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Abstract 

Objectives This study investigates the influence of normal cohort (NC) size and the impact of different NCs on auto-
mated MRI-based brain atrophy estimation.

Methods A pooled NC of 3945 subjects  (NCpool) was retrospectively created from five publicly available cohorts. 
Voxel-wise gray matter volume atrophy maps were calculated for 48 Alzheimer’s disease (AD) patients (55–82 years) 
using veganbagel and dynamic normal templates with an increasing number of healthy subjects randomly drawn 
from  NCpool (initially three, and finally 100 subjects). Over 100 repeats of the process, the mean over a voxel-wise 
standard deviation of gray matter z-scores was established and plotted against the number of subjects in the tem-
plates. The knee point of these curves was defined as the minimum number of subjects required for consistent brain 
atrophy estimation. Atrophy maps were calculated using each NC for AD patients and matched healthy controls (HC). 
Two readers rated the extent of mesiotemporal atrophy to discriminate AD/HC.

Results The maximum knee point was at 15 subjects. For 21 AD/21 HC, a sufficient number of subjects were avail-
able in each NC for validation. Readers agreed on the AD diagnosis in all cases (Kappa for the extent of atrophy, 0.98). 
No differences in diagnoses between NCs were observed (intraclass correlation coefficient, 0.91; Cochran’s Q, p = 0.19).

Conclusion At least 15 subjects should be included in age- and sex-specific normal templates for consistent brain 
atrophy estimation. In the study’s context, qualitative interpretation of regional atrophy allows reliable AD diagnosis 
with a high inter-reader agreement, irrespective of the NC used.

Clinical relevance statement The influence of normal cohorts (NCs) on automated brain atrophy estimation, typi-
cally comparing individual scans to NCs, remains largely unexplored. Our study establishes the minimum number 
of NC-subjects needed and demonstrates minimal impact of different NCs on regional atrophy estimation.

Data used in preparation of this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As 
such, the investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate in 
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Key Points 

• Software-based brain atrophy estimation often relies on normal cohorts for comparisons.

• At least 15 subjects must be included in an age- and sex-specific normal cohort.

• Using different normal cohorts does not influence regional atrophy estimation.

Keywords Atrophy, Brain, Neurodegenerative diseases, Magnetic resonance imaging, Image processing (computer-assisted)

Introduction
Brain atrophy plays a critical role in the progression 
and diagnosis of various neurodegenerative diseases, 
such as Alzheimer’s disease (AD) [1], and frontotem-
poral dementia [2], among others [3–5]. Moreover, 
brain volume changes are increasingly important for 
treatment monitoring, such as in multiple sclerosis [6]. 
However, detecting regional brain volume alterations 
on MRI, particularly subtle volume losses in the early 
stages of a disease, can be challenging and is subject 
to high inter-reader variation [7]. Software-augmented 
evaluations have demonstrated the potential to reduce 
this variation [8], which is desirable for accurate diag-
nosis and treatment monitoring.

Various software approaches are available to aid in 
detecting and quantifying brain volume changes [9, 10]. 
Exemplary software includes icobrain dm (icometrix), 
BIOMETRICA (jung diagnostics), NeuroQuant (Cor-
techs.ai), Quantib ND (Quantiv), and volBrain (free 
online tool, https:// volbr ain. upv. es/ [11]). These tools 
primarily provide volumes (e.g., in  cm3) of larger-scale 
structures, such as the frontal lobe, often in the context 
of normal percentile curves. Approaches like VEO-
morph (VEObrain) [8], VSRAD (Eisai) [12], and vegan-
bagel (Open source, https:// github. com/ Brain ImAccs/ 
vegan bagel) [13] derive voxel-wise z-score statistics 
based on (matched, in the case of veganbagel) normal 
cohorts and offer region-of-interest-based z-scores 
(VEOmorph and VSRAD) or color-coded overlays for 
interpretation (VEOmorph, VSRAD, and veganba-
gel). A key difference lies in the interpretability of the 
results, as color-coded atrophy maps allow for a more 
refined assessment of atrophy patterns.

