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A B S T R A C T

We show that positively associated squared (and absolute-valued) multivariate normally dis-
tributed random vectors need not be multivariate totally positive of order 2 (MTP2) for 𝑝 ≥
3. This result disproves Theorem 1 in Eisenbaum (2014, Ann. Probab.) and the conjecture
that positive association of squared multivariate normals is equivalent to MTP2 and infinite
divisibility of squared multivariate normals. Among others, we show that there exist absolute-
valued multivariate normals which are conditionally increasing in sequence (CIS) (or weakly
CIS (WCIS)) and hence positively associated but not MTP2. Moreover, we show that there
exist absolute-valued multivariate normals which are positively associated but not CIS. As
a by-product, we obtain necessary conditions for CIS and WCIS of absolute normals. We
illustrate these conditions in some examples. With respect to implications and applications of
our results, we show PA beyond MTP2 for some related multivariate distributions (chi-square,
𝑡, skew normal) and refer to possible conservative multiple test procedures and conservative
simultaneous confidence bounds. Finally, we obtain the validity of the strong form of Gaussian
product inequalities beyond MTP2.

. Introduction

We are concerned with the question which squared (and absolute-valued) Gaussian random vectors are positively associated
PA). The notion of positive association of random variables was introduced by Esary, Proschan and Walkup in 1967, see [11]. In
000, Joseph Glaz stated that it is still an open problem to characterize when |𝑋| = (|𝑋1|,… , |𝑋𝑝|)𝖳 is PA, if 𝑋 = (𝑋1,… , 𝑋𝑝)𝖳

as a multivariate normal distribution, see the remark following Theorem 2.2.2 in [14]. In 2014, Theorem 1 in [9] claimed that a
quared centered Gaussian vector is PA if and only if (iff) it is infinitely divisible. Unfortunately, we found that the proof fails and
ll our attempts to deliver a correct proof failed, too. Finally, doubt came up that positive association is as restrictive as infinite
ivisibility and MTP2. In this note we show that there exist positively associated absolute-valued (or squared) multivariate normally
istributed random vectors which are not multivariate totally positive of order 2 (MTP2). Hence, there exist positively associated
quared centered Gaussians which are not infinitely divisible. Consequently, Theorem 1 in [9] is false. Based on our findings, N.
isenbaum published an Erratum, see [10].

The paper is organized as follows. In Section 1, we first introduce some dependence concepts relevant for this paper. Then we
ive a brief summary of previous results and facts related to these concepts. In Section 3 the main results of this paper are presented
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in Theorem 1, Lemma 1, Theorem 2 and Theorem 3. The key step is Lemma 1. It states that for 𝑝 = 3 there exists absolute-valued
multivariate normals |𝑋| = (|𝑋1|, |𝑋2|, |𝑋3|)𝖳 which are conditionally increasing in sequence (CIS) but not MTP2 iff the underlying
covariance matrix satisfies a certain condition. This lemma is proved in Section 4. Theorem 1 is a consequence of Lemma 1 and
gives a condition on the covariance matrix of 𝑋 for 𝑝 = 3 such that |𝑋| is PA but not MTP2. Based on Theorems 1, 2 and its short
(constructive) proof yields positive definite covariance matrices for any 𝑝 ≥ 4 such that the corresponding |𝑋| is PA but not MTP2.
Finally, Theorem 3 tells us that for 𝑝 ≥ 4 the existence of a CIS sequence is not necessary for |𝑋| to be PA. Section 5 gives some
necessary conditions which may serve as a quick check whether CIS or WCIS is possible. In this context, we briefly discuss three
examples for 𝑝 ≥ 4. In the concluding remarks in Section 6 we briefly discuss some implications and applications with respect to the
class 𝑝 (say) of covariance matrices for which |𝑋| is PA. Thereby we discuss PA beyond MTP2 with respect to 𝑝 for some related
distributions, that is, a specific multivariate chi-square distribution, a specific multivariate 𝑡-distribution and some multivariate
skew normal distributions. Moreover, we refer to possible applications with respect to conservative multiple test procedures and
conservative simultaneous confidence bounds. Finally, we obtain the validity of the strong form of Gaussian product inequalities
beyond MTP2.

2. Definitions and previous results

We first introduce some concepts of positive dependence. Let N𝑝 = {1,… , 𝑝} for 𝑝 ∈ N. A vector 𝑋 = (𝑋1,… , 𝑋𝑝)𝖳 of real-valued
random variables is said to be

• multivariate totally positive of order 2 (MTP2) if it has a probability density 𝑓 (say) with respect to a product of 𝜎-finite
measures on R that satisfies

𝑓 (𝑥 ∨ 𝑦)𝑓 (𝑥 ∧ 𝑦) ≥ 𝑓 (𝑥)𝑓 (𝑦) for all 𝑥, 𝑦 ∈ R𝑝

with 𝑥 ∧ 𝑦 = (min(𝑥1, 𝑦1),… ,min(𝑥𝑝, 𝑦𝑝))𝖳, 𝑥 ∨ 𝑦 = (max(𝑥1, 𝑦1),… ,max(𝑥𝑝, 𝑦𝑝))𝖳.
• conditionally increasing in sequence (CIS) if

P(𝑋𝑖+1 > 𝑥𝑖+1|𝑋1 = 𝑥1,… , 𝑋𝑖 = 𝑥𝑖)

is non-decreasing in (𝑥1,… , 𝑥𝑖)𝖳 for all 𝑖 ∈ N𝑝−1 and 𝑥𝑝 ∈ R.
• weakly conditionally increasing in sequence (WCIS) if

E(ℎ(𝑋𝑖+1,… , 𝑋𝑝)|𝑋1 = 𝑥1,… , 𝑋𝑖−1 = 𝑥𝑖−1, 𝑋𝑖 = 𝑥∗𝑖 )

is non-decreasing in 𝑥∗𝑖 for all (𝑥1,… , 𝑥𝑖−1)𝖳 and all non-decreasing (measurable) functions ℎ ∶ R𝑝−𝑖 → R for 𝑖 ∈ N𝑝−1.
• positively associated (PA) if

Cov[𝑓 (𝑋), 𝑔(𝑋)] ≥ 0

for all pairs (𝑓, 𝑔) of componentwise non-decreasing (measurable) functions (or for all pairs (𝑓, 𝑔) of componentwise
non-increasing (measurable) functions) 𝑓 and 𝑔 for which E[𝑓 (𝑋)], E[𝑔(𝑋)] and E[𝑓 (𝑋)𝑔(𝑋)] are finite.

• setwise (or strongly) positive lower orthant dependent (SPLOD) if

P(𝑋𝑖 ≤ 𝑐𝑖 ∀𝑖 ∈ N𝑝) ≥
𝑠

∏

𝑟=1
P(𝑋𝑗 ≤ 𝑐𝑗 ∀𝑗 ∈ 𝐽𝑟) (1)

for all 𝑐𝑖 ∈ R, 𝑖 ∈ N𝑝, and, for all choices of 𝑠 ∈ {2,… , 𝑝} pairwise disjoint non-empty sets 𝐽𝑟 ⊂ N𝑝 with ∑𝑠
𝑟=1 𝐽𝑟 = N𝑝. For

𝐽𝑟 = {𝑟} ∀𝑟, (1) means PLOD.
• setwise (or strongly) positive upper orthant dependent (SPUOD) if

P(𝑋𝑖 ≥ 𝑐𝑖 ∀𝑖 ∈ N𝑝) ≥
𝑠

∏

𝑟=1
P(𝑋𝑗 ≥ 𝑐𝑗 ∀𝑗 ∈ 𝐽𝑟) (2)

for all 𝑐𝑖 ∈ R, 𝑖 ∈ N𝑝, and, for all choices of 𝑠 ∈ {2,… , 𝑝} pairwise disjoint non-empty sets 𝐽𝑟 ⊂ N𝑝 with ∑𝑠
𝑟=1 𝐽𝑟 = N𝑝. For

𝐽𝑟 = {𝑟} ∀𝑟, (2) means PUOD.
• one-two dependent (OTD) if the one-two inequality applies, that is, if

P(
𝑝
⋂

𝑖=1
{𝑐𝑖 ≤ 𝑋𝑖 ≤ 𝑑𝑖}) ≤ P(

𝑝
⋂

𝑖=1
{𝑋𝑖 ≥ 𝑐𝑖})P(

𝑝
⋂

𝑖=1
{𝑋𝑖 ≤ 𝑑𝑖})

for all 𝑐𝑖 ≤ 𝑑𝑖, 𝑖 ∈ N𝑝.
• (strictly) positively correlated ((S)PC) if Cov(𝑋𝑖, 𝑋𝑗 ) ≥ (>) 0 for all 𝑖, 𝑗 ∈ N𝑝 with 𝑖 ≠ 𝑗.

he following implications are well-known, that is,
(a) MTP2 ⇒ CIS ⇒ WCIS ⇒ PA ⇒ SPUOD, SPLOD,
(b) SPUOD ⇒ PUOD ⇒ PC,
2

(c) SPLOD ⇒ PLOD ⇒ PC,
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where the first implication in (a) requires positive densities throughout the domain of definition. Moreover, we have PA ⇒ OTD ⇒
PLOD, PUOD, see the recent paper [13].

