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Preface

This dissertation comprises my work in the Institute of Experimental Psychology,
Biological Psychology of Decision Making, at the Heinrich Heine University Düssel-
dorf from May 2019 to October 2024. The content of this dissertation is based on
the following publications:

• Study I
A role for acetylcholine in reinforcement learning and decision making under
uncertainty
Kurtenbach H, Froböse MI, Ort E, Bahners BH, Hirschmann J, Butz M,
Schnitzler A, & Jocham G
bioRxiv (2024)
Digital Object Identifier (DOI): https://doi.org/10.1101/2024.09.20.

614105

• Study II
Removal of reinforcement improves instrumental performance in humans by
decreasing a general action bias rather than unmasking learnt associations
Kurtenbach H, Ort E, Froböse MI, & Jocham G
PLOS Computational Biology 18(12), e1010201 (2022)
Digital Object Identifier (DOI): https://doi.org/10.1371/journal.pcbi.
1010201

https://doi.org/10.1101/2024.09.20.614105
https://doi.org/10.1101/2024.09.20.614105
https://doi.org/10.1371/journal.pcbi.1010201
https://doi.org/10.1371/journal.pcbi.1010201
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Kurzfassung

Seit Jahrhunderten beschäftigt Wissenschaftler die Frage, wie Menschen Entschei-
dungen treffen. Jedoch kann bei der Klärung der Frage die Entscheidung nicht
in Isolation betrachtet werden; die Umwelt, in der die Entscheidungen getroffen
werden, muss berücksichtigt werden. Je nach Umwelt, können verschiedene Entschei-
dungsstrategien verwendet werden und vorteilhaft sein. Wenn zusätzlich relevante
Informationen fehlen, um eine Entscheidung zu treffen, spielt auch Lernen durch
Ausprobieren eine tragende Rolle im Entscheidungsprozess, da Feedback in zukün-
ftige Entscheidungen integriert werden muss. Der Entscheidungsprozess ist ein
sensibles Konstrukt, das, wenn es aus der Balance gerät, häufig mit psychiatrischen
Erkrankungen in Verbindung steht. Verantwortlich für die Aufrechterhaltung dieser
Balance sind unter anderem Neurotransmitter und Neuromodulatoren. Welche Rolle
sie genau in Lernen und Entscheidungsfindung spielen, ist jedoch nicht vollständig
geklärt. Diese Dissertation befasst sich mit der Frage, wie Verhalten in Abhängigkeit
von der Verlässlichkeit von Informationen und in Abhängigkeit von der Präsenz
(oder Absenz) von Feedback angepasst wird. Neben den behavioralen Mechanismen
haben wir zudem untersucht, welche Rolle der Neuromodulator Acetylcholin in
den Entscheidungs- und Lernprozessen spielt. Hierzu wurden zwei Studien mit
gesunden Probanden durchgeführt: In der ersten Studie führten die Probanden zwei
Aufgaben nach der Verabreichung des muskarinergen Acetylcholin-Antagonisten
Biperiden aus. Ihr Ziel war es, den Gewinn zu maximieren, indem sie sich für
eine von zwei Optionen mit verschiedenen Gewinnhöhen und -wahrscheinlichkeiten
entschieden. Allerdings waren nur in einer Aufgabe alle relevanten Informationen
gegeben, während in der anderen Aufgabe Gewinnwahrscheinlichkeiten erlernt
werden mussten und diese über den Verlauf der Aufgabe variierten. In der zweiten
Studie führten Probanden eine weitere Aufgabe aus, in der sie die Assoziation
zwischen visuellen Stimuli und entsprechenden Aktionen anhand von Feedback
lernten, das während des Lernprozesses zeitweise entfernt wurde. Um die Daten
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zu analysieren, verwendeten wir verschiedene komputationale Modellierungen mit
dem Ziel die zugrundeliegenden Strategien und deren Veränderungen über die
verschiedenen Bedingungen aufzudecken. Insgesamt zeigen unsere Ergebnisse, dass
Entscheidungsstrategien entsprechend der Umwelt angepasst werden. Probanden
verließen sich weniger auf Informationen, die mit Unsicherheit behaftet waren.
Interessanterweise beeinträchtigte Biperiden die Schätzung unsicherer Optionsat-
tribute, was auf eine maladaptiv erhöhte Lernrate zurückzuführen ist. Zudem
fanden wir, dass die Performanz in der Abwesenheit von Feedback verbessert war,
dieser Effekt allerdings nur zustande kam, weil Probanden vorsichtiger antworteten,
was in diesem Kontext vorteilhaft war. Diese Dissertation trägt zum allgemeinen
Verständnis von Entscheidungsstrategien sowie dem Wissensstand über den Effekt
von Acetylcholin auf Verhalten bei.
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Abstract

For centuries, the question of how humans make decisions has been a subject of
scientific research. When addressing the question, however, a decision cannot be
considered in isolation; the environment in which decisions are made must be taken
into account. Depending on the environment, different decision strategies can be
used and be advantageous. If, in addition, relevant information is lacking to form
a decision, learning by trial and error also plays a key role in the decision-making
process, as feedback must be integrated into future decisions. The decision-making
process is a sensitive construct which, when out of balance, is often associated with
psychiatric disorders. Neurotransmitters and neuromodulators are, among others,
responsible for maintaining this balance. However, their exact role in learning and
decision making is not fully understood. This dissertation focuses on the question
of how behaviour is adapted depending on the reliability of information and the
presence (or absence) of feedback. In addition to the behavioural mechanisms, we
also investigated the role of the neuromodulator acetylcholine in decision-making
and learning processes. To this end, two studies were conducted with healthy
volunteers: In the first study, participants performed two tasks after administration
of the muscarinic acetylcholine antagonist biperiden. Their goal was to maximise
the gain by choosing one of two options with different reward magnitudes and
probabilities. However, only in one task, all the relevant information was given,
while in the other task, reward probabilities had to be learnt and these varied
over the course of the task. In the second study, participants performed another
task in which they learnt the association between visual stimuli and corresponding
actions using feedback that was at times removed during the learning process. To
analyse the data, we used different computational modelling approaches with the
aim of uncovering the underlying strategies and their changes across conditions.
Overall, our results show that decision strategies are adapted according to the
environment. Participants relied less on information that was associated with
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uncertainty. Interestingly, biperiden impaired the estimation of uncertain option
attributes resulting from maladaptively increased learning rates. In addition, we
found that performance improved in the absence of feedback, but this effect only
emerged because participants responded more cautiously, which happened to be
beneficial in this specific context. This dissertation contributes to the general
understanding of decision strategies and the state of knowledge about the effect of
acetylcholine on behaviour.
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1 Introduction

Understanding the mind is a truly interdisciplinary endeavour. It ranges from
studying fundamental cellular and network processes in biology and physiology to
describing how emotions and personal preferences influence decisions e.g. in psychol-
ogy, economy and philosophy. Remarkably, mathematics and physics significantly
contribute to this field, helping to understand psychological concepts: For instance,
the physical description of electrical activity is used for modelling physiological
processes, neuronal activity, and network mechanisms within the brain (Soltani
and Wang, 2006; Wang, 2002; Wong and Wang, 2006). This approach facilitates
the understanding of how neurons communicate and form networks that underpin
various cognitive functions. More abstractly, computational modelling based on
mathematical concepts and models from thermodynamics and statistical mechanics
are employed to comprehend complex behaviours and cognitive processes in humans
and animals, such as decision making. For example, evidence accumulation in
favour or against a choice option during decision making is often modelled as a drift-
diffusion process, i.e., Brownian motion with drift - the phenomenon of a particle
moving randomly in a medium (liquid or gas) under the additional influence of an
external force (Ratcliff, 1978; Ratcliff and McKoon, 2008). Moreover, variability in
human choices due to uncertainty or incomplete information is modelled using the
softmax function, which is mathematically related to the Boltzmann distribution;
the Boltzmann distribution describes the probability of a system being in a certain
state, depending on the energy of this state and the temperature of the system
(Luce, 1959; McFadden, 1974).

This dissertation aims to improve our understanding of how healthy adults
learn and make decisions in different environments by combining computational
models with experimental work. Specifically, in two projects, one of which involves
pharmacological manipulation, we applied computational models that describe the
dynamic interaction between an agent and its environment, providing a powerful
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OutcomeActionState

Environment

Agent

Figure 1.1: Schematic illustration of the interaction between an environment
and an agent. The environment provides information for the agent through its current
state. The agent observes this state and makes a decision. The selected action is then
sent to the environment, which results in an outcome.

tool for understanding and predicting future decisions (Collins and Cockburn,
2020).

The interaction between an environment and an agent begins with a state (Figure
1.1), which provides environmental information to the agent. Usually, the agent
can select between two or more actions to act on the state. For example, when
deciding what to eat for dinner, you might consider cooking at home, ordering
takeout, or dining at a restaurant. The choice depends on many factors, such as
satisfaction, convenience, and cost. The question of how a human selects an action
has been a topic of research for centuries. Modern decision theory traces back to
1654, when mathematicians Blaise Pascal and Pierre de Fermat elaborated the
so-called problem of points (de Fermat et al., 1891). This classical problem in
probability theory involves a gambling game played over several rounds, where
two players have equal chances of winning money, awarded to the first player to
win n times. The challenge arises when the game is interrupted prematurely: How
should the prize money be fairly divided? This problem is directly applicable to
decision-making scenarios where an agent must choose between two possible actions.
Pascal and Fermat proposed a solution by evaluating the potential outcomes of
each action and their associated probabilities to calculate an average expected
outcome, called the expected value. The economically optimal choice is the action
with the highest expected value of reward (Rachlin et al., 1983; Sutton and Barto,
2018). In several studies it has been found that the expected value of choice options
drives reward-guided decision making (e.g. Dias Maile et al. (2024); Farashahi et
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al. (2019); Jocham et al. (2012)). Neuroimaging studies complement behavioural
findings by pointing towards neural representations of expected value in several
brain regions during learning and reward-guided decision-making tasks, including
the ventromedial prefrontal cortex (vmPFC), posterior parietal cortex, orbitofrontal
cortex, and amygdala (Dorris and Glimcher, 2004; Gottfried et al., 2003; Jocham
et al., 2014; Padoa-Schioppa and Assad, 2006). After the agent decided between
options and performed an action, the environment provides feedback in the form of
an outcome. In reinforcement learning (RL) frameworks, agents use the outcome to
evaluate the consequences of their actions and gradually ascertain the probabilities
of different possible actions leading to desired rewards, as described by instrumental
learning (Skinner, 1938; Thorndike, 1927). Computationally, this learning process
is implemented as prediction error, which represents the discrepancy between the
expected value of an action and the actual reward received (Sutton and Barto,
2018). For instance, if you decided to order takeout and the food exceeds your
expectations in taste and quality, the prediction error is positive, making it more
likely that you order food from that restaurant again. Conversely, if the food
falls short of your expectations, the negative prediction error will prompt you
to reassess and possibly alter your future dining decisions. That the prediction
error is not only a computational construct is supported by neuronal data. In
1994, a remarkable similarity between prediction errors and dopaminergic neural
firing rates was discovered in primates (Mirenowicz and Schultz, 1994). Subsequent
studies have confirmed the relationship between dopamine and error-driven learning
mechanisms in humans with the computation of prediction errors being identified in
the ventral striatum and ventral tegmental area (D’Ardenne et al., 2008; Pessiglione
et al., 2006).

In summary, reinforcement learning and decision making are deeply intercon-
nected, as learning influences decision making by providing a repository of past
experiences and knowledge about the environment, which in turn guides future
choices. Key aspects of computational modelling, such as RL algorithms, correspond
well with behavioural and neuronal data, thereby helping to investigate the un-
derlying cognitive processes during decision making across different environmental
states.
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1.1 Decision strategies

Goal-directed, or reward-guided, decision making is characterised by comparing
the potential outcomes of each action and selecting the action which is most
likely to generate a desired outcome (Daw and O’Doherty, 2013). In real life, the
environment is often fraught with risk or uncertainty. Under risky conditions,
although the probability distribution of a future outcome is known, the individual
outcome is not. During decision making under uncertain conditions, the probability
distribution is also not known (Knight, 1921). Different decision strategies are
required for optimal performance under risk and uncertainty. Hence, computational
models must incorporate different decision strategies based on the underlying
environment to accurately reflect and explain human decision making.

1.1.1 Risk

A decision under risk typically involves deciding between options, each with known
reward magnitude and associated probability. Roulette is a classical example:
The stake can be placed on colours, number ranges, or specific numbers, with the
selected bet determining both the reward magnitude and the reward probability.
The expected value EV of each option’s reward is calculated as product of reward
magnitude M and probability P :

EV = MP (1.1)

The EV varies significantly between different bets, indicating the economically best
choice: For instance, imagine playing with a e10 stake and betting on red, 18 out
of 37 fields potentially yield a reward, but the payout is only 1 : 1. This results
in a reward magnitude of e10 with reward probability of about 48.7%. On the
other hand, betting on number 26 means only one out of 37 fields offer a potential
reward, but the payout is significantly higher at 35 : 1. With the same stake of
e10, this leads to a reward magnitude of e350 with a probability of around 2.7%.
Consequently, the EV of betting on a specific number is almost double that of
betting on a colour.

But even if the bet on a specific number might be objectively the best, why take
the risk if the probability of losing money is higher than for other bets? According
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to Daniel Bernoulli, these decisions depend on the utility (Bernoulli, 1954): The
less money a person has, the more utility they gain from winning more money.
Thus, the value of each option is subjective and depends on the reference. How
human decision making deviates from economically optimal choices is described
in the prospect theory, one of the most influential theories for choice behaviour
under risk. Among others, it describes that losses have a greater emotional impact
than equivalent gains, such that humans avoid losses more vigorously than they
seek rewards (Kahneman and Tversky, 1979). This results in risk-averse choices
favouring known, lower rewards over unknown, higher rewards (Ellsberg, 1961;
Tversky and Kahneman, 1992).

Expected value theory, prospect theory, and many other decision theories assume
that the integration of option attributes into a subjective value is multiplicative
(see Equation 1.1) (Bernoulli, 1954; Birnbaum, 2008; Busemeyer and Townsend,
1993; Kahneman and Tversky, 1979; Quiggin, 1982), allowing to fuse all attributes
into one value without differential weighting (Farashahi et al., 2019). This is also
supported by evidence from studies using decision making under risk (Farashahi
et al., 2019; Molter et al., 2022; Tversky, 1967). Correlates of subjective values in
risky reward-guided decision making tasks are also identified in the human brain.
For example, the difference between subjective values of two options were found
to correlate with activity in the vmPFC (Boorman et al., 2009; Hunt et al., 2012;
Jocham et al., 2014). Additionally, vmPFC activity covaried positively with the
value of the chosen option, but was independent of motor preparation (Wunderlich
et al., 2012, 2009, 2010). Together this suggests, that the vmPFC plays a key role
in valuation, independent of action selection.

1.1.2 Uncertainty

Uncertainty is characterised by incomplete knowledge about the environmental
state (Scholz, 1983). However, uncertainty can have different forms. For example,
consider ordering food: You might order from an unfamiliar restaurant and after
five good experiences, it has become one of your favourite restaurants, as the
food quality, although it varies slightly, is on average very high and gives you
an estimate of what to expect when ordering again. The associated variability
is classified as expected uncertainty. Expected uncertainty refers to situations
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where the probability of outcomes can be anticipated based on past experiences or
available information (Yu and Dayan, 2005). However, the sixth time you order food
from this restaurant, the food is disgusting. This would be ascribed to unexpected
uncertainty. Unexpected uncertainty arises from unforeseen events or changes that
are difficult to predict or quantify, such as a new chef in your favourite restaurant,
requiring adaptive responses and flexible strategies (Soltani and Izquierdo, 2019;
Yu and Dayan, 2005). In another scenario a restaurant alternates between chefs,
leading to inconsistent food quality over time. This type of frequent fluctuation
is sometimes considered as unexpected uncertainty, but theoretical work suggests
a distinct term, coined volatility (Bland and Schaefer, 2012). Each of the three
scenarios demand different decision strategies (Farashahi et al., 2019).

In order to adapt choice behaviour, agents need to learn uncertain attributes.
Beliefs about an option’s value are updated in light of receiving evidence (Eck-
stein et al., 2022). In reinforcement learning models, the prediction error PE
computationally implements this approach:

PEt = rt −Qt (1.2)

with the obtained outcome rt (i.e. rt = 1 for reward, rt = 0 for no reward, rt = −1

for punishment) and the estimated value Qt of the unknown component at time
point t (Sutton and Barto, 2018). The influence of the prediction error on the
updated value Qt+1 is weighted by the learning rate λ in a Q-learning approach
with a delta update rule (Rescorla and Wagner, 1972):

Qt+1 = Qt + λPEt (1.3)

The learning rate can be adjusted to suit the stochastics of the environment (Iglesias
et al., 2021; Jocham et al., 2009; Soltani and Izquierdo, 2019): A low learning
rate accumulates the estimate over a long run, while a high learning rate favours
recent outcomes. Hence, a high learning rate enables the agent to quickly adjust
to changes, being favourable in highly volatile environments. This adjustment of
learning rates has been demonstrated in human behaviour (Blain and Rutledge,
2020; Browning et al., 2015) and in neuroimaging studies. Neural correlates of
learning rates have been found in the anterior cingulate cortex, which reflects
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volatility estimates and outcome predictions (Behrens et al., 2007; Rushworth et
al., 2004).

Decisions under uncertainty often involve multi-attribute options consisting of
both known and unknown attributes. For example, when deciding which restaurant
to order from, not only is the (unknown or learned) quality of the food taken into
account, but also the explicit price. Thus, next to learning unknown attributes
for these decisions, it is required to integrate both the known and the unknown
attributes (which are learnt via Equation 1.3) into a single value per option to
facilitate comparison between options (Lee et al., 2012). Unlike decision making
under risk, where a multiplicative integration of attributes is considered favourable
(as explained in Subsection 1.1.1), a theoretical framework suggests that in un-
certain environments, it can be beneficial to integrate attributes additively into a
subjective value per option (Stewart, 2011). For options with reward magnitude
and probability, the subjective value SV would then be calculated as follows:

SV = ωMM + ωPP (1.4)

In contrast to multiplicative integration, additive integration allows for direct
comparison between attributes and differential weighting of reward information
via weighting parameters for magnitude ωM and probabilities ωP . When one
attribute is unknown, additive integration offers greater flexibility by allowing the
unknown attribute to be weighted less relative to the known attribute. A recent
study found that both humans and non-human primates tend to adopt a more
additive integration approach in environments with higher volatility (Farashahi et
al., 2019). Therefore, adapting decision strategies in the context of volatility can
occur either during learning or during the integration of attributes. In this thesis,
we investigated how the explained decision strategies are adapted under risk and
under different degrees of uncertainty.

Yet another type of uncertainty is given by the presence or absence of rein-
forcement. When learning is involved, feedback plays a crucial role in guiding the
decision-making process. In learning experiments, feedback on a response provided
by the environment is referred to as external feedback (Asher and Hibbard, 2020).
When no explicit feedback is provided, it is also possible that agents evaluate their
choices themselves, known as internal feedback (Ptasczynski et al., 2022). There is



8 1 Introduction

evidence from the domain of perceptual learning that such an internal feedback
signal does exist and is similar to the external one. Perceptual learning describes,
for example, testing vision using the Landolt ring test, where patients are asked to
determine where the opening of the ring is. In such tasks, performance improved
over time, regardless of the presence or absence of external feedback (Asher and
Hibbard, 2020; Haddara and Rahnev, 2022; Petrov et al., 2006). In some cases,
performance without external feedback was even better than with external feedback
(Herzog and Fahle, 1997). Imaging studies support the concept of internal feedback:
In tasks without external feedback, brain activity in mesolimbic regions shows
patterns similar to those seen with prediction errors following external feedback
(Daniel and Pollmann, 2012; Guggenmos et al., 2016). Interestingly, when manipu-
lating presence and absence of feedback to instrumental learning, where external
feedback is required to learn the association between action and outcome, it has
been observed that during initial learning feedback removal improved performance
relative to phases where feedback was provided (Kuchibhotla et al., 2019). This
would imply that animals use different strategies during task acquisition that do
not fully reflect their latent knowledge of the task.

All in all, decision strategies depend heavily on the environmental uncertainty,
such as the volatility of outcomes and the availability of reinforcement.

1.1.3 Biases

Humans and animals deviate from optimal decision behaviour, and these deviations
are referred to as biases. There are various biases, that stem from factors such
as attention, expectations, and reward (Cerracchio et al., 2023). Some cognitive
biases can be explained by normative decision strategies, like the preference for
known outcomes and the aversion to loss, and are incorporated into established
decision theories (Ellsberg, 1961; Rahnev, 2021; Tversky and Kahneman, 1992).
However, there are other biases that also need to be considered when developing
comprehensive computational models of decision making.

The response bias reflects the systematic preference for one of the possible
actions (Macmillan and Creelman, 2005). Potential outcomes can induce this bias:
Prospect of reward leads to more engagement, while threat of punishment results
in refraining actions (Dayan et al., 2006; Guitart-Masip et al., 2014; Swart et al.,
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Figure 1.2: Graphical representation of the SDT. For signal and noise (absent
signal), responses are categorised in hits, misses, false alarms and correct rejections (left).
Evidence strength for signal and noise are given by the hit rate (reflecting the ratio
between hits and misses) and false alarm rate (reflecting the ratio between false alarms
and correct rejections), respectively (right). The sensitivity d′ represents the difference
between signal (right distribution) and noise (left distribution). Here, a positive criterion
c is illustrated, leading to a conservative response strategy with less false alarms but also
less hits.

2017). Moreover, the response bias is found to be more pronounced in the beginning
of a task and decreases during learning (Jones et al., 2015). This suggests that the
response bias may depend on the level of uncertainty associated with the available
options.

In order to distinguish between informed choices and biased choices in the
presence of uncertainty the signal detection theory (SDT) is typically applied.
Originally developed to assess the performance of radar operators (Peterson et al.,
1954), SDT has since been widely applied in decision making research (Green and
Swets, 1966; Lynn and Barrett, 2014; Macmillan and Creelman, 2005). SDT is
designed to accurately distinguish an actual signal from noise (i.e., absent signal),
while also assessing potential biases towards one of the responses. These aspects
are quantified using the sensitivity measure d′ and the criterion c, which represents
the response bias. To assess these measures, the signal and response are categorised
as either present or absent (Figure 1.2). When the signal is present, the agent’s
response can lead to either a hit (if detected) or a miss (if not detected). Conversely,
when the signal is absent (i.e., only noise is present), the agent’s response can result
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in either a false alarm (if incorrectly detected) or a correct rejection (if correctly
not detected). Sensitivity and criterion are then calculated using the normalised
hit rate z(HR), which captures the ratio between hits and misses, and false alarm
rate z(FAR), which reflects the ratio between false alarms and correct rejections
(Green and Swets, 1966):

d′ = z(HR)− z(FAR) (1.5)

c = −1

2
(z(HR) + z(FAR)) (1.6)

A criterion of 0 corresponds to a neutral criterion, negative values to a liberal and
positive values to a conservative response strategy (Lynn and Barrett, 2014). A
liberal response strategy, i.e., a negative criterion, implies a higher overall tendency
to act, leading to increased detection of signals, but also more false alarms. In
contrast, a conservative response strategy, i.e., a positive criterion, describes a
low tendency to act implying more correct rejections, but also a higher number of
misses.

1.2 The cholinergic system

Acetylcholine (ACh) was the first neurotransmitter to be discovered (Dale, 1914;
Ewins, 1914), and it has since been recognised as a key neurotransmitter in both the
peripheral nervous system (PNS) and central nervous system (CNS) of mammals.
In the PNS, ACh serves as the primary neurotransmitter responsible for muscular
movement (Katz and Miledi, 1965; Peper et al., 1982). In the CNS, ACh acts as a
widely distributed neuromodulator, modulating the likelihood of synaptic release
of neurotransmitters (Ananth et al., 2023). Cholinergic neurons are classified
into motor neurons, interneurons, and projection neurons (Ananth et al., 2023).
Cholinergic motor neurons are found in the hindbrain and spinal cord (Stifani, 2014).
Cholinergic interneurons are located in the striatum, cortex, and hippocampus
(Dudai et al., 2021; Higley et al., 2011; Kljakic et al., 2017). Cholinergic projection
neurons are found in the brainstem and basal forebrain (Mesulam et al., 1983;
Woolf, 1991). Due to its widespread distribution in the brain, ACh plays a crucial
role in essential functions such as the regulation of sleep, attention, memory, and
learning (Ananth et al., 2023; Everitt and Robbins, 1997). Particularly the basal
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forebrain cholinergic neurons, which innervate the whole cortex and hippocampus,
play a key role in behavioural functions (Ananth et al., 2023; Hasselmo and Sarter,
2011). Dysregulation of ACh transmission can have serious consequences; for
instance, cholinergic dysfunction is associated with conditions like Alzheimer’s
disease, schizophrenia, and attention-deficit hyperactivity disorder (ADHD) (Chen
et al., 2022; English et al., 2009; Higley and Picciotto, 2014). Hence, understanding
cholinergic mechanisms and their causal role for cognitive processes is fundamental.

