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community dynamics in the Fram Strait
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Ellen Oldenburg 1,2,3,10 , Raphael M. Kronberg 3,4,10, Katja Metfies 5,6, Matthias Wietz 3,7,8,
Wilken-Jon von Appen 9, Christina Bienhold 3,7, Ovidiu Popa 1,11 & Oliver Ebenhöh 1,2,11

The Arctic Ocean is undergoing a major transition as a result of global warming, with uncertain
consequences for its ecosystems. Our study introduces an integrated analytical approach using co-
occurrence networks, convergent cross-mapping, and energy landscape analysis. Applied to four
years of amplicon data from Fram Strait, located at the boundary between Arctic and Atlantic waters,
our method identifies keystone species in seasonal microbial communities, elucidates causal
interactions, and predicts stable configurations across changing environments. We find strong
evidence for a “winter reset”, implying that organisms representing the spring bloom are largely
determined by prevailing environmental conditions during winter. In addition, our analysis suggests
that winter communities may adapt more readily to expected Atlantification than summer
communities. These results highlight the utility of innovative time-series analyses in disentangling
ecosystem dynamics. This approach provides critical insights into Arctic ecological interactions,
dynamics, and resilience and aids in understanding ecosystem responses to environmental change.

The Arctic Ocean is a unique ecosystem undergoing major transitions
during climate change. Over the past two decades, temperatures have risen
more than twice compared to the global average1, combined with a reduc-
tion in sea ice and snow cover, exacerbating warming trends. In particular,
the extent ofArctic sea ice has declined1. These environmental changes have
a wide range of consequences, including profound shifts in biodiversity2,
and thus have a fundamental impact on ecosystems of the Arctic Ocean.
There are first signs that the geographical ranges of temperate species are
shiftingnorthwards3,while polarfish and ice-associated species experience a
reduction in their habitat due to changing environmental conditions. These
ecological changes impact the entire ecosystem stability1. The complex
relationship between biodiversity and ecosystem stability remains poorly
understood, particularly in the Arctic Ocean. Consequently, the rapid
changes inArctic sea ice and environmental conditions require an improved
understanding of the mechanisms governing the resilience and stability of
biological processes and ecosystem functions in the Arctic Ocean. Within

marine ecosystems, primary production is a key service supporting all
trophic levels4,5, with implications for biodiversity, the abundance and
community structure at higher trophic levels, and carbon sequestration.
This distinct ecosystem feature is supported by a highly productive
microalgal community that thrives in sea ice, accompanied by a remarkably
diverse heterotrophic community ranging from bacteria to metazoans6.

Recent decades have seen an increase in pelagic phytoplankton and
primary production in the Arctic Ocean, a direct consequence of global
warming7–9. In the Central Arctic Ocean (CAO), sea-ice algae rather than
phytoplankton account formuch of the primary production10,11 as they have
the potential to initiate pelagic blooms beneath the ice12. Typically, phyto-
plankton growth starts mainly within the marginal ice zone in spring, co-
occurring with increased solar radiation and meltwater-induced
stratification13. Over the past three decades, increasing evidence has docu-
mented the occurrence of under-ice blooms in the Arctic Ocean14–17, while
phytoplankton in the water column below the ice shows significant
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differences from the microalgal communities in the sea ice18. However,
changes in thediversity of key species related to the increase inArctic pelagic
primary production and its impact on the marine ecosystem stability are
currently unresolved.

Recent findings indicate that high temperatures in natural ecosystems
may affect ecological stability, whereas the consequences of alterations to
biodiversity remain variable19. Nevertheless, the underlying mechanisms
remain a subject of debate and limited understanding20. The presence of
nearly 2000 phytoplankton taxa and 1000 ice-associated protists in the
Arctic21 indicates the relevance of identifying keystone species in this wealth
of Arctic marine microbial diversity that accounts for ecosystem stability22–24.

Understanding biological and ecological dynamics across seasonal
environmental gradients is substantially fostered by novel statistical
approaches. In polar ecosystems, these gradients include polar day and
night, as well as variations in sea ice cover, stratification, or nutrient con-
centrations. Techniques are now accessible to assess the impact of ecological
variables on ecosystem stability. For instance, co-occurrence networks
(CON) determine and visualize how species coexist within communities or
ecosystems25,26. However, in natural ecosystems, species interactions are
subject to variation as a result of changes in environmental conditions,
which can cause a transition from one stable state of co-occurrence to
another27. Cross-convergence mapping (CCM) helps to identify the caus-
ality of co-occurrence in complex ecosystems, i.e., which organisms might
share mutual or other direct relationships. Energy Landscape Analysis
(ELA) aids in building ecological models that simulate and predict how
ecosystems respond to disturbances or changes of environmental
parameters28–30.

In this study, we establish a mathematical methodology to reveal sea-
sonal patterns, suggest causal ecological relationships, and identify micro-
bial keystone species in Western Fram Strait.

This major gateway between the Arctic and Atlantic Oceans has been
studied for over 20 years within the framework of the long-term HAUS-
GARTEN and FRAM observatories31. Our study contributes an extended
mathematical perspective on microbial inventories in Fram Strait, showing
seasonal patterns and the influenceof sea-ice onmicrobial dynamicsand the
biological carbon pump32–36. Based on a 4-year metabarcoding dataset of
microeukaryotic taxa in context of rich oceanographic data, sampled year-
round in approximately biweekly intervals, we develop scenarios of their
long-term resilience. Additionally, we predict taxa that play a crucial role in
maintaining stable communities among Arctic eukaryotic planktonic food
web. Furthermore, we seek to define keystone species that can serve as
indicators for monitoring the consequences of environmental change for
Arctic marine ecosystem stability. Using an unprecedented combination of
network analysis techniques like co-occurrence networks and cross con-
vergence mapping, along with energy landscape analysis, our objective is to
elucidate which factors might determine the stability of Arctic marine
ecosystems. This approach will greatly improve our understanding of the
effects of climate change on this ecosystem.

Results
We examined a dataset of 1019 eukaryotic ASVs and eight environmental
parameters compiledover 4years atmooring site F4 in theWest Spitsbergen
Current (WSC) in Fram Strait. The aim was to characterize species com-
munities, analyze causal relationships between ASVs, and identify keystone
and resilient taxa with respect to the impact of various environmental
conditions.

To accomplish this, we established a novel computational pipeline,
coupling co-occurrence analysis with convergence cross mapping and
energy landscape analysis. This allowed us to identify causal interactions
among taxa in a co-occurring community and to identify stable community
states across different environmental conditions.

Co-occurrence network reveals seasonal dynamics
The co-occurrence network (CON) comprised eight connected compo-
nents,with amajor component accounting for 98%(935) of all nodes,which

are connected by 8610 edges. In the following, we focus on this major
connected component. The resulting undirected graph notably displays a
clear seasonal cyclic pattern (Fig. 1A).

The network was partitioned using the Louvain community detec-
tion algorithm37, revealing ten discrete community clusters (Fig. 1B)
labeled by the season in which the majority of cluster members had their
maximum abundance (Table 1). To further group the clusters, we sub-
merge each 3month period into one season. Two clusters were assigned to
the transition autumn period (01TA and 02TA), three clusters were
associated with the low light winter period (03LW, 04LW, and 05LW),
and three clusters with the transition spring period (06TS, 07TS, and
08TS). Finally, clusters 09 and 10 were allocated to the high light summer
period (09HS, 10HS).

