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Cardioprotection is a well-established term in the scientific world. It describes the protection of various media-
tors on the cardiovascular system. These protective effects can also be provided by certain lipids. Since lipids
are a very specific and clearly definable class of substances, we define the term lipoprotection as lipid-
mediated cardioprotection. In this review, we highlight high-density lipoprotein (HDL), sphingosine-1-
phosphate (S1P) and omega-3 polyunsaturated fatty acids (n-3 PUFA) as the most important lipoprotective me-
diators and show their beneficial impact on coronary artery disease (CAD), acutemyocardial infarction (AMI) and
heart failure (HF).

© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. High density lipoprotein (HDL)

High density lipoprotein (HDL) is one of many transport vehicles of
proteins and lipids in the circulation. It is about 8–13 nm in size and has
a density of 1.063–1.210 g/mL (Mach et al., 2019). The term high-
density has historical reasons based on the behavior in ultracentrifuga-
tion (Jonas et al., 2008). The synthesis of HDL is extremely complex. The
precursor protein, pre-β-HDL, is mainly formed in the intestine and
liver. It is able to take up cholesterol from macrophages in the vascular
wall, resulting inmature HDL.Within theHDL particle, cholesterol is es-
terified via lecithin cholesteryl acyltransferase (LCAT). The resulting
cholesterol esters (CE) can then be transferred to the low-density
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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lipoprotein (LDL) via the cholesterol ester transfer protein (CETP), mak-
ing cholesterol available for the construction of cell membranes. On the
other hand, HDL can be taken up into the liver via the scavanger recep-
tor B1 (SR-BI), where it can be excreted via the bile. In both cases, this is
known as reverse cholesterol transport (Fielding & Fielding, 1995). Ma-
ture HDL particles are micro emulsion containing a core of various neu-
tral lipids (triacylglycerol (TAG), CE and cholesterol) which is stabilized
by a surface monomolecular film of phospholipids (PL), cholesterol and
apolipoproteins (Apo). ApoA-1 is probably the most important of the
many Apos, as it is responsible for many of the following lipoprotective
functions in the cardiovascular (CV) system. However, HDL particles do
not form a completely uniform class of lipoproteins but they vary in
their composition, size and density (Kontush et al., 2015). The impact
of the different HDL subclasses on CV diseases is an emerging topic cur-
rently the subject of controversial debate. For this reason, a detailed
analysis of these possible differences is not part of this review.

1.1. Coronary artery disease (CAD)

Coronary artery disease (CAD) is defined as a “pathological process
characterized by atherosclerotic plaque accumulation in the epicardial ar-
teries. It is a chronic, most often progressive, and hence serious, even in clin-
ically apparently silent periods” (Knuuti et al., 2020). In addition to
interventional and/or drug therapy, which is used to protect patients,
HDL also shows a lipoprotective effect in CAD.

This protective effect has been shown in large studies and applies to
all age groups. A recently published meta-analysis revealed negative
correlation between HDL level and CAD severity throughout twelve
clinical studies with 5544 participants including 3009 patients (Hu
et al., 2024). Even larger analyses of national insurance data showed a
similar picture. Data from the 2010 National Health Insurance Service
and the National Death Registry of Korea (1,711,548 patients) were
used to associate between HDL levels and all-cause mortality over 10-
years in people ≥40 years of age. The negative impact of low HDL levels
remained even after adjusting for several parameters like age, body
mass index, LDL-cholesterol and triglycerides. A gender effect could
not be observed (Yang et al., 2023).

While most studies included patients with a mean age of
60–65 years, more recent studies also showed a lipoprotective effect
of HDL in younger people. Several case-control studies analyzed the as-
sociation between low plasma HDL and premature CAD in patient
≤55 years of age. Although, population-based large cohort studies are
still missing, low plasma HDL was positively associated with premature
CAD (Shahid et al., 2016). This effect could also be shown in adolescents.
A recently published cross-sectional study of 100 healthy participants,
aged 14–18, revealed the positive impact of HDL on carotid intima
media thickness (IMT) even at this young age (Martínez-Alvarado
et al., 2024). LowHDL levels were associatedwith increased IMT values.
The impact of lipoproteins in childhood on cardiovascular diseases
(CVD) was recently demonstrated even more clearly by the i3C Consor-
tium. They included 21,126 children (mean age 11.9 years) in a prospec-
tive cohort study with an average follow-up of 35 years confirming a
higher risk for children who were outside their target values (Wu
et al., 2024).

In addition to the clear data on the lipoprotective effect of HDL on
CAD and the increased risk associated with low HDL levels, there are
currently findings in large cohort studies that very high HDL levels
could also be detrimental to cardiovascular health. Large epidemiologi-
cal studies showed U-shaped relationships between HDL levels and all-
cause mortality (Ko et al., 2016; Madsen et al., 2017; Yi et al., 2021).
Analyses of the CANHEART (Cardiovascular Health in Ambulatory Care
Research Team) dataset with 631,762 individuals revealed increased
mortality in men with plasma HDL >70 mg/dl and in women
>90mg/dl. However, therewas significant association to all-causemor-
tality, no statistically significant association could be observed between
elevated plasma HDL and CV outcome (Ko et al., 2016). Further studies
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confirmed this finding. Two prospective population-based studies, the
Copenhagen City Heart Study and the Copenhagen General Population
Study, also revealed a significant increase in all-cause mortality in pa-
tients with very high plasma HDL. Although, there were no associations
with CAD, AMI, ischemic stroke or CV-mortality. The authors them-
selves suspect the influence of genetic mutations, which are responsible
for both the very high HDL values and the increased mortality risk
(Madsen et al., 2017).

