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A B S T R A C T

Cell and organ metabolism is organized through various signaling mechanisms, including redox, Ca2+, kinase and
electrochemical pathways. Redox signaling operates at multiple levels, from interactions between individual
molecules in their microenvironment to communication among subcellular organelles, single cells, organs, and
the entire organism. Redox communication is a dynamic and ongoing spatiotemporal process. This article focuses
on hydrogen peroxide (H2O2), a key second messenger that targets redox-active protein cysteine thiolates. H2O2
gradients across cell membranes are controlled by peroxiporins, specialized aquaporins. Redox-active endo-
somes, known as redoxosomes, form at the plasma membrane. Cell-to-cell redox communication involves direct
contacts, such as per gap junctions that connect cells for transfer of molecules via connexons. Moreover, signaling
occurs through the release of redox-active molecules and enzymes into the surrounding space, as well as through
various types of extracellular vesicles (EVs) that transport these signals to nearby or distant target cells.

1. Introduction

Life processes are initiated and regulated through diverse and
partially overlapping signaling pathways which depend on specific
causal events. Signal transduction leads to short-term and long-term
effects on the proteome, genome, and other molecular classes, such as
the metabolome, metallome, lipidome, and glycome. The outcome from
these signaling inputs manifests as a response pattern that ultimately
influences cellular and organismal health vs. disease states in biology
and medicine. Importantly, these effects are continuously monitored by
feedback loops that track molecular fluctuations and changes in gene
expression.

Biological signaling pathways operate by various modes, such as
direct electrical coupling, ion signaling (notably Ca2+), and post-
translational modifications (PTMs) that contribute to the formation of
an epiproteome (e.g. by phosphorylation/dephosphorylation), genera-
tion of an epigenome (e.g. via methylation/demethylation), and oxida-
tion/reduction (redox) signaling. This article focuses on the role and
regulation of redox communication both within cells and between cells,

an active research field which has revealed fascinating new insights. For
recent comprehensive reviews on the fundamentals of redox regulation
and its implications to health and disease, see Refs. [1–4]. Here, the
focus is primarily on H2O2 as a pleiotropic signaling agent in biological
redox communication [5–7]. A more extensive discussion would include
other small-molecule redox messengers, as well as redox potentials of
the NAD+, NADP+ [8,9], and various thiol systems, all of which are
enzymatically regulated by powerful dehydrogenases (see Refs. [10,
11]).

2. Redox Organization

Biological redox organisation in terms of chemistry and cell biology
is guided by a set of principles, collectively termed the Redox Code [11].
Fig. 1 provides an overview of the major components of biological redox
regulation, highlighting redox communication within the organizational
framework (in blue). It also includes the underlying concepts (in pink),
major molecular players (in green) and life processes (in yellow). This
overview illustrates that communication by redox reactions is a
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fundamental aspect of practically all life processes. Once a redox signal
is being generated, it can be transmitted through multiple layers of
complexity, ultimately leading to a biological response. Recent advances
in techniques enabled researchers to explore cellular redox biology with
astounding spatiotemporal resolution [12]. It was pointed out early on
that “a fundamental principle in the organisation of living matter is that order
is generated by the introduction of inhomogeneity” [13].

The general concept of metabolic compartmentation, shown in
Fig. 2, also applies to redox reactions. Intracellular compartmentation
refers to the definition of a spatial compartment surrounded by
permeability barriers like membranes (Fig. 2, top). This concept is
further refined by several types of microheterogeneity, including
compartmentation by binding, where metabolites are sequestered by
specific key binding sites. This interaction influences the free thermo-
dynamic concentration of the metabolite and helps dampen metabolic
oscillations (Fig. 2, center). Further, membraneless organelles [14],
formed through phase separation and molecular crowding [15] (not
shown in Fig. 2), are defined as biomolecular condensates [12,16].
These structures can exist transiently or stably, leading to the formation
of supramolecular assemblies such as multienzyme complexes or of
redox nanodomains [17] and microdomains [18]. Intercellular
compartmentation (Fig. 2, bottom) refers to cell heterogeneity, which is
the result of cell differentiation and organ development. Studies of
single-cell responses in cell cultures, organoids or intact organs have
revealed an additional layer of heterogeneity that influence and are
influenced by redox communication.

3. Intracellular redox communication: focus on H2O2

Reactive Oxygen Species (ROS) [6], and Reactive Electrophile Spe-
cies (RES) [20] fulfill vital signaling functions under physiological
conditions. A steady state level of H2O2 has been recognized as a normal
aspect of aerobic cell metabolism [21]. Subsequent studies on the
cellular production of H2O2 [22], its generation in mitochondria [23,24]
and its presence in intact perfused liver [21,25,26] have sparked
extensive research into the fundamental chemistry and hydroperoxide

metabolism in mammalian systems (see Ref. [27] for early compre-
hensive review). Research on redox communication gained momentum
about two decades ago with the introduction of genetically encoded
fluorescent sensors, such as the Hyper [28] and roGFP [29] redox probes
(for reviews, see Refs. [30–32]). Maintaining H2O2 concentration gra-
dients between various cytological compartments presents an ongoing
challenge, referred to as oxidative eustress (see Table 1) [33]. At any
given moment, the local concentration of H2O2 in a specific compart-
ment reflects the balance of production and removal dynamics.