Community composition
We explored the taxonomic composition per cluster to explore the seasonal
associations of each specific taxonomic group.Alpha biodiversity,measured
by Shannon entropy, decreases from summer through autumn and winter,
gradually decreasing towards spring (Supplementary Information Fig. S1)
except for cluster LW05. The beta biodiversity, measured by Bray-Curtis
distance (Supplementary Information Fig. S2), between the winter and
spring clusters (03LW, 04LW, 05LW, and 06TS) is notably lower than
between most other cluster pairs, except that between 01TA and 10HS.
Cluster 02TA shows, on average, a higher beta diversity compared to all
other clusters, which can be explained by the fact that 02TA is the smallest
cluster in terms of the number of ASVs (Supplementary Informa-
tion Fig. S2).

We found distinct taxonomic compositions within various clusters.
Photosynthetic organisms like Ochrophyta and Haptophyta dominate the
light phases38. In late spring (cluster 08TS), phototrophsmake upmore than
75% of ASVs, while during summer (clusters 08TS and 09HS) and early
autumn (10HS), they still comprise over 25% of all ASVs. Mixotrophs are
highly abundant inmost clusters,while they clearly dominate during the late
autumn transition (cluster 02TA). Through the complete dark period
(clusters 03LW, 04LW, and 05LW) as well as in early spring (06TS and
07TS), heterotrophs, particularly Syndiniales, are dominant with a clear
peak of abundance (more than 90%ofASVs) inmid-winter (cluster 04LW).
During early spring (cluster 06TS)whensunlight appears again,mixotrophs
increase in their abundance, highlighting the nuanced trophic dynamics
during the annual cycle. This comprehensive analysis at taxa level provides
insights into the composition of these clusters, shedding light on the pre-
valence and distribution of specific classes within distinct seasonal com-
munities (Fig. 1C).

Convergent cross mapping identifies community interactions
Convergent cross mapping (CCM) was applied to predict causal relation-
ships within and between seasonal clusters based on the underlying ASV
dynamics. We project the CCM-derived weights onto the co-occurrence
network, resulting in a directed graph consisting of 17,220 directed edges
and 935 nodes. Here, a directed edge indicates that knowledge of the
dynamics of the source node allows predicting the dynamics of the tar-
get node.

A comparative analysis of edge weights within the CCM network was
conducted. The connectivity derived from the co-occurrence network was
compared with theoretical edge weights and randomly permuted connec-
tions. To perform this comparison, a two-sided Kolmogorov-Smirnov test
was used. The theoretical edge weights were derived from all possible
connections between pairs of nodes in the co-occurrence network,
excluding the existing true links (Section “Convergent cross mapping
identifies community interactions”). Thefindings clearly show that there is a
stronger causal influence (higher NMI values) between co-occurring ASVs
compared to random or to unconnected nodes (Supplementary Informa-
tion Figs. S8 and S9 andTables S1 and S2). The significance level was set at a
nonparametric p value of less than 0.05 calculated similar to26. Trimming
edges with non-significant NMI values (Supplementary Information
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Fig. S10), produced anetworkgraph consistingof 4597 edges and719nodes,
divided into 18 disconnected components, with the largest module
encompassing 706 nodes with 4572 edges (Fig. 2A, B).

Of the total 12,648 edges eliminated during trimming, 18.16% repre-
sent connections between taxa reaching their peak abundance in March.
This selective removal has a profound impact on the network structure
(Fig. 2A). In contrast to the co-occurrence network, the causal interaction
network “breaks”during spring, as demonstrated in Fig. 2A (monthsMarch

and April). The winter cluster 05LW and the spring cluster 06TS collapse
(see Fig. 2B), meaning that nodes disintegrate and large parts of the clusters
are no longer connected to the rest of the network. This suggests that the
corresponding connections in the co-occurrence network are not a result of
causal interactions but rather result from other factors, possibly caused by
the prevailing environmental conditions. Analysis of the betweenness
centrality reveals that ASVs of Picozoa, Leegaardiella, Acantharea, Dino-
phyceae,MAST-1, and Syndiniales serve as essential hub nodes throughout

Fig. 1 | Co-occurrence networks andmicroeukaryotic composition atmooring F4
from 2016-08-01 to 2020-09-17. Each network node represents an ASV, and each
edge represents a similar temporal pattern of two ASVs. The edge weights corre-
spond to the Pearson correlation coefficients determined from the comparison of the
individual ASV temporal profiles. ASVs are connected if the coefficient is
r > 0.7, p < 0.05. Thus, edges in this figure indicate if the temporal profiles of two
nodes display a significant correlation. ANode color reflect the month in which the

ASV exhibits maximal abundance, calculated from the maximum abundance mode
for each year ranging from January to December. B In this representation, nodes are
colored based on the community membership that was determined by the Louvain
community detection algorithm. C The proportion of the top 10 taxonomic classes
by cluster (“HS” high light summer, “LW” low light winter, “TS” transition spring
and “TA” transition autumn). Color shades illustrate the assignment to auto-
(green), mixo- (orange) or heterotroph (purple).

https://doi.org/10.1038/s43247-024-01782-0 Article

Communications Earth & Environment |           (2024) 5:643 3

www.nature.com/commsenv


the seasonal cycle in the network, highlighting their crucial function in
maintaining network stability.

Community interaction
Analyzing cluster interactions revealed distinct patterns. We measure dis-
tance of clusters by “network distance”, a metric designed to evaluate the
separation between clusters. This measure is computed by assessing the
distance between the centroids of clusters within the dimension-reduced
UMAP embedding space (Supplementary Information Fig. S4). Distances
between clusters thus determined range between one and seven. Proximate
clusters (a network distance of two to four) exhibited notably higher con-
nectivity compared to clusters situated further apart (a distance of five to
seven). Figure 2C provides a visual and quantitative representation of these
interactions. Subsequent analysis revealed a prevalence of connections at a
network distance of two (92%of total connections), followed by distances of
three (6% of total connections), and four (2% of total connections) (Sup-
plementary Information Figs. S4–S6).

For each seasonal cluster, we investigate in detail the mutual influence
(NMI) of four taxonomic groups selected from the top ten classifications
(Fig. 2D): Bacillariophyta, Syndiniales, Dinophyceae, and MAST (all
MAST-X variants were classified under MAST). Bacillariophyta primarily
comprises photo-autotrophic species39, while Syndiniales include parasitic
species, most of them characterized by their heterotrophic lifestyle40.
Dinophyceae are known for their diverse array of species and ecological
roles, from symbionts to planktonic autotrophs41. MASTs are heterotrophic
pico-eukaryotic protists and contribute substantially to protist abundances
in the ocean. They play a crucial role inmarine ecosystems, being among the
dominant eukaryotes in the Arctic Ocean41,42.

These four taxonomic groups are primarily distinguished by their
unique lifestyles and ecological roles as primary producers, consumers,
parasites, or endosymbiotic interactors. These distinctions form thebasis for
our analysis of their contributions to the ecosystem.Hence, by summarizing
the members of each group into single nodes, we analyzed their cross-
interactions using the information obtained from the CCM network.

