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A B S T R A C T

Swarm learning is an emerging technique for collaborative machine learning in which several participants
train machine learning models without sharing private data. In a standard swarm network, all the nodes
in the network receive identical final models regardless of their individual contributions. This mechanism
may be deemed unfair from an economic perspective, discouraging organizations with more resources from
participating in any collaboration. Here, we present a framework for swarm learning in which nodes receive
personalized models based on their contributions. The results of this study demonstrate the efficacy of
this approach by showing that all participants experience performance enhancements compared to their
local models. However, participants with higher contributions receive better models than those with lower
contributions. This fair mechanism results in the highest possible accuracy for the most contributive participant,
comparable to the standard swarm learning model. Such incentive structure can motivate resource-rich
organizations to engage in collaboration, leading to the development of machine learning models that
incorporate data from more resources, which is ultimately beneficial for every party.
1. Introduction

Federated learning (FL) is a machine learning technique in which
several devices or organizations collaboratively train a model without
the need to share their data with one another [1]. The utilization of
FL can be attributed to three main factors: First, with the advance-
ment of technology, devices such as Internet-of-Things (IoT) devices
or cell phones generate vast amounts of data, and it is not feasible
to collect all the data in a centralized location to perform a machine
learning task [2]. Second, due to data protection regulations such as
the European General Data Protection Regulation (GDPR) or other
security reasons, sharing data with other parties is constrained [3],
which is especially important in applications with sensitive data, such
as financial or medical applications. Lastly, data scarcity in certain
applications makes it difficult to build machine learning models with
good predictive performance [4]. Therefore, FL can be used to allow
multiple organizations to build models trained on larger amounts of
data, leading to better performance, however, without sharing any raw
data.

Generally, in FL, devices start training on their local data and then
share their model parameters with a central server. These parameters
are then aggregated at the server and then sent back to devices to up-
date their models. Depending on the machine learning algorithm used,
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this process may involve one or more communication rounds with the
server [1,5]. However, there are some concerns with this client–server
mechanism that should be considered. First, the reliance on a central
server implies that all the clients must trust a single party to govern the
learning process. Since the central server has access to all the clients’
updates, a malicious server may attempt to access sensitive information
from one or more clients. Secondly, this structure concentrates power
in a single party and also decreases fault tolerance [6].

To address these shortcomings, an alternative method has been
proposed in which nodes communicate with one another in a peer-
to-peer manner rather than through a central server (Fig. 1). This
framework, known as Swarm Learning (SL) [7], prevents the monopoly
of power and increases flexibility in the whole learning process.

In a conventional FL or SL network, nodes train on their local data
and then share their model parameters with each other to ultimately
build a single global model that outperforms any other model locally
trained by individual nodes. Consequently, all the nodes will enjoy the
same global model and potentially experience the same predictive per-
formance. However, this approach does not consider the contribution
of each node in the learning process. Nodes vary in terms of their data
size, data quality, processing capabilities, and other factors that may
influence the learning process. If all the nodes in the network eventually
https://doi.org/10.1016/j.knosys.2024.112451
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Fig. 1. Federated learning (A) and swarm learning (B) frameworks [8].
receive the same model, it will not be fair to the nodes that contribute
more [8].

From an economic perspective, it is reasonable to argue that par-
ticipants with greater contributions should receive relatively better
models. If all the nodes eventually receive the same model, nodes
with large amounts of data are likely not to participate in such a
collaborative learning process. Since data collection could be costly, it
is fair that nodes with larger investments receive better models [8,9].

In this paper, we aim to address the concept of collaborative fairness
by designing an SL system in which nodes receive personalized models
with regard to their contributions. We argue that this approach could
serve as a motivator, encouraging organizations to contribute more
resources to the learning process. The main contributions of this paper
are as follows: We propose a novel swarm learning algorithm that
ensures fair treatment of all participants by optimizing the balance
between performance and resource allocation. We test and validate
the algorithm on multiple datasets, demonstrating its effectiveness in
real-world scenarios. By ensuring fairness, our approach incentivizes
organizations to participate in the collaborative learning process.