The diverse functioning of the cholinergic system is achieved by cholinergic neu-
rons acting via two receptor classes: ionotropic nicotinic ACh receptors (nAChRs)
and metabotropic muscarinic ACh receptors (mAChRs) (Ananth et al., 2023). The
rapid acting nAChRs are cation channels consisting of several combinations of
subunits (α2 - α10 and β2 - β4) (Dani and Bertrand, 2007; Jones et al., 1999; Role
and Berg, 1996). Although nAChRs are mainly located in neuromuscular junctions
due to their fast acting nature (Sine, 2012), they are also represented in the CNS
with α7* and α4β2* being the most common subtypes (Dineley et al., 2015; McKay
et al., 2007). Both receptor subtypes are found to be critical for memory, learning,
and attention (Levin et al., 2006). The slower acting mAChRs use G proteins as
signalling mechanism (Ballinger et al., 2016). There are five main receptor subtypes
(M1 - M5) with M1, M3, and M5 being coupled with Gq/11 proteins and M2 and
M4 being coupled with Gi/o proteins (Thiele, 2013). The mAChRs predominate
in the CNS (Carlson, 2010). M1, M2, and M4 receptors are widely distributed in
the cortex and striatum and, additionally, M1-M4 receptors are prevalent in the
hippocampus, while M5 receptors are mostly expressed on dopaminergic neurons
in the substantia nigra and the ventral tegmental area (as reviewed in Thiele
(2013)). Especially the M1 subtype is associated with behavioural functions, such
as cognitive flexibility and working memory (Bradley et al., 2016; Galvin et al.,
2020; Shirey et al., 2009).

In this thesis, I will focus on the muscarinic M1 receptor subtype in order to
determine its role in uncertainty computations during decision making. Physiolog-
ically, the activation of muscarinic M1 receptors in the prefrontal cortex (PFC)
has been shown to exert top-down control over sensory cortices by enhancing
the activity of pyramidal cells in layer II/III of the visual cortex and, thereby,
enhance the signal-to-noise ratio (Ballinger et al., 2016; Bentley et al., 2011; Eg-
germann and Feldmeyer, 2009). Behavioural studies further support this: For
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example, cholinergic antagonism, which diminishes top-down control, was found
to suppress post-error behavioural adjustments, while cholinergic enhancement
improved stimulus detection amidst distractions (Danielmeier et al., 2015; Gratton
et al., 2017). Additionally, theoretical frameworks propose that ACh modulates
decision making under expected uncertainty (Avery et al., 2012; Yu and Dayan,
2005). This hypothesis is supported by a study in humans, where pharmacologically
enhanced ACh levels led to faster updating of beliefs about cue validity in a spatial
attention task (Vossel et al., 2014). Furthermore, pharmacological studies have
demonstrated that cholinergic antagonism impairs environmental adaptation in
humans and impairs reversal learning in mice (Cools and Arnsten, 2022; Marshall
et al., 2016; Robbins and Roberts, 2007). Thus, ACh seems to play a critical role
in uncertainty computations.

However, it remains elusive how decision making under risk, when all information
is given, is affected by ACh. N -methyl-d-aspartate (NMDA) and γ-Aminobutyric
acid (GABA) are two neurotransmitters which are typically considered to be
relevant for decision making irrespective of learning. ACh has been found to
modulate both of these neurotransmitters: NMDA and GABA receptor function
are enhanced following activation of cholinergic M1 receptors (Bessie Aramakis et
al., 1997; Kuchibhotla et al., 2017; Marino et al., 1998; Obermayer et al., 2017;
Zwart et al., 2018). On a neural level, decision making is typically modelled using
recurrent cortical circuit models, in which competition between options is governed
via excitatory NMDA and inhibitory GABA receptor activity (Wang, 2002). In
reward-guided decision-making tasks in humans, enhancement of NMDA led to
more optimal decisions (Scholl et al., 2014), while higher concentrations of GABA
relative to glutamate in the vmPFC led to higher decision accuracy (Jocham et
al., 2012; Kaiser et al., 2021). Therefore, ACh could possibly also play a role in
decision making irrespective of learning.
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1.3 Hypotheses

This dissertation seeks to explain the nature of reward-guided learning and decision
making in different environments in two studies.

Study I had two primary aims. The first aim was to investigate how muscarinic
M1 receptor activity influences learning and decision making depending on the
uncertainty of the environment. For this, we had the following hypotheses:

1. Cholinergic antagonism of the muscarinic M1 receptor impairs learning under
uncertainty. Extensive research has shown that learning depends on ACh (Everitt
and Robbins, 1997; Hasselmo and Sarter, 2011). Additionally, several studies
suggest that ACh seems to be crucial for learning in uncertain environments (Avery
et al., 2012; Marshall et al., 2016; Yu and Dayan, 2005).

2. Cholinergic antagonism of the muscarinic M1 receptor leads to suboptimal infor-
mation integration. MAChR transmission potentiates GABA and NMDA receptor
activity (Bessie Aramakis et al., 1997; Zwart et al., 2018). Both neurotransmit-
ters are found to enhance information integration in risky decision-making tasks
(Jocham et al., 2012; Kaiser et al., 2021; Scholl et al., 2014), thus, reduction of
these neurotransmitters via blocking cholinergic receptors should result in less
information integration.

The second aim was to examine the adjustment of decision strategies under risk
and under different degrees of uncertainty and was accompanied by the following
hypotheses:

3. The more uncertain the environment, the more additive the information integra-
tion. Research in both non-human primates and humans observed multiplicative
information integration without uncertainty, namely under risk, while it became
additive with increased volatility levels (Farashahi et al., 2019).

4. The more uncertain the environment, the higher the learning rate. Learning is
involved in uncertain environments. Previous research suggests that the learning
rate increases with the volatility level (Behrens et al., 2007; Browning et al., 2015).
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Study II aimed to assess the impact of external reinforcement on learning per-
formance and decision strategies. Concerning this aim, we had the following
hypothesis:

5. Instrumental performance during learning is increased when reinforcement
is absent compared to present. A recent study with animals showed improved
instrumental performance during early learning in blocks without reinforcement
compared to reinforced blocks (Kuchibhotla et al., 2019).

1.4 Overview

My dissertation is composed of two studies, of which the relevant methods are
outlined in Chapter 2, key results are summarised in Chapter 3 and discussed in
Chapter 4.

In the first study, we investigated the influence of muscarinic M1 receptor activity
on learning and decision making and the used decision strategies under risk and
different degrees of uncertainty. For this purpose, we used two reward-guided
tasks, described in Subsections 2.1.1 and 2.1.2. The pharmacological intervention
is specified in Section 2.2. Computational models, which are used for data analysis,
are formulated in Section 2.3. The results of this project are summarised in Section
3.1.

In the second study, we investigated how learning behaviour depends on the
presence versus absence of reinforcement. We used a go/no-go instrumental learning
task described in Subsection 2.1.3. The computational modelling approach used for
the analysis is specified in Subsection 2.3.2. The results are summarised in Section
3.2.
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2 Methods

The following chapter provides an overview of key experimental and modelling
methods used in the two studies. More detailed information can be found in the
original work (Kurtenbach et al., 2024, 2022).

2.1 Experimental paradigms

This dissertation comprises experimental research conducted with healthy human
participants, focusing on decision making and learning in variable environments.
Two studies were carried out, each set up with specific experimental paradigms to
address our research questions.

2.1.1 Reward-guided decision-making paradigm

In Study I, our objective was to investigate decision strategies in risky environ-
ments. To this end, we employed a reward-guided decision-making paradigm, called
gambling task (Figure 2.1). In each trial, participants are presented with a
choice between two options, each featuring two explicitly stated attributes: the
reward magnitude and the probability of receiving the reward. Participants’ goal
is to maximise their total reward, with monetary compensation granted after the
experiment based on the points they accumulated. In this task, outcomes of both
options are independent of each other.

To make an informed decision, participants need to compare the two options by
integrating the provided information about the reward magnitude and probability.
Since both attributes are provided, participants could theoretically estimate the EV
for each option and, based on the EV, make decisions that would maximise their
potential rewards. The task setup allows to analyse how participants utilise the
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Fixation
1200 ms ± 200 ms

Options
until choice,
max. 3000 ms

Choice
500 ms ± 100 ms

Outcome
500 ms

30% 60%30% 60%30% 60%

Figure 2.1: Example trial of the gambling task. The gambling task consisted of
500 trials. The height of each bar represents the reward magnitudes, while the numeric
percentage below indicates the reward probabilities. The outcome of each trial, either a
monetary win or no win, is shown by the fill colour — green for a win and red for no win.
Adapted from (Kurtenbach et al., 2024). CC BY 4.0.

given information to make decisions under risk, revealing insights into the cognitive
processes underlying risky decision making.

2.1.2 Reward-guided learning paradigm

In addition to decision making under risk, in Study I we investigated decision
making under two levels of uncertainty. To accomplish this, we set up a learning
task, similar to the gambling task described in Subsection 2.1.1 (Figure 2.2A).
However, unlike the gambling task where both reward magnitude and probability
are explicitly stated, in this learning task, while the reward magnitude is explicitly
provided, the reward probability is not. Instead, participants have to learn the
probability throughout the task, with the probability being implicitly signalled
by colour: One colour represents a low reward probability of 30%, and the other
indicates a high reward probability of 70%. In each trial, only one of the two
options is guaranteed to yield a reward. In order to investigate decision making
under different levels of uncertainty, the task is divided into two distinct phases: a
stable phase characterised by low uncertainty, and a volatile phase characterised
by high uncertainty. During the stable phase, the contingency between colour
and outcome remains constant, allowing participants to form reliable expectations
for each response option (i.e. colour). In contrast, during the volatile phase,
reward contingencies reverse multiple times, introducing high uncertainty and
requiring participants to continuously update their probability estimates based on

http://creativecommons.org/licenses/by/4.0/
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Figure 2.2: Example trial and time courses of the learning task. A The learning
task consisted of 400 trials. In each trial, reward magnitudes are indicated by the height
of the bar and reward probabilities by the colour of the bars and, thus, need to be learnt
during the task. When the winning option is chosen, a smiley is presented, otherwise, a
frowny is presented. B Two representative time courses of reward contingencies for the
blue colour (colour 1). In the stable phase, reward contingencies remain stable and in the
volatile phase, they switch several times. The true probabilities are represented as dashed
black lines, probability estimates obtained from a statistically optimal Bayesian learner
as blue line (Behrens et al., 2007). Adapted from Kurtenbach et al. (2024). CC BY 4.0.

the changing environment (Figure 2.2B).
Crucially, because the reward probability has to be learnt and is not explicitly

given, participants cannot directly compute the EV of each option, like in the
gambling task. Instead, they have to estimate the probabilities over time. Com-
putationally, probabilities can be optimally estimated using a Bayesian learning
model (Behrens et al., 2007). However, participants’ behaviour can both deviate
from these optimal probability estimations and the utilising of the computed EV.
This allows to compare how decision strategies differ when participants are faced
with known risks versus when they must learn and adapt to uncertainty.

http://creativecommons.org/licenses/by/4.0/
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2.1.3 Go/no-go learning paradigm

In Study II, we aimed to replicate improved performance in non-reinforced blocks
observed in animals performing a go/no-go task (Kuchibhotla et al., 2019). To
achieve this, we developed a visual go/no-go reinforcement learning task which
induces a slow and incremental learning process (Figure 2.3). We utilised twelve
abstract figurines, so-called greebles, as stimuli (Gauthier and Tarr, 2002). In each
trial, one of the twelve stimuli is presented, with half of them designated as go
options and the other half as no-go options. Participants have to learn, through
trial and error, to press a button when presented with go stimuli and to refrain from
responding when presented with no-go stimuli. Correct go responses are rewarded
with both monetary gain and a positive visual cue, i.e., a smiley, while incorrect
go responses are penalised with a monetary loss and a negative visual cue, i.e., a
frowny. In contrast, no-go responses are neither rewarded nor punished, following
the asymmetry described in the original animal study (Kuchibhotla et al., 2019).

Figure 2.3: Task structure of the go/no-go learning task. Each trial starts with
the presentation of a fixation cross, followed by the stimulus. Participants have to decide
whether to press the button (go response) or not (no-go response). In reinforced trials
(cyan), participants receive reinforcement: Correct go responses are followed by a smiley
and monetary win, incorrect go responses by a frowny and monetary loss; no-go responses
are not reinforced. Reinforced trials are interleaved by five non-reinforced blocks (purple),
in which participants receive neither reward nor punishment for each action. Adapted
from (Kurtenbach et al., 2022). CC BY 4.0.

http://creativecommons.org/licenses/by/4.0/
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To assess instrumental performance without reinforcement during the learning
process, the reinforced trials are interspersed with several blocks of non-reinforced
probe trials. These probe blocks are crucial for understanding the internalised
decision strategies and the persistence of learned associations in the absence of
immediate reinforcement.

2.2 Pharmacological intervention

In Study I, we applied a psychopharmacological approach: Our objective was to
investigate how ACh, specifically muscarinic M1 receptor activity, affects decision
making and learning within the same participants as a function of the environ-
ment. Therefore, we pharmacologically blocked ACh receptors while participants
performed the two behavioural tasks. In order to reduce expectations, we set up a
double-blind and randomised design. Additionally, all participants received both
placebo and drug to reduce errors caused by individual differences. We used the
ACh receptor antagonist biperiden, which primarily blocks muscarinic M1 receptors.

Biperiden is commonly used in the treatment of Parkinson’s disease, a condition
characterised by dopamine deficiency that leads to an overactive cholinergic system,
resulting in excessive ACh release (Aosaki et al., 2010). This cholinergic overactivity
contributes to movement disorders, such as tremors, which can be treated by phar-
macologically reducing ACh levels (Brocks, 1999). Besides its clinical applications,
biperiden is also suitable for pharmacological studies in healthy participants due to
its relatively specific binding to M1 receptors, which reduces the risk of side effects
compared to other muscarinic antagonists that also target M3 receptors. The M3
receptor subtype is found in the visual system, and its manipulation could impair
stimulus perception (Bolden et al., 1992; Danielmeier et al., 2015). Additionally,
biperiden effectively crosses the blood-brain barrier, allowing it to influence brain
regions involved in learning and decision making (Yokagawa et al., 1992). Its
pharmacokinetic properties, including a rapid peak in plasma concentration of 1 to
1.5 hours after oral administration and a short elimination half-life of about 18 to
24 hours, make it well-suited for psychopharmacological applications (Brocks, 1999;
Grimaldi et al., 1986).
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2.3 Computational models

The three behavioural paradigms, which are used in this dissertation, involve
complex cognitive processes. In these experiments, only few behavioural variables
are observable, namely choices and reaction times. While fundamental effects,
like task effects, can be detected using straightforward, regression-based methods,
these approaches are not suitable to capture the subtle, yet critical, components of
decision-making strategies and learning mechanisms. In contrast, computational
modelling offers a more sophisticated framework that generates possible strategies
and mechanisms by linking observed behaviour to task-specific variables using
mathematical equations (Wilson and Collins, 2019). Although computational
models might not depict the ground truth, they are nevertheless useful to decipher
the intricacies of cognitive processes (Eckstein et al., 2022).

There are several ways to utilise computational models. In this dissertation, we
employed two approaches to analyse the behavioural data. The first involves fitting
parameters to match a specific theory. This allows to reveal effects of variables,
such as experimental conditions and pharmacological intervention. The second
approach, the model comparison, assesses which theory best fits the observed
behaviour (Wilson and Collins, 2019). In Study I we implemented the parameter
fitting approach to compare behaviour across different tasks and conditions. We
set up a valuation model (Subsection 2.3.1) and a reinforcement learning model
(Subsection 2.3.2) and implemented these as Bayesian hierarchical model (explained
in Subsection 2.3.3). In Study II, where we explored the behavioural mechanisms
during a specific task, we made use of the model comparison approach. For this
purpose, we introduced four different reinforcement learning models (Subsection
2.3.2) and compared model fits.

Thus, computational modelling allows us to gain a deeper understanding of
decision dynamics, such as how participants weight probabilities and rewards, how
they adapt their strategies over time, and how they update their beliefs in response
to feedback.
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2.3.1 Valuation models

Decisions under risk require a choice between two options with explicitly presented
attributes. To computationally assess the process from option presentation to
action, valuation models are employed, which consist of two components: the
valuation process and the action selection (Figure 2.4). As outlined in Section 1.1,
the valuation process involves calculating the subjective value for each option by
integrating the available information. However, animals and humans do not always
choose actions based solely on the calculated subjective value. Hence, valuation
models need to account for the stochasticity during action selection.

Valuation
subjective value

computation

Action selection
softmax function OutcomeState

Learning
delta update

rule

Figure 2.4: Structure of computational models. Computational models link
environmental variables (grey) to learning and decision-making processes. After observing
the state, the valuation process is modelled with the computation of the subjective
value. Based on the subjective value, the action is selected using a softmax function.
Following the choice, the environment provides an outcome. When learning is involved, as
further described in Section 2.3.2, the agent learns from this information, computationally
modelled using the delta update rule, which in turn adjusts the subjective value.

Reward-guided decision-making paradigm

We fitted parameters to participants’ behaviour in the gambling task (Subsection
2.1.1) using a valuation model. The valuation model tests if the information
integration is rather additive or multiplicative via a hybrid model, which captures
both strategies. Thus, the subjective value SVi,t for option i in each trial t of each
option is computed as:

SVi,t = ωmultMi,tPi,t + (1− ωmult)((1− ωP )Mi,t + ωPPi,t) (2.1)
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where Mi,t and Pi,t are magnitude and probability of option i in trial t, ωmult rep-
resents the weighting of multiplicative information integration and ωP denotes the
relative weighting of probability. A purely multiplicative integration, corresponding
to optimal decision making, is represented by ωmult = 1, while a purely additive
integration is indicated by ωmult = 0. Additionally, the model accounts for how
participants prioritise different option attributes: If they select high-magnitude
rewards only, ωP would be 0, and if they exclusively opt for high-probability options,
ωP would be 1.

To convert the subjective value of each option into probabilities and account for
participants’ variability during action selection, a softmax function is implemented:

pl,t =
1

1 + exp(−(SVl,t − SVr,t)ζ)
(2.2)

where pl,t is the probability of choosing the left-side option in trial t, SVl,t and
SVr,t represent the subjective value of the left-side and right-side option in trial
t, respectively, and the inverse temperature parameter ζ reflects the level of
stochasticity in choice behaviour. Higher values of inverse temperature represent
less random behaviour and lower values more random behaviour.

2.3.2 Reinforcement learning models

To make informed decisions under uncertainty, the agent is required to learn from
the outcome. Therefore, next to valuation and action selection, RL models consist
of a third component, the learning process (Figure 2.4).

Reward-guided learning paradigm

In order to compare behaviour in both tasks of Study I, we used a computational
model closely following the valuation model for the learning task (Section 2.1.2). In
contrast to the gambling task, the reward probability needs to be learnt by trial and
error in the learning task. To assess each option’s value, a subjective probability
estimate is therefore required. In the model, the subjective probability of chosen
options SPc,t is adjusted in each trial t using a Q-learning approach with a delta
update rule (Equation 1.3). Previous work suggests that humans learn differently
for positive versus negative prediction errors (Eckstein et al., 2022; Gershman,
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2015; Palminteri et al., 2016), thus, separate learning rates λr and λu for rewarded
and unrewarded choices, respectively, are implemented. Additionally, since the
outcomes of the two options are interdependent, the model assumes a dependent
update mechanism, where the subjective probability of the unchosen option SPu,t

is simply 1−SPc,t. The subjective probability is then used to integrate information
into the subjective value SVi,t of option i in each trial t:

SVi,t = (1− ωP )Mi,t + ωPSPi,t (2.3)

Note, that we used an additive model for the learning task due to convergence
issues. Additionally, the softmax function is implemented to model action selection
(Equation 2.2).

The learning task consists of two different phases - the stable phase and the volatile
phase. Parameters are fitted separately for both phases to capture differences in
behaviour between volatility levels.

Both the valuation model (Section 2.3.1) and this reinforcement learning model
were fitted as Bayesian hierarchical models, which implementation and validation
is described in Subsection 2.3.3.

Go/no-go learning paradigm

The go/no-go learning task (Section 3.2) consists of reinforced and non-reinforced
blocks. We aimed to reveal the mechanism of adjusted behaviour in non-reinforced
blocks, thus, we set up four different RL models: a baseline model, a temperature
model, a bias model, and a full model. The learning process is equal in all models.
In this paradigm, instead of making choices between two choice options, participants
are presented with a single stimulus and have to choose between two actions - press
a button or refrain from a button press. After performing a go response in reinforced
trials, the value Qi,t of the presented stimulus i in trial t is updated according
to the delta update rule (Equation 1.3). In non-reinforced probe trials, stimulus’
values after performing a go response are not updated, such that Qi,t+1 = Qi,t.
However, participants learn to retain an active response and perform a no-go
response after certain stimuli. The non-monotonic plasticity theory implies that
synaptic connections are weakened for unchosen options (Ritvo et al., 2019), which
is also supported by imaging studies (Luettgau et al., 2020). Therefore, a decay
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parameter θ is implemented to enable passive forgetting when a no-go response
is performed: Qi,t+1 = θQi,t. Since participants have no information about the
presented stimuli, initial Q-values Q0 when stimuli are presented for the first time
are also treated as a free parameter. Note that in the go/no-go task, the learned
value Q serves immediately as subjective value determining the following action.
Based on the subjective value per stimulus Qi,t, the probability of performing a
go-action pt in trial t is modelled using a softmax function:

pt =
1

1 + exp(
−(Qi,t+bk)

τk
)

(2.4)

where τk is the softmax temperature and bk is the response bias, dependent on
the environment k. The four models differ in the implementation of the bias
and the temperature terms. The baseline model does not differentiate between
reinforced (R) and probe (P ) trials, thus, temperature and bias are equal in both
contexts: τk = τR = τP and bk = bR = bP . The temperature model enables different
temperatures in reinforced and probe trials, such that τk = τR in reinforced trials
and τk = τP in probe trials. In contrast, the bias model enables different biases in
reinforced and probe trials with bk = bR in reinforced trials and bk = bP in probe
trials. The full model combines the temperature and the bias model, as it enables
separate temperatures and biases in reinforced and probe trials. Thus, the models
differ in the number of free parameters n (baseline model: n = 4, temperature
model: n = 5, bias model: n = 5, full model: n = 6) and the interpretation
of which processes are affected by the task manipulation (i.e. reinforcement vs.
non-reinforcement).

All four models were fitted to participants’ behaviour using the maximum-
likelihood approach. We then compared model fits using the Bayesian information
criterion (BIC). While a greater number of free parameters can improve a model’s
ability to fit observed behaviour, it also increases the risk of overfitting. The BIC
helps to prevent overfitting by penalising models with higher complexity (Stoica
and Selen, 2004). As a result, more complex models should only outperform simpler
ones if their additional parameters are truly necessary to accurately describe the
observed behaviour.

Moreover, model validation and parameter recovery were conducted for the
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best-fitting model. For the model validation, behaviour was simulated based on
fitted parameters and compared to observed behaviour in order to test whether
the model captures key behavioural effects. This step is crucial to ensure that the
model makes sense of the data (Wilson and Collins, 2019). With the parameter
recovery we ensured the reliability of fitted parameters. To this end, parameters
were fitted to simulated behaviour and correlated with the original parameter fits
(Wilson and Collins, 2019).

2.3.3 Bayesian hierarchical modelling

In Study I, the valuation model of the gambling task (Subsection 2.3.1) and the RL
model of the learning task (Subsection 2.3.2) were implemented as Bayesian hierar-
chical modelling approach with Markov chain Monte Carlo sampling for parameter
estimations. In contrast to the maximum-likelihood approach, Bayesian hierarchical
modelling allows for the analysis of complex data structures by modelling relation-
ships simultaneously at multiple levels (Lee, 2011). Parameters are estimated as
probability distributions, namely posterior distributions, which are continuously
updated (Lee and Wagenmakers, 2013). These posterior distributions provide a
full probabilistic description of the parameters, which quantify the uncertainty of
fitted parameters and shrink outliers (Baribault and Collins, 2023).

Bayesian hierarchical modelling is particularly useful when individual differences
and group-level effects need to be considered simultaneously. In the models,
prior information about the parameters are used as hyperprior for group-level
parameters and group-level parameters serve as prior for the estimation of subject-
level parameters (Figure 2.5). Thus, parameter estimates are iteratively updated
with observed data and yield to posterior distributions, which in turn inform
group-level parameter estimates.

In Study I, we applied pharmacological intervention in a within-subjects design.
Participants performed the gambling and learning task twice, once under placebo
and once under the influence of biperiden. Thus, Bayesian hierarchical models
account for variability across participants while also identifying drug effects within
the group (Lee and Wagenmakers, 2013). To achieve this, we implemented a
drug-induced shift parameter sx for all free parameters x with x + δbipsx, where
δbip is 0 or 1 for placebo and biperiden sessions, respectively.
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Figure 2.5: Schematic of the Bayesian hierarchical models. A hyperprior informs
group-level parameters, which are used as prior for subject-level parameters. Subject-level
parameters are updated with observed data and the resulting posterior serves as prior for
group-level parameter estimates.

Since parameters are fitted as probability distributions, we cannot infer the
significance. Instead, we inferred the credibility using the 95% highest density
interval (HDI) of the posterior predictive distribution: When the interval does not
overlap with 0, it is credible, that the fitted parameter is not equal to 0 (Kruschke
and Liddell, 2018). Moreover, we validated if the model captures participants’
behaviour by conducting posterior predictive checks. Based on the posterior
distributions of subject-level parameters, we simulated data and compared it to
the observed data (Baribault and Collins, 2023).
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3 Results

The following chapter provides an overview of key results of the two studies. More
detailed information can be found in the original work (Kurtenbach et al., 2024,
2022).