One critical aspect of brain atrophy estimation is the 
use of normal cohorts for comparison. Depending on 
the approach, a patient may be evaluated in the con-
text of the whole normal cohort, or may be matched to 
a subset of subjects in the normal cohort, considering 
factors such as age, sex, and potentially other factors 
like the scanner model [14–18]. The need for high-
quality normal cohorts, ideally well-matched to the 
local setting, is widely recognized. However, the mini-
mum required number of healthy subjects contributing 

to a normal cohort for consistent atrophy estimation 
and the effect of using different normal cohorts on 
diagnostic reliability have not been well-established in 
the literature.

Considering these research gaps, this study aims to:

1. determine the minimum number of subjects needed 
for consistent brain atrophy estimation when using 
age- and sex-specific normal cohorts, and

2. evaluate the effect of using different normal cohorts 
on detecting regional atrophy patterns using the 
mesiotemporal atrophy pattern in AD patients as an 
example.

By addressing these objectives, our study aims to con-
tribute to a better understanding of the factors influenc-
ing the accuracy of automated brain atrophy estimation 
tools and provide insights into optimizing their use in a 
clinical setting.

Methods
The retrospective study has been approved by the local 
ethics committee (#2021-1424). The need for written 
informed consent was waived.

Software for atrophy estimation
The open-source software veganbagel [13], an automated 
workflow for generating atrophy maps relative to age- 
and sex-specific normal templates, was adapted for the 
analysis. The workflow is depicted in Fig. 1. The Docker-
based version of veganbagel was used (https:// github. 
com/ Brain ImAccs/ vegan bagel, commit 6a2ac5f ), which 
employs the standalone versions of CAT12.7 (r1713) [19] 
and SPM12 (version 7771) [20], eliminating the need for 
a MATLAB-license.

Consistent brain atrophy estimation
To establish the minimum number of healthy subjects 
needed for consistent atrophy detection, all healthy sub-
jects from five different public cohorts were included 
into a pooled normal cohort  (NCpool), if they met the fol-
lowing criteria: (a) age and sex were known; (b) a struc-
tural 3D T1-weighted dataset of the brain with a slice 
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thickness of ≤ 1.5 mm was available; (c) the scan passed 
the cohort-internal quality control, if applicable; and (d) 
preprocessing with CAT12 was successful. The normal 
cohorts comprised the Lifespan Human Connectome 
Project Aging (HCP-A, started 2009, ongoing [21]), 
Information eXtraction from Images (IXI, 2005-2006), 
Nathan Kline Institute–Rockland Sample (Rockland, data 
sharing started 2010, ongoing [22]) as well as the healthy 
controls (HC) from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI, 2003, ongoing [23]) and the Open 
Access Series of Imaging Studies 3 (OASIS-3, published 
2019, ongoing [24]). The ADNI was launched in 2003 as 
a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD (http:// www. adni- info. org/). If 
there were multiple visits in the study, the first visit was 
used.

Patients with AD were retrieved from the ADNI 
database to serve as a surrogate for patients with brain 
atrophy. Patients with AD were included similar to the 
healthy subjects, but only if (a) structural imaging with 
a slice thickness ≤ 1 mm was available, and (b) based on 
the patients’ sex and age, there were ≥ 100 subjects of the 
same sex and age ±2 years available in  NCpool (see below).

To establish the minimum number of healthy subjects 
needed for consistent atrophy estimation, we performed 
an iterative process on the local High Performance 

Computing cluster. The process involved repeatedly cal-
culating atrophy maps for each patient with AD using 
different normal templates, which were dynamically cre-
ated using an increasingly larger number of randomly 
selected healthy subjects from  NCpool. Healthy subjects 
were selected at random from  NCpool to minimize effects 
of different scanners, sites, and cohorts. Furthermore, the 
whole process was repeated multiple times. A measure 
of the variance of the z-scores within the atrophy maps 
is then taken and plotted over the respective number 
of subjects contributing to the normal templates. We 
expected to see a considerable variance in z-scores with 
a smaller number of healthy subjects contributing to the 
normal templates, followed by a steady decrease and, 
finally, a plateau phase [25].

