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In 1930, Wilhelm Magnus introduced the so-called Freiheits-
satz: Let F be a free group with basis X and let r be 
a cyclically reduced element of F which contains a basis 
element x P X , then every non-trivial element of the normal 
closure of r in F contains the basis element x. Equivalently, 
the subgroup freely generated by X ztxu embeds canonically 
into the quotient group F {x xry yF . In this article, we want 
to introduce a Freiheitssatz for amalgamated products G “

A ̊ U B of free groups A and B, where U is a maximal cyclic 
subgroup in A and B: If an element r of G is neither conjugate 
to an element of A nor B, then the factors A, B embed 
canonically into G{x xry yG.

© 2024 Published by Elsevier Inc.

1. Introduction

For a group G and an element r P G we denote the normal closure of r in G by x xry yG. 
We mostly write G{x xry y instead of G{x xry yG if it is clear from the context, that the 
normal closure is taken over G. Further, we write ra, bs “ a´1b´1ab for the commutator 
ra, bs of two elements a, b.
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In 1930, W. Magnus proved the classical Freiheitssatz: If F is a free group with basis X
and r a cyclically reduced element containing a basis element x P X , then the subgroup 
freely generated by X ztxu embeds canonically into the quotient group F {x xry y. This result 
became a cornerstone of one-relator group theory and led to different kinds of natural 
generalizations.

One way to generalize the Freiheitssatz of W. Magnus is to study so-called one-relator 
products. A one-relator product of groups Aj (j P J ) for some index set J is a quotient 
group p˚jPJ Ajq{x xry y, where r is an element of ˚jPJ Aj which is not conjugate to an 
element of a single Aj (j P J ). Note that one-relator groups are special cases of one-
relator products where the Aj (j P J ) are free groups. Thus, knowing the Freiheitssatz 
of W. Magnus, it is natural to ask under which conditions the factors Aj (j P J ) 
canonically embed into a one-relator product p˚jPJ Ajq{x xry y. One result in this context 
is the Freiheitssatz for locally indicable groups (cf. Theorem 1.4) independently proved 
by J. Howie (see [8]), S. Brodskii (see [1],[2]) and H. Short (see [17]). It is not known 
whether this generalized Freiheitssatz can be further generalized to torsion-free groups 
without stronger assumptions. However, several Freiheitssätze for one-relator products 
of torsion-free groups are known under restrictions to exponent sums of r due to A. 
Klyachko (see [13]) and under the condition that r has a syllable length smaller or equal 
8 due to M. Edjvet and J. Howie (see [5]). There are also further Freiheitssätze for one-
relator products assuming small cancellation conditions on the symmetric closure of the 
relation r (see [12]).

Another way of generalizing the Freiheitssatz of W. Magnus is to consider more than 
one relation r. Seeing the additional relations as part of the underlying group, these 
results are called Freiheitssätze for one-relator quotients. Generalizations of that kind 
can be found in [10], [11] due to J. Howie and M. Saeed. The aim of this article is 
to prove the following Freiheitssatz for special one-relator quotients which generalizes 
Chapter 4 of the author’s dissertation [6]. After formulating this result we shortly discuss 
its assumptions and its connection to the results of [10].

Main Theorem 1.1. Let A and B be two free groups and let G “ A ̊ UB be an amalgamated 
product, where U is a maximal cyclic subgroup in both factors. Further, let r be an element 
of G which is neither conjugate to an element of A nor B. Then A and B canonically 
embed into the quotient group G{x xry yG.

The following example shows that the assumption on U to be a maximal cyclic sub-
group cannot be omitted.

Example 1.2. Let A :“ xa |y, B :“ xb, c, d |y and r :“ apbcq´1. Further, let U be generated 
by p :“ a2 in A and by q :“ pbcq2d2 in B. Then we have in pA ̊ U Bq{x xry y:

pbcq2d2
“ a2

ô pbcq2d2
“ pbcq2 ô d2

“ 1
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Thus, xc, d |y does not embed into pA ̊ UBq{x xry y even though q contains the basis element 
b of B.

Note that Main Theorem 1.1 is in part already contained in [10, Theorems 3.1, Theo-
rem 4.2 and Theorem 5.1] by J. Howie and M. Saeed since many amalgamated products 
of free groups over maximal cyclic subgroups in both factors are limit groups (in the 
sense of Z. Sela). For example the fundamental groups π1pS`

g q with g ě 2 resp. π1pS`
g q

with g ě 4 of a compact, orientable resp. compact, non-orientable surface of genus g
are elementary equivalent to free groups and therefore limit groups. Other examples of 
amalgamated products of free groups over maximal cyclic subgroups in both factors that 
are limit groups can be found in the class of so-called doubles of free groups F ˚xwy–x rwy

rF , 
where w is an element of a free group F and rF, rw are copies of F, w. These doubles of free 
groups are word-hyperbolic if and only if xwy is a maximal cyclic subgroup in F (see [7]).

However, there are also many amalgamated products of free groups over maximal 
cyclic subgroups in both factors which are not limit groups. One such example is the 
group

G “ xa, b, c, d, z | ra, bsrc, ds “ z4
y “ xa, b | y ˚

xra,bsy – xz4rc,ds´1y
xc, d, z | y.

In [3], J. Comerford, L. Comerford and C. Edmunds have shown that a non-trivial prod-
uct of two commutators in a free group can never be more than a cube. It follows that 
z is in the kernel of every homomorphism ϕ : G Ñ Fn, where Fn is the free group of 
rank n. Therefore, the finitely generated group G cannot be ω-residually free which is 
equivalent to G not being a limit group (see [4]).

In order to prove Main Theorem 1.1 we study special products of groups which we call 
tree-products (see Definition 2.3) and finally introduce a Freiheitssatz for tree-products 
(see Theorem 7.1). Main Theorem 1.1 follows directly from this Freiheitssatz which 
makes Theorem 7.1 the actual main result of this article when measured by degree of 
abstraction alone. As a tool we also prove the following theorem concerning one-relator 
products of locally indicable and free groups. Recall that a group G is indicable if there 
exists an epimorphism from G to Z. A group G is locally indicable if every non-trivial, 
finitely generated subgroup of G is indicable.

Theorem 1.3. Let H be a locally indicable group, A be a free group and let p be an 
element of A that is not a proper power. Further, let r be an element of A ˚ H that is 
not conjugate to an element of A Y pxpy ˚ Hq. Then xpy ˚ H embeds canonically into 
pA ̊ Hq{x xry y (equivalently x xry ypA˚Hq X pxpy ̊ Hq “ t1u).

We want to recall some results that are important for the proof of Main Theorem 1.1. 
In 1981, J. Howie proved the following theorem which is known as the already mentioned 
Freiheitssatz for locally indicable groups. This result was also proved independently by 
S. Brodskii (see [1],[2, Theorem 1]) and by H. Short (see [17]).
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Theorem 1.4 (see [8, Theorem 4.3 (Freiheitssatz)]). Suppose G “ pA ˚ Bq{N , where A
and B are locally indicable groups, and N is the normal closure in A ̊ B of a cyclically 
reduced word R of length at least 2. Then the canonical maps A Ñ G, B Ñ G are 
injective.

J. Howie obtains this Freiheitssatz by studying systems of equations over some group 
G. A finite system W of m P N equations wipx1, x2, . . . xnq (1 ď i ď m) in the variables 
x1, x2, . . . xn over the group G corresponds to the presentation S :“ xG, x1, x2, . . . xn |

w1, w2, . . . , wmy. The system W is said to have a solution over G if it has a solution in 
some group containing G as a subgroup.

Remark 1.5 (cf. [8, Proposition 2.3]). The group G embeds into S if and only if the 
system W has a solution over G.

Let M be the pm ˆ nq matrix whose pi, jq-th entry is the sum of the exponents of 
xj occurring in the word wi P G ˚ xx1y ˚ ¨ ¨ ¨ ˚ xxny. A system W is called independent
if the associated matrix M has rank m. It is conjectured that any independent system 
of equations over any group G has a solution over G. J. Howie proved for example the 
following special case of that conjecture.

Theorem 1.6 (cf. [8, Corollary 4.2]). Let G be a locally indicable group. Then every 
independent system of equations over G has a solution over G.

Aside from Theorem 1.6 we also use the following result about locally indicable groups.

Theorem 1.7 (see [9, Theorem 4.2]). Let A and B be locally indicable groups, and let G
be the quotient of A ̊ B by the normal closure of a cyclically reduced word r of length at 
least 2. Then the following are equivalent:

piq G is locally indicable;
piiq G is torsion-free;

piiiq r is not a proper power in A ̊ B.

2. Tree-products

First, we recall the definition of staggered presentations in the sense of W. Magnus 
from [15, Section II.5].

Definition 2.1 (staggered presentations over free groups, cf. [15, Section II.5]). Let 
G “ xX | Py be a group presentation, I Ď Z an index set and let Y “

Ů

iPI Yi be a 
subset of X . We assume P “ tpj | j P J u for a totally ordered index set J and cyclically 
reduced elements pj P xX |y such that each pj contains at least one element of Y. For 
every pj we denote with αpj

resp. ωpj
the smallest resp. largest index i such that pj
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contains an element of Yi. If j ă k implies αpj
ă αpk

as well as ωpj
ă ωpk

, we say 
that G “ xX | Py is a staggered presentation (over free groups) and P a staggered set of 
xX | y.

