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Abstract
We consider average- and min-based altruistic hedonic games and study the problem of 
verifying popular and strictly popular coalition structures. While strict popularity verifi-
cation has been shown to be coNP-complete in min-based altruistic hedonic games, this 
problem has been open for equal- and altruistic-treatment average-based altruistic hedonic 
games. We solve these two open cases of strict popularity verification and then provide 
the first complexity results for popularity verification in (average- and min-based) altruistic 
hedonic games, where we cover all three degrees of altruism.

Keywords Coalition formation · Hedonic game · Altruism · Cooperative game theory · 
Popularity

1 Introduction

Much work has been done in recent years to study hedonic games, coalition formation 
games where players express their preferences over those coalitions that contain them. 
From a higher perspective, this line of research is closely related to coalition structure gen-
eration [2], multiagent team formation [3], and ad hoc teamwork research [4], topics that 
the multiagent community at large has paid a lot of attention to.

Drèze & Greenberg [5] were the first to propose hedonic games and Bogomolnaia & 
Jackson [6]; Banerjee et al. [7] formally defined and investigated them. One major focus 
in hedonic games research is on how to represent the agents’ preferences in a plausible, 
expressive, and succinct way. For example, the preferences of the agents are often rep-
resented via cardinal values. In such encodings, the agents assign an individual value to 
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each other agent. When evaluating coalitions, these values are then aggregated to an overall 
utility. For example, in additively separable hedonic games (ASHGs) [6], an agent’s utility 
for a coalition is the sum of the values that this agent assigns to its member. In fractional 
hedonic games [8], the utility is aggregated by taking the average of these values. Other 
representations assume that there are only a few categories associated with an agent’s pref-
erence. In the friends-and-enemies encoding [9], a special case of ASHGs, an agent cat-
egorizes the other agents into friends and enemies, thus assigning only two distinct values 
to them.

In all these classical models, the agents only consider their own valuations when com-
paring two coalitions or two coalition structures (i.e., partitions of all players into coali-
tions). They are assumed to act egoistically, trying to maximize only their own personal 
utilities and not caring about others. In contrast to that, recent research has taken another 
approach and investigated models that integrate social and altruistic components into 
hedonic games.1 This research is motivated by the fact that social, unselfish behavior might 
actually be beneficial and even essential to the success (e.g., essential to survive) of a social 
group (compare, e.g., the investigations of Hare and Woods [12] about the advantage of 
social behavior for biological species).

Along these lines, Nguyen et al. [13] introduced altruistic hedonic games (AHGs) that 
are based on the friend-and-enemy encoding [9]. In these games, the agents categorize 
the other agents into friends and enemies, and they take into account their friends’ valu-
ations when comparing coalition structures. There are multiple types of AHGs (presented 
by Kerkmann et al. [11] in a more recent journal version of [13]) that differ in the way how 
agents aggregate their friends’ valuations and to which degree they act altruistically. Kerk-
mann et al. [11] present average- and min-based aggregations and three degrees of altru-
ism, namely selfish-first treatment, equal treatment, and altruistic treatment. These three 
degrees of altruism differ in the order in which the agents take their own and their friends’ 
preferences into account: Selfish-first treatment means that agents first look at their own 
preferences, and only in case of a tie between two coalitions, they ask their friends for their 
preferences; equal treatment means that agents look at their own and their friends’ prefer-
ences at the same time when making their decision; and altruistic treatment means that 
agents first ask their friends which of two coalitions they prefer, and only in case of a tie, 
they decide according to their own preferences. Given that altruistic behavior is an essen-
tial part of our lives and our decision-making, this is a very natural model of preferences 
in hedonic games. On the one hand, Kerkmann et al. [11] consider axiomatic properties of 
the six resulting models of AHGs and, on the other hand, they investigate various solution 
concepts for them, such as Nash stability, perfectness, and core stability.

Nash stability means that no player prefers to move to another coalition than the one 
assigned by the current coalition structure, and perfectness means that all players weakly 
prefer their assigned coalition to every other coalition containing them. Both concepts 
model the incentives and deviation behavior of single players. In contrast, core stability is 
a concept focusing on the incentives of groups of players: It means for a coalition structure 
that it is not blocked by any coalition, i.e., for no nonempty group of players does it hold 
that they all would like to leave their currently assigned coalition and form a new one on 
their own (while all other players remain in their assigned coalition).