In this note, we focus on centered multivariate normally distributed random variables 𝑋 = (𝑋1,… , 𝑋𝑝)𝖳 with some covariance
matrix 𝛴 (in symbols, 𝑋 ∼ 𝑁𝑝(0, 𝛴)). Thereby, 𝛴 is said to be irreducible if there does not exist any partitioning (𝑋𝐽 , 𝑋𝐾 ) of 𝑋
such that 𝑋𝐽 , 𝑋𝐾 are stochastically independent. In connection with MTP2 it is always assumed that 𝛴 is positive definite. The
most celebrated results with respect to characterizations of MTP2 of |𝑋| (and hence 𝑋2) were obtained around 1980. Important
references are [6,19–22], and, [31]. We briefly list the most important facts. Thereby, let 𝑝 denote the set of all 𝑝-dimensional
signature matrices, that is, diagonal matrices 𝐷 with diagonal entries ±1.

(a) |𝑋| is MTP2 iff there exists a 𝐷 ∈ 𝑝 such that 𝐷𝛴−1𝐷 is an M-matrix (that is, all off-diagonal elements of 𝐷𝛴−1𝐷 are
non-positive).

(b) |𝑋| is MTP2 iff 𝑋 is PPC, that is, iff all partial covariances 𝜎𝑖𝑗⋅ = Cov(𝑋𝑖, 𝑋𝑗 |𝑋𝑘, 𝑘 ∈ 𝐼𝑖𝑗 ) with 𝐼𝑖𝑗 = N𝑝 ⧵ {𝑖, 𝑗}, 𝑖 < 𝑗, are
non-negative.

(c) |𝑋| is MTP2 iff 𝑋2 is infinitely divisible, see [4].
(d) If |𝑋| is MTP2, then |𝑋| is PA.
(e) 𝑋 is MTP2 iff 𝛴−1 is an M-matrix.
(f) Already 1971, Šidák (see pp. 171–172 in [35]) showed that |𝑋| is not always PUOD even if 𝑋 is SPC, see also [36], Example

2.3.1, pp. 27–28. Consequently, SPC of 𝑋 is not sufficient for PA of |𝑋|. This example already contradicts the (false) conjecture
formulated much later by Evans in 1991 (see [12]) that PA of 𝑋2 is equivalent to PC of 𝐷𝑋 for some 𝐷 ∈ 𝑝.

(g) If 𝑋 is MTP2 and if 𝛴 is irreducible, then 𝑋 is SPC. Surprisingly, this important fact is rarely mentioned in connection with
MTP2 in the statistical literature. It is an immediate consequence of a well-known result on M-matrices, that is, an irreducible
M-matrix is strictly inverse positive, see, e.g., [5], Theorem 2.7 on p. 141.

(h) The validity of the famous Gaussian correlation conjecture (proved by Thomas Royen, see [30]) implies that |𝑋| is always
SPLOD. More striking, SPLOD of |𝑋| is equivalent to the validity of the Gaussian correlation conjecture, see, e.g., [34].

(i) In 1982, Pitt proved that 𝑋 itself is PA iff 𝑋 is PC, see [28]. Extensions of this result can be found in [15]. At the same time,
based on lengthy, straightforward calculations (unpublished), E. Bølviken gave a general counterexample for 𝑝 = 3 showing that
PC of 𝐷𝑋 for some 𝐷 ∈ 𝑝 is necessary for SPUOD (and hence for PA) of |𝑋|, see [6]. Some speculations in [6] suggest that
Bølviken had some doubt that SPUOD of |𝑋| is possible without requiring that all partial covariances are non-negative.

(j) We were able to sharpen Bølviken’s result and to extend it to all 𝑝 ≥ 3: If 𝛴 is positive definite and irreducible, then SPUOD
(and especially PA) of |𝑋| implies SPC of 𝐷𝑋 for some 𝐷 ∈ 𝑝. We will report on this elsewhere.

(k) It seems unknown yet whether PC of 𝐷𝑋 for some 𝐷 ∈ 𝑝 is necessary for PUOD of |𝑋|.
(𝓁) Theorem 3.1 in [16] together with a weak convergence argument for degenerate cases yields the following. Let 𝑍𝑖 ∼ 𝑁(0, 𝜎2𝑖 ),

𝜎𝑖 ≥ 0, 𝑖 ∈ N𝑝, be independently distributed, and, let 𝑋 = (𝑋1,… , 𝑋𝑝)𝖳 be independent of 𝑍 = (𝑍1,… , 𝑍𝑝)𝖳. If |𝑋| is associated,
then |𝑋 +𝑍| is associated. We refer to this fact as Jogdeo’s PA construction.

(m) For 𝑝 = 2, |𝑋| is always PA, and, if 𝛴 is positive definite, |𝑋| is MTP2.

Finally, we note that absolute-valued multivariate normal distributions are often denoted as folded multivariate normal
distributions as well as multivariate folded normal distributions, see, e.g., [18] and the references therein. Supposing that 𝑋 ∼
𝑁𝑝(0, 𝛴) with positive definite 𝛴, a continuous version of the probability density function of |𝑋| = (|𝑋1|,… , |𝑋𝑝|)𝖳 on [0,∞)𝑝 in
erms of on 𝛴−1 = (𝑘𝑖𝑗 ) is given by

𝑓 (𝑦1,… , 𝑦𝑝) = (2𝜋)−𝑝∕2|𝛴|

−1∕2
∑

𝛿∈𝛥𝑝

exp

(

−1
2

𝑝
∑

𝑖=1
𝑘𝑖𝑖𝑦

2
𝑖 −

∑

1≤𝑖<𝑗≤𝑝
𝑘𝑖𝑗𝛿𝑖𝛿𝑗𝑦𝑖𝑦𝑗

)

with 𝛥𝑝 = {(𝛿1,… , 𝛿𝑝)𝖳 ∶ 𝛿𝑖 ∈ {0, 1}, 𝑖 ∈ N𝑝}.

3. The main results

Firstly, we are concerned with the study of non-degenerate absolute-valued, trivariate normal random vectors which are not
MTP2. According to Theorem 3.1 in [1] such random vectors are characterized by the positivity of the product of the three upper
off-diagonal elements of the inverse covariance matrices of their underlying normal random vectors. Hence, it is easily verified
that in order to treat properties of these absolute-valued random vectors like CIS, WCIS, PA etc., it suffices to restrict attention to
covariance matrices as considered in the following theorem.

Theorem 1. Let 𝑋 ∼ 𝑁3(0, 𝛴) with 𝛴 positive definite such that

𝛴−1 =
⎡

⎢

⎢

⎣

1 𝑘12 −𝑘13
𝑘12 1 −𝑘23
−𝑘13 −𝑘23 1

⎤

⎥

⎥

⎦

and 0 < 𝑘12, 𝑘13, 𝑘23 < 1. Let 𝜏 = 𝑘12∕(𝑘13𝑘23). If

0 < 𝜏 ≤ 1∕2, (3)

then |𝑋| and 𝑋2 are PA but not MTP .
3

2
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Theorem 1 is a consequence of the following lemma.

emma 1. Under the general assumptions of Theorem 1, (|𝑋1|, |𝑋2|, |𝑋3|)𝖳 is CIS iff (3) applies.

emark 1. Under the general assumptions of Theorem 1 we have that 𝛴 is SPC iff 0 < 𝜏 < 1, and, 𝛴 is positive definite iff
1∕𝑘213 − 1)(1∕𝑘223 − 1) > (1 − 𝜏)2. It is an open question whether |𝑋| and 𝑋2 are PA for some 𝜏 ∈ (1∕2, 1).

Remark 2. Theorem 1 can be reformulated in terms of the entries of the original covariance matrix 𝛴. To this end, let 𝑋 ∼ 𝑁3(0, 𝛴)
with 𝛴 positive definite such that

𝛴 =
⎡

⎢

⎢

⎣

1 𝜎12 𝜎13
𝜎12 1 𝜎23
𝜎13 𝜎23 1

⎤

⎥

⎥

⎦

with 0 < 𝜎12, 𝜎13, 𝜎23 < 1 and 𝜎12 < 𝜎13𝜎23. Then (|𝑋1|, |𝑋2|, |𝑋3|)𝖳 is CIS iff

2(𝜎12 − 𝜎13𝜎23)(1 − 𝜎212) + (𝜎13 − 𝜎12𝜎23)(𝜎23 − 𝜎13𝜎12) ≥ 0. (4)

It can be shown that for given values of 𝜎13, 𝜎23 ∈ (0, 1) there exist threshold values 𝑎0 ∈ [0, 𝜎13𝜎23) and 𝑎1 ∈ (𝑎0, 𝜎13𝜎23) such that 𝛴
is positive definite for all 𝜎12 ∈ (𝑎0, 𝜎13𝜎23) and condition (4) holds for all 𝜎12 ∈ [𝑎1, 𝜎13𝜎23), whereas for all 𝜎12 ∈ (0, 𝑎1) condition (4)
is not fulfilled. For example, for 𝜎13 = 𝜎23 = 7∕10 we get 𝑎1 = (

√

42009 − 53)∕400 = 0.3799…. In the latter case, |𝑋| is CIS but not
MTP2 for 𝜎12 ∈ [𝑎0, 0.49).