Despite these data, there is consensus on the clear lipoprotective ef-
fect of HDL in CAD. Although the effect of very high HDL levels is inter-
esting and has been confirmed in several studies, it remains to be seen
whether a mechanistic link can be found here. The positive effects of
HDL, on the other hand, can be clearly demonstrated. HDL inhibits LDL
oxidation (Negre-Salvayre et al., 2006), is responsible for reverse cho-
lesterol transport (Lewis & Rader, 2005), promotes endothelial repair
(Tso et al., 2006) and improves endothelial function via NO
(Bisoendial et al., 2003). Additionally, it has anti-thrombotic and anti-
inflammatory properties (Cockerill et al., 1995) which both are benefi-
cial in CAD. Taken together, HDL is a lipoprotective agent in CAD.

1.2. Acute myocardial infarction (AMI)

The global burden of cardiovascular diseases, and AMI in particular,
remains high. Since decades this is the leading cause of death in the
world (Vaduganathan et al., 2022). Although, rapid revascularization
with percutaneous coronary intervention (PCI) andmodern antithrom-
botic treatment, have been able to further reduce one-year mortality in
recent years, it is still 8 % (Thrane et al., 2023). Dyslipidemia, defined as
low plasma HDL and elevated LDL and total cholesterol (Atherosclerosis,
2019), is one of the main risk factors for AMI. Therefore, a deep under-
standing of lipoprotective effects of HDL is of great interest.

In the last decades, numerous studies could show that low plasma
HDL is associated with higher incidence of AMI (Gordon et al., 1989).
Low plasma HDL could also be associated with worse outcome after
AMI (El Amrawy et al., 2023). An example for this is a longitudinal
study based on 384,093 participants from the UK Biobank that revealed
a correlation of low HDL with increased risk of AMI all-cause mortality,
hemorrhagic stroke and ischemic stroke (Yuan et al., 2023). This was
confirmed by large meta-studies which have identified HDL as an im-
portant predictor of cardiovascular risk (Di Angelantonio et al., 2012;
Rader & Hovingh, 2014) or cardiovascular death (Lewington et al.,
2007). In addition to epidemiological studies and meta-studies, murine
studies demonstrated lipoprotective effects of HDL in ischemia/
reperfusion injury (Sposito et al., 2019; Theilmeier et al., 2006). This ap-
plied both to the application of healthy HDL (Tangirala et al., 1999) and
to the application of ApoA-1 (Gu et al., 2007).

On the basis of these data, it seemed reasonable to conduct a clinical
trial increasing HDL levels in order to reduce the risk of an AMI. How-
ever, the pharmacological approaches to increase HDL in plasma using
so-called CETP inhibitors (evacetrapib and anacetrapib) and thus reduce
the cardiovascular risk has failed in the human setting in large random-
ized, controlled studies (Bowman et al., 2017; Lincoff et al., 2017). Addi-
tionally, the infusion of pure ApoA-1 did also not result in a lower risk of
AMI. This was tested in an international RCT with a total of 18,219 pa-
tients (Gibson et al., 2024). The current negative data from the large
clinical studies mentioned question the lipoprotective properties of
HDL. Further data confirmed that HDL cannot serve as an unrestricted
lipoprotective agent. Studies with patients who have low HDL plasma
levels due to a genetic mutation have not found an increased risk of
AMI (Frikke-Schmidt et al., 2008). Recent analyses withMendelian ran-
domization showed no predictive power of HDL plasma levels on AMI
(Voight et al., 2012) showing that the concept of increasing plasma
HDL cannot be uniformly applied to reducing the risk of AMI.

Currently, the question of why there is such heterogeneity in the
findings needs to be answered, because the fundamental ability of
HDL to mediate lipoprotective effects cannot be doubted. In the search
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for possible explanations for the current data situation, different
subspecies of HDL may play a possible role. This was discussed at least
for the failure of the CETP inhibitors, as a change in the subspecies of
HDL was found here (Furtado et al., 2022). However, it is reasonable
to assume that it is not so much the quantity as the quality of HDL
that is of decisive importance for its lipoprotective effect (Rader &
Hovingh, 2014). One possible reason could be the sphingolipid
sphingosine-1-phosphate (S1P) which is part of HDL and able to medi-
ate cardioprotection (Polzin et al., 2023a; Polzin et al., 2023b). However,
in some disease states, S1P content in HDL is reduced and therefore a
reduction of lipoprotective effects of HDL could be possible (Levkau,
2015). In the future, further studies will have to show how HDL has to
be composed so that it can mediate the undoubtedly existing
lipoprotective effects.