The strength and direction of interactions between these taxonomic
groups varied over the annual cycle (see Fig. 2D). During the spring-
summer and summer-autumn transition, clusters 02TAand06TSdisplayed
fewer andweaker connections compared to other clusters (see Fig. 2B). This
suggests dynamic changes in community structure during these transition
phases, with ecological interactions between individual species either yet to
be established or no longer present. At the beginning of the polar night
(cluster 05LW), we detected the most substantial influence from the

dinoflagellates (shown by the thickest arrow in Fig. 2D) to the pico-
eukaryotic heterotrophic groups Syndiniales and MAST, suggesting an
ecological role of dinoflagellates for the establishment of the winter com-
munity. Overall, the strength of the links between the taxonomic groups
decreases as the polar night progresses and has its minimum at the peak of
the polar night in December (Cluster 04LW and 03LW). The lack of strong
connections between taxonomic groups during the deepest polar night
indicates that there are only a few ecologically significant interactionswithin
the microeukaryotic community.

During polar day, the connections between taxonomic groups become
stronger and reach their peak during the time span around summer solstice
(Cluster 10HS). Notably, Bacillariophyta (i.e., diatoms) showed the most
robust connections during the polar day, owing to their role as predominant
phototrophic biomass producers at the foundation of the marine food web.
However, towards the end of the growth period, the impact of MAST on
Dinoflagellates becomesmore pronounced (as shown by the thicker arrow),
indicating an essential involvement of this pico-eukaryotic heterotroph in
the ecosystem during the late polar day; a signature of the transition from
primary production to recycling.

Community and environment interactions
For amore detailed understanding ofwhich environmental conditions align
with seasonal community clusters, we conducted a correlation analysis
(Fig. 3). For our calculation, we define the time series of clusters to be the
weighted sum of the abundance values of the ASVs assigned to this cluster.
Cluster 10HS displayed a significant positive correlation with Photo-
synthetically Active Radiation (PAR) (0.64) and temperature (0.52) but a
significant negative correlation with Mixed Layer Depth (MLD) (−0.64).
This cluster thrives in environments with high light and temperature levels
but stronger stratification. Cluster 03LW exhibits the opposite behavior,
showing amoderately positive correlationwithMLD (0.25) and polar water
fraction (PW_frac) (0.21)while displaying an inverse relationshipwithPAR
and temperature (−0.35 and −0.37, respectively).

Energy landscape analysis determines stability of microbial
communities
We employed energy landscape analysis (ELA) to assess the stability of
communities under the prevailing environmental conditions. We focus on
four clusters representing the four seasons (01TA for autumn, 03LW for
winter, 08TS for spring, and 10HS for summer). For each of these clusters,
we determined the energy landscape, which is a highly complex function
that depends on the abundances of all ASVs and the environmental para-
meters (see Fig. 4). To approximately visualize this landscape, we plot an
interpolated smooth surface as a function of the twomost significantNMDS
dimensions. In addition, for each time point, we evaluate the energy land-
scape function and represent each energy value by a point in the three-
dimensional diagram, where the z-axis represents the energy value.

For the landscape reconstructed for cluster 01TA (Fig. 4A), the autumn
communities display lower energy values than the communities found in
other seasons. This demonstrates that the autumncommunities exhibit high
stability. For the winter cluster 03LW (Fig. 4B), the picture is less clear.
Whereas the interpolated energy landscape has a more pronounced mini-
mum, the energy values of the observed communities are not clearly
separated. As a tendency, the summer communities have a high energy
value, demonstrating that summer communities are unstable in winter
conditions. However, spring and autumn communities exhibit comparable
energy values as winter communities, which indicates that stable commu-
nity structures inwinter conditions arenot clearlydefined.This trend is even
more pronounced for the spring cluster 08TS (Fig. 4C). Here, the inter-
polated energy landscape shows a broad and shallow minimum, and the
energy values of all observed communities, regardless of the season inwhich
they are found, are very similar. This suggests that under spring conditions,
community structures arenot very stable and that communitycompositions
show a high plasticity. As a consequence, many different communitiesmay
exist under spring conditions.

Table 1 | Co-occurrence network clusters

Cluster MaxMonth Season Number
of ASVs

Number
of edges

01TA Aug* Autumn* 162 997

02TA Nov Autumn 24 86

03LW Dec Winter 78 522

04LW Feb Winter 52 212

05LW Dec Winter 74 467

06TS Mar Spring 51 388

07TS Mar Spring 153 3040

08TS Apr Spring 63 262

09HS Jun Summer 88 509

10HS Jul Summer 190 1189

Ten labeled clusters with their assigned season based on month in which the ASV exhibit maximal
abundance, calculated from the maximum abundance mode (majority vote) for each year ranging
from January to December, the number of ASVs per cluster, and the number of significant edges in
network graph. *The stats denote that the MaxMonth is in August, but several nodes are also in
September and October, therefore we mapped it to autumn, to model a transition autumn cluster.

https://doi.org/10.1038/s43247-024-01782-0 Article

Communications Earth & Environment |           (2024) 5:643 4

www.nature.com/commsenv


These findings demonstrate that knowledge of the composition of
winter communities does not allow for the prediction of the composition of
spring communities, which is in conjunction with the observation of the
CCM analysis and the gap between winter and spring clusters (Fig. 2B).
Finally, the energy landscape in summer (Fig. 4D) shows a pronounced
minimum, inwhich theobserved summer communities are also found.This
indicates that summer conditions support well-defined communities with a
high degree of stability.

Figure5displayshow the energy valuesof the spring, summer, autumn,
and winter clusters vary over the 4 years. These values demonstrate clear
seasonal patterns over the 4-year period from August 2016 to September
2020. In general, the Autumn Cluster (01TA) displays minimal energy
values during the autumn months (September, October, and November),
indicating that autumn communities are typically more stable during this
season (Fig. 5). In contrast, the seasonal minima for the Winter Cluster
(03LW) are less clear, showing that the stability of this cluster is rather

Fig. 2 | Convergence cross mapping networks of microeukaryotes at mooring F4
from 2016-08-01 to 2020-09-17. Each node in the CCM network represents an
ASV, and each edge represents the causal influences. The edgeweight corresponds to
the Normalized Mutual Information determined from the comparison of the indi-
vidual ASV and their predicted representation in the shadow manifold. ASVs are
connected if the smoothed p value of the weight is p < 0.05 (Supplementary Infor-
mation Fig. S3).ANode color reflects themonth inwhich the ASV exhibits maximal
abundance, calculated from the maximum abundance mode for each year ranging
from January to December. B In this representation, nodes are colored based on the
community membership that was determined by the Louvain community detection