Remark 3. Cohen and Sackrowitz, see [7], showed that CIS ⇒ WCIS ⇒ PA. They also showed that very simple criteria in terms
of conditional means suffice to characterize CIS or WCIS of 𝑋 ∼ 𝑁𝑝(0, 𝛴). For 𝑝 = 3, it can be shown that CIS can be replaced by
WCIS in Lemma 1 because the argumentation following (6) in Section 4 also applies for WCIS. For 𝑝 ≥ 4 we are not aware of any
simple criteria characterizing CIS or WCIS of |𝑋|.

Mainly based on Theorem 1 we have the following two general results for 𝑝 ≥ 4.

Theorem 2. For any 𝑝 ≥ 4 there exists a positive definite SPC covariance matrix 𝛴 such that |𝑋|, assuming 𝑋 = (𝑋1,… , 𝑋𝑝)𝖳 ∼ 𝑁𝑝(0, 𝛴),
is PA but not MTP2.

Proof. The assertion follows immediately by combining Theorem 1 and Jogdeo’s PA construction. First, let
(𝑋1, 𝑋2, 𝑋3)𝖳 ∼ 𝑁3(0, 𝛴) with 𝛴 positive definite and SPC such that (|𝑋1|, |𝑋2|, |𝑋3|)𝖳 is PA but not MTP2. Note that the 𝑝-variate
vector (|𝑋1|, |𝑋2|, |𝑋3|,… , |𝑋3|)𝖳 is PA, too. For 𝑝 ≥ 4, let (𝑋1, 𝑋2, 𝑋3)𝖳, 𝑍𝑗 ∼ 𝑁(0, 1), 𝑗 ∈ {4,… , 𝑝}, be independently distributed
and define 𝑋𝑗 = 𝑋3 +𝑍𝑗 for 𝑗 ∈ {4,… , 𝑝}. Then Jogdeo’s PA construction yields that (|𝑋1|,… , |𝑋𝑝|)𝖳 is PA. But (|𝑋1|, |𝑋2|, |𝑋3|)𝖳 is
not MTP2, hence (|𝑋1|,… , |𝑋𝑝|)𝖳 is not MTP2. Clearly, the covariance matrix of (𝑋1,… , 𝑋𝑝)𝖳 is SPC and positive definite. □

Theorem 3. For any 𝑝 ≥ 4 there exists a positive definite SPC covariance matrix 𝛴 such that |𝑋|, assuming 𝑋 = (𝑋1,… , 𝑋𝑝)𝖳 ∼ 𝑁𝑝(0, 𝛴),
is PA but no permutation of (|𝑋1|,… , |𝑋𝑝|)𝖳 is CIS.

Proof. Let 𝑌 = (𝑌1, 𝑌2, 𝑌3)𝖳 ∼ 𝑁3(0, 𝛤 ) with

𝛤 =
⎡

⎢

⎢

⎣

1 0.4 0.7
0.4 1 0.7
0.7 0.7 1

⎤

⎥

⎥

⎦

.

Theorem 1 yields that |𝑌 | is PA but not MTP2. Now let 𝑝 ≥ 4 and 𝑌 , 𝑍𝑗 ∼ 𝑁(0, 1∕10), 𝑗 ∈ N𝑝, be independently distributed and
define 𝑌𝑗 = 𝑌3, 𝑗 ∈ {4,… , 𝑝}, and, 𝑋𝑗 =

√

10∕11(𝑌𝑗 +𝑍𝑗 ) for 𝑗 ∈ N𝑝. Then Jogdeo’s PA construction yields that (|𝑋1|,… , |𝑋𝑝|)𝖳 is PA.
he covariance matrix 𝛴 = (𝜎𝑖𝑗 ) is a correlation matrix with entries 𝜎12 = 4∕11, 𝜎𝑖𝑗 = 7∕11 for 𝑗 ∈ {3,… , 𝑝}, 𝑖 ∈ N2, and, 𝜎𝑖𝑗 = 10∕11
or 𝑗 ∈ {𝑖 + 1,… , 𝑝 − 1}, 𝑖 ∈ {3,… , 𝑝}. For example, for 𝑝 = 4 we obtain

Cov(𝑋) = 1
11

⎡

⎢

⎢

⎢

⎢

⎣

11 4 7 7
4 11 7 7
7 7 11 10
7 7 10 11

⎤

⎥

⎥

⎥

⎥

⎦

.

Replacing 4∕11, 7∕11, 10∕11 by 𝑎, 𝑏, 𝑐 in the correlation matrix 𝛴 of (𝑋1,… , 𝑋𝑝)𝖳 and setting

𝑑 = |𝛴| = (1 − 𝑐)𝑝−3(1 − 𝑎)((𝑝 − 3)𝑎𝑐 − (2𝑝 − 4)𝑏2 + 𝑎 + (𝑝 − 3)𝑐 + 1)
4

𝑝
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and 𝐵 = (𝑏𝑖𝑗 ) = 𝑑𝑝𝛴−1∕(1 − 𝑐)𝑝−4 we get

𝑏11 = 𝑏22 = (1 − 𝑐)[1 + (𝑝 − 3)𝑐 − (𝑝 − 2)𝑏2] = (61𝑝 − 111)∕1331,
𝑏12 = 𝑏21 = (1 − 𝑐)[(𝑝 − 2)𝑏2 − (𝑝 − 3)𝑎𝑐 − 𝑎] = (9𝑝 − 22)∕1331,

𝑏𝑖𝑖 = −((𝑝 − 4)𝑐 + 1)𝑎2 − 2(𝑝 − 3)𝑏2(1 − 𝑎) + (𝑝 − 4)𝑐 + 1 = (364𝑝 − 987)∕1331, 𝑖 ∈ {3,… , 𝑝},
𝑏𝑖𝑗 = 𝑏𝑗𝑖 = −(1 − 𝑐)(𝑏(1 − 𝑎)) = −49∕1331, 𝑖 ∈ N2, 𝑗 ∈ {3,… , 𝑝},
𝑏𝑖𝑗 = 𝑏𝑗𝑖 = −(1 − 𝑎)(𝑐(1 + 𝑎) − 2𝑏2) = −364∕1331, 𝑖, 𝑗 ∈ {3,… , 𝑝}, 𝑖 < 𝑗.

Obviously, 𝑏12 > 0 for 𝑝 ≥ 3. Hence, 𝛴−1 is not an M-matrix and (|𝑋1|,… , |𝑋𝑝|)𝖳 is not MTP2.
Now let (|𝑋𝑖1 |,… , |𝑋𝑖𝑝 |)

𝖳 denote a permutation of (|𝑋1|,… , |𝑋𝑝|)𝖳. We consider two cases, that is, (I) 𝑖𝑝 ∉ N2, and, 𝑖𝑝 ∈ N2.
By symmetry considerations, it suffices to consider (|𝑋1|,… , |𝑋𝑝|)𝖳 in case (I) and (|𝑋2|,… , |𝑋𝑝|, |𝑋1|)𝖳 in case (II). If these two
configurations are not CIS, then all permutations are not CIS. We show that in both cases the CIS condition (8) developed in Section 5
is violated. In case (I) we obtain

sgn(𝑏1𝑝𝑏2𝑝(2𝑏12𝑏𝑝𝑝 − 𝑏1𝑝𝑏2𝑝)) =
6552

1771561
𝑝2 − 33782

1771561
𝑝 + 41027

1771561
> 0, 𝑝 ≥ 4,

here sgn(⋅) denotes the signum function. Hence, the CIS condition (8) developed in Section 5 is violated. Consequently,
|𝑋1|,… , |𝑋𝑝|)𝖳 is not CIS for 𝑝 ≥ 4. In case (II), let 𝛴̃ denote the covariance matrix of (𝑋2,… , 𝑋𝑝, 𝑋1)𝖳 and let 𝐵̃ = (𝑏̃𝑖𝑗 ) =
𝑝𝛴̃−1∕(1 − 𝑐)𝑝−4. Note that 𝐵̃ can be obtained as a permutation of 𝐵. In this case we obtain

sgn(𝑏̃1𝑝𝑏̃2𝑝(2𝑏̃12𝑏̃𝑝𝑝 − 𝑏̃1𝑝𝑏̃2𝑝)) = sgn(𝑏21𝑏31(2𝑏23𝑏11 − 𝑏21𝑏31)) =
5537

1771561
𝑝 − 9800

1771561
> 0, 𝑝 ≥ 4.

ence again, the CIS condition (8) developed in Section 5 is violated. Consequently, (|𝑋2|,… , |𝑋𝑝|, |𝑋1|)𝖳 is not CIS for 𝑝 ≥ 4. This
ompletes the proof. □

emark 4. It remains an open problem whether CIS in Theorem 3 can be replaced by WCIS. Application of the Quick WCIS Check
see Lemma 4 in Section 5) yields that |𝑋| = (|𝑋1|,… , |𝑋4|)𝖳 in the proof of Theorem 3 passes this check, that is, (10) is satisfied
n this case. We found no numerical evidence that |𝑋| is not WCIS. The general problem with WCIS is that it is typically as difficult
o prove as PA in terms of the corresponding definitions. We also tried some other starting PA covariance matrices for 𝑝 = 3 but
ound no example where the construction in the proof of Theorem 3 leads to 4-dimensional |𝑋| such that the Quick WCIS Check
ejects WCIS for all permutations.

emark 5. The construction in the proof of Theorem 3 does not work for 𝑝 = 3. Starting with a two-dimensional 𝑌 ∼ 𝑁2(0, 𝛤 )
ith 𝛤 positive definite and SPC yields that |𝑌 | is MTP2. Assume that 𝑌 and 𝑍𝑗 ∼ 𝑁(0, 𝜎2𝑖 ), 𝑗 ∈ N3, are independently distributed
ith 𝜎23 > 0 and define 𝑌3 = 𝑌2 and 𝑋𝑗 = 𝑌𝑗 + 𝑍𝑗 for 𝑗 ∈ N3. Then the inverse of the covariance matrix of 𝑋 = (𝑋1, 𝑋2, 𝑋3)𝖳 is an
-matrix, that is, |𝑋| is MTP2 and hence all permutations of |𝑋| are CIS.

