. In the case of mortality being actually 
Gompertzian, Log(MR) and mean age would be linearly 
related and we computed weighted (using the absolute 
number of deaths as the respective weight) R2 statistics 
to assess this linearity and the variation on Log(MR) that 
is explained by the regression on age. In a second effort 
to assess the Gompertz fit, we computed weighted linear 
regression models assuming the distribution for age of 
death to follow a Weibull or a logistic distribution. Both 
distributions have been described as logically plausible 
to model human mortality at middle and higher ages [12, 
13]. In the Weibull case, the weighted linear regression 
model has to use the natural logarithm of the mean age 

Log[MR](X) = Log(�) + �x + �,

of death as the single covariate. In the logistic case, 
the outcome of the weighted linear regression model is 
not the Log[MR], but the Logit[MR], that is, Log[MR/
(1-MR)].

In addition, we also report on two (at least in our view) 
underused measures to communicate diabetes mortality, 
first, the probability that a person with diabetes (and the 
same age and sex) dies before a person without diabetes 
and, second, the “diabetes age”.

The probability that a person with diabetes dies before 
a person without diabetes ranges between 0 and 100%. 
A value of 50% (or 0.5) indicates that a person with 
diabetes would die before a person without diabetes in 
half of the cases. This would correspond to the toss of a 
coin and to no association between diabetes and mortality. 
For Gompertz distributions this probability can only be 
computed by numerical integration and Saracoglu/Kaya 
[14] give the respective formula.

The “diabetes age” is defined as the additional years 
of mortality risk added to a person’s chronological age if 
diabetes is present. It is thus only defined for persons with 
diabetes and it can be interpreted for example as follows: 
“Your diabetes age corresponds to the age of a person 
without diabetes that has the same mortality risk. So if 
your chronological age is 60 years, but your diabetes age is 
67 years, this means that you are in the same risk category 
as a 67-year old without diabetes.” [15]

Calculating diabetes age is straightforward by using 
elementary formulas for the predicted Gompertz log hazards 
for people with and without diabetes at each respective 
chronological age.

Table 1  (continued)

Age group Mean age 
at death

Number of 
deaths in 
2014

Number of 
survivors in 
2014

Mortality 
rate per 1000 
persons

  35–39 37.65 133 30,218 4.39
  40–44 42.71 328 61,490 5.32
  45–49 47.68 1015 131,778 7.67
  50–54 52.74 2337 227,310 10.23
  55–59 57.69 4582 310,250 14.66
  60–64 62.66 8056 398,011 20.04
  65–69 67.62 10,769 406,064 26.17
  70–74 72.61 19,909 500,685 38.99
  75–79 77.61 30,090 513,675 56.91
  80–84 82.60 28,810 291,350 94.23
  85–89 87.45 22,370 132,780 155.4
  90–94 92.21 9660 32,485 258.9

  > 95 96.86 1887 3714 405.2

98.0 %
[93.7 %; 98.8 %]

99.0 %
[96.9 %; 99.4 %]

98.1 %
[94.2 %; 98.9 %]

97.3 %
[91.6 %; 98.4 %]

Fig. 1  Scatterplots of Log(MR) versus age in the four groups of dia-
betes state and sex. Regression lines are given with 95% confidence 
intervals and originate from the respective weighted regression model 
using the absolute number of deaths in the respective age group as 
weights. Bubble sizes are proportional to the respective weights. 
Insets give weighted R2 statistics with their 95% confidence intervals
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All analyzes were performed in SAS (SAS Institute Inc., 
Cary, NC, USA), Version 9.4, where we used the NLMIXED 
procedure for the model fit (Fig. 1).

This study used only published, aggregated data and so 
we did not seek for the vote of a ethical committee.

Results

The data set comprised 47,365,120 individuals, 6,541,181 of 
them with diabetes. In 2014, 763,228 deaths were observed, 
among them 288,515 with diabetes. In Table 2, we give the 
results from fitting the Gompertz model in the four groups 
of sex and diabetes state. Figure 1 shows the scatterplots of 
Log(MR) versus age together with regression lines from the 
respective weighted fit. The association between Log(MR) 
and age is remarkably linear and the weighted  R2 statistics 
are always larger than 97%, thus almost perfectly pointing 
to Gompertz distributions for age of death in all four groups. 
As can be seen from weighted  R2 statistics in Table 3, the 
Weibull and the logistic distribution also give excellent fits, 
however, they do not improve the Gompertz fit, with the 
respective weighted  R2 statistics always being smaller.

