
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use: 

Graphasing: phasing diploid genome assembly graphs with single-cell strand sequencing

Suggested Citation:
Henglin, M., Ghareghani, M., Harvey, W. T., Porubsky, D., Koren, S., Eichler, E. E., Ebert, P., & Marschall,
T. (2024). Graphasing: phasing diploid genome assembly graphs with single-cell strand sequencing.
Genome Biology, 25, Article 265. https://doi.org/10.1186/s13059-024-03409-1

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20241206-111332-2

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Mir Henglin, Maryam Ghareghani, William T. Harvey, David Porubsky, Sergey Koren, Evan E. Eichler,
Peter Ebert & Tobias Marschall

Article - Version of Record



Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

METHOD

Henglin et al. Genome Biology          (2024) 25:265  
https://doi.org/10.1186/s13059-024-03409-1

Genome Biology

Graphasing: phasing diploid genome 
assembly graphs with single-cell strand 
sequencing
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Evan E. Eichler5,7  , Peter Ebert1,2,8*   and Tobias Marschall1,2*   

Abstract 

Haplotype information is crucial for biomedical and population genetics research. 
However, current strategies to produce de novo haplotype-resolved assemblies often 
require either difficult-to-acquire parental data or an intermediate haplotype-collapsed 
assembly. Here, we present Graphasing, a workflow which synthesizes the global phase 
signal of Strand-seq with assembly graph topology to produce chromosome-scale de 
novo haplotypes for diploid genomes. Graphasing readily integrates with any assembly 
workflow that both outputs an assembly graph and has a haplotype assembly mode. 
Graphasing performs comparably to trio phasing in contiguity, phasing accuracy, 
and assembly quality, outperforms Hi-C in phasing accuracy, and generates human 
assemblies with over 18 chromosome-spanning haplotypes.

Keywords: De novo assembly, Phasing, Assembly graph, Haplotype, Strand-seq, Hi-C, 
Trio, Verkko, Hifiasm

Background
Many eukaryotic organisms are diploid and carry two sets of pairwise-similar chromo-
somes, with one set inherited from each parent. Consequently, separately assembling 
the two copies of each chromosome is necessary to fully characterize an individual’s 
genome. Each version of a chromosome inherited from a parent is called a haplotype. 
The process of assigning the two alleles of a heterozygous variant to their corresponding 
haplotype is termed phasing.

Haplotype-resolved genome assemblies provide crucial insights into studies of dis-
ease, evolution, and biodiversity by revealing segregation patterns of alleles within 
and between haplotypes [1]. Medically important genes and genomic regions, such as 
the major histocompatibility complex and APOE gene, exhibit compound heterozygo-
sity, where alleles carried on the same haplotype produce a phenotype different than 
when those same alleles are carried on different haplotypes [2, 3]. Haplotype-resolved 
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assemblies support research on evolution, gene flow, demography, gene expression, 
and conservation biology [4–6], where knowledge of haplotype-specific combinations 
of genomic variants can be of crucial importance.

Despite their utility, it remains a major challenge to produce haplotype-resolved 
genome assemblies for diploid organisms. The ability of an assembler to phase 
genomic variation is directly tied to the length of the reads used to construct the 
assembly. As any single read originates from a single haplotype, any read that spans 
multiple heterozygous variants forms a “local” haplotype which can, in principle, 
be stitched into longer haplotype segments through the assembly of overlapping 
reads [2]. However, in practice this process is affected by both sequencing errors 
and ambiguities due to repetitive sequence. Consequently, advances in long-read 
genome sequencing technologies have led to improved genome assemblies, as read 
lengths are now long enough to span a greater range of repetitive DNA variation 
[7]. Pacific Biosciences (PacBio) High-Fidelity (HiFi) reads [8] are 15–20 kb in length 
and have an error rate similar to accurate short-read sequencing, and Oxford Nano-
pore Technologies (ONT) Ultra-long reads [9] can achieve lengths > 100 kbp, which 
is long enough to span the majority of repeats found in human DNA. However, these 
read lengths are still too short to produce fully haplotype-resolved assemblies, even 
for assemblers utilizing combinations of long-read sequencing technologies [10, 11]. 
Further computational steps and data sources beyond those employed in a “stand-
ard” genome assembly workflow are required in order to construct fully phased 
haplotypes [1, 12–14].

When phasing with short, noisy, or low-coverage reads, reference-mapping-based 
methods are commonly used. Many phasing tools, such as WhatsHap [15], HapCol [16], 
HapCut2[17], MarginPhase [18], and LongPhase [19], utilize this strategy, where reads 
are first aligned to a reference genome and genomic variants are called. Subsequently, 
the variants are used to separate reads by haplotype for haplotype-specific assembly. The 
reference mapping approach is necessarily subjected to reference bias and can therefore 
fail when variant calling is challenging due to unreliable alignment of reads to the refer-
ence, which occurs due to repetitive sequence or when the reference and sample differ 
in large structural variation [20]. Reference bias can be avoided by first constructing an 
unphased de novo assembly to serve as the reference genome for genomic variant calling 
and phasing. This de novo reference strategy is employed by the phasebook assembler 
[21], PGAS [22], and DipASM [22, 23], where the latter two additionally leverage the 
long-range haplotype signal from Strand-seq [24, 25] and Hi-C [26] data respectively to 
improve the haplotypes constructed with this strategy. However, the de novo reference, 
being yet unphased, is a mosaic reference produced by collapsing sequence from both 
haplotypes together, which can introduce switch errors, false duplications, and nucleo-
tide consensus errors [1, 27–30].

When parental data is available, trio-binning can be used to assemble haplotypes with-
out use of a reference genome. Trio-binning approaches use parental reads to identify 
“hap-mers,” k-mers unique to the maternal and paternal haplotypes, to label and par-
tition reads before assembly [31]. Because trio-binning is reference-free, it avoids the 
errors introduced through the creation of a collapsed assembly. However, binning of 
reads before assembly is vulnerable to false duplications and fragmentation [32] and can 
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be limited in its ability to phase repetitive or homozygous regions, which have few hap-
lotype-specific k-mers [31, 33].

Instead of binning reads by haplotype prior to assembly, performing the phasing 
directly on the assembly graph has emerged as an attractive strategy. Graph-based phas-
ing typically combines the phase signal inherent to an assembly graph with an additional 
source of phase information [12, 32, 34], avoiding the errors introduced by the binning 
of reads before assembly while usually yielding larger phasing blocks. Typically, long-
range phasing information from trio or Hi-C is aligned to the graph and synthesized 
with the graph topology to construct haplotypes. Long read assemblers such as hifiasm 
[10], Verkko [11], and Shasta [33], all natively support trio and Hi-C data integration, 
and independent modules which employ trio or Hi-C graph-based phasing, such as 
GreenHill [35] and GFAse [33], have recently emerged. These modules are designed to 
integrate with a wide range of assemblers and can provide graph-based phasing capabili-
ties to diverse workflows.