1.3. Heart failure (HF)

Heart failure (HF) can be defined as “a clinical syndrome with symp-
toms and or signs caused by a structural and/or functional cardiac abnor-
mality and corroborated by elevated natriuretic peptide levels and or
objective evidence of pulmonary or systemic congestion” (Bozkurt et al.,
2021). In addition, this disease can be further categorized according to
the remaining ejection fraction, an acute or chronic condition and the
severity of the symptoms (McDonagh et al., 2021). Irrespective of any
further classification, around 1–2 % of all adults in Europe suffer from
this disease (Conrad et al., 2018).

From an epidemiological perspective, HDL has a big impact on the
incidence of HF and unfavorable prognosis in patients with HF. In
6860 participants of the Framingham Heart Study (49 % women, mean
age 44 years) who had no CAD at baseline, there was an association be-
tween raised HDL cholesterol levels and the incidence of HF even after
adjustment for AMI and clinical covariables (Velagaleti et al., 2009).
Additionally, plasma HDL levels could be negatively associated with
mortality in HF patients (Potočnjak et al., 2017). In a prospective cohort
study with chronic HF patients, the antioxidant function of HDL was an
independent predictor of the combined endpoint of death from cardio-
vascular events and heart transplantation (Schrutka et al., 2016). How-
ever, the lipoprotective effect of HDL appears to depend not only on the
quantity, but also on its functionality.

One way to define HDL functionality is the analyses of key
lipoprotective functions: cholesterol efflux, anti-oxidative and anti-
inflammatory capacity. A recently published study randomly selected
446 patients with HF from BIOSTAT-CHF (A Systems Biology Study to
Tailored Treatment in Chronic Heart Failure), analyzed these three
HDL functions and associated them with mortality. It could be shown
that better HDL cholesterol efflux at baseline was associated with
lower mortality during follow-up. Additionally, HDL cholesterol efflux
and anti-inflammatory capacity declined during follow-up in patients
with heart failure (Emmens et al., 2021). ApoA-1 emerged as the main
protein associated with all three HDL functions. Further studies could
also show the prognostic power of plasma HDL und ApoA-1 in patients
with HF regardless of etiology (Iwaoka et al., 2007).

Mechanistically, HDL mediates beneficial effects on many tissues
that account for its lipoprotective effect in HF. HDL protects cardiomyo-
cytes against necrosis via amechanism involving itsmain receptor SR-BI
(Durham et al., 2018). In addition, HDL showed direct effects in vitro on
contractility of cardiomyocytes in rodent (Van Linthout et al., 2008) and
it is able to inhibit cardiomyocyte hypertrophy by suppressing angio-
tensin II type 1 (AT1) receptor upregulation (Lin et al., 2015). Besides
its effects on cardiomyocytes, HDL also promotes effects on myocardial
endothelial cells (Kimura et al., 2006; Tran-Dinh et al., 2013) and fibro-
blasts (Spillmann et al., 2016) which are beneficial in HF. Additionally,
HDLs overall anti-oxidative and anti-inflammatory impact show favor-
able effects in HF as both oxidative stress and inflammation are key
player in pathogenesis of HF (Okonko & Shah, 2015; Westman et al.,
2016). To be more precise, activation of the NLRP3 inflammasome is
3

terminated (Thacker et al., 2016), neutrophil activation is impeded
(Murphy et al., 2011), and interleukin-6 production is inhibited by
HDL (Gomaraschi et al., 2005). However, all mechanisms found so far
on how HDL protects in the context of HF relate to healthy and
functional HDL. Several studies in rodent models have shown that
HDLmay hamper HF development, while dysfunctional (changed com-
position) HDL may do the opposite (Aboumsallem et al., 2018;
Aboumsallem et al., 2019; Amin et al., 2017; Mishra et al., 2020;
Muthuramu et al., 2018).

In summary, the clear lipoprotective effect of HDL on the
development and progression of HF remains and the mechanisms be-
hind aremanifold. Even if the quality or functionality of HDL is a decisive
limitation here. This is currently andwill continue to be the focus of HDL
research in the future to increase the understanding of the
lipoprotective effects and to be able to use this therapeutically in HF.

2. Sphingosine-1-phosphate (S1P)

S1P is a bioactive sphingolipid with various effects and functions
within the cardiovascular system. It is formed from ceramide that is
composed of a fatty acid and a sphingosine molecule. This ceramide is
then converted into sphingosine via an enzyme called ceramidase
(Mendelson et al., 2014). Finally, sphingosine is then phosphorylated
by sphingosine kinase (Sphk) generating S1P (Spiegel & Milstien,
2007). Similar to other bioactive lipids, S1P can easily as an intracellular
second messenger, and as an extracellular ligand for its five different G
protein-coupled receptors (GPCRs) (Cirillo et al., 2021). Because the S1P
receptor (S1PR) 4 + 5 are mainly found in the nervous system (Ishii
et al., 2004), they do not play a relevant role for the cardiovascular ef-
fects of S1P. S1PR1–3, on the other hand, can all mediate cardiovascular
effects (Levkau, 2013). As amphipathic molecule, S1P needs to bind to a
carrier to be present in biological and aqueous fluids and act as an extra-
cellular ligand subsequently. Themajority of S1P (65–80 %) is associated
to HDL (Levkau, 2015). For this reason, it is not always easy to clearly
distinguish the effects of S1P from those of HDL. Nevertheless, a whole
range of positive effects can clearly be attributed to S1P.