algorithm. “HS” labels denote high light summer, “LW” represents low light winter,
“TS” corresponds to transition spring, and “TA” indicates transition autumn.C The
Normalized Mutual Information aggregated across the edges between the clusters,
visually represented by thickness of the arrows corresponding to their respective
values. Colors visually represent the clusters. D Interaction analysis between taxo-
nomic clusters. For each of the ten clusters, the interactions between ASV groups are
examined at class level, considering “Syndiniales”, “Dinophyceae”, “Bacillariophyta”
and “MAST”. The cluster assignments are marked by different colors. The thickness
of the arrows denotes the strength of the interaction, while the shapes represent the
various taxa groups at the class level.
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Fig. 3 | Environmental data and their correlation with Louvain clusters.
A Environmental data for F4 from 2016-08-01 to 2020-09-17. The x-axis represents
the time period, while the y-axis indicates the following parameters: Mixed Layer
Depth (MLD) [m], Temperature [°C], Chlorophyll Fluorescence [μgl−1], Polar
Water Fraction [%], Photosynthetically Active Radiation (PAR) [μmol photons
m− 2 d− 1], Salinity [Practical Salinity Units (PSU)], Oxygen Concentration
[μmoll−1], Depth of measurement [m]. B Correlations between environmental
parameters and seasonal Louvain clusters. The displayed chart shows the environ-
mental parameters from panel A in relation to seasonal clusters. These clusters are

characterized by the cumulative relative abundance of ASVs. The time series for the
clusters are calculated as the weighted sum of the abundance values of the ASVs
assigned to them. “TA” denotes transition autumn, “LW” low light winter, “TS”
transition spring and “HS” high light summer. The color gradient used in the
heatmap illustrates the strength of the correlation visually, with blue shades indi-
cating negative correlations and red shades the positive correlations. It is worth
noting that a significance mask has been applied to show only correlations that are
statistically significant.
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independent of the season. The Spring Cluster (08TS) exhibits minima
predominantly during the spring months (March, April, and May), sug-
gesting a tendency towards stability during this season (Fig. 5). Likewise, the
Summer Cluster (10HS) shows local minima during the summer months
(June, July, and August), indicating a tendency towards stability in energy
levels during this season (Fig. 5). Overall, each cluster demonstrates a
proclivity for higher stability during its respective season, with the notable
exception of the winter cluster. This underscores the influence of seasonal
dynamics on the stability of microbial communities in these ecological
communities in the Fram Strait but also indicates a potentially high plas-
ticity in winter conditions.

Predicting keystone microeukaryotes in the Fram Strait
According to our definition (Section “Keystone species definition”), a key-
stone species is highly connected in the co-occurrence network, has a high
influence on other species, and appears in a stable community. By con-
textualizing the evidence from CON, CCM, and ELA, we predict 38 key-
stone species across the annual cycle within the measured environmental
profile (Table 2). 14 of these keystone species are associated with summer

clusters (three and eleven are found in clusters 09HS and 10HS, respec-
tively), 13 with winter (eleven and two in the winter clusters 03LW and
04LW, respectively), eight are associated with autumn (cluster 01TA) and
three with spring (cluster 07TS). The 14 keystone species from the summer
clusters belong to the taxonomic groups Ochrophyta (6), Dinophyceae (4),
Ciliophora (3), and Cryptophyta (1). These groups include Fragilariopsis,
Pseudo-nitzschia, and Thalassiosira, major diatom taxa during Arctic
blooms43 that also serve as prey for microzooplankton44,45. Notably, Fragi-
lariopsis and Thalassiosira exhibited the highest abundance within this
cluster. The keystone species in the winter clusters comprise Syndiniales
(10), Radiolaria (1), Ochrophyta (1), and Dinophyceae (1); autumn cluster
keystone species are Syndiniales (3), Ochrophyta (2), Chlorophyta (1),
Dinophyceae (1) and unclassified Eukaryota (1). The spring keystone spe-
cies belongs to Syndiniales (1) and Radiolaria (2), reflecting the major
ecological strategies, including primary production, heterotrophy, and
parasitism. The finding of only a few spring keystone species aligns with the
greatest variability, as shown by ELA (Section “Energy landscape analysis
determines stability of microbial communities”). The emergence of
Chlorophyta during early autumn suggests a shift in primary production

Fig. 4 | Energy landscapes depicting community structure dynamics. The plots
display the reconstructed energy landscape on theNMDS surface for a cluster of each
season. Environmental landscapes over the NMDS surface are reconstructed for
each of the four example clusters. The z-axis displays the energy, while the x- and y-
axes display the first and second NMDS dimensions. The landscape contours were

estimated using a smoothing spline approach with optimized penalty parameters.
Community states, which are defined by ASV compositions and occupy lower-
energy regions, indicate higher stability within the energy landscapes. A The tran-
sition autumn cluster 01TA. B The low light winter cluster 03LW. C The transition
spring cluster 08TS. D The high light summer cluster 10HS.
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from Ochrophyta to Chlorophyta, including taxa that may prefer colder
temperatures (ref. 46 and are better adapted to nutrient limitation47.

Discussion
In this study, we present a new strategy for investigating ecological time
series data based on 18S metabarcoding by combining three data analysis
methods: Co-Occurrence Networks (CON)48, Convergent Cross Mapping
(CCM)28, and Energy Landscape Analysis (ELA)30. Integrating these three
methodological approaches, we aimed to predict and characterize the
abundance of keystone microeukaryotes in the West Spitsbergen Current
across different seasons, environmental parameters, and in relation to other
organisms.We also investigated how different taxa groups affect others and
how their effects vary with seasonal shifts and environmental factors.

Sequence-based surveys of the 18S rRNA gene are effective for iden-
tifying and comparing variations in microbial eukaryote communities in
marine environments. This approach offers a valuable tool for under-
standing the diversity and distribution of different taxonomic groups in the
ocean49. However, several aspects must be kept in mind when analyzing
the data.

The taxonomic level of an amplicon sequence variant can vary in
resolution due to missing references in the database or lacking diversity in
the marker loci between strains. The presence of intracellular polymorph-
ism, variation in rDNA copy number, and the existence of pseudogenes, in
conjunction with the high sequencing depth of next-generation technolo-
gies, can lead to an inflation of diversity metrics. This is due to the fact that
they capture a multitude of copies, pseudogenes, and other 18S rRNA
variants within each organism,which consequently increases the number of
predicted OTUs50,51. For example, when determining dinoflagellate dom-
inance usingmolecular methods, caution is required due to the influence of
their disproportionately large genome size. Indeed, in the Fram Strait and
extensive areas of the central Arctic Ocean, a significant proportion of
sequence reads were attributed to Phaeocystaceae, Micromonas sp., Dino-
phyceae, and Syndiniales52.

Amore detailed discussion about advantages and disadvantages of the
metabarcoding approach is found in ref. 50.On theotherhand, some studies
showed that quality-controlled amplicon methods have high quantitative
potential for determining the diversity and composition of marine protist
communities and the relative abundances of specific ASVs and lineages53,54.

Our co-occurrence network based on Fourier decomposition differs
from previous methods that rely directly on the raw time series
signals26,55,56. The resulting network accurately captured seasonal states
and transitions, revealing community clusters that reflect the prevailing
community structure57: in spring (cluster 08TS), primary producers such
as Bacillariophyta appear and remain throughout the summer (09HS,
10HS), while mixotrophs increase in autumn (01TA, 02TA, 03LW) until
almost exclusively heterotrophic and parasitic taxa dominate in winter
(04LW, 05LW, 07TS). The considerable difference of spring clusters to
other seasonal clusters (Supplementary Information Fig. S2) can be
explained by the rapid environmental changes during this period (i.e.,
change from darkness to constant daylight within 20 days). The pre-
dominance of dinoflagellates in the intermediate phases of spring and
autumn indicates that these mixotrophic organisms play a crucial role
during transition phases58–60.