A detailed overview of the iterative process, which was 
applied to each patient with AD, can be found in Fig. 2. 
The process began with the random selection of three 
age- (±2 years) and sex-matched healthy subjects from 
 NCpool. Following the veganbagel methodology, these 
subjects were used to create mean and standard devia-
tion (SD) normal templates, which were subsequently 
employed to compute z-score maps for the patient with 
AD. This entire procedure was carried out 100 times, 
with each iteration involving the random selection of 
three new eligible subjects from  NCpool to create a fresh 

Fig. 1 Visualization of the veganbagel workflow. Briefly, standardized preprocessing of structural T1-weighted imaging of subjects from a normal 
cohort is performed, comprising gray matter normalization, segmentation, modulation, and spatial smoothing using CAT12 for SPM12 with default 
settings. After preprocessing of healthy subjects, voxel-wise mean and standard deviation (SD) are computed for each sex and age (containing 
the actual age ±2 years), resulting in age- and sex-specific normal templates (green box). Voxel-wise z-score maps (= “atrophy maps”, red box) are 
then calculated for equally preprocessed subjects (yellow box), which express deviations from the age- and sex-specific normal templates. Atrophy 
maps may be inversely transformed into subject space and color-coded to generate overlays, with an example from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) for a male aged 63 years of age suffering from Alzheimer’s disease shown on the right
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normal template. This resulted in 100 distinct z-score 
maps for each AD patient. The voxel-wise SD of z-score 
maps was calculated across the 100 repeats, and in a 
second step the spatial mean of SD was determined 
( SDspatial ), representing the consistency of brain atrophy 
estimates.

For every AD patient, the process started with three 
healthy subjects forming the random dynamic nor-
mal templates, as described above. This number was 
incrementally increased by adding one healthy subject 
at a time (e.g., four subjects drawn, with the procedure 
above to be repeated 100 times) with up to 100 healthy 
subjects ultimately contributing to the random dynamic 
templates. Each subject was included in the normal tem-
plates only once, even if multiple scans were available 
(e.g., due to in-session repeat imaging within ADNI), but 
may be repetitively included during the 100 repeats. The 
number of repeats and the upper limit for subjects within 
the normal templates were informed by results from a 
prior veganbagel study [13], which utilized templates 
composed of 10 to 61 subjects. To ensure greater flexibil-
ity and comprehensiveness, our study broadened these 
parameters. The lower limit of three subjects contribut-
ing to the normal templates was established, since less 
than three subjects contributing to the normal templates 
was determined to yield an unrealistically high variance.

SDspatial was plotted against the number of randomly 
selected subjects contributing to the normal tem-
plates. The “Kneedle” approach was used to deter-
mine the knee point of each curve, which involves 
fitting a smoothing spline to the data, normalizing, 
and finding the largest distance to a diagonal between 
the maximum and minimum of the data (https:// 
github. com/ etam4 260/ kneed le.) [26]. The maximum 
of the knee points across all patients, representing 
the point of diminishing returns when adding more 
normal subjects to the normal templates, was defined 
as the minimum number of subjects required for con-
sistent results in brain atrophy evaluation.

Effect of different normal cohorts
To test the effect of using different normal cohorts for 
atrophy estimation on diagnostic reliability, we identi-
fied AD patients from the ADNI database for whom the 
previously established minimum number of age- and sex-
specific subjects were available in each of the available 
non-ADNI normal cohorts (HCP-A, IXI, OASIS-3, and 
Rockland). HCs from the ADNI database were matched 
to the patients with AD based on age, sex, and scanner. 
We generated color-coded atrophy maps for each patient 
with AD and HC subject using veganbagel, separately 
using each normal cohort.