2.1. Coronary artery disease (CAD)

Dyslipidemia and therefore a lack of lipoprotection is a risk factor for
CAD (Asadi et al., 2015). Patientswith CADare characterized by reduced
S1P amount in HDL as compared to healthy subjects (Sattler et al.,
2010). Mounting evidence has shown that plasma HDL levels are a neg-
ative predictor for CAD. Although the quantity plays a role, the quality of
the HDL is muchmore important (Sattler et al., 2014). One of the estab-
lished points that determine functional defects of HDL is its reduction in
S1P (Sattler et al., 2010). Important findings of studies have shown that
some of the atheroprotective actions of HDL are mediated by S1P (Potì
et al., 2014). Fittingly, plasma S1P is a strong predictor of occurrence
and severity of CAD (Sattler et al., 2014). This was confirmed in a multi-
variate analysis revealing that S1P was more powerful predictor of ob-
structive CAD than traditional risk factors likes age, sex, hypertension
or the lipid profile (Deutschman et al., 2003). The strong ability to act
as a predictor is also evident in patients with carotid stenosis and pe-
ripheral artery disease (Soltau et al., 2016). Overall, the predictive
power appears to be significantly stronger than for HDL.

The positive and lipoprotective effects of S1P on CAD are distinct and
clear. However, the mechanistic explanations are manifold and com-
plex. In routine clinical practice, S1P modulators are used to suppress
the immune system in the context of multiple sclerosis (Rae-Grant
et al., 2018). These anti-inflammatory effects of S1P also show positive
effects on the progression of CAD. S1PR1-signaling showed anti-
atherosclerotic effects by the inhibition of macrophage apoptosis and
endothelial inflammation. This is mediated by intracellular pathway
with phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PI3K/
Akt) as central elements (Al-Jarallah et al., 2014). S1P is also able to
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inhibit the activation of Toll-like receptor-2 which further underlies its
anti-inflammatory and anti-atherogenic role (Dueñas et al., 2008). For
the sake of completeness, it must bementioned that there are also stud-
ies that show a pro-inflammatory effect of S1P. There is some evidence
that S1P induces NF-κB activation and TNF-α production in adipocytes,
macrophages, andmonocytes (Keul et al., 2011;Wang et al., 2014; Yogi
et al., 2011). However, these do not provide a mechanistic explanation
for the clear lipoprotective effect of S1P in CAD. Nevertheless, it is im-
portant to illustrate the inflammatory effects of S1P/S1PR axis in CAD
more clearly.

Besides its anti-inflammatory effect, S1P showed lipoprotective ef-
fects on endothelial cells. That is of great importance as disruption of
the integrity of vascular endothelial cells is an important factor in ath-
erosclerosis and therefore in CAD. Several studies have shown that
S1P attenuates endothelial cells' apoptosis via S1PR1/3-signaling
(Kimura et al., 2003; Nofer et al., 2004). Mechanistically, S1P exert its
anti-apoptotic effects through phosphorylation of Akt and Erk via
S1PR1 and S1PR3 (Ruiz et al., 2017). Additionally, a recently published
study revealed that S1P protects endothelial cells from activation under
hemodynamic stress and refrains coronary atherosclerosis (Manzo
et al., 2024) and it was shown that S1P-loading improves protective
HDL signaling in the endothelium (Sattler et al., 2015). Moreover,
S1PR3-signaling was shown to have additional anti-atherosclerotic ef-
fects by inhibiting neointima formation (Keul et al., 2011).

2.2. Acute myocardial infarction (AMI)

Although large RCTs on the impact of S1P in AMI are lacking and
there are few human data on the association of S1P and outcome after
AMI, the lipoprotective effects are considered certain. Recently, it was
shown that plasma S1P level were associated with and infarct size and
cardiovascular death in patients with AMI (Polzin et al., 2023b).

In contrast to the limited human data, there are countless basic sci-
entific studies that have mechanistically investigated the lipoprotective
effect of S1P in AMI (Wang et al., 2023). Therefore, a murine model of
AMI was used in most of the studies. Many studies have shown the
lipoprotective effect of S1P on infarct size and cardiac function post
AMI. The positive effect was persistent in both the permanent LAD liga-
tion model (Polzin et al., 2023a) and the ischemia/reperfusion model
(Yung et al., 2017). The activation of several intercellular pathways
were found to be the mechanistic reason for the improved outcome.
Thereby, all of the relevant S1PR (1–3) contribute to lipoprotection.
S1PR1 was shown to activate Akt/Erk-signaling which is responsible
for cardioprotective effects in ischemia (Keul et al., 2016; Tao et al.,
2010). Additionally, S1PR1-signaling negatively regulates inflammation
and inhibits myocardial apoptosis, and fibrosis (Cannavo et al., 2013;
Ohkura et al., 2017). Besides that, both the survivor activating factor en-
hancement (SAFE) pathway and the reperfusion injury salvage kinase
(RISK) pathway were shown to be activated by S1P (Fang et al., 2017;
Frias et al., 2013).