Our CCM analysis revealed that by far, not all co-occurring ASVs
actually influence each other (Fig. 2). A striking example is between clusters
06TS and 05LW, which were closely connected in the CON but not in the
CCM network (Fig. 2). This co-occurrence without apparent causal con-
nections could be explained by unique environmental conditions shaping
both of these clusters, such as polar water influx. Even more pronounced is
the separation of cluster 03LW, mainly heterotrophs, and 08TS, mainly
phototrophs, which are tightly connected by co-occurrence but show not a
single causal link in the CCM network. The organisms in these two clusters
are primarily influenced by environmental parameters, particularly light.
Additionally, these photosynthetic and heterotrophic organisms are
sometimes preyed upon by the same predators61 such as Syndiniales. This
explains the simultaneous occurrence and similar seasonality of these taxa
but indicates that they do not have a direct influence on each other. The lack
of causal influence during the transition from polar night to day is clearly
visible in the CCM network (see Fig. 2). We interpret this gap between
winter and spring clusters as a “winter reset” (Supplementary Information
Fig. S11). This phase is characterized by the predominance of Syndiniales
and Dinophyceae. With the emergence of light, a new period of primary
production begins, shaped by the prevailing environmental conditions. The
ambient environmental conditions then determine which species will sub-
sequently prevail. By reflecting causal interactions between species, the
CCM network even stronger reflects the cyclic microbiome structure than

Fig. 5 | Energy landscape analysis illustrating seasonal dynamics of community
energy levels over a 4-year span (08.2016–09.2020), with each subplot depicting a
distinct season (autumn, winter, spring, summer). The energy curves, colored to
represent specific clusters, are based on abundance and environmental data, as
indicated. The x-axis denotes time, encompassing the specified period, while

environmental data integration underscores the complexity of ecological interac-
tions shaping energy distributions. Lower energy levels are typically more stable, in
contrast to higher energy levels. A The transition autumn cluster 01TA. B The low
light winter cluster 03LW. C The transition spring cluster 08TS. D The high light
summer cluster 10HS.
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the co-occurrence network. The cycle begins with photoautotrophs (cluster
08TS) in early spring and ends with the hetero- and mixotrophs (cluster
01TA) in late autumn. As light intensity decreases, mixotrophs become
more prevalent than photoautotrophs, leading to a shift towards a hetero-
trophic lifestyle and a transition from carbon fixation to consumption. This
transition into a low light period is characterized by parasitic species, sug-
gesting an “eat and be eaten” scenario. The causal links from autumn to
winter are much fewer than between other seasons (except winter to
spring; Fig. 2B).

Energy landscape analysis was used to assess the stability of observed
communities in their respective environments.The reconstructed landscape
for autumn cluster 01TA shows that autumn communities are highly stable.
However, for the winter cluster 03LW, the energy values of observed
communities lack clear separation, making the situation less straightfor-
ward. Communities of the winter clusters which are still present in summer
tend to display high energy values, indicating instability in winter condi-
tions. The spring cluster 08TS shows an evenmore notable trend, indicating
that community structures lack stability and exhibit high plasticity under

Table 2 | ASV identified as potential keystone species for clusters 10HS, 06TS, 03LW and 01TA

Nodes Phylum Class Genus Speciesa Cluster Abundance
proportionb

Closeness
centrality

euk_asv19 Ochrophyta Bacillariophyta Thalassiosira Thalassiosira uc 10HS 0.010 0.463

euk_asv12 Ochrophyta Bacillariophyta Fragilariopsis Fragilariopsis uc 10HS 0.009 0.521

euk_asv29 Ciliophora Spirotrichea Strombidiidae_M uc Strombidiidae_M uc_sp. 10HS 0.007 0.499

euk_asv35 Ochrophyta Bacillariophyta Fragilariopsis Fragilariopsis_sublineata 10HS 0.007 0.533

euk_asv28 Ochrophyta Bacillariophyta Thalassiosira Thalassiosira uc 10HS 0.006 0.473

euk_asv54 Dinoflagellata Dinophyceae Gyrodinium Gyrodinium_fusiforme 10HS 0.006 0.469

euk_asv24 Ochrophyta Bacillariophyta Pseudo-nitzschia Pseudo-nitzschia_sp. 10HS 0.006 0.446

euk_asv60 Dinoflagellata Dinophyceae Woloszynskia Woloszynskia_sp. 10HS 0.005 0.489

euk_asv73 Cryptophyta Cryptophyceae Plagioselmis Plagioselmis_prolonga 10HS 0.005 0.513

euk_asv52 Dinoflagellata Dinophyceae Peridiniales uc Peridiniales uc 10HS 0.004 0.486

euk_asv125 Ciliophora Spirotrichea Dadayiella Dadayiella_ganymedes 10HS 0.003 0.504

euk_asv15 Dinoflagellata Dinophyceae Gyrodinium Gyrodinium_fusiforme 09HS 0.011 0.399

euk_asv115 Ochrophyta Bacillariophyta Mediophyceae uc Mediophyceae uc 09HS 0.004 0.404

euk_asv186 Ciliophora Spirotrichea Strombidiidae_H uc Strombidiidae_H uc_sp. 09HS 0.002 0.446

euk_asv5 Radiolaria RAD-C RAD-C uc RAD-C uc_sp. 07TS 0.014 0.444

euk_asv23 Dinoflagellata Syndiniales Dino-I-1 uc Dino-I-1 uc_sp. 07TS 0.005 0.404

euk_asv42 Radiolaria RAD-C RAD-C uc RAD-C uc_sp. 07TS 0.005 0.419

euk_asv21 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc_sp. 04LW 0.008 0.420

euk_asv607 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc_sp. 04LW 0.000 0.411

euk_asv87 Radiolaria RAD-B RAD-B-Group-IV uc RAD-B-Group-IV uc_sp. 03LW 0.002 0.489

euk_asv79 Ochrophyta Chrysophyceae Chrysophyceae H uc Chrysophyceae H uc_sp. 03LW 0.002 0.409

euk_asv236 Dinoflagellata Syndiniales Dino-II-9 uc Dino-II-9 uc_sp. 03LW 0.001 0.438

euk_asv213 Dinoflagellata Dinophyceae Gymnodinium Gymnodinium_sp. 03LW 0.001 0.434

euk_asv198 Dinoflagellata Syndiniales Dino-II-6 uc Dino-II-6 uc_sp. 03LW 0.001 0.433

euk_asv411 Dinoflagellata Syndiniales Dino-II-20 uc Dino-II-20 uc_sp. 03LW 0.001 0.428

euk_asv615 Dinoflagellata Syndiniales Dino-II-20 uc Dino-II-20 uc_sp. 03LW 0.001 0.508

euk_asv511 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc_sp. 03LW 0.001 0.400

euk_asv553 Dinoflagellata Syndiniales Dino-II-21 uc Dino-II-21 uc_sp. 03LW 0.001 0.430

euk_asv780 Dinoflagellata Syndiniales Dino-I-5 uc Dino-I-5 uc_sp. 03LW 0.000 0.410