1 For a broader and more comprehensive treatise of altruism in both cooperative and noncooperative game 
theory, we refer to the survey by Rothe [10] and to the work of Kerkmann et al. [11, Section 2].
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Now, to motivate (strict) popularity, let us take this even a level higher: Instead of look-
ing at which other coalitions players may want to join (thus deviating from their currently 
assigned coalition), let them look at entire coalition structures and compare all possible 
ones, one by one.2 Suppose that the current coalition structure wins each such head-to-
head contest by a weak majority (or even a majority) of players. This would give a very 
strong argument in favor of the current coalition structure: It then is (strictly) popular. Our 
main research question is how hard it is to verify whether a given coalition structure in 
a given AHG is (strictly) popular. Note that Nguyen et  al. [13]; Wiechers & Rothe [14] 
have already studied strict popularity in both average- and min-based AHGs; however, they 
leave some questions on the complexity of the verification problem open. Below, we dis-
cuss them in more detail.

Outline: our contribution We continue the study of average- and min-based AHGs 
under all three degrees of altruism, focusing on the notions of popularity and strict popu-
larity. For these notions, we look at entire coalition structures and ask—similarly to the 
notion of (weak) Condorcet winner in voting—whether (a weak majority or even) a major-
ity of players prefer a given coalition structure to every other coalition structure. We study 
the complexity of verifying (strictly) popular coalition structures in AHGs and of deciding 
whether such coalition structures exist. While strict popularity verification is known to be 
coNP-complete for all three degrees of min-based AHGs [14] and also for selfish-first aver-
age-based AHGs [13], its complexity remained open for the other two degrees of average-
based altruism: equal treatment and altruistic treatment. We solve these two missing cases 
via technically rather involved constructions in Sect. 3.

In Sect. 4, we turn to the notion of popularity, which we consider to be even more natu-
ral than strict popularity. By definition, the latter is a more demanding notion; therefore, 
popular coalitions structures are more likely to exist than strictly popular coalitions struc-
tures. Note that, just as is known for the notion of Condorcet winner in voting, if a strictly 
popular coalition structure exists, it must be unique. So, innocent ties can lead to the non-
existence of strictly popular coalition structures. In contrast, there can be more than one 
popular coalition structure. On the other hand, for a popular coalition structure to not exist, 
a top cycle of coalition structures is required each of which dominates the next one in the 
cycle. We provide the first complexity results for popularity verification in AHGs, covering 
all three degrees of altruism and both aggregation methods. We show that the problem is 
coNP-complete for all six models.

Having closed the two open problems for strict popularity verification in these six mod-
els and having established all six complexity results for popularity verification, in Sect. 5 
we briefly discuss the related problem of whether (strictly) popular coalition strutures exist 
in AHGs, and we conclude our work and give some future work directions in Sect. 6.

Related work
To put our work into context within the field of multiagent systems, let us first take 

a higher perspective and briefly discuss some closely related work on generating coa-
lition structures [2], multiagent team formation [3], and ad hoc teamwork [4]. These 
lines of research have been intensively pursued in multiagent systems for at least two 
decades. For eample, Gaston & Desjardins [15] consider multiagent systems as complex 

2 Of course, there are extremely many coalition structures (for n players, their number is given by the n-th 
Bell number, which rapidly grows with n), and thus extremely many comparisons to make. Yet, remember 
that there are ways to compactly represent hedonic games and that a player’s preference on two coalition 
structures only depends on the coalitions containing the player.
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networks (such as supply chains and sensor networks) of autonomous but interdepend-
ent agents that interact with each other based on environmental knowledge, cognitive 
capabilities, and resource and communication constraints. For such multiagent net-
works, they develop distributed, dynamic network adaptation mechanisms for discover-
ing effective network structures; that is, in the context of dynamic team formation, they 
propose strategies for agent-organized networks and evaluate how effective they are for 
improving organizational performance.

Guo & Lim [16] study negotiation support systems and team negotiations from a coali-
tion formation perspective. In particular, they discuss how cultural diversity can be viewed 
as an antecedent to coalition formation. Barrett et al. [17] present the first empirical evalu-
ation of ad hoc teamwork in the pursuit domain. More specifically, they evaluate various 
effective algorithms for online behavior generation of a single ad hoc team agent that has to 
collaborate with a number of possible teammates. Marcolino et al. [3] investigate whether 
the diversity within a team can be more important than the strength of its individual mem-
bers when multiagent teams are forming. They propose a model to address this question 
and show that diversity can outperform a uniform team of individually strong members; 
specifically, they provide necessary conditions for this to happen. Further, they propose 
optimal voting rules for a diverse team to form; they provide experiments on synthetic 
data showing that both diversity and strength contribute to the performance of a team; and 
they experimentally study how useful their model is when applied to a key challenge in AI 
research—Computer Go.