Trio-based assemblies have typically served as the gold standard for phased assembly, 
and trio assemblies from hifiasm and Verkko are currently the highest-quality assemblies 
that can be produced. However, the difficulty and expense of acquiring and sequencing 
three individuals’ genetic information limits trio-binning’s widespread application and 
provokes interest in single-sample methods, such as those leveraging Hi-C or Strand-
seq, which can produce phased assemblies using only material from the sample of inter-
est. Hi-C is a commercially available sequencing technology that captures chromatin 
conformation information [36]. Because a piece of DNA is far more likely to physically 
interact with itself than any other molecule, Hi-C’s ability to provide information on the 
physical proximity of DNA segments can be used to determine which variants originate 
from the same haplotype [23, 37]. However, Hi-C only provides a local phase signal, the 
strength of which diminishes with distance, in contrast to the global phase signal pro-
vided by trio. Strand-seq is a short-read, single-cell sequencing method that generates 
sequencing libraries derived from only one DNA strand from each chromosome [24]. 
This is achieved by using a thymidine analog, bromodeoxyuridine (BrdU), to target and 
remove the nascent DNA strand during a round of cell division. Like trio, Strand-seq 
provides global phase signal, which, when combined with its status as single-sample 
technology, makes it an attractive target for method development.

Contribution

We present Graphasing,  a Strand-seq alignment-to-graph-based phasing and scaffold-
ing workflow that assembles telomere-to-telomere (T2T)  human haplotypes using 
data from a single sample. Graphasing leverages a robust cosine similarity clustering 
approach to synthesize global phase signal from Strand-seq alignments with assembly 
graph topology, producing accurate haplotype calls and end-to-end scaffolds. We built 
assemblies for the NA24385 (HG002) and HG00733 genomes using Graphasing with the 
Verkko and hifiasm assemblers and compared the quality of the haplotypes with those 
constructed by native trio and Hi-C mode, and show that our method produced the 
highest-quality single-sample assemblies, which match or exceed trio-phasing in conti-
guity, phasing accuracy, and assembly quality.
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Graphasing is implemented using the open source workflow language, Snakemake 
[38]. The pipeline takes as input an assembly graph in .gfa format and a set of Strand-seq 
libraries in .fasta format, and outputs a haplotype partition of the assembly graph, which 
can readily be used by assembly tools to produce a final assembly, as well as Strand-seq 
annotations that can facilitate further downstream analysis. Graphasing is publicly avail-
able under an MIT license and is available at https:// github. com/ marsc hall- lab/ strand- 
seq- graph- phasi ng.

Results
Graph‑phasing method

Graphasing phases an assembly graph produced by an assembly tool such as Verkko or 
hifiasm. The Graphasing workflow can be summarized in five main steps:

1. Alignment of Strand-seq reads to assembly unitigs (Fig. 1A)
2. Clustering of unitigs by chromosome (Fig. 1B)
3. Correction of misoriented unitigs (Fig. 1C)
4. Pooling of haplotype informative reads to shade the assembly graph (Fig. 1D)
5. Threading of haplotypes through the shaded graph to phase and scaffold the assem-

bly (Fig. 1D)

Alignment of Strand-seq reads back to the genome convey global haplotype signal 
through the direction of the alignments [22, 39–44] (Additional file 1: Fig. S1). However, 
though all reads can be used for clustering and misorientation correction, only reads 
aligning to unique sequence in the assembly carry phase signal, and these phase-inform-
ative reads are identified after alignment (Fig. 1A). Unitig clustering by chromosome is 
performed using an agglomerative cosine-similarity clustering strategy (Fig. 1B). Next, 
a hierarchical cosine-similarity clustering strategy is applied to identify misoriented 
unitigs in each chromosome cluster (Fig. 1C). Finally, the phase-informative reads are 
pooled to produce a haplotype shading of the assembly graph (Fig. 1D). Rukki [11] then 
threads the shaded graph to produce haplotype calls and scaffolds, which can bridge 
tangles and gaps in the assembly. Verkko directly accepts the output scaffolds as input 
to produce a phased assembly, while for hifiasm, phasing information is communicated 
by using the haplotype calls to construct k-mer databases that are passed to trio-mode 
assembly. Details of each step are described in the “Methods” section.

Phasing method comparison

We compared the performance of Strand-seq based Graphasing to the results of the 
native trio and Hi-C phasing modes of Verkko and hifiasm. Assemblies were con-
structed for the NA24385 and HG00733 samples using the Verkko (v. 1.4.1) and hifi-
asm (v. 0.19.6) phasing pipelines. Hybrid assembly graphs were constructed with 
118.1 × coverage PacBio HiFi CCS reads [8] and 34.3x (6.3x > 100 kbp) coverage 
Oxford Nanopore Technologies (ONT) reads [9] for NA24385, and with 68.3 × cov-
erage PacBio HiFi CCS reads and 51.0x (32.8x > 100  kb) coverage Oxford nanopore 
for HG00733. Trio phased assemblies were constructed with parental short-read Illu-
mina data at 30 × coverage. Graphasing assemblies were constructed by inputting 

https://github.com/marschall-lab/strand-seq-graph-phasing
https://github.com/marschall-lab/strand-seq-graph-phasing
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the unphased assembly graphs, using 192 libraries for NA24385 and 115 libraries 
for HG00733. Unitigs shorter than 50 kbp were filtered out before phasing to reduce 
noise. Though these short unitigs made up a large fraction of the assembly by number, 
they represented at most 2.5% of the total sequence of a given unphased assembly 

Fig. 1 Pipeline overview. A Reads from Strand-seq libraries are aligned to graph unitigs (gray circles) using 
“bwa mem” and “bwa fastmap.” “bwa fastmap” alignments are used to identify haplotype informative reads, 
which are used for step “D.” B Unitigs (gray points) are clustered using a cosine-similarity based agglomerative 
clustering strategy. C Unitigs (solid outline) and their flipped inverses (dotted outline) are used to correct 
misoriented unitigs. Unitigs in opposite orientation form a bisected structure that is captured with 
cosine-similarity clustering. D The vector capturing the haplotype-informative libraries (left) is used to pool 
Strand-seq libraries and produce a haplotype shading of the assembly (right, middle). Rukki is run on the 
shaded graph to produce haplotype calls and scaffolds (right, bottom). Tangles and gaps are bridged, as 
indicated by the dotted line in the red haplotype
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(Additional file 2: Table S1). It is important to note that Strand-seq and Hi-C phas-
ing produce Haplotypes with Parentage Unknown (HaPUs), meaning that while each 
contig is haplotype-resolved, the parent-of-origin is unknown, unless further meth-
ods are employed [45]. Accordingly, evaluation was performed on both haplotypes 
together as a single assembly for each combination of assembler and sequencing tech-
nology. Here, we present results for hybrid assemblies, but Graphasing can also pro-
duce high-quality haplotypes from hifiasm HiFi-only (44.5x) assemblies, which are 
competitive with trio phased assemblies for NA24385 (Additional file 2: Table S2).