3.1 Study I: A role for acetylcholine in
reinforcement learning and decision making
under uncertainty

The following section is based on the preprint available at bioRxiv (see Research
articles):

Kurtenbach H, Froböse MI, Ort E, Bahners BH, Hirschmann J,
Butz M, Schnitzler A, & Jocham G

A role for acetylcholine in reinforcement learning and decision making
under uncertainty

bioRxiv (2024)

The study aimed to investigate decision making and learning under risk and different
levels of uncertainty. The results can be divided into two parts following from
the two aims defined above. The first part (Subsection 3.1.1) set out to reveal
strategy shifts dependent on the environment. Building on that, the cholinergic
effect on decision behaviour in different environments is described in the second
part (Subsection 3.1.2).
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3.1.1 Decision strategies under risk versus uncertainty

We investigated learning and decision making in three different environments:
under risk (gambling task, Subsection 2.1.1), and under uncertainty, with a stable
and a volatile environment (learning task, Subsection 2.1.2). We assumed that
decision strategies are adapted in two ways to suit the environment. First, we
hypothesised that information integration of option attributes is more multiplicative
under risk and increasingly additive with higher uncertainty, in order to weight
certain option attributes more heavily (Farashahi et al., 2019; Stewart, 2011). The
next hypothesis addresses decision strategies under uncertainty, when learning is
involved. We assumed that the learning rate increases with increasing volatility in
the reward-guided learning task, in order to favour more recent outcomes (Behrens
et al., 2007; Browning et al., 2015).

We used Bayesian hierarchical modelling to identify varying decision strategies
(see Section 2.3). For the gambling task, we fitted a valuation model with three free
parameters: ωmult, which determines the degree of multiplicative versus additive
information integration, ωP , which defines the degree of probability versus magni-
tude weighting, and the inverse softmax temperature ζ. For both the stable and
the volatile phase of the learning task, we fitted four free parameters: the relative
attribute weighting ωP , a learning rate for rewarded and unrewarded choices, λr

and λu, respectively, and the inverse softmax temperature ζ.
In line with our hypothesis, we found that in the gambling task, participants

applied a hybrid strategy of information integration, comprising both additive
and multiplicative integration (Figure 3.1A). Moreover, they weighted reward
probability credibly stronger than in the learning task, where the probability was
implicitly presented and, thus, needed to be learnt (Figure 3.1B). Lastly, in the
gambling task, participants were credibly less stochastic than in the learning task,
as reflected by a higher inverse softmax temperature (Figure 3.1E). This is also in
line with our expectations, since option attributes were explicitly provided in the
gambling task, hence, requiring less exploration.

However, we found no credible adjustments of decision strategies for the two
phases within the learning task. There was no credible difference in relative attribute
weighting between stable and volatile phase, albeit reward probability was associated
with more uncertainty in the volatile phase (Figure 3.1B). Additionally, despite
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Figure 3.1: Parameter fits for choice behaviour under risk versus different
degrees of uncertainty. Posterior distributions of parameter estimates of the gambling
task (orange), stable phase of the learning task (dark blue), and volatile phase of the
learning task (light blue). A The attribute integration ωmult indicates whether the
attributes were integrated multiplicatively or additively. B The attribute weighting ωP

represents how the reward probability is weighted relative to the magnitude. C, D For
the learning task, learning rates for rewarded choices λr and for unrewarded choices λu

were fitted. E The stochasticity of choice behaviour was fitted via the inverse softmax
temperature ζ. Shaded areas represent the 95%-HDI and points single-subject means.
F Mean squared prediction error (PE) in the stable and volatile phase of the learning
task. A higher PE corresponds to a greater surprise of outcomes. Reproduced from
(Kurtenbach et al., 2024). CC BY 4.0.
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the higher volatility in the volatile phase, learning rates did not credibly differ
between both phases (Figure 3.1C,D). Even the response stochasticity remained
equal in both phases (Figure 3.1E). Although no behavioural adjustments between
the stable and volatile phases were found, follow-up analyses revealed a difference
in mean squared prediction errors. In the volatile phase, mean squared prediction
errors were significantly higher than in the stable phase (Figure 3.1F). This reflects
that participants were more surprised by outcomes under higher volatility.

In sum, participants adapted decision strategies across tasks, where one task
involved learning and the other not. However, within the learning task, participants
did not adjust response behaviour according to the underlying volatility.

3.1.2 Cholinergic effect on decision strategies

The study set out to investigate the influence of ACh on decision making and
learning under risk and different degrees of uncertainty. Therefore, participants
performed the gambling task and the learning task twice, once after placebo and
once after the administration of biperiden, a muscarinic M1 ACh receptor antagonist
(see Section 2.2). As a first step, we used logistic mixed-effects regression (see
Kurtenbach et al. (2024) for more information) to analyse the effects of biperiden
on task parameters. While there were no significant behavioural modulations by
biperiden in the gambling task or in the stable phase of the learning task, we found,
specifically for the volatile phase of the learning task, a reduced use of (learned)
reward probabilities under biperiden (Figure 3.2). Note that for the learning
task, reward probabilities in the regression model reflect estimates derived from a
Bayesian optimal learner (based on Behrens et al. (2007)), because participants
did not know the underlying probabilities. Therefore, the observed biperiden effect
could be caused by less use of probability information or by impaired tracking of
probabilities or both.

In order to analyse the origin of the biperiden-induced effect, we used Bayesian
hierarchical modelling and implemented shifts from placebo sessions on each fitted
parameter in the biperiden session (see Subsection 2.3.3). A diminished use of
probability information would be reflected in a reduced probability weighting
parameter under biperiden, while a modulation of learning rates would correspond
to impaired tracking of probabilities. We found that, in the volatile phase of
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Figure 3.2: Probability for a right-side choice as a function of differences in
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mixed effects regression in the gambling task (left) and in the stable (middle) and
the volatile phase (right) of the learning task. Sensitivity to reward probabilities was
significantly reduced under biperiden (pink) compared to placebo (grey) in the volatile
phase. Solid lines represent mean, shaded areas SEM across participants. Adapted from
(Kurtenbach et al., 2024). CC BY 4.0.

the learning task, the learning rate for rewarded choices increased credibly after
biperiden administration (Figure 3.3), indicating that participants adjusted more
quickly to changes in contingencies. As there were no credible biperiden-induced
effects on relative probability weighting, we conclude that biperiden influences
specifically the learning process rather than the valuation process.

However, it is generally considered advantageous to increase the learning rate in
volatile environments compared to stable ones (Behrens et al., 2007; Browning et
al., 2015), while we hypothesised that biperiden would impair performance. To test
this, we compared participants’ estimated reward probabilities, based on their fitted
learning rates, to those of a Bayesian optimal learner. We found that participants’
estimates deviated significantly stronger from the optimal estimates during the
biperiden session than during the placebo session (Figure 3.3E).

All in all, biperiden induces a maladaptive increase in learning rate in volatile
environments, resulting in noisier value estimates.

http://creativecommons.org/licenses/by/4.0/
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Reproduced from Kurtenbach et al. (2024). CC BY 4.0.
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3.2 Study II: Removal of reinforcement improves
instrumental performance in humans by
decreasing a general action bias rather than
unmasking learnt associations

The following section is based on the manuscript published in PLOS Computational
Biology (see Research articles):

Kurtenbach H, Ort E, Froböse MI, & Jocham G
Removal of reinforcement improves instrumental performance in humans by
decreasing a general action bias rather than unmasking learnt associations

PLOS Computational Biology 18(12), e1010201 (2022)

In this study, we aimed to translate findings from rodent work to a human sample.
The rodent study observed improved performance in non-reinforced compared
to reinforced trials in an instrumental learning task (Kuchibhotla et al., 2019).
To investigate this effect in humans, we set up a visual go/no-go learning task
(Subsection 2.1.3). In line with Kuchibhotla et al. (2019), we conducted an SDT-
based analysis and found increased sensitivity, as measured by the sensitivity
index d′, in non-reinforced probe compared to reinforced trials (Figure 3.4). For
the computation of SDT measures, however, a window of several trials needs to
be considered. This results in an artefact when assessing d′ during a learning
process: Before reaching stable levels, performance on later trials is naturally higher
than in earlier trials. Thus, d′ is always higher in later compared to earlier trials,
irrespective of task manipulations. To differentiate whether our findings indeed
reflect a performance increase or follows spuriously from the SDT analysis approach,
we used RL models, which provide trialwise estimates of behaviour to decipher
underlying mechanisms when reinforcement is removed.

We fitted four distinct models to account for different response strategies during
probe trials (Subsection 2.3.2). The first, the baseline model, assumed identical
choice behaviour across both reinforced and probe trials. The second, the tempera-
ture model, allowed for varying softmax temperatures between conditions, where
lower temperatures in probe trials would indicate increased sensitivity to learned
values, suggesting that the removal of reinforcement reveals latent task knowledge.
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A B

Figure 3.4: Time course of participants behaviour in the go/no-go learning
task. A Sensitivity index d′ in reinforced (cyan) and probe trials (purple). B Probability
for go responses (P(Go)) for go trials (green) and no-go trials (red). Probe trials are
indicated by darker shades of green and red. Solid lines represent mean, shaded areas
SEM across participants. Adapted from (Kurtenbach et al., 2022). CC BY 4.0.

The third, the bias model, introduced a varying general bias between conditions,
with a lower bias parameter in probe trials indicating a reduction in go responses
across both go and no-go stimuli. Finally, the full model incorporated both varying
softmax temperatures and bias parameters. If the performance increase as observed
using SDT reflects improved latent task knowledge, we expected the temperature
model to have the best fit. However, we found that the bias model provided the
best fit (Figure 3.5A).

We observed that the response (i.e. go) bias was lower in probe trials compared
to reinforced trials (Figure 3.5B). With the general bias being the only difference
between reinforced and probe trials, simulated data based on the bias model could
successfully reproduce participants’ choice behaviour (Figure 3.5E). It seemed
counterintuitive in the first place that the bias model, which captures a general
reduction in overall button presses could account for the observed behaviour. In
theory, less button presses should lead to a lower false alarm, but also lower hit
rate and should therefore not lead to an increase in d′. Further analysis, however,
shed light on this: Initial Q-values Q0 were positive in the bias model, reflecting
frequent go responses early in the task (Figure 3.5C). Thus, starting with already
high values, values for go stimuli increase further during the task, while values
for no-go stimuli decrease. Combined with the softmax function’s sigmoid shape

http://creativecommons.org/licenses/by/4.0/
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Figure 3.5: Computational modelling results of the bias model. A Model
comparison of fitted models relative to the baseline model. The lower the BIC, the
better the fit. The bias model provides the best fit and, thus, is further described in the
following. B Comparison of the bias parameter in reinforced trials bR and probe trials bP .
C Parameter fits for the initial estimate of option values Q0. Points represent individual
participants’ fits. D Schematic illustration of the differential effect on false alarm rate
and hit rate. Softmax go-response probabilities P(Go) are reduced for probe compared
to reinforced trials. In combination with positive initial estimates Q0 (solid grey line),
the difference between P(Go) in reinforced and probe trials decreases over time for go
stimuli, as the values increase (green arrow). Conversely, values for no-go stimuli decrease
over time and the difference between P(Go) in reinforced and probe trials increases (red
arrow). E Time course of simulated probabilities for go responses P(Go). Probe trials are
indicated by darker shades of green and red. Solid lines represent mean, shaded areas
SEM across simulations. Reproduced from Kurtenbach et al. (2022). CC BY 4.0.

(Figure 3.5D), a reduced go-bias in probe trials leads to a disproportional reduction
of false alarms relative to the reduction in hits.

In summary, we could replicate the improved instrumental performance in non-

http://creativecommons.org/licenses/by/4.0/
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reinforced trials. However, this improvement resulted from reduced response
probabilities in general rather than an increased sensitivity to learned values.
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4 Discussion

This dissertation addresses the mechanisms of reinforcement learning and decision
making depending on the reliability of information and the availability of feedback.
In two studies, we aimed to

• investigate how muscarinic M1 receptor activity influences learning and
decision making depending on the uncertainty of the environment (Study I).

• examine the adjustment of decision strategies under risk and under different
degrees of uncertainty (Study I).

• assess the impact of external reinforcement on learning performance and
decision strategies (Study II).

I will start by discussing the results of the two studies concerning our hypotheses.
Following this, I will present an outline of future research based on the findings.
Finally, I will draw a conclusion regarding the work presented in this dissertation.

4.1 Discussion of hypotheses

1. Cholinergic antagonism of the muscarinic M1 receptor impairs learning under
uncertainty. In Study I, we observed that biperiden administration resulted in im-
paired learning in the volatile phase, as learning rates were maladaptively increased.
Exploratory analyses additionally revealed that this increase in learning rate led to
impaired estimates of reward probability and, thus, enhanced distractibility by re-
cent outcomes. This supports the idea, suggested by physiological and behavioural
studies, that ACh may be crucial for top-down control (Ballinger et al., 2016;
Bentley et al., 2011; Danielmeier et al., 2015; Eggermann and Feldmeyer, 2009;
Gratton et al., 2017). Additionally, the biperiden-induced increase in learning rate
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was specific for rewarded choices. This aligns with an optogenetic study in mice,
which demonstrates that basal forebrain cholinergic neurons responded to outcome
surprise, with a stronger response for rewarded compared to punished outcomes
(Hangya et al., 2015). Moreover, our findings aligns with studies which found that
ACh is involved in shaping behaviour under uncertainty. For example, cholinergic
manipulation led to impaired attentional set-shifting and increased distractibility
in mice (Cools and Arnsten, 2022; Robbins and Roberts, 2007). However, our
findings appear to contrast with theoretical predictions regarding the role of ACh.
Biperiden specifically affected behaviour in the volatile phase, the only condition
where both expected and unexpected uncertainty were present. Historically, ACh
has been linked to expected uncertainty, while noradrenaline has been associated
with unexpected uncertainty (Avery et al., 2012; Yu and Dayan, 2005). However,
these models also suggest that ACh depletion can increase distractibility by causing
an underestimation of environmental volatility. This aligns with our findings, as
the biperiden effect was observed in the volatile phase, where outcome surprise was
greater compared to the stable phase, indicated by a higher mean squared predic-
tion error. Additionally, a recent study in humans demonstrated that biperiden
increased the update rate of volatility estimates in a probabilistic serial response
time task, impairing adaptation to environmental changes (Marshall et al., 2016).
Thus, muscarinic M1 receptor activity might be involved in uncertainty processing,
particularly in volatile environments where surprise levels are increased.

2. Cholinergic antagonism of the muscarinic M1 receptor leads to suboptimal
information integration. In Study I, we found no effect of biperiden on information
integration in both tasks. This may be due to suboptimal performance across tasks,
even without cholinergic manipulation. Compared to other studies, our participants
demonstrated less multiplicative attribute integration (Farashahi et al., 2019; Scholl
et al., 2014), and their learning rates were notably high in the learning task. One
possible explanation is that our tasks were more difficult. In particular, the learning
task may have been more challenging; for example, some reversal learning tasks
feature larger differences in reward probabilities between options, making reversals
easier to detect (Behrens et al., 2007; Browning et al., 2015), while others explicitly
signal volatile phases (Blain and Rutledge, 2020; Massi et al., 2018). The lack of
involvement of muscarinic M1 receptor activity in information integration in our
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study may have multiple causes, but our behavioural results for now suggest that
M1 receptor activity does not affect reward-guided decision making in the absence
of learning, but is specifically relevant to learning in volatile environments.

3. The more uncertain the environment, the more additive the information integra-
tion. In Study I, we found partial evidence for adaptive information integration
under uncertainty. In the gambling task, participants employed a hybrid valuation
strategy, combining both additive and multiplicative approaches, consistent with
findings in humans and non-human primates (Farashahi et al., 2019). However, in
the learning task, we could fit only an additive, but not a hybrid model due to con-
vergence issues. While this suggests that participants may have relied on a purely
additive integration strategy in the learning task, we cannot definitively conclude
this. Nonetheless, we observed that participants weighted reward probabilities
significantly more in the gambling task than in the learning task. This supports
the hypothesis that participants adjust their valuation strategy by placing less
emphasis on the unknown attribute (i.e., probability) under uncertainty (Stewart,
2011). However, within the learning task, we found no differences in information
integration, which may be due to the difficulty of the task, as the different volatility
phases were not easily distinguishable. Overall, we propose that agents adapt their
valuation strategies based on environmental uncertainty, though this flexibility may
be influenced by participants’ awareness of the environment.

4. The more uncertain the environment, the higher the learning rate. In Study I, we
did not find evidence that learning rates adapt based on environmental uncertainty.
Numerous studies have reported that learning rates increase during volatile phases
compared to stable ones (Behrens et al., 2007; Blain and Rutledge, 2020; Browning
et al., 2015; Massi et al., 2018). We found no increase in learning rate under
higher volatility, however, explorative analyses indicated that there is a difference
between stable and volatile phases: The mean squared prediction error was higher
in the volatile compared to the stable phase, revealing that participants were more
surprised by outcomes in the volatile phase. Nevertheless, they did not adjust their
learning rates accordingly. A recent study also failed to find increased learning
rates in volatile environments (Cook et al., 2019). They suggested that the absence
of this effect could be attributed to the complexity of the task. Similarly, the
difficulty of our learning task may have prevented participants from distinguishing
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between the two phases. All in all, this suggests that increased volatility does not
lead to changes in learning rates in general.

5. Instrumental performance during learning is increased when reinforcement is
absent compared to present. In Study II, our results confirmed that instrumental
performance improved during blocks without reinforcement compared to reinforced
blocks. However, computational modelling indicated that this improvement was not
due to participants demonstrating latent task knowledge in the absence of feedback,
as would be reflected by a reduced softmax temperature (i.e., increased sensitivity
to learned values). Instead, participants adopted a more cautious response strategy.
In non-reinforced blocks, there was a decrease in general response bias, meaning
participants were less likely to act. In reinforced blocks, go responses provided
feedback and thus an information bonus. It is assumed that humans and animals
seek information to reduce uncertainty about the environment (Bromberg-Martin
and Hikosaka, 2009; Stagner and Zentall, 2010; van Lieshout et al., 2021). Thus,
when no information is available, such as in non-reinforced blocks, participants
held back responses. Additionally, the models revealed that initial values were
positively biased, reflecting a high propensity for go responses. This is driven by
the asymmetric nature of our task structure where only go responses provided
feedback. Thus, our findings suggest that the response strategy is modulated by
the presence of reinforcement, and affects instrumental performance.

4.2 Future research

Our results displayed that humans adapt decision strategies to the underlying
environment and that ACh modulates learning in environments with outcome
surprise. These findings but also limitations of the presented work, certainly invite
future research.

In Study I, we investigated how the neuromodulator ACh influences choice
behaviour, but its impact on neural dynamics remains an open question. The
next step would be to link ACh-driven impairments in learning under volatile
conditions to neuronal data using magnetoencephalography (MEG). MEG not
only identifies specific brain areas involved in task performance but also allows for
the examination of cortical oscillations, which reflect communication within and
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between brain regions (Florin and Baillet, 2015; Fujisawa and Buzsáki, 2011). ACh
has been shown to modulate cortical oscillations: In visual attention tasks, ACh
has been found to influence gamma oscillations (Howe et al., 2017; Rodriguez et al.,
2004), while theta oscillations are thought to be modulated during memory tasks
(Gedankien et al., 2023). However, there is limited knowledge about how ACh
modulates cortical oscillations during learning. Our study links ACh modulation
to learning rates, which are closely tied to reward processing. Reward processing is
broadly distributed across several brain regions, including the PFC, orbitofrontal
cortex, amygdala, striatum, and anterior cingulate cortex (Marco-Pallares et al.,
2008). Typically, beta oscillations are associated with learning from gains, while
both beta and theta oscillations are linked to learning from losses (Marco-Pallares
et al., 2008; Van De Vijver et al., 2011). To further investigate the neural network
and temporal dynamics biperiden acts on during learning, we plan to correlate
biperiden-specific behavioural effects with neuronal data (in preparation).

Although we manipulated ACh in Study I, the role of ACh in decision-making
processes under risk remains an open question. Decision making under risk and
under uncertainty are considered distinct processes. For instance, patients with
Parkinson’s disease exhibit impairments in decision making under risk but not
under uncertainty (Euteneuer et al., 2009). Our findings revealed that ACh did not
affect valuation, a process involved in both the gambling and learning tasks, but it
did influence learning, which was specific to the learning task. One possibility is
that ACh does not play a significant role in decisions under risk. However, it is also
plausible that ACh influences subtle decision-making dynamics that do not manifest
directly in choice behaviour. For example, a study with nicotine-dependent humans
found improvements in decision making in abstinent individuals using drift-diffusion
models (DDMs), albeit task performance did not differ between groups (Biernacki
et al., 2023). DDMs offer the possibility to explore decision dynamics, such as the
speed of evidence accumulation. Thus, in future work, it would be useful to apply
DDMs to our behavioural results.

Another way to get more insights into the cholinergic modulation is to apply
biophysically plausible network models. These models simulate firing rates via
competition by mutual inhibition (Soltani et al., 2016; Wang, 2002). This process
is driven by excitatory NMDA and inhibitory GABA activity, however, ACh is
known to modulate both neurotransmitter systems (Bessie Aramakis et al., 1997;
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Kuchibhotla et al., 2017; Marino et al., 1998; Obermayer et al., 2017; Zwart et al.,
2018). These models could not only clarify whether we should predict behavioural
effects based on the cholinergic modulation of GABA and NMDA, but could also
be used as predictors for neural signals (Hunt et al., 2012).

Study II suggests that performance is not only influenced by external factors
such as the availability of feedback, but also interacts with response biases that may
or may not be beneficial given a particular task structure. However, the dynamics
of these biases are not fully understood, especially how they change behaviour
depending on the availability of reinforcement. We assumed that the task structure
plays a critical role in shaping behaviour, particularly in changing contexts like the
removal of reinforcement, since behaviour might not solely be driven by maximising
reward, but also by maximising information. When this latter possibility is removed,
an overall reduction in button presses resulted in improved performance in this
specific task structure. To follow up this point, we proposed that a task using
different asymmetric feedback, such as rewarded no-go stimuli and unrewarded
go stimuli, would actually impair instrumental performance when reinforcement
is removed, due to an initial negative bias towards no-go responses. Conversely,
a symmetrical task structure, where both go and no-go stimuli receive feedback,
should result in no difference in behaviour after reinforcement is withdrawn. To
test this, we conducted a follow-up study with modifications to the task structure.
Interestingly, we found that instrumental performance improved in both the inverse
asymmetrical task and the symmetrical task. This aligns with a recent study,
which also reported improved performance in the absence of reinforcement using a
symmetrical learning task (Vahedi et al., 2024). These findings suggest that the
response bias might be more dynamic than we anticipated.

Further to this, a recent study found that the motivational bias (i.e. the tendency
to respond more actively to reward-related go responses) originates in the PFC,
which processes external signals, before being integrated with internal signals in
the striatum (Algermissen et al., 2024). This suggests that the motivational bias
may represent a more flexible, strategic mechanism, rather than a rigid response
pattern. To better understand the neural mechanisms underlying our bias effect
in Study II, future research could investigate performance in the three variations
of our go/no-go task (asymmetric, inverse asymmetric, symmetric) using imaging
techniques like MEG. This approach could provide valuable insights into how the
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bias effect operates at the neural level.
Additionally, future research could investigate how a neuromodulator like ACh

affects the bias parameter depending on the availability of reinforcement. We
found that cholinergic antagonism impaired learning by causing an overshoot in the
learning rate. Furthermore, research suggests that ACh regulates not only learning
but also influences negative encoding bias (as reviewed in Mineur and Picciotto
(2021)). Thus, a cholinergic antagonist such as biperiden could potentially lead
to faster learning from punishment, i.e., false alarms in our task. The reduction
in false alarm rate observed in the absence of reinforcement could be even more
pronounced. However, it remains unclear what happens when reinforcement is
absent and agents must rely solely on intrinsic reinforcement.

As a next step, resting state MEG activity could be used to predict behaviour.
Previous research suggests that the ratio between resting-state theta and beta
oscillatory activity is involved in reward-related processing (Massar et al., 2014).
Participants with a higher theta/beta ratio distinguished less well between gains
and losses and learnt more slowly, which was additionally accompanied by increased
risk-taking behaviour (Massar et al., 2012; Schutter and Van Honk, 2005). Moreover,
recent research found that participants with lower beta oscillatory activity during
resting state had weaker frontoparietal connectivity, resulting in higher flexibility
and, thus, improved accuracy in a visual attention task (Rogala et al., 2020). Thus,
resting-state theta and beta oscillatory activity could also be predictive of the use
of decision strategies in our tasks, which involve both risk and certain forms of
flexibility.

The present work focused on investigating task-related behaviour in healthy
participants. However, from a clinical perspective, resting-state oscillatory activity
is also of interest, as neuropsychiatric diseases are associated not only with al-
tered decision-making behaviour but also with abnormal neuronal synchronization
(Uhlhaas and Singer, 2006). For instance, patients with Alzheimer’s disease exhibit
increased power in delta and theta oscillations and reduced power in alpha and
beta oscillations compared to healthy controls (Kopčanová et al., 2024). Simi-
larly, patients with Parkinson’s disease and cognitive dysfunction show increased
delta, alpha, beta, and gamma power, and decreased theta power (Anjum et al.,
2024; Jaramillo-Jimenez et al., 2021). Hence, electroencephalography and MEG
could serve as tools for identifying early-stage biomarkers of neuropsychiatric dis-
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eases (Anjum et al., 2024). Oscillatory patterns, especially those observed during
resting-state measurements, are of particular interest as they provide insight into
network-level interactions independent of specific behavioural tasks. Understanding
how specific neuromodulators affect these interactions may provide a foundation for
future clinical applications. Therefore, as a next step, we plan to compare neuronal
oscillations during resting-state measurements between the biperiden and placebo
sessions (in preparation).

