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A B S T R A C T   

Background: Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host 
range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In 
humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. 
Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish 
populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain 
inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains 
associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool 
would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our 
comprehension of the bacteria’s host adaptations spanning humans, livestock, and other natural animal 
reservoirs. 
Methods and results: Here, we developed three machine learning models—random forest (RF), logistic regression 
(LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise 
prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. 
Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and 
variant annotation to uncover the most influential genomic features and associated genes for each host. Addi-
tionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host 
transmission and the potential for zoonotic infections. 
Conclusions: Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models 
based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features 
associated with each GBS host, thereby enhancing our understanding of the bacteria’s host-specific adaptations.   

1. Introduction 

Streptococcus agalactiae, commonly referred to as Group B Strepto-
coccus (GBS), typically resides in the gastrointestinal and genital tracts 

of healthy individuals. Although often benign, GBS can pose significant 
health risks, particularly to susceptible groups such as newborns, preg-
nant women, and the elderly, occasionally leading to severe infections 
[1–3]. GBS is a leading cause of neonatal infections, which can result in 
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severe outcomes such as sepsis, meningitis, and pneumonia. Newborns 
who contract GBS during delivery are at exceptionally high risk of 
developing these infections, which can be life-threatening [4]. To pre-
vent GBS disease in newborns, many countries have implemented 
screening protocols for pregnant women and providing antibiotics 
during labor to those identified as carriers [5]. Additionally, GBS in-
fections in pregnant can lead to chorioamnionitis, characterized by 
inflammation of the fetal membrane, potentially triggering preterm 
delivery and other associated complications [6]. Therefore, timely 
identification and management of GBS infection in pregnant women are 
crucial to prevent adverse outcomes for both the mother and the fetus. 
GBS is also a significant concern for older adults with weakened immune 
systems. These individuals are at increased risk of developing invasive 
GBS infections, such as osteomyelitis, arthritis, endocarditis, sepsis, and 
meningitis [7]. Furthermore, increased incidence of invasive GBS in 
healthy adults has also been observed, and mortality rate was associated 
with older adults (i.e., ≥65 years), with a 50% mortality rate in the 
elderly upon infection [7]. 

Moreover, GBS is also prevalent among animals, including livestock, 
pets, and wild animals [8–10]. While most GBS infections in humans are 
caused by person-to-person transmission, there is evidence that zoonotic 
transmission may also occur [11]. While the risk of zoonotic trans-
mission of GBS appears to be relatively low, it is still a concern, 
particularly in high-risk populations. Implementing a host prediction 
model can help discern the primary host source of GBS, facilitating (i) 
the tracing of potential zoonotic origins, (ii) preventing the spread of 
GBS infections in both animal and human populations, and (iii) mini-
mizing the impact on the public health of this adaptable bacterium. 

Machine learning (ML) plays a pivotal role in various facets of 
biomedicine, encompassing tasks like predicting specific biological 
functional sequences [12–14], diagnosing cancer [15], and monitoring 
hosts in epidemiology [16]. The continuous evolution of machine 
learning is evident with the emergence of disruptive algorithms like 
transformers and their extensions, grounded in large language models 
and generative approaches [17,18]. While these advancements signifi-
cantly enhance machine learning’s impact across diverse fields, it’s 
crucial to recognize that not all scenarios benefit from advanced algo-
rithms. For instance, neural network algorithms, while capable of 
modeling performance in many cases, pose challenges due to their high 
data and computational resource requirements [19], coupled with the 
intricacies involved in model interpretation. On the contrary, traditional 
machine learning algorithms offer a pragmatic solution by being both 
convenient and fast, delivering commendable performance while 
remaining interpretable. Importantly, these algorithms don’t necessitate 
extensive data and computational resources. 

In light of these considerations, our study delved into the realm of 
traditional machine learning algorithms, including random forest (RF), 
logistic regression (LR), and support vector machine (SVM), to classify 
GBS host and explore potential cross-species transmission. Moreover, we 
investigated the interpretability of these models in more depth through 
the SHapley Additive exPlanations (SHAP) method, and identified key 
factors that are relevant to the hosts. 