Contiguity

Assembly contiguity was evaluated using N50 and auN. N50 is the most commonly 
reported metric of contiguity and is defined as the length of the shortest contig for which 
longer and equal-length contigs cover more than 50% of the assembly [46], while the 
auN is a weighted sum of all Nx values for x between 0 and 100 [47]. The hifiasm assem-
blies were not scaffolded, while Verkko produces scaffolds, and therefore the Verkko 
assemblies were evaluated both on the scaffolds and on the resulting scaftigs after break-
ing scaffolds at gaps.

We found that all phasing methods produced highly contiguous assemblies, with 
hifiasm auN ranging from 93.1 to 130.9 Mbp, Verkko auN ranging from 85.0 to 132.9 
Mbp, and Verkko scaffold auN ranging from 135.4 to 146.4 Mbp (Table 1). To evaluate 
that improvement gained through each phasing method, we compared each assembly 
against its unphased counterpart and found that each assembly was substantially more 
contiguous, having an N50 and auN at least 4 times larger, with larger gains observed 
for NA24385, which had a less contiguous input. Notably, the NA24385 scaffolds were 
more contiguous than the HG00733 scaffolds despite a less contiguous input graph, 
which investigations attributed to the presence of “hairpin-capped broken bubbles” in 

Table 1 Assembly contiguity statistics. Phased Verkko assemblies list two numbers: the contig 
statistic first and the scaffold statistic in parentheses second

Sample Assembler Phasing N50 (Mbp) auN (Mbp)

HG00733 hifiasm hybrid Trio 104.0 105.6

HG00733 hifiasm hybrid Strand-seq 110.0 113.7

HG00733 hifiasm hybrid Hi-C 133.3 130.9

HG00733 hifiasm hybrid Unphased 6.9 8.1

HG00733 Verkko hybrid Trio 119.3 (137.8) 124.3 (135.4)

HG00733 Verkko hybrid Strand-seq 134.8 (140.3) 131.8 (140.2)

HG00733 Verkko hybrid Hi-C 134.9 (140.3) 132.9 (140.0)

HG00733 Verkko hybrid Unphased 26.3 28.3

NA24385 hifiasm hybrid Trio 95.8 99.0

NA24385 hifiasm hybrid Strand-seq 95.3 93.1

NA24385 hifiasm hybrid Hi-C 103.8 106.8

NA24385 hifiasm hybrid Unphased 1.9 3.6

NA24385 Verkko hybrid Trio 80.0 (143.7) 85.0 (145.1)

NA24385 Verkko hybrid Strand-seq 89.1 (137.8) 95.4 (146.4)

NA24385 Verkko hybrid Hi-C 87.1 (135.6) 88.1 (142.3)

NA24385 Verkko hybrid Unphased 3.4 6.5
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the center of the largest HG00733 chromosomes which fragmented some of the Rukki 
scaffolds (Additional file 1: Fig. S2).

Nx curves

For additional insight, we plotted each assembly’s Nx curve [48], which is created by plot-
ting all Nx values, and additionally compared them against two high-quality reference 
assemblies; NA24385 was compared against the Q100 Project v1.0 NA24385 assembly 
[49, 50] and HG00733 was compared against the T2T v2.0 CHM13 assembly [51].

Inspecting the Nx curves (Fig. 2), we see that the Verkko Nx curves are mostly equidis-
tant from the reference along the entire length of the curve, roughly indicating equiva-
lent phasing performance at all lengths in the assembly. In contrast, hifiasm assemblies 
are much closer to the reference curve on the left side of the plots than on the right, indi-
cating a relative dip in contiguity after the very largest contigs. For hifiasm, Hi-C phasing 
constructed the most contiguous assemblies, with its Nx curve the highest along nearly 
the entire domain for both samples, while Strand-seq and Trio performed comparably 
with one another. For Verkko, all assemblies were comparable with one another, with the 
exception of the Hi-C scaffolds, whose curves dips below the Strand-seq and Trio curves 
for the shorter contigs.

End‑to‑end haplotypes

We further investigated each assembly for the number of end-to-end haplotypes. After 
using minimap2 [52, 53] to align the assemblies to their respective references, the 
CHM13 v2.0 assembly for HG00733 and the Q100 v1.0 assembly for NA24385, three 
different properties were evaluated. If the summed alignment length was within 5% of 
the length of both the contig or scaffold and the reference chromosome, it was labeled 
“chromosome-scale.” If “seqtk telo” [54] detected telomeric repeats at both ends of a 
contig or scaffold, it was labeled as having two telomeres. Finally, if a contig or scaffold 

Fig. 2 Nx curves. The dotted black line in each facet corresponds to the reference standards, which are the 
Q100 v1.0 assembly for NA24385 and the CHM13 v2.0 assembly for HG00733
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mapped to the reference in one contiguous alignment, it was labeled “unbroken.” Unbro-
ken alignments were only expected for the NA24385 assemblies, as they were aligned 
to a reference of the same genome. A contig or scaffold satisfying both of the first two 
properties was considered “chromosome-spanning,” while a contig or scaffold satisfying 
all three properties was considered to be “telomere-to-telomere” (T2T).

We found that for HG00733, all three Verkko assemblies performed comparably, while 
among the hifiasm assemblies, Hi-C had more chromosome-spanning contigs (Table 2). 
For NA24385, Hi-C again performed the best among the hifiasm assemblies, while for 
Verkko, Graphasing produced a larger number of T2T and end-to-end contigs than trio 
phasing, despite having fewer chromosome-spanning scaffolds, while Hi-C produced 
the fewest chromosome-scale contigs and scaffolds. All Verkko NA24385 chromosome-
spanning contigs were also T2T, while most hifiasm NA24385 chromosome-spanning 
contigs aligned to the reference in multiple pieces. Scaffolding greatly increased the 
number of chromosome-spanning sequences, and the Verkko assemblies each contained 
15–25 chromosome-spanning scaffolds.

Phasing accuracy

Yak [32] was used to calculate the switch error rate and Hamming error rate. Yak uti-
lizes parental sequence data to identify hap-mers and create a haplotype coloring of the 
assembly contigs and estimate switch and Hamming errors. To avoid inflation of the trio 
assemblies’ performance, the data used for error rate calculation was independent of 
the data used for trio phasing. For HG00733, hap-mers were identified from orthogonal 
parental Illumina sequencing data, and for NA24385, hap-mers were identified from the 
Q100 Project v1.0 assembly. The Q100 assembly is the highest quality NA24385 assem-
bly publicly available, with an estimated error rate below 1 per 10 million bases [55]. 
For the Verkko assemblies, only scaffolds were evaluated in this and all subsequently 
described evaluations.