Next to these follow-up studies, future research could also address the limitations
of our studies. We conducted the pharmacological study during the COVID-19
pandemic. A recent study found impaired reward learning in volatile environments
caused by heightened expectations of environmental volatility in a dataset collected
during the pandemic (Guitart-Masip et al., 2023). They linked the impaired
performance to increased state anxiety. It is possible that these circumstances may
also have an impact on our study, e.g. by leading to generally worse performance
in the tasks. Even though we excluded participants with symptoms of depression,
as assessed by Beck’s Depression Inventory (Beck et al., 1996), and measured
trait anxiety (Spielberger, 1983), we did not account for state anxiety. A further
limitation is that participants were recruited in university settings and, thus, were
mainly young and highly educated. Moreover, our pharmacological study included
males only. Especially in pharmacological studies, females are still underrepresented.
Although, a recent behavioural study using biperiden included both females and
males and found no gender-specific drug effects on cost-benefit decision making
(Erfanian Abdoust et al., 2024), future studies should include a broader range of
participants to be more representative.

4.3 Conclusion

In this dissertation, we investigated the dynamics of reinforcement learning and
decision making, and the role of ACh in these processes. Across two studies, we
demonstrated that participants’ choice strategies adapt to external environmental
conditions and that ACh plays a crucial role in modulating behaviour, particularly
in volatile environments. The right balance of flexibility is essential for successful
performance in everyday tasks. Maladaptive adjustments to the environment are
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associated with neuropsychiatric disorders; for example, patients with depression,
anxiety, or obsessive-compulsive disorder (OCD) exhibit a maladaptive increase in
learning rate under uncertainty (Aylward et al., 2019; Huang et al., 2017; Pulcu
and Browning, 2019; Scholl and Rushworth, 2017). In order to understand these
pathological conditions, it is crucial to, first, understand the response strategies
in different environments, and, second, to understand how neuromodulators and
neurotransmitters affect neuronal dynamics and ultimately behaviour. This disser-
tation contributes to the broader understanding of flexible decision making and the
role of ACh in reinforcement learning, laying a foundation for potential therapeutic
approaches to diseases associated with altered ACh levels, such as Alzheimer’s
disease.

In both studies, computational models were key to understanding the mecha-
nisms underlying observed behaviours. These models uncovered hidden variables
that conventional analyses may have missed. In Study I, Bayesian hierarchical
models revealed that blocking muscarinic M1 receptors impairs learning in volatile
environments, rather than valuation, leading to noisier estimates of the environment.
In Study II, model comparisons showed that improved instrumental performance
following the removal of reinforcement was not due to latent task knowledge, but
rather to a more cautious response mode. These findings underscore the importance
of computational modelling in avoiding misinterpretation of behavioural effects and
in providing insights beyond what behavioural measures alone can reveal.

In conclusion, this thesis advances our understanding of decision strategies
and reinforcement learning processes, particularly the role of muscarinic ACh in
these functions. It also highlights the value of computational methods in gaining
deeper insights into behavioural dynamics, offering a more nuanced approach than
conventional analyses.
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Abstract 

The neuromodulator acetylcholine has been suggested to govern learning under 

uncertainty. Here, we investigated the role of muscarinic receptors in reward-guided 

learning and decision making under different degrees of uncertainty. We administered 

the muscarinic M1 antagonist biperiden (4 mg) to healthy male participants (n = 43) in 

a within-subjects, placebo-controlled design. Participants performed two tasks that 

both involved choices between options characterized by two attributes, reward 

probability and magnitude. In the gambling task, both attributes were explicitly 

provided, whereas in the learning task, reward probabilities had to be inferred from 

past experience. In addition, uncertainty was manipulated within the learning task by 

inclusion of a stable phase with fixed reward contingencies, and a volatile phase with 

frequent contingency reversals. We show that biperiden did not affect decision making 

in the gambling task, where no learning was required. However, in the learning task, 

biperiden reduced the sensitivity to the learnt reward probabilities. Notably, this was 

primarily driven by choices under higher uncertainty in the volatile phase. Using 

reinforcement learning models, we reveal that the change in behaviour was caused by 

noisier estimates of probabilities resulting from maladaptively increased learning rates 

under biperiden. Together, these findings suggest that muscarinic acetylcholine 

transmission is involved in controlling learning in highly uncertain contexts, when the 

demand for carefully calibrated adjustments is highest. 
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Introduction 
Decision making usually involves some degree of uncertainty. Often, information 

relevant for a choice is not known and needs to be inferred from experience. 

Alternatively, or in addition to this, the information to be learnt, i.e., choice-outcome 

contingencies, may be probabilistic and even change over time. When option attributes 

are not explicitly presented and have to be learnt from trial and error, choice behaviour 

has been formally described by relatively simple reinforcement learning algorithms 

(Daw et al., 2011; Lee et al., 2012; Sutton and Barto, 2014; Kurtenbach et al., 2022). 

Core to these algorithms is the updating of value estimates using the prediction error, 

i.e., the discrepancy between obtained and expected outcomes. The prediction error 

is scaled by a learning rate parameter that determines the degree to which the error is 

used to update value estimates. In real life, the link between choices and outcomes is 

often fraught with uncertainty, which requires agents to estimate this uncertainty for 

adaptive decision making (Behrens et al., 2007; Lee et al., 2012). It has been 

demonstrated that participants adjust learning rates to the statistics of the environment 

(Jocham et al., 2009; Soltani and Izquierdo, 2019; Iglesias et al., 2021). In particular, 

learning rates have been found to increase in volatile environments when 

contingencies change frequently (Behrens et al., 2007; Browning et al., 2015). 

Instead of modifying the learning rate, another possibility to adjust choice 

behaviour to the environment is to change the strategy for value construction. In 

reward-guided tasks, options are often characterized by two attributes, a reward 

magnitude and a reward probability, which are used to construct the value of each 

option. These attributes can be integrated either additively or multiplicatively. Additive 

integration of these attributes offers more flexibility, which may be beneficial in volatile 

environments, as it allows for direct comparison between attributes and differential 

weighting of reward information (Stewart, 2011). Conversely, multiplicative integration 

by computing the expected value is statistically optimal. This however relies on 

relatively precise knowledge, or estimates, of decision attributes, which is more likely 

in stable environments. Unlike the additive strategy, it does not confer the opportunity 

to down-weight an attribute when it is very uncertainty-laden. Uncertainty-dependent 

shifts towards a more additive strategy have recently been described in both humans 

and monkeys (Farashahi et al., 2019). 

Acetylcholine is a neurotransmitter that has been suggested to play an important 

role in learning under uncertainty. A long tradition of research, in particular using 
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pharmacological and lesion approaches, has firmly established a role for basal 

forebrain cholinergic neurons in learning and attention (reviewed in e.g. Everitt and 

Robbins, 1997; Hasselmo and Sarter, 2011). Beyond this, theoretical work proposes 

that acetylcholine governs decision making in environments with known uncertainty 

(Yu and Dayan, 2005; Avery et al., 2012). In addition to this presumed role in 

uncertainty-dependent learning, acetylcholine has been reported to modulate neural 

circuit dynamics supporting reward-guided choice, irrespective of learning: Activation 

of cholinergic receptors, especially the muscarinic M1 subtype, enhances the function 

of excitatory NMDA receptors and activates GABAergic inhibitory circuits (Bessie 

Aramakis et al., 1997; Marino et al., 1998; Kuchibhotla et al., 2017; Obermayer et al., 

2017; Zwart et al., 2018). These two neurotransmitter systems are the key components 

in recurrent cortical circuit models of decision making, where competition between 

options is governed by slow excitation at NDMA receptors and GABAergic feedback 

inhibition (Wang, 2002; Wong and Wang, 2006). This suggests that acetylcholine may 

affect decision-making computations, beyond its role in learning. Nevertheless, there 

is a limited understanding of how acetylcholine influences human decision-making 

processes in the absence of learning and under different kinds of uncertainty within the 

same individuals. 

The current study aimed to investigate the role of muscarinic acetylcholine 

receptors in both decision-making computations and in learning, using paradigms 

probing reward-guided decision making under risk and under varying degrees of 

uncertainty. For this purpose, participants completed two reward-guided choice tasks, 

once under placebo and once under the muscarinic M1 acetylcholine receptor 

antagonist biperiden (4 mg). In the first task, participants had to select between two 

options with explicitly provided attributes, involving risk (gambling task). In the second 

task, one attribute had to be estimated from experience, requiring participants to learn 

throughout the task (learning task). Furthermore, the learning task consisted of a stable 

and a volatile phase, involving varying degrees of uncertainty. We hypothesized that 

cholinergic M1 antagonism would impair decision making, leading to impaired choice 

performance in all tasks. Additionally, we expected biperiden to impair learning in both 

the stable and the volatile phases of the learning task. Notably, we found that biperiden 

had no effect on choice behaviour in the gambling task. Instead, it decreased the 

reliance on estimates of optimally learnt reward probability in the learning task. 
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Reinforcement learning models revealed that biperiden maladaptively increased the 

learning rate in the volatile phase of the learning task. 

 

Results 
We administered the muscarinic M1 antagonist biperiden (4 mg) to healthy male 

participants (n = 43) in a within-subjects, placebo-controlled design (Fig. 1A). 35 

participants guessed correctly on which testing day they had received biperiden with a 

certainty of 77.5 ± 3.9 (mean ± SEM) on a scale of 1 to 100. Participants performed 

two reward-guided choice tasks with the goal of maximizing their reward. In the 

gambling task, participants selected between pairs of independent gambles each 

associated with a reward probability and reward magnitude (Fig. 1B). Both attributes 

were explicitly presented to participants: The reward magnitude was provided by the 

height of rectangular bars and the reward probability was presented numerically 

underneath each bar. Whether or not the reward was paid out depended on the explicit 

reward probability, therefore, the gambling task involved risk only. In the learning task, 

the reward probability had to be learnt from experience. While reward magnitudes were 

again explicitly expressed by the height of the rectangular bars, reward probabilities 

were now indicated by two colours, one of which represented a reward probability of 

0.7, and the other of 0.3 (Fig. 1B). In the stable phase, the mapping of reward 

probabilities to the two colours was fixed, whereas in the volatile phase, the 

contingencies between reward probability and colour reversed several times over the 

course of the experiment, (Fig. 1C). As a result, the learning task involved different 

degrees of uncertainty in the stable and volatile phase, respectively. 

 

Biperiden modulates sensitivity to learnt values 
To quantify how task manipulations and cholinergic intervention affected choices in 

both tasks, we used logistic mixed-effects models (see supplementary Fig. S1 for raw 

behaviour). For these analyses, probability and magnitude were mean-centred and 

multiplied to calculate the expected values (EVs), which serve as measure for the 

multiplicative attribute integration, above and beyond the main effects of reward 

probability and magnitude. For the learning task, probabilities were estimated using a  
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Figure 1. Schematic of study procedure and experimental tasks. A Study procedure. At 
the beginning of the testing day, blood pressure, heart rate, and mood were measured using 
the Bond and Lader Visual Analogue Scales. Approximately 30 minutes later, participants 
received either the drug or a placebo pill. 25 minutes after this, blood pressure, heart rate, and 
mood were acquired again. Additionally, a trail-making test was conducted. 45 minutes (45.7 
min ± 1.6 min, mean ± SEM) after drug, a 5 minutes eyes-open resting state MEG scan was 
acquired. The gambling task began 55 minutes (55.9 min ± 1.7 min) and the learning task 
approximately 90 minutes (91.3 min ± 3.6 min) after drug intake. After completion of both tasks, 
approximately 120 minutes after drug intake, a final measurement of blood pressure, heart 
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rate, and mood was collected. B Example trial of the gambling and the learning task. In the 
gambling task, reward magnitudes were indicated by the height of the bar and reward 
probabilities by the numeric percentage below each bar. The outcome of each option was 
presented as fill colour in green or red to indicate win or no win, respectively. In the learning 
task, reward probabilities were indicated by the colour of the bars and needed to be learnt 
during the task. Additionally, outcome was presented as smiley when the winning option was 
chosen and as frowny otherwise. C Example time course of reward contingencies during the 
learning task. Reward contingencies either remained stable for 200 trials or switched every 20 
to 40 trials (volatile phase). Dashed black lines represent true underlying probabilities, solid 
blue lines represent probability estimates derived from a statistically optimal Bayesian learner 
(Behrens et al., 2007). 

Bayesian optimal learner (Behrens et al., 2007), because participants could not know 

the true reward probabilities at the outset of the task. In line with previous work 

(Jocham et al., 2012, 2014; Farashahi et al., 2019; Dias Maile et al., 2024), all task 

parameters had a significant main effect on choice in the gambling task (probability: β 

= 2.90, SEM = 0.03, z(42303) = 95.78, p < .001; magnitude: β = 1.58, SEM = 0.02, 

z(42303) = 73.66, p < .001; EV: β = 0.50, SEM = 0.02, z(42303) = 30.05, p < .001, Fig. 

2A). In the learning task, choice behaviour was significantly driven by probability and 

magnitude, while participants did not use the EV (probability: β = 1.27, SEM = 0.02, 

z(34175) = 80.28, p < .001; magnitude: β = 0.75, SEM = 0.01, z(34175) = 51.45, p < 

.001, EV: β = -0.04, SEM = 0.02, z(34175) = -2.30, p = .021; Fig. 2A, see 

supplementary tables S1 and S2 for all results). Surprisingly, the EV effect was even 

negative, although very small. 

Contrary to our expectation, biperiden diminished the effect of probability on 

choice only in the learning task, while leaving choices in the gambling task unaffected. 

Under biperiden, participants relied less on probability (β = -0.05, SEM = 0.02, z(34175) 

= -3.07, p = .002). This drug effect was dependent on phase (drug x probability x phase: 

β = 0.04, SEM = 0.02, z(34175) = 2.29, p = .022). Post-hoc tests indicated that there 

was no significant effect of drug on probability weighting in the stable phase, whereas 

in the volatile phase, reliance on learnt reward probability was significantly reduced 

under biperiden (β = -0.08, SEM = 0.03, z(17102) = -3.36, p < .001; Fig. 2B). 

Control analyses revealed that, even though biperiden significantly reduced 

heart rate and subjective reports of alertness, calmness, and contentedness on the 

Bond and Lader Visual Analogue Scale (BL VAS; Bond and Lader, 1974, see 

supplementary tables S3-S8, Fig. S2-S4), the biperiden-induced reduction in sensitivity  
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to reward probability in the volatile phase was independent of these effects (see 

supplementary table S9). Similarly, the effect was independent of the order of stable 

versus volatile phases (which varied between participants), independent of session 

days, and independent of the order of drug (see supplementary table S9). 

In sum, logistic mixed-effect models revealed that cholinergic modulation 

occurred only in the volatile phase of the learning task. We observed that, under 

biperiden, participants made less use of estimated reward probability in the volatile 

phase. However, note that this probability estimate is derived from a Bayesian optimal 

learner and thus reflects what participants could ideally know. It is not given however 

that participants tracked probabilities in such a statistically optimal way. Thus, rather 

Figure 2. Results from logistic mixed-effects models. A Estimates of task (probability P, 
magnitude M, and expected value EV) and drug effects for the gambling task (left) and the 
learning task (right). All regressors are z-scored. The interaction between drug B and 
probability is illustrated for both tasks, the interaction between drug, probability and phase ph 
is shown for the learning task. B Interaction between reward probability and drug. Probability 
for a right-side choice as a function of differences in reward probability (right versus left option) 
for the gambling task, and for the stable (middle) and the volatile phase (right) of the learning 
task. Post-hoc tests following up a significant interaction indicate that in the volatile phase only, 
sensitivity to reward probabilities was significantly reduced under biperiden (pink) compared 
to placebo (grey). Solid lines represent mean, shaded areas SEM across participants. 
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than reflecting a diminished use of probability information under biperiden, our result 

could also indicate a failure to optimally track probabilities. These two mechanisms are 

not mutually exclusive, they might jointly contribute to our behavioural findings. To 

adjudicate between these possible mechanisms, we used Bayesian hierarchical 

modelling. Specifically, we asked (i) whether participants adjusted strategies across 

tasks, irrespective of drug and (ii) whether any such adjustments were modulated by 

biperiden. 

 

Choice strategies depend on whether learning is involved 
Behaviour under risk and uncertainty can be adapted in different ways. One approach 

is to adjust information integration between tasks; under higher volatility it is assumed 

that additive rather than multiplicative integration of option attributes is more 

favourable, because reliable attributes can be weighted more strongly (Farashahi et 

al., 2019). In situations where one or more attributes have to be learnt from experience, 

another approach is to increase the learning rate when contingencies change 

frequently (Behrens et al., 2007). To capture both possible approaches, we set up 

Bayesian hierarchical models. To foreshadow the findings, using these models, we 

found adaptations in attribute integration between tasks (gambling vs. learning task), 

but no adaption within the learning task (stable vs. volatile). 

In the models of both the gambling and the learning task, value can be 

constructed either in an additive or multiplicative fashion, or using a combination of 

both, which we call a hybrid strategy. In the additive strategy, values are constructed 

by simply adding probabilities and magnitudes for one option, after scaling both 

attributes by a parameter wP which indicates the degree to which participants rely more 

on probabilities relative to magnitudes, or vice versa. In the multiplicative strategy, 

values result from direct multiplication of probabilities and magnitudes, which 

corresponds to the economically optimal expected value. Finally, the hybrid strategy 

features a weighted combination of the additive and the multiplicative strategy, in which 

the relative dominance of the latter over the former is indicated by the weight wmult (see 

equation 1 for details). Note that the purely additive and multiplicative models are 

nested within this hybrid model - they are special cases with values of wmult of either 0 

or 1, respectively. For the gambling task, we fitted a hybrid model, comprising both 

additive and multiplicative integration of option attributes, and softmax action selection. 

For the learning task, we used a similar model and added Q-learning with a delta 
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update rule with learning rates lr and lu, for rewarded and unrewarded choices, to 

capture how participants tracked probabilities. Because our logistic mixed-effects 

models (see above) indicated that, in the learning task, multiplicative integration did 

not play a role in guiding participants' choices (resulting in convergence issues in the 

hybrid models), we allowed only additive value construction here (see methods for 

details). Stable and volatile phases were fitted separately, because the ultimate aim 

was to detail the phase-specific biperiden effects observed in the logistic mixed-effects 

models. 

In line with the results from logistic mixed-effects modelling, in the gambling 

task, where both option attributes were explicitly presented, participants used both 

additive and multiplicative integration. Within the hybrid model, the parameter wmult was 

larger than 0 but below 1, which indicates a mixture of both strategies (wmult: HDImdn = 

0.38, HDI.95 = [0.25, 0.52], Fig. 3A). Reward probabilities were weighted more strongly 

than magnitudes (wP: HDImdn = 0.81, HDI.95 = [0.75, 0.87], Fig. 3B). Similarly, in the 

learning task, participants also focussed slightly more on (inferred) reward probabilities 

than on magnitude information (stable: wP: HDImdn = 0.59, HDI.95 = [0.50, 0.66]; volatile: 

wP: HDImdn = 0.59, HDI.95 = [0.51, 0.67], Fig. 3B), but relative probability weighting was 

much lower compared to the gambling task. There was no credible difference in relative 

attribute weighting between stable and volatile phase (Fig. 3B). 

In the learning task, we observed that learning rates did not differ credibly 

between the stable and volatile phase, which was unexpected given earlier reports on 

learning rate adjustments (Behrens et al., 2007; Browning et al., 2015; Blain and 

Rutledge, 2020). In both phases, the learning rate for rewarded choices was higher 

than for unrewarded choices (stable: lr: HDImdn = 0.60, HDI.95 = [0.52, 0.68]; lu = 0.25, 

HDI.95 = [0.21, 0.30], Fig. 3C, volatile: lr: HDImdn = 0.58, HDI.95 = [0.52, 0.64]; lu: HDImdn 

= 0.26, HDI.95 = [0.22, 0.31], Fig. 3D). 

Furthermore, as can be expected from the more uncertainty-laden value 

estimates in the learning task, choice stochasticity was increased compared to the 

gambling task. The softmax inverse temperature z was lower in the learning task 

compared to the gambling task, irrespective of stable and volatile phases (gambling 

task: z: HDImdn = 14.70, HDI.95 = [12.92, 16.53]; learning task, stable: HDImdn = 5.58, 

HDI.95 = [4.80, 6.47], learning task, volatile: z: HDImdn = 5.60, HDI.95 = [4.83, 6.40], Fig.  
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Figure 3. Parameter fits of the Bayesian hierarchical model. A-E Posterior densities for the 
gambling task (orange) and for the learning task (stable: dark blue, volatile: light blue), 
irrespective of drug effects. Shaded areas represent the 95 %-HDI of the posterior predictive 
distribution, points are single-subject means. A Strategy used for value construction wmult. A 
purely multiplicative integration corresponds to wmult of 1, whereas wmult of 0 reflects a purely 
additive integration of option attributes. For the learning task, wmult was fixed at 0 (additive 
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strategy). B Weighting of reward probability relative to magnitude wP, where decisions based 
either entirely on probabilities or on magnitudes are reflected by values for wP of 1 or 0, 
respectively. In the gambling task, participants weighted reward probabilities more strongly 
than in the learning task. C, D Learning rates lr for rewarded and lu for unrewarded choices 
in the learning task. E Softmax inverse temperature z. The higher the inverse temperature, the 
more deterministic the choice behaviour. Choice behaviour in the gambling task was more 
deterministic compared to the learning task. F Mean squared prediction error (PE) in the stable 
and volatile phase of the learning task. Points reflect individual participants’ fit. In the volatile 
phase, the mean squared PE is significantly higher, indicating a higher degree of overall 
surprise. 

3E). Thus, participants were more deterministic in the gambling task than in the 

learning task, indicating that they were more sensitive to the estimated value of the 

options. 

Although the fitted model parameters did not differ between the stable and 

volatile phase, we observed that, overall, participants experienced a higher degree of 

outcome-related surprise in the volatile phase, evidenced by a significantly higher 

mean squared prediction error (MSPE) in the volatile compared to the stable phase 

(D(MSPEvol – MSPEstab) = 2.48×10-2 ± 0.05×10-2, mean ± SEM, t42 = 8.22, p < .001, 

Cohen’s d = 1.25, Fig. 3F).  

In sum, when both option attributes were explicitly provided, participants used a 

hybrid attribute integration, consisting of mostly additive but also multiplicative 

integration. When learning was involved, participants showed no difference in decision 

strategies for stable versus volatile phases. 

 

Biperiden increases learning rate in highly uncertain environments 
Logistic mixed-effects models revealed that biperiden changed the influence of the 

implicit reward probability on choice behaviour in the volatile phase of the learning task. 

This effect could emerge from two different causes which can be identified by 

biperiden-induced shifts of the model parameters introduced above: Biperiden may 

have diminished the impact of the learnt (uncertainty-laden) attribute on choice, or 

alternatively, participants' probability estimate is less accurate in the first place. The 

former possibility should be reflected in the relative attribute weighting, whereas the 

latter would indicate an effect on learning mechanisms (rather than on choice) and 

should be reflected in changes in the learning rate. To test for cholinergic effects on 

these model parameters, we extended the Bayesian hierarchical models with a 

biperiden-specific shift in each fitted model parameter. 
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Figure 4. Biperiden-induced shifts of model parameters in the volatile phase of the 
learning task, derived from the Bayesian hierarchical model. Density of posterior 
predictive distributions of the biperiden-specific shift in A, B learning rate in rewarded slr and 
unrewarded trials slu, C attribute weighting swP, and D inverse temperature sz. Positive shifts 
represent an increase under biperiden relative to placebo. The learning rate for rewarded 
choices is credibly increased under biperiden. Shaded areas represent the 95 %-HDI of the 
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posterior predictive distribution, points are single-subject means. E Mean squared error (MSE) 
of the deviation of participants’ estimated reward probabilities from Bayes optimal estimated 
probabilities in the placebo session (grey) and biperiden session (pink). Points reflect individual 
participants’ fit. Under biperiden, the MSE is significantly higher, reflecting impaired estimation 
of the learnt attribute. 

In line with the results from logistic mixed-effects models, there were neither 

significant biperiden-specific shifts in the gambling task nor in the stable phase of the 

learning task (see supplementary Fig. S5, S6, and tables S10, S11). In the volatile 

phase, however, there was a credible biperiden-induced increase of the learning rate 

for rewarded choices slr (slr: HDImdn = 0.09, HDI.95 = [0.01, 0.16], Fig. 4A), but not for 

other parameters, such as the learning rate for unrewarded choices slu, attribute 

weighting swP, or inverse temperature sz (see table 1, Fig. 4B-D). As increased learning 

rates are generally considered to be more optimal in volatile environments (Behrens 

et al., 2007; Browning et al., 2015), we explored to what extent the estimated 

probabilities using participants' fitted learning rates diverged from an optimal learner's 

estimate. To this end, we computed, for each participant, the mean squared errors 

(MSE) of these two (trial-wise) probability estimates and compared them between the 

placebo and biperiden sessions. Under biperiden, the MSE was significantly increased 

compared to placebo (D(MSEBIP – MSEPLA) = 9.25×10-3 ± 0.21×10-3, t42 = 6.61, p = 0.009, 

Cohen’s d = 1.01, Fig. 4E), indicating that the increase learning rate was indeed 

maladaptive. The learning rate for rewarded choices was already rather high under 

placebo. Thus, a further increase in learning rates, as observed under biperiden is 

suboptimal, as it caused noisier value estimates of implicit information. 