euk_asv1293 Dinoflagellata Syndiniales Dino-II-10-and-11 uc Dino-II-10-and-11 uc_sp. 03LW 0.000 0.407

euk_asv9 Ochrophyta Bacillariophyta Pseudo-nitzschia Pseudo-nitzschia_sp. 01TA 0.007 0.468

euk_asv44 Dinoflagellata Syndiniales Dino-II-23 uc Dino-II-23 uc_sp. 01TA 0.006 0.526

euk_asv36 Chlorophyta Chloropicophyceae Chloroparvula Chloroparvula_pacifica 01TA 0.005 0.501

euk_asv51 Ochrophyta Bacillariophyta Rhizosolenia Rhizosolenia_imbricata_var_shrubsolei 01TA 0.003 0.404

euk_asv80 Eukaryota uc Eukaryota uc Eukaryota uc Eukaryota uc 01TA 0.003 0.435

euk_asv101 Dinoflagellata Syndiniales Dino-I-3 uc Dino-I-3 uc_sp. 01TA 0.003 0.445

euk_asv163 Dinoflagellata Syndiniales Dino-I-1 uc Dino-I-1 uc_sp. 01TA 0.003 0.514

euk_asv177 Dinoflagellata Dinophyceae Gymnodiniaceae uc Gymnodiniaceae uc 01TA 0.002 0.458

The taxonomic classifications, clusters, proportion of cluster relative abundance andCloseness centrality values are presented in summary formover the 4-year observation period. TheASV (Nodes) in this
table has at least one significant CCM connection measured in Normalized Mutual Information.
aSpecies are formatted in italic.
bHellinger transformed raw abundance was summed over the 4 year period and divided by the total abundance of all ASVs.
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spring conditions (Fig. 5). This suggested plasticity during spring strongly
supports our hypothesis of a “winter reset”, which was first proposed to
explain the weak causal interactions between winter and spring clusters in
the CCM network.

The “winter reset” phenomenon marks an ecological transition char-
acterized by a major reorganization of microbial communities. This reset
shifts the ecosystem from winter heterotroph dominance (e.g., Cluster
03LW) to spring photoautotroph prominence (e.g., Cluster 08TS). The lack
of direct causal connections between these clusters in the Convergent Cross
Mapping (CCM) network, despite their co-occurrence in the Co-
Occurrence Network (CON), suggests that these transitions are driven by
external environmental factors rather than direct species interactions. A
similar observation was made with the 16S data, indicating that seasonal
variations in environmental variables play a more significant role than
trophic interactions62.

The increasing light availability in early spring drives the growth of
photoautotrophic organisms. However, how well the individual species
thrive and which of these species will dominate the population, critically
depends on various other factors. The ambient temperature will favor some
speciesmore than others, as will the nutrient availability and salinity. These
factors, in turn, are heavily influenced by water stratification, which creates
its own unique spatial pattern of environmental conditions. Together with
ocean currents, which carry material and organisms, this creates a situation
in which low abundant resident populations of phototrophic microbes are
in competitionwith species introduced by currents fromother locations34,38.
Since every species possesses its own specific preferences for external factors
such as temperature, salinity or nutrients, the outcomeof this competition is
likely to be highly sensitive on the prevailing environmental parameters, and
much less so on the composition of the communities in the previous winter
months, providing a possible explanation for the winter reset.

According to traditional ecological theory, keystone species are often
defined as those with the most biomass63,64. Here, we followed a more
elaborate approach and defined keystone species as those found in stable
communities (as determined by ELA), which are also highly connected in
the CON and CCM networks. This way, keystone species have a strong
causal interaction with many other species and form part of stable com-
munities. Besides identifyinghighly abundant keystone species (for example
Fragilariopsis or Pseudo-nitzschia diatoms), we also identified several lowly
abundant ASVs as keystone, suggesting that both common and rare
members contribute to ecosystem stability. The keystone species can be
linked to central ecological functions carried out within the community
network, including primary production, consumption, and parasitic inter-
actions. During the beginning of autumn, Chlorophyta emerges as a key-
stone species, indicating a shift in primary production from Ochrophyta to
Chlorophyta. This shift may be explained by the preference of Chlorophyta
for colder temperatures and a better adaptation to nutrient limitation.

Our approach represents a strong advancement in the field of ecolo-
gical network analysis, combining the techniques of co-occurrence network
construction andconvergent crossmapping toelucidate species interactions
and community structures. In comparison to traditionalmethodologies that
frequently rely on simplistic correlation analyses, our approach offers a
number of distinct advantages. Traditional ecological network studies fre-
quently employ simple correlation coefficients to infer species interactions,
whichmay result in the overlookingof non-linear relationships65.Clustering
based on Fourier coefficients enables the capture of temporal profiles with
greaterfidelity to effectively summarize seasonal and long-termdynamics of
species abundance66 and additionally reduces the compositional bias38. We
choose the Hellinger transformation for our network analysis to normalize
the abundance of data. The research demonstrated that transformation
based on relative abundance is a crucial aspect of conducting appropriate
analyses of eDNAmetabarcoding data. Furthermore, the findings indicated
that the Hellinger transformation exhibited a slight advantage over other
methods67. The Hellinger distance is recommended for clustering or ordi-
nation of species abundance data68,69. In conducting the Energy Landscape
analysis, the normalization method recommended by the author was

employed. Consequently, the abundance data was subsequently
binarised29,30.

A key limitation of correlation analyses is that they donot offer insights
into causal relations, and therefore, it is difficult to infer species interactions
from co-occurrence networks only70. Integrating CCM addresses this lim-
itation and extends beyond conventional correlation-based techniques by
explicitly evaluating causal relationships between species pairs28. Specifi-
cally, we compared our approach with two previous studies71,72. While our
approach focuses on the specific interactions within and between clusters,
Ushio et al. provide a more general framework for predicting community
diversity based on interaction capacity, temperature and abundance. The
emphasis on mechanistic explanations for observed ecological patterns
distinguishes the two approaches. Our methodology provides a compre-
hensive understanding of keystone species in a specific context, while
Ushio’s study provides broader insights into the factors influencing com-
munity diversity indifferent ecosystems. Both studies use similar techniques
such as correlation and CCM71. Fujita’s study used controlled experiments
with six isolated community replicates, subjected to diverse treatments over
110 days. Regarding Takens’ Theorem and Convergence Cross Mapping,
Fujita et al. used Simplex projection to forecast population size72, while our
study utilized pairwise CCM on ASV time series signals within clusters to
predict keystone species.

The results presented in this study not only have practical implications
for ecosystemmanagement by improving our understanding and ability to
predict change in complex ecological systems but also provide systematic
insights into the mechanisms responsible for shaping and maintaining
spatiotemporal heterogeneity in ecosystem composition29.

Methods
Sampling and data
Samples were collected with Remote Access Samplers (RAS; McLane)
deployed in conjunctionwithoceanographic sensors over four annual cycles
(01.08.2016 to 16.09.2020 (96 Samples)) at the F4 mooring (79.0118N
6.9648E) of LTER HAUSGARTEN and FRAM in the Fram Strait38,73. Each
RAS contains 48 sterile bags, each collecting water samples of 500 mL at
programmed sampling intervals.