2. Methods 

2.1. Isolates collection and whole genome sequencing 

The study included genome sequence data from 1284 single host 
isolates. Among them, 486 were isolated locally from a tertiary hospital 
(n = 292) and local wet markets (n = 194) in Hong Kong as previously 
described [8], with contigs deposited into NCBI Bioprojects 
(PRJNA752017, PRJNA844521 and PRJNA844522), while the remain-
ing data was from our previous study [20]. Briefly, DNA extraction was 
performed using Wizard Genome DNA Purification Kit (Promega, 
Madison, WI, USA), followed by library preparation using Nextera XT 
Library Preparation (Illumina, San Diego, CA, USA) or Riptide High 

Throughput Rapid Library Preparation Kit (Twist Bioscience, San 
Francisco, CA, USA) according to manufacturer’s protocol. Genome 
sequencing was performed with NextSeq mid-output 500 system (Illu-
mina, San Diego, CA, USA) to obtain an approximate minimum of 30 x 
average coverage of 150 bp paired-end sequence data. Genomes were 
assembled as previously described [8]. Quality control of reads was 
performed with FastQC prior to assembly with SPAdes assembler (v 
3.5.0) [21]. Contigs of at least 500 bp were used for variant calling. SNP 
calling after assembly was conducted by Snippy (github.com/tsee-
mann/snippy) workflow to reference genome Streptococcus agalactiae 
2603V/R (Genbank ID: NC_004116) with default parameters [22]. This 
workflow contains SNP calling and annotation using freebayes and 
snpEff. 

2.2. SNPs data processing for machine learning 

We then transformed the SNPs data into the input data for machine 
learning following the procedure from our previous study [23,24]. We 
extracted the reference, variant alleles, and corresponding positional 
information from the raw variants data. We then merged the informa-
tion from all isolates and labeled the loci with no variant information as 
N. The SNP matrix was then encoded by label encoding, where the A, C, 
G, T, and N in the SNP matrix were assigned to 1, 2, 3, 4, and 0. We 
discarded the locus that contained label 0 more than half of the sample 
size, which was considered not more reliable. In addition, we did not 
consider isolates belonging to fewer than 20 hosts or lacking data 
sources. Because such category labels are too few to be meaningful for 
machine learning. Thus, the final SNP matrix has 3895 columns and 
1241 rows (corresponding to 1241 isolates and 3895 variants). Different 
host sources (Human, Bovine, Fish, and Pig) were used as class labels. 

2.3. Construction and training of ML models 

We randomly split the input data into training and test data, repre-
senting 80% (994 isolates) and 20% (247 isolates) of the data, respec-
tively. We then constructed RF model, a LR model, and a SVM model 
using the caret R package v. 6.0–94 [25]. In the context of the random 
forest classifier, our training approach involved utilizing the rf method 
with mtry = 88 in the caret package. Conversely, for logistic regression, 
we opted for a penalized multinomial regression, employing the multi-
nom method with a decay parameter set to 0.1 [26]. When it comes to 
the support vector machine, we employed polynomial kernels in 
implementing SVM, specifying the method as svmPoly and setting the 
degree to 1, scale to 10, and C to 1. During the training process, we 
facilitated multi-class classification by configuring the ‘summar-
yFunction’ parameter as ‘multiClassSummary.’ To comprehensively 
assess model performance, we employed a 10-fold cross-validation with 
3 repeats. This was achieved by setting the ‘method’ parameter in the 
trainControl function to ‘repeatedcv.’ Additionally, to capture pre-
dictions for optimal tuning parameters, we set ‘savePredictions = final’. 

2.4. Evaluation of ML models 

After model training, we assessed the performance of the three 
models on the independent test data via different evaluation metrics, 
including accuracy, precision, recall, sensitivity, specificity, F1 score, 
Kappa score [27], and Area Under the ROC (Receiver Operating Char-
acteristics) curve (AUC) using ‘multiClassSummary’ [25,28,29]. For 
binary classification, their formula is as follows: 

Accuracy =
TP + TN

TP + FP + TN + FN
(1)  

Here, TP represents True Positives (correctly predicted positive values), 
TN represents True Negatives (accurately predicted negative values), FN 
represents False Negatives (incorrectly predicted negative instead of 
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positive), and FP represents False Positives (incorrectly predicted posi-
tive instead of negative). 