. Proof of Lemma 1

We found that the notational effort simplifies by considering

(𝑈1, 𝑈2, 𝑍)𝖳 = (−𝑘13𝑋1,−𝑘23𝑋2, 𝑋3)𝖳.

hereby, CIS of (|𝑋1|, |𝑋2|, |𝑋3|)𝖳 is equivalent to CIS of (|𝑈1|, |𝑈2|, |𝑍|)𝖳. Noting that the inverse covariance matrix (𝑘̃𝑖𝑗 ) (say) of
𝑈1, 𝑈2, 𝑍)𝖳 has entries 𝑘̃11 = 1∕𝑘213, 𝑘̃22 = 1∕𝑘223, 𝑘̃13 = 𝑘̃23 = 𝑘̃33 = 1 and 𝑘̃12 = 𝜏 = 𝑘12∕(𝑘13𝑘23), elementary calculus yields that a
the only) continuous version of the conditional density of |𝑍| given |𝑈1| = 𝑢1 ≥ 0, |𝑈2| = 𝑢2 ≥ 0 is given by

𝑓 (𝑧|𝑢1, 𝑢2; 𝜏) = (2𝜋)−1∕2 exp(−(𝑢21 + 𝑢22 + 𝑧2)∕2)
cosh((𝑢1 + 𝑢2)𝑧) exp(−𝜏𝑢1𝑢2) + cosh((𝑢1 − 𝑢2)𝑧) exp(𝜏𝑢1𝑢2)

cosh((1 − 𝜏)𝑢1𝑢2)

for 𝑧 ≥ 0. The corresponding conditional cumulative distribution function 𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) (say) can be expressed as a mixture of two
olded normal distributions, that is,

𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) = 𝜅P(|𝑌 − (𝑢1 + 𝑢2)| ≤ 𝑧) + (1 − 𝜅)P(|𝑌 − (𝑢1 − 𝑢2)| ≤ 𝑧)

ith 𝑌 ∼ N(0, 1) and

𝜅 ≡ 𝜅(𝑢1𝑢2; 𝜏) =
exp(2(1 − 𝜏)𝑢1𝑢2)

(1 + exp(2(1 − 𝜏)𝑢1𝑢2))
.

For 𝜏 ∈ (0, 1) we observe that 𝜅(𝑡; 𝜏) is increasing in 𝑡 ≥ 0 with values in [1∕2, 1). Setting 𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) = 1 − 𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) we get

𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) = 𝜅P(|𝑌 − (𝑢1 + 𝑢2)| > 𝑧) + (1 − 𝜅)P(|𝑌 − (𝑢1 − 𝑢2)| > 𝑧).

Noting that (|𝑈1|, |𝑈2|)𝖳 is MTP2 and hence CIS, (|𝑈1|, |𝑈2|, |𝑍|)𝖳 is CIS iff 𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) is non-decreasing in 𝑢1 and 𝑢2. In view of
𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) = 𝐹 (𝑧|𝑢2, 𝑢1; 𝜏), it is no loss of generality to assume 𝑢1 ≥ 𝑢2. Altogether, it suffices to show that

𝐹 (𝑧|𝑣 , 𝑣 ; 𝜏) ≥ 𝐹 (𝑧|𝑢 , 𝑢 ; 𝜏) for all 𝑣 > 𝑢 > 0, 𝑖 ∈ N , 𝑣 > 𝑣 , 𝑢 > 𝑢 . (5)
5

1 2 1 2 𝑖 𝑖 2 1 2 1 2
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Once (5) is proved, continuity and symmetry arguments yield

𝐹 (𝑧|𝑣1, 𝑣2; 𝜏) ≥ 𝐹 (𝑧|𝑢1, 𝑢2; 𝜏) for all 𝑣𝑖 ≥ 𝑢𝑖 ≥ 0, 𝑖 ∈ N2.

In order to show that (3) is necessary for (|𝑈1|, |𝑈2|, |𝑍|)𝖳 to be CIS, we take a first look at the likelihood ratio function defined by

𝐿𝑅(𝑧) ≡ 𝐿𝑅(𝑧|𝑢1, 𝑢2, 𝑣1, 𝑣2; 𝜏) =
𝑓 (𝑧|𝑣1, 𝑣2; 𝜏)
𝑓 (𝑧|𝑢1, 𝑢2; 𝜏)

for 0 ≤ 𝑢1 ≤ 𝑣1, 0 ≤ 𝑢2 ≤ 𝑣2, 𝑧 ≥ 0. A necessary condition for (|𝑈1|, |𝑈2|, |𝑍|)𝖳 to be CIS is that

𝐿𝑅(0|𝑢1, 0, 𝑢1, 𝑣2; 𝜏) ≤ 1 for all 𝑢1, 𝑣2 > 0. (6)

oting that

𝐿𝑅(0|𝑢1, 0, 𝑢1, 𝑣2; 𝜏) = exp(−𝑣22∕2)
cosh(𝜏𝑢1𝑣2)

cosh((1 − 𝜏)𝑢1𝑣2)
,

a little analysis yields that lim𝑢1→∞ 𝐿𝑅(0|𝑢1, 0, 𝑢1, 𝑣2; 𝜏) = ∞ for 𝑣2 > 0 and 𝜏 ∈ (1∕2,∞). Hence, (|𝑈1|, |𝑈2|, |𝑍|)𝖳 can only be CIS if
< 𝜏 ≤ 1∕2, that is, if (3) is satisfied.

We now show that 0 < 𝜏 ≤ 1∕2 implies CIS of (|𝑈1|, |𝑈2|, |𝑍|)𝖳. We consider two cases, that is, (I) 𝑣1 − 𝑣2 ≥ 𝑢1 − 𝑢2 > 0, and, (II)
< 𝑣1 − 𝑣2 < 𝑢1 − 𝑢2.

We prove case (I) via suitable inequalities for 𝐹 . In case (II), we apply a rule of signs of Laguerre for the likelihood ratio function
𝑅.

Case (I). Assuming 𝑣1 − 𝑣2 ≥ 𝑢1 − 𝑢2 > 0, 𝑣𝑖 > 𝑢𝑖 > 0, 𝑖 ∈ N2, we have to show that

𝐹 (𝑧|𝑣1, 𝑣2; 𝜏) ≥ 𝐹 (𝑧|𝑢1, 𝑢2; 𝜏).

Set 𝑠 = 𝑢1𝑢2 and 𝑡 = 𝑣1𝑣2, which yields 𝑠 < 𝑡. Consider all pairs 𝑦1, 𝑦2 > 0 with 𝑦1𝑦2 = 𝑡 and 𝑦1 > 𝑢1, 𝑦2 > 𝑢2, that is, all pairs 𝑦1, 𝑦2 > 0
with 𝑦1 ∈ (𝑢1, 𝑢1𝑡∕𝑠) = (𝑢1, 𝑡∕𝑢2), 𝑦2 = 𝑡∕𝑦1. In this setting we get

𝐹 (𝑧|𝑦1, 𝑦2; 𝜏) = 𝜅(𝑡; 𝜏)P(|𝑌 − (𝑦1 + 𝑦2)| > 𝑧) + (1 − 𝜅(𝑡; 𝜏))P(|𝑌 − (𝑦1 − 𝑦2)| > 𝑧).

Note that 𝜅 is fixed for different values of 𝑦1, 𝑦2 with 𝑦1𝑦2 = 𝑡. Moreover 𝑦1 ± 𝑦2 = 𝑦1 ± 𝑡∕𝑦1 is non-decreasing in 𝑦1 ≥
√

𝑡. This
mmediately yields that 𝐹 (𝑧|𝑦1, 𝑡∕𝑦1; 𝜏) is non-decreasing in 𝑦1 ≥

√

𝑡. Moreover, there exists a 𝑤1 ∈ (
√

𝑡, 𝑣1] such that 𝑤1−𝑤2 = 𝑢1−𝑢2
with 𝑤2 = 𝑡∕𝑤1 ≥ 𝑣2. It follows that

𝐹 (𝑧|𝑣1, 𝑣2; 𝜏) ≥ 𝐹 (𝑧|𝑤1, 𝑤2; 𝜏).

Noting that 𝜅(𝑤1𝑤2; 𝜏) > 𝜅(𝑢1𝑢2; 𝜏), P(|𝑌 − (𝑤1 +𝑤2)| > 𝑧) > P(|𝑌 − (𝑢1 + 𝑢2)| > 𝑧), and, P(|𝑌 − (𝑤1 −𝑤2)| > 𝑧) = P(|𝑌 − (𝑢1 − 𝑢2)| >
𝑧), we immediately get

𝐹 (𝑧|𝑤1, 𝑤2; 𝜏) ≥ 𝐹 (𝑧|𝑢1, 𝑢2; 𝜏).