Figure 2 shows the four scatterplots overlaid, and we see 
that mortality of females with diabetes is nearly identical to 
that of males without diabetes. The probability that a female/
male with diabetes dies before a female/male without diabe-
tes (and the same age) is 61.9/63.3% (Table 2). In Fig. 3 we 
report on the diabetes age. This declines with chronological 
age and is, for example, 66.1/67.0 years for a female/male 
with diabetes and a chronological age of 60 years.

Discussion

Diabetes (as well as non-diabetes) mortality rates in Ger-
many for both sexes follow nearly perfectly Gompertz dis-
tributions. That is, the full information on diabetes (and non-
diabetes) mortality in Germany can be summarized in just 
two numbers and a variety of easy accessible numbers and 
graphical displays can be derived thereof. We gave two of 
them, first, the probability that a person with diabetes dies 
before one without diabetes and, second, the “diabetes age”, 
that is, the additional years of mortality risk added to an 
individual’s chronological age if diabetes is present. Besides 
this parsimony (i.e., reducing the survival information of 
a population to just two parameters), Congdon [16] lists a 

Table 2  Results from fitting Gompertz models in the four groups of diabetes state and sex. Confidence intervals are only given if they change 
before the third decimal place

Female Male

No diabetes Diabetes No diabetes Diabetes

Gompertz α 0.0000035 0.000016 0.000021 0.000102
Gompertz β 0.115 0.102 0.098 0.083
Weighted  R2 statistics for the regres-

sion of Log(MR) on mean age of 
death

98.0% [93.7%; 98.8%] 97.3% [91.6%; 98.4%] 99.0% [96.9%; 99.4%] 98.1% [94.2%; 98.9%]

Probability that a person with diabetes 
dies before a person without diabetes

61.9% 61.9% 63.3% 63.3%

Gompertz α (Poisson Fit) 0.0000031 0.000013 0.000021 0.000098
Gompertz β (Poisson Fit) 0.117 0.104 0.097 0.083

Table 3  Results from fitting Weibull and logistic models in the four groups of diabetes state and sex

Female Male

No diabetes Diabetes No diabetes Diabetes

Weibull fit:
Weighted  R2 statistics for the 

regression of Log(MR) on 
Log(mean age of death)

93.6% [80.6%; 96.2%] 92.9% [78.7%; 95.8%] 96.0% [87.5%; 97.6%] 94.3% [82.6%; 96.6%]

Logistic fit:
Weighted  R2 statistics for the 

regression of Logit(MR) on 
mean age of death

97.1% [91.0%; 98.3%] 96.0% [87.8%; 97.6%] 98.3% [94.7%; 99.0%] 96.9% [90.2%; 98.1%]
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number of additional advantages when using parametric dis-
tributions for reporting mortality figures:

1. Smoothness: Random fluctuations due to small sample 
sizes or fluctuations in age regions with low numbers of 
observed deaths (e.g., in very old ages) are smoothed.

2. Interpolation: Mortality rates for any specific age can 
be analytically derived which is especially useful when 
only coarse information (e.g.,, in 5-year or even 10-year 
age groups) is available.

3. Comparison: Comparison between different populations, 
observation times, or modes of data collection is 
facilitated.

4. Trends and forecasting: The assessment of trends over 
time and forecasting into the future is facilitated.

In addition, using parametric distributions also enhances 
biological plausibility of age-at-death distributions. The 
regularly used models which use Poisson assumptions for 
the number of deaths in age groups necessarily assume that 
the hazard within each age group is constant, and only jumps 
to another (then again constant) level when proceeding to the 
next age group. Of course, this assumption of mortality as a 
step function of age is biologically highly implausible and 
we instead expect mortality to develop smoothly and without 
jumps in the age course. We yet assume that differences 
between parametric fits and Poisson piecewise constant fits 
would be minor, at least with age intervals being not too 
large. Indeed, Tai/Noymer [11] also proposed a Poisson 
model in their comparison of models for Gompertz mortality 
and we fitted this model to our data set. Results for the 
Gompertz parameters α and β are given in Table 2 and, as 
expected, deviate only marginally from the results of the 
weighted linear fit.

In terms of the actual analysis, the primary strength 
is that it uses a large data set, covering about 90% of the 
German population. In addition, mortality rates as seen in 
our data showed good agreement with data from official 
death statistics [9].

With respect to diabetes age, it is important to note that 
this number conveys different information as a reduction 
in life expectancy (RLE) although both measures use the 
same scale of absolute time. Imagine two persons who are 
identical in every way, except that one has diabetes, the other 
not. When referring to the RLE, then for the person having 
diabetes, this is expected to take, say, X years off the length 
of their life. When referring to the diabetes age, then for the 
person having diabetes, this gives them the annual chance 
of death of someone who is X years older [17].