Table 2 End-to-end haplotype counts. Phased Verkko assemblies list two numbers: the contig 
statistic first and the scaffold statistic in parentheses second

Sample Assembler Phasing Chromosome‑
scale (n)

Chromosome‑scale 
w/ two telomeres (n)

Chromosome‑scale w/ two 
telomeres and unbroken 
(n)

HG00733 hifiasm hybrid Trio 15 8 NA

HG00733 hifiasm hybrid Strand-seq 17 10 NA

HG00733 hifiasm hybrid Hi-C 21 16 NA

HG00733 Verkko hybrid Trio 17 (25) 16 (22) NA (NA)

HG00733 Verkko hybrid Strand-seq 21 (27) 16 (20) NA (NA)

HG00733 Verkko hybrid Hi-C 21 (26) 17 (21) NA (NA)

NA24385 hifiasm hybrid Trio 13 9 3

NA24385 hifiasm hybrid Strand-seq 10 5 4

NA24385 hifiasm hybrid Hi-C 16 11 7

NA24385 Verkko hybrid Trio 4 (32) 3 (25) 3 (4)

NA24385 Verkko hybrid Strand-seq 10 (30) 7 (18) 7 (7)

NA24385 Verkko hybrid Hi-C 7 (27) 5 (15) 5 (5)
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The assemblies produced by hifiasm and Verkko were generally high-quality and 
had a low error rate (Fig. 3). For both samples, all phasing methods produced hifiasm 
assemblies with similar Hamming and switch error rates, with Hamming error rates 
around 0.9% and switch error rates around 0.85% for HG00733, and Hamming error 
rates around 0.20% and switch error rates around 0.13% for NA24385. Among the 
Verkko assemblies, Graphasing and trio were the best performing for both samples, 
with switch and Hamming error rates below 0.85% for HG00733 and switch error 
rates below 0.09% and Hamming error rates below 0.07% for NA24385. The Verkko 
Hi-C assemblies, despite having a similar switch error rate as the other Verkko 
assemblies, had Hamming error rates about 1.5 and 5 times higher for HG00733 
and NA24385 respectively, resulting from large, balanced switch errors (Fig.  4). For 
NA24385, each Verkko haplotype had a switch error on average 0.06 pp lower than 
the corresponding hifiasm haplotype which, though small in absolute terms, repre-
sents an approximate twofold difference in the switch error rate. A notable feature is 
that the NA24385 error rates are an order of magnitude less than the error rates of 
the HG00733 haplotypes. We believe that a large portion of the difference between 
the HG00733 and NA24385 error rates is due to the more accurate evaluation of the 
NA24385 haplotypes provided through the highly curated Q100 assembly, which sug-
gests that the true error rates for the HG00733 assemblies may be lower than pre-
sented here.

To further investigate the phasing accuracy of the haplotypes, we produced hap-
mer blob plots [56]. In a hap-mer blob plot, properly phased contigs, which con-
tain hap-mers from only one parent, will be found on the X- or Y-axis. Any blob 
not on either axis contains a mixture of sequence from both parents, and contigs 
containing an equal mixture of parental hap-mers will be found on the gray line. 
Inspection of the blob plots revealed only the Verkko Hi-C assemblies had large, 
balanced switch errors, as the HG00733 and NA24385 assemblies each had single 
contig 185 and 42 Mbp in size respectively which strongly deviated from the axes 

Fig. 3 Haplotype error rate scatter. The X-coordinate of each point is the estimated switch error rate for a 
haplotype, and the Y-coordinate is the estimated Hamming error rate. Points are colored by phasing data
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(Fig. 4). Smaller Hamming errors, represented through slight deviations from the 
axis, can be observed in the other assemblies. Unitigs aligning to the X and Y chro-
mosomes in the NA24385 assemblies received many more hap-mer alignments 
than unitigs aligning to the autosomes and are plotted separately to preserve scale 
(Additional file 1: Fig. S3).

Consensus quality

Consensus sequence quality value (QV) was estimated with Yak using orthogonal Illu-
mina sequencing data for HG00733 and the Q100 v1.0 assembly for NA24385. Yak esti-
mates the QV by comparing assembly k-mers to reference k-mers, with k-mers unique 
to the assembly presumed to be errors. Sequences shorter than 100 kbp were filtered out 
before QV calculation.

All phasing methods produce high-quality assemblies with QV values > 53 for all 
assemblies (Fig. 5). For the Verkko assemblies, the Strand-seq and Hi-C haplotypes have 
similar QV scores, and both phasing methods slightly outperforming the trio assemblies. 

Fig. 4 Hap-mer blob plots. For the NA24385 assemblies, only contigs aligning to autosomal chromosomes 
are plotted. The X- and Y-coordinate of each point is the number of hap-mers occurring on the contig, and 
the size of each point corresponds to contig length. Green points correspond to the Strand-seq and Hi-C 
HaPUs, while orange points correspond to the trio maternal haplotype, and blue points to the trio paternal 
haplotype. The gray line is the line of equality, where the number of hap-mers from either parent occurring 
on a contig is equal. The greater the phasing accuracy, the closer a blob is aligned to each axis
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For the hifiasm assemblies, no haplotype strongly outperforms any other for HG00733, 
while Hi-C has a slight edge for NA24385.

Structural misassemblies

Further evaluation was performed using paftools.js, a script included in the Minimap2 
package [52]. “paftools misjoin” counts gaps, inversions, and interchromosomal mis-
joins after aligning assembly contigs to a reference genome. The reference assemblies 
used were the T2T v2.0 CHM13 assembly [51] for HG00733 and the Q100 v1.0 assembly 
for NA24385, and alignment was performed with minimap2. “paftools.js misjoin” was 
run with maximum gap size and minimum alignment block length thresholds of 1 Mbp. 
In our evaluation, we also examined the number of issues occurring entirely on unitigs 
aligning to acrocentric chromosomes, which are the most difficult to properly assemble 
and the most difficult to evaluate with alignment-based techniques.

Across all assemblies, the number of issues reported was low, with each assembly hav-
ing no more than 17 detected events of a given category (Fig. 6). Gaps were the most 
commonly reported event across all haplotypes and mostly occurred on non-acrocentric 
chromosomes. More gaps were reported for the Verkko assemblies than for the hifiasm 
assemblies, as the scaffolded assemblies are naturally expected to contain gaps. Inter-
chromosomal misjoins were the second most common event and were reported only 
in unitigs aligning to acrocentric chromosomes. Due to the large amount of repetitive 
sequence within and between the acrocentric chromosomes, the interchromosomal 
misjoins may reflect a spurious call due to misalignment of the contigs to the reference 
[57]. Of the hifiasm assemblies, the Hi-C assemblies reported somewhat more misjoin 
events than assemblies phased by the other methods. Of the Verkko assemblies, results 
were nearly identical for all phasing methods for HG00733, while for NA24385, there 
is a clear ordering, with Hi-C performing the worst, and the trio assembly performing 
the best, reporting only two gaps and one misjoin. More issues were reported for the 

Fig. 5 Assembly QV. Points are colored by phasing method
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HG00733 assemblies than for the NA24385 assemblies, which may reflect genuine varia-
tion between the sample and CHM13 reference.

Gene completeness

“paftools asmgene” detects missing genes by aligning transcripts to both an assembly 
haplotype and a haploid reference and counting discrepancies in gene copy number. 
Subsequently, the percentage of genes that are multi-copy in the haploid reference 
but not in the assembly haplotype (%MMC) and the percentage of genes that are sin-
gle-copy in the haploid reference but not in the assembly haplotype (%MSC) were 
computed. The reference assemblies used were the T2T v2.0 CHM13 assembly for 
HG00733 and the Q100 v1.0 assembly for NA24385, the transcripts came from Gen-
code v.44 protein-coding sequences [58], and alignment was performed with mini-
map2. For NA24385, each HaPU was compared against the reference haplotype 
according to the sex chromosome contained in the HaPU. Only full-length alignments 
with at least 99% identity were considered to label a gene as “present” for the calcula-
tion of missing multi- and single-copy genes.