Next, we consider an example of a staggered set that is typical for the staggered sets 
arising in the proof of our main theorem.

Example 2.2. We define

X “ tai | i P Zu Y tbi | i P Zu Y tci | i P Zu

Y0 “ ta0u, Y1 “ tb1, c1u, Y2 “ ta2u, Y3 “ ta3, b3, c3u,

Y4 “ tb4, c4u, Y5 “ ta5u and Y6 “ ta6u.

Further, let

p´2 “ a0b1c
´1
1 a0a

´1
3 , p0 “ a2b3c

´1
3 a2a

´1
5 and p1 “ a3b4c

´1
4 a3a

´1
6 .

Then P “ tp´2, p0, p1u is a staggered set of xX | y “ xX YS | y, where Y “
Ů6

i“0 Yi Ă X .

Definition 2.3 (tree-products). Let T be a tree. We associate a non-trivial free group to 
every vertex of T . Every edge of T between two vertices with vertex-groups K and L
is associated to an edge-relation p “ q, where p P K and q P L. We call p resp. q an 
edge-word of K resp. L and say that K and L are connected over the edge-relation p “ q. 
We demand that no edge-word is a proper power in its vertex-group and that for each 
vertex-group F the set of all edge-words of F forms a staggered set of F . Let G be the 
union of the bases of all vertex-groups and let R be the union of all edge-relations. Then 
we call the group G :“ xG | Ry a tree-product (associated to T ). We refer to a vertex-
group that is associated to a leaf of T as a leaf-group. If T only contains one vertex, we 
do not consider that vertex as a leaf.

We call a tree-product, associated to a subtree of T , a subtree-product of G. A subtree 
B of T is a branch if we get a tree by deleting every vertex of B in T and every edge of 
T that is connected to a vertex of B. We call a tree-product, associated to a branch of 
T , a branch-product of G.

Let r be an element of G and A a leaf-group of G. We say that r uses the leaf-group 
A with basis A if every presentation of r, written in the generators from G, uses at least 
one generator from A.

Let the size |G| of G be the number of its vertex-groups. Finally, let P be the set of 
the edge-words of all leaf-groups in G and let P 1 be the set of all cyclical reductions of 
the elements of P. Then we call σ :“ ΣpPP 1 |p| the boundary-length of G.

It may be helpful to imagine tree-products visually as illustrated in Figure 1.
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Fig. 1. Illustration for a tree-product of size 9 with 6 leaf-groups.

Notation 2.4. Let G be a tree-product and let S be a subtree-product of G. We denote 
by G a S the free product of subtree-products of G arising by deleting all generators 
and edge-relations of S along with the edge-relations of all edges adjacent to S from the 
presentation of G. Note that G a B is a tree-product for every branch-product B of G. 
Analogously, we define G a M for a free product G of tree-products and a set M of 
subtree-products of the tree-products from G.

Lemma 2.5. Tree-products are locally indicable groups.

Proof. Let G be a tree-product. Our proof is by induction over the size |G|. For the 
induction base |G| “ 1, we note that, according to Definition 2.3, all vertex-groups of G
are free and therefore locally indicable. For the induction step let G be a tree-product 
with size n ` 1 for some n P N. Further, let A be a leaf-group of G with edge-relation 
p “ q, where p P A. We have G “ pG a Aq ̊ q“p A. By the induction hypothesis, G a A

is locally indicable. Therefore, G is locally indicable by Theorem 1.7. l

3. Contracted conjugates and minimal tree-products

In this section, we find for an arbitrary element r of a free product G ˚ H, where 
G is a tree-product and H a locally indicable group, a uniquely determined minimal 
subtree-product S of G such that S ˚ H contains at least one conjugate of r.

Definition 3.1. Let G be a tree-product and H a locally indicable group. Further let r be 
an element of G ̊ H which is not conjugate to an element of X ˚H for any vertex-group 
X of G. We call a presentation of a conjugate rr of r contracted conjugate if the following 
properties hold:
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The presentation rr contains under all presentations of all conjugates of r only gen-
erators from H and a minimal subtree-product T of G. Further, let rr be of the form 
Πn

i“1v
piq fulfilling the following three properties.

(i) Every vpiq contains either only basis elements of a single vertex-group or is an 
element of Hzt1u.

(ii) Cyclically proceeding vpiq (i P Zn) contain elements of different vertex-groups or of 
a vertex-group and H.

(iii) No element vpiq is a power of an edge-word of a leaf-group of T .

We call the elements vpiq pieces of the contracted conjugate rr. The number n of pieces 
of rr is the length of rr and is denoted by ||rr||G˚H (or ||rr||). Finally, we call the minimal 
subtree-product T minimal tree-product of r P G ̊ H.

The following lemma shows that Definition 3.1 is well-defined.

Lemma 3.2. Let G be a tree-product and H be a locally indicable group. Further, let r be 
an element of G ̊ H which is not conjugate to an element of X ˚H for any vertex-group 
X of G. Then the minimal tree-product of r is uniquely determined.

Proof. Let rr be a contracted conjugate of r that is contained in a minimal tree-product 
T . For an arbitrary leaf-group A of T we consider the branch-products which arise from 
G by deleting T a A along with all edge-relations of the edges that connect T a A to 
the rest of the tree-product. We denote the branch-product containing A by ZA and 
the free product of all remaining branch-products by RA. With the aim of obtaining 
a contradiction let r˚ be a contracted conjugate of r that is contained in a minimal 
tree-product T˚ different from T . By definition, we have |T | “ |T˚|. Since T and T˚

are different there is at least one leaf-group A of T such that T˚ does not contain any 
vertex-group of ZA. For such a leaf-group A we define

X :“ pG a RAq ˚ H, Y :“ pG a ZAq ˚ H and S :“ pG a ZA a RAq ˚ H.

Note that

G ˚ H “ X ˚
S
Y. (3.1)

Since X X pT˚ ˚Hq is a subgroup of S and the tree-product G aZA aRA is smaller than 
T , the contracted conjugate r˚ is not an element of X. Thus, there exists an element 
w P G ̊ H with

w´1
rrw “ r˚

R X.
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Since rr is an element of T Ă X, w is not an element of X. We consider the normal 
form w “ x1y1x2 . . . ymxm`1 (m ě 1) resp. the amalgamated product (3.1), where x1, 
xm`1 P pXzSq Y t1u, xi P XzS for 2 ď i ď m and yi P Y zS for 1 ď i ď m. We write

x´1
m`1y

´1
m ¨ ¨ ¨ y´1

1 x´1
1 rrx1

loomoon

:“u

y1x2 ¨ ¨ ¨ ymxm`1 “ r˚
P Y.

For x1 “ 1 this equation contradicts the unique length of normal forms. For x1 ‰ 1 we 
also get a contradiction because u is a conjugate of rr and can therefore not be an element 
of S. l

4. Operations for tree-products

In this section we introduce some operations for tree-products that will be helpful for 
the proof of our main theorem.

Definition 4.1 (root-products). Let G be a tree-product and G be the union of the bases of 
all vertex-groups of G. Further let R be the union of all edge-relations of G. We consider 
a subset M Ă G that only contains basis elements of leaf-groups of G. For every element 
a P M we choose an element npaq P Zzt0u. Then we say that

rG :“ xG Y tra | a P Mu | R, a “ ranpaq
pa P Mqy

is a root-product of G which is obtained by extracting the roots ra of the elements a P M.

Remark 4.2. If the (by Definition 2.3 and Definition 2.1 cyclically reduced) edge-words 
of all the leaf-groups of G contain at least two basis elements, every root-product of G
is also a tree-product.

Before we introduce the next operation for tree-products we define special isomor-
phisms of tree-products:

Definition 4.3 (leaf-isomorphisms). Let G be a tree-product, n P Zzt0u and let a, b be 
two generators of the same leaf-group A of G. Then we refer to the transition from the 
old generator b to the new generator b̄ :“ ban or b̄ :“ anb as a leaf-isomorphism (of the 
tree-product G) if the resulting group presentation is still a tree-product.

Remark 4.4. Note that at least one of the choices ̄b :“ ban or ̄b :“ anb results in building a 
new tree-product since every edge-word p (written in the old generating set) is cyclically 
reduced and no proper power.

Root-products and leaf-isomorphisms can help to generate the conditions for applying 
the homomorphism described in the following definition (see Remark 4.7).
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Definition 4.5 (leaf-homomorphisms). Let G be a tree-product, A be a leaf-group of G
and H a locally indicable group. Let p “ q (p P A) be the edge-relation of the edge 
connecting A and G a A. Further let a be a basis element of A which is contained in p
with exponential sum 0. Then we call the homomorphism ϕ : G ̊ H Ñ Z which maps a
to 1 and all other generators of G ̊ H to 0 a leaf-homomorphism (for a). If we consider 
G together with an element r P G ̊ H that has exponential sum 0 respectively a, we call 
ϕ a leaf-homomorphism for r P G ̊ H.

In the following, we are mostly interested in the kernels of leaf-homomorphisms.

