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A B S T R A C T

Real-time monitoring of critical quality attributes, such as residual water in granules after drying which can
be determined through loss-on-drying (LOD), during wet granulation and drying is essential in continuous
manufacturing. Near-infrared (NIR) spectroscopy has been widely used as process analytical technology
(PAT) for in-line LOD monitoring. This study aims to develop and apply a model for predicting the LOD based
on process parameters. Additionally, the efficacy of an orthogonal PAT approach using NIR and mass balance
(MB) for a vibrating fluidized bed dryer (VFBD) is demonstrated. An in-house-built, cost-effective NIR sensor
was utilized for measurements and exhibited good correlation compared to standard method via infrared
drying. The combination of NIR and MB, as independent methods, has demonstrated their applicability. A
good correlation, with a Pearson r above 0.99, was observed for LOD up to 16 % (w/w). The use of an orthogo-
nal PAT method mitigated the risk of false process adaption. In some experiments where the NIR sensor
might have been covered by powder and therefore did not measure accurately, LOD monitoring via MB
remained feasible. The developed model effectively predicted LOD or process parameters, resulting in an R2
of 0.882 and a RMSE of 0.475 between predicted and measured LOD using the standard method.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American Pharmacists Association. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Introduction

Continuous wet granulation and drying processes represent a fun-
damental opportunity in the production of solid dosage forms, offering
numerous advantages over traditional batch production. These advan-
tages include lower waste and constant product quality due to less
variabilities within the product.1 Twin-screw wet granulation (TSG) is
a favorable process choice in continuous granulation. Several types of
dryers have been investigated in the literature for implementation in
continuous manufacturing (CM) lines. Among those are segmented
fluid bed dryer (FBD),2-4 horizontal FBD with a screw conveyer5 or
vibrated fluidized bed dryer (VFBD).6-8 Granule size distribution,9 flow
properties, porosity and moisture content10 of the final granules might
influence the product quality, independent whether the granules are
further processed into tablets or not. To ensure consistent product
quality an adequate control system for these is necessary.

Therefore, the U.S. Food and Drug Administration FDA encourage the
implementation of process analytical technologies (PATs) to improve
manufacturing processes. These PAT systems enhance process under-
standing, facilitate continuous improvement and support risk-mitigation
strategies.11 There are several PATs available to monitor one of the most
important critical quality attributes during granulation and drying, the
water content, which can be determined as loss-on-drying (LOD). The
amount of residual water in the granules after drying is defined as LOD.
One commonly PAT method is near infrared (NIR) spectroscopy, which
has been extensively investigated in the literature.2,10,12-17 The use of
microwave resonance technology offers an alternative approach for
PAT.15,18,19 Both methods providing a fast and non-destructive
technique.12,13,15,18 Nevertheless, multivariate analysis, such as partial
least square regression12,20 or multiple linear regression,15,21 are required
for calibration to predict the water content using a reference method e.g.
Karl Fisher titration or moisture analyzer using infrared (IR) light as heat
source to determine LOD.12,20,22 Microwave resonance technology was
implemented in a FBD as a PAT method for LOD monitoring.15,19,21

Mathematical models and numerical simulations are used more fre-
quently in the literature today to predict the LOD.23-25 Soft sensor26,27
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Table 2
D-optimal DoE setup.