The samples collected from 2016 to 2018 reflect the pool of up to two
samples collected 1 h apart in two individual bags. Since 2018, we pooled
samples taken 7 to 8 days apart from two consecutive weeks74. The samples
were preserved by adding 700 μl ofmercuric chloride (7.5%w/v) to the bags
prior to sampling. Pooled sampleswerefilteredonto Sterivexfilter cartridges
with a pore size of 0.22 μm (Millipore, USA).

Filters were stored at −20 °C until DNA extraction and ribosomal
metabarcoding of 18S rRNA reads using primers 528iF (GCGGTAATTC-
CAGCTCCAA) and 926iR (ACTTTCGTTCTTGATYRR)75. The resulting
amplicon sequence variants (ASVs) were classified using the PR2 4.12
database (see Supplementary Information Supplementary Methods: Data
Preprocessing). We normalized raw ASV counts for CON and CCM
using the Hellinger transformation but did not for the energy landscape
analysis; hence a different normalization is introduced for the rELA
implementation30.

Temperature, salinity, andoxygenconcentrationweremeasuredwith a
CTD-O_2 attached to the RAS. Physical oceanography sensors were
manufacturer-calibrated and processed as described under34. Raw and
processed mooring data are available at PANGAEA https://doi.org/10.
1594/PANGAEA.904565, https://doi.org/10.1594/PANGAEA.940744,
https://doi.org/10.1594/PANGAEA.941125 and https://doi.org/10.1594/
PANGAEA.946447. For chemical sensors, the raw sensor readouts are
reported. The fraction of Atlantic and Polar Water were computed
following76 for each sampling event and reported along with distance below
the surface (due to mooring blowdown). Sea ice concentration derived
from the Advanced Microwave Scanning Radiometer sensor AMSR-277

were downloaded from the Institute of Environmental Physics, University
of Bremen (https://seaice.uni-bremen.de/sea-ice-concentration-amsr-
eamsr2). Sentinel 3A OLCI chlorophyll surface concentrations were
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downloaded from https://earth.esa.int/web/sentinel/sentinel-data-access.
For all satellite-derived data, we considered grid points within a radius of
15 km around the moorings. Surface water Photosynthetically Active
Radiation (PAR) data, with a 4 km grid resolution, was obtained from
AQUA-MODIS (Level-3mapped; SeaWiFS, NASA) and extracted inQGIS
v3.14.16 (http://www.qgis.org).

We considered eight environmental variables: mixed layer depth
(MLD in m), water temperature (temp °C), polar-water fraction (PW_frac
%), chlorophyll concentration from in situ sensor (chl_sens ~μg l−1), PAR
(μ mol photons m − 27D1d −1), Salinity (PSU), oxygen concentration
(O2_conc μmol l −1) and sampling depth (depth m)34.

Co-occurrence network
The abundance of taxa over the full observation period was converted into
temporal profiles by employing Fourier transformation techniques78 to
time-series signals. These temporal profiles rely on the 14 Fourier
coefficients.

We chose 14 coefficients because they reflect themajority (662 of 1019)
of observed ASV abundance peaks within the 4 years, which have peaked
exactly once each year but nomore than two times a year. To investigate the
similarity of temporal profiles between ASV pairs, we performed pairwise
correlations between the individual temporal profiles, where pairs with
higher Pearson correlation values also show a similar temporal profile. Pairs
with at least 0.7 (p < 0.05) Pearson correlation were then visualized in an
undirected graph, corrected with Benjamini–Hochberg correction for
multiple testing.

Only positive correlations were retained in the co-occurrence network
to later focus exclusively on co-operative relationships,where both taxawere
present. These relationships were then used to prune the causal network,
ensuring that only co-operative interactions were considered in the fol-
lowing analysis. To identify strongly connected components that reflect the
existing communities of co-occurring taxa, we applied the Louvain com-
munity detection algorithm37 on the entire graph. The entire process was
implemented using the CCM and networkx packages in Python; visuali-
zation was performed using Cytoscape with the Edge-weighted Spring-
Embedded Layout79. The whole co-occurrence network construction is
described in Supplementary Information Supplementary Methods: Co-
Occurrence Network.

Distance between clusters
Tomeasure the distance between previously defined Louvain communities
(clusters), we applied UMAP80 on time-series signals obtained after Fourier
decomposition of the abundance data. From this, we generated a three-
dimensional embedding space. Centroids for each cluster were calculated
within this space (see Supplementary Information Figs. S4–S6). The net-
work distance between clusters was determined as the Euclidean distance
between their centroids. Subsequently, a distance matrix was created, and
distances were rounded to integers, with only significant connections
retained.

Convergent cross mapping
Convergent cross mapping (CCM) identifies potential causal relationships
between variables in time series data. It quantifies how knowledge of the
time series of one taxon allows predicting the time series of another.Wefirst
built a CCM network from all pairwise combinations. From this, we
extracted the in- and outgoing edges between nodes that are also connected
in the co-occurrence network. We used the implementation of Normalized
Mutual Information (NMI) from https://github.com/polsys/ennemi by
Petri Laarne and the Convergent Cross Mapping by Implementation from
Prince Javier https://github.com/PrinceJavier/causal_ccm81 to measure the
strength of the causal relationship considering also non-linear relations.We
could show that the implementation of Normalized Mutual Information
(NMI) yields similar findings as the original implementation based on
Pearson correlation28,82 (see Supplementary Information Fig. S7).

Using a permutation approach26 on the connectivity of the network,we
calculated significance values for the edge weights, quantifying whether the
respective NMI values are greater than expected for random edges (see
Supplementary Information Fig. S8). The whole CCM network construc-
tion and validation are described in Supplementary Information Supple-
mentaryMethods: ConvergentCrossMapping andSupplementaryNotes2:
Convergent Cross Mapping.

Aggregation on cluster level
We simplify the network of interactions between single ASVs into a
network of interactions between clusters. For this, we assign a weight to
a directed edge between two clusters by calculating the arithmetic mean
of NMI of all (directed) edges connecting ASVs belonging to the
respective clusters. This process effectively reduces the number of
items in the node cloud, representing clusters through a unified
composite node.

Energy landscape analysis
Energy landscape analysis is a method based on statistical physics. From
data for many points in time, which contain taxon abundance and
environmental variables, an energy landscape is reconstructed. This
energy landscape is a function that maps ASV abundance and envir-
onmental variables to an energy value. In analogy to the potential energy
in physics, a (local) minimum of this energy landscape indicates a stable
community state. Here, we reconstruct the energy landscape function
based on the complete time series of ASV abundance together with the
available environmental data. We use the reconstructed function to
determine the stability of observed communities, and in particular the
seasonal clusters determined by the co-occurrence network, and we
predict themost stable community compositions. Details of our analysis,
including parameters and thresholds applied, are described in Supple-
mentary Information Supplementary Methods: Energy Landscape
Analysis. Understanding the existence and the nature of stable com-
munity states and how they change in response to environmental shifts is
crucial for comprehending the resilience and adaptability of ecosystems
in the face of various ecological challenges.

