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Insights into gut microbiomes 
in stem cell transplantation 
by comprehensive shotgun 
long‑read sequencing
Philipp Spohr 1,4,5, Sebastian Scharf 2,5, Anna Rommerskirchen 2,5, Birgit Henrich 2,  
Paul Jäger 3, Gunnar W. Klau 1,4*, Rainer Haas 3*, Alexander Dilthey 2,4* & 
Klaus Pfeffer 2*

The gut microbiome is a diverse ecosystem, dominated by bacteria; however, fungi, phages/
viruses, archaea, and protozoa are also important members of the gut microbiota. Exploration of 
taxonomic compositions beyond bacteria as well as an understanding of the interaction between 
the bacteriome with the other members is limited using 16S rDNA sequencing. Here, we developed 
a pipeline enabling the simultaneous interrogation of the gut microbiome (bacteriome, mycobiome, 
archaeome, eukaryome, DNA virome) and of antibiotic resistance genes based on optimized long‑
read shotgun metagenomics protocols and custom bioinformatics. Using our pipeline we investigated 
the longitudinal composition of the gut microbiome in an exploratory clinical study in patients 
undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT; n = 31). Pre‑transplantation 
microbiomes exhibited a 3‑cluster structure, characterized by Bacteroides spp. /Phocaeicola spp., 
mixed composition and Enterococcus abundances. We revealed substantial inter‑individual and 
temporal variabilities of microbial domain compositions, human DNA, and antibiotic resistance genes 
during the course of alloHSCT. Interestingly, viruses and fungi accounted for substantial proportions 
of microbiome content in individual samples. In the course of HSCT, bacterial strains were stable or 
newly acquired. Our results demonstrate the disruptive potential of alloHSCTon the gut microbiome 
and pave the way for future comprehensive microbiome studies based on long‑read metagenomics.

Keywords Microbiome stability, Whole-genome sequencing (WGS), Metagenomics, Bacteriome, 
Mycobiome, Archaeome, Eukaryome, Virome, Leukemia, Bioinformatics pipeline, Oxford Nanopore, 
Hematopoietic stem cell transplantation (alloHSCT)

Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a potentially curative treatment for patients 
with high-risk hematological malignancies encompassing acute myeloid leukemia, high-risk myelodysplastic 
syndromes (MDS), and lymphoid  leukemia1–4. It is well-established that the gut bacteriome can be associated 
with specific outcomes of alloHSCT, including the occurrence of adverse events such as graft-versus-host-
disease (GvHD) or life-threatening infections. Recently, adverse outcomes, including the risk of GvHD, have 
been linked to reduced bacterial diversity of the gut  microbiome5–8, while the risk of bloodstream infections 
has been linked to the domination of individual taxa within the gut  bacteriome5,6,8,9. A set of microbial taxa, 
including Enterobacteriaceae, Clostridiales, and Blautia have been implicated in alloHSCT  success6,10–13. While 
a number of explanations for the observed associations have been put forward, including modulation of the 
immune system by microbiota-derived components and microbiome-host crosstalk at the level of metabolites, 

OPEN

1Chair Algorithmic Bioinformatics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University 
Düsseldorf, Düsseldorf, Germany. 2Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine 
University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany. 3Department of Hematology, 
Immunology, and Clinical Immunology, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 
Düsseldorf, Germany. 4Center for Digital Medicine, Düsseldorf, Germany. 5These authors contributed 
equally: Philipp Spohr, Sebastian Scharf and Anna Rommerskirchen. *email: gunnar.klau@hhu.de; haas@
med.uni-duesseldorf.de; alexander.dilthey@med.uni-duesseldorf.de; klaus.pfeffer@hhu.de

http://orcid.org/0000-0002-6039-377X
http://orcid.org/0000-0002-8299-0559
http://orcid.org/0009-0001-1524-0045
http://orcid.org/0000-0002-0565-5773
http://orcid.org/0000-0001-9250-2064
http://orcid.org/0000-0002-6340-0090
http://orcid.org/0000-0002-3652-6595
http://orcid.org/0000-0002-6394-4581
http://orcid.org/0000-0002-5652-6330
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-53506-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4068  | https://doi.org/10.1038/s41598-024-53506-1

www.nature.com/scientificreports/

the observed associations—apart from an association of overall diversity with outcome, which has been replicated 
in international multi-center  studies14—often remain  inconsistent5,15 and incompletely understood.

The vast majority of microbiome studies were performed using ribosomal DNA (rDNA) based sequencing 
methods designed for bacterial and fungal 16/23S, 18/28S or ITS region rDNA sequences, respectively, thus 
neglecting the non-fungal eukaryome, and the DNA  virome16–23. rDNA sequencing is a well-established, scalable, 
and cost-effective technology; it has, however, important limitations as it bears potential amplification-induced 
biases in bacteriome/mycobiome composition estimates and challenges in reliably assigning accurate species—or 
genus-level  labels24,25. 16S/18S rDNA sequencing is thus ill-suited to characterize the potential contributions 
to alloHSCT outcomes of other domains of microbial life. For example, in the context of infection prevention, 
fungi and protozoan parasites like Cryptosporidium spp. and Toxoplasma gondii can become relevant in the 
clinical management of  alloHSCT26,27; and Candida has been associated with  GvHD14 and  survival28,29. With 
regard to viruses, increases in persistent DNA viruses and reduced bacteriophage richness were observed to be 
associated with enteric  GvHD30.

A challenge in characterizing associations between microbiome and alloHSCT outcomes consists in the highly 
dynamic nature of the gut microbiome over the course of  alloHSCT31. The gut microbiome undergoes substantial 
temporal variation even in healthy control  individuals32; In the context of alloHSCT, patient microbiomes have 
often been impacted by multiple cycles of cytostatic and antiinfective therapeutic treatment prior to the initiation 
of  alloHSCT33, and continue to be biased by the effects of anti-bacterial, anti-fungal, and anti-viral prophylaxis, 
in addition to the effects of myeloablation and the subsequent establishment of a “new” immune system by the 
transplanted  allograft34.

Longitudinal studies taking the aforementioned aspects into account are sparse, thus, we developed a novel 
workflow to enable whole-microbiome profiling of patient microbiomes, covering all domains of microbial life 
(with the exception of RNA viruses)35. Interrogation of non-bacterial domains of microbial life from shotgun 
metagenomics is  challenging36–38; reasons for this include  contamination39,40 and coverage gaps in the relevant 
reference databases, likely remaining despite significant recent expansion  efforts41,42. We thus chose to implement 
the shotgun metagenomics step using long-read sequencing, based on the Oxford Nanopore technology, as the 
accuracy of taxonomic assignment generally increases with read  length43, and assembled a comprehensive 292 Gb 
reference database (MetaGut database v 1.0) as the basis of the bioinformatics workflow. Furthermore, k-mer-
based classification is known to be sensitive to mis-classification in the presence of out-of-database  genomes43,44, 
which, the utilization of a large reference database notwithstanding, remains a relevant concern in the gut 
microbiome context. We thus propose to complement initial k-mer-based classification with a mapping-based 
verification approach to reduce the rate of false-positive taxonomic detections. Tailored bioinformatics increased 
the analytical accuracy and reduced the rate of false-positive taxonomic detections. Moreover, bioinformatic 
tools for the enumeration of antibiotic resistance genes were implemented. Based on this, we applied the pipeline 
to characterize microbiome dynamics over the course of alloHSCT in an explorative clinical study including 
patients (n = 31) before alloHSCT, during the phase of leukopenia, and hematological reconstitution. In addition, 
a comprehensive characterization of gut microbiomes was performed for a group of healthy volunteers (n = 11) 
and compared to patient microbiomes pre-Tx. Our pipeline proved to be a valuable tool for the comprehensive 
characterization of microbiomes. Furthermore, a 3-cluster structure of pre-Tx patient microbiomes was detected 
and the acquisition and replacement of bacterial strains during the course of alloHCST could be successfully 
monitored.