This completes the proof of case (I).
Case (II). Assuming 0 < 𝑣1 − 𝑣2 < 𝑢1 − 𝑢2, 𝑣𝑖 > 𝑢𝑖 > 0, 𝑖 ∈ N2, we prove that 𝐿𝑅(𝑧|𝑢1, 𝑢2, 𝑣1, 𝑣2; 𝜏) − 1 has exactly one sign change

on (0,∞). This property together with 𝐿𝑅(0|𝑢1, 𝑢2, 𝑣1, 𝑣2; 𝜏) < 1 and lim𝑧→∞ 𝐿𝑅(𝑧) = ∞ (which can easily be verified) then implies
(5).

Setting

𝐷 = exp(−((𝑣21 − 𝑢21) + (𝑣22 − 𝑢22))∕2), 𝐵 =
cosh((1 − 𝜏)𝑣1𝑣2)
cosh((1 − 𝜏)𝑢1𝑢2)

,

𝐶1(𝑧) = cosh((𝑣1 + 𝑣2)𝑧) exp(−𝜏𝑣1𝑣2) + cosh((𝑣1 − 𝑣2)𝑧) exp(𝜏𝑣1𝑣2),

𝐶2(𝑧) = cosh((𝑢1 + 𝑢2)𝑧) exp(−𝜏𝑢1𝑢2) + cosh((𝑢1 − 𝑢2)𝑧) exp(𝜏𝑢1𝑢2),

we get

𝐿𝑅(𝑧) =
𝐷𝐶1(𝑧)
𝐵𝐶2(𝑧)

ith 𝐷 < 1 < 𝐵. By noting that cosh(𝑎𝑥)∕ cosh(𝑏𝑥) is strictly increasing in 𝑥 > 0 for 𝑎 > 𝑏 > 0, we obtain

𝐿𝑅(0|𝑢1, 𝑢2, 𝑣1, 𝑣2; 𝜏) =
𝐷 cosh(𝜏𝑣1𝑣2)
𝐵 cosh(𝜏𝑢1𝑢2)

= 𝐷
cosh(𝜏𝑣1𝑣2)∕ cosh(𝜏𝑢1𝑢2)

cosh((1 − 𝜏)𝑣1𝑣2)∕ cosh((1 − 𝜏)𝑢1𝑢2)
< 1 for all 𝜏 ∈ (0, 1∕2].

Setting 𝐺(𝑧) = 𝐷𝐶1(𝑧) − 𝐵𝐶2(𝑧), we observe that 𝐿𝑅(𝑧) = (<,>) 1 iff 𝐺(𝑧) = (<,>) 0. Hence, it suffices to study the sign changes
of 𝐺. With

𝛼1 = 𝑣1 + 𝑣2, 𝛼2 = 𝑢1 + 𝑢2, 𝛼3 = 𝑢1 − 𝑢2, 𝛼4 = 𝑣1 − 𝑣2,
6

𝐴1 = 𝐷 exp(−𝜏𝑣1𝑣2), 𝐴2 = −𝐵 exp(−𝜏𝑢1𝑢2), 𝐴3 = −𝐵 exp(𝜏𝑢1𝑢2), 𝐴4 = 𝐷 exp(𝜏𝑣1𝑣2),
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𝐺(𝑧) can be expressed as

𝐺(𝑧) =
4
∑

𝑖=1
𝐴𝑖 cosh(𝛼𝑖𝑧).

We now apply the following rule of signs, see Théorème I in [24], p. 125 and Problem 85 in [29], Part 5, Chapter 1, §6, p. 49 and
p. 226.

Lemma 2 (A Rule of Signs of Laguerre (1883)). Suppose that 𝐹 (𝑥) =
∑∞

𝑖=0 𝑎𝑖𝑥
𝑖 ∈ (0,∞) for 𝑥 ∈ (0, 𝜌) for some 0 < 𝜌 ≤ ∞ with 𝑎𝑖 ≥ 0 for

all 𝑖 ∈ N ∪ {0} and 𝑎𝑖 > 0 for infinitely many 𝑖 ∈ N ∪ {0}. Let 1 ≥ 𝛽1 > ⋯ > 𝛽𝑛 > 0, 𝐴𝑖 ∈ R ⧵ {0}, 𝑖 ∈ N𝑛, 𝑆𝑚 =
∑𝑚

𝑖=1 𝐴𝑖, 𝑖 ∈ N𝑚. Then the
number of roots in (0, 𝜌) of the equation ∑𝑛

𝑖=1 𝐴𝑖𝐹 (𝛽𝑖𝑥) = 0 is bounded by the number of sign changes of 𝑆𝑚, 𝑚 ∈ N𝑛.

Setting 𝐹 (𝑧) = cosh(𝛼1𝑧), 𝛽𝑖 = 𝛼𝑖∕𝛼1, 𝑖 ∈ N4, we get

𝐺(𝑧) =
4
∑

𝑖=1
𝐴𝑖 cosh(𝛼𝑖𝑧) =

4
∑

𝑖=1
𝐴𝑖𝐹 (𝛽𝑖𝑧)

with 1 = 𝛽1 > 𝛽2 > 𝛽3 > 𝛽4 > 0, and, 𝑆1 = 𝐴1 > 0. In view of 𝐷 < 1 < 𝐵 it is easy to check that 𝑆2 = 𝐴1 + 𝐴2 < 0, which then yields
3 = 𝐴1 +𝐴2 +𝐴3 < 0. Moreover, 𝑆4 = 𝐴1 +𝐴2 +𝐴3 +𝐴4 < 0 is equivalent to 𝐿𝑅(0) < 1, which is true. Consequently, the pattern of

signs of 𝑆𝑚, 𝑚 ∈ N4, is + − − − , that is, we have exactly one sign change. This completes the proof of case (II).
Hence, (3) implies CIS of (|𝑈1|, |𝑈2|, |𝑍|)𝖳. Altogether, this completes the proof of Lemma 1. □

Remark 6. Although there exist hundreds of papers on rule of signs, we found no further references except [29] where Laguerre’s
rule of signs (Lemma 2) appears. In Laguerre’s original work [24] there is no restriction on 𝛽1, and it seems implicitly assumed
hat 𝜌 = ∞ and the power series defining 𝐹 (𝑥) is non-terminating. Thanks are due to Stewart A. Levin for an English version of
aguerre’s original work [24] including footnotes with minor corrections, see [26].

. Quick checks for the possibility of CIS and WCIS

For any positive definite matrix 𝐵 = (𝑏𝑖𝑗 ) we define Cor(𝐵) =
(

𝑏𝑖𝑗∕(𝑏𝑖𝑖𝑏𝑗𝑗 )1∕2
)

. Let 𝑋 ∼ 𝑁𝑝(0, 𝛴) and let 𝛴 be positive definite.
uppose we want to check whether there is a chance that (|𝑋1|,… , |𝑋𝑝|)𝖳 is CIS. Set 𝐴 = (𝑎𝑖𝑗 ) = Cor(𝛴−1) and consider

𝐿𝑅(𝑧) ≡ 𝐿𝑅(𝑧|𝑢1,… , 𝑢𝑝−1, 𝑣1,… , 𝑣𝑝−1) =
𝑓 (𝑧|𝑣1,… , 𝑣𝑝−1)
𝑓 (𝑧|𝑢1,… , 𝑢𝑝−1)

or 0 ≤ 𝑢𝑖 ≤ 𝑣𝑖, 𝑖 ∈ N𝑝−1 and 𝑧 ≥ 0. Thereby, 𝑓 (𝑧|⋅) denotes the continuous version of the conditional density.

Remark 7. In order to compute the continuous version of the conditional density 𝑓 (𝑥𝑝|𝑥1,… , 𝑥𝑝−1), it is worth noting that
= (𝑑𝑖𝑗 ) = (𝛴{1,…,𝑝−1})−1 has a very simple form in terms of 𝐶 = (𝑐𝑖𝑗 ) = 𝛴−1, see Lemma 2.2 in [6]. Assuming 𝛴−1 = Cor(𝛴−1), we

obtain

𝑑𝑖𝑖 = 1 − 𝑐2𝑖𝑝, 𝑖 ∈ N𝑝−1, 𝑑𝑖𝑗 = 𝑑𝑗𝑖 = 𝑐𝑖𝑗 − 𝑐𝑖𝑝𝑐𝑗𝑝, 𝑖, 𝑗 ∈ N𝑝−1, 𝑖 < 𝑗.

Results of this type can also be found in [17]. Moreover, Jacobi’s complementary minor formula yields |𝛴−1
| = |(𝛴{1,…,𝑝−1})−1|.

If we can show that

𝐿𝑅(0|𝑢1,… , 𝑢𝑝−1, 𝑣1,… , 𝑣𝑝−1) > 1

or some choice of 𝑢1,… , 𝑢𝑝−1, 𝑣1,… , 𝑣𝑝−1, then (|𝑋1|,… , |𝑋𝑝|)𝖳 is not CIS. Let 𝑖, 𝑗 ∈ N𝑝−1, 𝑖 ≠ 𝑗, and let 𝑢𝑖 = 𝑣𝑖 > 0, 𝑢𝑗 = 0 and 𝑣𝑗 > 0,
𝑢𝑟 = 𝑣𝑟 = 0 for all 𝑟 ∈ N𝑝−1 ⧵ {𝑖, 𝑗}. In this setting we get (see Remark 7)

𝐿𝑅 ≡ 𝐿𝑅(0|𝑢1,… , 𝑢𝑝−1, 𝑣1,… , 𝑣𝑝−1) = exp(−𝑎2𝑗𝑝𝑣
2
𝑗∕2)

cosh(𝑎𝑖𝑗𝑢𝑖𝑣𝑗 )
cosh((𝑎𝑖𝑗 − 𝑎𝑖𝑝𝑎𝑗𝑝)𝑢𝑖𝑣𝑗 )

.