Leibo et  al. [18] look at multiagent team formation from a game-theoretical perspec-
tive and the related social dilemmas, such as whether it is better for agents to cooperate 
or to defect. Specifically, they introduce sequential social dilemmas that share the mixed 
incentive structure of social dilemmas in matrix games, while at the same time requiring 
agents to learn policies that implement their strategic intentions in team formation. They 
experimentally analyze the dynamics of policies learned by multiple selfish independent 
learning agents in two Markov games they introduce. On the other hand, Bachrach et al. 
[19] propose a framework that can be used to train agents to negotiate and form teams 
via deep reinforcement learning. Their method is completely based on experience rather 
than making any assumptions on the specific negotiation protocol used. They evaluate their 
approach for various team-formation negotiation environments and show that their agents 
outperform hand-crafted bots. Specifically, they obtain negotiation outcomes that are con-
sistent with fair solutions predicted by cooperative game theory. They also study the influ-
ence of the physical location of agents on the negotiation outcomes.

For an excellent overview, we refer to Rahwan et al. [2] who comprehensively survey 
the known algorithmic approaches (e.g., dynamic programming and anytime algorithms) 
to the computationally challenging problem of coalition formation and generating coalition 
structures. In particular, they focus on techniques specifically designed for various compact 
representation schemes for coalitional games. Finally, Mirsky et al. [4] survey the progress 
made for ad hoc teamwork—the problem of designing agents able to collaborate with new 
teammates without prior coordination. They also list a number of important open questions 
and challenges in the field of ad hoc teamwork.

Next, we turn to some previous work related to our specific research problem: Unlike 
the above-mentioned work that often is experimental and considers coalition formation in 
specific multiagent systems, we provide theoretical results pinpointing the computational 
complexity of verifying popularity and strict popularity in altruistic hedonic games. For 
a general background on hedonic games, we refer to the book chapters by Aziz & Savani 
[20]; Bullinger et al. [21] and the survey by Woeginger [22].
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Inspired by the work of Nguyen et al. [13] on AHGs, there is quite some follow-up 
research on altruism in hedonic games. Schlueter & Goldsmith [23] generalize AHGs 
to “super AHGs,” using ideas of the “social distance games” due to Brânzei & Larson 
[24]. Bullinger & Kober [25] introduce the related notion of loyalty in hedonic games, 
where agents are “loyal” to all agents that they assign a positive value to. Kerkmann & 
Rothe [26] apply the original model of AHGs to coalition formation games in general. 
In their model, agents expand their altruistic behavior also to friends outside of their 
own coalitions. Their results have been extended by Kerkmann et  al. [27], and some 
related open question regarding core stability—one of the most central solution concept 
for hedonic games—have been solved by Hoffjan et al. [28]. For an overview of various 
other notions of altruism in cooperative and noncooperative game theory, we refer to the 
survey by Rothe [10].

The notion of popularity was first proposed by Gärdenfors [29] in the context of mar-
riage games. For hedonic games, popularity and strict popularity were later studied by, 
e.g., Aziz et  al. [30], Brandt & Bullinger [31]; Kerkmann et  al. [32]. Aziz et  al. [30] 
study popularity in the context of additively separable hedonic games (ASHGs). They 
show that verifying popularity is coNP-complete and checking the existence of popular 
coalition structures is an NP-hard problem for ASHGs. Brandt & Bullinger [31] con-
tinue this study and also investigate strict popularity in ASHGs. They show that also 
strict popularity verification is coNP-complete in these games and that checking popu-
larity existence is coNP-hard and NP-hard for symmetric ASHGs. They conjecture that 
checking the existence of popular coalition structures in symmetric ASHGs may be a 
Σ
p

2
-complete problem. Kerkmann et  al. [32] study popularity and strict popularity in 

the context of so-called FEN-hedonic games where agents divide the other players into 
friends, enemies, and neutral players. Also for these games, all verification problems are 
coNP-complete.

2  Preliminaries

We use the notation [m] = {1,… ,m} for any integer m ≥ 0 . We consider a set N = [n] 
of n players (or agents), where subsets of N are called coalitions. For any player i ∈ N , 
N

i = {C ⊆ N ∣ i ∈ C} denotes the set of coalitions containing i. A coalition structure is a 
partition Γ = {C1,… ,Ck} of the players into coalitions (i.e., 

⋃k

i=1
Ci = N and Ci ∩ Cj = � 

for all i, j ∈ [k] with i ≠ j ), where the coalition containing player i is denoted by Γ(i) . CN is 
the set of all coalition structures for a set of agents N.