Results
A pipeline for the accurate and comprehensive characterization of gut microbiomes
To enable the characterization of the gut microbiome encompassing the bacteriome, mycobiome, archaeome, 
DNA virome (bacteriophages/viruses), and protozoa of hematological patients from stool samples at high-
resolution, we developed an integrated method for robust microbiome characterization (Fig. 1). It comprises 
the following components: (i) protocols for stool sample processing and DNA extraction, based on a modified 
version of the Human Microbiome Project (HMP)  protocol45,46 for robust sample handling and DNA extraction 
and suitable for processing samples at different degrees of stool consistency (Methods); (ii) long-read sequencing 
and compositional analysis of microbiota, based on the Oxford Nanopore platform and a custom bioinformatics 
approach integrating Kraken2-based read  assignments47 with a newly developed mapping-based validation 
to ensure that sufficient-quality pairwise alignments exist between reads and the taxonomic entities they are 
assigned to; taxa with low rates of mapping-based read validation are flagged and not included in downstream 
analyses and visualizations (see Methods for details); (iii) targeted antibiotic resistance gene (ARG); and (iv) 
crAssphage analyses, based on read mapping to specific databases comprising (a) ARGs and (b) recently 
assembled crAssphage strain  sequences48; (v) longitudinal tracking of strain dynamics: short-read Illumina 
sequencing data are used to detect single-nucleotide variants (SNVs) in bacterial reference genomes, and the 
temporal dynamics of the detected SNVs over multiple samples from the same individual are investigated to 
infer the maintenance, acquisition and loss of bacterial strains. Extraction of sufficient amounts of DNA for 
metagenomic sequencing was challenging during the period immediately following alloHSCT, when patient 
stool samples are known to vary in consistency, rendering the exhibit very low biomass. We thus incorporated 
a modified version of the HMP gut microbiome  protocol45,46, which proved to work well in our study across the 
course of alloHSCT. We initially carried out three experiments as a validation for the protocol and bioinformatic 
pipeline:

First, we applied the workflow to a well-defined microbial community standard (Zymo Gut Microbiome 
Standard) and observed good concordance at the genus level between the theoretical and the inferred composition 
and lesser concordance at the species level (Pearson’s r = 0.82/0.67, for comparison a minimap2-based abundance 
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estimation leads to r = 0.84 for both levels; Supplementary Fig. 1). However, an elevated proportion of false-
positive species hits, accounting for 26.02% of total abundance were driven by reads from Veillonella rogosae 
and Prevotella corporis (which do not contain genomes in the database) being misassigned to different species 
of their respective genera (Supplementary Table 1).

Second, we applied the workflow to a cohort of 10 healthy volunteers. Here, we observed good agreement of 
high-level compositional metrics with the WGS-based component of LifeLines-DEEP49 (Supplementary Fig. 2). 
Of note, at a median frequency of 25.47% (range 9.10%–51.72%), the inferred abundance of Bacteroides spp. was 
higher in the investigated cohort of healthy volunteers compared to the LifeLines-DEEP cohort with a median 
frequency of 14.99% (range 0.80%–48.94%).

Third, we assessed the agreement between Nanopore and Illumina based sequencing. We used Kraken2 
with our default database on short-reads we had for a subset of samples. For each sample that generated at least 
10.000 reads with both platforms we resampled to a fixed amount of 10.000 reads and then compared the result-
ing compositions (Supplementary Fig. 12). We observed an overall agreement (Pearson’s r of 0.88) between the 
composition vectors.

Reliable characterization of gut microbiomes over the course of alloHSCT
To characterize the microbiomes of alloHSCT patients and to investigate the dynamic changes of the gut micro-
biome over the course of alloHSCT, we recruited a cohort of 31 patients, diagnosed with defined hematological 
malignancies (see Supplementary Note 1 and Methods for a description of the cohort and recruitment process, 
and Supplementary Table 2 for patient characteristics), undergoing alloHSCT at Düsseldorf University Hospital.

Based on 101 stool samples collected longitudinally at defined time points over the course of alloHSCT 
(pre-Tx, leukopenia, reconstitution, see Fig. 1), we assessed the ability of the workflow to enable microbiome 
characterization at different stages of the treatment cycle (Fig. 2). First, we observed that DNA yields in 
the hematological cohort differed significantly from the healthy cohort (patients 0.47 µg/g stool, healthy 
5.95  µg/g stool; p = 0.000011) and also displayed significant variation between treatment time points 
(Kruskall–Wallis p-value: 0.0031 for the 3 treatment phases). DNA yields were typically lowest during leukopenia 
(median = 0.06 µg/g stool), compared to the pre-Tx and reconstitution periods (medians = 0.6 µg/g stool and 
1.1 µg/g stool, respectively). Second, the utilized protocols enabled the generation of more than 100,000 reads 
per sample (89 samples with >  = 100,000 reads). We observed that median read counts were lowest for samples 
taken during leukopenia (median = 128,330). Third, the median of the median sample read lengths was 653 
base pairs (bp) with the longest read spanning 888,591 bp. DNA extraction and sequencing data statistics are 
summarized in Supplementary Table 3. Fourth, at median per-species validation rates of 77.79% (bacteria) and 
50.00% (viruses) across treatment periods and in the healthy cohort showed generally high rates of mapping-
based validation (Supplementary Fig. 3). Fungi exhibited lower validation rates (median = 5.33%); we observed 
pronounced differences in fungal validation rates between the healthy and alloHSCT samples, and also between 
the characterized time points, with the healthy samples generally exhibiting the lowest fungal validation rates 
(Supplementary Fig. 3).

a b

Composition
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ARG
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SNP
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Gut Microbiome
DNA Extraction

Nanopore Illuminan=31
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Time
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Figure 1.  Overview of the exploratory clinical study (a) and the workflow (b). (a) 31 patients undergoing 
alloHSCT were recruited for an exploratory study and stool samples were collected longitudinally before 
transplantation (pre-Tx), during leukopenia (defined as white blood count of ≤ 1,000/µL), and during 
reconstitution for each patient. (b) The workflow comprises optimized protocols for sample preparation and 
DNA extraction, long-read metagenomics using the Oxford Nanopore technology, and custom bioinformatics 
for taxon validation, quantification of antibiotic resistance genes/crAssphage sequences, and tracking of strain 
dynamics based on short-read Illumina data.
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Human-derived DNA is often not reported in microbiome studies; we however noted that the amount of 
human DNA differed significantly between the control group and the patient cohort, and also between the 
sampling time points within the hematological cohort. The relative proportion of human DNA was highest 
during the leukopenic period, possibly reflecting the effect of myeloablative therapy on the gut mucosa (Fig. 2). 
However, the increase in human DNA proportions might, at least in parts, reflect the decrease of microbiota after 
myeloablation and anti-infective therapy. We also observed that the per-read validation rates of the human reads 
were lowest for the control samples, i.e. indicating that a substantial proportion of the reads assigned by Kraken2 
to the “Homo sapiens” species in these samples may reflect false-positive assignments (Supplementary Fig. 3).

Per-species validation rates for archaea and non-fungal eukaryotes were close to zero in most control and 
alloHSCT samples and also across the characterized time points. Analyses of the occurrence and abundance of 

Figure 2.  DNA amounts, sequencing metadata, and high-level stool sample compositions. Shown are the 
amounts of extracted DNA per gram of stool; the number of generated Nanopore sequencing reads; median 
read lengths; and the relative proportions of microbial-, human-, and plant-assigned reads, as well as the 
proportions of reads remaining unclassified by the initial Kraken2-based step. Gray circles in the bottom panel 
indicate outliers for which less than 80% of the reads are in taxa validated by the mapping-based validation step. 
For each panel, the most significant difference between included categories is indicated (Mann–Whitney U test; 
* [p < 1.19 ×  10−3], ** [p < 2.38 ×  10−4] or *** [p < 2.38 ×  10−5]). Raw data is shown in Supplementary Table 3 and 
Supplementary Table 4.
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individual species were thus limited to the bacterial, viral and fungal components of the microbiome. Of note, 
the presence of plant-based DNA could also sometimes be validated, in particular during the leukopenic period, 
the most frequently validated plant DNA was Cucumis sativus (Cucumber) and different Triticum spp. (wheat), 
Pisum sativum (pea) and Musa spp. (banana) (Supplementary Fig. 3).