S1PR3-signaling was also shown tomediate lipoprotective effects in
case of an AMI. S1P treatment reduced the infarct size via S1PR3-RhoA
signaling (Yung et al., 2017). As S1PR1, S1PR3 is also able to activate
Akt/Erk signaling pathway (Means et al., 2007). Interestingly, deletion
of S1PR3 did not affect infarct size and Akt activation. However, a loss
of S1PR2 and S1PR3 increased the infarct area (Deng et al., 2019) sug-
gesting that S1PR2 plays a lipoprotective role as well. Moreover, it was
reported that S1PR2 and S1PR3 activation results in Connexin43
(Cx43) phosphorylation which is known to reduce infarct size and
ischemia/reperfusion (I/R) injury (Means et al., 2007).

S1P can alsomediate an effect on thrombus formation. Although S1P
has not yet been shown to mediate direct platelet aggregation, en-
hanced PAR1-mediated platelet effects have been demonstrated (Liu
et al., 2021). Furthermore, mice with low S1P levels show increased
platelet adhesion and enhanced thrombus formation (Münzer et al.,
2014). Consistent with this, mice with high plasma S1P levels show an
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antithrombotic phenotype (Urtz et al., 2015). However, the exact
mechanism of how S1P affects thrombus formation has not yet been
conclusively investigated. Based on the basic scientific data to date, a
lipoprotective and antithrombotic effect can be assumed.

In addition to the effects on cardiomyocytes and platelets, S1P-
signaling was shown to control vascular permeability and immune cell
immersion at the site of I/R injury by the regulation of endothelial
dysfunction and immune cell activity (Nitzsche et al., 2021). Besides
that, S1P-mediated vasorelaxation is mediated via activation of S1PR3
and in an NO-dependent manner (Theilmeier et al., 2006). Next to
numerous studies showing the lipoprotective effect of S1P on the myo-
cardium, there is some evidence indicating that there is a limit of
cardioprotection by S1P. Overproduction of S1P led to myocardial
degeneration, peripheral vascular resistance, cardiac remodeling and
fibrosis in post-AMI condition (Meissner et al., 2012; Takuwa et al.,
2010). Nevertheless, the lipoprotective effects of S1P in case of an AMI
are secured.

2.3. Heart failure (HF)

Heart failure (HF) is a complex clinical state that is characterized by
insufficient blood supply of peripheral organs and tissues. HF develops
after cardiac hypertrophy and/or myocardial infarction. Additionally, it
is related to chronic stimulation of β-adrenergic signaling within the
heart. While the data situation in the case of CAD and S1P quite clearly
confirmed the lipoprotective effect of S1P, the situation is less clear in
the case of HF. This is due on the one hand to the different types of HF
(acute vs. chronic, ischemic vs. non-ischemic) and on the other hand
to the less pronounced data situation. A look at human data shows
that here too there is no simple linear relationship between S1P levels
and outcome in HF. There is already inconclusive data on whether
plasma S1P in HF is altered at all. A small studywith 74 patients with is-
chemic HF revealed a negative correlation of S1P with the severity of
heart failure (Polzin et al., 2017). On the other hand, it was shown
that plasmaS1P is not altered in patientswith chronic HF independently
of its underlying cause (Knapp et al., 2012). However, recently a pro-
spective study with 210 chronic systolic heart failure patients observed
a U-shaped association between S1P levels and all-cause death. Patients
in the bottom quartile and top quartile of plasma S1P were at a higher
risk of death (Xue et al., 2020). Moreover, there is no information
about the expression and changes of S1PRs in the vasculature of patients
with HF (Mann, 2012).

While the complex relationships between S1P and the progression
of HF in clinical cohorts have hardly been uncovered, some basic science
studies may provide further insights. Usually rodent basic science stud-
ies can be divided into studies related to chronic ischemic HF and acute
HF, respectively. In chronic HF the expression of S1P1R in the LV as well
as plasma S1P significantly increased suggesting that myocardial S1P/
S1PR1 signaling is boosted during chronic HF (S et al., 2021). This
could be an indication of a kind of lipoprotective rescue mechanism.
This could be further confirmed by permanent overexpression of
S1PR1 as gene therapy in chronic HF rats. It resulted in significantly im-
proved diastolic function. Additionally, the infiltration of immune cells
was reduced and the total plasma membrane β-adrenergic receptor
(βAR) density was normalized compared with HF control rats
(Cannavo et al., 2013). Therefore, S1P/S1PR1-signaling mediated bene-
ficial effects counteracting the unfavorable overstimulation of β1AR in
HF. In acute HF S1P treatmentwas associatedwith increased pacemaker
ability of the heart and enhanced STAT3-signaling (Deshpande et al.,
2018) which is known to have cardioprotective effects (Harhous et al.,
2019). On the other hand, there is evidence that S1P activates NF-κB,
leads to upregulated expression of cyclooxygenase-2, and increases
prostaglandin E2 generation, which could result in apoptosis of cardiac
fibroblasts (Yang et al., 2022).