Run order Factors

SFR / kg/h L/S / - DT /°C AF / Nm3/h Vib / m/s2

1 2.00 0.20 60.0 15.0 6.0
2 1.50 0.20 60.0 15.0 6.0
3 1.00 0.15 80.0 10.0 8.0
4 1.00 0.15 80.0 20.0 5.3
5 1.50 0.25 60.0 15.0 6.0
6 1.00 0.25 40.0 20.0 4.0
7 2.00 0.15 80.0 20.0 8.0
8 2.00 0.15 80.0 10.0 4.0
9 1.33 0.15 80.0 20.0 4.0
10 1.00 0.25 80.0 20.0 8.0
11 1.00 0.15 40.0 20.0 8.0
12 1.00 0.15 80.0 13.3 4.0
13 2.00 0.15 40.0 10.0 8.0
14 1.50 0.20 60.0 15.0 6.0
15 1.50 0.20 60.0 10.0 6.0
16 2.00 0.15 40.0 20.0 4.0
17 1.00 0.22 80.0 20.0 4.0
18 2.00 0.25 40.0 10.0 4.5
19 1.50 0.20 60.0 15.0 6.0
20 1.50 0.20 40.0 15.0 6.0
21 2.00 0.25 40.0 20.0 8.0
22 1.00 0.25 80.0 10.0 4.0
23 2.00 0.25 80.0 20.0 4.0
24 2.00 0.25 80.0 10.0 8.0
25 1.00 0.15 40.0 10.0 4.0
26 1.00 0.25 40.0 10.0 8.0
27 1.00 0.15 53.3 20.0 4.0
28 1.50 0.20 60.0 15.0 6.0
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and data-driven technique using latent-variable model with knowledge-
driven mechanic model were implemented for segmented-FBD27-29 and
VFBD.7,30,31 The LOD can be predicted based on the installed sensors
using mass balance (MB) in real time. This approach has been previously
introduced for segmented-FBD2,20 and VFBD.32 A notable benefit is that
no additional sensors need to be purchased or installed, allowing direct
calculation without the need for calibration and irrespective of the
material being processed.2,32 The combination of MB, another soft sensor
or mathematical models with a standard PAT approach, such as micro-
wave resonance or NIR spectroscopy, enables orthogonal and indepen-
dent process control, thereby reducing the risk of erroneous control
decisions in case of issues with the PAT. This approach is well described
in literature. For instance, Pauli et al. implemented an orthogonal redun-
dant method for a segmented-FBD.2

The aim of the study was to develop a model predicting the LOD
based on process parameters, and further, to determine the necessary
settings for one process parameter to achieve a specific LOD value,
measured through LOD using IR, NIR spectroscopy, and predicted
with MB. Additionally, the study aims to explore the application of a
low-cost NIR sensor alongside MB prediction as an orthogonal and
redundant PAT method.

Materials and Methods

Materials

Two mixtures consisting of alpha-lactose monohydrate (GranuLac�

200, MEGGLE, Wasserburg am Inn, Germany) and microcrystalline cel-
lulose (MCC, VIVAPUR� 101, JRS PHARMA, Rosenberg, Germany) were
selected as model formulations based on previous studies.6,32 MCC is
an important excipient used in the manufacturing of solid oral dosage
forms and the water absorption capacity of MCC makes the formula-
tions more challenging during drying. Polyvinylpyrrolidone K 30 (PVP,
Kollidon� 30, BASF SE, Ludwigshafen, Germany) was used as binder.
Further formulations were investigated containing Ibuprofen (IBU, Ibu-
profen 50, BASF SE, Ludwigshafen, Germany) as an active pharmaceuti-
cal ingredient (API). Two different levels for the drug content were
utilized together with alpha-lactose monohydrate and MCC. In total,
four formulations were investigated in this study as described in
Table 1. This allows the application of different formulation and enables
the analysis of whether the methods and models for LOD are applica-
ble. The physical characterization of the mixtures regarding particle
size distribution, flowability and initial LOD is provided in the supple-
ment (Supplement Table 1). IBU was deagglomerated before mixing
using a high-speed conical mill (BTS100, L.B. Bohle Maschinen und Ver-
fahren, Ennigerloh, Germany) with a sieve mesh of 1.0 mm. Each pow-
der mixture was blended for 20 min at 25 rpm in a lab-scale blender
(LM 40, L.B. Bohle Maschinen und Verfahren, Ennigerloh, Germany).
Demineralized water was utilized as granulation liquid during TSG.

Methods

Model Development Using DoE
Wet granulation and drying were executed using the QbCon� 1 (L.