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F1 = 2 ∗
Precision ∗ Recall
Precision + Recall

(4)  

Sensitivity =
TP

TP + FN
(5)  

Specifity =
TN

TN + FP
(6)  

Kappascore = 2 ∗
TP ∗ TN − FN ∗ FP

(TP + FP) ∗ (FP + TN) + (TP + FN) ∗ (FN + TN)
(7) 

While for multi-class classification, we calculated these metrics 
based on “one-versus-all” [25]. For example, the sensitivity of the 
human class is calculated against all the samples in the Bovine, Pig, and 
Fish classes. The function ‘multiClassSummary’ computes the overall 
accuracy and Kappa score using the predicted classes, and gives aver-
ages of the “one-versus-all” metrics such as precision, recall, sensitivity, 
specificity, and F1. 

2.5. Interpretable machine learning by Shapley values 

To improve the interpretability of our robust models and gain deeper 
insights into feature contributions, we employed SHAP (Shapley Addi-
tive exPlanations), which use game theory to assign credit for a model’s 
prediction to each feature or feature value, to elucidate the model out-
puts [30–32]. Here, We calculated the Shapley values on the test data 
using SHAP package [30–32]. Specifically, we utilized the TreeExplainer 
algorithm from the SHAP package to interpret predictions from the RF 
model, while the LinearExplainer algorithm was employed for the LR 
model. We computed both the average Shapley value across all test data 
and the Shapley values for each class, including individual Shapley 
values for misclassified samples. 

2.6. Correlation analysis of misclassified samples 

To further explain the incorrect predictions made by our high- 
performing models, we isolated the misclassified sample data from the 
SNP matrix. Subsequently, we conducted a Pearson correlation analysis 
using the corrplot R package (version 0.92) to discern potential patterns 
or relationships. 

2.7. Phylogenetic analysis of misclassified samples 

Phylogenetic trees serve as powerful tools to illustrate relationships 
between species. To facilitate the understanding of misclassified sam-
ples, we performed a phylogenetic tree analysis based on SNP infor-
mation using VCF2PopTree [33]. We used it to calculate the genetic 
distance for each SNP and then summed up the obtained distances to get 
the total number of differences for the whole genome. The pairwise 
matrix of these differences can be used to construct a phylogeny. Sub-
sequently, we exported the Newick tree format and visualized it using 
ggtree [34]. 

2.8. Variants annotation 

We utilized the Ensembl Variant Effect Predictor (VEP) web interface 
[35] to annotate variants and identify the associated genes corre-
sponding to previously identified SNPs. The reference genome we used 

for annotation is Streptococcus agalactiae 2603V/R (GCA_000007265). 
The web portal accessed for annotation is 

https://bacteria.ensembl.org/Streptococcus_agalactiae_2603v_r_ 
gca_000007265/Tools/VEP, with default parameters applied. We then 
used maftools to visualize the annotated results [36]. 

2.9. Probability calibration for multi-class classification 

Probability calibration is a method used to align the predicted 
probabilities generated by a model with their actual probabilities. Here 
we used calibration_curve function from scikit learn module [37]. 

2.10. Statistical methods 

To assess and compare the performance of various models, we con-
ducted pairwise comparisons (RF-vs-LR, RF-vs-SVM, SVM-vs-LR) using 
the Wilcoxon test with ‘method = ’wilcox.test’, a non-parametric 
method, in R ggpubr package [38,39]. To correct for multiple compar-
isons, we applied the Bonferroni-Sidak adjustment method by setting p. 
adjust.method = ‘bonferroni’. We also calculated the standard errors 
(se) by calculating the averages of metrics over the 10-folds 
cross-validation in 3 repeats and added error bar (±se) on the top of 
bar plot using R ggpubr package. 

3. Results 

3.1. Origin and molecular characteristics of GBS data 

We collected a total of 1284 GBS isolates, with 836 isolates sourced 
from human, 186 from bovine, 172 from fish, and 47 isolates were from 
pigs (Table 1). Besides, 37 isolates were collected from various other 
hosts, each with fewer than 20 representatives (labeled as ‘Others’ in 
Table 1), while six isolates lacked identifiable data sources (denoted as 
‘Null’ in Table 1). We then analyzed the characteristics of serotypes, 
sequence type (ST), and clonal complex (CC) of GBS across different 
hosts, which were classically used to describe the molecular epidemi-
ology of bacterial populations and in the multilocus sequence typing 
system (MLST) for GBS [40]. 