To sum it up, S1P has lipoprotective effects in HF. However they
seem to be less pronounced as compared to CAD or AMI and available
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data on this topic is sparse. The different types of HF make it difficult to
interpret and generalize the data. Therefore, long-term studies should
further investigate whether S1P signaling in HF prevents or rather pro-
motes the progression to HF (Jozefczuk et al., 2020).

3. Polyunsaturated fatty acids (PUFA)

PUFAs are long-chain polyunsaturated fatty acids. They contain a
carboxyl group at the polar end and a non-polar carbon chain. They
can be grouped into two classes: n-3 and n-6 PUFAs (Aarsetoey et al.,
2012). The precursors of both classes of PUFAs are α-linolenic acid
(ALA, 18:3, n-3) and linoleic acid (LA, 18:2, n-6). These two fatty acids
are defined as essential because the body cannot produce them itself
and they have to be taken in with food (Adkins & Kelley, 2010). ALA,
which is present in beans and nuts, is the metabolic precursor of
eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid
(DHA, 22:6 n-3), the most important n-3 PUFAs when talking about
lipoprotection. On the other hand, LA which is primarily contained in
soybean and corn oil is the metabolic precursor of arachidonic acid
(AA) (Behl & Kotwani, 2017; Landa-Juárez et al., 2016). Despite their
synthesis in the liver, the highest amount of EPA and DHA can be
ingested via marine fish. As far as their function is concerned, the n-6
PUFAs and oxylipins formed from them have pro-inflammatory proper-
ties, unlike the n-3 PUFAs and their derivatives, which are powerful
anti-inflammatorymediators. Therefore, the recommended daily intake
of PUFAs is in favor of the latter (Akbar et al., 2017; Messamore et al.,
2017).

3.1. Coronary artery disease (CAD)

The cardioprotection of n-3 PUFAs, especially EPA, has been the sub-
ject of controversy for years (Shahidi & Ambigaipalan, 2018). However
there is now clear evidence of lipoprotection in CAD by n-3 PUFAs.
First of all, CAD patients had significantly lower levels of n-3 PUFA, par-
ticularly EPA, in the blood (Wang et al., 2022) which can be taken as an
initial indication of a connection. Additionally, treatment with n–3
PUFAs (2 g/d) improved endothelial function and the elastic properties
of the arteries via the anti-inflammatory effects (Siasos et al., 2013). The
beneficial effects of n-3 PUFAs were confirmed in another study show-
ing improved FMD in patients with hypercholesterolemia (Goodfellow
et al., 2000). Several studies confirmed the anti-inflammatory effects
aswell. EPAwas shown to reduce levels of E-selectin, intercellular adhe-
sion molecule 1, and vascular cell adhesion molecule 1, which mediate
the adhesion of the immune cells. Besides that EPA improved the nitric
oxide availability and promoted endothelial nitric oxide synthesis
(Bercea et al., 2021; Sakamoto et al., 2019). Additionally, EPA signifi-
cantly reduced the coronary plaque volume in patients with CAD
(Watanabe et al., 2017). Mechanistically, EPA increased the anti-
atherosclerotic functions of HDL (Tanaka et al., 2014). The
lipoprotective effect of n-3 PUFA, especially EPA, is therefore very mul-
tifaceted in CAD. The positive effect on the cardiovascular risk with re-
gard to cardiovascular death and the occurrence of an AMI is even
clearer and has been proven by many RCTs.

3.2. Acute myocardial infarction (AMI)

The positive effects of a diet rich in fish and thus n-3 PUFA and the
associated reduction in AMI risk have been known for almost 50 years.
In 1979 in was demonstrated that the increased value of n–3 PUFAs in
platelets caused a significantly longer clotting time. This served as an ex-
planation for the low incidence of atherosclerosis-related mortality in
Greenland Inuits (Dyerberg & Bang, 1979). Nevertheless, it was a long
time before the clear lipoprotective effect of n-3 PUFA was scientifically
confirmed. This is because there are a number of studies that have not
been able to demonstrate the protective effect of n-3 PUFA. In the
VITAL study, a daily dosage of 1 g marine omega-3 fatty acid was not
5

found to significantly reduce cardiovascular events in men over 50
and women over 55 (Manson et al., 2019). Similarly, the data from the
ASCEND study including patientswith type 2 diabeteswithout evidence
of CVD also show no clear benefit from a daily intake of 1 g n-3 PUFA
(Bowman et al., 2018). Moreover, in the ORIGIN trail showed no reduc-
tion in cardiovascular deaths during six years in patients taking 1 g n-3
PUFA daily with dysglycemia and additional cardiovascular risk factors
(Bosch et al., 2012). There are not only studies that look at cardiovascu-
lar risk before AMI, but also studies that look at n-3 PUFAs in secondary
prevention. The OMEMI study investigated the effect of daily n–3 PUFA
intake (mixture of 930 mg/d of EPA and 660 mg/d of DHA) in subjects
with a recent AMI. It showed no benefit for composite primary endpoint
at 2-year follow-up (Kalstad et al., 2021). However, secondary analyses
of OMENI revealed that increased levels of EPA were associated with
lower risk of major cardiovascular events (Myhre et al., 2022). Further-
more, among patients after AMI who received state-of-the-art therapy
another low-dose regime of EPA and DHA did not significantly reduce
the rate of major cardiovascular events (Kromhout et al., 2010).