Taken together, these results indicate that the diminished impact of probability 

on choice observed under biperiden does not result from participants using this 

information less to guide their choices. Instead, acetylcholine appears to be involved 

in appropriately setting the learning rate, particularly under conditions of high 

uncertainty. 
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Table 1. Group-level parameter estimates of the Bayesian hierarchical model for the 
volatile phase of the learning task. Median (Mdn), standard deviation (SD), and lower and 
upper bounds of the 95 %-HDI interval are presented. The model included parameter 
estimates for the learning rate of rewarded choices lr, the learning rate of unrewarded choices 
lu, the attribute weighting wP, the inverse temperature z, and the corresponding biperiden-
specific shifts on these parameters slr, slu, swP, and sz. 

Parameter Mdn SD 2.5 % 97.5 % 

lr 0.58 0.03 0.52 0.64 

lu 0.26 0.02 0.22 0.31 

wP 0.59 0.04 0.51 0.67 

z 5.60 0.40 4.83 6.40 

slr 0.09 0.04 0.01 0.16 

slu 0.02 0.01 0.00 0.04 

swP -0.03 0.02 -0.08 0.01 

sz -0.37 0.23 -0.81 0.10 

 

Discussion 
Decision making requires flexibility, especially, when options or outcomes are 

uncertain. One approach to adapt behaviour involves increasing the learning rate in 

volatile environments (Behrens et al., 2007). Alternatively, the choice strategy can be 

adapted to weight more reliable information more strongly, e.g., using additive rather 

than multiplicative integration of option attributes under higher volatility (Farashahi et 

al., 2019). Cholinergic transmission is crucial for learning and uncertainty processing 

(Everitt and Robbins, 1997; Hasselmo and Sarter, 2011), but its role in the adjustment 

of decision strategies to environmental risk and uncertainty remains elusive. Therefore, 

in the present study, we investigated the effects of biperiden, a cholinergic M1 receptor 

antagonist, on decision making in healthy (male) participants in three scenarios: (i) 

under risk, when all attributes were explicitly presented, (ii) under uncertainty, when 

one attribute needed to be learnt, and, on top of learning, (iii) under volatility. 

Under the influence of biperiden, participants exhibited no change in choice 

behaviour under risk in general, but instead only when option attributes needed to be 

learnt. More specifically, in the learning task, biperiden reduced sensitivity to the learnt 

reward probabilities selectively in the volatile phase. However, using computational 

models we could demonstrate that this reduced sensitivity to Bayes-optimal reward 

probabilities was caused by impairments in the accurate estimation of implicit reward 
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probabilities rather than by reduced reliance on the learnt reward probability. Biperiden 

increased the learning rate for rewarded choices in the volatile phase, but in a 

maladaptive manner, leading to higher deviations of estimated from optimally tracked 

probabilities in the biperiden relative to placebo sessions. Together, this reveals that 

blocking cholinergic M1 receptor activity results in a maladaptive overshoot of the 

learning rate in volatile environments. 

 

Role of acetylcholine in volatile environments 
Acetylcholine is widely distributed in the brain and known to influence behaviour, such 

as learning, memory and attention (Ananth et al., 2023). Historically, it has been 

assumed that acetylcholine release amplifies bottom-up thalamocortical processing at 

the expense of intracortical processing (Hasselmo, 2006). However, more recent 

studies suggest a more complex role of acetylcholine. In contrast to the traditional view, 

cholinergic activity seems to be particularly crucial for top-down processes (Ballinger 

et al., 2016). Physiological studies have demonstrated that acetylcholine release in the 

medial prefrontal cortex enhanced pyramidal cell activity in layer 2/3 of the visual 

cortex, boosting top-down influences on sensory cortices (Eggermann and Feldmeyer, 

2009). In addition, in line with a role in top-down control and response adaptation, 

cholinergic antagonism abolished post-error adjustments in both behaviour and 

sensory cortical areas (Danielmeier et al., 2015). We observed a maladaptive increase 

in learning rate in the volatile phase of the learning task caused by blocking cholinergic 

M1 receptors. This demonstrates that, under biperiden, participants put more weight 

on recent relative to more distant experience, pointing towards reduced integration 

over time, or even enhanced distractibility by current sensory (reward) information. 

This might support the notion that acetylcholine plays a critical role in coordinating the 

ratio of bottom-up to top-down processes, thereby balancing the signal-to-noise ratio 

in uncertain environments. Yet, it remains elusive whether top-down processes are 

down-regulated or bottom-up processes are up-regulated following cholinergic M1 

antagonism. In any case, the effect reflects noisier, suboptimal estimation of the 

uncertain reward probability under cholinergic M1 antagonism. These findings do not 

stand in isolation, as for example Bucci et al. (1998) suggested that acetylcholine is 

involved in increased attentional processing, as presumably required during high 

volatility. This is in line with studies reporting that, in a set-shifting task, cholinergic 

manipulation impairs serial reversal learning of mice while leaving reversal-free 
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learning intact (Robbins and Roberts, 2007; Cools and Arnsten, 2022). Similarly, 

Marshall et al. (2016) also observed impaired adaptations to environmental changes 

in a probabilistic serial response time task under biperiden. They argued this occurred 

due to increased distractibility. In line with this, we found that the increase in learning 

rate was specific for the volatile phase which is also characterized by a higher degree 

of overall outcome surprise. This supports the hypothesis that participants tended to 

interpret probabilistic outcomes more readily as indicators for context changes, leading 

to noisier estimations of volatility (Yu and Dayan, 2005; Marshall et al., 2016). It is also 

noteworthy that basal forebrain cholinergic neurons have been shown to display 

asymmetrical responses to outcome surprise, where responses were more 

pronounced to appetitive as opposed to aversive outcomes (Hangya et al., 2015). This 

might provide some explanation as to why we observed effects of cholinergic blockade 

selectively on the learning rate for rewarded, but not unrewarded outcomes.  

Furthermore, acetylcholine acting at M1 receptors enhances NMDA and GABA 

receptor function (Bessie Aramakis et al., 1997; Obermayer et al., 2017; Zwart et al., 

2018). The balance between recurrent NMDA-mediated excitation and GABAergic 

feedback inhibition is a fundamental determinant in cortical circuit models of decision 

making (Wang, 2002; Wong and Wang, 2006). In line with this, administration of an 

NMDA-receptor agonist has been reported to lead to more optimal integration of 

reward information in healthy adults while it did not affect learning (Scholl et al., 2014). 

Moreover, human participants with higher concentrations of GABA relative to 

glutamate in the ventromedial prefrontal cortex were found to have a higher decision 

accuracy in a reward-guided choice task (Jocham et al., 2012; Kaiser et al., 2021). 

Therefore, we hypothesized that cholinergic M1 antagonism would lead to less optimal 

decisions in all tasks, irrespective of learning and volatility manipulations. The absence 

of any effect on choice behaviour in the gambling task and the stable phase of the 

learning task under biperiden is therefore unexpected. We can only speculate about 

the reason that biperiden had effects only in the volatile environment of the learning 

task and did not lead to suboptimal choices in the stable environment of the learning 

task nor in the gambling task. One possible reason is that our tasks were more difficult 

than the paradigms used in earlier studies. In support of this, it is noteworthy that, 

overall, our participants used less multiplicative attribute integration compared to other 

studies (Scholl et al., 2014; Farashahi et al., 2019), and reached remarkably high 

learning rates in the learning task, indicative of suboptimal behaviour. Rather than 
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observing any general attentional deficits, such as more stochastic choices across all 

tasks, as would be reflected in the softmax inverse temperature, our effects were very 

specific to the only task phase that included volatility. 

At first glance, this volatility-specific biperiden effect appears surprising given 

that acetylcholine is proposed to play a critical role in environments with known 

unreliability, termed expected uncertainty, whereas uncertainty arising from 

unpredictable switches of context, such as reversal of cue-outcome-contingencies, 

termed unexpected uncertainty, has been ascribed to the neuromodulator 

noradrenaline (Yu and Dayan, 2005; Avery et al., 2012). By this definition, the gambling 

task and the stable phase of the learning task should be associated with expected 

uncertainty, whereas the volatile phase of the learning task involves elements of both 

expected and unexpected uncertainty. However, one notable prediction of this 

framework is that, under reduced cholinergic transmission, the degree of randomness 

in the environment is underestimated, which in turn should amplify the effect of 

unexpected outcomes - as these are then more likely to be taken as an indication that 

stimulus-outcome-contingencies have switched. Indeed, the authors refer to the 

acetylcholine-depleted state of their model as "hyper-distractible" (Yu and Dayan, 

2005). In line with both this theoretical framework and our experimental results, 

Marshall et al. (Marshall et al., 2016) also observed more rapid updating of higher-

order volatility estimates under biperiden. In this context, it is also worth noting that the 

mean squared prediction error was higher in the volatile compared to the stable 

environment. This might explain why biperiden specifically affected the volatile phase 

of the learning task, where the increased level of surprise in the environment under 

reduced cholinergic transmission is more readily interpreted as a change in outcome 

contingencies. 

The observed effects of cholinergic antagonism are complemented by 

pharmacological studies increasing catecholaminergic transmission that found similar 

effects. In particular, the catecholamine reuptake inhibitor methylphenidate has been 

shown to increase learning rates in a volatile environment of a learning task similar to 

ours (Cook et al., 2019), suggestive of opposing actions of muscarinic acetylcholine 

and catecholaminergic transmission. For the dopaminergic system, there is evidence 

for a reciprocal antagonistic interaction between cholinergic M1 and dopaminergic D2 

receptors at the cellular level in the striatum (Di Chiara et al., 1994), which is paralleled 

by opposing effects at the functional level (Brocks, 1999; Stanhope et al., 2001). In line 
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with this, we recently observed that biperiden had effects on effort-based decision 

making that were opposite to those of the D2 receptor antagonist haloperidol (Erfanian 

Abdoust et al., 2024). 

 
Behavioural adaptions across tasks 
While numerous studies have reported an increased learning rate during volatile 

relative to stable phases in humans (Behrens et al., 2007; Browning et al., 2015; Blain 

and Rutledge, 2020), we did not observe this pattern. Cook et al. (2019), who, as in 

our present results, found no evidence for learning rate adjustments either, 

hypothesized that this could be because their task consisted of two sources of 

information for learning. However, our task consisted of only one source of information 

for learning, and one explicit task parameter, aligning more closely with studies that 

have identified such adjustments (Behrens et al., 2007; Browning et al., 2015). 

Nevertheless, in studies that observed learning rate adjustments, volatility has typically 

been more discernible. In particular, the differences in reward probabilities between 

options were larger, which both makes probability estimates less uncertain, and, more 

importantly, contingency switches easier to detect (Behrens et al., 2007; Browning et 

al., 2015). In some studies, volatility levels were even explicitly signalled (Massi et al., 

2018; Blain and Rutledge, 2020). Our data suggests that the effect is less robust when 

the difficulty of learning is high, such as when the value difference between options or 

the average reward rate in the environment are low. 

In addition to adjusting the learning rate, there is also evidence that the valuation 

strategy, i.e., the way in which values are computed, may vary with different levels of 

uncertainty (Farashahi et al., 2019). Although most commonly used models, such as 

prospect theory, assume that reward probability and magnitude are combined 

multiplicatively to estimate the options' values (Bernoulli, 1954; Kahneman and 

Tversky, 1979), it has been suggested that agents also employ an additive strategy to 

combine information (Stewart, 2011). Findings in humans and non-human primates 

support this hypothesis, revealing that they rely on multiplicative integration more 

strongly when all choice information is provided, but switch towards mainly additive 

integration when reward probabilities need to be learnt (Farashahi et al., 2019). We 

found an adjustment of value construction between the gambling and the learning task. 

We observed that, in the gambling task, participants used a mixture of both 

multiplicative and additive value construction, the latter with a strong weighting of 
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reward probability. In contrast, in the learning task, there was no evidence for 

multiplicative integration. Indeed, we even observed a small, yet significant, negative 

effect of expected value difference. The reasons for this counterintuitive effect remain 

unknown, it should be noted though that it was only present when analysing data from 

the entire learning task, not when separately analysing the stable and volatile phases. 

Furthermore, in the learning task, participants' choices relied less on (estimated) 

reward probabilities relative to magnitudes compared to the gambling task. Thus, 

participants appear to adjust their decision strategy to be more flexible under 

conditions of higher uncertainty. Further to these between-task adaptations, we were 

surprised not to observe significant differences in valuation strategy between volatility 

levels within the learning task. Again, this could result from the difficulty of our learning 

task; Farashahi et al. (2019) used a higher reward probability and explicitly signalled 

volatility levels in their task. 

 

Conclusion 
Although blocking M1 muscarinic acetylcholine receptors had no effect on decision 

making under risk, it increased learning rates under uncertainty, which lead to 

suboptimal value estimates. This effect did not occur for learning in general, instead it 

was specific for highly volatile environments, characterized by frequent changes of 

stimulus-outcome contingencies. Altogether, this suggests that modulation of the 

signal-to-noise ratio in cortical circuits by M1 cholinergic receptors is particularly crucial 

in highly uncertain environments.  
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Materials and methods 

Ethics statement 
All procedures were approved by the Ethics Committee of the Medical Faculty of the 

Heinrich Heine University Düsseldorf (reference 2018-211_1). The study was 

performed in compliance with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki, 1975). 

 

Participants  
Participants were recruited from the local student community of the Heinrich Heine 

University, Germany. Participants signed a written informed consent prior to 

participation and received monetary compensation for their participation. Each 

experiment was run with healthy males who reported normal or corrected-to-normal 

vision. Due to the pharmacological challenge, recruited participants were extensively 

screened for medical exclusion criteria (see supplementary list S1). Additionally, 

participants were only included if they succeeded at both tasks in the screening 

session. For that reason, we set a performance criterion of expected value choices > 

60 % for the gambling task and > 55 % for the learning task. In total, 43 participants 

aged between 18 and 35 years (mean age = 23.7 ± 3.1 years) took part in the study. 

 

General design 
We pharmacologically manipulated the levels of acetylcholine in a double-blind, 

randomized, placebo-controlled, within-subjects design. Each participant completed 

four experimental sessions: one screening session, two experimental sessions, which 

took place in the MEG, consisting of drug or placebo intake, and one MRI session. The 

screening session took place prior to the pharmacological experimental sessions. After 

providing informed consent, we tested whether medical inclusion criteria were fulfilled 

and measured heart rate, blood pressure and the Beck’s Depression Inventory score 

(Beck et al., 1996). In addition, participants conducted the State-Trait Anxiety Inventory 

(STAI; Spielberger, 1983) and a modified version of the Edinburgh Handedness 

Inventory (Oldfield, 1971). Finally, participants performed the two behavioural tasks to 

assure that they exceeded pre-defined performance thresholds (choice of high 

expected value option > 60 % and > 55 % for the gambling and learning task, 

respectively). The two experimental sessions took place at University Hospital 

Düsseldorf. After over-night fasting and a standardized breakfast, participants received 
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a single oral dose of biperiden on one day and a placebo on the other day 45 minutes 

prior to the MEG recording (Fig. 1A). Blood pressure, heart rate and mood (Bond and 

Lader, 1974; using the Bond and Lader Visual Analogue Scales) were measured after 

breakfast, before entering the MEG chamber, and at the end of the session. Before 

entering the MEG chamber, participants additionally conducted a modified trail-making 

test (Rodewald et al., 2012; part A). During MEG measurement, participants were 

seated on a chair inside a dimly lit, magnetically shielded MEG chamber. Each MEG 

measurement started with a 5 minutes eyes-open resting state task followed by the 

two behavioural paradigms with 500 trials of the gambling task (~30 min) and 400 trials 

of the learning task (~20 min). However, MEG results are not further addressed here. 

After the last experimental session, participants were asked to guess on which testing 

day they received biperiden and to indicate on a scale from 1 to 100 how certain they 

were. In a last and fourth session we recorded an anatomical scan in the MRI. 

 

Pharmacological intervention 
We administered the muscarinic M1 acetylcholine receptor antagonist biperiden (4 

mg). Typically, peak plasma concentrations are reached between 1 and 1.5 hours after 

oral administration of biperiden and the elimination half-time is about 18 to 24 hours 

(Grimaldi et al., 1986; Brocks, 1999). In view of this pharmacokinetic profile, MEG 

measurements started 45 minutes after drug administration and lasted approximately 

1.5 hours. In order to allow plasma concentration levels to return to baseline, the two 

experimental sessions were scheduled at least 6 days apart. 

 

Behavioural tasks 
The experiment was designed and presented using the PsychoPy software package 

(version 3.1.5; Peirce, 2007). Inside the MEG chamber, stimuli were presented on a 

projector (Panasonic PT-D7700E, screen dimensions: 43 cm x 31 cm) with a resolution 

of 1280 x 1024 pixels and a refresh rate of 60 Hz (viewing distance: 80 cm). For the 

behavioural tasks, participants responded bi-manually with their left and right index 

fingers on a custom-made button box with only two buttons available. 

 

Gambling task 

We implemented a gambling task in which participants had to decide between two 

options on each of 500 trials in order to maximize their reward. Each trial started with 
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the presentation of a fixation dot (radius = 0.4 dva), for a pseudo-randomly selected 

duration of 1000 ms to 1400 ms to keep the participants’ attention to the centre of the 

screen. Afterwards, the two options (width = 0.6 dva, height = 1.36 dva) appeared on 

the left and right side (2.2 dva distance) of the screen until a response was made. The 

options were visualized as vertical bars, with the fill level indicating the reward 

magnitude and a numeric percentage below each bar indicating the reward probability 

(Fig. 1). The cumulative reward already earned was visualized by a progress bar at the 

bottom of the screen. Participants had 3000 ms to make a choice by pressing the left 

or right button, followed by the presentation of a frame around the chosen option for 

400 ms to 600 ms. Next, the outcome of both options was presented for 500 ms by 

changing the colour of the bars to either green or red indicating whether the option was 

rewarded or not, respectively. The outcomes of both options were independent of each 

other. When no response was given in time, a warning was presented for 500 ms, 

urging participants to respond within the time frame. The task consisted of ten blocks 

of 50 trials. Participants were encouraged to rest between blocks as long as they 

needed, but needed to wait for at least 10 s before the next block could be started. 

 

Learning task 

In the learning task, participants again had to choose between two options to maximize 

their reward. However, in contrast to the gambling task, not all relevant information of 

the options was explicitly presented, requiring participants to learn an implicit choice 

attribute. Here, the reward probability was implicit, similar to Farashahi et al. (2019). 

The trial structure of the gambling and learning tasks was similar: After the presentation 

of the fixation dot for 1000 ms to 1400 ms (radius = 0.4 dva), both options were 

presented as vertical bars on the left and right side of the screen until response 

(distance = 2.2 dva, width = 0.6 dva, height = 1.36 dva). The reward magnitude was 

explicitly presented as fill level of both bars; however, the reward probability was linked 

to the colour of the bars, requiring participants to learn which of the two colours was 

associated with a high reward probability. The high-probability colour had a reward 

probability of 0.7, while the other had a reward probability of 0.3. Participants had 3000 

ms to make a choice by pressing the left or right button which was followed by a frame 

around the chosen option for 400 ms to 600 ms. Whether the chosen option was 

rewarded or not was indicated by a smiley or frowny, which was presented for 500 ms 

in the centre of the screen (radius = 0.67 dva). Note that the outcomes of the two 
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options were dependent in the learning task. A rewarded choice led to an increase in 

the progress bar. When no response was given in time, a warning was presented for 

500 ms. Volatility levels were manipulated during the task by changing reward 

contingencies over the course of the experiment, involving a stable and volatile phase, 

each lasting for 200 trials. While reward probabilities were fixed in the stable phase, 

probabilities reversed six times in the volatile phase: Successive reversals were 

separated by either 20 (three times) or 40 trials (four times). The order of the change 

points as well as the order of stable and volatile phase was counterbalanced across 

participants. Every 50 trials, participants had the possibility to rest as long as they 

needed. 

For each participant, the task structure remained the same for all sessions. The 

colour pairs indicating the reward probabilities were different for each session. 

 

Statistical analyses 
We tested how the option attributes, and, for the learning task, the phase (stable vs. 

volatile) explained participants’ choice (left vs. right choices). Specifically, we 

investigated how biperiden changed the influence of the attributes on choices. We 

used logistic mixed-level models using the lme4 package in R (R version 4.0.2 (2020-

06-22); Bates et al., 2015). To account for within-subjects variability, we set the 

subjects’ ID as random effect for both tasks. The fixed effects, which account for the 

between-subjects variability, were dependent on the task: For the gambling task, we 

used drug (biperiden vs. placebo), the demeaned difference of expected value (EV), 

reward magnitudes, and reward probabilities of both options, and the previous choice 

side as between-subjects factor. Note, that the demeaned difference of EV 

recapitulates the multiplicative integration of reward magnitude and probability only. 

For the learning task, we additionally used the phase (stable vs. volatile) as between-

subjects factor. However, since participants did not know the objective probabilities in 

the learning task, we used estimated probabilities from a Bayesian optimal learner, 

based on Behrens et al. (2007). We applied sum-to-zero contrasts and z-scored all 

continuous predictors to achieve standardized estimates. The Bayesian optimal 

learner was set up in MATLAB (MATLAB Version R2016b, Massachusetts: The 

Mathworks Inc.) and run individually for each participant and session. In a model 

comparison approach, we tested whether the testing day improved the model fit. 

Additionally, we incorporated control measures (BL-VAS, TMT, heart rate and blood 
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pressure) as fixed effects only when we observed significant drug effects on these 

measures. All p-values were based on asymptotic Wald tests. 

 
Computational modelling 
Computational modelling was performed in R (R version 4.0.2 (2020-06-22)). 

 

Gambling task 

To determine how participants used option attributes to shape a decision, we used a 

hybrid model, incorporating both additive and multiplicative value integration (Scholl et 

al., 2014; Farashahi et al., 2019). The subjective value SV for each option i at trial t 

was computed as follows: 

𝑆𝑉!,# = 𝜔$%&#𝑀!,#𝑃!,# + (1 − 𝜔$%&#) ,-1 − 𝜔'.𝑀!,# + 𝜔'𝑃!,#/       [1] 

Where Mi,t is the reward magnitude, Pi,t is the reward probability, wmult is the degree of 

multiplicative relative to additive integration and wP is the degree of probability relative 

to magnitude weighting within the additive component. wmult would be either 1 or 0 if 

only the multiplicative or additive integration was used, respectively. Similarly, if 

participants would only use the information of probability or magnitude, wP would be 

either 1 or 0, respectively. Magnitudes were scaled to values between 0.1 and 1.0 to 

allow for the comparison with reward probabilities. Based on the subjective values, the 

probability for choosing the left option pl,t at trial t was generated using a softmax choice 

rule: 

𝑝&,# =
(

()*!"#$%,'!#$(,')*
               [2] 

Where SVl,t and SVr,t are the subjective value of the left-side and right-side option, 

respectively, and z is the inverse temperature parameter capturing the stochasticity of 

action selection. We used hierarchical Bayesian estimation of group-level and subject-

level parameters to incorporate the within-subjects design, similar to Swart et al. 

(2017). For individual-level parameters x group-level parameters X were used as priors 

x ~ N(X,s) and a half-Cauchy with a scale of 2 served as hyperprior for s (Gelman, 

2006). Weakly informative distributions were used as hyperpriors for X: Xmult,P ~ N(0,2), 

Xz ~ N(2,3). While wmult and wP were constrained between 0 and 1 using an inverse 

logit transform, z was positively bounded using an exponential transform. Initial 
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parameter estimates were determined using an independent training dataset. The 

model allowed for a biperiden-induced shift sx in all fitted parameters x: 

𝑥 = 𝑥 + 𝛿+,-𝑠.                [3] 

With δBIP being 0 or 1 for the placebo and biperiden session, respectively. The 

parameter shifts were unconstrained and N(0,3) served as hyperprior. In total, six free 

parameters were fitted. We performed Markov chain Monte Carlo (MCMC) sampling 

in RStan (RStan version 2.21.8, Stan Development Team, 2016). We used four Markov 

chains for sampling with 2500 iterations, including 500 warm-up iterations, per chain. 

Models successfully converged for a maximal potential scale reduction factor 𝑅 < 1.05 

and after verifying convergence and diagnostic criteria, as provided by RStan. To verify 

if the model captures participants’ behaviour, we conducted posterior predictive checks 

by simulating 500 datasets based on the posterior distributions of subject-level 

parameters. We then compared and correlated simulated and real data (see 

supplementary Fig. S7-S9 and tables S12-S14). 

 

Learning task 

Computational modelling was similar for both tasks. Since our logistic mixed-effects 

models revealed that participants did not use the multiplicative strategy in the learning 

task, fitting of the hybrid model led to convergence issues. Thus, we fixed wmult at 0 for 

the computation of the subjective value, making the value integration additive only:  

𝑆𝑉!,# = -1 − 𝜔'.𝑀!,# + 𝜔'𝑆𝑃!,#             [4] 

With the subjective probability SPi,t. The learning of reward probabilities was modelled 

using Q-learning. The probability estimate of the chosen colour SPc,t was updated on 

each trial t via two separate learning rates for rewarded and unrewarded choices, lr 

and lu, respectively:  

𝑆𝑃/,#)( = 𝑆𝑃/,# + 𝜆0,%-𝑟# − 𝑆𝑃/,#.            [5] 

Where rt reflects the outcome of the current trial and was either 1 or 0, depending on 

whether the choice was rewarded or not. The probability estimate of the unchosen 

colour SPu,t was dependent on the chosen colour: 

𝑆𝑃%,#)( = 1 − 𝑆𝑃/,#               [6] 
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Again, parameters were estimated using Bayesian hierarchical modelling with a shift 

on each parameter in the biperiden session. Thus, eight free parameters were fitted. 