alloHSCT microbiomes exhibited dynamic and diverse compositions
Having established and validated our workflow as an informative method, we investigated high-level gut 
microbiome compositions (Fig. 3). DNA yield was lower in the patient cohort overall and specifically during 
leukopenia, possibly reflecting the impact of conditioning and antiinfective therapy as well as the stool 
consistency. The number of normalized species was highest in the samples from the control group and lowest 
for samples during leukopenia (Fig. 3, top panel). Besides, ARG-reads significantly differed between control 
samples (low) and alloHSCT samples (high) (Fig. 3, middle panel). The frequency of ARG reads of the control 
samples was significantly lower compared to alloHSCT samples (p = 0.0006281). Bacteria accounted for > 90% 
of microbial reads in 89/101 hematological samples and in 11/11 of control samples; bacteria thus dominated 
the large majority of the investigated samples. At median relative abundances of 0.53%, 0.11% and 0.02%, fungi, 
viruses, and archaea accounted for low, but non-negligible proportions of the characterized alloHSCT and 

Figure 3.  Diversity, ARG-carrying reads, and microbiome composition in stool samples from controls and 
alloHSCT patients at indicated phases. Shown are the numbers of detected genera, normalized to the sample 
with the lowest read count; the rate of reads that carry an ARG element; and the relative proportions of 
bacterial-, fungal-, archaeal-assigned reads as well as the proportion of reads assigned to DNA viruses (incl. 
bacteriophages), and non-fungal eukaryotes. Gray circles in the bottom panel indicate outliers for which less 
than 80% of the reads are in taxa validated by the mapping-based validation step. For each panel, the most 
significant difference between included categories is indicated (Mann–Whitney U test; * [p < 1.19 ×  10−3], ** 
[p < 2.38 ×  10−4] or *** [p < 2.38 ×  10−5]). Raw data is shown in Supplementary Table 3 and Supplementary 
Table 4.
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control microbiomes; median abundances of these groups were generally comparable between control and 
alloHSCT samples and between alloHSCT time points, with the exception of fungi, which showed an increased 
abundance in the alloHSCT samples in general and during leukopenia in particular (median = 1.32% vs 0.36% 
for control) (Fig. 3, bottom panel). Non-fungal eukaryotes were also estimated to account for small fractions of 
the characterized microbiomes (median = 0.49%).

The dominance of bacteria in most samples notwithstanding, individual microbiome samples were found to 
exhibit increased frequencies of non-bacterial taxa. For example, in two alloHSCT samples from one patient, 
the abundance of viral DNA was found to be ≥ 50%, accounted for by species belonging to the genus crAssphage; 
in two additional samples from different patients, it was ≥ 10% (Supplementary Table 14). Interestingly, in one 
control sample, viral abundance approached 5% (Fig. 3, bottom panel). Similarly, in five samples, fungal DNA 
was found at abundances ≥ 5%, accounted for mostly by the species Saccharomyces cerevisiae, Candida albicans, 
and [Candida] glabrata (Supplementary Table 6). In all of these instances, taxon presence was validated with 
read-mapping based verification.

Pre‑Tx alloHSCT microbiomes could be grouped into 3 distinct clusters
To investigate the structure of the pre-transplantation gut microbiome in alloHSCT patients, we carried out a 
PCoA analysis and found that pre-Tx alloHSCT and control samples fell into 3 distinct clusters (Fig. 4).

Cluster 1, comprising 18 pre-Tx alloHSCT samples from distinct patients and all 11 control samples, was 
characterized by high abundances of species belonging to the genera of Bacteroides and Phocaeicola, accompa-
nied by relatively high normalized numbers of detected species per sample; specifically, Bacteroides uniformis, 
Phocaeicola vulgatus and Phocaeicola dorei accounted for ≥ 25% of reads in Cluster 1 samples, while the median 
number of detected normalized and validated species per sample was 21.5, depicting a relatively high diversity. 
Cluster 3, comprising 6 pre-Tx alloHSCT samples, was characterized by Enterococcus spp. domination and 
exhibited the lowest diversity in terms of the number of detected species per sample; in 5/6 Cluster 3 samples, 
Enterococcus faecium accounted for ≥ 25% of sequencing reads, at a median number of 7.5 detected normalized 
and validated species per sample. Cluster 2, comprising 8 pre-Tx alloHSCT samples, was the most diverse in 
terms of the number of detected normalized species per sample (median = 26) and was also characterized by 
more uniform species abundance distributions. In Cluster 2, a median of 7.5 species were required to account 
for ≥ 50% of sequencing reads, compared to medians of 5.5 and 1 species in Clusters 1 and 3, respectively. Nota-
bly, Cluster 2 species contained in individual samples included Citrobacter freundii (max. abundance 12.6%), 
Lactobacillus amylovorus (max. abundance 41.4%), and Escherichia coli (max. abundance 27.5%); by contrast, 
the genera characteristic for Cluster 1 and 3 (Bacteroides/Phocaeicola and Enterococcus) were present at only low 
abundances in Cluster 2 (abundances ≤ 10% for 7/8 samples of Cluster 2) (Supplementary Table 15).

Suggestive structural differences between the 3 pre-Tx clusters were also apparent at the level of the fungal 
and viral microbiome components (Fig. 7). Saccharomyces cerevisiae (validated presence in 19 samples and > 10% 
relative within-fungal abundance in 15 samples) and Candida albicans (validated presence in 3 samples and > 10% 
within-fungal relative abundance in 3 samples) were the most abundant fungal species detected during the pre-
Tx period; the presence of Candida albicans, however, was limited to Cluster 2 and 3 samples. At the level of the 
DNA virome, Skunavirus dominated (> 50% relative abundance) 8 of 14 Cluster 2 and Cluster 3 samples, but only 
2 of 18 Cluster 1 samples. Conversely, crAssphage was found mostly in Cluster 1 samples (6 validated detections 
in total, 5 of which occurred in Cluster 1 samples); and 2 Cluster 1 samples were crAssphage-dominated, but no 
samples from Clusters 2 or 3.

Microbiomes in leukopenia exhibited decreased diversity and increased abundances of fungi 
and various bacterial genera
We proceeded to investigate the structure of microbiome samples collected during the leukopenic period, reflect-
ing the combined effects of myeloablation, anti-infective prophylaxis, and recent alloHSCT. Consistent with an 
assumed bottleneck effect of anti-infective prophylaxis on the population of gut microbes, the leukopenic period 
exhibited the lowest median number of normalized detected and validated microbial species per sample (13; 
compared to 20.5 and 17.5 for the pre-Tx and reconstitution periods, across all clusters, respectively; Fig. 3). The 
proportion of the microbiome accounted for by fungal taxa (mycobiome), however, was substantially increased 
during leukopenia (median per sample: 1.32% of reads, compared to 0.65 and 0.54 for pre-Tx and reconstitution, 
respectively; Fig. 2); the main detected fungal genera were Candida albicans (2.06% mean absolute abundance 
across leukopenia samples) and Saccharomyces cerevisiae (1.97% mean absolute abundance across leukopenia 
samples).