The rest of this paper is organized as follows: We review the related
work in Section 2. In Section 3, we present our proposed methods.
Section 4 presents our simulations and the results. In Section 5, we
discuss the implications of our findings, shortcomings, and potential
future research. Finally, Section 6 concludes the paper.

2. Related work

There are three main notions of fairness discussed in FL. The first
notion concerns discrimination towards certain groups or individu-
als [10]. In the context of group fairness, the objective is to build
systems that do not discriminate against specific groups (e.g., based
on sex, religion, or race) [11–14]. Discrimination in ML algorithms
often arises when the training data is imbalanced, such as having a
majority of male samples and only a few female samples. For instance,
Yang and Jiang [14] propose a semi-centralized adversarial training
framework to generate under-represented samples to de-bias the train-
ing data. Similarly, individual fairness states that individuals should
be treated similarly regardless of their group membership [15]. The
second notion of fairness, known as client-level or device-level fairness,
centers around decreasing the variance of the predictive performance
across nodes [16,17]. Given that some devices can have more impact
on the learning process, research shows that the performance of the
final model might favor those nodes [16,18]. To mitigate this issue,
researchers have developed methods to reduce this variance, ensuring a
consistent level of predictive performance across all the nodes [19–23].
For example, Hosseini et al. [16] proposed Prop-FFL for histopathol-
ogy images, a scheme based on an optimization objective function to
provide uniform performance across hospitals. DRFL is another method
2 
proposed by Zhao and Joshi [21], which dynamically adjusts the weight
assigned to each participant to decrease the performance variations.

While most of the current research on fairness in FL focuses on
the two previous views, there exists another notion of fairness known
as collaborative fairness that views the problem from an economic
perspective [8]. The economic notion of fairness deals with reward
systems in which nodes receive rewards corresponding to their contri-
butions. Most existing research concerning incentive mechanisms for
collaborative fairness relies on motivating clients through monetary
rewards [24–26]. For instance, Zhang et al. [24] introduced RRAFL,
a horizontal FL incentive mechanism leveraging reputation and reverse
auction theory. It aims to encourage active participation among parties
and allows the requester (server or model owner) to select reliable,
high-quality data contributors (clients or participants).

However, there is limited research that views this issue from a
performance point of view. Lyu et al. [9] proposed CFFL, a reputation-
based mechanism, which evaluates the participants’ contributions
based on the quality of their model updates in the learning process and
iteratively updates their respective reputations. However, it relies on
a central server to manage the reputations. In another approach, Lyu
et al. [27] proposed FPPDL, a decentralized Fair and Privacy-Preserving
Deep Learning framework to address fairness in federated settings.
in this framework, parties rate other parties through a credibility
initialization phase. Then, they determine the amount of meaningful
parameters to share based on the credibility list. However, the credi-
bility ratings are derived from each party’s ability to predict artificially
generated samples. This approach may not accurately reflect the true
quality or relevance of the underlying data from each party, potentially
leading to biased parameter-sharing decisions.

3. Proposed methods

In this section, we present our proposed framework for a fair SL
system. In the context of this paper, we define fairness as follows:

Definition 1. Fairness refers to ensuring that all participating entities
in a collaboration receive benefits proportional to their investments.
Therefore, we identify an FL or SL system as fair if participants receive
models that are commensurate with their contributions to the learning
process.