The assemblies showed low levels of gene missingness, with consistent patterns 
within samples (Fig.  7). The NA24385 assemblies all had an MMC under 10% and 
MSC under 1.0%, and the HG00733 assemblies had an MMC under 12% and MSC 

Fig. 6 paftools.js misjoin statistics: three event categories are plotted: gaps, interchromosomal misjoins, 
and inversions. Each bar is colored blue according to the fraction of the misjoin type occurring entirely on 
acrocentric chromosomes (chromosomes 13, 14, 15, 21, 22)
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under 2.5%. For HG00733, all phasing methods performed similarly for both assem-
blers, while for NA24385, Graphasing outperformed Hi-C, while trio phasing, with an 
MMC below 1.51% and an MSC below 0.4% for both samples, showed by far the best 
results. However, the evaluation of the single-sample methods is deflated relative to 
trio, as Hi-C and Graphasing produce HaPUs but are evaluated against true haplo-
type references. This result also suggests that the gene completeness of the HG00733 
assemblies, which were not evaluated against a reference of the same sample, is 
greater than the results presented.

Strand‑seq library titration

To evaluate the performance of Graphasing across varying Strand-seq input quality, a 
library titration experiment was run with the Verkko NA24385 sample. The 192 Strand-
seq libraries had been previously annotated for quality, with 96 libraries labeled “high-
quality” and libraries with a higher noise level and less clear phasing signal labeled 
“not-high-quality” (Additional file 2: Table S3). With these annotations, 96 library sets 
were constructed by sampling without replacement 0%, 25%, 50%, 75%, or 100% of the 
libraries from the “high-quality” set and sampling without replacement the remainder 
from the “not-high-quality” libraries. We sampled sets of size 96, as 96 is the number of 
libraries that is typically prepared in a single Strand-seq data preparation run. For the 
0% and 100% library sets, as there is only one way to sample 0% or 100% of a set, there 
is only one sampled set. For each of the other percentages, four library sets were gener-
ated. Each sampled library set was then input to Graphasing, and the output haplotypes 

Fig. 7 The fraction of missing multi-copy genes (MMC) and missing single-copy genes (MSC) calculated 
from paftools.js asmgene statistics
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were compared against the HG002 v1.0 reference. Disagreement with the HG002 v1.0 
reference was quantified as the percentage of the total assembly size, calculated using 
unitigs larger than the 50 kbp input threshold, whose assignment does not match the 
reference, after aligning the unitigs to the reference. Results were quantified separately 
for the acrocentric chromosomes, which are the most difficult to assemble.

Our titration experiment showed that all library sets had high agreement with the 
HG002 v1.0 reference, with agreement values above 98% for the entire assembly and 
above 93% for acrocentric chromosomes (Fig. 8). Disagreement averages slowly decrease 
with increasing library quality, to the minimum of 1.2% and 3.2% acrocentric disagree-
ment for the 100% high-quality library set. Variance was higher for acrocentric-only 
disagreement, which was expected as acrocentrics contain large amounts of degener-
ate sequence that make alignments, and therefore Rukki haplotype assignments, unreli-
able. We additionally inspected the auN of the resulting scaffolds for each titrated set 
and found that all samples achieved an auN within 16% of the reference auN, indicat-
ing that contiguity was also maintained across varying library compositions (Additional 
file 2: Table S4). Our results indicate that high-quality phasing can be achieved across 
the entire range of Strand-seq input quality, as even a set of 96 low-quality libraries can 
still produce contiguous assembly with greater than 98% concordance with the HG002 
v1.0 assembly for input unitigs longer than 50 kbp.

Fig. 8 Disagreement between titrated and reference assemblies for NA24385. For each titrated Strand-seq 
library set, the haplotypes called by Rukki were compared to the reference haplotypes from the HG002 v1.0 
assembly. Each color corresponds to a different fraction of high-quality libraries sampled for the titrated 
library set, and shape corresponds to the inclusion or exclusion of unitigs aligning to the acrocentric 
chromosomes. Disagreement is quantified as the percent of the total length of the assembly for which 
haplotype calls disagree with the reference calls, calculated using unitigs longer than 50 kbp
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Runtime and memory usage evaluation

We evaluated the runtime and memory usage of Graphasing for all samples and assem-
bly workflows (Table 3). Run time and peak memory usage of the tools were measured 
using the Snakemake “benchmark” decorator within Graphasing. Runtime and peak job 
memory usage were profiled on a computing cluster, with a standard cluster user profile. 
On a cluster, hifiasm runtime was around 8 and 11 h and Verkko runtime was around 
2.5 and 6 h. The majority of the difference in runtime between assemblies was due to the 
contiguity of the input, with more fragmented assemblies taking longer to phase. Peak 
single job memory usage was at most 24 GB for Verkko and at most 62 GB for hifiasm 
across all runs. The greater peak job memory usage of the hifiasm assemblies came from 
creating k-mer databases with Yak. Regardless, the time and resources required are a 
small fraction of those used during a typical genome assembly workflow.

Discussion
We introduced Graphasing, a workflow to phase genome assembly graphs, and com-
pared its performance to the native Hi-C and trio phasing of Verkko and hifiasm for 
hybrid HiFi + ONT assemblies. Graphasing achieved performance comparable to that 
of trio phasing, as demonstrated through evaluation of contiguity, phasing accuracy, and 
assembly quality. In addition, we performed titration experiments to identify the range 
of input data quality under which Graphasing performs well. Input 96 library sets con-
taining only high-noise libraries still achieved greater than 98% concordance with the 
HG002 v1.0 reference. Graphasing is modular and comprehensive, wrapping all oper-
ations from alignment to scaffolding, and adaptable to any assembler that outputs an 
assembly graph and has a phased assembly mode, making Graphasing widely applicable 
to different workflows.

In our evaluations, Verkko produced assemblies with similar contig-level contiguity as 
hifiasm for all assemblies. This result, when coupled with the fact that the Verkko scaf-
folds had similar or greater performance in assembly quality and phasing accuracy when 
compared to hifiasm contigs, represents an advantage for the Verkko assembler. Of the 
Verkko assemblies, all three phasing methods produced haplotypes with similar scaffold 
Nx curves and structural assembly quality. Among the single-sample methods, the Hi-C 
assemblies had higher phasing error and a greater number of reported structural misas-
semblies and misassembled genes. Accordingly, we can state that the Verkko + Graphas-
ing produced the highest-quality single-sample haplotypes.

The high contiguity of hybrid assemblies can present a unique methodological hurdle, 
despite the apparent decrease in phasing difficulty that comes from greater contiguity. 