B. Bohle Maschinen und Verfahren, Ennigerloh, Germany) which
Table 1
Composition of the four different formulations.

Formulation name Amount (w/w) / %

IBU Lactose MCC 101 PVP K30

17 % MCC - 80 17 3
34 % MCC - 63 34 3
20 % IBU 20 60 17 3
67 % IBU 67 13 17 3
consist of a 16 mm twin-screw granulator and a vibrated fluidized
bed dryer. The CM line has been described in previous studies6,32 and
was used by other researchers.8,30,33,34 The screw configuration for
all experiments included long pitch conveying elements (LPCE), short
pitch conveying elements (SPCE) and kneading elements (KE) with a
stagger angle of 60°. Screw configuration was as follows in flow
direction: 4D LPCE − 3.75D SPCE − 1.2D (6) KE − 5D SPCE − 1.2D (6)
KE − 5D SPCE. The powder was fed using a gravimetric feeder (DIW-
PE-GZD-P 150.12 Gericke AG, Regensdorf, Switzerland). Granulation
liquid was added before the first kneading block using a micro-gear
pump (MZR-7205, HNO-Mikrosysteme GmbH, Schwerin, Germany)
with a nozzle diameter of 0.12 mm.

The LOD prediction model was developed by performing a D-opti-
mal Design of Experiment (DoE) using the 17 % MCC formulation. The
solid feed rate (SFR), liquid-to-solid ratio (L/S), drying temperature
(DT), inlet air flow (AF) and vibration acceleration (Vib) were investi-
gated as factors. The factor ranges used were 1 − 2 kg/h for SFR, 15 −
25 % for L/S ratio, 40 − 80°C for DT, 10 − 20 Nm3/h for AF and 4 8 m/
s2 for Vib. The D-optimal design was created using the software
MODDE (V13.0, Sartorius Stedim Data Analytics AV, Malm€o, Sweden).
The DoE initially consisted of 28 runs and was complemented with
additional runs, resulting in a total of 40 runs, including a fivefold
center point (Table 2). To build the setup of the DoE, 21 model terms
were selected to be included in the design (SFR; L/S; DT; AF; Vib;
DT*DT; AF*AF; Vib*Vib; SFR*SFR; L/S*L/S; DT*AF; DT*Vib; DT*SFR;
29 2.00 0.25 40.0 10.0 6.7
30 1.50 0.20 60.0 15.0 6.0
31 1.00 0.18 40.0 20.0 8.0
32 1.67 0.25 40.0 10.0 4.0
33 1.00 0.15 80.0 16.7 8.0
34 1.67 0.15 40.0 10.0 8.0
35 1.00 0.25 66.7 10.0 8.0
36 1.00 0.15 40.0 10.0 6.7
37 2.00 0.25 66.7 20.0 4.0
38 2.00 0.15 40.0 20.0 5.3
39 2.00 0.22 80.0 20.0 8.0
40 2.00 0.18 40.0 10.0 4.0



Table 3
Process parameters of the additional experiments for the model verification.

Run Formulation Factors

17 % MCC 34 % MCC 20 % IBU 67 % IBU SFR / kg/h L/S / - DT /°C AF / Nm3/h Vib / m/s2