Remark 4.6. The kernel kerpϕq of a leaf-homomorphism ϕ : G ̊ H Ñ Z has the following 
structure: For H we obtain countably infinitely many free factors Hi :“ a´1Ha of kerpϕq. 
We consider the free product of these factors as one locally indicable free factor rH of 
kerpϕq. For every generator b ‰ a of A we obtain countably infinitely many generators 
bi :“ a´ibai (i P Z). These generators build a vertex-group rA of kerpϕq. For the edge-
word p P A we obtain a staggered set P “ tpi | i P Zu of rA, where pi :“ a´ipai. Instead 
of G aA there are countably infinitely many copies Xi :“ a´ipG aAqai of G aA. Every 
copy Xi contains a copy qi :“ a´iqai of the edge-word q of the edge-relation p “ q

associated to the edge connecting A with G a A. We connect Xi with rA over the edge 
with edge-relation pi “ qi and thereby obtain a tree-product K with kerpϕq “ K ˚ rH. 
The edge-words pi P rA (i P Z) are strictly shorter than the word p P A since all letters 
a˘1 vanish and the word pi contains for every letter b ‰ a˘1 in p exactly one letter bj
(j P Z).

It is possible that a tree-product G does not allow the application of a leaf-
homomorphism. The following remark describes a procedure to either construct an 
isomorphic tree-product with strictly shorter boundary-length or to move on to a tree-
product rG allowing the application of a leaf-homomorphism such that G can be embedded 
into rG.

Remark 4.7. Let G be a tree-product, A be a leaf-group of G and H a locally indicable 
group. Further, let p “ q (p P A) be the edge-relation of the edge connecting A with 
G a A and let a, b be two basis elements of A which are contained in p with exponen-
tial sums pa, pb ‰ 0. First, we go over to the root-product rG of G setting a “ rapb . 
Afterwards, we consider the leaf-isomorphism ψ of A in rG which is given by rb “ brapa

or rb “ rapab. It follows that p, written using the new generators ra and rb has exponential 
sum 0 respectively ra. If p does not contain the generator ra, the boundary-length of rG

respectively the new generating set is strictly smaller than the boundary-length of G. 
In the case that p contains ra there is a leaf-homomorphism ϕ for the generator ra of the 
leaf-group A in rG. Since the only possible differences in the word lengths of p P G and 
p P rG come from the usage of the generators a/ra and these generators vanish by building 
the kernel kerpϕq (see Remark 4.6), the length of pi P rA Ă kerpϕq is not only strictly 
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shorter than the length of p P A Ă ψp rGq, but also strictly shorter than the length of 
p P A Ă G.

The following algorithm gives a contracted conjugate rr˚ in kerpϕq for a contracted 
conjugate rr of an element r in a tree-product G that is contained in the kernel kerpϕq of a 
leaf-homomorphism ϕ of G. In Lemma 4.9, we prove the functionality of that algorithm.

Algorithm 4.8. Let G be a tree-product, H a locally indicable group and r an element 
of G ̊ H with contracted conjugate rr. Further let r be an element of the kernel of a leaf-
homomorphism ϕ for a basis element a of the leaf-group A in G, where kerpϕq “ K ˚ rH is 
given with the structure described in Remark 4.6. The following algorithm rewrites the 
contracted conjugate rr of r P G ˚ H into a contracted conjugate rr˚ of a´�ra� P kerpϕq

(� P Z) with ||rr˚||kerpϕq ď ||rr||G˚H .
For reasons of symmetry, it suffices to only consider contracted conjugates rr˚ of r “

r0 P kerpϕq: To find a contracted conjugate of a´�ra� P kerpϕq (� P Z) we can apply the 
algorithm to r “ r0 and replace all indices i (i P Z) in the resulting contracted conjugate 
rr˚ by i ̀ �.

Let rr be given in the form rr “ Πn
i“1v

piq (see Definition 3.1). First, we step by step 
construct a presentation rr1 of rr as an element of kerpϕq. For the start we set λ “ 0, 
rr1 “ 1 P kerpϕq and j “ 1.
Step 1. We consider the j-th generator epjq in rr. If epjq “ a we set λ “ λ ´ 1 and if 
epjq “ a´1 we set λ “ λ ̀ 1. In the case epjq ‰ a˘1 we add the letter epjq

λ “ a´λepjqaλ to 
the word rr1. If epjq is the last letter in rr, we go to Step 2. Elsewise we set j “ j ` 1 and 
repeat Step 1 with the new input λ, rr1 and j.

The presentation rr1 given by Step 1 can be written in the form rr1 “ Πn
i“1rvpiq, where 

the subwords rvpiq for which vpiq does not lie in A can be obtained from vpiq by adding the 
same index to every letter of vpiq. Subwords rvpiq are trivial if and only if vpiq is a power 
ak (k P Zzt0u). In that case the indices of the adjacent subwords rvpi´1q and rvpi`1q differ 
by k.

Now, we delete every trivial subword rvpiq. If rvpiq is trivial and rvpi´1q, rvpi`1q are elements 
of rH, we merge them into one subword. If rvp1q is trivial and rvp2q, rvpnq are elements of 
rH, we permute the presentation rr1 cyclically by rvp2q and merge rvpnq

rvp2q. We proceed 
analogously in the case that rvpnq “ 1 and rvp1q, rvpn´1q P rH. Let rr1 “ Πn1

i“1v
1 piq be the 

resulting presentation. Then rr1 satisfies the properties (i) and (ii) of Definition 3.1. Let 
T 1 be the minimal subtree-product of K such that rr1 only contains generators from T 1

and rH. The following steps rewrite rr1 into a conjugate rr˚ of r in kerpϕq that also satisfies 
property (iii) of Definition 3.1.
Step 2. We replace all subwords v1 piq (i P Zn1 “ t1, 2, . . . , n1u) which are powers of edge-
words p of a leaf-group L of T 1 with edge-relation p “ q (p P L) by the corresponding 
power of q. If v1 pi´1q or v1 pi`1q are elements of the vertex-group containing the edge-word 
q, we merge v1 piq with those subwords (after cyclically permutation if necessary). If there 
is a leaf-group of T 1 such that no generator of T 1 is used in the new presentation, we 
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delete this leaf-group and the edge-relation of the edge connecting the leaf-group to the 
rest of T 1. We repeat Step 2 with the new presentation and subtree-product T 1 until 
there is no subword v1 piq left which is a power of an edge-word of a leaf-group of T 1. Let 
rr2 “ Πn2

i“1v
2 piq and T 2 be the resulting presentation and subtree-product.

Step 3. We step by step consider all leaf-groups B of T 2. Let m be the number of all 
subwords v2 piq written in the basis of B in the presentation rr2 “ Πn2

i“1v
2 piq. Further, 

let τ : Zm “ t1, 2, . . . , mu Ñ Zn2 “ t1, 2, . . . , n2u be the function which maps j to the 
position i of the j-th subword written in the basis of B. We merge the subwords v2 piq

from pT 2 aBq ̊ rH that are placed before the first, after the last or between two subwords 
v2 τpjq (j P t1, 2, . . . , mu) to new subwords wpjq (j P t0, 1, . . . , muq. After conjugation with 
wp0q as well as merging wp0q and wpmq to a new wpmq we may write w.l.o.g.

rr2
“ Πm

j“1v
2 pτpjqqwpjq. (4.1)

In the case that there are subwords wpiq which correspond as elements of kerpϕq to 
powers of the edge-word p P B, we merge them with their cyclical neighbours vpτpiqq and 
vpτpi`1qq to a new subword from B. After that, we repeatedly delete trivial subwords and 
merge newly cyclically adjacent wpkq- or v2 pkq-subwords. Finally, we divide the remaining 
subwords from pT 2 a Bq ̊ rH into the original subwords v2piq and return to Step 2 with 
the resulting presentation along with T 2 as the new T 1.

In the case that no subword wpiq of the presentation (4.1) corresponds as an element 
of kerpϕq to a power of the edge-word p P B, we repeat Step 3 with the next leaf-group 
of T 2. When we checked all leaf-groups of T 2 in one run of Step 3 without going back 
to Step 2, we set rr˚ :“ rr2 “ Πn2

i“1v
2 piq.

The following lemma secures the functionality of Algorithm 4.8.

Lemma 4.9. Algorithm 4.8 ends after finitely many iterations. The element rr˚ given by 
Algorithm 4.8 is a contracted conjugate of a´irai P kerpϕq and the length of rr˚ is shorter 
or equal to the length of the contracted conjugate rr of r P G ̊ H.

Proof. The finiteness of the algorithm and the inequality ||rr˚||kerpϕq ď ||rr||G˚H follow 
from the fact that no step increases the number of subwords rvpiq/v1 piq/v2 piq in the current 
presentation and every step of the algorithm which redirects to a previous step shortens 
the number of those subwords.

It remains to show that rr˚ is indeed a contracted conjugate of r P kerpϕq. First, we 
note that r P kerpϕq “ K ˚ rH (see Remark 4.6) cannot be conjugate to an element of 
X ˚ rH for a vertex-group X of K since otherwise r P G ˚ H would be conjugate to 
an element of Y ˚ H, where Y is a vertex-group of G and therefore would not have a 
contracted conjugate (see Definition 3.1).