Changes in microbiome composition compared to the pre-Tx period were also apparent at the level of 
individual bacterial taxa; Bacteroides uniformis, Enterococcus faecium, Phocaeicola vulgatus, and Escherichia 
coli were detected at abundances ≥ 5% in 4.76%, 47.62%, 9.52%, and 28.58% of samples during leukopenia, 
respectively, compared to 40.63%, 28.13%, 34.38%, and 18.75% for pre-Tx samples (Supplementary Table 5 and 
Figs. 4 and 5). Of note, the observed overall expansion of Enterococcus faecium during leukopenia was driven 
by samples from patients assigned to pre-Tx Cluster 1; patients assigned to the Enterococcus-associated pre-Tx 
Cluster 3, by contrast, generally showed a reduction in mean Enterococcus faecium abundance (44.99% pre-Tx, 
11.30% leukopenia). Interestingly, changes at the level of individual species similar to bacteria were also detected 
for specific fungi: Saccharomyces cerevisiae was detected at an abundance of ≥ 5% in 53.13% of pre-Tx samples and 
71.43% of leukopenia samples showing a slight increase. A decrease can be observed for uncultured crAssphage 
(18.75% of pre-Tx samples vs. 9.52% of leukopenia samples) (Supplementary Table 6, Supplementary Table 7, 
Supplementary Table 15).
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The reconstitution microbiomes were characterized by increased similarity to the pre‑Tx 
microbiomes
Compared to samples collected during leukopenia, samples during the reconstitution period collectively 
showed similarity to pre-Tx microbiome samples. During the leukopenic period, approximately 52% (11/21) 
of collected samples were found to be within one of the 3 cluster spaces defined based on pre-Tx samples; 
during reconstitution, this fraction increased to 83% (40/48; Fig. 6). In addition, reconstitution microbiomes 
also resembled pre-Tx microbiomes at the level of observed overall abundances of bacteria, fungi, and DNA 
viruses (Fig. 3); at the level of bacterial species detected at ≥ 5% abundance (Supplementary Table 5); and at the 
level of the fungal and DNA viral species that exhibited the highest rates of validated detection at ≥ 5% relative 
abundance, i.e. Saccharomyces cerevisiae and Candida albicans for fungi, as well as as Skunavirus and crAssphages 
for DNA viruses (Supplementary Table 6, Supplementary Table 7, Fig. 7).
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Figure 4.  Microbiome structures and compositions of pre-Tx alloHSCT samples and healthy controls. The 
Figure shows (a) the positions of pre-Tx and control samples, displayed as colored dots, in the joint PCoA 
space of all samples, as well as the positions of pre-Tx Cluster 1, Cluster 2, and Cluster 3 in PCoA space (shaded 
areas), (b) bar plots visualizing the microbiome compositions of healthy control and pre-Tx alloHSCT samples, 
stratified by pre-Tx cluster membership, and (c) the rate of reads that carry an ARG element, separately for 
control and pre-Tx alloHSCT samples and stratified by pre-Tx cluster membership. The bar plots show the 
30 species that attained the highest aggregated sum of frequency across all time points, and, of these, within 
each sample, only the species that 1.) were assigned at least 5 reads to and 2.) passed the mapping-based taxon 
validation step were depicted. The combined abundances of species with fewer than 5 reads is shown in the 
category “Not enough reads”; the category “Not validated” shows the combined abundances of species with 
more than 5 Kraken2-assigned reads that did not pass the mapping-based taxon validation step. Sample labels 
below the bar plots specify patient or control sample ID, followed, for alloHSCT samples, by the day of sampling 
relative to the stem cell transplantation time point.
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Bacterial species exhibiting notable differences compared to the pre-Tx period included Roseburia intesti-
nalis, which was detected in approximately twice as many samples at abundances ≥ 5% during reconstitution 
than during pre-Tx (13% compared to 6%), and which accounted for ≥ 50% of overall microbial abundance in 
individual reconstitution samples; Parabacteroides distasonis, which exhibited dominance (≥ 50% abundance) in 
one reconstitution sample (Supplementary Table 14), but overall decreased detection at ≥ 5% abundance (10% 
during reconstitution samples compared to 25% for pre-Tx samples); and Phocaeicola vulgatus and Bacteroides 
uniformis, which also exhibited decreased detection rates at the ≥ 5% abundance threshold (15% and 17% for 
reconstitution samples compared to 34% and 41% for pre-Tx samples, respectively; Supplementary Table 5). 
While similar differences were not detected for fungal species Supplementary Table 6), a few viral species exhib-
ited exclusive detection at > 5% validated relative abundance in reconstitution samples compared to pre-Tx 
samples (Supplementary Table 7); while these detections were typically limited to individual samples, in some 
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Figure 5.  Microbiome structures and compositions during leukopenia. The Figure shows, for alloHSCT 
samples collected during the leukopenic period, (a) sample positions in the joint PCoA space of all samples, 
(b) bar plots visualizing sample microbiome compositions, and (c) rates of reads carrying an ARG element. All 
visualizations are stratified by pre-Tx cluster membership of the corresponding patients; in the top panel, pre-Tx 
cluster membership is indicated by dot color. The bar plots show the 30 species that attained the highest mean 
frequency across all time points, and, of these, within each sample, only the species that 1.) were assigned at 
least 5 reads and 2.) passed the mapping-based taxon validation step were depicted. The combined abundance of 
species with fewer than 5 reads is shown in the category “Not enough reads”; the category “Not validated” shows 
the combined abundance of species with more than 5 Kraken2-assigned reads that did not pass the mapping-
based validation step. Sample labels below the bar plots specify patient ID, followed by the day of sampling 
relative to the stem cell transplantation time point.
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instances the underlying viral species dominated the viral microbiome component (observed e.g., in the case of 
Betapolyomavirus hominis and Afonbuvirus faecalis; Fig. 7).

Pre‑Tx clusters were not associated with longitudinal microbiome trajectories or clinical 
outcomes
Pre-Tx cluster assignment did not predict the cluster membership of samples from the same patient over the 
course of alloHSCT, neither during the leukopenic nor during the reconstitution period (Figs. 5, 6); that is, pre-Tx 
cluster membership was not associated with the microbiome trajectory at the level of individual patients. Simi-
larly, the pre-Tx detection of Candida albicans or uncultured crAssphage was not associated with the detection 
of these genera during leukocytopenia or reconstitution (Fig. 7, Supplementary Fig. 7).

Furthermore, while the proportion of patients with adverse outcomes (relapse and death) or GvHD varied 
between the 3 clusters (44%, 25% and 67% for adverse outcomes in Cluster 1, 2 and 3, respectively; 11%, 12%, 

Pre-Tx
Cluster 3

Pre-Tx
Cluster 2

Pre-Tx
Cluster 1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Es
ti

m
at

ed
A

b
u

n
d

an
ce

A
R

G
-c

ar
ry

in
g

 R
ea

d
s

P
er

 1
0,

00
0 

R
ea

d
s

0
50

100
150
200
250
300
350

11
/1
82

12
/3
4

12
/3
42

14
/5
58

15
/1
6

15
/1
04

15
/1
89

16
/1
71

17
/1
3

17
/1
54

19
/1
53

21
/5
0

21
/1
20

24
/4
9

24
/1
27

28
/2
1

28
/6
3

28
/2
37

29
/1
86

34
/1
0

34
/1
8

34
/4
1

38
/1
5

39
/1
5

39
/1
15

42
/1
8

42
/3
0

13
/2
98

18
/1
3

18
/9
1

22
/9
1

23
/6
1

23
/1
30

25
/1
5

25
/3
1

37
/1
7

37
/2
2

37
/1
38

40
/1
7

41
/1
4

PCoA based on Reconstitution Samples

PCoA Axis 1

P
C
oA

 A
xi

s 
2

26
/1
2

26
/2
7

26
/1
85

31
/5
8

31
/1
78

33
/4
7

36
/3
8

36
/6
3

Control
Pre-Tx Cluster 1
Pre-Tx Cluster 2
Pre-Tx Cluster 3
Samples from
other phases

Cluster

Species
Enterococcus faecium
Bacteroides uniformis
Escherichia coli
Phocaeicola dorei
Phocaeicola vulgatus
Enterococcus faecalis
Enterocloster bolteae
Streptococcus thermophilus
Parabacteroides distasonis
Roseburia intestinalis
Flavonifractor plautii
Bacteroides ovatus
Bacteroides fragilis
Lactobacillus amylovorus
Stenotrophomonas maltophilia
uncultured crAssphage
Citrobacter freundii
Alistipes onderdonkii
Bacteroides stercoris

Blautia wexlerae
[Clostridium] innocuum

Bacteroides thetaiotaomicron

Saccharomyces cerevisiae
Prevotella copri
Erysipelatoclostridium ramosum
Faecalibacterium prausnitzii
Bacteroides xylanisolvens
Parabacteroides merdae