The predominant capsular serotypes observed in our dataset 
included III (n = 324), Ia (n = 313), II (n = 234), V (n = 153), IV (n =
98), and Ib (n = 91) (Table 1). Among human-derived GBS strains, the 
prevalent serotypes comprised III, V, Ia, IV, II, and Ib, accounting for 
94.4% of the total (Fig. 1a), similar to previously reported proportions 
[30–32]. Notably, the primary serotypes identified in GBS from bovines, 
fish, and pigs were type II, Ia, and III, respectively, with proportions of 
83.3%, 95.9%, and 93.6% (Fig. 1a). These findings suggest shared 
serotype characteristics among GBS from humans, pigs, and fish, chal-
lenging straightforward host classification based on serotype alone. 

Regarding STs, GBS exhibited a diverse distribution, encompassing 
ST7 (n = 157), ST17 (n = 130), ST1 (n = 124), ST23 (n = 99), ST61 (n =
88), ST19 (n = 84), ST12 (63), ST651 (n = 44), and other types (n =
539) (Table 1). Specifically, human-derived GBS predominantly 
comprised ST17, ST1, ST23, ST19, and ST12, totaling 56.8%. 
Conversely, GBS from bovines, fish, and pigs were primarily represented 
by ST61, ST7, and ST651, constituting proportions of 46.8%, 87.8%, and 
85.1%, respectively (Fig. 1b). Despite certain GBS lineages displaying 
strong host associations, our results [41], revealed diversity in ST dis-
tributions across hosts, particularly evident in humans and pigs, indi-
cating limitations in host classification solely based on STs. 

Similarly, distinct host origins harbored overlapping CCs, with 
human-derived GBS mainly featuring CC1, CC17, CC19, CC23, and 
CC12, while bovine GBS were predominantly represented by CC17, 
CC67, and CC1. Meanwhile, fish-derived GBS were predominantly CC1, 
and pig-derived GBS were mainly CC103 (Fig. 1c). Thus, CCs also proved 
inadequate for precise host classification of GBS. Furthermore, we 
observed associations between serotypes and CCs; for instance, Serotype 
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Ia correlated primarily with CC1 and CC23, Ib with CC12, III with CC17, 
CC19, and CC103, and V with CC1 (Fig. 1d). 

In summary, our analysis provides insights into the host origins of 
GBS, elucidating their molecular characteristics and associations. 

However, neither serotype, ST, nor CC singularly represents the optimal 
choice for host classification. 

Table 1 
Overview of the number of each characteristic in the dataset.  

Characteristics All Isolates (n = 1284)       

Isolation Host Human Bovine Fish Pig Others Null     
836 186 172 47 37 6    

Capsular Serotype Ia Ib II III IV V Others Null   
313 91 234 324 98 153 70 1  

Sequence Type (ST) ST7 ST17 ST1 ST23 ST61 ST19 ST12 ST651 Others  
157 130 124 99 88 84 63 44 539 

Clonal Complex (CC) CC1 CC17 CC19 CC23 CC12 CC67 CC103 Others   
353 241 129 122 80 70 63 226  

Isolates with fewer than 20 characteristic types within each host were named as ‘Others’, and isolates lacking specific characteristics data were named as ‘Null’. These 
data are not considered in the following analyses. 

Fig. 1. Data characteristics. a-c Number of (a) capsular serotypes, (b) sequence type (ST), and (c) clonal complex (CC) associated with each host of GBS isolates. 
d Correlation of the number of capsular serotypes, sequence type, and clonal complex of GBS isolates. Isolates that fell in to ‘Others’ group in Table 1 are not shown in 
the figures. 
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3.2. ML models based on genome-wide mutation yield superior predictions 
for GBS hosts 