The validity of the properties (i) and (ii) for contracted conjugates (see Definition 3.1) 
is maintained by every step. Moreover, the validity of property (iii) is secured by Step 2. 
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Note that the algorithm only ends if Step 3 leaves the presentation unchanged. So the 
output rr˚ satisfies the properties (i)-(iii) of Definition 3.1. We end the proof of this 
lemma by showing that no conjugate of r in kerpϕq can be contained in the free product 
of rH and a smaller subtree-product than T 2. For this purpose we consider an arbitrary 
leaf-group B of T 2. Similar to the proof of Lemma 3.2 we consider the branch-products 
arising from K by deleting all vertex-groups of T 2 a B along with the edge-relations of 
the adjacent edges. We denote the branch-product containing B by ZB and write

kerpϕq “ K ˚ rH “ ZB ˚
p“q

`

pK a ZBq ˚ rH
˘

. (4.2)

Note that in this last run of Step 3 the presentation (4.1) is for every leaf-group B of 
T 2 a cyclically reduced normal form of a conjugate of r “ r0 P kerpϕq respectively the 
amalgamated product

B ˚
p“q

`

pT 2
a Bq ˚ rH

˘

with length greater or equal two. This presentation is in particular a cyclically reduced 
normal form respectively the amalgamated product from (4.2) with length greater or 
equal two. Thus, no conjugate of r in kerpϕq can be contained in pK a ZBq ˚ rH. So 
the minimal tree-product of r contains for every leaf-group B of T 2 at least one vertex-
group of ZB. Therefore the minimal tree-product of r contains the tree-product T 2. Since 
rr˚ P T 2 ˚ rH, the tree-product T 2 is the minimal tree-product of r in kerpϕq. l

Remark 4.10. Let G be a tree-product, H a locally indicable group and rr “ Πn
i“1v

piq a 
contracted conjugate in G ˚ H. Further, let ϕ be a leaf-isomorphism from G ˚ H for a 
leaf-group A. Then, by writing every piece vpiq P A using the new generators from ϕpAq, 
we get a contracted conjugate rr˚ of ϕpG ̊ Hq with the same length.

The next lemma will allow us to apply the induction hypotheses in the proofs of our 
embedding theorems.

Lemma 4.11. Using the notation of Remark 4.6 (and Remark 4.7) let r be a contracted 
conjugate in G ̊ H, let T be the minimal tree-product of an element r P kerpϕq and let σ
be the boundary-length of T . We denote the contracted conjugate of a´irai P kerpϕq by 
ri. Further let Ti be the minimal tree-product of ri and let σi be the boundary-length of 
Ti. Then we have

p||ri|| ´ |Ti|, σiq ă p||r|| ´ |T |, σq

respectively the lexicographical order (where the first component is weighted higher).
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Proof. Because of Lemma 4.9, we have ||ri|| ď ||r||. Since every rooted tree is the union 
of all unique paths from the root to the leafs and Ti contains for every leaf-group L of 
T at least one copy of L, we also have |Ti| ě |T |, thus:

||ri|| ´ |Ti| ě ||r|| ´ |T | ô ||ri|| ´ |Ti| “ ||r|| ´ |T | ô p||ri|| “ ||r|| ^ |Ti| “ |T |q

Let p “ q (where p P A) be the edge-relation to the edge connecting A with G a A. The 
equality |Ti| “ |T | implicates Ti “ pa´ipT a Aqaiq ˚qi“pi

rA. As noticed in Remark 4.6
and Remark 4.7 we have |pi| rA ă |p|A. Every other edge-word of Ti is obtained from the 
associated edge-word of T by adding indices. So the lengths of the edge-words different 
from p do not change. Altogether, we get the inequality σi ă σ in the case ||ri|| ́ |Ti| “
||r|| ́ |T |. l

We end this section with the following definition.

Definition 4.12 (reduction- and fan-generators). Let ϕ : G ˚ H Ñ Z be a leaf-
homomorphism for r mapping a generator a of a leaf-group A of G to 1. We use the 
notation of Remark 4.6 and consider the element r as the element r0 in kerpϕq. If r0 is 
an element of p rA ˚

pi“qi
Xiq ˚ rH for an element i P Z, we call a a reduction-generator of 

r P G ̊ H. Elsewise we call a a fan-generator of r P G ̊ H.

5. Staggered presentations

For the proof of the Magnus-Freiheitssatz and the Magnus property of free groups (see 
[16]), W. Magnus defined staggered presentations over free groups (cf. [15, Section II.5], 
also Definition 2.1). We generalize that definition firstly to the case of locally indicable 
groups and secondly to the case of tree-products (see Definition 7.3). For the connection 
between the following definition and Definition 2.1 see Remark 5.2.

Definition 5.1 (staggered presentations over locally indicable groups). Let I, J Ă Z be 
index sets, let U be an arbitrary locally indicable group, let Vi (i P I) be non-trivial 
locally indicable groups and let rj (j P J ) be cyclically reduced elements of U ˚ ˚iPI Vi, 
such that every rj uses at least one of the free factors Vk (k P I). Further, let W :“ ˚iPIVi. 
We denote the smallest (resp. largest) index � P I such that rj uses the free factor V�

by αrj (resp. ωrj ) and call pU ˚ W q{x xrj | j P J y y a staggered presentation (over locally 
indicable groups) if the inequalities αrm ă αrn and ωrm ă ωrn hold for all m, n P J with 
m ă n.

Remark 5.2. Definition 2.1 is the special case of Definition 5.1 for free groups. This 
becomes apparent in the following way: Let G “ xX | Py be a staggered presentation in 
the sense of Defintion 2.1 with respect to subsets Yi (i P I) of X . Defining Vi :“ xYi |y

(i P I) and U :“ xX zY |y, where Y “
Ů

iPI Yi, we see that xX | Py is a staggered 
presentation in the sense of Definition 5.1 for the special case of free groups Vi and U .
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Next, we prove the following corollary of Theorem 1.4 about staggered presentations 
of locally indicable groups.

Corollary 5.3. Let U be a locally indicable group and pU ˚W q{x xrj | j P J y y be a staggered 
presentation for W “ ˚iPI Vi with locally indicable groups Vi. Further, let w be a non-
trivial element of U ˚ W . Let α, ω P I be indices such that w is contained in the normal 
closure of the elements rj (j P J ) in U ˚ W and w P ˚αďkďω Vk. Then w is already 
contained in the normal closure of the elements r� in U ˚ W with α ď αr� and ωr� ď ω.

Proof. Let Vďμ :“ ˚kďμ Vk, Věμ :“ ˚kěμ Vk and Vμ,ν :“ ˚μďkďν Vk for some indices 
μ, ν P I. We fix an arbitrary element m P J . First, we prove for an n P J with m ď n

the isomorphy

pU ˚ W q{xxrk | m ď k ď nyy

–
`

pU ˚ Vďωrn´1
q{xxrk | m ď k ď n ´ 1yy

˘

˚
U˚Vαrn ,ωrn´1

`

pU ˚ Věαrn
q{xxrnyy

˘

(5.1)

by induction on n ´ m. For the induction base (m “ n) the isomorphy follows directly 
from Theorem 1.4. Note for the induction step (n Ñ n ̀ 1) that U ˚ Vαrn`1 ,ωrn

embeds 
due to Theorem 1.4 canonically into the factor pU ˚ Věαrn

q{x xrny y which embeds due to 
the induction hypothesis into pU ˚ W q{x xrk | m ď k ď ny y. Since U ˚ Vαrn`1 ,ωrn

also 
embeds due to Theorem 1.4 canonically into pU ˚Věαrn`1

q{x xrn`1y y we derive the desired 
isomorphy

pU ˚ W q{xxrk | m ď k ď n ` 1yy

–
`

pU ˚ Vďωrn
q{xxrk | m ď k ď nyy

˘

˚
U˚Vαrn`1 ,ωrn

`

pU ˚ Věαrn`1
q{xxrn`1yy

˘

.

This ends the proof of the isomorphy (5.1).
For the purpose of a contradiction, let w be an element of x xrj | j P J y yU˚W which is 

also an element of the free product H ˚Vα,ω for some indices α, ω, but is not contained in 
the normal closure x xr� | α ď αr� , ωr� ď ωy yU˚W . Let us choose two indices m, n P J such 
that w is an element of the normal closure x xr� | m ď � ď ny yU˚W and n ́ m is minimal 
with this property. We only consider the case ω ă ωrn since the case αrm ă α follows 
analogously. Consider the amalgamated product from isomorphy (5.1). Because of the 
inequality ω ă ωrn , w is an element of the left factor of this amalgamated product. Since 
w is trivial in pU ˚W q{x xrk | m ď k ď ny y it must already be trivial in pU ˚Vďωrn´1

q{x xrk |

m ď k ď n ́ 1y y. This contradicts the minimality of n ́ m. l

The next lemma is a small observation used in the proof of Proposition 6.6 as well as 
the simultaneous proof of Theorem 7.1 and Proposition 7.4.
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Lemma 5.4. Let G “ xX | Py be a staggered presentation in the sense of Definition 2.1
with respect to subsets Yi (i P I) of X , where P “ tpj | j P J u for an index set J . Then 
the free group xP |y embeds canonically into xX |y.

Proof. Assume to the contrary that xP |y does not embed canonically into xX |y. Then 
the free subgroup of xX |y generated by the elements of P is not free with basis P. Thus, 
there exists a non-trivial relation

n

Π
i“1

p
εpiq
σpiq “ 1 in xX |y (5.2)

for some n P N, a function σ : t1, 2, . . . , nu Ñ J and a function ε : t1, 2, . . . , nu Ñ t˘1u. 
W.l.o.g. we can assume that

(i) The product on the left-hand side of (5.2) is trivially reduced and begins with a 
factor p1, but does not end with p˘1

1 for n ‰ 1.
(ii) I and J are finite, so I “ t1, 2, 3, . . . , λu and J “ t1, 2, . . . , κu for some λ, κ P N.
(iii) There is at least one factor pεpiq

κ in (5.2).
(iv) At least one element of Y1 is contained in p1 and one element of Yλ is contained in 

pκ.