Lacticaseibacillus rhamnosus
Other

Dysosmobacter welbionis

Not enough reads
Not validated

−0.2 0.0 0.2 0.4 0.6

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

a

b

c

Figure 6.  Microbiome structures and composition during reconstitution. The figure shows, for alloHSCT 
samples collected during the reconstitution period, (a) sample positions in the joint PCoA space of all samples, 
(b) bar plots visualizing sample microbiome compositions, and (c) rates of reads carrying an ARG element. All 
visualizations are stratified by pre-Tx cluster membership of the corresponding patients; in the top panel, pre-Tx 
cluster membership is indicated by dot color. The bar plots show the 30 species that attained the highest mean 
frequency across all time points, and, of these, within each sample, only the species that 1.) were assigned at 
least 5 reads and 2.) passed the mapping-based taxon validation step were depicted. The combined abundance of 
species with fewer than 5 reads is shown in the category “Not enough reads”; the category “Not validated” shows 
the combined abundance of species with more than 5 Kraken2-assigned reads that did not pass the mapping-
based validation step. Sample labels below the bar plots specify patient ID, followed by the day of sampling 
relative to the stem cell transplantation time point.
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and 17% for GvHD), these differences were not statistically significant (p = 0.297 for serious outcomes; p = 0.938 
for GvHD; Pearsons’ chi-squared test). Further, we did not observe an association between cluster membership 
and the type of hematological disease patients were treated for (Supplementary Table 8).
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Figure 7.  Integrated microbiome analysis of all characterized samples. Shown are, for each sample, bar 
plots that visualize the respective compositions of the bacterial, fungal, archaeal, DNA-viral, and non-fungal 
eukaryotic components of the sample microbiome. Normalization was applied independently to each bar plot. 
The bar plots only show the 30 (for bacteria, fungi and DNA viruses), 4 (for archaea), and 11 (for non-fungal 
eukaryotes) species that attained the highest mean relative frequency within the considered taxonomic category 
across all timepoints, and, of these, within each sample, only the species that (a) were assigned at least 5 reads by 
Kraken2, and (b) passed the mapping-based taxon validation step. The combined abundance of species within 
each taxonomic category with fewer than 5 reads is shown in the category “not enough reads”; the category “not 
validated” shows the combined abundance of species with more than 5 reads that did not pass the mapping-
based validation step. Sample labels below the bar plots specify healthy control ID or the patient ID, followed by 
the day of sampling relative to the transplantation event.
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Analyses of antibiotic resistance, viral strain diversity and the tracking of individual marker 
taxa
We further investigated whether the whole-genome microbiome sequencing component could enable inferences 
about the presence of antibiotic resistance genes (ARGs), viral strain diversity, and the abundances of individual 
bacterial, fungal, or DNA-viral marker taxa which were described in previous publications (Supplementary 
Table 9. Literature List Marker taxa) or which were of particular interest. First, we investigated the detection of 
ARGs by quantifying the proportion of sequencing reads that aligned against known antibiotic resistance genes; 
the observed rates of ARG-carrying reads (Fig. 4) were relatively similar for pre-Tx and leukopenia alloHSCT 
samples (median = 20.52 ARG-carrying reads per 10.000 reads for pre-Tx samples; 23.00 for leukopenia samples), 
but substantially lower in the reconstitution (median = 13.39) and control (median = 7.01) samples. Of note, we 
observed lower rates of ARG-carrying reads in pre-Tx Cluster 1 samples than in Cluster 2 and Cluster 3 samples 
(Fig. 4; p = 0.00102); consistent with the observation that pre-Tx Clusters 2 and 3 contained microbiomes which 
were more divergent from the characterized control samples, possibly due to prior exposure to anti-infective 
medications. Next, prompted by the observation that crAssphages accounted for substantial proportions of 
total microbiome content in individual samples and by the availability of a large number of resolved crAssphage 
strain genomes from a recent  publication48, we investigated the detectability and relative abundances of different 
crAssphage strains using a mapping-based approach. This analysis showed that (i) mapping against a database 
containing only crAssphage genomes resulted in substantially higher estimated crAssphage abundances in many 
samples than classifying against the comprehensive MetaGut database (Supplementary Fig. 4), (ii) read mapping 
enabled sensitive detection and differentiation between different crAssphage strains (Supplementary Fig. 5), 
and (iii) many reads classified as crAssphage in the mapping-based analysis were assigned to other taxa by the 
Kraken2-based read assignment process (Supplementary Fig. 6). Of note, while these results confirmed the 
applicability of the generated long-read data to crAssphage-focused analyses, they also suggested that substantial 
crAssphage strain diversity is currently not represented in the comprehensive MetaGut database. Third, we inves-
tigated the longitudinal changes of the abundances of predefined marker taxa. To this end, we assembled a list of 
taxa reported to be associated with alloHSCT outcomes from the literature (Methods); and, to extend this analysis 
we added selected fungal and viral taxa accounting for substantial proportions of microbiome content (Meth-
ods, Supplementary Table 9). We then carried out a longitudinal analysis of the presence and abundance of the 
selected marker taxa over time (Supplementary Fig. 7), and found that the generated abundance estimates were 
informative for changes over time, based on largely non-overlapping abundance confidence intervals between 
time points, demonstrating, for example, fluctuations in the abundances of Akkermansia muciniphilia and Blautia.

Investigation of bacterial strain dynamics showed replacement of strains over the course of 
alloHSCT in some individuals
Finally, we investigated whether the significant impact of myeloablation, antiinfective therapy, and alloHSCT 
on the gut microbiome was associated with bacterial strain replacement, potentially indicating re-colonization 
of ecological niches in the microbiome. We developed a method to approximate species-level core genome 
average identities across samples based on short-read sequencing data, generated Illumina data for a subset of 
our samples with sufficient DNA yield (Methods), and applied the developed method for the detection of strain 
replacement events. Based on the generated data, we could characterize longitudinal strain dynamics in 31 
cases, representing 6 bacterial species and 14 patients (Fig. 8). Of 44 considered intervals, 12 were classified as 
representing a strain-switching event; of these, 8 spanned an alloHSCT and 2 a relapse event; compared to 19 of 
the 29 alloHSCT or relapse intervals not representing a strain-switching event. While the rate of strain-switching 
events was thus increased for intervals spanning an alloHSCT or relapse event, the observed difference was not 
found to be statistically significant (p = 0.17; Fisher’s exact test). This investigation demonstrates that individual 
strains can be replaced by other strains of the same species during the course of alloHSCT.

Discussion
Associations between the microbiome and alloHSCT outcomes are incompletely understood, in particular with 
respect to the role of non-bacterial domains of microbial life; studying these, however, is complicated by limita-
tions of established technologies for microbiome characterization, such as 16S or 18S rDNA sequencing. We 
thus developed a method based on long-read shotgun metagenomics enabling interrogation of alloHSCT patient 
microbiomes across almost all domains of microbial life (bacteriome, archaeome, mycobiome, non-human/non-
fungal eukaryome, and DNA-virome). It comprises robust protocols for sample preparation and DNA extraction 
as well as a specifically developed mapping-based bioinformatics approach to reduce the false-positive taxon 
detection rate associated with k-mer-based read classification.

We used the method to interrogate patient microbiomes in an explorative clinical study, and found that pre-Tx 
patient microbiomes fell into 3 clusters (see Fig. 4), which can be categorized as “Bacteroides- and Phocaeicola-
dominated” (Cluster 1), “heterogeneous” (Cluster 2), and “Enterococcus-dominated” (Cluster 3). The included 
control samples clustered with the pre-Tx alloHSCT samples of Cluster 1. Interestingly, Cluster 1 exhibited 
high abundances of Bacteroides, often considered an important component of an “intact gut microbiome” and 
comprising many species known to be commensals and beneficial for human gut  health50. Cluster 1 could 
thus be interpreted as least affected by alloHSCT-related microbiome dysbiosis; Clusters 2 and 3, by contrast, 
may be interpreted as more dysbiotic microbiome  states5. Suggestive differences between the clusters were also 
detected at the level of viral and fungal microbiome components; for example, Candida albicans (of which an 
increase in HSCT is associated with adverse  outcomes28) was detected more often in Cluster 2 and 3 samples , 
and uncultured crAssphage more often in Cluster 1 samples. Consistent with the interpretation of Cluster 1 as 
least dysbiotic, Cluster 1 also exhibited the lowest rates of antibiotic resistance genes, and patients in Cluster 
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1 had a lower median number of pre-alloHSCT treatment cycles (median = 2 treatment cycles) compared to 
patients in Clusters 2 and 3 (combined median = 4.5 treatment cycles; p = 0.01; Mann–Whitney U test). A meta 
study from 2020 previously showed a significant relation between antibiotics administration and acute  GvHD51. 
Future studies are required to investigate whether pre-Tx cluster membership is predictive of alloHSCT treat-
ment success since the statistical power necessary to reliably detect such associations cannot be achieved with 
the 31 patients recruited for our study.