A X - - - 1.50 0.200 60.0 15.0 6.0
B X - - - 1.50 0.200 60.0 15.0 4.3
C X - - - 1.50 0.143 60.0 15.0 4.3
D X - - - 1.50 0.200 81.0 15.0 6.0
E X - - - 1.50 0.200 81.0 19.9 6.0
F X - - - 1.50 0.200 81.0 19.9 7.5
G X - - - 1.91 0.200 81.0 19.9 7.5
H X - - - 1.91 0.238 81.0 19.9 7.5
I X - - - 1.50 0.200 67.9 15.0 6.0
J X - - - 1.50 0.200 67.9 18.8 6.0
K X - - - 1.50 0.200 67.9 18.8 4.4
L X - - - 1.91 0.200 67.9 18.8 4.4
M X - - - 1.91 0.254 67.9 18.8 4.4
N X - - - 1.50 0.200 60.0 15.0 8.2
O X - - - 1.01 0.200 60.0 15.0 8.0
P1 X - - - 1.00 0.150 60.0 20.0 4.0
P2 - X - - 1.00 0.150 60.0 20.0 4.0
P3 - - X - 1.00 0.150 60.0 20.0 4.0
P4 - - - X 1.00 0.150 60.0 20.0 4.0
Q1 X - - - 1.00 0.250 60.0 20.0 4.0
Q2 - X - - 1.00 0.250 60.0 20.0 4.0
Q3 - - X - 1.00 0.250 60.0 20.0 4.0
Q4 - - - X 1.00 0.250 60.0 20.0 4.0
R1 X - - - 1.50 0.200 60.0 20.0 4.0
R2 - X - - 1.50 0.200 60.0 20.0 4.0
R3 - - X - 1.50 0.200 60.0 20.0 4.0
R4 - - - X 1.50 0.200 60.0 20.0 4.0
S1 X - - - 2.00 0.150 60.0 20.0 4.0
S2 - X - - 2.00 0.150 60.0 20.0 4.0
S3 - - X - 2.00 0.150 60.0 20.0 4.0
S4 - - - X 2.00 0.150 60.0 20.0 4.0
T1 X - - - 2.00 0.250 60.0 20.0 4.0
T2 - X - - 2.00 0.250 60.0 20.0 4.0
T3 - - X - 2.00 0.250 60.0 20.0 4.0
T4 - - - X 2.00 0.250 60.0 20.0 4.0
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DT*L/S; AF*Vib; AF*SFR; AF*L/S: Vib*SFR; Vib*L/S; SFR*L/S and the
constant). All runs were performed in a randomized order and ana-
lyzed with the software MODDE. The optimization of the models
involved backward regression by excluding non-significant effects
based on their p-value, starting with the highest value. Runs were
excluded if they deviated from the normal residual distribution,
defined as being beyond 3 standard deviations. Thus, the obtained
models were not suitable to describe the excluded runs. For the IR
model, run 4 was excluded. For the NIR model, a total of five runs
were excluded (Runs 4, 17, 27, 33 and 35). The dryer was preheated
for 30 min at the beginning of each day. Each run included a 15 min
equilibration period to adjust for changes in factors, followed by 45
min processing time with sampling conducted every 5 min for the
LOD determination. In total, 60 kg of material was used to conduct
the DoE. LOD was determined using the offline method via moisture
analyzer, inline using NIR spectroscopy and predicted by applying
the mass balance.
Model Verification
For the verification of the developed model additional runs were

performed as listed in Table 3. Runs A - O were conducted to adjust
one process parameter while keeping the others constant to achieve
a target LOD using the 17 % MCC formulation. The variation of these
individual parameters was calculated or predicted by rearranging the
LOD model obtained from IR to one of the process parameters. The
runs P - T were executed with each of the four formulations (17 %,
34 % MCC, 20 % IBU or 67 % IBU).
Determination of LOD via Moisture Analyzer
During the drying process, granules were sampled every 5 min at

the outlet and the LOD was determined by measuring the moisture
driven-off offline using the moisture analyzer (MA 100, Sartorius,
Goettingen, Germany). IR light was used for heating of the sample.
For collecting granules, a snap glass was held at the outlet of the dis-
persion unit and the entire sample was collected for approximately
30 s. The sample size was approximately 2 g. 17 % MCC and 34 % MCC
formulation were dried at 80°C and 20 % IBU and 67 % IBU formula-
tion at 60°C. The endpoint of the measurement was set to 0.1 % mass
variation over 150 s.

Prediction of LOD via Mass Balance
During the granulation and drying processes, process parameters

were recorded by the installed sensors of the machine. This includes
SFR and liquid feed rate for the TSG. Additionally, during the drying
phase, parameters such as air flow, temperature, humidity and pres-
sure of both the inlet and outlet air were continuously monitored
and utilized for mass balance calculations. The data were collected
with a sample frequency of 1 Hz. The ambient air was also included
into the MB therefore the air pressure was measured. Temperature
and humidity were noticed every 30 min using the wireless tempera-
ture and humidity sensor testo 175 H1 (Testo SE, Titisee-Neustadt,
Germany). The difference between the amount of water entering and
leaving the dryer in empty state was detected. Thus, a correction fac-
tor was implemented based on the difference of water recorded in
empty state. The stepwise deviation of the MB was applied in accor-
dance to a previous study.32



Fig. 2. Calibration and cross-validation of NIR sensor with the offline LOD measure-
ment via IR showing each individual LOD value.