The physiological production of H2O2 is tightly regulated by meta-
bolic processes, including sources like NADPH oxidases (NOX) [40], the
mitochondrial electron transport chain [41], and numerous oxidases
(see review [6]). H2O2 is also enzymatically removed by various per-
oxidases, notably GSH peroxidases [42], by peroxiredoxins [43,44], and
by catalases [45]. Moreover, diffusion plays a role in H2O2 clearance,
with specialized proteins, such as aquaporins (peroxiporins) [46] and
connexins [47], which exert gradient control across membranes.
Notably, connexin hemichannels also serve communication functions at
subcellular locations other than gap junctions [48]. As a result, the
cellular distribution of H2O2 resembles a dynamic landscape, charac-
terized by peaks of high concentration and deep troughs rather than a
uniform flat pattern. This dynamic profile extends to the targets of H2O2,
primarily redox-reactive protein cysteinyl thiolate groups that form a
veritable ‘proteoform landscape’ [49] and act as redox switches. The
functioning of such redox switches is fine-tuned by physicochemical
fluctuations in their microenvironment [50].

Communication between various subcellular organelles is facilitated
by structural and functional loci known as membrane contact sites
(MCTs) [51]. The intricate redox relationship between the endoplasmic
reticulum, mitochondria, and peroxisomes was referred to as ‘redox
triangle’ [52]. These organelles also establish connections with others,
including lysosomes, lipid droplets [53], and the plasma membrane
[54]. When H2O2 is generated inside peroxisomes, it can modulate the
sulfenylation profiles of extraperoxisomal redox signaling proteins in
the cytosol [55], highlighting the active role of peroxisomes in intra-
cellular redox communication [56]. The plasma membrane serves as a
key platform for redox communication with intracellular organelles [57,
58], as well as with structures such as the cytoskeleton [59–61], and it is
crucial for communication between cells [62] (see next Section below).

Interestingly, the superoxide radical anion, the product of the plasma
membrane-located NADPH oxidase, is generated outside the cell and
subsequently converted to H2O2 by extracellular superoxide dismutase
(SOD3). This necessitates the transport of H2O2 from the extracellular
space into the cell. For example, in growth factor signaling a growth
factor binds to the receptor on the exterior of the cell, leading to the
assembly and activation of NADPH oxidase within the cell. This process
can be described as a “redox signaling slalom” across the plasma
membrane (illustrated, for example, in Refs. [63,64]). H2O2 is trans-
ported into the cell via peroxiporins (mentioned above), with channel
gating regulated by persulfidation [65]. In addition, other post-
translational modifications of peroxiporins also influence their transport
capacity [66].

Another pathway for importing extracellular H2O2 into the cell is by
endocytosis, a process occurring preferentially at the lipid raft sites, such
as caveolae [67]. This process leads to the formation of redox-active
endosomes, known as “redoxosomes” [68], via the invagination of the
plasma membrane, causing the outer leaflet of the plasma membrane to
face inward towards the lumen of the redoxosome. Consequently, su-
peroxide generated by NADPH oxidase is produced within the redox-
osome and is then dismutated to H2O2 by SOD3. Notably, the formation
of active redoxosomes was impressively demonstrated upon growth
factor stimulation, using the H2O2 sensor Hyper fused to the EGF re-
ceptor, revealing a significant increase in H2O2 concentration within the
redoxosome lumen following EGF addition [18]; for recent discussion of
the role of redoxosomes in EGF receptor-dependent redox signaling, see
[69]. Moreover, surface-enhanced Raman spectroscopy (SERS)

Fig. 1. Global principles governing biological redox regulation
The major aspects of redox regulation in cells and organs are categorized into
four quadrants: Organization, Concepts, Molecular Players, Processes. For de-
tails, please refer to the text in the Section titled “Redox Organization”. An
extensive discussion is given in a recent review [1].
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identified considerable redox heterogeneity along the lateral dimension
of the plasma membrane, with peak H2O2 concentrations reaching up to
12 μM, while the overall intracellular concentration was 5.1 nM [35].

The dynamics of redox communication between mitochondria and
other cellular compartments has been extensively studied (for example,
see Refs. [70–73]). Focusing on the role of mitochondria within intact
cells, rather than isolated organelle preparations, reveals that mito-
chondrial redox dynamics is continuously monitored at different levels.
This encompasses not only the dynamics of mitochondrial cristae [74],
which have long been associated with bioenergetics [75,76], but also
their involvement in spatiotemporal signaling [77,78]. In addition,
cellular H2O2 levels exhibit diurnal fluctuations that play a role in
regulation of circadian rhythms [79].