Further applying the pipeline to longitudinally collected samples, we found that patient microbiomes devel-
oped dynamically over the course of alloHSCT. Consistent with previous  studies12,31, we observed a reduction 
in microbiome diversity during leukopenia and partial recovery during the reconstitution period. Of note, the 
leukopenic period was also characterized by a marked increase in fungal abundances (see Fig. 3), and expan-
sion of bacterial genera like Enterococcus (also observed  in5) and Streptococcus. It should also be noted that the 
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acquisition of samples during leukopenia was challenging and sometimes outright not possible. Therefore the 
analyzed samples throughout this period might represent a biased selection. During the reconstitution period, 
patient microbiomes collectively showed a return in similarity to pre-Tx states; at the level of individual patient 
trajectories, however, pre-Tx cluster membership was not predictive of microbiome composition during leuko-
cytopenia (see Fig. 5) or reconstitution (see Fig. 6). The analyzed reconstitution samples exhibited significant 
heterogeneity with respect to the time point of sampling (Supplementary Table 3), and individual patients were 
also represented with multiple samples in this analysis (Supplementary Table 3). It may also reflect the hetero-
geneity of alloHSCT patient journeys and the significant effects of these on the  microbiome33. Consistently, the 
enriched incidence of bacterial strain replacement around stem cell transplantation and relapse events further 
emphasizes the potential microbiome disruption in treated patients.

Intriguingly, our study also confirmed the relevance of non-bacterial taxa in the context of alloHSCT. First, we 
demonstrated robust detection of non-bacterial microbiome components in alloHSCT microbiomes, including, in 
particular, fungal (Saccharomyces and Candida) and viral (crAssphage) taxa. Archaea and non-fungal eukaryotes 
were also detected, but at lower relative abundances (see Fig. 3). In this context, the mapping-based validation 
component was instrumental in enabling the distinction between confident hits and likely false-positives. Second, 
while the absolute proportion of non-bacterial taxa was small in most sampled patient microbiomes, viruses and 
fungi accounted for more than 50% and 10% of total microbial reads in individual microbiomes, respectively. 
Third, varying overall proportions of non-bacterial abundances, differences between the investigated treatment 
phases with respect to the validated detection of species at ≥ 5% abundance (in the case of viruses), as well 
as individual microbiome trajectories indicated that the non-bacterial components of the microbiome also 
exhibited high inter-patient and temporal plasticity. Interestingly, Saccharomyces cerevisiae and Candida albicans 
were detected at high relative abundances throughout the course of alloHSCT, potentially indicating relative 
stability of these microbiome components over the course of alloHSCT. Of note, in contrast to earlier studies 
based on 16S or 18S rDNA sequencing, employing an unbiased metagenomic approach, our workflow enabled 
the unbiased measurement of the relative quantitative abundances of different types of microbial life. To the 
best of our knowledge, our study is one of the first few studies to employ shotgun metagenomics in the context 
of  alloHSCT5,30,52, and, of these, the first to explicitly interrogate the mycobiome and DNA virome. Further 
studies are required to better characterize the relative stability of the fungal and viral microbiome components 
and the interplay between these and the bacterial microbiome, for instance at the level of bacteriophage-host 
 relationships53.

With respect to our pipeline, potential directions for future work include the further improvement of sam-
ple handling and DNA extraction protocols, potentially focused on extracting high-molecular weight DNA 
while retaining robustness, as well as improvements to the bioinformatics analysis components. In the cur-
rent implementation, significant proportions of reads remained unclassified (Fig. 2); furthermore, the observed 
mapping-based validation rates for archaea, non-fungal eukaryotes, and (although to a lesser extent) fungi 
suggested substantial rates of residual mis-classification within these taxonomic groupings (Supplementary 
Fig. 3). Classification accuracy may benefit from incorporating gut-specific reference  databases54,55 or the usage 
of high-quality environment specific databases used in a taxonomy-agnostic  way56. Moreover, the currently 
employed validation approach, based on using the proportion of reads with high-quality pairwise alignments 
as a proxy for distinguishing between likely true- and false-positive taxon detections, could be complemented 
with approaches based on horizontal genome coverage (which we explored with promising results for a likely 
false-positive eukaryotic hit, Toxoplasma; Supplementary Note 2), or analysis of k-mer  distributions57. It is 
noteworthy that significant fractions of reads classified as human by Kraken2 did not validate in some samples 
(Supplementary Fig. 3). While we did not attempt an in-depth investigation, an improved understanding of 
this phenomenon may contribute to further reducing the rate of false-positive read assignments. An important 
feature of the current version of our workflow is that the functional analysis of microbiome samples covers 
the detection of ARGs; future versions could also incorporate analyses of metabolic  pathways58 and virulence 
 factors52. Now, after successfully having established a workflow, we can attempt to map established microbiome 
biomarkers associated with alloHSCT outcomes—such as the quantitative definition of “dominance”  by31 as ≥ 30% 
abundance—onto the microbiome measurements produced by our method in future studies with sufficient 
patient numbers. As a prerequisite, a future calibration study should address factors such as the utilized extrac-
tion protocol, DNA sequencing technologies, and downstream bioinformatics, which influence the accuracy of 
microbiome  measurements59). Importantly, in contrast to rDNA amplification-based approaches, our method 
enables the simultaneous, unbiased and quantitative measurement of human-derived DNA and the exploration 
of its biomarker potential, e.g., with respect to potential associations between human-derived DNA and mucosal 
integrity during leukopenia. Conceivably, such analyses could also include cell-of-origin analyses, leveraging the 
methylation detection capability of the Oxford Nanopore  technology60.

In summary, we have presented a method for characterizing microbiomes simultaneously for their bacte-
riome, archaeome, mycobiome, non-human/non-fungal eukaryome, and DNA virome composition. Applying 
it in an exploratory study to a cohort of alloHSCT patients, we carried out one of the first investigations of an 
all-kingdom microbiome in the context of alloHSCT based on shotgun metagenomics, confirmed the potential 
relevance of non-bacterial microbiome components, and identified a 3-cluster structure of pre-Tx patient micro-
biomes. Furthermore, we could demonstrate that microbial strains can be newly acquired or replaced during the 
course of alloHCST. These findings can serve as an important basis for future studies, aiming at a more compre-
hensive characterization of the role of the microbiome in alloHSCT-patients based on shotgun metagenomics.
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Materials and methods
Patient recruitment and sampling scheme
Patient recruitment for collection of clinical alloHSCT samples was carried out between June 2018 and Decem-
ber 2019. Participation in the study was offered to all patients undergoing alloHSCT at the Department of 
Hematology, Immunology, and Clinical Immunology at University Hospital Düsseldorf, according to the fol-
lowing inclusion criteria: persons of legal age that are about to receive an allogeneic stem cell transplantation at 
the UKD and are able to consent. A full description of the recruited cohort is given in Supplementary Note 1; 
patient characteristics and treatment histories are summarized in Supplementary Table 2 and Supplementary 
Table 8. Fecal samples from alloHSCT patients were collected prior to transplantation, during the leukopenic 
period (defined as white blood count of ≤ 1,000/µL), and after reconstitution. For some patients more than one 
sample per time point was collected which is shown in Supplementary Fig. 11. Stool samples were collected in 
standard stool collection tubes (feces tubes 76 × 20 mm; Sarstedt), stored at 4 °C if possible and transported for 
further processing to the Institute for Medical Microbiology and Hospital Hygiene of Heinrich Heine University 
Düsseldorf as fast as possible.

A convenience control cohort of 10 individuals not diagnosed with hematological malignancies was recruited 
from employees of Düsseldorf University Hospital between February 2021 and June 2021. Control samples were 
collected from each individual after inclusion into the study and processed using the same protocols also applied 
to the alloHSCT samples.

This study was approved by the ethics committee of the Medical Faculty of Heinrich Heine University Düs-
seldorf (2019–509, Registration Number 2019055096) and all methods were carried out in accordance with 
relevant guidelines and regulations. Informed consent was obtained from all subjects.

Sample preparation and sequencing
Upon receipt, 1–4 aliquots from each stool sample of approximately 1 mL or 1 g of specimen each were placed 
into 1–4 labeled PowerBead Tubes containing 750 µL C1 buffer solution (Qiagen) each.

DNA extraction was carried out using a modified version of the HMP  protocol45. Briefly, specimens were 
homogenized 30–40 s by vortexing and placed into a heating block at 65 °C and 95 °C for 10 min respectively. 
Samples were then stored at − 80 °C until DNA extraction. Aliquots for DNA extraction were thawed at 4 °C or 
room temperature (RT) and gently mixed by vortexing. 60 µL of C1 solution was added and briefly vortexed or 
inverted several times. Aliquots were vortexed at maximum speed for 10 min and centrifuged at 10,000 × g for 
30 s at RT. From this step onwards, the DNeasy Power Soil Kit was used as per protocol. The concentration of 
the extracted DNA was determined by fluorometry using the Invitrogen Qubit 4 Fluorometer (Thermo Fisher 
Scientific) and aliquots were stored at -80 °C until the Nanopore and Illumina sequencing was performed.