The above-mentioned studies could not show any benefit of n-3
PUFA supplementation for a variety of reasons but nevertheless the
lipoprotective effect cannot be doubted. The Chicago Western Electric
Study was an early comprehensive clinical trial on fish consumption
and cardiovascular events. It showed a significant inverse association
between the consumption of fish at baseline and 30-year risk of fatal
AMI (Daviglus et al., 1997). The beneficial effects of n–3 PUFAs in the
prevention of cardiovascular events was already strengthened by RCT
several decades ago. The GISSI-Prevenzione trial was one of the very
first trails showing that the intake of low dose n–3 PUFAs (1 g/d) led
to reduced major adverse cardiovascular events (Lancet, 1999). As in
the GISSI-Prevenzione study, the JELIS investigators observed a signifi-
cant lower rate of major adverse cardiovascular events in patients
with hypercholesterolemia treated with pravastatin or simvastatin
(Yokoyama et al., 2007). In contrast to many previous studies, the
JELIS study used pure EPA (1.8 g/d) instead of a combination of EPA
and DHA. However, consistent with data from basic and translational
research (Poreba et al., 2017; Poreba et al., 2018; Siniarski et al.,
2018), no association was identified between n–3 PUFA supplementa-
tion (1 g/d) and the cardiovascular risk in patients with type 2 diabetes
mellitus. It did not matter whether these patients had existing CVD or
not (Bosch et al., 2012; Bowman et al., 2018). As possible reason for
this, these trials identified that impaired glucose metabolism limited
the beneficial effect of n–3 PUFAs. Two of the most recent studies once
again support this. On the one hand, the REDUCE-IT trial was able to re-
duce the risk of cardiovascular events by a quarter (Bhatt et al., 2019).
On the other hand, the STRENGTH trial failed to show positive effects
of n-3 PUFAs on cardiovascular events. However, a majority of patients
in this trail had type 2 diabetes (Nicholls et al., 2020). This could have
significantly limit the n-3 PUFA effect for the reasonsmentioned above.

Overall, there is mounting evidence that n-3 PUFAs, especially EPA,
mediated lipoprotective effects. Additionally, there are studies showing
that n-3 PUFA supplementation post AMI can cause lower odds of sud-
den cardiac death, independent of traditional risk factors and lipids
(Yuan et al., 2021; Zelniker et al., 2021). Looking back on decades of re-
search with n-3 PUFAs, it appears that lipoprotection is not as pro-
nounced in patients with type 2 diabetes. This will require further
research in the future to gain an understanding of the mechanism be-
hind this.

3.3. Heart failure (HF)

In the case of HF, several studies revealed the lipoprotective effect of
n-3 PUFAs (Lavie et al., 2009). The lipoprotection of n-3 PUFA intake, es-
pecially in the early stages of HF, has been shown by the results of sev-
eral clinical studies. The GISSI-HF trial investigated 6975 patients with
chronic HF of NYHA class II-IV. Patients treated with 1 g/day of n-3
PUFAs showed a reduction in cardiac death during three years of
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follow-up and an improved left ventricular function compared to the
placebo group (Marchioli et al., 2002). A few years later, the same inves-
tigators analyzed the impact of 1 g n-3 PUFA supplementation per day in
symptomatic patients with HF. In treated patients, the mortality rate
and the number of hospitalizations due to cardiovascular eventwere re-
duced (Tavazzi et al., 2008). Further studies confirmed the
lipoprotective effect on n-3 PUFA supplementation in HF. The
REDUCE-IT trial investigated patients with established CVD including
HF or diabetes with risk factors. Treatment of 2 g icosapent ethyl (EPA
ethyl ester) twice daily led to an improvement in cardiovascular out-
come compared to placebo (Bhatt et al., 2019). Another RCT was con-
ducted with 205 patients who suffered from chronic compensated
heart failure with NYHA classification I–III determined by dilated or is-
chemic cardiomyopathy. Half of these patients received 1 g of n-3
PUFAs daily for half a year. This supplementation resulted in improved
left diastolic function and decreased BNP levels (Chrysohoou et al.,
2016).