For 𝑢𝑖 → ∞, LR tends to infinity if |𝑎𝑖𝑗 | > |𝑎𝑖𝑗 − 𝑎𝑖𝑝𝑎𝑗𝑝|. Hence, noting that |𝑥| ≤ |𝑥 − 𝑦| iff sgn(𝑦(𝑥 − 𝑦∕2)) ≤ 0 for 𝑥, 𝑦 ∈ R, the
condition

max
1≤𝑖<𝑗≤𝑝−1

sgn(𝑎𝑖𝑝𝑎𝑗𝑝(2𝑎𝑖𝑗 − 𝑎𝑖𝑝𝑎𝑗𝑝)) ≤ 0 (7)

is necessary for CIS of (|𝑋1|,… , |𝑋𝑝|)𝖳. Setting 𝐵 = (𝑏𝑖𝑗 ) = 𝛴−1, (7) is equivalent to

max
1≤𝑖<𝑗≤𝑝−1

sgn(𝑏𝑖𝑝𝑏𝑗𝑝(2𝑏𝑖𝑗𝑏𝑝𝑝 − 𝑏𝑖𝑝𝑏𝑗𝑝)) ≤ 0. (8)

In other words, if
7

sgn(𝑏𝑖𝑝𝑏𝑗𝑝(2𝑏𝑖𝑗𝑏𝑝𝑝 − 𝑏𝑖𝑝𝑏𝑗𝑝)) > 0 for some 𝑖 < 𝑗, 𝑖, 𝑗 ∈ N𝑝−1,
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P(|𝑋𝑝| > 𝑥𝑝||𝑋1| = 𝑥1,… , |𝑋𝑝−1| = 𝑥𝑝−1)

s not non-decreasing in (𝑥1,… , 𝑥𝑝−1)𝖳 for some 𝑥𝑝 ≥ 0.
Noting that CIS of |𝑋| = (|𝑋1|,… , |𝑋𝑝|)𝖳 implies CIS of (|𝑋1|,… , |𝑋𝑟−1|, |𝑋𝑘|)𝖳 for all 𝑘 ∈ {𝑟,… , 𝑝} and all 𝑟 ∈ {3,… , 𝑝} (see

emark 2.8 in [7]), the following lemma is obvious.

emma 3 (Quick CIS Check). Let 𝑝 ≥ 3 and 𝑋 ∼ 𝑁𝑝(0, 𝛴) with 𝛴 positive definite. Setting 𝐵(𝑟𝑘) = (𝑏(𝑟𝑘)𝑖𝑗 ) = (𝛴{1,…,𝑟−1,𝑘})−1 for 𝑘 ∈ {𝑟,… , 𝑝}
nd 𝑟 ∈ {3,… , 𝑝}, the condition

max
3≤𝑟≤𝑝

max
𝑟≤𝑘≤𝑝

max
1≤𝑖<𝑗≤𝑟−1

sgn
(

𝑏(𝑟𝑘)𝑖𝑘 𝑏(𝑟𝑘)𝑗𝑘 (2𝑏(𝑟𝑘)𝑖𝑗 𝑏(𝑟𝑘)𝑘𝑘 − 𝑏(𝑟𝑘)𝑖𝑘 𝑏(𝑟𝑘)𝑗𝑘 )
)

≤ 0 (9)

s necessary for CIS of |𝑋| = (|𝑋1|,… , |𝑋𝑝|)𝖳.

Similarly, we get the following necessary condition for WCIS.

emma 4 (Quick WCIS Check). Under the assumptions of Lemma 3 the condition

max
3≤𝑟≤𝑝

max
𝑟≤𝑘≤𝑝

max
1≤𝑖<𝑟−1

sgn
(

𝑏(𝑟𝑘)𝑖𝑘 𝑏(𝑟𝑘)𝑟−1,𝑘(2𝑏
(𝑟𝑘)
𝑖,𝑟−1𝑏

(𝑟𝑘)
𝑘𝑘 − 𝑏(𝑟𝑘)𝑖𝑘 𝑏(𝑟𝑘)𝑟−1,𝑘)

)

≤ 0 (10)

s necessary for WCIS of |𝑋| = (|𝑋1|,… , |𝑋𝑝|)𝖳.

emark 8. It turns out that neither the CIS condition (9) is sufficient for CIS of |𝑋| nor the WCIS condition (10) is sufficient
or WCIS of |𝑋|, see Example 1 below. One may generate further necessary conditions for CIS/WCIS by studying for example the
imit of 𝐿𝑅(0) ≡ 𝐿𝑅(0|𝑢1,… , 𝑢𝑝−1, 𝑣1,… , 𝑣𝑝−1) for 𝑢𝑖, 𝑣𝑖 ∈ {0, 𝑤}, 𝑢𝑖 ≤ 𝑣𝑖 for 𝑤 → ∞ (for WCIS we need 𝑢𝑝−1 < 𝑣𝑝−1 and 𝑢𝑖 = 𝑣𝑖 for
𝑖 ∈ N𝑝−2). Instead of choosing 𝑢𝑖, 𝑣𝑖 ∈ {0, 𝑤} for all 𝑖 ∈ N𝑝−1, one may set for example 𝑢𝑗 = 0, 𝑣𝑗 = 𝑣 > 0 for some 𝑗. If LR tends to
infinity for some appropriate configuration, then |𝑋| is not CIS/WCIS. However, it seems difficult to develop manageable formulas
for such limits.

Remark 9. For 𝑝 = 3 we have that CIS (WCIS) of |𝑋| implies CIS (WCIS) of 𝑋 if 𝛴 is positive definite and SPC. For 𝑝 ≥ 4 we were
able to show that already WCIS of |𝑋| implies CIS of 𝑋 if 𝛴 is positive definite and SPC. We will report on this elsewhere.

We conclude this section with three examples.

Example 1. Let 𝑋 ∼ N4(0, 𝛴) with

𝛴 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0.7 0.4 0.1
0.7 1 0.7 0.2
0.4 0.7 1 0.3
0.1 0.2 0.3 1

⎤

⎥

⎥

⎥

⎥

⎦

.

First we note that for all (|𝑋𝑖|, |𝑋𝑗 |, |𝑋𝑘|)𝖳 with 𝑖, 𝑗, 𝑘 ∈ N4, 𝑖 < 𝑗 < 𝑘, there exists a permutation which is CIS. Hence, these
four three-dimensional subvectors are PA according to Theorem 1. Moreover, (8) is satisfied for 𝑝 = 4 but (10) fails. Hence,
(|𝑋1|,… , |𝑋4|)𝖳 is neither WCIS nor CIS. Moreover, (9) and (10) are satisfied for exactly two permutations (|𝑋𝑖|, |𝑋𝑗 |, |𝑋𝑟|, |𝑋𝑠|)𝖳

of (|𝑋1|,… , |𝑋4|)𝖳, that is, for (𝑖, 𝑗, 𝑟, 𝑠) ∈ {(1, 4, 3, 2), (4, 1, 3, 2)}. In both cases we found that, e.g., 𝐿𝑅(0|5, 5, 0, 5, 5, 1) > 1 and even
lim𝑤→∞ 𝐿𝑅(0|𝑤,𝑤, 0, 𝑤,𝑤, 1) = ∞, see Remark 8. Hence, the remaining two permutations in question are also neither WCIS nor CIS.

This example illustrates that neither the CIS condition (9) is sufficient for CIS of |𝑋| nor the WCIS condition (10) is sufficient
for WCIS of |𝑋|. It also illustrates that limiting considerations as outlined in Remark 8 may lead to further necessary conditions for
CIS/WCIS.

Clearly, it would be nice to have a general example for 𝑝 ≥ 4 with positive definite SPC covariance matrix 𝛴 where some
permutation of |𝑋| = (|𝑋1|,… , |𝑋𝑝|)𝖳 is CIS (or WCIS) but not MTP2. We leave this issue for future investigation. We give two
examples for general 𝑝 ≥ 4 with positive definite SPC covariance matrices 𝛴 where it seems at least possible that |𝑋| is CIS (or
WCIS) but not MTP2.

Example 2. Let 𝑋 ∼ N𝑝(0, 𝛴), 𝑝 ≥ 4, 𝛴 = (𝜎𝑖𝑗 ) with 𝜎𝑖𝑖 = 1, 𝑖 ∈ N𝑝, 𝜎12 = 𝜎21 = 𝜅, 𝜎𝑖𝑗 = 𝜌 for all 𝑖 ≠ 𝑗 with {𝑖, 𝑗} ≠ {1, 2}, and,
𝜌, 𝜅 ∈ (0, 1) such that 𝛴 is positive definite. Then 𝛴−1 is an M-matrix iff

𝜅 ≥ (𝑝 − 2)𝜌2

(𝑝 − 3)𝜌 + 1
= 𝜅∗(𝑝, 𝜌) ≡ 𝜅∗ (say).