Learning rates were constrained between 0 and 1 via an inverse logit transform and 

N(0,2) was used as hyperprior. All other priors, hyperpriors and transformations were 

defined in the same way as in the gambling task.  
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1. Raw behaviour 
 
Plotting the raw choice data as a function of the separate choice attributes illustrates 

that choice behaviour in both tasks was driven by the highest expected value (EV), 

which is the product of reward magnitude and probability, (figure S1, left side), by 

reward probabilities (figure S1, middle) and by reward magnitudes (figure S1, right 

side). Interestingly, in the gambling task, choices were only guided by magnitude 

information if the magnitude difference was large, for small magnitude differences 

participants opted for the other option (figure S1). 
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Figure S1. Participants’ choice behaviour. Influence of task parameters on choice in the 
gambling task (A) and in both phases of the learning task (stable: B, volatile: C). Left: 
Probability of right-side choice as a function of difference in expected value (EV) between the 
two options. Note, that the shown EV is not mean-centred and, thus, is highly correlated with 
reward magnitude and probability. Middle: Probability of right-side choice as a function of 
difference in reward magnitude between the two options. Right: Probability of right-side choice 
as a function of difference in reward probability between the two options. For the learning task, 
reward probabilities were estimated using the Bayesian optimal learner. Choice behaviour in 
the biperiden session (pink) and the placebo session (grey) is shown. Solid lines represent 
mean, shaded areas SEM across participants. 
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2. Logistic mixed-effects models 
 
Full results of the logistic mixed-effects models for the gambling task (table S1) and 

the learning task (table S2). 
 
Table S1: Results from logistic mixed-effects models of the gambling task.  

 β SEM z(42303) p 

Intercept 0.03 0.03 0.86 .392 

Drug 0.03 0.02 1.37 .172 

Probability 2.90 0.03 95.78 < .001 

Magnitude 1.58 0.02 73.66 < .001 

EV 0.50 0.02 30.05 < .001 

Alternation bias -0.07 0.03 -2.64 .008 

Drug x probability 0.00 0.03 0.12 .902 

Drug x magnitude -0.03 0.02 -1.55 .121 

Drug x EV -0.02 0.02 -1.02 .310 

Drug x bias -0.02 0.03 -0.82 .414 

 

Table S2: Results from logistic mixed-effects models of the learning task.  

 β SEM z(42303) p 

Intercept -0.04 0.02 -1.78 .076 

Drug -0.01 0.01 -0.78 .434 

Probability 1.27 0.02 80.28 < .001 

Magnitude 0.75 0.01 51.45 < .001 

EV -0.04 0.02 -2.31 .021 

Repetition bias 0.10 0.01 7.86 < .001 

Phase -0.01 0.01 -0.63 .529 

Drug x probability -0.05 0.02 -3.09 .002 

Drug x magnitude 0.01 0.01 0.60 .546 

Drug x EV 0.02 0.02 1.39 .164 

Drug x bias 0.01 0.01 0.49 .625 

Phase x probability -0.08 0.02 -4.97 < .001 

Phase x magnitude 0.01 0.01 0.92 .359 

Phase x EV 0.00 0.02 0.31 .757 
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Phase x bias -0.01 0.01 -0.67 .502 

Drug x phase x probability 0.04 0.02 2.29 .022 

Drug x phase x magnitude 0.01 0.01 0.38 .706 

Drug x phase x EV 0.01 0.02 0.52 .604 

Drug x phase x bias 0.02 0.01 1.60 .110 
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3. Control measurements 
 
During each session, we acquired the participants’ mood, using the Bond and Lader 
Visual Analogue Scales (BL VAS), and blood pressure as control measurements at 
three time points: before drug intake (T1), before the MEG measurement (T2) and after 
the MEG measurement (T3). Before the MEG measurement, we additionally measured 
participants’ executive functions using a trail making test. To control for biperiden 
effects on these measures, we applied linear mixed-effects models. 
 
 
3.1. Bond and Lader Visual Analogue Scales 

 
Under biperiden, alertness, calmness, and contentedness were significantly decreased 
at T3 (see table S3-S5, figure S2). 
 
Table S3: Linear mixed-effects results for the alertness score. 

 β SEM df t p 
Intercept 7.90 0.23 63.31 34.22 < .001 
Drug 0.13 0.16 209.01 0.85 .396 
T2 -0.02 0.16 209.01 -0.10 .917 
T3 -0.08 0.16 209.01 -0.54 .592 
Drug x T2 -0.06 0.22 209.01 -0.29 .776 
Drug x T3 -1.23 0.22 209.03 -5.55 < .001 
 
Table S4: Linear mixed-effects results for the calmness score. 

 β SEM df t p 
Intercept 7.75 0.28 97.87 27.77 < .001 
Drug -0.06 0.26 208.82 -0.24 .815 
T2 -0.16 0.26 208.82 -0.63 .531 
T3 -0.18 0.26 208.82 -0.71 .479 
Drug x T2 0.07 0.37 208.75 0.19 .848 
Drug x T3 -0.84 0.37 208.75 -2.29 .023 
 
Table S5: Linear mixed-effects results for the contentedness score. 

 β SEM df t p 
Intercept 8.53 0.20 67.45 43.31 < .001 
Drug -0.03 0.14 209.07 -0.18 .858 
T2 -0.16 0.14 209.07 -1.17 .244 
T3 -0.14 0.14 209.07 -1.00 .316 
Drug x T2 -0.02 0.20 209.04 -0.11 .914 
Drug x T3 -0.55 0.20 209.04 -2.79 .006 
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Figure S2: Results of the BL VAS. Scores for A alertness, B calmness, and C contentedness 
were acquired before drug intake (T1), before MEG measurement (T2), and after MEG 
measurement (T3) in both the placebo session (grey) and biperiden session (pink). All three 
measures were reduced at T3 under biperiden. Solid lines represent mean, shaded areas SEM 
across participants. 
 
 
3.2. Blood pressure 

 
There were no significant effects of biperiden on systolic and diastolic blood pressure. 
Instead, the heart rate was decreased at T3 under biperiden (see table S6-S8, figure 
S3). 
 
Table S6: Linear mixed-effects results for the diastolic blood pressure. 

 β SEM df t p 
Intercept 124.48 1.69 92.78 73.76 < .001 
Drug -2.69 1.53 208.04 -1.76 .080 
T2 -3.64 1.52 208.21 -2.39 .018 
T3 -0.62 1.52 208.21 -0.41 .684 
Drug x T2 3.41 2.15 208.04 1.59 .114 
Drug x T3 -3.57 2.15 208.04 -1.66 .099 
 
Table S7: Linear mixed-effects results for the systolic blood pressure. 

 β SEM df t p 
Intercept 78.29 1.31 87.14 59.82 < .001 
Drug -1.62 1.14 208.07 -1.42 .158 
T2 -5.31 1.14 208.22 -4.67 < .001 
T3 -2.47 1.14 208.22 -2.17 .031 
Drug x T2 1.27 1.61 208.07 0.79 .430 
Drug x T3 -2.45 1.61 208.07 -1.53 .129 
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Table S8: Linear mixed-effects results for the heart rate. 

 β SEM df t p 
Intercept 72.49 1.60 69.72 45.25 < .001 
Drug 1.83 1.19 208.05 1.55 .123 
T2 -2.13 1.18 208.15 -1.81 .072 
T3 -11.83 1.18 208.15 -10.03 < .001 
Drug x T2 -3.07 1.67 208.05 -1.84 .067 
Drug x T3 -8.97 1.67 208.05 -5.39 < .001 
 

 
Figure S3: Results of the measurement of the blood pressure. Before drug intake (T1), 
before MEG measurement (T2), and after MEG measurement (T3) we measured A systolic 
blood pressure (BP), B diastolic BP, and C heart rate in both placebo session (grey) and 
biperiden session (pink). Biperiden significantly reduced heart rate at T3. Solid lines represent 
mean, shaded areas SEM across participants. 
 
 
3.3. Trail making test 

 
Participants’ timing during the trail making test was not affected by biperiden (β = -0.03, 
SEM = 0.84, t214 = 0.037, p = .971; figure S4). 
 
 

 
Figure S4: Results of the trail making test before MEG measurement (T2). Trail making 
time was acquired in the placebo session (grey) and in the biperiden session (pink). 
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4. Logistic mixed-effects models: independence of biperiden effect 
 
After biperiden administration, we observed a significantly decreased sensitivity to 
estimated reward probabilities in the learning task, specifically in the volatile phase. To 
control if this biperiden effect is independent of other measures, we conducted logistic 
mixed-effects models for the volatile phase with several control measures (heart rate, 
alertness, calmness, and contentedness quantified by the BL VAS, order of stable and 
volatile phase, session days and order of medication). 
 
Table S9: Logistic mixed-effects results of the interaction effect of medication and 
estimated probability difference in the volatile phase considering control measures. 

Control measure β SEM N obs z p 
Heart rate -0.12 0.03 16702 -4.42 < .001 
Alertness -0.06 0.03 16902 -2.27 .023 
Calmness -0.08 0.03 16902 -2.95 .003 
Contentedness -0.07 0.03 16902 -2.76 .006 
Phase order -0.08 0.03 17102 -3.33 < .001 
Session days -0.08 0.03 17102 -3.35 < .001 
Order of medication -0.08 0.03 17102 -3.32 < .001 
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5. Bayesian hierarchical models: biperiden-specific results 
 
 
5.1. Gambling task 

 
For the gambling task, we found no credible effect of biperiden-specific shifts in the 
Bayesian hierarchical models (figure S5, table S10). 
 
 

 
Figure S5. Biperiden-induced shifts in the gambling task from the Bayesian hierarchical 
model. Density of posterior predictive distributions of the biperiden-specific shift in A attribute 
integration swmult, B attribute weighting swP, and C inverse temperature sz. Positive shifts 
represent an increase under biperiden relative to placebo. Shaded areas represent the 95 %-
HDI of the posterior predictive distribution and points single-subject means.  
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Table S10. Group-level parameter estimates of the gambling task. Median (Mdn), standard 
deviation (SD), and lower and upper bounds of the 95 %-HDI interval are given. The model 
consisted of estimates for the value construction wmult, the attribute weighting wP, the inverse 
temperature z, and the corresponding biperiden-specific shifts on these parameters swmult, swP, 
and sz. 

Parameter Mdn SD 2.5 % 97.5 % 
wmult 0.38 0.07 0.25 0.52 

wP 0.81 0.03 0.75 0.87 

z 14.70 0.92 12.92 16.53 

swmult -0.02 0.03 -0.08 0.04 

swP 0.02 0.02 -0.02 0.06 

sz -0.51 0.42 -1.33 0.33 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

111



5.2. Learning task: stable phase 
 
For the stable phase of the learning task, we found no credible effect of biperiden-
specific shifts in the Bayesian hierarchical models (figure S6, table S11). 
 
 

 
Figure S6. Biperiden-induced shifts in the stable phase of the learning task from the 
Bayesian hierarchical model. Density of posterior predictive distributions of the biperiden-
specific shift in A, B learning rate in rewarded slr and unrewarded trials slu, C attribute 
weighting swP, and D inverse temperature sz. Positive shifts represent an increase under 
biperiden relative to placebo. Shaded areas represent the 95 %-HDI of the posterior predictive 
distribution and points single-subject means. 
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Table S11. Group-level parameter estimates of the stable phase of the learning task. 
Median (Mdn), standard deviation (SD), and lower and upper bounds of the 95%-HDI interval 
are given. The model consisted of estimates for the learning rate of rewarded choices lr, the 
learning rate of unrewarded choices lu, the attribute weighting wP, the inverse temperature z, 
and the corresponding biperiden-specific shifts on these parameters slr, slu, swP, and sz. 

Parameter Mdn SD 2.5 % 97.5 % 
lr 0.60 0.04 0.52 0.68 

lu 0.25 0.02 0.21 0.30 

wP 0.59 0.04 0.50 0.66 

z 5.58 0.43 4.80 6.47 

slr -0.01 0.03 -0.07 0.04 

slu 0.00 0.01 -0.02 0.03 

swP 0.00 0.03 -0.05 0.05 

sz -0.45 0.24 -0.92 0.03 
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6. Exclusion criteria 
 
In our study, healthy male participants conducted behavioural tasks after an oral dose 
of a placebo and the cholinergic antagonist biperiden. Concurrently, MEG was 
recorded and after the MEG sessions, an anatomical MRI was acquired. To ensure 
both MEG/MRI compatibility and a good health status of the participants, we had a 
preceding screening session. Participants with indications found in List S1 were 
excluded from the study. 
 
List S1. Exclusion criteria. 

• Weight < 60 kg or > 90 kg  
• BMI < 18 or > 28  
• Systolic blood pressure > 140 mmHg 
• Diastolic blood pressure > 90 mmHg  
• BDI score > 12  
• Impaired vision (and no contact lenses) 
• Lactose intolerance 
• Regular/recent use of drugs (incl. alcohol, cigarettes) 
• Psychiatric diseases 
• Neurological diseases 
• Hepatic dysfunction 
• Renal dysfunction 
• Diseases of the cardiovascular system 
• Epilepsy  
• Glaucoma  
• Thyrotoxicosis 
• Gastrointestinal diseases 
• Diabetes  
• Metal implants 
• Claustrophobia  
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7. Bayesian hierarchical models: posterior predictive checks 
 
To assess whether the Bayesian hierarchical models could capture participants’ 
behaviour, we conducted posterior predictive checks for the choice task and both 
phases of the learning task. Therefore, we simulated 500 datasets based on subject-
level estimates of the parameters per participant. Then, we correlated the probability 
of high EV choice, high magnitude choice, and high probability choice for simulated 
and raw data. 
 
 
7.1. Gambling task 

 
For the gambling task, the model could capture participants’ behaviour (figure S5A-C). 
Additionally, simulated behaviour and participants’ behaviour were highly significant 
(figure S7D-F, table S12). 
 

 
Figure S7: Posterior predictive checks for the gambling task. Probability of simulated right-
side choice as a function of difference in A EV, B reward magnitude, and C reward probability 
between the two options. Choice behaviour was simulated for the biperiden session (pink) and 
placebo session (grey). Solid lines represent mean, shaded areas SEM across simulations. 
Correlation between participants’ and simulated choices for D high EV option, E high 
magnitude option, and F high probability option. 
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Table S12: Posterior predictive checks for the gambling task. Correlation coefficients of 
participants’ choices and simulated choices for EV, reward magnitude and estimated reward 
probability. 

Task parameter R p 
EV 0.9 < .001 
Magnitude 0.76 < .001 
Probability 0.66 < .001 
 
 
7.2. Learning task: stable phase 

 
The model for the stable phase of the learning task could capture participants’ 
behaviour (figure S8A-C). Additionally, simulated behaviour and participants’ 
behaviour were highly significant (figure S8D-F, table S13). 
 

 
Figure S8: Posterior predictive checks for the stable phase of the learning task. 
Probability of simulated right-side choice as a function of difference in A EV, B reward 
magnitude, and C estimated reward probability between the two options. Choice behaviour 
was simulated for the biperiden session (pink) and placebo session (grey). Solid lines 
represent mean, shaded areas SEM across simulations. Correlation between participants’ and 
simulated choices for D high EV option, E high magnitude option, and F high probability option. 
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Table S13: Posterior predictive checks for the stable phase of the learning task. 
Correlation coefficients of participants’ choices and simulated choices for EV, reward 
magnitude and estimated reward probability. 

Task parameter R p 
EV 0.91 < .001 
Magnitude 0.94 < .001 
Probability 0.83 < .001 
 
 
7.3. Learning task: volatile phase 

 
The model for the stable phase of the learning task could capture participants’ 
behaviour (figure S9A-C). Additionally, simulated behaviour and participants’ 
behaviour were highly significant (figure S9D-F, table S14). 
 

 
Figure S9: Posterior predictive checks for the volatile phase of the learning task. 
Probability of simulated right-side choice as a function of difference in A EV, B reward 
magnitude, and C estimated reward probability between the two options. Choices based on 
estimated reward probabilities were decreased under biperiden (pink) compared to placebo 
(grey). Solid lines represent mean, shaded areas SEM across simulations. Correlation 
between participants’ and simulated choices for D high EV option, E high magnitude option, 
and F high probability option. 
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Table S14: Posterior predictive checks for the volatile phase of the learning task. 
Correlation coefficients of participants’ choices and simulated choices for EV, reward 
magnitude and estimated reward probability. 

Task parameter R p 
EV 0.87 < .001 
Magnitude 0.93 < .001 
Probability 0.80 < .001 
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RESEARCH ARTICLE

Removal of reinforcement improves

instrumental performance in humans by

decreasing a general action bias rather than

unmasking learnt associations

Hannah KurtenbachID*, Eduard OrtID, Monja Isabel FroböseID, Gerhard Jocham

Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University
Düsseldorf, Germany

* hannah.kurtenbach@hhu.de

Abstract

Performance during instrumental learning is commonly believed to reflect the knowledge
that has been acquired up to that point. However, recent work in rodents found that instru-
mental performance was enhanced during periods when reinforcement was withheld, rela-
tive to periods when reinforcement was provided. This suggests that reinforcement may
mask acquired knowledge and lead to impaired performance. In the present study, we
investigated whether such a beneficial effect of removing reinforcement translates to
humans. Specifically, we tested whether performance during learning was improved during
non-reinforced relative to reinforced task periods using signal detection theory and a compu-
tational modelling approach. To this end, 60 healthy volunteers performed a novel visual go/
no-go learning task with deterministic reinforcement. To probe acquired knowledge in the
absence of reinforcement, we interspersed blocks without feedback. In these non-reinforced
task blocks, we found an increased d’, indicative of enhanced instrumental performance.
However, computational modelling showed that this improvement in performance was not
due to an increased sensitivity of decision making to learnt values, but to a more cautious
mode of responding, as evidenced by a reduction of a general response bias. Together with
an initial tendency to act, this is sufficient to drive differential changes in hit and false alarm
rates that jointly lead to an increased d’. To conclude, the improved instrumental perfor-
mance in the absence of reinforcement observed in studies using asymmetrically reinforced
go/no-go tasks may reflect a change in response bias rather than unmasking latent
knowledge.

Author summary
It appears plausible that we can only learn and improve if we are told what is right and
wrong. But what if feedback overshadows our actual expertise? In many situations, people
learn from immediate feedback on their choices, while the same choices are also used as a
measure of their knowledge. This inevitably confounds learning and the read-out of learnt
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associations. Recently, it was suggested that rodents express their true knowledge of a task
during periods when they are not rewarded or punished during learning. During these
periods, animals displayed improved performance. We found a similar improvement of
performance in the absence of feedback in human volunteers. Using a combination of
computational modelling and a learning task in which humans’ performance was tested
with and without feedback, we found that participants adjusted their response strategy.
When feedback was not available, participants displayed a reduced propensity to act.
Together with an asymmetric availability of information in the learning environment, this
shift to a more cautious response mode was sufficient to yield improved performance. In
contrast to the rodent study, our results do not suggest that feedback masks acquired
knowledge. Instead, it supports a different mode of responding.

Introduction

In everyday life it is crucial to learn whether an action leads to reward or punishment. This
adaptive behaviour has been extensively investigated in animal and human experiments and
formally captured using reinforcement learning models [1–4]. In these models, the expected
value of an action is updated using prediction errors, which reflect the discrepancy between
obtained and expected rewards, in order to optimize future choices. Most learning tasks mea-
sure task performance while feedback is provided, which inevitably confounds learning with
instrumental performance. To decouple learning and instrumental performance, some studies
feature a learning phase and a later probe phase in which knowledge is tested in the absence of
feedback. These studies show that different neural mechanisms underlie learning and expres-
sion of knowledge [5–9]. However, in these studies, acquired knowledge is usually tested after
the learning performances has reached a plateau. In contrast, little is known about what hap-
pens when knowledge is tested without reinforcement during the learning process prior to par-
ticipants reaching asymptotic performance.

During perceptual learning tasks, absence of feedback resulted in impaired [10], or
unchanged [11] performance in humans. These results contrast with a recent rodent study in
the domain of associative learning: Omitting feedback during early learning improved perfor-
mance. Notably, performance deteriorated again when reinforcement was reintroduced, sug-
gesting that reinforcement masked the underlying knowledge acquired by the animals [12].

The present study investigates whether this finding, that has been observed in rodents,
extends to human learning. Specifically, we asked whether healthy volunteers’ performance
benefits similarly from omitting reinforcement during instrumental learning. To this end,
closely following Kuchibhotla and colleagues [12], we adopted a go/no-go task that required
participants to learn, by trial and error, to respond to go stimuli to obtain reward and to with-
hold responding to no-go stimuli to avoid punishment (monetary wins and losses, respec-
tively). Crucially, reinforced trials were interleaved with multiple blocks in which participants
were instructed to continue responding as previously, but no reinforcement was delivered
(probe blocks). Similar to the pattern observed in rodents [12], we found that performance, as
quantified by the sensitivity index d’, was improved in probe blocks, relative to reinforced
blocks. However, computational modelling revealed that this pattern did not result from an
increased sensitivity to acquired values. Instead, the behavioural pattern in the present para-
digm could be completely explained by a mere reduction of an overall propensity to respond.
Together with an initial tendency to act (as reflected in a positive initialization of value esti-
mates), this change in overall response bias is sufficient to cause asymmetric changes to hit
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and false alarm rates that jointly lead to an increased sensitivity index d’. Altogether, these
results support the notion that omission of reinforcement may improve instrumental perfor-
mance, however, rather than unmasking latent associative knowledge, this is due to a change
in the overall propensity to act.

Results

Task

Based on recent findings in rodents [12], we hypothesized that the performance of humans in
an instrumental learning task increases during non-reinforced compared to reinforced peri-
ods. Therefore, we designed a visual go/no-go reinforcement learning task (Fig 1A) consisting
of reinforced trials which were interleaved with five probe blocks of non-reinforced trials. We
used twelve greebles as stimuli [13]. Half of them were randomly assigned as go options, while
the other half was assigned as no-go options. On each trial, one of the twelve stimuli was pre-
sented and participants had to learn, from trial and error, to perform a button press for go sti-
muli and to withhold responding for no-go stimuli. We used a rather high number of stimuli
to be learnt by participants in order to evoke slow, incremental learning (Fig 1B). Participants
obtained reward (monetary gain) for responding to go stimuli and punishment (monetary
loss) for responding to no-go stimuli. Withholding a response resulted in no feedback (and
neither monetary gain nor loss). This asymmetric reinforcement schedule follows the design
used by Kuchibhotla and colleagues [12] and other work in rodents [14,15]. During probe tri-
als, participants were instructed to continue choosing as they would do during reinforced tri-
als, while reinforcement was temporarily omitted. We performed two experiments: an original
study (N = 30) and a replication in an independent sample (N = 30). The main results were
similar across the two studies; therefore, here we report the results of the pooled sample (see
Section 1 in S1 Appendix for a separate presentation).

Analysis approaches: Signal detection theory and computational modelling

To assess effects of the removal of reinforcement on task performance, we present two
approaches. First, we aimed to replicate the results of Kuchibhotla and colleagues’ work [12]
based on signal detection theory (SDT). To this end, we computed the sensitivity index d’, rep-
resenting the difference in the relative frequencies of hits and false alarms (button presses to go
and no-go stimuli, respectively) [16]. To compute measures from SDT, it is necessary to con-
sider windows of several trials. Importantly, this approach can introduce artefacts in learning
paradigms, due to its insensitivity to the general rising trend in performance. Specifically, dur-
ing learning mean performance on earlier trials is intrinsically lower than mean performance
on later trials, irrespective of any manipulation, such as feedback removal. Consequently, d’
implicitly disadvantages earlier trials compared to later ones, unless performance has reached
stable levels. For this reason, we next present a computational modelling approach, which
averts this issue by providing trial-by-trial estimates. Conclusions are primarily based on this
second approach, presented in the paragraph “Computational modelling reveals a shift in
action bias”.