Based on this definition, we can formulate fairness as follows:
Suppose we have 𝑛 nodes that want to collaboratively train machine
learning models in a swarm network. In order to introduce fairness
to the system, we assume that the nodes that provide more data to
the process should be rewarded with better models due to their higher
contributions [9,28]. Let 𝐶𝑖 be the contribution of node 𝑖 (i.e., number
of data samples), and 𝐵𝑖 be the benefits received by node 𝑖 (i.e., model
accuracy). Although the exact ratio 𝐵 ∕𝐶 does not need to be equal for
𝑖 𝑖
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all participants, a fair system should ensure that 𝐵𝑖 increases with 𝐶𝑖.
We introduce the function 𝑓 as:

(𝐶𝑖) = 𝐵𝑖 (1)

This function maps contributions to expected benefits. For fairness,
he function should be monotonically increasing, i.e., if 𝐶𝑖 ≤ 𝐶𝑗 , then
𝑖 ≤ 𝐵𝑗 .

For training a machine learning model, choosing the right algorithm
epends on several factors, one of which is data availability. For
nstance, Neural Networks, and in particular deep learning (DL), have
emonstrated remarkable performance when there are large amounts of
ata available. On the other hand, other machine learning techniques
uch as Random Forests (RFs) work reasonably well when there are
ewer data samples available. Accordingly, we have designed two
echanisms, one for DL and one for RFs, to build the SL system. In the

ollowing sections, we will explore the specifications of each of these
echanisms.

.1. Deep learning

In a swarm network of 𝑛 nodes with different amounts of data, we
onsider 𝑛 cycles of training, each cycle resulting in an output model for
specific node. Starting from the nodes with fewer data samples, each

ycle personalizes a model for each node which then quits the process,
hile other nodes continue building their models. Therefore, at cycle 𝑖,

𝑛+1−𝑖 nodes are participating. Each cycle consists of multiple iterations
in which nodes train on their local data, share their model parameters
with other active nodes in the network, and then update their models
using parameters received from other nodes.

It is important to note that before starting the training, nodes
need to report the amount of their available data to others. There
are challenges with this self-reporting scheme, such as the possibility
of having malicious or untruthful nodes in the system that report
false data. However, addressing issues related to dishonest nodes and
fraudulent approaches falls beyond the scope of this paper.

Suppose that each node 𝑖 has 𝑆𝑖 training samples, and we have:

𝑆1 < 𝑆1 < ⋯ < 𝑆𝑛 (2)

Each node divides its dataset into 𝑘 sections (1 ≤ 𝑘 ≤ 𝑛) such that
the size of section 𝑚, 𝐿𝑚, equals to:

𝐿𝑚 =

{

𝑆𝑚 if 𝑚 = 1
𝑆𝑚 −

∑𝑚−1
𝑗=1 𝑆𝑗 if 1 < 𝑚 ≤ 𝑘

(3)

By way of illustration, suppose we have three nodes labeled 1, 2,
and 3, with the first node having the lowest number of samples and
the third node having the highest number of samples. They will divide
their datasets into 1, 2, and 3 sections, respectively. Node 1 will have
1 section comprising its whole dataset. Node 2, on the other hand, will
split its data into 2 sections. The first section matches the size of Node
1’s dataset, while the second section comprises the remaining data.
Finally, node 3 divides its dataset into 3 sections, with the first section
matching the size of the first section of the other nodes, the second
section matching the second section of node 2, and the third section
comprising the remaining data.

The fair collaborative deep learning process is shown in Algorithm
1. At cycle 𝑐, nodes 𝑐 to 𝑛 start training on their respective 𝑐th data
section, 𝐷𝑐 , for a fixed number of iterations (see Fig. 2). After each
iteration, nodes send their model parameters to a designated coordi-
nator node. The coordinator then merges the parameters by taking
the average and then sends the updated parameters, 𝑤𝑚𝑒𝑟𝑔𝑒𝑑 , to all
the active nodes in the network. Upon receipt of the new parameters,
nodes update their models and start training for the next iteration.
The coordinator also randomly chooses one of the active nodes as the
next coordinator and informs the other nodes about the next acting
coordinator. When cycle 𝑐 ends (after a certain number of iterations),
3 
Algorithm 1 Fair swarm network for deep learning

1: Initialize peer models 𝑤1
0, 𝑤

2
0,… , 𝑤𝑛

0 for nodes 1 to 𝑛.
2: for cycle 𝑐 = 1 to 𝑛 do
3: for training round 𝑡 = 1 to 𝑇 do
4: for node 𝑖 = 𝑐 to 𝑛 do
5: Train locally on section 𝑐 (𝑤𝑖

𝑡 ← 𝑤𝑖
𝑡−1 − 𝜂∇𝐹 (𝑤𝑖

𝑡−1, 𝐷
𝑖
𝑐 )).