We note that |𝛴| > 0 iff 1 > 𝜅 > max(0, 2𝜅∗(𝑝, 𝜌) − 1). The lower M-matrix bound 𝜅∗ for 𝜅 is less than 𝜌 but tends to 𝜌 for 𝑝 → ∞.
This may illustrate the rigid regime of the MTP2 concept and it seems counter-intuitive that |𝑋| shall be not PA for all admissible
alues of 𝜅 < 𝜅∗.
8
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Set 𝐴 = (𝑎𝑖𝑗 ) = 𝛴−1. Note that 𝑎12 > 0 for 𝜅 < 𝜅∗. The question is which values of 𝜅 < 𝜅∗ yield CIS or WCIS of (|𝑋1|,… , |𝑋𝑝|)𝖳.
look at 𝑝 = 4 with 𝜌 = 7∕10 yields 𝜅∗ = 49∕85 = 0.5764…. Remember that (|𝑋1|, |𝑋2|, |𝑋3|)𝖳 is CIS for 𝜅 ≥ 0.3799….
Setting 𝑑𝑝 = |𝛴| and (𝑏𝑖𝑗 ) = 𝑑𝑝𝛴−1 we get

𝑑𝑝 = (1 − 𝜌)𝑝−3(1 − 𝜅)[(𝑝 − 3)𝜌(1 + 𝜅) − 2(𝑝 − 2)𝜌2 + 𝜅 + 1],

𝑏11 = 𝑏22 = (1 − 𝜌)𝑝−2(1 + (𝑝 − 2)𝜌), 𝑏12 = (1 − 𝜌)𝑝−3[(𝑝 − 2)𝜌2 − (𝑝 − 3)𝜅𝜌 − 𝜅],

𝑏1𝑖 = 𝑏2𝑖 = −(1 − 𝜌)𝑝−3(1 − 𝜅)𝜌, 𝑏𝑖𝑖 = 𝑑𝑝−1, 𝑖 ∈ {3,… , 𝑝},

𝑏𝑖𝑗 = −(1 − 𝜌)𝑝−4(1 − 𝜅)𝜌(1 + 𝜅 − 2𝜌), 𝑖, 𝑗 ∈ {3,… , 𝑝}, 𝑖 < 𝑗, 𝑎𝑖𝑗 = 𝑏𝑖𝑗∕𝑑𝑝, 𝑖, 𝑗 ∈ N𝑝.

erewith, we have all ingredients for checking the basic CIS condition (8). Numerical investigations suggest that the most critical
ase appears in the CIS condition (8) for (𝑖, 𝑗) = (1, 2). Noting that 𝑎1𝑝, 𝑎2𝑝 < 0, it suffices to consider the inequality 2𝑎12𝑎𝑝𝑝−𝑎1𝑝𝑎2𝑝 ≤ 0.

This gives a lower CIS bound 𝜅 (say) for 𝜅, which unfortunately tends to 𝜌. For 𝑝 = 4 with 𝜌 = 7∕10 we obtain the lower CIS bound
𝜅 = 2039∕6800 + 3

√

299049∕6800 = 0.5411….
For 𝑝 ≥ 4 and 𝜌 = 7∕10, it seems that the Quick WCIS Check (10) does not reject WCIS of (|𝑋1|,… , |𝑋𝑝|)𝖳 for 𝜅 ≥ 4∕10

while WCIS is rejected for all 𝜅 < 4∕10. Noting that 𝑎𝑖𝑗 > 0 iff 𝜅 < 4∕10 for 𝑖, 𝑗 ∈ {3,… , 𝑝}, 𝑖 < 𝑗, a little analysis yields that,
e.g., sgn(𝑎1𝑝𝑎𝑝−1,𝑝(2𝑎1,𝑝−1𝑎𝑝,𝑝 − 𝑎1𝑝𝑎𝑝−1,𝑝)) > 0 iff 𝜅 < 4∕10. Therefore, the WCIS condition (10) is violated for 𝜅 < 4∕10 (choose
(𝑟, 𝑘, 𝑖) = (𝑝, 𝑝, 1) in (10)).

Example 3. Let 𝑋 ∼ N𝑝(0, 𝛴), 𝑝 ≥ 4, 𝛴 = (𝜎𝑖𝑗 ) with 𝜎𝑖𝑖 = 1, 𝑖 ∈ N𝑝, 𝜎𝑖𝑝 = 𝜎𝑝𝑖 = 𝜅, 𝑖 ∈ N𝑝−1, and 𝜎𝑖𝑗 = 𝜌 for all 𝑖 ≠ 𝑗 otherwise, and,
𝜌, 𝜅 ∈ (0, 1) such that 𝛴 is positive definite. Note that |𝛴| > 0 iff 1 > 𝜌 > max(0, 𝜅2 − (1 − 𝜅2)∕(𝑝− 2)) = 𝜌∗∗(𝑠𝑎𝑦). Obviously, 𝜌∗∗ tends
to 𝜅2 for 𝑝 → ∞. Moreover, 𝛴−1 is an M-matrix iff

𝜌 ≥ 𝜅2 = 𝜌∗ (say).

Hence, for large 𝑝 there is not much room for CIS/WCIS beyond MTP2.
Setting 𝐴 = (𝑎𝑖𝑗 ) = 𝛴−1, we get that and 𝑎𝑖𝑗 > 0 for 𝜌 < 𝜌∗, 𝑖, 𝑗 ∈ N𝑝−1, 𝑖 ≠ 𝑗. The question is whether there exist values

of 𝜌 ∈ (𝜌∗∗, 𝜌∗) yielding CIS or WCIS of (|𝑋1|,… , |𝑋𝑝|)𝖳. A look at 𝑝 = 4 with 𝜅 = 7∕10 yields 𝜌∗ = 49∕100. Remember that
(|𝑋1|, |𝑋2|, |𝑋3|)𝖳 is CIS/WCIS for 𝜌 ≥ 0.3799….

Setting 𝑑𝑝 = |𝛴| and (𝑏𝑖𝑗 ) = 𝑑𝑝𝛴−1 we get

𝑑𝑝 = (1 − 𝜌)𝑝−2
(

1 + (𝑝 − 2)𝜌 − (𝑝 − 1)𝜅2) , 𝑏𝑖𝑖 = 𝑑𝑝−1, 𝑖 ∈ N𝑝−1,

𝑏𝑝𝑝 = (1 − 𝜌)𝑝−2(1 + (𝑝 − 2)𝜌), 𝑏𝑖𝑝 = 𝑏𝑝𝑖 = −𝜅(1 − 𝜌)𝑝−2, 𝑖 ∈ N𝑝−1,

𝑏𝑖𝑗 = 𝑏𝑗𝑖 = (𝜅2 − 𝜌)(1 − 𝜌)𝑝−3, 𝑖, 𝑗 ∈ N𝑝−1, 𝑖 < 𝑗, 𝑎𝑖𝑗 = 𝑏𝑖𝑗∕𝑑𝑝, 𝑖, 𝑗 ∈ N𝑝.

Numerical investigations suggest that the CIS condition (8) as well as the WCIS condition (10) are fulfilled iff

sgn(𝑎1𝑝𝑎𝑝−1,𝑝(2𝑎1,𝑝−1𝑎𝑝,𝑝 − 𝑎1𝑝𝑎𝑝−1,𝑝)) ≤ 0.

This gives the lower CIS/WCIS bound 𝜌 (say) for 𝜌 given by

𝜌 = 1
4(𝑝 − 2)

(

2 𝜅2𝑝 − 3 𝜅2 − 2 +
√

4 𝜅4𝑝2 − 12 𝜅4𝑝 + 9 𝜅4 − 4 𝜅2 + 4
)

,

which unfortunately tends to 𝜌∗ = 𝜅2 for 𝑝 → ∞. For 𝑝 = 4 with 𝜅 = 7∕10 we obtain the lower CIS/WCIS bound 𝜌 = 0.4107… < 𝜌∗ =
49∕100.

6. Concluding remarks

Theorem 1 together with Theorem 2 show that there is at least some free space beyond the celebrated but tiny MTP2 world
for |𝑋| to be PA (and hence SPUOD, PUOD, OTD) for 𝑝 ≥ 3. More formally, setting 𝑝 = {𝛴 ∶ ∃𝑋 ∼ 𝑁𝑝(0, 𝛴) and |𝑋| is PA} and
𝑝 = {𝛴 ∶ ∃𝑋 ∼ 𝑁𝑝(0, 𝛴) and |𝑋| is MTP2}, we proved that 𝑝 is a strict subset of 𝑝 and presented explicit positive definite
covariance matrices 𝛴 ∈ 𝑝 ⧵𝑝. However, at present there seems to be no evidence for any serious conjecture concerning a simple
description of the complete class of covariance matrices 𝑝 yielding PA of squared (and absolute-valued) Gaussians. The same issue
appears for, e.g., CIS, WCIS, SPUOD, PUOD, OTD and some other concepts not discussed here (e.g., weak PA, weak OTD). Hence,
there are various Gaussian correlation puzzles left for future research.