Fig. 2 An overview of the process to establish the minimum number of healthy control subjects needed for consistent atrophy estimation. The 
process was repeated for every patient with AD included in this study. *Healthy subjects of the same sex and ± 2 years of age of the patient with AD 
were deemed eligible
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The atrophy maps were independently reviewed for the 
severity of mesiotemporal atrophy in a randomized order 
by two neuroradiologists with nine years of experience 
each (C.R. and J.C.), blinded to diagnosis and underlying 
normal cohort. Mesiotemporal atrophy is both a predic-
tive and prognostic value in AD [27–29]. In the context 
of the study, it was rated for each hemisphere on a Lik-
ert scale, comprised of the following items: 0 = no atro-
phy, 1 = minimal to moderate atrophy (i.e., a few voxels 
of atrophy, as indicated by the atrophy map), 2 = marked 
atrophy (more prominent areas of volume loss, as noted 
in the atrophy map), 3  =  severe atrophy (large areas of 
volume loss including voxels with z-scores ≥ 10). An AD 
diagnosis was assigned when the bihemispheric score 
was ≥ 2.

Inter-reader reliability was computed using Cohen’s 
Kappa, and sensitivity and specificity for the score-
based AD diagnosis was determined for each normal 
cohort. To assess the agreement across the differ-
ent normal cohorts, a two-way intraclass correlation 
coefficient was calculated. Cochran’s Q test and a 
pairwise McNemar test with Bonferroni correction 
were performed to compare the results. p < 0.05 was 
considered statistically significant. Statistical analysis 
was done using R v4.0.3 [30].

Data availability
All data used in the manuscript is either publicly avail-
able or available to qualified researchers from the respec-
tive cohort’s database (see “Acknowledgments”).

Results
Consistent brain atrophy estimation
The pooled normal cohort  (NCpool) consisted of 3945 
healthy subjects (55 ± 21 years, 57.9% female, Table  1, 
Figs.  3 and 4). A total of 48 patients with AD were 
included in the analysis (73 ± 7 years (range 55–82), 
37.5% female, Fig. 3). Thirteen AD patients were scanned 
using a GE scanner, nine on Philips scanners, and 26 on 
Siemens scanners. A total of 27 different 3-T scanners 
were used for the AD patients.

In all AD patients, a sharp drop of the SDspatial was 
noted at a small number of healthy subjects included in 
the normal templates (Fig.  5). The knee points varied 
across patients, with the smallest at 9 subjects and the 
largest at 15 subjects (average 11.0 ± 1.2, median 11, inter 
quartile range 10 to 12). The minimum number of sub-
jects required for consistent results in brain atrophy eval-
uation was therefore 15, with a corresponding SDspatial of 
the z-scores of 0.34 ± 0.026 (range 0.297 to 0.432) across 
all patients.

Effect of different normal cohorts
A subset of 21 patients with AD and 21 matched HCs 
had more than 15 healthy subjects available in the 
HCP-A, IXI, OASIS-3, and Rockland normal cohorts 
(Table  2). The inter-reader reliability between the 
two neuroradiologists was high, with an overall 
Cohen’s Kappa of 0.98 for the extent of the atrophy 
as determined on the visual rating scale (Table  3). 
For the individual cohorts, the Cohen’s Kappa was 1 

Table 1 Descriptive statistics of the normal cohorts and the combined  NCpool

In the IXI cohort, there was only a single imaging timepoint

GE = General Electric (Boston, MA), Philips = Koninklijke Philips (Amsterdam, Netherlands) and Siemens = Siemens Healthineers (Erlangen, Germany)
* From the Alzheimer’s Disease Neuroimaging Initiative and Open Access Series of Imaging Studies 3 cohorts, only the healthy controls are listed
& The number of scanners is estimated from the scanner device serial number
$ Device serial numbers were not available for IXI, number of sites is listed
# No device serial number was available for 6 scans
+ No device serial number was available for 225 scans, but no change of scanner is documented

Cohort Acronym Visit Subjects Age T1-weighed 
images

Scanners& GE/Philips/Siemens
(1.5T/3T)

Alzheimer’s Disease Neuroimaging Initia-
tive*

ADNI Screening 754
(56.4% female)