To accurately predict GBS host without relying on specific serotype, 
ST, or CC information, we developed three ML models, namely RF, LR, 
and SVM, leveraging genome-wide mutations. Unlike conventional ap-
proaches that filter variants based on prior biological knowledge, we 
utilized the entire spectrum of genome-wide variants, resulting in a final 
matrix comprising 3895 variants (see Methods for detailed procedures). 
Upon training the models, we observed impressive accuracy scores for 
RF and LR on the training dataset, achieving accuracies of 0.97 ± 0.003 
and 0.95 ± 0.004, respectively (Fig. 2a, Table S1). Additionally, eval-
uation metrics such as the AUC and F1 score exceeded 0.90, with the RF 
model reaching 0.99 ± 0.002 for AUC and 0.95 ± 0.005 for F1, and the 
LR model achieving 0.98 ± 0.004 for AUC and 0.93 ± 0.007 for F1. 
Conversely, the performance of the SVM model varied across different 
evaluation metrics, generally lagging behind RF and LR models (Fig. 2a). 

On the test set, both RF and LR models exhibited outstanding per-
formance, surpassing SVM in predicting GBS host (Fig. 2b). Specifically, 
the F1 score for both RF and LR models, reached 0.98, while the SVM 
was 0.86 for human prediction (Table S2). 

On the other hand, it’s essential to consider the potential for model 
overfitting. To address this concern, we conducted model calibration 
plots to see the difference between predicted and true probabilities. Due 

to the complexity of multiclassification models, our results vary widely 
in each class label (Fig. S1). In general, the results remain acceptable. 
Overall, RF and LR models consistently demonstrated accurate predic-
tion of GBS hosts on both the training and test datasets. 

3.3. Analysis of feature contributions by Shapley values 

Feature importance scores are commonly calculated as one of the 
metrics to explain the impact of features on model performance, which 
provides the global contribution of features to model output. However, 
they often lack granularity, providing no insight into the impact on in-
dividual observations or impact of positive/negative direction [42–45]. 
Shapley Additive exPlanations (SHAP) presents a solution to this limi-
tation [30]. SHAP values can explain the contribution of each feature to 
the model output at both the global dataset and at the per-sample level, 
and can also provide the positive or negative impact of each feature on 
the model [30]. Thus, to delve deeper into the interpretations of our 
top-performing models (RF and LR), we computed the SHAP values on 
the test dataset. We identified the 20 most influential features with the 
highest average SHAP values for both RF and LR models across all host 
classes (Fig. 3a and b). Notably, the impact of features can vary across 
different host classes. Hence, we further computed the SHAP value on 
each data point for each host class of both models (Fig. 3c and d). In the 
distribution plots, the Y-axis in the distribution plots shows the 20 

Fig. 2. Performance of ML models (RF, LR, SVM) for predicting GBS hosts. a Models performance on the training dataset as defined by accuracy, AUC of ROC, Kappa, 
F1 score, Precision, Recall, Sensitivity, and Specificity. b The predictive performance of ML models (RF, LR, and SVM from left to right) for each host was evaluated 
on the test dataset using metrics such as F1 score, Precision, Recall, Sensitivity, and Specificity. Statistical comparisons were performed using the Wilcoxon test. *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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features exerting the highest influence on predictions for each host class. 
Meanwhile, the X-axis illustrates the positive and negative influence of 
feature values’ magnitude (from blue to red, representing low feature 
values to high feature values according to the color bar on the right). In 
summary, this analysis discerned the most influential features for the 
overall GBS host classification and identified distinct influential features 
for each host class within RF and LR models. 

Further insight into GBS transmission among hosts through 
misclassification analysis. 

On the test data, our RF model misclassified six samples, while the LR 
model misclassified five samples, with an overlap of five misclassified 
samples between the two models. The true and predicted labels for these 
samples are detailed in Table 2. Notably, five samples (Fish1, Pig, 
Bovine1, Bovine2, Fish2) were misclassified as Human, while one 