By induction on |P| “ |J | “ κ we show that the left-hand side of (5.2) contains at least 
one element from Y1 and one element from Yλ. The induction base κ “ 1 is trivial. For 
the induction step κ Ñ κ ` 1 we rewrite (5.2) by combining and renaming elements p�
with � ‰ 1 to:

ν

Π
i“1

p
ζpiq
1 vi “ 1 in xX |y, (5.3)

for some ν P N, a function ζ : t1, 2, . . . , νu Ñ Zzt0u and elements vi P xp� | 2 ď � ď

κ ` 1yxX |y. By the induction hypothesis every pζpiq
1 (1 ď i ď ν) contains at least one 

element of Y1, which we denote by y, and due to Definition 2.1 no element pj P xX |y

(j P J zt1u) can contain an element from Y1. Also by the induction hypothesis, each vi
(1 ď i ď ν) contains at least one element from Yκ`1 which we denote by zi. Again by 
Definition 2.1, the element p1 P xX |y cannot contain an element from Yκ`1. At least the 
chosen occurrences of the basis elements y, z1, y, z2, . . . , y, zν cannot be cancelled in the 
left-hand side of (5.3). This ends the proof by induction. Hence, (5.2) does not hold and 
we get a contradiction. l

6. Embedding theorems

We begin this section with an easy lemma which enables us to pass from tree-products 
to certain root-products in the proofs of our embedding theorems.
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Lemma 6.1. Let G be a group, U be a subgroup of G, a be an element of G and let 
rG :“ G ˚a“rak xra |y, where k P Zzt0u. Further, let r P G be an element such that U
embeds canonically into rG{x xry y. Then U also embeds canonically into G{x xry y.

Proof. If xayG embeds into G{x xry y, we set m “ 0. Elsewise let m P N be the smallest 
power such that am is trivial in G{x xry y. Then the desired statement follows directly from

rG{xxryy “
`

G{xxryy
˘

˚
a“rak

xra | rakm “ 1y,

since an element of U which is trivial in the left factor of the amalgamated product must 
also be trivial in the amalgamated product itself. l

Following the reviewer’s suggestion, we introduce this lemma.

Lemma 6.2. Let rA be a free group with a basis tra, b, c, . . . u and let A “ xrak, b, c, . . . y Ď rA, 
where k P Zzt0u. Then

1) the subgroup A is free with a basis trak “ a, b, c, . . . u;
2) if an element p P A is not a proper power in A and is not conjugate to a˘1 (in A) 

then p is not a proper power in rA.

Proof. To 1): We have

rA “ xra, b, c, ... |y “ xa,ra, b, c, ... | a “ raky “ xra |y ˚
rak“a

xa, b, c, ... |y “ xra |y ˚
rak“a

A.

To 2): To the contrary, assume that there is an element p P A Ď rA which is a proper 
power in rA but is neither a proper power in A nor conjugate to a˘1 in A. So we have 
p “ v� for some v P rA and � P Zzt0, ̆ 1u. By assumption, v cannot be a power of ra. 
Since p written with the basis elements from trak, b, c, . . . u begins either with ra˘k or a 
basis element which is not ra, it is not possible that v begins or ends with a power of ra
which is not a multiple of k. Thus, v P A and p is a proper power in A. l

Next, we prove Theorem 1.3.

Proof of Theorem 1.3. W.l.o.g. let r be cyclically reduced in A ˚ H. By changing the 
basis of the free group A - if necessary - we can also assume that p is cyclically reduced 
in A. Let A be a suited free basis of A. Our proof is by induction over the length |p| of 
p P A, even though the induction hypothesis will not be used in every case of our proof. 
For the base of induction let |p| “ 1. Then p is a basis element from A. Since r is not an 
element of xpy ̊ H, r contains a basis element from Aztpu which is a free basis of A{x xpy y. 
We have

pA ˚ Hq{xxryy “
`

pA{xxpyyq ˚ xpy ˚ H
˘

{xxryy.
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So, by Theorem 1.4, xpy ̊ H embeds canonically into pA ̊ Hq{x xry y. For the induction step 
we choose two basis elements a, b P A which are contained in p. Note that this is possible 
since |p| ą 2 and since p is not a proper power due to the conditions of Theorem 1.3. We 
want to construct a basis-element ra with p

ra “ 0. If pa “ 0, we set ra :“ a, rb :“ b, and if 
pa ‰ 0, but pb “ 0, we set ra :“ b, rb :“ a. For pa ‰ 0 ‰ pb we define ra by a “ rapb and set 
rb :“ brapa . Even in the latter case where we possibly add a root to the free group, we keep 
the name A since, by Lemma 6.1 and Lemma 6.2, such an alteration is unproblematic for 
the desired embedding. Note that for p written in the new basis A1 :“ pAzta, buq Y tra, rbu
we have p

ra “ 0 in each case. The price we pay for this is that the length of p written in 
the new basis A1 is possibly longer than p written in the old basis A.
Case 1. r

ra “ 0
We consider the homomorphism ϕ : A ˚ H Ñ Z sending ra to 1 and every other basis 
element from A along with every element of H to 0. It is easy to see that the normal 
closure of r P A ˚ H corresponds to the normal closure of the elements ri (i P Z) in 
kerpϕq, where ri “ ra´irrai. We have

kerpϕq “ rA ˚ ˚
iPZ

Hi, where Hi :“ ra´iHrai

and rA is the free group with basis rA :“ txi | x P A1ztrau, i P Zu for xi “ ra´ixrai. 
Analogously, let pi :“ ra´iprai (i P Z). Comparing p written in the basis A and p0 written 
in the basis rA, we see that every letter a vanished without replacement and every other 
letter x was replaced by a letter xi. Since by assumption, p contained at least one letter a, 
we have |p| ą |p0|. To show the desired embedding, it is sufficient to prove the embedding 
of xp0y ˚ H0 into kerpϕq{x xri | i P Zy y. By assumption, we have r P pA ˚ HqzH. Thus, 
each ri P rA ˚ ˚iPZHi contains at least one piece of at least one free factor Hi. It follows 
that kerpϕq{x xri | i P Zy y is a staggered presentation over locally indicable groups (with 
Vi :“ Hi, cf. Definition 5.1). Let j P Z be such that rj contains an element from H0. If 
more than one index j meets this condition, we choose one of them. By Corollary 5.3, 
it remains to show the embedding of xp0y ˚ H0 into kerpϕq{x xrjy y. Note that ˚iPZHi

is locally indicable since it is a free product of locally indicable groups. Further, we 
have already shown |p| ą |p0|. This justifies the application of the induction hypothesis 
to deduce the embedding of xp0y ˚ H0 into kerpϕq{x xrjy y and thereby end the proof of 
Case 1.
Case 2. r

ra ‰ 0 ‰ p
rb

In this case the matrix
ˆ

p
ra p

rb
r

ra r
rb

˙

has full rank. Let G :“ A ˚p“c pxc |y ˚ Hq. Because of Theorem 1.6 and Remark 1.5
it follows that xc |y ˚ H and therefore xpy ˚ H embeds canonically into G{x xry y “ p

`

A ˚
Hq{x xry y

˘

˚p“c xc |y. Finally, we deduce that xpy ̊ H embeds canonically into pA ̊ Hq{x xry y.
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Case 3. r
ra ‰ 0 “ p

rb

Note that because of p
rb “ 0 we were in the case pa “ pb “ 0 when choosing ra and defined 

ra :“ a, rb :“ b. Thus, if r
rb “ 0, we can apply Case 1 with reversed roles of ra and rb. The 

length-argument of Case 1 for |p0| is not endangered by considering rb as the new ra since 
ra :“ a, rb :“ b is just a renaming. If r

rb ‰ 0, we define ā by a “ ārb and set b̄ :“ bāra . 
This is unproblematic for the desired embedding due to Lemma 6.1 and Lemma 6.2. 
Note that for r, p written using the basis elements of Ā :“ pAzta, buq Y tā, ̄bu we have 
rā “ pā “ 0. Thus, we can also apply Case 1; this time with ā and b̄ taking over the 
roles of ra and rb. l

The following lemmata are further tools that will be used repeatedly in the proofs 
of our embedding theorems. For the proof of the first lemma we use a theorem of A. 
Karrass, W. Magnus and D. Solitar:

Theorem 6.3 (see [14, Theorem 3]). Let G be a group with generators a, b, c, . . . and a 
single defining relation V kpa, b, c, . . . q, k ą 1, where V pa, b, c, . . . q is not itself a true 
power. Then V has order k and the elements of finite order in G are just the powers of 
V and their conjugates.

Lemma 6.4. Let G be a tree-product, S be a subtree-product of G and H be a locally 
indicable group. Further, let r be an element of G ˚ H with contracted conjugate rr and 
minimal tree-product T . Finally, let T contain at least one vertex-group of S. If 

`

SXT
˘

˚

H embeds canonically into pT ˚Hq{x xrry y, then S˚H embeds canonically into pG ̊ Hq{x xry y.