Table 3 Profiling statistics

Sample Assembler Runtime (H:M) Max job 
mem 
(GB)

HG00733 Verkko hybrid 2:31 20

NA24385 Verkko hybrid 5:50 24

HG00733 hifiasm hybrid 8:02 62

NA24385 hifiasm hybrid 11:17 62



Page 16 of 26Henglin et al. Genome Biology          (2024) 25:265 

Highly contiguous assemblies can contradict heuristics and challenge methods devel-
oped for more fragmented input. Another challenge of contiguous assemblies is when 
degenerate sequence is assembled alongside non-degenerate sequence onto a unitig; 
degenerate genome regions receive alignments from multiple chromosomes, creat-
ing noise which can overwhelm phasing signal. The cosine-similarity based strategies 
utilized by Graphasing are robust to this noise and allow these challenging unitigs to 
be properly phased without preprocessing (Additional file  1: Fig. S4). Furthermore, 
Graphasing incorporates graph topology into the phasing process, allowing for a more 
robust phasing process that takes advantage of the highly contiguous graphs of hybrid 
assemblies. Nonetheless, some areas of the genome will remain challenging to phase 
due to the difficulty of accurately aligning short reads in those regions. Analysis of the 
phased haplotypes is also a challenge, as “ceiling effects” in quality analysis may pose an 
obstacle to accurately evaluating high-quality haplotypes.

Further downstream refinement and analyses of the phased assemblies, such as scaf-
folding acrocentric short arms or detection and analysis of inversions, can also be con-
ducted with Strand-seq [59, 60]. These analyses are facilitated by Strand-seq annotations 
computed by Graphasing. For example, one annotation identifies the phase-informative 
Strand-seq libraries, which allows for more informed investigation of apparent misjoins 
found in the assembly by allowing switch errors and misorientation events to be imme-
diately distinguished from one another.

Graphasing is currently limited to diploid genomes. Extension to higher ploidy would 
require more input Strand-seq data as well as a significant rework of the core of the 
phasing workflow. Graphasing’s cosine-similarity approaches are effective for contigu-
ous assemblies, but can struggle with more fragmented assemblies, as the approaches 
that work efficiently and effectively for contiguous assemblies can lead to trouble if there 
are many fragmented and degenerate unitigs in the input assembly. Strand-seq data can 
also be difficult to produce, given the need to isolate a single cell after a cycle of cell 
division. However, production of Strand-seq data is improving [61] and we consider the 
Graphasing pipeline to be an attractive assembly method especially for the production of 
reference-quality genomes when trio data is unavailable. Currently, Graphasing does not 
attempt to detect switch errors in the input assembly, and any switch errors present in 
the input assembly will propagate to the final haplotypes. Future iterations of the pipe-
line could include switch error detection and correction, a task for which Strand-seq 
already has proven successful [62].

Conclusions
Graphasing is a Strand-seq-based phasing workflow that reconstructs chromosome-
scale haplotypes from assembly graphs of diploid genomes. Comparison to gold-stand-
ard trio phasing shows that Graphasing achieves comparable performance across a range 
of evaluations of completeness, contiguity, and quality, and furthermore produces more 
complete and accurately phased assemblies than Hi-C phasing. Graphasing’s modular 
design allows it to be easily adapted to different assembly workflows. Both the phased 
genomes, as well as output Strand-seq annotations, facilitate further downstream analy-
ses, such as misassembly detection, analysis of structural variants, and haplotype-spe-
cific gene analysis.
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Methods
Aligning reads to assembly

While all reads can be used to cluster unitigs by chromosome, only a subset of reads 
convey haplotype information and are useful for phasing. Accordingly, reads are aligned 
to the assembly twice: once with bwa mem in paired-end mode [63], to derive the align-
ments used for clustering and orientation correction, and once with bwa fastmap [63] 
to identify the phase-informative reads. bwa fastmap identifies super maximal exact 
matches (SMEMs), maximal exact matches that are not contained in any other maximal 
exact matches. Filtering to reads with only one SMEM filters out alignments to sequence 
that is present in multiple copies in the graph. This retains alignments to homozygous 
nodes and alignments that overlap heterozygous variation on diploid nodes. As bwa fast-
map does not have a paired-end mode, reads are first merged with PEAR [64] to max-
imize utilized information. In cases where reads are not successfully merged, the first 
mate read is retained. Reads are homopolymer compressed before alignment for Verkko 
assemblies, as the Verkko assembly graph is also homopolymer compressed.

Alignment counting

Both the unitig clustering and phasing steps use only the aggregated counts of align-
ments in Watson and Crick orientation from each Strand-seq library. The processing 
steps before counting differ for each aligner. For the bwa mem alignments, duplicates are 
marked using sambamba [65] and then filtered out, along with supplementary, second-
ary, and improper alignments. bwa fastmap alignments are simply filtered to reads with 
only one SMEM. After filtering, the number of first-mate read alignments in Watson and 
Crick orientation from each Strand-seq library is counted for each unitig in the graph.

Connected components

The clustering step utilizes connected component information from the graph, follow-
ing the heuristic that unitigs in the same connected component are more likely to have 
originated from the same chromosome than those in different connected components. 
However, unitigs from the five acrocentric chromosomes are expected to always be tan-
gled together due to the high sequence similarity in the rDNA array. In an attempt to 
increase the utility of the connected component heuristic, Graphasing attempts to sepa-
rate the acrocentric chromosomes before calculating the connected components. To do 
this, the largest connected component by number of base pairs is first identified as the 
putative acrocentric cluster component. Subsequently, all nodes shorter than a threshold 
length, set by default to 50 kbp, are identified, and the largest tangle consisting solely of 
these short nodes on the putative acrocentric cluster component is labeled as the rDNA 
tangle. Nodes from the tangle, along with all edges connected to them, are then removed 
from the graph prior to calculation of connected components.

Length filtering

Unitigs shorter than an input threshold, which we set to 50 kbp, are filtered out. The goal 
is to prevent short unitigs, which may either receive too few alignments to have a reliable 
signal or consist entirely of degenerate sequence, from adding noise that may disrupt 
accurate phasing of the assembly.
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Unitig clustering

This step combines unitigs from homologous chromosomes into the same cluster. Unitig 
clustering can be broken into three stages: the first stage uses pre-processing functions 
from the contiBAIT R package [41] to filter out noisy libraries. Second, an initial clus-
tering is created using a cosine-similarity based batched clustering strategy. Finally, this 
clustering is refined and completed using additional heuristics.