6: Send 𝑤𝑖
𝑡 to the coordinator.

7: end for
8: Merge the parameters at the coordinator (𝑤𝑚𝑒𝑟𝑔𝑒𝑑 ←

1
𝑛−𝑖

∑𝑛
𝑖=𝑐 𝑤𝑐).

9: Send the updated parameters to all the active nodes 𝑐 to 𝑛
10: for node 𝑖 = 𝑐 to 𝑛 do
11: Update model parameters at node 𝑖 (𝑤𝑖

𝑡 ← 𝑤𝑚𝑒𝑟𝑔𝑒𝑑)
2: end for
3: end for
4: Node c exits with the final model at cycle c
5: end for

all the active nodes will have the same model. At this point, node 𝑐
will leave the network with this model, while the remaining nodes
start the next cycle, training on the next section of their respective
datasets. At the final cycle, there remains only the last node training
on its remaining data (final section), while all the other nodes have
already left the network with their own personalized models.

Through this process of multiple cycles, nodes leverage each other’s
data but in a fair way. The contribution of all the nodes will be equal
at each cycle, that is, each node will receive model parameters from
other nodes but only from a subset of their dataset which is equal to
the node’s own data size.

3.2. Random forest

While neural networks are extensively used in tasks such as image
classification, speech recognition, and machine translation, they are not
always the optimal choice for a learning task, especially when there is
a limited number of samples. In the absence of large amounts of data,
other models, such as RFs, demonstrate significant robustness.

To collaboratively train a DL model, nodes need to communicate
with each other multiple times. In the simplest form, nodes share
their model parameters after each iteration. However, there are other
feasible strategies as well, such as sharing the parameters after training
multiple batches within the same iteration or after multiple iterations.
The former, when employed, might yield a model with better gener-
alization across the nodes in the network but at the expense of more
communication rounds. The latter, on the other hand, is more efficient
in terms of communications but may result in a model with inferior
performance.

Unlike DL, however, RFs are not trained in multiple iterations.
Therefore, to merge several RFs, only one round of communication is
needed when the nodes share their parameters with each other after
the training is complete.

In this section, we present our implementation of the fair RF swarm
framework.

We assume the same scenario where 𝑛 nodes are connected to each
other in a swarm network, with the objective of training RF models with
collaboration. First, nodes start training RFs on their local data. After
the training is finished, nodes need to share their model parameters
with each other. In an unfair scheme, nodes essentially share all their
parameters with other nodes in the network, ultimately resulting in the
same global model for all the nodes. To introduce fairness to the system,
we have designed a mechanism in which nodes share only a portion of
their parameters with other nodes based on each node’s contribution.
Once again, we consider each node’s contribution as the number of
data points they provide for the learning process. Since having more
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Fig. 2. The process of training on data sections through multiple cycles: each node 𝑖 has 𝑖 sections. At cycle 𝑐, nodes 𝑐 to 𝑛 are active, while previous nodes have completed
raining and exited the network (marked as inactive). The sizes of the sections under training at a given cycle are equal across nodes, but the section sizes at each node are not
ecessarily equal.
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ata generally results in better models, nodes with more data can be
onsidered to contribute more to the system. The process for the fair
L system with random forest is shown in Algorithm 2.