Proof. First, we note that T Y S and T X S are subtree-products of G since T , S are 
subtree-products of G and T contains by assumption at least one vertex-group of S. We 
may define

P p0q :“
`

pT ˚ Hq{xxrryy
˘

˚
pSXT q˚H

`

S ˚ H
˘

, (6.1)

where the embedding of the amalgamated subgroup into the left factor follows due to 
the assumption. Let U pjq (j P t1, 2, . . . , ku, k P N) be the branch-products obtained 
by deleting every vertex-group of T and S along with the edge-relations of the edges 
adjacent to T or S. Further, let pj “ qj (j P t1, 2, . . . , ku, k P N) with qj P U pjq be the 
edge-relations of the edges connecting U pjq to G aU pjq. Let �1 P N Yt8u be the smallest 
power such that p�11 is trivial in P p0q. We prove the following claim.

For all � P N, j P t1, 2, . . . , ku the element qj is of order � in U pjq{x xq�jy y.

To prove that claim we consider the quotient group rU pjq of U pjq which we construct by 
taking the quotient with the normal closure of q�j and every edge-word of U pjq apart from 
qj . This quotient group is a free product of staggered presentations over free groups in 
the sense of Definition 2.1 and also in the sense of Definition 5.1 for the special case 
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of free groups (see Remark 5.2). Let Q be the vertex-group of U pjq containing qj . If qλj
would be trivial in U pjq{x xq�jy y for some λ P N with λ ă �, then qλj would also be trivial in 
rU pjq. Using Corollary 5.3 (for the special case of free groups) we conclude that qλj would 
be trivial in Q{x xq�jy y. This contradicts Theorem 6.3. Therefore, we can define inductively 
for j P t1, 2, . . . , ku

P pjq
“ P pj´1q

˚
pj“qj

pU pjq
{xxq

�j
j yyq,

where �j P N Y t8u is the smallest power such that p�jj is trivial in P pj´1q. Note that 
P pkq “ pG ˚ Hq{x xry y. Altogether, we constructed pG ˚ Hq{x xry y by iteratively building 
amalgamated products starting with the group S ˚ H (see (6.1)). Thus, S ˚ H embeds 
canonically into pG ̊ Hq{x xry y. l

Lemma 6.5. Let G be a tree-product, S a subtree-product of G and H a locally indicable 
group. Further, let r be an element of G ˚ H with contracted conjugate rr. Under the 
condition that the minimal tree-product T of r contains at least one vertex-group of S
and assuming that at least one edge-word of a leaf-group of T that is also part of G a S

is a primitive element, S ˚ H embeds canonically into pG ̊ Hq{x xry y.

Proof. Due to Lemma 6.4 it is sufficient to consider the case that G is the minimal 
tree-product T of r. Let A be a leaf-group of G a S and G with edge-relation p “ q, 
where p P A is a primitive element. Such a group exists by assumption. We extend p to 
a basis of A and replace the old basis with this new basis. Since the leaf-group A is part 
of the minimal tree-product T and all generators p˘1 in rr can be replaced with the help 
of the edge-relation p “ q we know that rr contains at least one basis element a ‰ p of 
A. We have

pG ˚ Hq{xxryy “
`

pG a Aq ˚
q“p

xpy ˚ pA{xxpyyq ˚ H
˘

{xxryy

“
`

pG a Aq ˚ H ˚ pA{xxpyyq
˘

{xxryy.

Because of Theorem 1.7 and S Ď G a A, we get the desired embedding. l

The following proposition is the first step in proving our Freiheitssatz for tree-products 
(see Theorem 7.1).

Proposition 6.6. Let G be a tree-product and S be a subtree-product of G. Further, let H be 
a non-trivial locally indicable group and r a contracted conjugate in pG ̊ HqzG. Assuming 
that the minimal tree-product of r contains at least one vertex-group of respectively S and 
G a S, S ˚ H embeds canonically into pG ̊ Hq{x xry y.

Proof. Because of Lemma 6.4, we may assume that G is the minimal tree-product of r. 
Let σ be the boundary-length of G and let |G a S| be the number of all vertex-groups 
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of G aS. We prove the desired statement by induction over the tuple p||r|| ́ |G aS|, σq

in lexicographical order (where the first component is weighted higher).
As the base of induction we consider the cases ||r|| ´ |G a S| P Z, σ “ 2 and ||r|| ´

|G aS| ď 0, σ P N. If |G aS| “ 1, let A :“ G aS. Elsewise we choose a leaf-group A of G
and G a S. In the case σ “ 2 the edge-word of A is a primitive element of A. Therefore, 
we derive the desired embedding with Lemma 6.5. In the case ||r|| ́ |G aS| ď 0 there is 
a vertex-group B of G aS such that r contains no basis element of B. The vertex-group 
B cannot be a leaf-group of G since we assumed that G is the minimal tree-product of r. 
We consider the branch-products of G which arise by deleting the vertex-group B along 
with the edge-relations of the adjacent edges in G. Since B is no leaf-group, there is at 
least one branch-product Y among the resulting branch-products which is completely 
contained in G aS. We denote the free product of the remaining branch-products by R. 
Let pi “ qi (i P I) with pi P B be the edge-relations of the edges adjacent to B. Since, 
by assumption, r is no element of G, Theorem 1.4 gives us the canonical embedding of 
Y ˚R into pY ˚R˚Hq{x xry y. Let Rp1q, Rp2q, . . . , Rpkq (k P N) be the free factors of R. Then 
every qi is contained in different factors of the free product Y ˚ Rp1q ˚ Rp2q ˚ ¨ ¨ ¨ ˚ Rpkq. 
Because of Lemma 2.5 all free factors are locally indicable and therefore in particular 
torsion-free. Thus, the group Q freely generated by tqi | i P Iu embeds into Y ˚ R and 
hence into (Y ˚ R ˚ Hq{x xry y. Since the elements pi (i P I) of B form a staggered set and 
B{x xpi | i P Iy y is a staggered presentation over free groups, the group P freely generated 
by tpi | i P Iu embeds canonically into B as noticed in Lemma 5.4. So we may write:

pG ˚ Hq{xxryy – B ˚
P–Q

`

pY ˚ R ˚ Hq{xxryy
˘

Finally, note that R ˚ H embeds into the right factor of the amalgamated product by 
Theorem 1.4. Therefore, S ˚ H embeds into pG ̊ Hq{x xry y.

For the induction step we consider the leaf-group A of G a S and G along with the 
edge-relation p “ q (p P A) of the edge adjacent to A. If p contains only one basis 
element a of A, we have p “ a˘1. Thus, p is a primitive element of A and the desired 
embedding follows analogously to the induction base for σ “ 2. Let p contain at least 
two different basis elements a, b of A. We recall the notation pb for the exponent sum of 
p P A respectively b.

If pa “ pb “ 0, we consider the root-product rG of G given through rarb “ a, which is 
a tree-product because of p ‰ v´1a˘1v. By Lemma 6.1 and Lemma 6.2 it is sufficient to 
prove the embedding of S ˚H into p rG˚Hq{x xry y. We apply the leaf-isomorphism given by 
rb :“ brara or rb :“ rarab (cf. Remark 4.4). In slight abuse of notation we denote the image of 
rG under the leaf-isomorphism and the new contracted conjugate again by rG and r. The 
new presentation of r P rG ˚H is also a contracted conjugate with the same length as the 
old presentation r P G ̊ H. Since p

ra “ 0 and p is the only edge-word possibly containing 
ra, the exponent sum r

ra is well-defined. We have p
ra “ r

ra “ 0. If p does not contain the 
generator ra, the tree-product rG has a shorter boundary-length than G and the desired 
embedding follows by the induction hypothesis. If p contains ra, we go directly to Case 2. 
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Thus, in the following part of the proof up to Case 2 we can assume that at least one 
exponential sum pa or pb is not 0. W.l.o.g. let pb ‰ 0. Similar to the situation pa “ pb “ 0
we construct through a “ rapb the root-product rG :“ G ˚a“rapb xra |y of G and apply the 
leaf-isomorphism of rG which is given by rb :“ brapa or rb :“ rapab (cf. Remark 4.4). We 
have p

ra “ 0. If p does not contain the generator ra, the tree-product rG has a shorter 
boundary-length than G and the desired embedding follows by the induction hypothesis. 
Thus, assume that p contains ra.

Case 1. Let r
ra ‰ 0.