Sensitivity index d’ is increased when reinforcement is omitted

The SDT measure d’ indicated a gradual increase in participants’ performance (Fig 1B), con-
firming successful acquisition of the correct associations over time. This increase is mostly
driven by no-go trials: While the initial go-response probability for no-go trials is high, partici-
pants learn to withhold responding over the course of the experiment (Fig 1C). To statistically

PLOS COMPUTATIONAL BIOLOGY Instrumental performance in the absence of reinforcement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010201 December 8, 2022 3 / 17

123



assess the change from reinforced to probe blocks, we compared performance of the 36 trials
in a probe block with performance in the 36 trials before each probe block (pre-probe trials).
Across the entire experiment, d’ was indeed higher for probe compared to pre-probe trials (Δd’
= 0.47 ± 0.53, mean ± SEM, t59 = 6.94, p < .001, Cohen’s d = 0.90, Fig 2A). This increase in d’
was driven by a more pronounced reduction of false alarm rate (FAR) than hit rate (HR;
ΔFAR–ΔHR = -0.07 ± 0.08, t59 = -6.42, p < .001, Cohen’s d = -0.83). However, both measures
decreased significantly in probe compared to pre-probe trials (ΔHR = -0.08 ± 0.06, t59 = -9.67,
p < .001, Cohen’s d = -1.25; ΔFAR = -0.15 ± 0.08, t59 = -15.12, p < .001, Cohen’s d = -1.95, Fig

Fig 1. Task structure and participants’ behaviour. (A) Schematic of the go/no-go learning task. On each trial, a
fixation cross was presented for 1000–1600 ms. Then, participants were presented with one stimulus for 500 ms and
had 1000 ms to decide whether to perform a go (button press) or no-go (no button press) response. Blocks of
reinforced trials alternated with probe blocks (illustrated in the timeline). On reinforced trials (cyan), a go response
resulted in reward or punishment (monetary win or loss, indicated by a smiley or frowny, respectively), depending on
whether the stimulus was a go or no-go stimulus. No-go responses resulted in no feedback, and in neither reward nor
punishment. A progress bar at the bottom of the screen displayed cumulative reward (rewards increased the bar,
punishments shrank it). On probe block trials (purple), participants were required to respond as during reinforced
blocks, but no feedback following responses was provided. (B) Sensitivity index d’, separately for reinforced (cyan) and
probe trials (purple). (C) Time course of go-response probabilities, P(Go), for go trials (green) and no-go trials (red).
Darker shades of green and red indicate probe trials. Solid lines in B and C represent mean, shaded areas SEM across
participants.

https://doi.org/10.1371/journal.pcbi.1010201.g001
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2C and 2D), while in [12] only a decrease in false alarm rate during probe trials was reported.
Once reinforcement was reinstated, d’ significantly decreased again (Δd’ = 0.15 ± 0.47, t59 =
2.40, p = .020, Cohen’s d = 0.31, see Fig G in S1 Appendix). Note that this effect was only evi-
dent in Experiment 2 when analysing the two experiments separately (see Section 1 in S1
Appendix). Again, the decrease in d’ was driven by a significant increase in both hit and false
alarm rate (ΔHR = -0.09 ± 0.07, t59 = -7.92, p < .001, Cohen’s d = -1.02; ΔFAR = -0.10 ± 0.10,
t59 = -9.80, p < .001, Cohen’s d = -1.27, see Fig G in S1 Appendix).

In rodents, the removal of feedback improved performance only during early learning [12].
Therefore, we hypothesized that the increase in d’ is strongest for early probe blocks. Contrary
to this, there was no effect of time on the change in d’ over probe blocks (F(4, 59) = 0.74, p =
.568, η2 = 0.35, Fig 2A), despite time effects on hit and false alarm rates (hit rate: F(4, 59) =
24.18, p < .001, η2 = 0.01; false alarm rate: F(4, 59) = 32.32, p < .001, η2 = 0.29, Fig 2C and 2D).
Post hoc tests confirmed a significant increase in d’ from pre-probe to probe trials for all five
probe blocks (all t59 � 2.74, p � .008, see Table I in S1 Appendix). Thus, the increase in d’ was
not specific to early learning. The comparison of probe trials with post-probe trials yielded
similar results (see Table J in S1 Appendix).

In addition to the sensitivity index d’, we also quantified the change in response bias of par-
ticipants between probe and reinforced trials using the bias criterion c from SDT [16,17]. The
bias criterion decreased from pre-probe to probe (Δc = -0.47 ± 0.25, t59 = -14.56, p < .001,
Cohen’s d = -1.88, Fig 2B) and increased again in post-probe trials (Δc = -0.42 ± 0.32, t59 =

Fig 2. Behavioural results, expressed as difference between probe trials and preceding reinforced trials. Results are
shown both for the mean across all five probe blocks (left) and separately for each probe block. Points reflect individual
participants’ behaviour. (A) The sensitivity index d’ increased in probe compared to reinforced trials. (B) The negative
bias criterion c decreased on probe blocks, indicating a reduced propensity to act on probe trials. (C), (D) Both hit rate
(HR, C) and false alarm rate (FAR, D) decreased on probe blocks, but the decrease in FAR was more pronounced than
the decrease in HR, which lead to the increase in d’ represented in (A).

https://doi.org/10.1371/journal.pcbi.1010201.g002
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-10.22, p < .001, Cohen’s d = -1.32, see Fig G in S1 Appendix), thus, go-responding was
reduced during probe trials, but increased when reinforcement was re-introduced again. Fur-
thermore, there was an effect of time on the change of bias criterion from pre-probe to probe
trials (F(4, 59) = 9.21, p < .001, η2 = 0.14, Fig 2B), indicating that the reduced go-responding
in probe trials diminished over the experiment.

In summary, both hit and false alarm rates decreased during probe compared to reinforced
blocks, leading to a reduced response bias c. However, the decrease in false alarm rates was
more pronounced compared to the decrease in hit rates, which further resulted in an increased
sensitivity index d’.

Computational modelling reveals a shift in action bias

Due to the confound with SDT-based parameters in learning experiments described above,
those results cannot be used here to distinguish between a real effect of reinforcement removal
and an artefactually introduced effect. To overcome this issue, we used computational model-
ling. Unlike measures like d’ which require consideration of several trials, reinforcement learn-
ing models provide value estimates for all stimuli for each trial [18–20]. We used variants of Q-
learning with a delta update rule and softmax action selection. Two key parameters are at the
heart of these reinforcement learning models: a learning rate and a softmax choice tempera-
ture. The learning rate determines the extent to which prediction errors are used to update
value estimates, hence, governing the speed of learning. The softmax choice temperature deter-
mines how sensitive choices are to acquired value: At higher temperatures, participants’
choices are increasingly stochastic, and large values are required to select the correct choice
with high probability, while at low softmax temperatures, values slightly greater/lower than
zero are sufficient to reliably select the go/no-go action, respectively. While in multi-alternative
decisions, the temperature governs the balance between exploration and exploitation, in our
paradigm with a single option per trial and deterministic reinforcement, the temperature can
be used as an index of choice sensitivity. Critically, since the temperature is fitted based on
trial-wise value estimates, it is not subject to the issues d’ entails.

To test whether choice sensitivity in probe trials was indeed improved compared to rein-
forced trials or whether improved performance resulted from a non-specific change in action
bias, we set up and compared four different models: a baseline model, a temperature model, a
bias model and a full model. In all four models, learning rates α were set to a fixed value of 0.06
because learning rate and softmax temperature are strongly correlated for deterministic task
structures (see methods for detailed reasoning) [21]. To rule out that the results are specific to
this particular choice of learning rate, we re-ran all analyses across a wide range of learning
rates and obtained an identical pattern of results (see Section 3.1. in S1 Appendix).

The baseline model included four free parameters: one single softmax temperature τ and a
bias term b for both block types, one initial value estimate Q0 for each of the twelve stimuli,
and a decay parameter θ. On reinforced trials in which the go action was selected (and feed-
back received), values were updated using a delta update rule. On probe trials in which the go
action was selected (and no feedback received), no changes were applied to value estimates.
During both reinforced and probe trials without a go action, we assumed that values were sub-
ject to passive forgetting [22,23] via diffusion towards zero governed by the decay parameter θ.
In addition, the softmax choice rule contained a bias term b that indicates participants’ overall
propensity to respond, independent of the option’s current value. The temperature model was
based on the baseline model, but it featured separate temperatures τR and τP, for reinforced
and probe trials, respectively. Similarly, the bias model was based on the baseline model, but
now, instead of the temperature, we allowed the bias parameter b to be different for reinforced
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and probe trials (bR and bP). Finally, the full model incorporated both separate temperature
parameters τR and τP and separate bias parameters bR and bP.

Contrary to our expectation, the temperature model performed the worst (BIC = 566.90 ± 137.25,
median ± SEM, Fig 3A), followed by the full model (BIC = 563.48 ± 132.10), outperformed
even by the baseline model (BIC = 561.56 ± 137.39). The best fitting model was the bias model
(BIC = 557.86 ± 131.99). Closer analysis of the bias model showed that the response bias in rein-
forced trials, bR, was higher compared to the bias in probe blocks, bP (Δb = -0.17 ± 0.12, t59 = -10.92,
p < .001, Cohen’s d = -1.41, Fig 3B). Thus, participants had a reduced propensity to act during
probe blocks.

One might argue that the differences in behaviour between reinforced and probe blocks are
subtle, such that the improvement in model fit conferred by two separate temperatures in the
full model did not survive punishment by the Bayesian information criterion. We therefore
explored the full model and tested whether there were differences in either temperatures, τR
and τP, or bias parameters, bP and bR, or both. Again, we found that the bias parameter bR was

Fig 3. Computational modelling results. (A) Comparison of the Bayesian information criterion (BIC) relative to the
baseline model. Negative BIC differences indicate a decrease in BIC relative to the baseline model and hence better fit.
Conversely, a positive BIC difference indicates worse fit. The bias model provided the best fit. (B) The bias model
contained two separate bias parameters, bR and bP, for reinforced and probe blocks, respectively. The bias is reduced
on probe compared to reinforced trials. (C) Initial estimates Q0 of option values. On average, estimates were initialized
with positive values. (D) Softmax choice probabilities to select an option as a function of its value. The sigmoids for
reinforced and probe trials were generated using the mean fitted parameters. This figure illustrates how a reduction in
response bias together with a positive value initialization resulted in the increase in d’ observed in behaviour. Solid
vertical grey line indicates average Q0. As values of go stimuli were acquired (shifting rightwards from the vertical line),
the difference in action probabilities between probe and reinforced trials became smaller (green arrow). Conversely, as
values of no-go stimuli were acquired (shifting leftwards from the vertical line), the difference became more
pronounced (red arrow), thus leading to a stronger reduction in false alarm rates. (E) Time course of simulated go-
response probabilities. The probability P(Go) for go trials (green) and no-go trials (red) was simulated based on the
bias model. Darker shades of green and red indicate probe trials. Solid lines represent mean, shaded areas SEM across
simulations.

https://doi.org/10.1371/journal.pcbi.1010201.g003
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significantly higher compared to bP (Δb = -0.16 ± 0.13, t59 = -9.61, p < .001, Cohen’s d =
-1.24), whereas temperatures τP and τR did not differ significantly (Δτ = -0.01 ± 0.06, t59 =
-1.65, p = .104, Cohen’s d = -0.21). Thus, even in the full model, there is no evidence for a
change in decision temperature.

To check the sensibility of the fitting procedure, we performed parameter recovery on sim-
ulated data sets generated using the fitted parameters from the best-fitting bias model and
tested whether we could recover the ground-truth parameters based on these simulated data.
Results showed successful recovery of all model parameters, as evidenced by the high correla-
tions between fitted and recovered parameters (see section Parameter recovery and Section 3.2.
in S1 Appendix). Next, we validated the winning model. Due to the confound in the SDT-
based analyses of the behavioural data, any model which includes learning generates a differ-
ence between pre-probe and probe trials, hence, examining qualitative difference between
reinforced and probe data for model validation is not warranted. Thus, we used the simulated
go-response probabilities for go and no-go trials to validate which parameters are necessary to
recapitulate the patterns observed in participants’ behaviour (see Figs J and K in S1 Appendix).
We found that only the winning model that included separate bias parameters for blocks with
and without reinforcement could replicate the observed difference in go-response probabilities
between reinforced and probe trials (see Fig 3E and Fig L in S1 Appendix). Taken together,
parameter recovery and model validation indicate that our model with two different bias
parameters and one fixed softmax temperature provided a plausible account of participants’
behaviour in our experiment.

The increase in the sensitivity index d’ from reinforced to probe blocks, resulted from a dif-
ferential reduction in hit versus false alarm rates. It may appear surprising that a mere change
in response bias is sufficient to drive such differential changes. However, this arises naturally
as a consequence of the sigmoid shape of the softmax choice function, together with a positive
initialization of value estimates. This effect is shown in Fig 3D depicting the softmax choice
functions for the reinforced and probe blocks (based on the fitted values for τ, bP and bR). For
the vast majority (50 of 60) of our participants, we found positive estimates for initial values
(Q0 = 0.37 ± 0.58, t59 = 4.94, p < .001, Cohen’s d = 0.64, Fig 3C), reflecting participants’ ten-
dency to act (i.e., providing a go-response) on the first trials of the experiment. Thus, the initial
value estimate is already shifted from zero (dashed line) to higher values (grey line). The differ-
ence between the two curves describes the reduced go-response probability for probe trials
compared to reinforced trials. This difference is smaller for go stimuli than for no-go stimuli;
During the acquisition of values for go stimuli, both curves quickly converge towards 1 (green
arrow), while the exact opposite happens for no-go stimuli. These likewise start at a relatively
high positive value, but because they are updated in the opposite direction during learning, the
difference between the two curves first increases before decreasing again when converging
towards -1. Thus, a positive value initialization together with a decrease in action bias results
in enhanced instrumental performance during probe blocks, without any change in choice
sensitivity to acquired value.

Discussion

When evaluating learning success, instrumental performance is measured during the learning
process, conflating measures of learning with proficiency in expressing the acquired knowl-
edge. However, it is well known that learning of action-outcome association relies, in part, on
different neural substrates than expression of instrumental performance contingent upon
these associations. Specifically, some neural mechanisms required for learning are not involved
in the expression of learnt behaviour and vice versa [6,7,8,24,25,26,27]. To disentangle these
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two concepts, the phases designed to assess learning versus expression of task performance are
usually separated by a considerable delay in these studies. This implies that behaviour during
the test phase relies on long-term consolidation of memories. Alternatively, to obtain a pure
measure of an agents’ current learning success, one option is to omit reinforcement/feedback
during the learning process, which yielded inconsistent results in previous studies
[10,11,12,28].

We aimed to reconcile the apparent contradictory results by investigating whether remov-
ing reinforcement unmasks latent associative knowledge during instrumental learning.
Healthy humans performed an instrumental go/no-go learning task with reinforcement in
which blocks without reinforcement were interspersed. Replicating previous rodent work [12],
we first found that the sensitivity index d’ was enhanced during blocks in which reinforcement
was omitted. However, these findings based on signal detection theory are confounded with
trial number, as measures like d’ are computed over windows of several trials. This is problem-
atic for dynamic processes like learning, where earlier sets of trials are inherently disadvan-
taged compared to later sets, unless learning has reached a plateau. To avoid this confound, we
therefore used reinforcement learning models to investigate the mechanism driving the appar-
ent change in choice sensitivity during non-reinforced trials. Such models have the advantage
that they provide a point estimate for the stimulus value on each trial. Contrary to our expecta-
tions, better performance in non-reinforced trials did not result from an increased choice sen-
sitivity, as would be reflected in a decreased softmax choice temperature. Instead, our
modelling results suggest that the change in d’ can fully be accounted for by a decrease in a
bias parameter (reflecting participants’ overall propensity to act), together with a positive value
initialization (reflecting participants’ tendency to act on the first trials). First, a model with
only a single softmax temperature but with two separate bias parameters (for reinforced and
non-reinforced blocks, respectively) provided the best fit to participants’ choices. Second, this
model successfully recapitulated the behavioural patterns we observed. Third, even when we
explored a full model (with two separate bias and temperature parameters), we found that,
while bias parameters still differed significantly between non-reinforced and reinforced blocks,
temperatures did not differ. Altogether our results suggest that the omission of feedback led to
an adjustment of response strategy rather than enhancing the expression of latent task
knowledge.

The effects of removing feedback may be dependent on the domain of learning being stud-
ied. In the domain of perceptual learning, one study reported impaired performance without
feedback [10], whereas others reported no performance differences between reinforced and
non-reinforced trials in a similar paradigm [11,28]. In the domain of associative learning, one
recent rodent study suggests a beneficial effect of omitting reinforcement on performance in
an instrumental learning task [12]. We based our learning paradigm on this latter work and
also found enhanced performance during non-reinforced trials (measured using the sensitivity
index d’) in our sample of healthy volunteers. Therefore, despite interpreting the findings dif-
ferently, we conceptually replicated the rodent work in humans.

Due to challenges inherent to translational work, one might argue that differences in task
environments between the rodent tasks used by Kuchibhotla and colleagues’ [12] and our
human task could lead to results relying on different mechanisms. For example, extinction is
well known to occur when animals’ actions are not reinforced (as in the probe trials) [29,30]. To
prevent extinction effects to confound results, only short probe phases were used in the rodent
study [12], making it unlikely that their effects are influenced by extinction. Because rodents did
not know that their knowledge is tested in probe trials, we aimed to adapt instructions accord-
ingly. To avoid that participants try to perform better in probe trials, we instructed them to con-
tinue responding to the task in non-reinforced trials as they did in reinforced trials.
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Finally, these findings hinge on the specific task structure. Our task encouraged an asym-
metric response pattern: Performing an action (i.e. go response) is the only possibility to learn
and explore possible outcomes for specific stimuli in our task, as refraining from responding
yielded no feedback. Therefore, go responses provide a gain in information (information
bonus), making them advantageous relative to no-go responses. This information bonus may
account for the two main effects our computational model revealed: On the one hand, the
information bonus is greatest early in the experiment, because values are not reliable learnt
yet. This is reflected in the positive value initialization in our computational model. On the
other hand, information can only be obtained in reinforced trials, resulting in a more pro-
nounced general bias to withholding responses in non-reinforced trials. The resulting behav-
iour is in line with research about curiosity, suggesting that a lack of information makes
individuals curious and facilitates information seeking behaviour [31]. Different tasks that do
not encourage go responses for optimal performance are unlikely to result in a beneficial effect
of reinforcement removal. Specifically, environments that do not favour any specific response
(e.g., situations where the outcomes of both choice options are always presented) will result in
a neutral value initialization, because participants do not need to perform a go response in
order to gain information. Any change in response bias (if present) would affect hit and false
alarm rates to the same extent, thus resulting in no difference in performance. Following the
same logic in reverse, environments favouring no-go responses should result in a negative
value initialization, thus resulting in the opposite pattern: a reduced performance during non-
reinforced trials.

Likewise, we assume that an adaptive response bias would also manifest in foraging-related
tasks. In previous work, we have shown that the average rate of responding is dependent on
the local average reward rate in the environment, even when rewards were not contingent on
participants’ choices [32]. Furthermore, similar effects may be expected for learning environ-
ments characterized by high levels of volatility, where contingencies between choices and out-
comes change frequently. In such situations, an agent would benefit from a high response
probability on reinforced trials. Conversely, the cost of a false alarm would be greater than the
cost of missing an opportunity in non-reinforced trials, resulting in decreased go-response
probabilities. Thus, at high levels of environmental volatility, the effect of feedback removal on
the response bias might be even more pronounced, as frequent contingency changes further
increase the informative value of go-responses during reinforced periods. Therefore, we sug-
gest that the effects of feedback removal on instrumental performance are highly dependent
on the particular characteristics of the task at hand.

In conclusion, we found that omitting feedback during learning may indeed improve
instrumental performance. However, our results show that this improvement results from a
shift in participants’ overall bias to act, rather than from unmasking of task knowledge.

Materials and methods

Ethics statement

All studies were approved by the Ethics Committee for Noninvasive Research on Humans of
the Heinrich Heine University Düsseldorf (reference OR01-2020-01).

Participants

Participants were recruited from the local student community of the Heinrich Heine Univer-
sity, Germany. Each experiment was run with healthy participants with normal or corrected-
to-normal vision and no history of neurological diseases. Participants signed a written
informed consent prior to participation and received course credit or monetary compensation
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for their participation. Participants were only included if they succeeded at learning during the
task. For that reason, we set a performance criterion of d’ � 1, which participants needed to
exceed across all reinforced trials of the second half of the experiment. We a priori defined two
criteria to constrain the sample size for each experiment: (1) collecting data of at least 30 par-
ticipants fulfilling the performance criterion, and (2) using a Bayesian stopping rule, meaning
that we set out to acquire as many participants as needed to find strong evidence either against
or in favour of an overall change in d’ between reinforced and probe trials (BF01 > 10 or BF10
> 10, respectively). For Experiment 1, 46 participants volunteered to take part in the study and
16 were excluded as their behaviour did not fulfil the predefined performance criterion. In
Experiment 2, 39 participants completed the task, 9 of which did not pass the criterion and
were therefore excluded. For both experiments, we found strong evidence in favour of an over-
all change in d’ between reinforced and probe trials after inclusion of 30 participants, such that
data acquisition in both experiments was stopped after 30 included participants. This resulted
in N = 30 participants (mean age = 21.2 ± 4.0, 22 female and 8 male) for Experiment 1 and
N = 30 participants (mean age = 24.5 ± 5.0, 9 female and 21 male) for Experiment 2. As both
experiments yielded qualitatively similar results, we pooled the data from both studies for fur-
ther analyses. Results are reported separately for the two studies in the supplementary materi-
als (see Section 1 in S1 Appendix).

Behavioural task

As paradigm we employed a visual go/no-go learning task written and presented with Psy-
choPy (version 3.1.5) [33]. Stimuli were presented on an Asus PG248Q LCD display (24”,
1920x1080, 60 Hz refresh rate) at a viewing distance of 80 cm. Each trial started with the pre-
sentation of a fixation cross, spanning 0.72˚ visual angle, for a pseudo-randomly selected dura-
tion of 1000 ms to 1600 ms to keep the participants’ attention to the centre of the screen.
Stimuli spanned the central 3.58˚ visual angle of the screen and were presented for 500 ms. We
used greebles (Greebles 2.0) [13] as stimuli. Greebles are three-dimensional objects which are
usually used for object and face recognition. Based on the body shape, greebles are classified
into so-called families, while three other features vary for each exemplar, such that similarity
between exemplars of the same families is larger than between exemplars across families. To
drive slow learning, we used twelve greebles that were evenly sampled from three families. For
each participant, half of the greebles of each family were pseudo-randomly assigned to be go
stimuli while the other half were no-go stimuli to make sure that learning is similarly difficult
across participants. They had to learn to perform a button press for go stimuli and to withhold
a response for no-go stimuli. The response could be administered during stimulus presenta-
tion and within 1000 ms after stimulus offset. The duration of this response window was well
sufficient to perform a go-response (see Fig M in S1 Appendix). Feedback was immediately
presented after button press consisting of a smiley or frowny (spanning 1.93˚ visual angle
each) for correct and incorrect actions, respectively. Every correct button press was rewarded
with 2 cents, which was indicated by an increase of the progress bar, while every incorrect but-
ton press led to a 2 cents deduction and a decrease of the progress, respectively. To design the
task comparable to previous animal experiments, no feedback was delivered (and neither
money won nor lost), when no button was pressed. The task consisted of 588 trials, with each
of the twelve stimuli presented 49 times in pseudo-randomized order with the constraints that
each one is presented once in twelve trials and that two consecutive stimuli were always differ-
ent. Reinforced trials were interspersed by five probe blocks (36 trials each). Participants were
instructed to respond as they had previously done during the reinforced blocks, but they no
longer received feedback for their choices and the progress bar disappeared. The paradigm

PLOS COMPUTATIONAL BIOLOGY Instrumental performance in the absence of reinforcement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010201 December 8, 2022 11 / 17

131



was performed in five phases of 120 trials. Participants were encouraged to rest between the
phases as long as they needed.

Behavioural analyses

Data analyses were conducted using MATLAB (MATLAB Version R2016b, Massachusetts:
The Mathworks Inc.). Statistical significance testing, including the computation of the Bayes
Factor of the main effect, was done in JASP (JASP Team (2019). JASP (Version 0.11.1)
[macOS]). We calculated the sensitivity index d’ as:

d0 ¼ zðHRÞ � zðFARÞ ½1�

With the z-scored hit rate z(HR) and the z-scored false alarm rate z(FAR) [16]. As ceiling
performances cannot be z-scored, we used HR ¼ 1 � 1

2N as correction for HR = 1, and HR ¼ 1

2N

as correction for HR = 0, with the number of trials N. Because we calculated d’ for a small num-
ber of trials, the use of corresponding trials for correction may result in underestimated d’ val-
ues [34], so we used a correction allowing HR and FAR to be approximately 0 or 1. The
negative bias criterion c was calculated as:

c ¼
1

2
zðHRÞ þ zðFARÞð Þ ½2�

For comparison of d’ between probe and reinforced trials, we defined the 36 trials (the
length of a probe block) before reinforcement removal as pre-probe trials, and the 36 trials
after reinforcement was reinstated as post-probe trials, and computed the difference between
probe and pre-probe trials, and between probe and post-probe trials. When visualising the
learning curve, d’ was computed within a sliding window of 21 trials. To further specify the
effects of d’ and the bias criterion, we also analysed hit and false alarm rates separately for rein-
forced and probe trials.

Changes in behaviour between reinforced and probe blocks were analysed using one-sam-
ple Student’s t-test comparing their difference against zero. The t-tests examined the null
hypothesis that there is no difference in behaviour between reinforced and probe blocks at a
significance level of α = 0.05. To test whether the change in behaviour from reinforced to
probe blocks differed across successive probe blocks, we subjected the differences in d’ (probe
—pre-probe, and analogously for hit and false alarm rates) to repeated measures ANOVAs
(Greenhouse-Geisser correction to adjust for lack of sphericity when ε < 1).

Go-response probabilities P(Go) were computed with a sliding window of five trials and
averaged over participants for visualization. We used a smaller window size compared to the d’
learning curves, because it was sufficient to obtain a good resolution for go-probability.