Algorithm 2 Fair swarm network for random forest
1: Initialize RF classifiers with 𝑡1, 𝑡2, . . . , 𝑡𝑛 estimators for nodes 1 to

𝑛.
2: Train an RF classifier locally at each node.
3: for node 𝑖 = 1 to 𝑛 do
4: for peer 𝑗 = 1 to 𝑛 − 1 in node 𝑖′𝑠 connections do
5: if node 𝑖 has fewer samples (𝑠𝑖 < 𝑠𝑗) then
6: 𝑡 ← 𝑡𝑖
7: else
8: 𝑡 ← 𝑡𝑖 × ( 𝑠𝑖𝑠𝑗

)2

9: end if
0: Randomly select 𝑡 estimators from the trained classifier.
1: Send the 𝑡 estimators to the peer node 𝑗.
2: end for
3: end for
4: for node 𝑖 = 1 to 𝑛 do
5: Update the classifier by incorporating the received estimators

into it.
6: end for

The process starts with each node defining a personal RF model. The
umber of trees (estimators) for each RF corresponds to the number of
ata points at the node. Consequently, in our scheme, a node with a
arger dataset starts with a larger RF than a node with a smaller one.
fter defining the models, nodes fit the models on their local data. Upon

he completion of training at a given node, it sends a portion of its
stimators or trees to every other node in the network. The amount of
stimators to share with others depends on their respective data sizes.

Suppose that node 𝑖 has 𝑠𝑖 samples and 𝑡𝑖 trees and node 𝑗 has 𝑠𝑗
samples and 𝑡𝑗 trees where:
𝑠𝑖
𝑠𝑗

=
𝑡𝑖
𝑡𝑗

𝑠𝑖 > 𝑠𝑗 . (4)

The amount of estimators that node 𝑗 needs to share with node 𝑖 is
qual to 𝑡𝑗 . The amount of estimators that node 𝑖 needs to send to 𝑗 is
qual to:

𝑖→𝑗 = 𝑡𝑗 ×
𝑠𝑗
𝑠𝑖

= 𝑡𝑖 × (
𝑠𝑗
𝑠𝑖
)2. (5)

The final personalized model for each node consists of its own
stimators plus other estimators received from all the other nodes in
he network. In this way, each node builds a model that has training
nformation from all the other nodes but in a fair manner.
 a

4 
. Simulations

In this section, we present our simulations for the two proposed
ethods for DL and RFs and then discuss the results for each part.

.1. Deep learning

To evaluate the performance of the proposed system for DL, we
imulated an SL system in which multiple nodes collaboratively train
L models based on their contributions. We used four standard datasets
amely CIFAR-10 [29], CIFAR-100 [29], and Fashion-MNIST [30] for
mage classification and the Reuters Newsletter dataset [31] for text
lassification. To examine the differences in contributions, we explored
wo setups. In the main setup, we distributed the dataset across three
odes with respective ratios of 0.1, 0.3, and 0.6. In another setup, we
sed four nodes, dividing the data in proportions of 0.10, 0.12, 0.38,
nd 0.40, to investigate the impact of near-equal contributions from
airs of nodes (the first two and the last two having almost identical
ontributions). We used CIFAR-100 and Fashion-MNIST to examine the
econd setup. We then trained models on the training set at each node
nd evaluated their performance using a common external test set.

For the CIFAR-10 and Fashion-MNIST datasets, a 3-layer VGG ar-
hitecture (VGG8) [32] was used in conjunction with regularization
echniques [33]. For the Reuters dataset, we trained a neural network
onsisting of an embedding layer and two dense layers. Lastly, for
IFAR-100 dataset, we used EfficientNetV2S [34], a deep convolutional
eural network pretrained on the ImageNet dataset [35]. Moreover, we
sed the Adam optimizer [36] and Cross-Entropy loss function for the
xperiments. Table 1 summarizes the setup for the experiments. Note
hat for the Fashion-MNIST dataset, we randomly selected 5% of the
ntire dataset for training to investigate cases with limited data points
t each site.