By the preliminary considerations we have pb ‰ 0 and therefore also p
rb ‰ 0. So (for 

some arbitrary fixed presentation r) the matrix 
ˆ

p
ra p

rb
r

ra r
rb

˙

has full rank and the desired 

embedding follows from Remark 1.5 and Theorem 1.6.
Case 2. Let r

ra “ 0.
We consider the leaf-homomorphism ϕ : rG ˚ H Ñ Z with ϕpraq “ 1. Let A be the basis 
of the leaf-group A in G. As noticed in Remark 4.6, we have kerpϕq “ K ˚ rH, where 
rH “ ˚�PZH� for H� :“ a´�Ha� (� P Z) and K is a tree-product which can be constructed 
in the following way. We start with a vertex-group

rA :“ x rA |y for rA :“ tra´�yra� | y P Aztau, � P Zu

and connect rA over respectively one edge-relation p� “ q� (p� P A) with countably 
infinitely many copies ( rGaAq� :“ a´�p rGaAqa� (� P Z) of rGaA. Note that |p�| rA ă |p|A

for all � P Z (cf. Remark 4.7).
By assumption, the contracted conjugate r P G ˚ H uses the factor H. We define 

ri :“ a´irai. Then kerpϕq{x xri | i P Zy y is a staggered presentation for Vi “ Hi (cf. 
Definition 5.1). Algorithm 4.8 gives us a contracted conjugates r˚

i of ri P kerpϕq (i P Z) 
with ||r˚

i ||kerpϕq ď ||r||G˚H (see Lemma 4.9). Since all elements of S which are not 
contained in the kernel of ϕ cannot be elements of the normal closure of r in rG ˚ H, 
it suffices to prove the embedding of the copy S0 ˚ H0 Ă p rG a Aq0 ˚ H0 of S ˚ H in 
kerpϕq{x xr˚

i | i P Zy y. By renaming, if necessary, let r˚ :“ r˚
0 be w.l.o.g. an element r˚

i

(i P Z) which uses the free factor H0 of kerpϕq. Then, by Corollary 5.3, an element 
w P S0 ˚ H0 is trivial in kerpϕq{x xr˚

i | i P Zy y if and only if it is trivial in kerpϕq{x xr˚y y. 
The embedding that remains to show depends on the minimal tree-product T of r˚:
Case 2.1. T contains at least one vertex-group of S0.
Applying Lemma 6.4 on the subtree-product S0 of K we see that it suffices to consider 
T ˚ rH instead of kerpϕq. So our aim is to prove the embedding of pS0 X T q ˚ H0 into 
pT ˚ rHq{x xr˚y y. Note that ra is either a reduction- or fan-generator (see Definition 4.12). 
If ra is a reduction-generator of r P rG, we have T “ rA ˚p0“q0 p rG a Aq0. As noticed above 
we have |p0|

rA ă |p|A. Therefore, the boundary-length of T is shorter than the boundary-
length of G and the desired embedding follows by the induction hypothesis.
Thus, assume that ra is a fan-generator of r P rG. We define S1 :“ S0 X T . Using this 
notation our aim is to prove the embedding of S1 ˚ H0 into pT ˚ rHq{x xr˚y y. We want 
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to apply the induction hypothesis. Because of ||r˚||kerpϕq ď ||r||G˚H it suffices to show 
|T a S1| ą |G a S|. Note that for every leaf-group of G there is at least one copy of 
this leaf-group in T since G is the minimal tree-product of r and T is the minimal tree-
product of r0. Because every rooted tree is the union of all unique paths from the root 
to the leafs, T contains at least one copy of every vertex-group of T a S1 and we get 
|T a S1| ě |G a S|. By assumption, ra is a fan-generator. Thus, T contains at least two 
copies C0, Cμ of the unique vertex-group C of G adjacent to A. If C is a vertex-group of 
G a S, the vertex-groups C0 and Cμ are vertex-groups of T a S1. If C is a vertex-group 
of S then Cμ is a vertex-group of T a S1. In both cases we have an additional vertex-
group of T a S1 and therefore |T a S1| ą |G a S|. By applying the induction hypothesis 
for (||r˚|| ´ |T a S1|, σ1), where σ1 is the boundary-length of T , we derive the desired 
embedding.
Case 2.2. T contains no vertex-group of S0.
Let S1 be the free factor of K a T containing S0. Further, let D be the vertex-group of 
K a S1 that is connected by an edge to S1 and let d “ e with d P D be the edge-relation 
of that edge. We first want to show that D ˚ rH embeds canonically into pT ˚ rHq{x xr˚y y.
If ra is a reduction-generator of r P rG, we have D “ rA, T “ rA ˚pj“qj p rG a Aqj with 
j P Zzt0u and |pj |

rA ă |p|A, so the boundary-length of T is shorter than the boundary 
length of G (cf. Case 2.1). Because of |T | “ |G| and |S| ě 1 we can therefore apply 
the induction hypothesis to conclude that D ˚ rH embeds canonically into pT ˚ rHq{x xr˚y y. 
In the case that ra is a fan-generator we have |T | ě |G| ` 1 so we can also apply the 
induction hypothesis to conclude the desired embedding of D ˚ rH.
Using Lemma 6.4 it follows that D ˚ rH embeds into ppK aS1q ̊ rHq{x xr˚y y. Thus, we may 
write

kerpϕq{xxr˚
yy “

`

ppK a S1
q ˚ rHq{xxr˚

yy
˘

˚
Z˚ĂH

pS1
˚ rHq,

where the generator of Z is mapped to d in the left and e in the right factor. Finally, we 
conclude that S1 ˚ rH and therefore in particular S0 ˚ H0 embeds into kerpϕq{x xr˚y y. l

7. Freiheitssatz for tree-products

Using Proposition 6.6 we prove the following Freiheitssatz, which in comparison to 
Proposition 6.6 omits the condition that H is non-trivial.

Theorem 7.1 (Freiheitssatz for tree-products). Let G be a tree-product, S a subtree-product 
of G and H a (possibly trivial) locally indicable group. Further, let r be an element of 
G ˚ H whose minimal tree-product contains at least one vertex-group of respectively S
and G a S. Then S ˚ H embeds canonically into pG ̊ Hq{x xry y.

In a similar way to the proof of the Magnus-Freiheitssatz (cf. [16]), the proof of 
Theorem 7.1 will be simultaneous to the proof of Proposition 7.4. Before we formulate 
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this proposition, we introduce α- (resp. ω-)branch-limits and staggered presentations for 
tree-products analogously to Definition 5.1.

Notation 7.2. Let I Ď Z Y t˘8u be an index set, rH be a locally indicable group, let 
K be a tree-product and Zi (i P I) be branch-products of K that share no common 
vertex-groups. For m, n P Z Y t˘8u we define

Km,n “ K a tZ� | � P I ^ p� ă m _ n ă �qu.

Definition 7.3 (staggered presentations over tree-products and α-/ω-branch-limits). Let 
I, J Ď Z be index sets, rH be a locally indicable group, let K be a tree-product and Zi

(i P I) be branch-products of K that share no common vertex-groups. Further, let rj
(j P J ) be elements of K ˚ rH such that every minimal tree-product of these elements 
contains at least one vertex-group of respectively Zi and K a Zi for at least one i P I. 
By αrj resp. ωrj we denote the greatest resp. smallest index λ P Z Y t˘8u such that 
the minimal tree-product of rj is contained in Kλ,8 ˚ rH resp. K´8,λ ˚ rH. We call αrj

and ωrj the α- and ω-branch-limit of rj in K. If we have αrm ă αrn and ωrm ă ωrn for 
all m, n P J with m ă n we say that pK ˚ rHq{x xrj | j P J y y is a staggered presentation 
(over the tree-product K with respect to the branch-products Zi (i P I)).

Proposition 7.4. Let pK ˚ rHq{x xrj | j P J y y be a staggered presentation over a tree-product 
K with respect to branch-products Zi (i P I). Further, let u be an element of the normal 
closure of the elements ri (i P Z) in K ˚ rH, such that u P Kα,ω ˚ rH for some α, ω P Z. 
Then u is an element of the normal closure of the elements rk with α ď αrk and ωrk ď ω

in K ˚ rH.

Simultaneous proof of Theorem 7.1 and Proposition 7.4.
We consider the tree-product G, the locally indicable group H and the element r from 
Theorem 7.1. Because of Lemma 6.4 it is sufficient to consider the case that G is the 
minimal tree-product of r and that r is a contracted conjugate. Let σ be the boundary-
length of G. Our proof will be by induction over the tuple p||r|| ́ |G|, σq in lexicographical 
order (where the first component is weighted higher). Let Tj (j P J ) be the minimal 
tree-products of the elements rj of Proposition 7.4. W.l.o.g. we assume that the elements 
rj are contracted conjugates and that J “ Z or J “ t0, 1, . . . , δu for some δ P N0. Let 
σj (j P J ) be the boundary-lengths of the minimal tree-products Tj . First, we prove the 
following:

Statement 1. For fixed pt, sq P Z ̂ N the statement of Theorem 7.1 with p||r|| ́ |G|, σq ď
pt, sq implicates the statement of Proposition 7.4 with maxjPJ p||rj || ́ |Tj |, σjq ď pt, sq.

Let u be a non-trivial element of the normal closure of the elements rj (j P J ) in 
K ˚ rH. Further, let rj (m ď j ď n) be the elements rk with α ď αrk and ωrk ď ω. To get 
a contradiction we assume that u is not contained in the normal closure of the elements 
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ri (m ď i ď n) in K ˚ rH. We choose indices ζ, ϑ with ζ ď ϑ such that u is contained 
in the normal closure of the elements rk (ζ ď k ď ϑ) in K ˚ rH and such that ϑ ´ ζ is 
minimal with this property. Because of the assumption we have ζ ă m or n ă ϑ. By 
inverting all indices, if necessary, we can assume w.l.o.g. n ă ϑ.