Reinforcement learning models

Computational modelling was performed in MATLAB (MATLAB Version R2016b, Massa-
chusetts: The Mathworks Inc.). Altogether, we tested four models, in each of which values for
chosen stimuli were updated using a delta update rule:

Qi;tþ1 ¼ Qi;t þ aðrt � Qi;tÞ ½3�

Where Qi,t is the value for stimulus i presented on trial t, α is the learning rate and rt is the
observed outcome on trial t. On trials during reinforced blocks in which subjects performed a
go-response, rt was either -1 or 1, depending on whether the chosen stimulus was a go- or no-
go stimulus, respectively. When participants gave a response during probe trials, the value of
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the corresponding stimulus was not updated, i.e. Qi,t+1 = Qi,t. In line with the non-monotonic
plasticity hypothesis [22], we have recently shown that associations of unchosen stimuli are
weakened [23]. Therefore, on trials during which participants performed a no-go response, we
assumed passive forgetting of the displayed option governed by a decay parameter θ (for rein-
forced and probe trials):

Qi;tþ1 ¼ yQi;t ½4�

Initial Q-values Q0 for the first trial were also treated as a free parameter. The learning rate
α was not treated as a free parameter and instead fixed at α = 0.06 for all participants (see sec-
tion Fixed learning rate for explanation). Choices were modelled using a softmax choice rule.
The four models differed with regard to the bias and temperature terms contained in their
respective softmax choice rules:

Baseline model. Choices in the baseline model are generated using a softmax choice rule
that contains a single temperature τ and bias term b:

pt ¼
1

1 þ e
� ðQi;tþbÞ

t

½5�

Where b is a general bias to act and τ the temperature parameter determining the stochasti-
city of action selection. Importantly, the softmax choice rule used the same parameters for
reinforced and probe trials, thus, the baseline model did not discriminate between block types.
Altogether, for this model, four parameters were thus fit: the initial Q-value Q0, the decay θ,
the general bias b and the softmax temperature τ.

Temperature model. Like the baseline model, the temperature model also contained a
single bias parameter b, but it allowed for the temperature τ to vary between reinforced and
probe blocks:

pt ¼
1

1 þ e
� ðQi;tþbÞ

tk

½6�

Where τk = τR for reinforced trials and τk = τP for probe trials. Thus, for this model, five
parameters were fit: the initial Q-value Q0, the decay θ, the general bias b, the softmax tempera-
ture τR for reinforced trials and the softmax temperature τP for probe trials.

Bias model. Here, instead of allowing the temperature to vary between reinforced and
probe trials, we now allowed for separate bias parameters:

pt ¼
1

1 þ e
� ðQi;tþbkÞ

t

½7�

Where bk = bR for reinforced trials and bk = bP for probe trials. Thus, for this model, five
parameters were fit: the initial Q-value Q0, the decay θ, the general bias bR for reinforced trials,
the general bias bP for probe trials and the softmax temperature τ.

Full model. This model is a combination of the temperature and bias model: It used both
a separate temperature and a separate bias for reinforced and probe trials:

pt ¼
1

1 þ e
� ðQi;tþbkÞ

tk

½8�

Thus, for this model six parameters were fit: the initial Q-value Q0, the decay θ, the general
bias bR for reinforced trials, the general bias bP for probe trials, the softmax temperature τR for
reinforced trials and the softmax temperature τP for probe trials.
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Model comparison. Models were fit by minimizing the negative log likelihood NLL:

NLL ¼ �
X

t
log ðptÞ ½9�

Where pt is a vector containing, for each trial t, the model’s probability to select the choice
performed by the participant. We used unconstrained non-linear optimization implemented
in Matlab’s function fmincon. To minimize the risk of finding local optima, we started optimi-
zation from 1000 random starting points for each participant. To account for the different
number of parameters, we used the Bayesian information criterion for model comparison:

BIC ¼ 2NLL þ nparamlogðntÞ ½10�

Where nparam and nt are the number of parameters and trials, respectively. A lower BIC
score indicates a better model fit.

Model validation

To test whether the best-fitting model provides a good account of participants’ behaviour, we
tested whether we could replicate the behavioural results using simulated datasets. Because the
comparison of pre-probe and probe trials confounds performance and trial number, the repli-
cation of the SDT-based behavioural analysis using simulated data is not suited for model vali-
dation. Instead, we visually inspected simulated data for the baseline model, the temperature
model and the bias model. To this end, we simulated 500 datasets per participant based on
these models, using the parameter combination fitted for the respective participant. Then, we
computed go-response probabilities for go and no-go trials to investigate how single parame-
ters of the different models changed these probabilities and ultimately, if a bias parameter for
both reinforced and probe blocks is necessary to describe the patterns found in behaviour (see
Section 3.3. in S1 Appendix). For visualization, go-response probabilities were averaged over
the number of simulations and simulated participants.

Parameter recovery

In order to test the reliability of fitted parameters, we performed a parameter recovery. We
used the 500 simulated datasets per participant from the model validation and fitted the bias
model in the same way as described above for the experimental data. For each participant and
each parameter, we compared the original model fit with the synthetic model fit (see Fig I in
S1 Appendix). The high correlation coefficients (all ρ > 0.99, see Table L in S1 Appendix) indi-
cated successful recovery for all parameters.

Fixed learning rate

The deterministic task design gives rise to a strong anti-correlation between learning rate and
softmax temperature, thus, both parameters could not be estimated by the models indepen-
dently [21]. Note however, that it is not plausible to assume different learning rates for probe
and reinforced blocks, as no learning rate is applied to the probe trials. Instead, it was our goal
to test whether the sensitivity of choices to acquired values changes between reinforced and
probe trials. Therefore, we fit the models using a fixed learning rate of α = 0.06 for all partici-
pants. In order to ascertain that the results are independent of this particular choice of learning
rate, we used six different learning rates evenly log-spaced between 0.01 and 0.20. With this set
of learning rates, we fitted all four models and compared them. We found that the bias model
performed best, while the temperature model was the worst fitting model, independent of the
learning rate (see Section 3.1. in S1 Appendix).
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Supporting information

S1 Appendix. Further Analyses of behavioural and computational data. In Section 1, we
present results separately for the two experiments. In Section 2, we show further analyses of
the pooled dataset. In Section 3, analyses of the computational modelling, in particular the
control analysis for the fixed learning rate, the parameter recovery and the model validation,
are presented. In Section 4, we analysed reaction times.
(PDF)
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Validation: Hannah Kurtenbach, Eduard Ort, Monja Isabel Froböse, Gerhard Jocham.
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15. Reinert S, Hübener M, Bonhoeffer T, Goltstein PM. Mouse prefrontal cortex represents learned rules
for categorization. Nature. 2021 May 20; 593(7859):411–7. https://doi.org/10.1038/s41586-021-03452-
z PMID: 33883745

16. Green DM, Swets JS. Signal Detection Theory and Psychophysics. Wiley; 1966.
17. Young ME, Sutherland SC, McCoy AW. Optimal go/no-go ratios to maximize false alarms. Behav Res

Methods. 2018 Jun; 50(3):1020–9. https://doi.org/10.3758/s13428-017-0923-5 PMID: 28664243
18. Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, Mass: MIT Press; 1998.

322 p. (Adaptive computation and machine learning).
19. Jocham G, Neumann J, Klein TA, Danielmeier C, Ullsperger M. Adaptive Coding of Action Values in the

Human Rostral Cingulate Zone. J Neurosci. 2009 Jun 10; 29(23):7489–96. https://doi.org/10.1523/
JNEUROSCI.0349-09.2009 PMID: 19515916

20. Klein TA, Ullsperger M, Jocham G. Learning relative values in the striatum induces violations of norma-
tive decision making. Nat Commun. 2017 Dec 22; 8(1):16033. https://doi.org/10.1038/ncomms16033
PMID: 28631734

21. Bennett D, Niv Y, Langdon AJ. Value-free reinforcement learning: policy optimization as a minimal
model of operant behavior. Curr Opin Behav Sci. 2021 Oct; 41:114–21. https://doi.org/10.1016/j.
cobeha.2021.04.020 PMID: 36341023

22. Ritvo VJH, Turk-Browne NB, Norman KA. Nonmonotonic Plasticity: How Memory Retrieval Drives
Learning. Trends Cogn Sci. 2019 Sep; 23(9):726–42. https://doi.org/10.1016/j.tics.2019.06.007 PMID:
31358438

23. Luettgau L, Tempelmann C, Kaiser LF, Jocham G. Decisions bias future choices by modifying hippo-
campal associative memories. Nat Commun. 2020 Dec; 11(1):3318. https://doi.org/10.1038/s41467-
020-17192-7 PMID: 32620879

24. Kelley AE, Smith-Roe SL, Holahan MR. Response-reinforcement learning is dependent on N -methyl- D

-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci. 1997 Oct 28; 94
(22):12174–9.

25. Andrzejewski ME, Spencer RC, Kelley AE. Instrumental learning, but not performance, requires dopa-
mine D1-receptor activation in the amygdala. Neuroscience. 2005 Jan; 135(2):335–45. https://doi.org/
10.1016/j.neuroscience.2005.06.038 PMID: 16111818

26. Corbit LH, Balleine BW. The role of prelimbic cortex in instrumental conditioning. Behav Brain Res.
2003 Nov; 146(1–2):145–57. https://doi.org/10.1016/j.bbr.2003.09.023 PMID: 14643467

PLOS COMPUTATIONAL BIOLOGY Instrumental performance in the absence of reinforcement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010201 December 8, 2022 16 / 17

136 Research articles



27. Ostlund SB, Balleine BW. Differential Involvement of the Basolateral Amygdala and Mediodorsal Thala-
mus in Instrumental Action Selection. J Neurosci. 2008 Apr 23; 28(17):4398–405. https://doi.org/10.
1523/JNEUROSCI.5472-07.2008 PMID: 18434518

28. Haddara N, Rahnev D. The Impact of Feedback on Perceptual Decision-Making and Metacognition:
Reduction in Bias but No Change in Sensitivity. Assoc Psychol Sci. 2022 Jan; 33(2):259–75. https://doi.
org/10.1177/09567976211032887 PMID: 35100069

29. Pavlov IP. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex.
Oxf Univ Press Lond. 1927; 142.

30. Bouton ME. Context and Behavioral Processes in Extinction. Learn Mem. 2004 Sep; 11(5):485–94.
https://doi.org/10.1101/lm.78804 PMID: 15466298

31. van Lieshout LLF, Traast IJ, de Lange FP, Cools R. Curiosity or savouring? Information seeking is mod-
ulated by both uncertainty and valence. Verguts T, editor. PLOS ONE. 2021 Sep 24; 16(9):e0257011.
https://doi.org/10.1371/journal.pone.0257011 PMID: 34559816

32. Jocham G, Brodersen KH, Constantinescu AO, Kahn MC, Ianni AM, Walton ME, et al. Reward-Guided
Learning with and without Causal Attribution. Neuron. 2016 Apr; 90(1):177–90. https://doi.org/10.1016/
j.neuron.2016.02.018 PMID: 26971947
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1 

S1 Appendix: Removal of reinforcement improves instrumental performance in 

humans by decreasing a general action bias rather than unmasking learnt 

associations 
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1. Results separately for the two experiments 

We acquired two independent data sets (each N = 30), which we pooled for the main 

analyses. Here, we present the results separately for Experiment 1 (Fig A-C and Table A-

D) and Experiment 2 (Fig D-F and Table E-H). 

 

1.1. Experiment 1 

 

Fig A. Average learning performance for Experiment 1 (N = 30). 
(A) Sensitivity index d’, separately for reinforced (cyan) and probe trials (purple). Solid lines 
represent mean performance, shaded areas SEM across participants. (B) Time course of 
go-response probabilities, P(Go), for go trials (green) and no-go trials (red). Darker shades 
of green and red illustrate probe trials. Solid lines represent mean, shaded areas SEM 
across participants. 
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Fig B. Behavioural results, expressed as difference between probe trials and 
preceding reinforced trials for Experiment 1 (N = 30). 
Results are shown both for the mean across all five probe blocks (left) and separately for 
each probe block. (A) The sensitivity index d’ increased in probe compared to reinforced 
trials. (B) The negative bias criterion c, decreased in probe blocks, indicating a reduced 
propensity to act on probe trials. (C), (D) Both hit rate (HR, C) and false alarm rate (FAR, D) 
decreased in probe blocks. 
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Table A. Difference between probe and pre-probe trials for Experiment 1. 
Statistical comparisons were performed using Student’s t-test. 

 Mean SEM t29 p Cohen’s d 

d’ 0.42 0.50 4.57 <.001 0.83 

c -0.46 0.25 -9.84 <.001 -1.807 

HR -0.08 0.06 -7.11 <.001 -1.309 

FAR -0.15 0.08 -10.16 <.001 -1.86 

 

 

Table B. Effect of time on the difference between probe and pre-probe trials for 
Experiment 1. 
Statistical comparisons were performed using repeated measures ANOVA with 
Greenhouse-Geisser correction, where appropriate. 

 F(4, 29) p !2 

d’ 0.58 .675 0.02 

c 5.47 <.001 0.16 

HR 10.15 <.001 0.26 

FAR 14.09 <.001 0.33 
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Fig C. Behavioural results, expressed as difference between probe trials and 
subsequent reinforced trials for Experiment 1 (N = 30). 
Results are shown both for the mean across all five probe blocks (left) and separately for 
each probe block. (A) The sensitivity index d’ was not significantly different in probe 
compared to reinforced trials. (B) The negative bias criterion c, decreased in probe blocks, 
indicating a reduced propensity to act on probe trials. (C), (D) Both hit rate (HR, C) and false 
alarm rate (FAR, D) decreased in probe blocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B

C D

142 Research articles



6 

Table C. Difference between probe and post-probe trials for Experiment 1. 
Statistical comparisons were performed using Student’s t-test. 

 Mean SEM t29 p Cohen’s d 

d’ 0.08 0.46 0.90 .375 0.17 

c -0.38 0.34 -6.05 <.001 -1.11 

HR -0.09 0.08 -6.41 <.001 -1.17 

FAR -0.10 0.11 -4.89 <.001 -0.89 

 

 
Table D. Effect of time on the difference between probe and post-probe trials for 
Experiment 1. 
Statistical comparisons were performed using repeated measures ANOVA with 
Greenhouse-Geisser correction, where appropriate. 

 F(4, 29) p !2 

d’ 1.82 .130 0.06 

c 1.76 .141 0.06 

HR 5.83 .001 0.17 

FAR 3.32 .028 0.10 
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1.2. Experiment 2 

 

 
Fig D. Average learning performance for Experiment 2 (N = 30). 
(A) Sensitivity index d’, separately for reinforced (cyan) and probe trials (purple). Solid lines 
represent mean performance, shaded areas SEM across participants. (B) Time course of 
go-response probabilities, P(Go), for go trials (green) and no-go trials (red). Darker shades 
of green and red illustrate probe trials. Solid lines represent mean, shaded areas SEM 
across participants. 
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Fig E. Behavioural results, expressed as difference between probe trials and 
preceding reinforced trials for Experiment 2 (N = 30). 
Results are shown both for the mean across all five probe blocks (left) and separately for 
each probe block. (A) The sensitivity index d’ increased in probe compared to reinforced 
trials. (B) The negative bias criterion c, decreased in probe blocks, indicating a reduced 
propensity to act on probe trials. (C), (D) Both hit rate (HR, C) and false alarm rate (FAR, D) 
decreased in probe blocks. 
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Table E. Difference between probe and pre-probe trials for Experiment 2. 
Statistical comparisons were performed using Student’s t-test. 

 Mean SEM t29 p Cohen’s d 

d’ 0.52 0.55 5.19 <.001 0.95 

c -0.48 0.25 -10.61 <.001 -1.94 

HR -0.08 0.07 -6.48 <.001 -1.18 

FAR -0.15 0.08 -11.08 <.001 -2.02 

 

 

Table F. Effect of time on the difference between probe and pre-probe trials for 
Experiment 2. 
Statistical comparisons were performed using repeated measures ANOVA with 
Greenhouse-Geisser correction, where appropriate. 

 F(4, 29) p !2 

d’ 1.44 .227 0.05 

c 3.72 .007 0.11 

HR 13.91 <.001 0.32 

FAR 18.81 <.001 0.39 
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Fig F. Behavioural results, expressed as difference between probe trials and 
subsequent reinforced trials for Experiment 2 (N = 30). 
Results are shown both for the mean across all five probe blocks (left) and separately for 
each probe block. (A) The sensitivity index d’ increased in probe compared to reinforced 
trials. (B) The negative bias criterion c, decreased in probe blocks, indicating a reduced 
propensity to act on probe trials. (C), (D) Both hit rate (HR, C) and false alarm rate (FAR, D) 
decreased in probe blocks. 
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Table G. Difference between probe and post-probe trials for Experiment 2. 
Statistical comparisons were performed using Student’s t-test. 

 Mean SEM t29 p Cohen’s d 

d’ 0.22 0.48 2.47 .020 0.45 

c -0.46 0.29 -8.64 <.001 -1.58 

HR -0.09 0.07 -7.40 <.001 -1.35 

FAR -0.11 0.09 -6.47 <.001 -1.18 

 

 

Table H. Effect of time on the difference between probe and post-probe trials for 
Experiment 2. 
Statistical comparisons were performed using repeated measures ANOVA with 
Greenhouse-Geisser correction, where appropriate. 

 F(4, 29) p !2 

d’ 1.70 .155 0.06 

c 0.24 .915 0.01 

HR 3.13 .040 0.10 

FAR 3.50 .018 0.11 

 

 

The results for both experiments are very similar. The comparison of pre-probe and probe 

trials yield identical results for both experiments: d’, bias criterion, hit and false alarm rate 

change significantly and there is a significant effect of time for these parameters except for 

d’. The results of the comparison of post-probe and probe trials are similar for both 

experiments, with the exception that d’ decreased significantly in post-probe trials in 

Experiment 2, but not in Experiment 1. 
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2. Behavioural analysis of the pooled data set 

Here, we report the post hoc tests for the difference in the sensitivity d’ between probe and 

pre-probe trials (Table I). Additionally, we analysed the difference between probe and 

post-probe trials of the pooled data (Fig G and Table J).  

 

Table I. Post hoc tests for the difference in d’ of probe and pre-probe trials. 

Block t59 p Cohen’s d 

1 4.44 <.001 0.57 

2 3.03 .004 0.39 

3 2.74 .008 0.35 

4 4.35 <.001 0.56 

5 3.43 .001 0.44 
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Fig G. Behavioural results, expressed as difference between probe trials and 
subsequent reinforced trials for all participants (N = 60). 
Results are shown both for the mean across all five probe blocks (left) and separately for 
each probe block. (A) The sensitivity index d’ increased in probe compared to reinforced 
trials. (B) The negative bias criterion c, decreased in probe blocks, indicating a reduced 
propensity to act on probe trials. (C), (D) Both hit rate (HR, C) and false alarm rate (FAR, D) 
decreased in probe blocks. 
 

 

 

 

 

 

 

A B

C D

150 Research articles



14 

Table J. Effect of time on the difference between probe and post-probe trials for all 
participants. 
Statistical comparisons were performed using repeated measures ANOVA with 
Greenhouse-Geisser correction, where appropriate. 

 F(4, 59) p !2 

d’ 1.99 .097 0.03 

c 1.22 .304 0.02 

HR 7.66 .001 0.12 

FAR 6.21 .001 0.10 
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3. Analysis of modelling results 

We compared all models with five additional learning rates evenly log-spaced between 0.01 

and 0.2 to verify that that the results are not dependent on the learning rate α = 0.06, which 

we chose for the main analysis (Table K and Fig H). The results of the recovery for all free 

parameters of the bias model are shown in this part (Fig I and Table L). 

 

 

3.1. Model comparison with a set of fixed learning rates 
 
Table K. Comparisons of baseline, temperature, bias and full model with varying 
learning rates α. Parameters were fit for all participants (N = 60), and BICs (mean ± SEM) 
were calculated for model comparison. Learning rate α = 0.06 which was used for main 
analyses is bold. 

α Baseline model Temperature model Bias model Full model 

 0.01  512.47 ± 134.65  515.60 ± 134.34  504.87 ± 129.09  509.71 ± 129.17 

 0.018  518.10 ± 135.23  521.07 ± 134.82  510.76 ± 129.67  515.45 ± 129.71 

 0.033  526.96 ± 135.96  529.89 ± 135.65  520.08 ± 130.47  524.67 ± 130.53 

  0.06  539.42 ± 137.39  542.22 ± 137.25  533.25 ± 131.99  537.56 ± 132.10 

 0.11  555.32 ± 138.50  557.98 ± 138.56  550.02 ± 133.19  554.08 ± 133.32 

 0.2  573.18 ± 138.01  575.43 ± 137.39  568.69 ± 133.17  572.56 ± 132.85 
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Fig H. Model comparison with different learning rates. 
Comparison of mean BICs for six different learning rates, error bars represent SEM. For all 
learning rates, the bias model provided the best fit. The full model fitted second best, 
followed by the baseline model. The temperature model performed the worst. 
 

 

3.2. Parameter recovery for the bias model 

Fig I. Parameter recovery for all free parameters of the bias model. 
Parameters fitted to participants’ behaviour are plotted against the recovered parameters. 
Error bars represent 95% Cousineau-Morey confidence intervals. 
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Table L. Correlation coefficients for the recovery of each parameter. 

Free Parameter ρ p 

     τ    0.991    <.001 

    Q0    0.998    <.001 

    bR    0.994    <.001 

    bP    0.995    <.001 

    θ    0.997    <.001 

 

 

3.3. Model validation 

Because of the artefacts of the SDT analysis, we did not have quantitative measures for the 

model validation. Therefore, we plotted the go-response probabilities based on model 

simulations and inspected visually whether the goodness of model fit supports the BIC 

outcomes. First, we validated whether the individual parameters of the baseline model are 

necessary to describe the general behaviour (Fig J). Second, we compared different types 

of forgetting (Fig K). Third, we validated whether the temperature or bias model could 

reproduce the behavioural change in probe trials (Fig L). 

 

3.3.1. Individual parameters 

First, we ignored the probe trials and checked whether all parameters in the baseline model 

are needed to describe the empirical behaviour: Participants’ go-response probabilities for 

both go and no-go trials started high with the probability for go trials staying high and the 

probability for no-go trials decreasing over time. 

 We started with a model containing two free parameters: a softmax temperature and a 

general bias. This simple model was not suitable to describe the empirical data as the go-
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response probabilities start relatively low and the probabilities for go and no-go trials 

increased and decreased over time, respectively (BIC = 608.47 ± 118.63, mean ± SEM, Fig 

J.A). Adding an initial Q-value improved the fit compared to the simplest model, but was still 

not able to reproduce the participants’ behaviour (BIC = 595.62 ± 119.28, Fig J.B). The same 

applies to a model containing of a softmax temperature, a general bias and a decay 

parameter (BIC = 591.77 ± 123.25, Fig J.C). In this model, we assumed a decay of learnt 

values towards zero when no go-response is performed. For the baseline model, we 

combined a softmax temperature, a general bias, an initial Q-value and a decay parameter 

and this model is able to reproduce the behaviour described above (BIC = 539.42 ± 137.39, 

Fig J.D). 

 

 

155



19 

Fig J. Set up of the baseline model. 
Time course of simulated go-response probabilities, P(Go), for go trials (green) and no-go 
trials (red). Darker shades of green and red illustrate probe trials. Solid lines represent mean, 
shaded areas SEM across simulations. Simulations are based on (A) a softmax temperature 
and a general bias, (B) a softmax temperature, a general bias and an initial Q-value, (C) a 
softmax temperature, a general bias and a decay parameter and (D) the complete baseline 
model (softmax temperature, general bias, initial Q-value, decay parameter).  
 
 
 
3.3.2. Types of forgetting 

There are several ways to implement a decay of option values due to forgetting. We 

implemented two different ways of forgetting and compared it to our baseline model. First, 

we set up a model in which values decay towards the initial Q-value. The model worsened 

again and due to a low initial Q-value, the go-response probabilities start low with the 

probabilities for no-go trials staying low and the probabilities for go trials increasing over 

time, which is not in line with the participants’ behaviour (BIC = 547.74 ± 116.46, Fig K.A). 

A B

C D
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Another approach for the decay parameter is to implement forgetting when no feedback for 

the go-response is received (instead of forgetting after no-go-responses).  Again, this model 

performed worse compared to the baseline model and could not capture the participants’ 

behaviour (BIC = 600.70 ± 117.24, Fig K.B). 

 

 
 
Fig K. Variations of the baseline model. 
Time course of simulated go-response probabilities, P(Go), for go trials (green) and no-go 
trials (red). Darker shades of green and red illustrate probe trials. Solid lines represent mean, 
shaded areas SEM across simulations. Simulations are based on (A) a model with values 
decaying towards the initial Q-value instead of zero and (B) a model with values decaying 
when no feedback is given instead of no response decay.  
 

3.3.3. Modelling the behaviour in probe trials 

In probe trials, participants’ go-response probabilities for both go and no-go trials decreased. 

Based on the baseline model, we now implemented two models differentiating between 

reinforced and probe trials; In the temperature model fitted a softmax temperature separately 

for each trial type. It performed worse than the baseline model and the decrease in go-

response probabilities for both go and no-go trials is not comparable to the observed 

behaviour (BIC = 542.22 ± 137.25, Fig L.A). The bias model, which fitted a general bias 

separately for each trial type, performed better than the baseline model and looks 

comparable to the participants’ behaviour (BIC = 533.25 ± 131.99, Fig L.B). 

A B
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Fig L. Simulations of changed behaviour in probe trials. 
Time course of simulated go-response probabilities, P(Go), for go trials (green) and no-go 
trials (red). Darker shades of green and red illustrate probe trials. Solid lines represent mean, 
shaded areas SEM across simulations. Simulations are based on (A) the temperature model 
and (B) the bias model.  
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158 Research articles



22 

4. Control analysis for reaction times 

To ensure that the response window was long enough for participants to administer a go-

response, we plotted the distribution of participants’ reaction times (RTs) in all trials. 

 

 
Fig M. Distribution of participants’ RTs. 
The cutoff of 1500 ms relative to stimulus onset marks the end of the response window. 
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