Following the advice of the referee we briefly discuss some implications and applications with respect to 𝑝. We first show that
our main results can be applied to obtain PA beyond MTP2 for some closely related multivariate distributions. We start with a look at
specific multivariate chi-square distributions. If (𝑋1𝑖,… , 𝑋𝑝𝑖)𝖳 ∼ 𝑁𝑝(0, 𝛴), 𝑖 ∈ N𝑛, are independently distributed, then the distribution
of 𝑉 = (𝑉1,… , 𝑉𝑝)𝖳 = (

∑𝑛
𝑖=1 𝑋

2
1𝑖,… ,

∑𝑛
𝑖=1 𝑋

2
𝑝𝑖)

𝖳 is said to be a multivariate chi-square (or Wishart chi-square) distribution. The
istribution of 𝑉 corresponds to the distribution of the diagonal elements of a Wishart distributed random 𝑝×𝑝 matrix 𝑄 ∼ 𝑊𝑝(𝑛, 𝛴)
say). Up to now it was only known that 𝑉 is PA if 𝛴 ∈ 𝑝. However, elementary rules for PA variables immediately yield that 𝑉
s PA whenever 𝛴 ∈ 𝑝. Next we consider a specific multivariate 𝑡-distribution. Let 𝑋 ∼ 𝑁𝑝(0, 𝛴) and let 𝑆 = (𝜒2∕𝜈)1∕2, where 𝜒2 is

chi-square distributed with 𝜈 degrees of freedom. Suppose that 𝑋 and 𝑆 are independently distributed and set 𝑇 = (𝑋1∕𝑆,… , 𝑋𝑝∕𝑆)𝖳.
9

characterization of PA of 𝑇 itself is a difficult issue. For example, if 𝛴 = 𝐼𝑝, then 𝑇 is not PA and even more striking, 𝑇 is not
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positive quadrant dependent for 𝑝 = 2, see [33]. Hence, 𝑇 is neither PLOD nor PUOD. However, again elementary rules for PA
variables yield that |𝑇 | is PA whenever 𝛴 ∈ 𝑝. We note that K. Jogdeo proved PA of |𝑇 | for a subclass of 𝑝, see Section 5 in [16].

The validity of the Gaussian correlation conjecture implies that |𝑋| and |𝑇 | are always SPLOD and hence always PLOD. In
pplications, the product-type bounds in the PLOD inequalities for |𝑋| and |𝑇 | yield conservative multiple test procedures and
onservative simultaneous confidence bounds. If 𝛴 ∈ 𝑝, we get in addition that |𝑋|, 𝑉 and |𝑇 | are SPUOD and hence PUOD. We
re not aware of any applications of the PUOD inequalities with respect to |𝑇 |. However, PUOD of 𝑉 yields conservative (1 − 𝛼)
pper confidence bounds for all variances 𝜎𝑖𝑖 (say) via P(𝑉𝑖∕𝜎𝑖𝑖 ≥ 𝑐𝑖 ∀𝑖) ≥

∏𝑝
𝑖=1 P(𝑉𝑖∕𝜎𝑖𝑖 ≥ 𝑐𝑖) = 1 − 𝛼. We note that C.G. Khatri

see [23]) derived various PUOD inequalities and related confidence bounds by assuming that the covariance matrix 𝛴 = (𝜎𝑖𝑗 ) has
tructure l, that is, 𝜎𝑖𝑖 > 0 for all 𝑖 ∈ N𝑝 and 𝜎𝑖𝑗 = 𝛼𝑖𝛼𝑗 (𝜎𝑖𝑖𝜎𝑖𝑖)1∕2 for 𝑖, 𝑗 ∈ N𝑝, 𝑖 ≠ 𝑗, with |𝛼𝑖| ≤ 1 for 𝑖 ∈ N𝑝. All results in Khatri’s
aper [23] based on the structure l assumption remain valid for 𝛴 ∈ 𝑝. Note that if 𝛴 is positive definite and has structure l, then
𝛴−1𝐷 is an M-matrix for 𝐷 ∈ 𝑝 with diagonal elements 𝑑𝑖 satisfying 𝑑𝑖 = −1 for all 𝛼𝑖 < 0, 𝑖 ∈ N𝑝.

A referee mentioned that in the last twenty-five years there has been an immense interest in multivariate skewed distributions
nd asked for possible applications of our results in that area of research. However, we were surprised that positive dependence
roperties of multivariate skewed distributions seem to be rarely treated in the literature. In what follows, we restrict attention to
kewed normal distributions with location parameter 0. A 𝑝-variate random vector 𝑍 has a generalized skew normal distribution
𝑆𝑁𝑝(𝛴, 𝜋) (see, e.g., [27]) if the underlying pdf is given by 2𝜙𝑝(𝑧, 𝛴)𝜋(𝑧) with 𝑧 ∈ R𝑝, 𝛴 a 𝑝 × 𝑝 covariance matrix, 𝜙𝑝(𝑧, 𝛴) pdf
f the 𝑁𝑝(0, 𝛴) distribution and skewing function 𝜋 satisfying 0 ≤ 𝜋(𝑧) ≤ 1 and 𝜋(𝑧) = 1 − 𝜋(−𝑧) for all 𝑧 ∈ R𝑝. If 𝜋(𝑧) = 𝛷(

∑

𝑖 𝛼𝑖𝑧𝑖)
ith 𝛼 = (𝛼1,… , 𝛼𝑝)𝖳 ∈ R𝑝 and with 𝛷 denoting the cdf of the standard normal distribution, then 𝑍 is said to have a skew normal
istribution 𝑆𝑁𝑝(𝛴, 𝛼) (see, e.g., [2]). A striking property of a (generalized) skew normal vector 𝑍 is that 𝑓 (𝑍) and 𝑓 (𝑋) (with
∼ 𝑁𝑝(0, 𝛴)) have the same distribution for all even functions 𝑓 ∶ R𝑝 → R𝑝 (referred to as modulation invariance or perturbation

nvariance). Hence, |𝑍| is distributed as |𝑋| and 𝑍2 is distributed as 𝑋2. Consequently, 𝛴 ∈ 𝑝 implies that |𝑍| (𝑍2) is PA. We
ound no references where PA of 𝑍, |𝑍|, (𝑍2) is explicitly treated. However, we found one paper where a sufficient condition (that
s, 𝛴−1 is M-matrix and 𝛼 has at most two non-zero components, which then must have opposite signs) for MTP2 (affiliation) of
∼ 𝑆𝑁𝑝(𝛴, 𝛼) is given, see [37]. Moreover, it is mentioned in [37] that affiliation of 𝑍 implies PA and PLOD of 𝑍. In order to find
sufficient condition for PA of a SN distribution, the following stochastic representation is helpful (see, e.g., [3], p. 128-9). If

𝑍𝑗 = (1 − 𝛿2𝑗 )
1∕2𝑊𝑗 + 𝛿𝑗 |𝑊0|, 𝑗 ∈ N𝑝, (11)

ith 𝑊 = (𝑊1,… ,𝑊𝑝)𝖳 ∼ 𝑁𝑝(0, 𝛹 ) and 𝑊0 ∼ 𝑁(0, 1) independently distributed, 𝛹 a positive definite correlation matrix and
𝑖 ∈ (−1, 1) for 𝑖 ∈ N𝑝, then 𝑍 = (𝑍1,… , 𝑍𝑝)𝖳 has a 𝑆𝑁𝑝(𝛴, 𝛼) distribution where 𝛴 and 𝛼 are determined in terms of 𝛹 and
he 𝛿𝑖’s. From the representation (11) we easily obtain that 𝑍 is PA if 𝑊 is PA and 𝛿𝑖 ≥ 0 for all 𝑖 ∈ N𝑝.

A referee suggested that |𝑍| might be PA while 𝑍 ∼ 𝑆𝑁𝑝(𝛴, 𝛼) is not PA. This is in fact true. Helpful formulas for the computation
f Cov(𝑍) can be found in Section 5.1 in [3]. Choosing 𝛴 = 𝐼3 ∈ 3 and 𝛼 = (1, 1, 1)𝖳 yields that all off-diagonal elements
f Cov(𝑍) are −(2𝜋)−1. Hence, |𝑍| is PA while 𝑍 is not PA and no signature of 𝑍 is PA. If we replace 𝑊0 by 𝑊0𝑖 in (11) with
𝑊01,… ,𝑊0𝑝)𝖳 ∼ 𝑁𝑝(0, 𝐼𝑝) and 𝑊 independently distributed (see [25,32] for this model), then the resulting 𝑍 is PA if 𝑊 is PA and
𝑖 ≥ 0 for all 𝑖 ∈ N𝑝. However, in this case it seems much more difficult to give a sufficient condition for PA of |𝑍|. All in all it
eems worth studying PA (and other notions of positive/negative dependence) of all the proposed skew multivariate distributions
n a systematic manner. Clearly, this is beyond the scope of this paper.

Finally, we note that our results imply the validity of some moment inequalities beyond MTP2 including the strong form of
aussian product inequalities (GPI), that is,
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for all ∅ ≠ 𝐽 ⊂ N𝑝 and all 𝛼𝑖 > 0, 𝑖 ∈ N𝑝, (12)

ee the recent paper [8] for further details and further references on the validity of (12) for special cases. For example, it is still
n open question whether (12) is valid for 𝑋 ∼ 𝑁𝑝(0, 𝛴) with 𝐷𝑋 PC for some 𝐷 ∈ 𝐷𝑝. Clearly, PA (and, a fortiori, MTP2) of |𝑋|

mplies the validity of (12) . Hence, our results imply the validity of (12) beyond MTP2 for some 𝛴 ∈ 𝑝 where |𝑋| is not MTP2.
oreover, we also get the validity of (12) beyond MTP2 for some related multivariate 𝑡-distributions and multivariate chi-square

istributions.
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