Fig. 1. Experimental setup for LOD measurement via NIR spectroscopy.
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In-line LOD Determination via NIR Spectroscopy
The in-line measurement of the LOD using NIR spectroscopy (Rasp-

berry spegg� NIR22, Dr. Licht, N€umbrecht, Germany) was conducted
with a low-cost, in-house-built NIR sensor. A LED light source with a
peak frequency of 1450 nm was coupled to a hexa-core optical fiber.
The light source was powered with a current of around 100 mA. The
current was slightly adjusted in the experiments to ensure a sufficient
illumination of the granules under various process setting and to avoid
clipping of the spectra. The full price of the NIR measurement system
was around 3600 €. The spectra were recorded in reflection at a fre-
quency of 0.5 Hz. The spectral range was between 1000 and 1750 nm
with a resolution expressed as the full width half maximum of below
16 nm. The spectra were filtered using a moving average filter in a
width of 3 values of the wavelength. The sampling time points for the
LOD measurements were manually recorded, and the arithmetic mean
of the spectra at these time points § 30 s were used as the calibration
set for the model described below. Subsequently after mean-centering
maximum scaling of the spectra, the range between 1300 and 1600
nm was correlated with the offline measured LOD values using a PLS1.
The raw and pretreated spectra are shown in the supplement (Fig S1).
The mean squared error of a Monte-Carlo-cross-validation (MCCV)
was used to optimize the number of latent structures. The validation
split procedure was repeated 1000 times with 80 % of the data in train-
ing data set. The experimental setup is given in Fig. 1. Dried granules
leave the dryer through the rotary valve. A vibratory dispersion unit is
positioned beneath the outlet to create a thin granule bed with an
approximate linear velocity of 0.0073 m/s, improving the measure-
ments via NIR probe. The granules were sampled after passing the dis-
persion unit and NIR probe for offline measurements, as described in
section Determination of LOD via moisture analyzer. Therefore, all gran-
ules that passed the NIR probe were also sampled LOD measurements
using moisture analyzer.

Results and Discussion

NIR Spectroscopy Calibration

For the construction of the NIR model 13 latent structures were found
to be most suitable based on the cross-validation procedure. Fig. 2 dis-
plays the correlation between the measured LOD via IR and the predicted
LOD via NIR, including the prediction of the MCCV. The low-cost sensor
showed good agreement between the predicted andmeasured LOD, with
a R2MCCV of 0.91. The root mean square error of the MCCV (RMSECV) was
determined to be 1.24 %. Some data points, e.g. predicted LOD between 6
and 10 %, exhibited greater deviation from the line of identity. Addition-
ally, there were consecutive runs in the DoE that deviated from the mea-
sured LOD via IR and LOD via MB. It seems that the NIR sensor was
covered by fine powder and thus unable to measure accurately. Never-
theless, the low-cost NIR sensor is suitable for predicting LOD within a
range between 0 to 20 %. It should be noted that the accuracy of the NIR
is higher at lower LOD values, as the granules become drier and more
uniform. At higher LOD values, there may be large granules of higher
residual water and fine granules of low residual water after drying. Such
uneven distribution reduces the accuracy.

LOD Prediction Model

Model Evaluation
The LOD was measured and determined using the IR, NIR and MB

approaches. Therefore, three individual models were built based on
the LOD determination approach. Since the NIR method is calibrated
against the IR method, NIR should be considered together with the
IR. Fig. 3 illustrates the evaluation of the model for predicting the log-
arithmic LOD. LOD was logarithmically transformed to ensure a nor-
mal distribution of the data. In the IR model (Fig. 3A) one run was
excluded. In the NIR (Fig. 3B), five runs were excluded, while using



Fig. 3. Summary of fit (left) and coefficient plot (right) for logarithmic LOD measured with standard method IR (A), NIR (B) and MB (C), mean coefficient § 95 % confidence interval.
The coefficient constants are 0.58 (IR), 0.64 (NIR) and 0.52 (MB).
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the LOD model via MB (Fig. 3C), all runs were included. The reason for
excluding runs is described in the section Model development using
DoE. All models displayed high values for the measure of fit, R2 (>
0.90) and the predictability Q2 resulted in > 0.97, except for Q2 (MB),
which was 0.87. Comparing the coefficient plots of all three models,
more factors and interactions are included in the models for LOD
measured via IR and NIR. However, in the model set up with LOD via
MB only the main factors are involved. Except for MB model (-0.2),
the models demonstrated sufficient model validity (> 0.25), indicat-
ing no lack of fit. In case of MB, the model error is significantly larger
than the pure error (reproducibility) according to MODDE.35 The
models without excluding runs for IR and NIR models are attached in
the supplementary (supplement Fig. 2). Thereby, less coefficients are
involved in the models and a model validity below 0.25 is obtained.
The exclusion of data points that were not properly described by the
model led to more coefficients being included in the model and