73 ± 6
(range 55–90)

1049 150 30/17/53%
(32/68%)

Lifespan Human Connectome Project 
Aging

HCP-A Visit 1 725
(56% female)

60 ± 16
(range 36–100)

725 6 0/0/100%
(0/100%)

Information eXtraction from Images IXI – 563
(55.6% female)

49 ± 17
(range 19–86)

563 3$ 12/88/0%
(68/32%)

Open Access Series of Imaging Studies 3* OASIS-3 First MR 609
(58.9% female)

68 ± 9
(range 42–95)

903 5# 0/0/100%
(3/97%)

Nathan Kline Institute–Rockland Sample Rockland Baseline 1 1,294
(60.4% female)

39 ± 22
(range 6–85)

1294 1+ 0/0/100%
(0/100%)

NCpool 3945
(57.9% female)

55 ± 21
(range 6–100)

4534 ≈165$#+ 8/15/77%
(16/84%)
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for HCP-A and Rockland, 0.98 for IXI, and 0.93 for 
OASIS-3. Fig.  6 shows an example of each atrophy 
map derived.

The readers agreed in the diagnosis of AD and HC in 
all cases. Table  4 lists the respective accuracy, sensitivi-
ties, and specificities, as well as the positive and negative 
predictive value for each reader and normal cohort. The 
intraclass correlation coefficient across the cohorts was 
0.91. Cochran’s Q test did not show a significant differ-
ence across the different cohorts (p = 0.19). Likewise, no 
significant differences were found in the Bonferroni-cor-
rected pairwise McNemar tests (HCP-A/IXI: p  =  0.48; 
HCP-A/OASIS-3: p = 0.48; HCP-A/Rockland: p = 1; IXI/
OASIS-3: p = 1; IXI/Rockland: p = 0.48; OASIS-3/Rock-
land: p = 0.48).

Discussion
Our study aimed to determine the minimum number of 
subjects required in a normal cohort for consistent soft-
ware-based brain atrophy estimation and to evaluate the 
impact of using different normal cohorts on the qualita-
tive assessment of mesiotemporal atrophy in Alzheimer’s 
disease. We found that at least 15 healthy subjects should 
be included in an age- and sex-specific normal cohort 
for consistent atrophy detection, and that using different 
normal cohorts does not significantly influence the quali-
tative evaluation of mesiotemporal atrophy or the imag-
ing-based diagnosis of Alzheimer’s disease.

In our study, we evaluated the open-source soft-
ware veganbagel [13], which implements an automated 
assessment of deviation in gray matter volume from a 

Fig. 3 Subjects included into the pooled normal cohort (to the left of the dotted line) and patients with Alzheimer’s disease from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) used for determining the minimum number of subjects to include into a normal cohort (to the right 
of the dotted line). *From the pooled normal cohort. HCP-A, Lifespan Human Connectome Project Aging; IXI, Information eXtraction from Images; 
OASIS-3, Open Access Series of Imaging Studies 3; Rockland, Nathan Kline Institute–Rockland Sample; QC, quality control
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normal cohort using voxel-wise color-coded z-score 
maps. Veganbagel is based on proven methods, namely 
voxel-based morphometry (VBM) using CAT12 for 
SPM12. VBM reliably detects patterns in various con-
texts such as normal aging, neurodegenerative diseases, 
and psychiatric disorders [15, 31, 32]. More specifically, 

VBM-based approaches have proven valuable in detect-
ing AD [1] and are routinely used in the clinical diagnosis 
of AD in Japan [33].