Strand-seq based chromosome clustering strategies [22, 39, 41, 42] all rely on iden-
tifying shared patterns in the unitig strand state inherited across libraries. Each pair 
of homologous chromosomes inherits either an unmatched WC/CW strand state or 
a matched WW/CC strand state for each Strand-seq library. Accordingly, all unitigs 
derived from the same pair of homologous chromosomes are expected to share strand 
states across Strand-seq libraries, making the unitig strand state a viable clustering sig-
nal. Though the exact strand state cannot be determined for each unitig and library, 
evidence for a matched or unmatched strand state can be quantified using the strand 
state frequency (SSF); let w and c be the number of Watson and Crick reads aligning to 
a unitig respectively. The SSF is defined as (w − c)/(w + c) . For a unitig with an equal 
number of Watson and Crick alignments, the SSF will be equal to 0, and when the 
alignments are all Watson or all Crick, the SSF will be 1 or − 1 respectively. We there-
fore expect a matched strand state to produce SSF with a magnitude close to 1 and an 
unmatched strand state to result in an SSF close to 0. The SSF for a set of Stand-seq 
libraries is represented as a vector, where each component of the vector corresponds to a 
different Strand-seq library, and the value corresponds to the SSF for the library.

contiBAIT preprocessing

The contiBAIT preprocessing and clustering functions use a simple threshold to discre-
tize the SSF and call strand states for each Strand-seq library. The preprocessing func-
tion then evaluates libraries for quality based on expected patterns in the strand states; 
because each unitig is expected to inherit matched and unmatched strand states in a 
50/50 ratio across Strand-seq libraries, large deviations from this ratio indicate possible 
issues. Consequently, libraries with too many unmatched strand states across unitigs, 
indicating possible failure of the Strand-seq chemistry, are discarded. Furthermore, unit-
igs and libraries with too few alignments to confidently call strand state are discarded.

Absolute cosine similarity clustering

To understand why absolute cosine similarity is an appropriate metric for clustering 
unitigs by chromosome, we first consider the behavior of the SSF for ideal Strand-seq 
alignment data. Under ideal conditions, each unitig would have an SSF value of 0 for 
each library that inherited an unmatched strand state and a value of 1 or − 1 for each 
library that inherited a matched strand state. When considering the vector representa-
tion of the SSF, we see that unitigs from the same chromosome will have vectors that all 
point along the same ideal vector, vclust (Additional file 1: Fig. S4). The cosine similarity 
between two vectors a and b is defined as ‖a‖ b cosθ where θ is the angle between a and 
b , and simplifies to cosθ if vectors a and b are unit-normalized. We thus see that the unit-
normalized cosine similarity between two SSF vectors is maximized when they point in 
the same direction, making it an apt similarity metric for clustering. However, there is 
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still a risk of misclustering misoriented unitigs, which can appear to originate from a 
different chromosome due to having a flipped value in matched strand state libraries. To 
account for possible misorientations, the absolute value of the cosine similarity is used, 
which clusters according to parallelism, regardless of direction.

Furthermore, cosine similarity is an appropriate metric for use with highly contigu-
ous assemblies, where degenerate sequence becomes more likely to be assembled onto 
unitigs containing non-degenerate sequence. Repetitive genome regions receive align-
ments from multiple chromosomes, generating phasing noise. The cosine similarity 
based strategies utilized by Graphasing are robust to the noise generated by degener-
ate regions and allow challenging unitigs to be properly phased without preprocessing. 
This results from the noteworthy property of cosine similarity in that it reflects a rela-
tive, rather than absolute, comparison of the individual vector dimensions. Degenerate 
genome regions attract alignments from multiple chromosomes, and thus appear to 
have an unmatched strand state in every Strand-seq library. A degenerate region there-
fore shrinks each dimension of the SSF. However, because each non-zero component of 
the absolute SSF vector has a uniform magnitude, its normalized cosine similarity will 
not change if each dimension is shrunk by the same amount, making the metric robust 
to the effects of degenerate regions. An implicit assumption made by this metric is that 
inheriting an unmatched strand state in every library is impossible. While such an inher-
itance pattern is not ruled out by theory, it is extremely unlikely under the expectation 
that at least 96 Strand-seq libraries are input to the pipeline, 96 being the typical number 
of libraries generated in a single Strand-seq sequencing run. Therefore, we consider it 
safe to assume that an all unmatched strand-state inheritance pattern is the consequence 
of degenerate genomic regions.

Absolute cosine similarity initial clustering

A batched agglomerative clustering strategy is used to create the initial clustering. The 
unitigs are ranked based on coverage and batched by quantile in groups of 1000. If fewer 
than 5 batches are created, then the unitigs are instead split into 5 quantiles. By clus-
tering the batches in descending order of mean coverage, the clustering is seeded with 
“high-signal” unitigs, reducing variance. Additionally, batched clustering reduces clus-
tering time by limiting the number of comparisons made at each clustering step.

The initial clustering algorithm consists of three main operations: cluster growing, 
cluster creation, and cluster merging. The first step is cluster growing, which begins by 
calculating the similarity between each unclustered unitig and each cluster, and if the 
largest similarity value exceeds a threshold value, then the unitig is added to the cluster. 
We define unitig-cluster similarity as the mean of the pairwise absolute cosine similarity 
calculated between the unclustered unitig and the unitigs in the cluster. Cluster growing 
is repeated until no similarities are greater than the specified threshold. At this point, 
the cluster creation step is triggered, which begins by calculating the similarity between 
all unclustered unitigs, and if the largest similarity value exceeds a threshold value, a new 
cluster is created from the two unitigs. If a new cluster is created, then the algorithm 
immediately loops back to cluster growing. Otherwise, the final operation, cluster merg-
ing, is triggered, where the similarity between clusters is calculated, and if the largest 
similarity value exceeds a threshold value, the clusters are merged. Here, we define the 
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similarity between two clusters as the mean of the pairwise absolute cosine similarity 
calculated between the unitigs in each cluster. Cluster merging is first performed on 
each connected component, following the heuristic that unitigs on the same connected 
component have a higher chance of originating from the same chromosome, before a 
general merging step is performed. After cluster merging, the next batch of unitigs is 
added to the clustering process. At a given step, all unclustered unitigs from all batches 
added to the clustering process are considered for cluster growing or cluster creation. If 
all batches have been added, then the clustering routine ends.

Cluster refinement

The first part of cluster refinement attempts to correct spurious clustering resulting from 
noisy unitigs. First, unitigs in clusters smaller than a specified minimum cluster size are 
relabeled as unclustered. Next, for each connected component, the fraction of the com-
ponent base pairs labeled for each cluster is calculated, and unitigs belonging to clusters 
covering less than a specified threshold percentage, set by default to 2%, are relabeled as 
unclustered. These spurious clustering correction steps are necessary because minimal 
filtering of noisy unitigs is performed before clustering. Next, the number of clusters 
on each connected component is counted and, if there is only 1 cluster, the unclustered 
unitigs on the connected component are assigned to the cluster. Following this round 
of refinement, one more round of clustering, as described in “Absolute cosine similar-
ity initial clustering,” is performed, using all unclustered unitigs. This is to attempt to 
assign the previously spuriously clustered unitigs to their correct clusters. Finally, a sec-
ond round of refinement, which repeats the three steps described above, is performed.