A coalition formation game is a pair (N,⪰) , where N is a set of agents, ⪰ = (⪰1,… ,⪰n) 
is a profile of preferences, and every preference ⪰i ⊆ CN × CN is a complete weak order 
over all coalition structures for N. For any two coalition structures Γ,Δ ∈ CN , we say that 
agent i weakly prefers Γ to Δ if Γ ⪰i Δ ; that i prefers Γ to Δ ( Γ ≻i Δ ) if Γ ⪰i Δ but not 
Δ ⪰i Γ ; and that i is indifferent between  Γ and Δ ( Γ ∼i Δ ) if Γ ⪰i Δ and Δ ⪰i Γ.

A hedonic game is a coalition formation game (N,⪰) where the preference ⪰i of any 
agent i ∈ N only depends on the coalitions containing  i. This means that i is indifferent 
between any two coalition structures Γ,Δ ∈ CN as long as i’s coalition in them is the same, 
i.e., Γ(i) = Δ(i) implies Γ ∼i Δ . Agent i’s preference can then be represented by a complete 
weak order over the set Ni of coalitions containing i. For A,B ∈ N

i , we say that player i 
weakly prefers A to B if A ⪰i B , and analogously for (strict) preference and indifference.
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2.1  Altruistic hedonic games

Nguyen et al. [13] used the friends-and-enemies encoding by Dimitrov et al. [9] when 
first introducing altruistic hedonic games (AHGs). Under this encoding, each player i 
partitions the other players into a set of friends Fi and a set of enemies Ei , and assigns 
the following friend-oriented value to a coalition A ∈ N

i:

The friendship relations, which are assumed to be mutual, can then be represented by a 
network of friends, an undirected graph where two players are connected by an edge if and 
only if they are friends of each other.

Nguyen et  al. [13] introduced altruism into an agent’s preference by incorporating 
the average of their friends’ valuations (of the friends that are in the same coalition) 
into their utility. Wiechers & Rothe [14] vary this model by considering the minimum 
instead. For any A ∈ N

i , we use:

where the minimum of the empty set is defined as zero. We also define these values for 
coalition structures Γ ∈ CN , e.g., by avgF

i
(Γ) = avgF

i
(Γ(i)) . The three degrees of altruism, 

introduced by Nguyen et al. [13], are the following. For a constant M ≥ n5 , agent i’s

• selfish-first (SF) preference is defined by A ⪰SF
i

B ⟺ uSF
i
(A) ≥ uSF

i
(B) , with the SF 

utility function uSF
i
(A) = M ⋅ vi(A) + avgF

i
(A);

• equal-treatment (EQ) preference is defined by A ⪰
EQ

i
B ⟺ u

EQ

i
(A) ≥ u

EQ

i
(B) , with 

the EQ utility function uEQ
i
(A) = avgF+

i
(A) ; and

• altruistic-treatment (AL) preference is defined by A ⪰AL
i

B ⟺ uAL
i
(A) ≥ uAL

i
(B) , 

with the AL utility function uAL
i
(A) = vi(A) +M ⋅ avgF

i
(A).

As mentioned in the Introduction, these three degrees very naturally model altruistic 
behavior by taking the order in which agents look at their own or their friends’ prefer-
ences into account.

The constant factor M ≥ n5 ensures that the SF preference is determined by first look-
ing at the agent’s own valuation for their coalition while the AL preference is deter-
mined by first looking at the agent’s friends’ valuations for it (see [13, Theorems 1 & 
2]). The min-based altruistic preferences are defined analogously, using the minimum 
according to (2) instead of the average (1). They will be denoted by ⪰minSF , ⪰minEQ , and 
⪰minAL.

A pair (N,⪰) , where ⪰ is a profile of preferences defined by one of the average-based 
degrees of altruism, is called an altruistic hedonic game (AHG) with average-based 
altruistic preferences ⪰ . A game (N,⪰min) with min-based altruistic preferences ⪰min is 
said to be a min-based altruistic hedonic game (MBAHG). Based on the degree of altru-
ism, we call, say, an AHG with SF preferences an SF AHG, etc.

vi(A) = n|A ∩ Fi| − |A ∩ Ei|.