Fig. 4. Verification of the LOD prediction models setup with LOD determination via IR (A), NIR (B) and MB (C). Predicted values § 95 % prediction interval and observed is always
the LOD via IR with n = 9, x§ s:
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improved R2, Q2 and model validity. The comparison of the coeffi-
cients showed that if the same coefficients were included, the influ-
ence on the LOD of the factors and factor combinations on the LOD
consistent. By increasing the DT or AF, the LOD decreased as more
water was removed from the granules. Increasing the Vib reduced
the residence time of the granules inside the drying chamber, expos-
ing the granules to hot and dry air for a shorter duration, which led
to an increased LOD. An increased LOD was also obtained by increas-
ing the SFR, as this led to a larger granules bed inside the chamber
and thus less efficient drying. Additionally, with an increased L/S
ratio, the LOD increased. The impact of the drying parameters corre-
sponds to the findings from the previous study where a central com-
posite design was used.7

Application
The developed models to predict the LOD were verified using

additional 16 runs (A-O), whereby run B was conducted twice as an
error was assumed. The predicted LOD values based on the applied
process parameter are plotted against the LOD measured offline with
IR (Fig. 4). The best agreement between predicted and observed data
was found for the IR model (Fig. 4A) followed by the NIR model
(Fig. 4C). The NIR should not deviate substantially from IR, as the cali-
bration is based on these values, and this method cannot be consid-
ered independent. This resulted in a R2 of 0.882 and a RMSE of 0.475
using the IR model, and a R2 of 0.866 and RMSE of 0.756 predicted
Fig. 5. Verification of the LOD prediction models setup with LOD determination via IR (A) a
observed is always the LOD via IR with n = 9, x§ s.
with the NIR model. All LOD values, independent of the model, were
overpredicting below 3 %. A larger scattering of the LOD above the
line of identity was obtained for the model built via NIR (Fig. 4C),
resulting in a larger RMSE for NIR compared to the other two models.
The reason might be the inaccurate measuring of the NIR sensor due
to the covering of the sensor with powder, which was mentioned in
the section NIR spectroscopy calibration. These runs are nevertheless
included in the model and thus led to an error in the prediction. The
MB model yielded a R2 of 0.847 and a RMSE of 0.541. The MB model
showed underprediction at LOD values above 3 % and overprediction
below 3 %. By considering the error bars, which represent the predic-
tion interval at a confidence level of 95 %, the prediction interval of
the MB model is approximately doubled compared to IR and NIR.
This is due to the exclusion of runs in case of IR and NIR, which
resulted in narrow prediction intervals as the model described and
predicted the LOD more accurately. In case of the MB model, all runs
were included in the model, and after model optimization, the MB
model is built only from the main factors and the constant, without
interaction and quadratic effects as in the other two models.

In addition to these 16 runs, further runs using different formula-
tions were investigated (P-T, Table 3). Run R was a center point from
another experimental series and was therefore conducted three
times. These runs were inserted into the models to predict the LOD
based on the IR and MB model. The verification using different for-
mulations is shown in Fig. 5. Regardless of the formulation, both
nd MB (B) for different formulations. Predicted values § 95 % prediction interval and



Fig. 6. LOD predicted with MB as predicted § uncertainty of the sensors, NIR and measured with IR. The red line depicts the predicted LOD using the IR model for runs D (A) with
SFR (B), E(C) and H (D), while the red dotted lines show the upper and lower prediction limits with a 95 % prediction interval.
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models overpredicted the LOD between 1 − 3 % LOD. The highest
deviation was observed for the run T2 (Table 3) using 34 % MCC,
applying a high SFR and L/S, resulting in higher water uptake of the
granules and thus not sufficiently drying under the used drying con-
ditions. At the other granulation parameters (34 % MCC formulation),
the predicted and observed LODs overlapped well compared to the
formulations with API. The additional runs resulted in a R2 of 0.826
and a RMSE of 0.715 using the IR model and a R2 of 0.768 and a RMSE
of 0.829 for the MB model. As mentioned previously, the MB model
consisted of larger confidence intervals for the prediction.