Our simulations consist of three distinct scenarios. In the first sce-
ario, nodes train their models based on our fair SL system. In the
econd scenario, nodes train their models locally without any collabo-
ation. Finally, in the third scenario, nodes participate in a standard SL
etwork to train a single global model regardless of their contributions.

In the training process of the fair SL model, at the end of each cycle,
ne of the nodes leaves the network. The other nodes remain with an
lready partially trained model, and they need to train it on new data.
o ensure the preservation of the existing models, we employed the
rinciple of transfer learning [37]. This involved freezing certain layers
ithin the models and reducing the learning rate so that the models

onverge better by leveraging prior knowledge and learning from new
ata.

As we discussed earlier, in a fair collaborative system, we expect

gain in performance as contributions increase. Figs. 3 to 6 show the
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Table 1
Experimental setup for the deep learning frameworks.
Dataset Epochs per cycle Learning rate Batch size Train samples Test samples Classes

CIFAR-10 100 0.001 128 50,000 10,000 10
CIFAR-100 30 0.005 128 50,000 10,000 100
Fashion-MNIST 100 0.001 32 3000 10,000 10
Reuters 200 0.003 128 8982 2246 46
Fig. 3. CIFAR-10 test accuracy for three nodes.
Fig. 4. CIFAR-100 test accuracy for three nodes.
Fig. 5. Fashion-MNIST test accuracy for three nodes.
esults of the simulations for the four datasets for three nodes. As illus-
rated in the results, for each node, the fair SL model outperforms the
ocally trained model. Furthermore, nodes with higher contributions
xperience better performance than those with lower contributions
hen employing the fair SL system.

Figs. 7 and 8 present the results from the second setup with four
odes. The results indicate that the performance of the models at Nodes
and 2 is equal, as is the performance of the models at Nodes 3 and 4.
owever, Nodes 3 and 4 exhibit better performance due to their higher
ontributions, which aligns with the expectations of our fair SL system.

Table 2 shows the differences in error rates for neural networks
n the first setup where we have three nodes in the system with data
plit among them with the ratios 0.1, 0.3, and 0.6. Similarly, Table 3
llustrates the differences in error rates in the second setup with four
odes with data ratios of 0.10, 0.12, 0.38, and 0.40. As it is shown, the

rror rate decreases when contributions increase.

5 
Table 2
Decrease in error rate in neural networks for the first setup with three nodes with data
ratios 0.1, 0.3, and 0.6.

Dataset Error-rate decrease

Node 1 to Node 2 Node 2 to Node 3

CIFAR-10 16.24% 8.91%
CIFAR-100 21.16% 9.65%
Fashion-MNIST 12.82% 4.60%
Reuters Newsletter 17.24% 6.96%

4.2. Random forest

To evaluate the proposed method for RFs, we built an SL network
with three nodes with different amounts of data split among them.
We conducted simulations using six different datasets. We used the
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Fig. 6. Reuters Newsletter test accuracy for three nodes.
Fig. 7. CIFAR-100 test accuracy for four nodes.
Fig. 8. Fashion-MNIST test accuracy for four nodes.
able 3
ecrease in error rate in neural networks for the second setups with four nodes with
ata ratios 0.10, 0.12, 0.38, and 0.40.
Dataset Error-rate decrease

Node 1 to Node 2 Node 2 to Node 3 Node 3 to Node 4

CIFAR-100 1.81% 17.49% −0.35%
Fashion-MNIST 1.18% 12.36% 2.01%

Table 4
Datasets specifications and initial estimators for nodes.