To conduct our analysis with a sufficiently large pool 
of healthy subjects, we created a pooled normal cohort 
consisting of subjects from five different normal cohorts 

Fig. 4 Number of subjects eligible for inclusion in an age- and sex-specific template at each age, shown as a stacked area chart and color-coded 
by the respective contributing normal cohort. Subjects were considered eligible when they were aged within a range of ±2 years and were 
from the same sex

Fig. 5 Mean standard deviation of the voxel-wise z-scores over all repeats plotted over the number of randomly drawn subjects included 
in the dynamically generated normal. The maximum of all established knee points (= 15), representing the point of diminishing returns 
when adding more normal subjects to the normal templates, is denoted by the dashed black lines. Female patients are shown on the left and male 
patients on the right
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with varying objectives, scanners, protocols, and quality. 
Previous studies have reported differences in quantita-
tive brain atrophy estimation due to factors such as dif-
ferent scanners or protocols [16, 17], while others have 
demonstrated that volumes of subcortical structures 
may be interchangeable across different normal cohorts 
[34]. Given the objective of our analysis, we focused on 
sex and age as the main influences on brain volume and 
minimized the potential impact of other factors by not 
only randomly drawing subjects from the pooled normal 
cohort, but also by repeating the process 100 times, start-
ing with three and ultimately including up to 100 healthy 
subjects contributing to the random dynamic normal 
templates in a computationally intensive approach.

Our study’s results may also enhance radiologists’ com-
prehension of the mechanisms underpinning automated 
brain atrophy estimation. Additionally, these findings can 
guide the decisions-making process when considering 
commercial solutions, especially in questioning undis-
closed, inadequately sized, or insufficiently assessed nor-
mal cohorts.

Minimum number of subjects in a normal cohort
Previous findings in nuclear medicine have suggested 
a minimum number of 10–20 subjects for a normal 

cohort when evaluating brain glucose metabolism in 
the diagnostic workup of dementia [25, 35]. However, 
the minimum number of subjects in a normal cohort for 
consistent MRI-based brain atrophy estimation has not 
been established. Generally, it is assumed that a normal 
cohort must be as large as possible and as well adapted 
to a patient as possible with regard to sex, age, scanner, 
protocol, artifacts, and possibly other factors such as eth-
nicity or cultural background [14–18, 36].

It is important to recognize that no method for identify-
ing a knee point of a curve is universally accepted, and all 
approaches rely on approximations dependent on various 
parameters. A definitive, objective threshold for SDspatial 
would be ideal. However, it is important to recognize that 
any chosen cutoff might possess an element of arbitrari-
ness. In our study, we observed that the variance in z-scores 
sharply diminishes and approaches 0 as more subjects are 
included in the normal templates. Given that the identified 
maximum knee point aligns visually with the knee point 
determined by the Kneedle method, we are confident that, 
within the scope of the study, a minimum 15 normal sub-
jects is needed for consistent brain atrophy estimation.

Impact of different normal cohorts on atrophy detection
In the context of our study, we found that qualitative 
interpretation of regional mesiotemporal atrophy allowed 

Table 2 Demographic information on the patients with Alzheimer’s disease (AD) and matched healthy control (HC) subjects 
for testing the effect of using different normal cohorts on regional atrophy detection, as selected from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database. All scanners were 3T

Group Subjects Age Scanners

Alzheimer’s Disease (AD) 21
(57% female)

68 ± 4
(range 61–74)

GE: 3× DISCOVERY MR750w, 1× DISCOVERY 
MR750, 1× SIGNA Premier
Philips: 2× Achieva, 2× Ingenia, 1× Achieva 
dStream
Siemens: 6× Prisma_fit, 2× Prisma,
1× Skyra, 1× TrioTim, 1× Verio

Matched controls (HC) 21
(57% female)

68 ± 3
(range 63–74)

As above

Table 3 Summary of the qualitative ratings on the extent of mesiotemporal atrophy, based on the atrophy maps derived using 
veganbagel (HC healthy control, AD Alzheimer’s disease, R right, L left)

Reader 1 Reader 2

HC AD HC AD

R L R L R L R L

0 83 78 25 18 83 78 24 18

1 1 6 6 7 1 6 7 8

2 – – 37 42 – – 37 41

3 – – 15 17 – – 15 17
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for reliable AD diagnosis when using the different normal 
cohorts. Our current study outperforms the previously 
reported sensitivity and specificity for detection of AD 
in ADNI using veganbagel [13], likely due to evaluating 

a much smaller sample of patients in the current study. 
However, the current analysis is focused on the compari-
son of different normal cohorts, rather than diagnostic 
accuracy, which allowed for narrower inclusion/exclu-
sion criteria. Nevertheless, the inter-reader agreement 
for the extent of mesiotemporal atrophy was excellent, 
which is notable since atrophy assessment on MRI with-
out any software augmentation has been shown to have a 
low inter-reader agreement [7].