The nucleus has significant functions in redox communication,
including the role of non-coding RNAs [80], a research area not covered
here. Also, the role of the mitochondrial permeability transition pore
(mPTP) in redox responses and its relationship to calcium ion signaling
[81] is another important topic outside the scope of this discussion. The
phenomenon known as ‘ROS-induced ROS release (RIRR)’ [82,83],

Fig. 2. Intracellular and intercellular compartmentation: Heterogeneity
Various factors contributing to the disparity between the content of a metabolite (per unit volume of cell incubation or tissue) and its thermodynamic concentration.
Source: Sies, H., On metabolic compartmentation: Introductory remarks, in: Metabolic Compartmentation (Sies, ed.), pp.1-8, Academic Press, London (1982) [19].
Note: Membraneless organelles and biomolecular condensates are not depicted.

Table 1
Estimates of cellular hydrogen peroxide concentration.

H2O2 (nM) Ref.

‘Overall cellular’ 2–10 [27,34,35]
Cytosol 0.1–2.2 [34,36]
Mitochondrial matrix <4 [37]
Endoplasmic reticulum 700 [38]
Peroxisome ≫ 4 M. Fransen (pers. comm.)
Nucleus <0.1 V. Belousov (pers. comm)

Human blood plasma 1–5 μM [39]

Data compiled from the literature. For more details, see Ref. [33].
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exemplified as a sophisticated mechanism for fine-tuning redox
communication, represents a biological feedback response to oxidative
stress.

The orchestration of the various cellular sources of H2O2 production
is multifactorial and cell type-specific [84–87]. Stress sensor systems,
such as KEAP1, are fine-tuned to detect distinct types of stress inde-
pendently [88], and the activation of transcription factors in response to
H2O2 stress is temporally coordinated [89]. A study investigating the
various H2O2 sources across nine different cell types found that, while
mitochondrial contributions vary, in none of them mitochondria were
the major contributing source of H2O2 [90]. Instead, NADPH oxidases
emerge as significant enzymatically controlled contributors to H2O2
production, playing critical roles in metabolic and inflammatory
signaling [91] within the larger context of reactive immunometabolites
[92].

4. Intercellular redox communication: focus on H2O2

Redox communication between cells utilizes and expands on the
tools described above for intracellular modes of communication [93,
94], and it encompasses various means of cellular crosstalk [95]. As
illustrated in Fig. 3, direct communication occurs between adjacent cells
through gap junctions formed by connexons [47,96], as well as through
the pericellular transfer of oxidant signals such as H2O2, which can enter
neighboring cells by peroxiporins. This cell-to-cell redox communication
can spread to multiple cells, creating what was referred to as a “ROS
wave”, a phenomenon initially observed in plants [97]. This mechanism

triggers adaptive stress responses and has been conserved throughout
evolution [98].

Furthermore, redox-active enzymes can be released from cells into
the extracellular space to facilitate communication with other cells. For
instance, thioredoxin, peroxiredoxins, and protein disulfide isomerase
A1 (PDIA1) [99] have all been shown to be secreted in this manner.
Notably, oxidation-sensitive proteins like PDIA1 are preferentially
secreted from the endoplasmic reticulum directly into the extracellular
space through a pathway that bypasses the Golgi complex [100,101].

Functional responses to changes in H2O2 concentration and oxidative
stress [102] have been extensively studied, for example in skeletal
muscle [103,104] and in many other processes in physiology and pa-
thology [105,106].

Extracellular vesicles (EVs), which include exosomes and ectosomes
(microvesicles), are produced at the plasma membrane or in the endo-
lysosomal system. Once released from the cells, EVs can carry cargo to
nearby or distant targets [107–109]. Redox-active exosomes play a
crucial role in cell-to-cell signaling [110,111-113] (Fig. 3). For example,
they aid in the regeneration of injured axons. Whenmacrophage-derived
exosomes containing NADPH oxidase 2 are transferred, the injured
axons produce oxidants that deactivate the phosphatase PTEN, thereby
enhancing the PI3K-AKT pathway, which is essential for axonal regen-
eration [114]. Another illustration of biological roles of EVs is their
involvement in signaling to the Nrf2/HO-1 axis in stem cell biology
[115].

Fig. 3. Schematic overview of redox communication in and between cells.
This simplified scheme focuses on H2O2 as a major cellular signaling oxidant. For details, see text. Source: Sies, H., Mailloux, R.J., and Jakob, U., Fundamentals of
redox regulation in biology, Nat. Rev. Mol. Cell. Biol. 25, 701–719 (2024) [1].
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5. Concluding remarks

Dynamic communication within cells and tissues via various
signaling routes is an essential feature of living systems. The scope of
redox communication spans over ten orders of magnitude, encompass-
ing timescales from the nanosecond interactions between individual
molecules to the entire lifespan of an organism. Research on intracel-
lular organelles, including membraneless organelles, has revealed
fascinating insights into the continuous monitoring and control of
metabolic homeostasis.

The diverse pathways of redox communication between cells, espe-
cially in the context of extracellular vesicles (EVs), represent a rich area
for further investigation. As indicated in the Introduction, redox
communication encompasses many classes of redox-active molecules,
but here the focus is restricted to H2O2 as a prototypical example. The
crosstalk between the different types of signaling modes becomes
increasingly amenable to exploration by systems biology and network
analysis. Advances in methodologies to study individual molecules
noninvasively within their natural microenvironment in vivo open per-
spectives that seemed far-fetched a few decades ago [116].
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