Dataset Samples Classes Nodes estimators

Node 1 Node 2 Node 3

NATICUSdroid 29,332 2 50 150 300
Breast Cancer 116 2 10 30 60
Heart Failure 299 2 50 150 300
Maternal Health 1014 3 50 150 300
Auction Verification 2043 2 100 300 600
Students’ Dropout 4424 3 30 90 180

NATICUSdroid (Android Permissions) Dataset [38] for malware detec-
tion, Breast Cancer Coimbra dataset [39] for breast cancer detection,
Heart Failure dataset [40] for survival prediction, Maternal Health
Risk dataset [41] for maternal mortality prediction, Auction Verifica-
tion [42] for verification of auctioning frequency spectra, and Students’
Dropout dataset [43] for predicting students’ dropout and academic
success.

Table 4 shows the specifications of the datasets and the initial
estimators defined for each node.
6 
To introduce variations in nodes’ contributions, we divided each
dataset among the nodes with ratios of 0.1, 0.3, and 0.6. For training
the models, we performed 5-fold and 10-fold cross-validation and
repeated the experiment 100 times for each dataset with different data
distributions among the nodes but with the same ratio to account
for the variations in data quality at each node. For comparison, we
performed the same experiments for local training in which there is
no collaboration among the nodes and also for the typical unfair SL in
which nodes send all their parameters to all the other nodes, resulting
in the same global model.

Given the datasets in our study do not necessarily have balanced
classes, we used the Matthews Correlation Coefficient (MCC) as the
performance metric [44]. Fig. 9 illustrates the MCC scores for the
six datasets. As is evident, nodes acquire superior models when they
collaborate with each other compared to when they train individually.
Moreover, in the fair SL system, nodes that contribute more get better
final models than those with lower contributions. For the unfair SL
system, on the other hand, all the nodes get the same model with the
same predictive performance.

Similar to our experiments with neural networks, we implemented
another setup with four nodes for the Maternal Health and Auction
Verification datasets to explore the effect of equal contributions. The
data was distributed among the four nodes in the ratios of 0.10, 0.12,
0.38, and 0.40. The results (Fig. 10) demonstrate that in the fair SL
framework, the first two nodes receive identical models with equal
performance, while the second two nodes receive the same models but
with better performance due to their higher contributions.

Tables 5 and 6 show the gain in the mean MCC scores for random

forests for the two setups with three and four nodes, respectively. We
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Fig. 9. Distribution of random forest MCC scores For fair SL, standard SL, and local models across three nodes with data ratios of 0.1, 0.3, and 0.6.
sed the t-test to assess the statistical differences in the mean scores
n the experiments. As anticipated, there is an increase in the MCC
cores for higher contributions, aligning with expectations in a fair
ollaborative system. Furthermore, Table 6 reveals that there is no
tatistical difference between the mean scores of Nodes 1 and 2 and
etween Nodes 3 and 4 due to their near-equal contributions.

. Discussion

In the previous section, we demonstrated how participants with
ore data can benefit more from a collaborative learning process. We

nterpret this as an incentive mechanism to motivate more participation
n collaboration. Generally, a lack of incentive can arise in two ways.
he first type is related to client-level fairness, emphasizing the need
or minimal performance disparity in the ultimate model among all
articipants. This argument stems from the observation that in many

L systems, clients with limited resources are not favored by the

7 
Table 5
Increase in the mean MCC scores in random forests for the first setup with three nodes
with data ratios 0.1, 0.3, and 0.6.

Dataset MCC increase

Node 1 to Node 2 Node 2 to Node 3

Gain p-value Gain p-value

NATICUSdroid 0.65% 4.35e−16 0.19% 3.35e−07
Auction Verification 23.00% 1.49e−37 5.30% 7.76e−24
Breast Cancer 95.80% 9.04e−09 11.10% 0.01
Heart Failure 63.23% 1.73e−21 5.78% 0.0001
Maternal Health 14.50% 8.72e−22 6.00% 3.14e−19
Students’ Dropout 4.05% 9.52e−12 1.16% 9.64e−06

system, and the resulting model has a lower performance for them.
Consequently, these clients lack sufficient incentive to participate in
collaboration. The second type, however, views the problem from an
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Fig. 10. Distribution of random forest MCC scores For fair SL, standard SL, and local models across four nodes with data ratios of 0.10, 0.12, 0.38, and 0.40.
Table 6
Increase in the mean MCC scores in random forests for the second setup with four nodes with data ratios 0.10, 0.12,
0.38, and 0.40.
Dataset MCC increase