Fig. 3. Quantification of feature impact on RF and LR model predictions by analyzing SHAP values. a-b The average impact of the SNPs on hosts classification for RF 
(a) and LR (b) models based on mean SHAP value. The Y-axis indicates the 20 most influential SNPs, and the number is the position of SNP. The X-axis indicates the 
average impact of each SNP on the RF model output magnitude, and the color bar indicates the category of the host. c-d Impact of the 20 most influential SNPs of RF 
(c) and LR (d) models on each of the four hosts. The scatter plot shows the distribution of SHAP values in all test samples. Y-axis indicates top 20 influential SNPs, and 
the number is the position of SNPs. The colors of the scatter plot indicate the feature value, from blue to red, representing low feature values to high feature values 
according to the color bar on the right. 
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(Human) was misclassified as Pig. 
To explore the potential for horizontal interspecies transmission 

underlying these misclassifications, we conducted a correlation analysis 
on these six misclassified samples. We observed a strong correlation 
between human and pig samples, with a coefficient of 0.91 (Fig. 4a). 
Additionally, a notable correlation of 0.71 was found between Bovine2 
and Fish2 samples (Fig. 4a). We also analyzed the phylogenetic 

relationships between them based on mutation variants. The results 
showed that samples Human and Pig have a close evolutionary rela-
tionship, as well as the samples Bovine2 and Fish2 (Fig. 4b). These re-
sults suggest high similarity of variants information in the samples 
Bovine, Fish, and Pig. It is possible that certain variants result in inter- 
host-species transmission between fish and bovine, as well as pigs and 
human. 

Samples (Fish1, Pig, Bovine1, Bovine2, Human) were misclassified 
by both RF and LR models. The sample (Fish2) was misclassified by the 
RF model. 

Hence, to further determine which features had a greater impact on 
the misclassified samples, we calculated the Shapley values in each 
misclassified sample for both RF (Fig. 5) and LR models (Fig. 6). 

3.4. Annotation of potentially influential variants 

Based on our findings, we identified a total of 109 SNPs that could 

Table 2 
True and predicted class of misclassified samples.  

Sample ID Truth Prediction 

Fish1 Fish Human 
Pig Pig Human 
Bovine1 Bovine Human 
Bovine2 Bovine Human 
Fish2 Fish Human 
Human Human Pig  

Fig. 4. Analysis of misclassification samples. a Correlations among all misclassified samples. b Phylogenetic tree of all misclassified samples. Node labels are based 
on true labels. The labels in the right panel are the results of the false predictions from RF and LR models. Some icons were created with BioRender.com. 
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potentially influence GBS host classification or interspecies trans-
mission. We then analyzed the functional implications of these SNPs 
using VEP annotation tools (for details see Methods). This analysis 
yielded 1110 annotations for the 109 SNPs (Table S3), including various 
types such as upstream and downstream gene variants, synonymous 
variants, missense variants, and coding sequence variants, which ac-
count for 47.58 %, 44.95%, 4.77%, 2.34%, 0.36%, respectively (Fig. 7a). 

To focus our investigation, we retained only the SNPs located within 
genes, excluding those annotated upstream or downstream. The filtered 
list comprised synonymous variants, missense variants, and coding 
sequence variants, accounting for 60.00%, 33.00%, and 7.00%, 
respectively (as depicted in Fig. 7a). Additionally, we examined the 
transition and transversion percentages among the filtered variants, 
with C > T and T > C transitions representing a larger proportion (as 
indicated in Fig. 7b). 

Furthermore, we specifically analyzed the missense variants and 
visualized their distribution across genes using an oncoplot (as shown in 
Fig. 7c), providing insight into their relevance within each classification 
category. 

4. Discussion and conclusions 

Host prediction provides cues to the initial contact point for local 
outbreaks in an effort to contain the spread within the broader com-
munity. However, unlike some bacteria like Staphylococcus aureus, 

where specific associations between hosts and STs are well-documented, 
such information is relatively limited for GBS. ML methods for host 
prediction have been more established and documented for parasites 
and viruses [46–51]. In this study, we employed three ML models (RF, 
LR, and SVM) based on genome-wide mutations to predict GBS hosts, 
achieving high accuracy, especially with RF and LR models, reaching the 
accuracies of 0.97 ± 0.003 and 0.95 ± 0.004, respectively. Our methods 
overcome the limitations of classification based on molecular charac-
teristics, such as ST, CC, and capsular serotypes [52]. Moreover, we 
provided the most influential SNPs for predicting GBS hosts and related 
genes of these SNPs. In future studies, we can experimentally validate 
these most influential SNPs and genes and then design rapid detection 
kits for rapid detection and timely control of the spread of GBS. This 
prediction could also deduce host dependency factors and host-pathogen 
protein interactions, which can be used as targets for rapid detection 
tests [53,54]. 