Pang/Henley [18] gave some more insights into the 
relation between diabetes age and RLE and showed that the 
diabetes age is an upper bound for the RLE and thus always 
larger, but that this is only true for proportional hazards. 
Proportional hazards would mean in our case that the 
lines in Fig. 2 for people with and without diabetes within 
sexes would be parallel. This is obviously not that case and 
we rather see the well-known compression of mortality 
(converging log-linear hazards) in the diabetic as well as 
in the non-diabetic population. As such, it is difficult, if not 
impossible, to derive any relations between the diabetes age 
and the RLE here which is of course another argument for 
using the diabetes age per se, and in addition to the reduction 
in life expectancy. However, and as shown by Heard et al. 

Fig. 2  Overlaid scatterplots of Log(MR) versus age in the four groups 
of diabetes state and sex. Regression lines are given with 95% con-
fidence intervals and originate from the respective weighted regres-
sion model using the absolute number of deaths in the respective 
age group as weights. Bubble sizes are proportional to the respective 
weights

Fig. 3  Diabetes age for females and males. The light gray lines give 
the example of a female with diabetes and a chronological age of 
60 years. Her diabetes age is 66.1 years
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[17], there are also challenges in the interpretation of 
diabetes age when compared to the RLE or a less-distant-
in-time measure like the hours of life expectancy lost 
each day. Following Heard et al. [17] it is advantageous to 
communicate diabetes age not in a change-in-age format 
(“Having diabetes makes you X years older”), but in a 
personal format (“Having diabetes and being Y years old, 
increases your diabetes age to Y + X years”). It might be a 
fruitful area of further research how the concept of diabetes 
age is understood in our target population of middle-aged to 
older people with diabetes.

To check if the relation between diabetes age and RLE 
is given despite the violation of the proportional hazard 
assumption we exemplarily looked for the RLE for a 
woman with diabetes and a chronological age of 60. As 
seen in Fig. 3, such a woman has a diabetes age of 66.1. In 
a previous analysis of our group [19] which used the same 
data set, the parallel RLE would be 3.7 years. In two external 
cohorts with similar observation times (around 2013) a RLE 
of 3.9 years was reported from Scotland [20], and of around 
3 years from Sweden [21] for a 60-year old woman with 
diabetes. That is, despite the proportional hazard assumption 
not being fulfilled, the theorem of Pang/Henley might be at 
least approximately true and the diabetes age is larger than 
the RLE.

It is fair to point to some limitations of our analysis. Of 
course, our data report only on a single year (2013), and 
results might be different in previous or subsequent years. 
We could not distinguish the type of diabetes because the 
data contained implausible double diagnoses of type 1 
and type 2 diabetes in the same person. The study data are 
limited to documented diagnoses, that is, no information 
about mortality of undiagnosed diabetes is available. 
Those who died with newly documented diabetes in 2014 
are not detectable in the data set as cases and hence were 
erroneously counted as persons without diabetes. Finally, 
duration of diabetes (and other covariates) were not available 
and not accounted for.

In terms of the probability that a person with diabetes 
dies before a person without diabetes it is somewhat 
unsatisfactory that this cannot be given age-dependently. 
Instead, this probability is assumed constant and we have 
to interpret it as an averaged value across the full age range. 
To tackle this problem we fitted Gompertz models with 
decreasing age ranges by increasing the entry age. That is, 
we started with the full model (age range 30– > 95 years), 
then repeated the analysis for a smaller data set starting at 
the age of 35 years etc. This worked well and the estimated 
probabilities were rather stable and always near the values 
for the full age range for both sexes.

For future work it would be interesting to investigate 
if our results are generalizable to other situations, e.g.,, 

countries, observation times, modes of data collection, or 
in the time course.

In conclusion, diabetes mortality for females and males 
aged 30 years or older in Germany in 2014 follows the 
Gompertz law of mortality. The survival information of the 
population with diabetes during a large part of the lifespan 
can thus be reduced to the two parameters of the Gompertz 
distribution. In addition, the Gompertz distribution gives 
better fits than two competing, mechanistically also plausible 
distributions for the age at death. From the Gompertz 
distribution, further insightful figures can be computed and 
communicated. The probability that a female/male with 
diabetes dies before a female/male without diabetes (and 
the same age) is 61.9%/63.3%. Diabetes age declines with 
chronological age and is, for example, 66.1/67.0 years for 
a female/male with diabetes and a chronological age of 
60 years.
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