Node 1 to Node 2 Node 2 to Node 3 Node 3 to Node 4

Gain p-value Gain p-value Gain p-value

Auction Verification −0.16% 0.92 17.5% 2.4e−32 −0.09% 0.85
Maternal Health 1.00% 0.48 11.90% 7.18e−25 −0.11% 0.82
i
a
i

D

c

economic perspective, suggesting that if all the participants receive
the same reward regardless of their contributions, those with higher
contributions may lose motivation to take part in the collaboration
process. The rationale behind this viewpoint is that the gains derived
from collaboration are inversely proportional to their contribution.
Various mechanisms can be employed to reward participants with
more contributions such as receiving monetary rewards or superior
models. A reward for contribution can serve as an incentive to mo-
tivate participants to engage in the collaboration. In this paper, we
viewed the incentive mechanism from an economic perspective. More-
over, for the reward mechanism, we approached the problem from a
model-performance point of view. The reason is that models with good
performance can bring potentially long-term benefits for companies
that may outweigh a mere monetary reward. Nevertheless, it is worth
noting that the problem could be viewed and addressed in either way
based on the application and objectives.

Another noteworthy point is that the contributions of participants
can be viewed from different perspectives. For example, clients vary in
terms of the resources they provide, the quality and size of their data,
and other aspects. In this study, our emphasis was laid on the reward
system rather than contribution assessment. Therefore, for simplicity,
we considered a participant’s contribution as the number of data points
it provides for the learning process. Since more data generally leads
to better-performing models, we used the data size to compare the
contributions of individuals.

Additionally, it is worth mentioning that FL and SL frameworks
have been introduced to enable different parties to collaboratively
train models without sharing sensitive data. However, these methods
still need to incorporate additional security and privacy measures,
such as homomorphic encryption or differential privacy, to prevent
any disclosure of private data. In this paper, we assumed that the
participants were honest and there were no malicious activities within
the network. Addressing privacy issues and the presence of malicious
or dishonest parties can be the focus of future research.

Furthermore, in this paper, we focus on cross-silo applications
rather than cross-device applications, as cross-silo settings are more
common in SL systems. In cross-silo settings, the participating entities
are typically well-established organizations with stable and robust
internet connections, unlike the more variable and often weaker con-
nections that might be encountered in devices such as IoT devices [45].
 i

8 
Given the nature of these collaborations, with a smaller number of
participants that typically maintain reliable connectivity, connection
issues are not expected to significantly impact our system and are
therefore excluded from our consideration.

Lastly, it is crucial to note that this fair approach is solely seen
from an economic point of view, and it is advised to be used only in
contexts aligned with economic considerations. For instance, from an
ethical point of view, for medical applications, it might be best to focus
on providing the best possible global model for everyone rather than
concentrating on individual benefits.

6. Conclusion

In this paper, we addressed fairness in swarm learning from an
economic perspective. We introduced two frameworks for DL and RFs
in which multiple nodes could collaboratively train AI models in a
fair manner without sharing private data. In contrast with federated
learning, nodes communicate with each other directly in a peer-to-peer
manner. In the DL framework, nodes share their model updates with
each other through multiple iterations to build their final models. The
final models are personalized and are based on each node’s contribution
to the learning process to ensure fairness. In the RF framework, nodes
only send a portion of their parameters to other nodes once the training
is complete. The amount of parameters to share is set with regard
to each node’s contribution. Our findings show that this framework
yields superior model performance compared to local training across
all nodes. Moreover, the models are fair in a way that nodes with more
contribution receive better final models than other nodes.
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