Definitionof state space, pairwisemaximumentropymodelsand
energy landscape
Formalizing the stability landscape concept requires a precise definition
of the state spacewithin an energy landscape.We represent a community
composition as a binary vector of length S, where S signifies the total
number of ASVs. Within this framework, there exist 2S unique com-
munity compositions. Specifically, a community composition of the k-th
sample is denoted as σðkÞ ¼ ðσðkÞ1 ; σðkÞ2 ; . . . ; σðkÞS Þ, where σðkÞi 2 f0; 1g
indicates the presence/absence status of the i-th ASV. To establish links
between community compositions, we adopt the assumption that
transitions occur incrementally. Consequently, two community com-
positions are linked if and only if they differ in the presence/absence
status of precisely one taxon. This leads to the formation of a structured
network wherein each node is connected to S neighbors29,30.We attribute
energy values to individual community compositions and establish the
potential structure within the state space through the introduction of the
extended pairwise maximum entropy model. This model governs the
likelihood of observing community composition σ(k) under an envir-
onmental condition, denoted by ϵ = (ϵ1, ϵ2,…, ϵM), whereM denotes the
number of environmental variables and ϵi represents the continuous
values denoting these environmental factors, such as resource avail-
ability, pH, temperature, salinity, etc. The probability of σ(k) occurring in
condition ϵ is given by:

PðσðkÞjϵÞ ¼ e�EðσðkÞ ;ϵÞ

Z
; ð1Þ
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with the energy defined as:

EðσðkÞ; ϵÞ ¼ �
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where E(σ(k), ϵ) represents the energy of community composition σ(k) and:

Z ¼
X2S�1

k¼0

e�EðσðkÞ;ϵÞ: ð3Þ

The function E represents the energy landscape and is defined by the
parameters,h = (h1, h2,…, hS),matrix J = (Jij), andmatrix g = (gij). Based on
the observed communities and the associated environmental factors, these
parameters are estimated by Energy Landscape Analysis through a max-
imum likelihood approach29,30. These estimates can be acquired through
stochastic approximation for the extended pairwise maximum entropy
model (Eq. (2)), as described in the Supplements Supplementary Infor-
mation Supplementary Methods: Energy Landscape Analysis.

Here, hi signifies the net impact of unobserved environmental factors
favoring (hi > 0) or hindering (hi < 0) the presence of taxon i, and gij
represents the influence of the i-th observed environmental factor on the
occurrence of taxon j. The model captures pairwise relationships, as each
taxon is interconnectedwith all others through Jij. It is pertinent to note that
the termE(σ(k), ϵ) is labeled as energy due to its analog in statistical physics83,
although it serves as an exponent in Eq. (1) and indicates the likelihood of
observing a community composition within an ecological context. It does
not correspond directly to physical energy as used in ecological studies.

Rather, the energy signifies the directionality of transitions between
community compositions. For two adjacent nodes, σ(k) and σðk0Þ, if
EðσðkÞÞ > Eðσðk0ÞÞ, then the transition from σ(k) to σðk0Þ ismore likely than the
reverse.

In ecological studies, analyzing microbial communities often involves
sifting through vast amounts of data, which presents major computational
challenges due to the exponential increase in possible states as thenumber of
amplicon sequence variants (ASVs) increases. To address this, limiting the
analysis to the Top 100 ASVs provides a practical compromise between
computational feasibility and analytical depth (as recommended by the
Framework Owner, see Suzuki et al.30). This approach allows for efficient
management of the data while still yielding meaningful insights into the
community structure. By concentrating on the most abundant ASVs, the
key contributors to the microbial ecosystem dynamics can be captured
because these variants generally hold greater ecological and biological sig-
nificance due to their higher prevalence. Furthermore, focusing on the top
100 ASVs helps minimize the impact of less abundant variants, which may
introduce noise and potentially distort the results. However, this method is
not without its drawbacks; there is a risk of bias toward dominant ASVs,
potentially overlooking less prevalent but ecologically important species.
Such biases could influence the interpretation of community dynamics and
functional roles, highlighting the need for careful consideration of these
limitations in ecological analyses. In the Supplementary Information
Fig. S12, we validated that the cutoff of N = 100 ASVs is a good choice by
testing the stricter cutoff values N = 50 and N = 75. Outliers were excluded
solely for the purpose of plotting.

Abundance normalization
For the network approaches (CON and CCM), we apply the Hellinger
transformation to the abundancematrix. In contrast to previous studies that
employed Pearson correlation for pairwise comparisons of relative abun-
dance to ascertain co-occurrence patterns, we utilized Fourier decomposi-
tion to extract distinctive temporal profiles for each ASV. This approach
mitigates the potential for bias associated with Pearson correlation in
compositional data analysis.

Hellinger transformation
In thematrixM= {mi,j}, the columns represent observedASVs, and the rows
represent different samples. The entries are the read counts of the ASVs in
the given sample. TheHellinger transformationwas applied to facilitate data
normalization and comparison of ecological data, reducing the impact of
differences in the scale of abundancevalues across samples (seeFig. 6A).The
normalization is applied column-wise to the raw abundance data as follows:

1) Calculate the square root of each element:

si;j ¼
ffiffiffiffiffiffiffi
mi;j

p ð4Þ

2) Calculate the l2-norm (Euclidean norm) of each column:

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiX

j

s2i;j

s
(column-wise) ð5Þ

3) Normalize each column by dividing it by its l2-norm:

hi;j ¼
si;j
ri

ð6Þ

The energy landscape analysis uses the following normalization.

Proportional normalization
The proportional normalization process applied to the matrix A (see
Fig. 6B). Given a matrix A of size m × n the normalized matrix N is com-
puted as follows30:

(1) Compute the row sums: define a columnvector swhere each element si
is the sum of the elements in the i-th row of A:

si ¼
X

j

ai;j ð7Þ

where A = {ai,j}.
(2) Add a small constant:

di ¼ si þ 10�16 ð8Þ

(3) Normalize the matrix: compute the normalized matrix N = ni,j using
matrix division:

ni;j ¼
ai;j
di

ð9Þ

This normalization ensures that each row of the resultingmatrix sums
to 1, with a small adjustment to maintain numerical stability.

Keystone species definition
After collecting attributes from co-occurrence analysis and distinguishing
between potential ecological influence and occurrence just by chance, we
calculated the stable states for different clusters usingELA.This information
was merged to suggest potential keystone species. We defined a keystone
species as an ASV with (1) a significant influence on other ASV in
the network (significant NMI value), (2) a high centrality (closeness) value
within its co-occurrence community, and (3) presence in at least one stable
state as predicted byELA.A significant high centrality valuewasdetermined
by comparing each centrality value of a single node to the average centrality
values of all nodes from the graph using a one sided, one-sample t-test with
Benjamini–Hochberg correction for multiple testing (similar to84,85).
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Season definition
For assessing results in context of the entire annual variability over which
samples were collected, we defined the seasons as follows, based on month
and the availability of light (PAR). In the case of Cluster 01TA, themonth of
maximal abundance is August. However, several nodes are also present in
September and October. Consequently, we mapped this cluster to the

autumn season in order to model a transition from the autumn cluster
(see Fig. 7).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw metabarcoding reads will be accessible under ENA.

Code availability
The code for raw data processing will be available at https://gitlab.com/qtb-
hhu/marine/publications/fastq2abundance and the code for data analysis at
https://gitlab.com/qtb-hhu/marine/publications/beyondblooms. In addi-
tion we implemented an GUI based framework for community dynamics
using network analysis called otter86.
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