Additionally, the zoonotic potential of the bacteria has been 
demonstrated in previous outbreaks in the community and fish farms 
[11,55]. Our analysis of misclassified samples also revealed possible 
cross-species transmission between humans and fish, bovine, and pigs. 
On the other hand, these findings may also indicate human-animal 
contact which may have contracted the bacteria and lead to zoonosis. 
This is in line with a previous GWAS study indicating certain GBS 
lineage exhibit host-specificity, while some may be host generalists, in 
which the latter may have a possibility of recombination with other host 

Fig. 5. SNPs impact of RF model on hosts classification in each misclassified sample. a-f Impact of the 20 most influential SNPs of RF model in misclassified samples 
including Fish1 (a), Human (b), Pig (c), Bovine1 (d), Bovine2 (e), and Fish2 (f). 
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strains [41]. Moreover, Crestani et al. [41] reported that adaptation of 
GBS in humans, bovine, and fish was associated with C5a-peptidase 
(scpB, SAG1594), we also identified one mutant locus 1596332 anno-
tated as an upstream variant of scpB (SAG1594, see in Table S3). Our 
results indicated that this mutation significantly influences the classifi-
cation of human and fish (Fig. 3d). Additionally, it is a critical locus for 
the misclassification between pig and human (Fig. 6b and c), as well as 
between bovine and human (Fig. 6d and e). 

With our model, we are able to deduce host source of GBS strains, 
which could, in turn, thereby facilitating investigative efforts in public 
health and enabling the implementation of control measures from a One 
Health perspective. Furthermore, this approach can elucidate zoonotic 
characteristics of GBS and shed light on potential instances of reverse 
zoonosis within the evolutionary trajectory of the GBS population. 

A extended application of our models on GBS host prediction also 

includes the selection of appropriate antibiotics therapy, thus circum-
venting antibiotic resistance if the host source is known. Importantly, 
rigorous laboratory testing is necessary to further explore the potential 
and limitations of this approach for host prediction, especially for 
generalized application in public health. 

In summary, we have developed three ML models (RF, LR, and SVM) 
to predict the broad host origin of GBS. Among them, RF and LR models 
were demonstrated to be robust and effective. Furthermore, the ML 
interpretability analysis of these models provided valuable insights into 
the contribution of different features, offering a diverse range of targets 
with potential applications. Our study greatly enhances the ability to 
track potential GBS hosts, enabling more targeted field sampling for 
specific host species and optimized surveillance. This approach helps to 
recognize and distinguish between our reservoir of GBS in the human 
and animal host, and implement measures that may prevent the spread 

Fig. 6. SNPs impact of LR model on hosts classification in each misclassified sample. a-e Impact of the 20 most influential SNPs of RF model in misclassified samples 
including Fish1 (a), Human (b), Pig (c), Bovine1 (d), and Bovine2 (e). 

Y. Ren et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 171 (2024) 108185

10

of GBS between humans and animals, thereby reducing public health 
risks. 
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[7] A. Navarro-Torné, D. Curcio, J.C. Moïsi, L. Jodar, Burden of invasive group B 
Streptococcus disease in non-pregnant adults: a systematic review and meta- 
analysis, PLoS One 16 (2021) e0258030, https://doi.org/10.1371/journal. 
pone.0258030. 

[8] D.N. Sapugahawatte, C. Li, P. Dharmaratne, C. Zhu, Y.K. Yeoh, J. Yang, N.W.S. Lo, 
K.T. Wong, M. Ip, Prevalence and characteristics of Streptococcus agalactiae from 
freshwater fish and pork in Hong Kong wet markets, Antibiotics 11 (2022) 397, 
https://doi.org/10.3390/antibiotics11030397. 

[9] K.A. Anderson, A.M. Schaefer, C.D. Rice, Quantifying circulating antibody 
activities against the emerging environmental pathogen, Streptococcus agalactiae, 
in wild captured bull sharks, spotted eagle rays, bottlenose dolphins, and 
loggerhead turtles, Fish Shellfish Immunol. Rep. 2 (2021) 100024, https://doi.org/ 
10.1016/j.fsirep.2021.100024. 

[10] L.C. Simões, F.G. Fernandes, I.C.M. de Oliveira, A.B. de Almeida Corrêa, N.S. Costa, 
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