The important and lipoprotective role of n-3 PUFAs, especially EPA,
was further confirmed in the MESA (Multi-Ethnic Study of Atheroscle-
rosis) trial analyzing 6562 participants in total (45 to 84 years of age;
52 % women). Within a mean follow-up of 13 years, the authors re-
vealed that elevated EPA plasma levels were related to a reduced risk
for HF (Block et al., 2019). Mechanistically, there are different explana-
tions for these findings. Treatment with n-3 PUFAs in patients with is-
chemic HF led to optimized inflammatory status and endothelial
function. In addition, the diastolic and systolic function of left ventricle
was improved (Oikonomou et al., 2019). Additionally, n-3 PUFAs are
able to mediate anti-fibrotic effects by activating the free fatty acid re-
ceptor 4 (Ffar4). This further leads to activation of the endothelial nitric
oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP)/pro-
tein kinase G (PKG) signaling pathway (O'Connell et al., 2017). In addi-
tion to the direct effects, n-3 supplementation mediates a whole range
of indirect effects via changes in the lipidome (Sellem et al., 2023).
Countless other mediators, so-called oxylipins, are produced in the
body from the supplied n-3 PUFA. To date, at least some of these have
shown their lipoprotective effects in HF as well (Kang et al., 2020). We
can expect further analyses in this area in the future. Even if the mech-
anism is not yet clear because it is so multifactorial, the lipoprotective
effect of n-3 PUFAs in HF is undisputed, so that supplementation is rec-
ommended in the current guidelines for treatment (Heidenreich et al.,
2022).
Fig. 1. Lipoprotection in cardiovascular diseases. Acute myocardial infarction (AMI), coronary
protein (HDL), nitric oxide (NO), omega-3 polyunsaturated fatty acids (n-3 PUFA), survivor act
injury salvage kinase (RISK) pathway. This figure was created in BioRender.
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4. Effect of aging on lipoprotection

Aging is a risk factor for all the diseases mentioned above. The im-
pact of aging is multifactorial and reduced lipoprotection might also
play a role. However, the influence of decreasing lipoprotection by
HDL, S1P and n-3 PUFAs has been little studied to date.

It is known that the HDL composition changes with age and that the
functions of HDL are also impaired as a result (Morvaridzadeh et al.,
2024). These are, for example, an increase of the acute phase protein
serum amyloid A and a reduction in antioxidant properties (Holzer
et al., 1831). In addition to the reduced quality of HDL in elderly people,
the total quantity of HDL also decrease during aging (Cho et al., 2019;
Wilson et al., 1994). This combination makes it clear that the
lipoprotective effect of HDL decreaseswith age. Nevertheless, themech-
anisms behind this are not yet fully understood and further research is
needed to one day be able to fully utilize the lipoprotective effect of
HDL in old age.

Even less data is available on aging and S1P. There is preliminary
data from rodents that S1P plasma concentration is reduced with age
(Valentine et al., 2023). In addition, basic science studies show that
less S1P is associated with more senescence, which may account for a
decrease in lipoprotection during aging (Li & Kim, 2021). However,
the decrease in S1P shown in rodents has not yet been confirmed in
humans. In an analysis of people up to 71 years of age, no decrease in
plasma S1P could be found (Daum et al., 2020). Further analyses on sig-
nificantly older people are certainly necessary to confirm and defini-
tively falsify the findings from rodents.

The situation is somewhat different for n-3 PUFAs. As the plasma
concentration is mainly determined by eating behavior, no age-
dependent decrease or increase can be analyzed here. Nevertheless,
there are studies on the effect of n-3 PUFAs on elderly people. Here it
was shown that high n-3 PUFA levels can also mediate lipoprotection
in older people in a dose dependent manner (Lai et al., 2018).

In conclusion, too little data is available to make a conclusive judg-
ment on lipoprotection by HDL, S1P and n-3 PUFA in old age. Neverthe-
less, it appears that decreasing plasma levels of HDL and S1P and a
change in the composition of HDL are responsible for a reduced
lipoprotective effect in old age. In contrast, n-3 PUFAs have been
shown to mediate lipoprotection even in the elderly. Nevertheless, fu-
ture and larger studies need to provide more data in order to make a
more meaningful judgment on the effects of aging on lipoprotection.
artery disease (CAD), heart failure (HF), low-density lipoprotein (LDL), high-density lipo-
ivating factor enhancement (SAFE) pathway, sphingosine-1-phosphate (S1P), reperfusion
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5. Summary and outlook

It can be concluded that lipids and lipoproteins can mediate
cardioprotection in various CVD in different ways (Fig. 1). This whole
can be summarized under the term lipoprotection and describes
cardioprotection by lipids already present endogenously, which can of
course also be increased and used therapeutically. However, it has
been shown, at least in the case of HDL that a pure increase does not
necessarily lead to increased lipoprotection. In future, it will be impor-
tant to understand exactly which structural changes lead to a loss of
lipoprotection. Only in this way, through intensive basic and clinical re-
search, will it be possible to find changes that can be therapeutically ad-
dressed in order to optimize the lipoprotective effect of HDL. In addition
to clear lipoprotection, S1P also appears to have adverse effects in some
diseases. Here it is important to understand more precisely in which
groups of people S1P can perhaps also be used therapeutically. In con-
trast, a sufficiently high dose of n-3 PUFA appears to help almost every
patient group. Even if the limitation of patients with diabetes must be
made here. The reasons why this is the case must be clearly worked
out in the future. Overall, however, it remains that the benefits of
lipoprotection have thepotential to reduce theburden of CVD in society.
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