Our proof is by induction over λ :“ ϑ ´ ζ P N0. For the base of induction (λ “ 0), 
u is an element of the normal closure of rϑ in K ˚ rH. The inequality n ă ϑ impli-
cates the inequality ω ă ωrϑ . Thus, u is an element of pK´8,ωrϑ

´1q ˚ rH. Because of 
maxjPJ p||rj || ´ |Tj |, σjq ď pt, sq, we derive with Theorem 7.1 and Lemma 6.4 that 
pK´8,ωrϑ

´1q ˚ rH embeds into 
`

pK´8,ωrϑ
q ˚ rH

˘

{x xrϑy y. So u has to be trivial in K ˚ rH

which is a contradiction.
For the induction step (λ Ñ λ ̀ 1) we write

pK ˚ rHq{xxrk | ζ ď k ď ϑyy

–
`

pK´8,ωrϑ
´1 ˚ rHq{xxrk | ζ ď k ď ϑ ´ 1yy

˘

˚
Kαrϑ

,ωrϑ
´1˚ĂH

`

pKαrϑ
,8 ˚ rHq{xxrϑyy

˘

,

where the embeddings of the amalgamated subgroup Kαrϑ
,ωrϑ

´1 ˚ rH follow from the 

induction hypothesis. Since u is trivial in pK ˚ rHq{x xrk | ζ ď k ď ϑy y and is contained in 
the subgroup K´8,ωrϑ

´1 ˚ rH, it is already trivial in the left factor pK´8,ωrϑ
´1 ˚ rHq{x xrk |

ζ ď k ď ϑ ´ 1y y. This contradiction to the minimality of ϑ ´ ζ ends the proof of 
Statement 1.

Since the case r P pG ˚ HqzG is covered by Proposition 6.6, we can further assume 
r P G for the proof of Theorem 7.1. Thus, we have pG ̊ Hq{x xry y “ pG{x xry yq ̊ H and it 
suffices to prove the embedding of S in G{x xry y. Let A be a leaf-group of G which is not 
contained in S. Because of Statement 1 we cannot only use the induction hypothesis for 
Theorem 7.1, but also for Proposition 7.4. Moreover, by proving Theorem 7.1 we also 
prove Proposition 7.4.

As the induction base we consider the cases ||r|| ́ |G| ă ´1 and σ “ 2. For σ “ 2 the 
edge-word of A is a primitive element and the desired embedding follows from Lemma 6.5. 
In the case ||r|| ́ |G| ă ´1 there is a vertex-group B of G such that r does not use a basis 
element of B and B is not directly connected to A. Note that B is also no leaf-group of G
and can in particular not be A since G is the minimal tree-product of r. We consider the 
branch-products of G which arise by deleting all generators of the vertex-group B along 
with the edge-relations of the edges adjacent to B in G. Let ZA be the branch-product 
which contains the leaf-group A and let RA be the free product of the remaining branch-
products. Since B is not directly connected to A we have |ZA| ě 2. Note that ZA ˚ RA

is a tree-product using the fact that RA is locally indicable by Lemma 2.5. We also note 
that r uses at least the vertex-group A of ZA and one vertex-group of RA because G is 
the minimal tree-product of r. If r P ZA ˚RA possesses a minimal tree-product in ZA, we 
get the canonical embedding of pZA aAq ̊ RA into pZA ˚RAq{x xry y by Proposition 6.6. If 
r P ZA ˚RA does not possess a minimal tree-product in ZA, we have r P A ̊ RA because 
of Definition 2.3. Let p “ q with p P A be the edge-relation of the edge connecting A and 
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ZA aA. By Theorem 1.3 we get the canonical embedding of xpy ̊ RA into pA ̊ RAq{x xry y. 
It follows

pZA ˚ RAq{xxryy “
`

pZA a Aq ˚ RA

˘

˚
Z˚RA

`

pA ˚ RAq{xxryy
˘

,

where the generator of Z is mapped to p in the right and to q in the left factor. Alto-
gether, we have the canonical embedding of pZA aAq ̊ RA into pZA ˚RAq{x xry y in every 
case.

Let u� “ v� with � P L for some index set L and u� P B be the edge-relations of the 
edges adjacent to B in G. Considering the free factors of RA as individual factors, every 
v� is contained in a different factor of pZAaAq ̊ RA. Since all factors are locally indicable 
due to Lemma 2.5 they are in particular torsions-free. Thus, the free group V with basis 
tvi | i P Iu embeds into pZA a Aq ̊ RA. By Definition 2.1, the elements ui (i P I) form 
a staggered-set of B and B{x xui | i P Iy y is a staggered presentation (over free groups). 
Because of Lemma 5.4 the free group U with basis tui | i P Iu embeds canonically into 
B. Combining the embeddings proved so far we may write

G a A – B ˚
U–V

`

pZA a Aq ˚ RA

˘

and G{xxryy – pG a Aq ˚
pZAaAq˚RA

`

pZA ˚ RAq{xxryy
˘

. (7.1)

Now, the embedding of G a A and therefore in particular of S into G{x xry y follows from 
the amalgamated product (7.1).

For the induction step we consider the leaf-group A and the edge-relation p “ q (p P A) 
of the edge adjacent to A. The following preliminary considerations of the induction step 
as well as Case 1 are very similar to the corresponding part in the proof of Proposition 6.6. 
In order to avoid unnecessary doubling we will shorten argumentations if they are already 
given in the proof of Proposition 6.6. In the case that p contains only one basis element 
a of A, p is a primitive element of A and the desired embedding follows analogously to 
the induction base for σ “ 2. So we can assume that p contains at least two different 
basis elements a, b of A.

If pa “ pb “ 0, we consider the root-product rG of G given through a “ rarb and 
apply the leaf-isomorphism given by rb :“ brara or rb :“ rarab. Because of Lemma 6.1
and Lemma 6.2 it is sufficient to prove the embedding of S into rG{x xry y. As usual, we 
denote in slight abuse of notation the image of rG under the leaf-isomorphism and the 
new contracted conjugate again by rG and r. In this situation we have p

ra “ r
ra “ 0. If p

does not contain the generator ra, the tree-product rG has shorter boundary-length than 
G and the desired embedding follows by the induction hypothesis. If p contains ra we go 
directly to Case 2. Thus, in the following up to Case 2 we can assume that at least one 
exponential sum pa or pb is not 0. W.l.o.g. let pb ‰ 0. We construct the root-product 
rG :“ G ˚a“rapb xray of G. Next, we apply the leaf-isomorphism of rG which is given by 
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rb :“ brapa or rb :“ rapab (cf. Remark 4.4). It follows p
ra “ 0. With the same argumentation 

as before we may assume that p contains ra. We consider two cases for r
ra.

Case 1. Let r
ra ‰ 0.

By the preliminary considerations we have p
rb ‰ 0. Therefore, (for some arbitrary fixed 

presentation r) the matrix 
ˆ

p
ra p

rb
r

ra r
rb

˙

has full rank and the desired embedding follows 

from Remark 1.5 and Theorem 1.6.

Case 2. Let r
ra “ 0.

We consider the leaf-homomorphism ϕ : rG Ñ Z with ϕpraq “ 1, define K :“ kerpϕq and 
use the notations of Remark 4.6 and Notation 7.2. To show that S embeds into rG{x xry y it 
suffices to show that the copy S0 of S embeds into K{x xri | i P Zy y. Because of Lemma 4.9
we can assume w.l.o.g. that all ri (i P Z) are contracted conjugates. Let Z be a leaf-
group of rG different from A and let Zi :“ ra´iZrai. Since we assumed G and therefore rG

to be the minimal tree-product of r we know that each minimal tree-product Ti of an 
element ri P K (i P Z) contains at least one leaf-group Zk along with a vertex-group from 
K aZk for at least one k P Z. Thus, because of symmetry, K{x xri | i P Zy y is a staggered 
presentation with respect to the branch-products Zi (i P Z). Let j P Z be an index such 
that Tj contains the leaf-group Z0. Note that S0 is part of K0,0 (cf. Notation 7.2). Thus, 
by Lemma 4.11, we can apply the induction hypothesis for Proposition 7.4. If S0 does 
not contain the leaf-group Z0, we immediately arrive at the desired embedding of S0
into K{x xri | i P Zy y. Thus, we may assume in the following that Z0 is part of S0. By the 
induction hypothesis for Proposition 7.4 it is sufficient to show the canonical embedding 
of S0 into K{x xrjy y. Because of Lemma 6.4 it even suffices to prove the embedding of 
S1 :“ Tj X S0 into Tj{x xrjy y.

Note that ra has to be a reduction- or fan-generator (see Definition 4.12). If ra is a 
reduction-generator, we have Tj “ rA ˚p0“q0 p rG a Aq0. As noticed in Remark 4.7 we also 
have |p0|

rA ă |p|A. So the boundary-length of Tj is strictly smaller than the boundary 
length of rG. This in combination with Lemma 4.9 allows us to apply the induction 
hypothesis for Theorem 7.1. We get the desired embedding of S1 into Tj{x xrjy y. It remains 
to consider the case that ra is a fan-generator. In this case we have |Tj| ą | rG|p“ |G|q

since Tj contains the vertex-group rA, at least one copy of every vertex-group of rG a A

and at least two copies of the vertex-group B of rG adjacent to A. Combining this with 
Lemma 4.9 we are able to apply the induction hypothesis for Theorem 7.1 and deduce 
the embedding of S1 into Tj{x xrjy y. l

8. Proof of the Main Theorem

In this section we prove Main Theorem 1.1 as a corollary of Theorem 7.1 (Freiheitssatz 
for tree-products).

Let p respectively q be the generator of the subgroup of A respectively B which is 
identified with the amalgamated subgroup U . We choose bases A of A and B of B such 
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that p is cyclically reduced respectively A and q is cyclically reduced respectively B. 
Such bases are always available by replacing the basis elements with suitable conjugates 
if necessary. With the new bases, G has the form of a tree-product of size 2 (cf. Defini-
tion 2.3). Since, by assumption, r is neither conjugate to an element of A nor B, G is 
the minimal tree-product of r (cf. Definition 3.1). Thus, the desired embeddings follow 
directly from Theorem 7.1.
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