Limitations and future directions
The limitations of our study include the moderate sample 
size in the qualitative evaluation of the mesiotemporal 
atrophy and the evaluation of only one software approach 
(veganbagel). Other software for brain atrophy estima-
tion, to our knowledge, either is not openly available or 
does not lend itself to the modifications needed for the 
conducted analyses. In the case of other open-source 
alternatives to CAT12/SPM12, such as the FSL or Free-
Surfer, no fully integrated software packages for brain 
atrophy estimation are currently available.

As the number of subjects in the normal templates 
grows, there is a heighted probability that the same sub-
jects may be repetitively included during the 100 itera-
tions. However, considering the established minimum of 
15 subjects and the study’s prerequisite for at least 100 
age- and sex-matched subjects for every patient, these 
overlap likely do not distort our primary conclusions.

The current study leveraged five extensive normal 
cohorts, enriching the data variety. Yet, these cohorts 
predominately represent the population of the north-
western regions of the world. It is paramount that subse-
quent studies address the applicability of our findings to 
the global demographic.

The structure of our experiment, especially its empha-
sis on numerous iterations, tends to mitigate outlier 
impacts—whether these outliers arise from atypical, pre-
sumed “normal” subjects or from subjects ill-matched 
to a given patient due to diverse imaging environments. 
There is an evident need for more focused studies on the 
resilience of normal templates, particularly those derived 
from a limited set of subjects.

Future studies should focus on the effects of combin-
ing different normal cohorts. A pooled normal cohort for 
clinical brain atrophy estimation may allow to recruit a 
sufficient number of healthy subjects for brain atrophy 
estimation at more extreme ages. Furthermore, a very 
large and heterogeneous normal cohort would enable 
more precise matching of patients with regard to factors 
such as scanners and protocols, enhancing the detec-
tion of subtle regional brain atrophy. Last, but not least, 
patients with other forms of neurodegenerative dis-
eases should be evaluated to ensure that the findings are 

Fig. 6 Example of the color-coded z-score maps (= atrophy maps) 
calculated using veganbagel for a female patient with Alzheimer’s 
disease (AD), aged 67 years, derived using the four different normal 
cohorts. The color-coded z-score maps are overlaid onto the original 
3D T1-weighted MRI acquisitions, shown in the axial plane

Table 4 Sensitivity and specificity as well as positive and 
negative predictive value (PPV and NPV) of Alzheimer’s disease 
vs. healthy control diagnosis based on a scoring of the extent 
of mesiotemporal atrophy in atrophy maps derived using 
veganbagel with different normal cohorts

Normal cohort Accuracy Sensitivity Specificity PPV NPV

HCP-A 88%
(37/42)

76% 100% 100% 81%

IXI 83%
(35/42)

71% 95% 94% 77%

OASIS-3 83%
(35/42)

67% 100% 100% 75%

Rockland 88%
(37/42)

76% 100% 100% 81%
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generalizable across different populations and clinical 
contexts.

Conclusion
In summary, our study indicates that a normal cohort 
should include at least 15 normal subjects, matched 
for age and sex, to consistently estimate brain atrophy 
using voxel-based morphometry. In the context of our 
study, using different normal cohorts did not signifi-
cantly influence the qualitative assessment of regional 
mesiotemporal atrophy or the diagnosis of Alzheimer’s 
disease, and we observed a high inter-reader agree-
ment. It is important to note, however, that these find-
ings are influenced by our study’s particular design and 
parameters. Thus, caution is necessary when extrapo-
lating these findings to other contexts without fully 
understanding the inherent assumptions and potential 
confounding factors.
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