Haploid chromosome clustering

To ensure that any small diploid regions attached to haploid chromosomes, such as the 
pseudoautosomal region (PAR), are properly phased, unitigs from haploid chromosomes 
need to be identified, and their clusters merged before orientation correction and phas-
ing. When the SSF is calculated using all reads, each unitig vector points along its corre-
sponding vclust , corresponding to the chromosome from which it originated (Additional 
file 1: Fig. S4). When the SSF is calculated using only haplotype informative reads, each 
unitig vector will instead point along one of three different vectors corresponding to its 
haplotype membership: maternal, paternal, or homozygous. These three vectors lie in 
the “chromosome plane” spanned by vclust and an orthogonal vector vphase , defined as 
the difference between the maternal and paternal haplotype vectors (Additional file 1: 
Fig. S5). Haploid chromosome clusters do not contain unitigs from multiple haplotypes, 
however, and therefore all unitigs from a haploid chromosome cluster will instead con-
tinue to point along a single line regardless of which data is used for the SSF calcula-
tion. This gives a variance-based heuristic for identifying haploid chromosome clusters; 
after principal components analysis (PCA), haploid chromosomes are expected to have 
component 1 proportion of explained variance near 100% and component 2 proportion 
of explained variance near 0%, in contrast to a more balanced ratio of values expected 
for diploid chromosome clusters. Accordingly, to identify haploid chromosome clusters, 
PCA is performed on each cluster after calculating the SSF vectors using only haplo-
type informative reads, and clusters with component 1 proportion of explained variance 
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greater than 70% and component 2 proportion of explained variance less than 20% are 
labeled as homozygous chromosome clusters and merged.

Cosine similarity unitig orientation correction

Before a shaded graph can be produced, misoriented unitigs need to be detected and 
corrected. In contrast to the chromosome clustering step, orientation correction uses 
non-absolute cosine similarity for clustering, as the SSF vectors of unitigs from the same 
chromosome but in opposite orientation will point in opposite directions along the same 
vclust , and therefore possess minimal cosine similarity. Accordingly, there is a natural 
bisection of the SSF vectors, with each cluster containing unitigs in the same orienta-
tion. To capture this structure, a two-cluster hierarchical clustering is performed. After 
clustering, the unitigs from an arbitrarily chosen cluster are corrected by “flipping” their 
orientation so that all unitigs in the cluster now have the same orientation. However, 
for graphs constructed with extremely high coverage data, the hierarchical clustering 
may capture structure other than unitig orientation. This risk arises from the fact that 
the unitigs from high-coverage hybrid assemblies can be extremely long and contigu-
ous, such that a chromosome cluster may consist of only a few unitigs. In these cases, 
it is not unlikely that all unitigs may already be in the same orientation, meaning the 
bisected structure is not present for the hierarchical clustering to capture. To eliminate 
this risk, the clustering is performed on the unitigs together with a copy with the orien-
tation “flipped,” which guarantees that unitigs in both orientations will be present when 
clustering. Afterwards, only the original version of each unitig is retained.

Haplotype informative Strand‑seq library pooling

The sparse coverage of a typical Strand-seq library, generally ranging between 0.01 × and 
0.2 × of the haploid genome [66], means that phase information from many libraries 
must be pooled to achieve a high-quality result. Pooling haplotype informative reads 
requires two steps: identifying the unmatched strand state libraries, which are the librar-
ies that convey phasing information, and properly assigning Watson and Crick labels to 
reads, such that all Watson reads are assigned to one haplotype and all Crick reads to 
the other haplotype (Additional file 1: Fig. S6). Previous work leverages identified SNVs 
[43] or homologous unitig pairs [67] to provide a supervising signal in a minimum error 
correction framework to achieve this goal. In contrast, Graphasing needs no external 
supervising signal to pool libraries, as all of the information needed for proper pooling 
can be derived from vphase . To calculate vphase , first, vclust is calculated as a size-weighted 
average of the orientation-corrected unitigs in a cluster. Next, PCA is performed on each 
cluster and the chromosome plane is inferred from the first two principal components. 
As described in “Haploid chromosome clustering,” it is expected that all unitig vectors 
will lie in the chromosome plane, and that vclust and vphase form an orthogonal basis for 
the plane. Because vclust and vphase are orthogonal, vphase can be inferred by projecting 
vclust into the chromosome plane, and then rotating the projected vector 90° in the plane.

To understand how vphase guides proper pooling, we make two observations. The first 
is that vphase is expected to have a value of 1 or − 1 if an unmatched strand state is inher-
ited and a value of 0 if a matched strand state is inherited, meaning that the non-zero 
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components of vphase identify the unmatched strand state libraries. The second is that 
WC and CW strand states will have opposite vphase values of 1 and − 1, meaning that 
two libraries with opposite sign assign reads of different orientation to a haplotype. 
Accordingly, proper pooling is achieved by swapping alignment counts in the libraries 
that have a vphase value of − 1, and then taking the dot product of each column of Watson 
or Crick alignment counts with abs

(

vphase
)

 . The pooled reads constitute a pair of hap-
lotype marker counts for each unitig, whose values indicate the haplotype to which the 
unitig belongs. Unitigs specific to a given haplotype will have a high marker count for 
the corresponding haplotype and a low marker count for the opposite haplotype, while 
homozygous unitigs are expected to be assigned a balanced number of markers for both 
haplotypes. Additionally, homozygous unitigs are expected to be assigned a much larger 
number of total markers than heterozygous unitigs, as all reads aligning to homozygous 
unitigs can be used for phasing.

Haploid chromosome phase vector correction

As mentioned above, vclust  is calculated as a size-weighted average of the orientation-
corrected unitig vectors within a cluster, which ensures that different levels of fragmen-
tation between haplotypes, which could lead one haplotype to have more unitigs in the 
assembly than the other, do not skew the calculation. However, haploid chromosomes 
are often quite different in size, meaning that a size-weighted average will bias vclust  , 
rotating it away from the ideal line of bisection between the two haploid chromosomes, 
biasing the inference of vclust . Accordingly, a balancing correction is performed for hap-
loid chromosome clusters.

The correction is performed after calculation of vclust and vphase through the size-
weighted average method described above. Each unitig vector is projected into the chro-
mosome plane identified through the first two principal components, and then a change 
of basis is applied to express each projected vector in terms of vclust and vphase . After, the 
product of dimensions for each vector is calculated for each unitig, and the unitigs with 
the largest and smallest values are identified as “representatives.” The unitigs at these 
extremum are typically high-signal unitigs from either haploid chromosome. After-
wards, vclust and vphase are corrected by rotating both such that vclust bisects the two rep-
resentative unitig vectors.

Haplotype calling and phased consensus

Rather than call haplotypes for each unitig based on the pooled library counts alone, the 
counts are input to Rukki to be synthesized with graph topology and improve haplotype 
calls. The pooled counts create an initial shading of the graph, which is subsequently 
refined with Rukki graph-walking algorithms before a final haplotype call is output for 
each unitig. Rukki outputs haplotype scaffold paths in.gaf or.tsv format.

Currently, Graphasing generates files which may be input to the Verkko and hifiasm 
pipelines to generate a phased assembly  .fasta  file. For Verkko, the haplotype scaffold 
paths.gaf can be directly input. For hifiasm, an indirect path must be taken to input the 
phasing information; a Yak kmer database is generated from each set of phased unitigs, 
which can be input to hifiasm trio mode to generate haplotype sequences.
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