The development model could also predict one of the involved
process parameters by keeping the others constant to achieve a tar-
get LOD. The LOD for three runs is illustrated in Fig. 6. To obtain a tar-
get LOD of 2.0 % by adjusting the DT and leaving other parameters at
the center point conditions, the IR model predicted a DT of 81°C. For
this the model obtained with IR from Fig. 3A was used and in this
case rearranged to DT. The predicted and observed LOD values for
run A − O is listed in Table 4. The comparison of the observed LOD
values showed good agreement between IR and NIR measurements,
as well as with MB measurements. The highest deviation between
observed LOD via IR and MB was determined for run L with 0.68 %. In
case of IR and NIR measurements, the highest deviation was found
for run M with a difference of 1.09 %.

The observed LOD measured via IR is scattered around the lower
prediction limit of 1.5 % (Fig. 6A). The LOD via NIR and MB is scattered
below the lower limit similarly. Around 12 min, the LOD predicted via
MB is increased sharply to 5.4 % and then decreased back to around
Table 4
Predicted LOD with 95 % confidence interval and observed LODs via IR, NIR and MB. Observed

Run Prediction − IR Model / %

Target Lower Limit Upper Limit

A 3.83 2.87 5.11
B 3.23 2.41 4.33
C 1.79 1.32 2.43
D 2.01 1.50 2.71
E 0.95 0.70 1.29
F 1.11 0.81 1.51
G 1.46 1.07 1.98
H 2.69 1.97 3.69
I 3.01 2.25 4.02
J 1.87 1.39 2.51
K 1.59 1.19 2.14
L 2.35 1.76 3.15
M 4.57 3.37 6.20
N 4.77 3.55 6.42
O 2.58 1.93 3.46
1.0 %. When comparing the raw data used for LOD prediction via MB,
the SFR exhibits a temporary increase, which was also reflected in
the prediction (Fig. 6B). This demonstrates how sensitive the process
control via MB is. Any changes in the process parameter affecting the
LOD are directly observed. To reach a LOD of 0.95 % by adjusting the
AF while keeping the drying conditions as in run D (Fig. 6A), the IR
model calculated an AF of 19.9 Nm3/h. The observed LODs showed a
scattering among all three methods around the target LOD and lower
prediction limit (Fig. 6C). In run D, the LOD was adjusted to 2.7 % by
changing the L/S ratio from 0.20 to 0.238. The observed LOD values
scattered between target and upper prediction limits (Fig. 6D).

In total, 84 runs were conducted including various formulations.
To assess the suitability of the MB and NIR spectroscopy methods,
the average deviation to the standard method was calculated. The
absolute average deviation, also referred to as bias, between MB and
standard LOD method was determined to be 0.23 %, while that
between NIR and standard approach was 0.37 %. The maximal indi-
vidual absolute deviation was found to be 0.81 % for MB and 3.63 %
for NIR. The average absolute deviation between MB and NIR was cal-
culated to be 0.47 %. By comparing these results to the reported by
Pauli et al., similar absolute LOD deviations were observed.2

The comparison between the LODmeasured via MB and NIR for all
conducted runs is displayed in Fig. 7. The correlation between both
methods resulted in a Pearson r of 0.952 and a RMSE of 0.760
(Fig. 7A). The red points showed large deviations between the LOD
predicted via NIR and MB. However, the LOD via MB and the standard
method IR showed similar values. As mentioned before, in some runs
values with n = 9 (IR); n = 1350 (NIR); n = 2700 (MB), x§ s:

Observed / %

IR NIR MB

3.92 § 0.23 3.85 § 0.46 3.58 § 0.07
2.70 § 0.43 2.48 § 0.79 2.81 § 0.08
1.00 § 0.15 1.56 § 0.63 0.56 § 0.06
1.52 § 0.19 0.86 § 0.13 1.06 § 0.34
0.71 § 0.14 0.83 § 0.27 0.69 § 0.08
1.02 § 0.07 0.96 § 0.20 1.50 § 0.09
1.30 § 0.14 1.54 § 0.26 1.44 § 0.06
3.02 § 0.44 3.23 § 0.39 3.24 § 0.06
2.93 § 0.30 2.70 § 0.28 2.61 § 0.13
1.53 § 0.19 1.43 § 0.11 1.42 § 0.07
0.83 § 0.14 0.92 § 0.16 0.71 § 0.14
1.86 § 0.17 1.64 § 0.22 2.54 § 0.10
5.58 § 0.56 4.49 § 0.41 5.54 § 0.09
4.64 § 0.93 5.69 § 0.43 4.48 § 0.10
2.38 § 0.35 2.28 § 0.41 2.48 § 0.06



Fig. 7. Correlation of LOD predicted via NIR and MB, n = 1350 timepoints (NIR) and n = 2700 timepoints (MB) for all runs (A) and after removing the red runs (B), x§ s.
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of the DoE in series, the NIR sensor might have been covered by pow-
der. This demonstrated that if the process control via NIR shows high
deviation in the critical quality attribute, it requires a process adapta-
tion. By comparing the LOD values observed with MB, which is inde-
pendent of NIR, LOD values might be within the acceptance limits.
Thus, the MB method could monitor the LOD additionally to reduce
the risk of correcting the process based on the wrong signal. By
removing these deviated runs, a good agreement with a r of 0.996
and RMSE of 0.433 were obtained (Fig. 7B). This showed that the MB
and NIR methods in combination formed an orthogonal PAT method,
allowing independent process control of the LOD. Therefore, if the
PAT method e.g. NIR spectroscopy shows values which requires a
process adaptation, the second method helps to decide if there is a
measurement error or indeed a deviation in the process. The low-
cost NIR sensor was able to predict the LOD appropriately.
Conclusion

In this study, a LOD prediction model was developed to predict
the LOD either by applying various process parameters involved in
continuous wet granulation and VFBD or by determine an individual
process parameter required to achieve a target LOD. The LOD was
successfully measured using the offline IR method along with MB
and NIR spectroscopy. The developed prediction models, particularly
those using IR and MB for LOD determination, exhibited reliable pre-
diction for LODs up to 5 %. Since the developed model was not able to
describe all 40 runs based on the residual standard deviation, some
runs were excluded. In the case of the MB model, all runs were
included to develop the model. This led to a reduction in prediction
accuracy as larger prediction intervals were obtained. The built MB
model involved only the main factors, whereas the other two models
also included interactions and quadratic effects. The in-house built
NIR sensor, calibrated offline with IR, demonstrated accurate LOD
prediction. However, it was observed that the sensor was more prone
to errors due to its installed position at the outlet, which resulted in it
being covered by powder. Consequently, frequent cleaning of the
sensor might be necessary for obtaining reliable LOD values through-
out the entire process. Therefore, compressed air might be useful to
dedust the sensor at defined time intervals. The applied MB for the
LOD determination, based on logged sensor data measuring AF,
humidity, temperature and pressure of incoming and exiting air, pro-
vided a cost-effective alternative to standard PAT methods such as
microwave resonance or NIR spectroscopy. As these methods require
an initial cost implementation and involve time-consuming
calibration and validation processes, which included an additional
reference method. It needs to be considered that the MB predicts
more reliably if the drying process is in steady-state conditions as
demonstrated in a previous study.32 Small deviations in the involved
process parameters might predict a higher or lower LOD, which is
not realistic, as the MB is too sensitive. This sensitivity of the MB pre-
diction must be considered with caution, as it is unclear how the fluc-
tuation of a process parameter, e.g. powder feed rate, is dampened
and whether the LOD is affected. The sample frequency of 5 min was
too low to provide information in this case. The application of MB
and NIR spectroscopy, which independently determined the LOD,
showed good agreement in LOD values up to 16 %. Utilizing two inde-
pendent methods reduces the risk of making false process adaption
based solely on PAT signals. This study demonstrated the two inde-
pendent models (IR and MB) capable of predicting LOD based on the
involved process parameters, or inversely, calculating a process
parameter to achieve a certain LOD. Additionally, it highlights the
importance of orthogonal PAT methods and verifies the applicability
of the MB model, in combination with NIR spectroscopy, for LOD
monitoring during drying via VFBD.
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