Long-read Nanopore sequencing of all samples was carried out on the PromethION and MinION devices, 
using FLO-MIN106 R9-Version and FLO-PRO002 R9.4-Version flow cells, the SQK-LSK109 ligation sequencing 
kit, and the EXP-NBD104 or EXP-NBD114 barcoding kits for barcoded sequencing of native DNA, according 
to protocol NBE_9065_v109_revAA_14Aug2019. Basecalling was carried out using Guppy.

83 genomic DNA samples, selected to cover at least one pre-post pair per patient, were used for short-read 
Illumina sequencing. The samples were quantified by fluorometric assay (Qubit DNA HS Assay, Thermo Fisher 
Scientific) and their quality measured by capillary electrophoresis using the Fragment Analyzer and the ‘DNF-488 
HS Genomic DNA Kit’ (Agilent Technologies, Inc.). Although the initial concentration of some samples was low, 
with some of them not measurable at all, we processed all of them, since the library preparation kit is also suitable 
for small input quantities. Library preparation was performed using the ‘Nextera XT DNA Library Preparation 
Kit—Document # 15,031,942 v05 (Illumina, San Diego, USA.). Depending on whether the concentration of the 
sample could be determined, either 1 ng gDNA or 5 µL of the sample volume was used for the tagmentation step. 
Library amplification for final enrichment was performed with 13 cycles. Bead purified libraries were normalized 
and subsequently sequenced on the HiSeq3000 system (Illumina, San Diego, USA) with a read setup of 2 × 151 bp. 
The bcl2fastq2 tool was used to convert the bcl files to fastq files as well for adapter trimming and demultiplexing.

DNA extraction and sequencing data generation metrics are summarized in Supplementary Table 3.

Analysis of long‑read sequencing data
Long-read sequencing data were analyzed using a comprehensive reference database (“MetaGut v. 1.0 database”) 
comprising 292 giga base pairs of sequence and 1.5 million microbial genomes from all domains of microbial 
life (Supplementary Table 10). We constructed a custom Kraken2 database by using the Kraken2 build scripts 
for all domains, modified to download all assemblies marked as “representative genomes” (as opposed to just 
“Chromosome” or “Full Genome” assemblies) for fungi and protozoa. In addition, we included the Mus musculus 
reference genome (GCF_000001635.27_GRCm39). A full breakdown of database contents is shown in Sup-
plementary File 1. Read classification and compositional analysis were carried out using a 2-step approach that 
combined an initial k-mer-based read assignment step with mapping-based validation. During the first step, all 
reads of a sample were classified using  Kraken247, yielding an initial estimate of sample composition. During the 
second step, the presence of species (and genera) detected during the first step was validated using  minimap261.

Briefly, to validate the presence of a species in a sample corresponding to node n in the reference database 
taxonomy, the following steps were carried out: (i) All sample reads assigned to node n and its descendants 
were collected; (ii) a combined reference genome for node n was created by linearly concatenating the reference 
genomes of all leaf-level descendants of node n; (iii) the collected reads for node n were mapped against the 
combined reference genome for node n; (iv) the proportion of mapping-validated reads was determined, where 
“mapping-validated” was defined as ≥ 70% of a read being covered by read-to-reference alignments with ≥ 70% 
identity; (v) finally, the species corresponding to node n was defined as “validated” in a sample if ≥ 20% of the 
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sample reads assigned to n achieved mapping-based validation. To increase computational efficiency, validation 
was carried out on a random subsample of 100,000 reads in each sample (or on the full sample if it contained 
fewer reads).

Of note, due to low per-species validation rates of archaea and non-fungal eukaryotes (see Results), analyses 
of the occurrence and abundance of individual species were limited to the bacterial, viral and fungal components 
of the microbiome.

Determination of read validation thresholds
The utilized read validation thresholds were defined empirically and based on an analysis of the Zymo Gut 
Microbiome Standard (https:// www. zymor esear ch. de/ produ cts/ zymob iomics- gut- micro biome- stand ard). Briefly, 
the community standard was long-read-sequenced, employing the same protocols used for fecal samples. The 
generated reads were classified against the MetaGut database using Kraken2, and the assignments of individual 
reads were validated, using the 70%/70% criterion defined in the previous section, by mapping against (a) a 
database constructed from the Zymo-provided reference genomes of the species in the Zymo standard, and (b) 
the MetaGut reference database.

The analysis could not be conducted for the species Veillonella rogosae and Prevotella corporis since they were 
not present in the database.

When using the the Zymo-provided reference genomes for read validation (i.e. representing the assumed 
case that the genomes of all taxa present in the sample are perfectly represented in the reference database; but see 
below), per-genus read validation rates varied between 82.4% and 99.3%, with the exception of Candida albicans, 
Salmonella enterica, Clostridium perfringens and Enterococcus faecalis (Supplementary Table 11). 0 of the 2 and 
3 of the 5 reads assigned to Clostridium perfringens and Enterococcus faecalis, respectively, could be validated, 
indicating that these represent false-positives; this is consistent with an expected absolute read count (relative 
theoretical abundance x number of generated reads) for these species of 1 and 0, respectively. Candida albicans 
and Salmonella enterica exhibited read validation rates of 50.2% and 69.1%; we hypothesized that these could be 
explained by a mismatch between the Candida and Salmonella genome present in the sequenced Zymo sample 
and the Zymo-provided reference genome. We tested and confirmed this hypothesis by de novo assembly of the 
Zymo sequencing data, followed by mapping of the assembled contigs against the database constructed from 
the Zymo-provided reference genomes using  FastANI62, weighted by assembled contig length; in this analysis, 
Candida albicans appeared as a clear outlier (FastANI estimates of 95.65%; Supplementary Table 12), indicating 
genetic divergence. No matching contigs were assembled for Salmonella enterica.

When using our comprehensive reference database for read validation (i.e. representing the case of potential 
divergence between the genomes in the sample and the next-closest database genomes) per-species read valida-
tion rates varied between 81 and 100% for species truly present in the Zymo standard (excluding Enterococcus 
and Clostridium due to low abundance), and between 0 and 100% for false-positive species (Supplementary 
Table 11). We hypothesized that per-taxon read validation rates would vary with the genetic distance between 
the sequenced and next-closest database genomes and confirmed this hypothesis by carrying out a correlation 
analysis (Pearson’s r = 0.484 for the correlation between read validation rate and FastANI estimate for all species 
excluding Enterococcus faecalis and Clostridium perfringens; p = 0.094).

Based on these results, we decided that pragmatically employing a per-taxon read validation rate threshold of 
20% would conservatively enable us to filter out false-positive classification results even in the presence of genetic 
divergence between the genomes present in the sequenced samples and the genomes present in our database.

Benchmarking of read validation method
To validate the validation method we generated a ground truth set consisting of reads and high-confidence 
assignments to references. We used the Zymo Gut Microbiome Standard and constructed a database by combin-
ing the Zymo-provided reference genomes with 185 additional contigs generated by the above mentioned de 
novo assembly (using Flye 2.9.1-b1780)63. To select suitable contigs we calculated the FastANI distances to the 
Zymo-provided references and selected references that had a) a similarity of 90% or higher to any reference b) 
a decrease in at least 1% to the next fitting reference and c) a length of at least 10,000 base pairs. The best match 
was used to label the contig.

We then mapped the reads exceeding a length of 500 base pairs using minimap2 requiring 80% of the read 
to align with at least 80% identity. This way we were able to assign 94% of the reads to a species in the Zymo Gut 
Microbiome Standard.

To quantify precision and recall of our validation we then applied Kraken2 with our full database on the 
readset (baseline) and performed the validation on species level. In addition, we removed each of the 17 species 
contained in the Zymo Gut Microbiome Standard from the database (rebuilding the entire index structure every 
time using the Kraken2 ‘fast-build’ option). Refer to Supplementary Table 13 for a full presentation of the results.

The baseline experiment on species level already detects 1641 taxa i.e. the majority of detected Kraken2 spe-
cies are false positive. Since many of those are discarded by default due to low read counts and not considered 
for the validation we focus exclusively on those taxa for which validation is performed.

An ideal classifier would label reads from a species which is no longer present in the database as either “unclas-
sified” or as belonging to a taxon that is an ancestor of the species. However, we observe that the majority of the 
reads gets reassigned to different orthogonal species producing numerous additional taxa that are not observed 
in the baseline experiment. Manual inspection reveals that many misassignments are to closely related species 
or entries that are only distant due to the underlying taxonomy and its labeling (for example E. Coli reads getting 
assigned to species of the genus Shigella).

https://www.zymoresearch.de/products/zymobiomics-gut-microbiome-standard
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Overall the recall for FP taxa is consistently high, varying between 75 and 99%. The recall for reads is sig-
nificantly lower, varying between 5 and 10%. We hypothesize that this is due to the already high amount of false 
positive species assignments in the baseline experiment and the large amount of closely related species contained 
in the database that remains a challenge for LCA based approaches.

The precision of our filter is constantly 100% across all experiments, thus we never filter any real Zymo species.

“Kitome” and contamination analysis
To rule out a significant contribution of environmental contamination we also performed DNA extraction 
without stool followed by a sequencing run with three barcodes employing the default wetlab protocol. Here, 
the amount of DNA was below the detection limit of the Qubit Fluorometric analysis. Within the few obtained 
sequence reads a small amount of human reads and reads belonging to physiological skin microbiota such as 
Micrococcus luteus and Cutibacterium acnes could be validated. We thus conclude that the potential impact of 
environmental / Kitome contamination in our samples can be neglected.

Zymo and LifeLines‑DEEP compositional analysis
Zymo community standard long-read sequencing data (see previous section) were mapped to Zymo-provided 
reference genomes using minimap2 and classified using the default workflow and the MetaGut database. Results 
were analyzed visually and by correlation analysis against the Zymo-provided expected abundance distribution. 
Whole-genome short-read sequencing data were obtained for 20 samples randomly selected from the Lifelines-
DEEP cohort study (http:// www. lifel ines. nl), and classified using Kraken2 against the MetaGut v. 1.0 database 
using an absolute read cutoff of 5 reads and excluding reads classified as Viridiplantae.

Microbiome cluster analysis
To investigate high-level microbiome structures, a PCoA analysis of all samples (alloHSCT and control cohorts), 
based on the Bray–Curtis distance calculated on the fractional compositional estimates as reported by our pipe-
line post filtering, was carried out. Microbiome clusters were identified by performing k-means clustering on 
the PCoA components and scanning k for 2 through 6 for the best silhouette value which was achieved for k = 3.

Diversity analysis
Reported numbers of species were measured after downsampling each sample to the smallest number of reads 
observed in any sample (n = 1029 reads). Reads mapping to any taxon within Chordata or Viridiplantae were 
ignored.

ARG gene detection
Long-read sequencing data were mapped using minimap2 against the CARD  database64, comprising 2614 antibi-
otic resistance elements. A read was counted as carrying a specific ARG if a pairwise alignment with length ≥ 500 
and < 50 undefined “N” characters was detected between the read and the ARG sequence. The ARG gene detec-
tion pipeline was applied to all reads from a sample, independent of other pipeline components.

crAssphage analysis
Long-read sequencing data were mapped using minimap2 against resolved crAssphage  sequences48 A read was 
counted as emanating from a crAssphage genome if a pairwise alignment with ≥ 70% of query cover at 70% 
identity was detected between the read and a crAssphage reference sequence; the fraction of primary alignments 
divided by the number of query reads was used as an estimate for crAssphage abundance. To identify reads that 
could be confidently assigned to individual strains, filtering based on mapping quality (MQ ≥ 5) was carried out, 
enabling assignment of 58% of reads. The crAssphage analysis component was applied to all reads from a sample, 
independent of other pipeline components.

Tracking of marker taxa
A comprehensive list of marker taxa reported to be associated with alloHSCT outcomes was assembled from the 
literature (Supplementary Table 9), and complemented with selected fungal and bacterial marker taxa detected 
in this study. The final list of taxa is summarized in Supplementary Table 9. Longitudinal abundance dynamics 
were assessed visually, with confidence intervals in the plots representing binomial fraction confidence intervals.

Detection of strain replacement events
Analysis of strain dynamics was based on (i) a novel measure (“aANI-lowFreq”) robustly approximating average 
nucleotide identities between the majority bacterial strain of a species present in a sample a and bacterial strains 
of the same species present in another sample b from short-read sequencing data and robust even in the pres-
ence of low-frequency strains; (ii) empirical calibration of expected aANI-lowFreq values for samples carrying 
different dominant bacterial strains using short-read data from different patients, based on the assumptions that 
(a) bacterial species will vary in their aANI-lowFreq distributions and (b) that different patients will typically 
be colonized by different bacterial strains; (iii) visual assessment of aANI-lowFreq distances for within-patient 
longitudinal samples from the same patients; a strain replacement event was assumed to have taken place if the 
observed within-patient aANI-lowFreq distance falls within the observed between-patient distribution. We note 
that our approach was optimized for reducing the rate of false-positive strain replacement events, potentially 
trading off sensitivity against precision. We also note that we experimented with MetaSNV  265; however, the 
subpopulation module failed due to insufficient substructure detection on each species.

http://www.lifelines.nl
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aANI-lowFreq is based on counting, over shared regions of species-specific core genomes, the number of 
bacterial SNVs exclusive to sample a, i.e. not also found in sample b. As a strain replacement event is most clearly 
indicated by the presence of a novel majority bacterial strain in a that is not present in b, a-exclusive SNVs were 
defined as positions that carried an allele with ≥ 50% frequency supported by a minimum of 10 sequencing 
reads in sample a and ≥ 10% frequency in sample b; the 10% threshold was chosen to allow for the presence 
of sequencing errors and mis-aligned reads, and, at the utilized threshold on read coverage (see below), often 
translated to rejecting alleles that were observed on a single sequencing read on sample b. A set of species-specific 
core genome sequences was obtained from the proGenomes2 representative species level reference  database66; 
a position in one of these core genome sequences was defined as “shared” if both the individual position as well 
the surrounding core genome reference genome contig across ≥ 80% of its positions achieved ≥ 10 × coverage in 
a and b. The aANI-lowFreq distance between a and b was defined as the count of a-exclusive SNVs divided by 
the length of the genomic regions classified as “shared” between a and b.

aANI-lowFreq was validated using simulation by obtaining 100 randomly selected NCBI RefSeq genomes for 
Enterococcus faecium, Phocaeicola vulgatus, Escherichia coli, and Bacteroides uniformis, as well as 72 genomes for 
Lactobacillus gasseri. For each genome, paired-end 2 × 100 bp short-read sequencing data at different coverage 
levels (5, 10, 20, 50, 200, and 1000) were simulated using dwgsim 0.1.1467. For each species and combination 
of coverage levels, we generated 50 random pairs of different genomes as well as 15 random pairs of identical 
genomes; for each pair, the aANI-lowFreq distance was calculated based on the simulated short reads, and a 
reference ANI (based on the NCBI RefSeq genome sequences) was obtained using  FastANI62. The simulations 
demonstrated that from genome-wide coverages of ≥ 20x, substantial core genome proportions were classified as 
“shared” (Supplementary Fig. 8), and good approximation of FastANI by aANI-lowFreq, at slight levels of ANI 
underestimation (demonstrating conservativeness of aANI-lowFreq; Supplementary Fig. 9).

For detection of strain replacement events within the alloHSCT cohort, only species and sample pairs with 
at least 50% of the corresponding core genome were considered, and only species for which at least 10 between-
patient aANI-lowFreq distances were available for calibration. For the visual assessment step (Supplementary 
Fig. 10), within-patient and between-patient aANI-lowFreq distances were plotted alongside each other, together 
with aANI-lowFreq distances from the RefSeq-based simulations, when available.

Data availability
The sequencing data—filtered for human DNA—is available at SRA under BioProject Identifier: PRJNA929328. 
Raw sequencing data and additional patient metadata are available upon reasonable request from the corre-
sponding author.

Code availability
The bioinformatics workflow was made available under an Open Source license as a reproducible  Snakemake68 
workflow with the DOI: https:// doi. org/https:// doi. org/ 10. 5281/ zenodo. 81211 16. Each step of the pipeline is 
executed within its own Conda environment, enabling finely-grained assignment of memory and CPU resources. 
Downstream analysis was carried out using a set of Jupyter  Notebooks69, also available at the DOI given above.
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