(1)avgF
i
(A) =

∑
a∈A∩Fi

va(A)

|A ∩ Fi| ; avgF+
i
(A) =

∑
a∈(A∩Fi)∪{i}

va(A)

|(A ∩ Fi) ∪ {i}| ;

(2)minF
i
(A) = min

a∈A∩Fi

va(A); minF+
i
(A) = min

a∈(A∩Fi)∪{i}
va(A),
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2.2  Popularity

We now define popularity, which is based on the pairwise comparison of coali-
tion structures. For a hedonic game (N,⪰) and two coalition structures Γ,Δ ∈ CN , let 
#Γ≻Δ = |{i ∈ N ∣ Γ ≻i Δ}| be the number of players that prefer Γ to Δ . A coalition struc-
ture Γ ∈ CN is popular (respectively, strictly popular) if, for every other coalition struc-
ture Δ ∈ CN ,Δ ≠ Γ , it holds that #Γ≻Δ ≥ #Δ≻Γ (respectively, #Γ≻Δ > #Δ≻Γ ). Define the 
problems: 

P-Verification

Given: A hedonic game (N,⪰) and a coalition structure Γ.
Question: Is Γ popular in (N,⪰)?

P-Existence

Given: A hedonic game (N,⪰).
Question: Is there a popular coalition structure in (N,⪰)?

The strict variants of these two problems, SP-Verification and SP-exiStence, are 
defined analogously.

In the following two sections, we will solve the two missing cases of Nguyen et al. [13] 
by showing that SP-Verification is coNP-complete for EQ and AL AHGs, and we will 
also show that P-Verification is coNP-complete as well for all three degrees of altruism in 
AHGs and MBAHGs.

It is easy to see that all these verification problems are in coNP (cf. Nguyen et al. [13, 
Theorem 12]). To show their coNP-hardness, we reduce from the complement of the fol-
lowing NP-complete problem [33, 34]: 

Restricted Exact Cover by 3-Sets (RX3C)

Given: A set B = {1,… , 3k} (for some integer k ≥ 2 ) and a collection S = {S1,… , S3k} of 3-element 
subsets of B, where each element of B occurs in exactly three sets in S .

Question: Does there exist an exact cover of B in S  , i.e., a subset S′
⊆ S  of size k such that every ele-

ment of B occurs in exactly one set in S′?

Specifically, to prove coNP-hardness of (strict) popularity verification, we construct 
from an RX3C instance (B,S) the network of friends of a hedonic game (N,⪰) and a coali-
tion structure Γ and show that Γ is not (strictly) popular under the considered model if and 
only if there exists an exact cover of B in S .

3  Verifying strict popularity in AHGs

We start with strict popularity. While Wiechers and Rothe [14] showed that SP-Verifi-
cation is coNP-complete for all three degrees of altruism in MBAHGs, Nguyen et  al. 
[13] showed the same result only for SF AHGs. We solve the two missing cases (i.e., 
for EQ and AL) in Theorems  1 and  2. In their proofs, we will use the following two 
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observations. The first observation says that, under EQ and AL, a player i prefers adding 
a friend’s friend k to their current coalition, provided that k is not i’s own friend.

Observation 1 For any D ∈ N
i , j ∈ Fi ∩ D , and k ∈ (Fj⧵Fi)⧵D , it holds that 

D ∪ {k} ≻
EQ

i
D and D ∪ {k} ≻AL

i
D.

Proof It holds that

By similar transformations of equations, we obtain that

Thus D ∪ {k} ≻
EQ

i
D and D ∪ {k} ≻AL

i
D.    ◻

By means of Observation 1, we obtain the following.

Observation 2 If player i ∈ N has only one friend j (i.e., Fi = {j} ), then C = {j} ∪ Fj is i’s 
unique most preferred coalition under EQ and AL.

Proof The proof is the same for ⪰EQ

i
 and ⪰AL

i
 . We will simply use ui for which either uEQ

i
 

or uAL
i

 can be substituted. Assume that D ≠ C is one of i’s most preferred coalitions. Then 
ui(D) ≥ ui(C) . It is obvious that D ⊆ C because every player in N⧵C is an enemy of i’s and 
j’s and can thus only decrease i’s utility. Further, since j is i’s only friend, it is clear that 
j ∈ D (otherwise, we would have ui(D) ≤ 0 < ui(C) ). Then, by Observation 1, it follows 
that D contains all friends of j’s. Hence, D = C , which is a contradiction.   ◻

We are now ready to solve the two problems that Nguyen et al. [13] left open regard-
ing the complexity of SP-Verification, namely for EQ AHGs and AL AHGs. We start 
with the former.

Theorem 1 SP-Verification is coNP-complete for EQ AHGs.

Proof Given an instance of (B,S) of RX3C, with B = {1,… , 3k} and S = {S1,… , S3k} , 
we define the set of players N = P ∪ A ∪

⋃
S∈S QS with

u
EQ

i
(D ∪ {k}) = avgF+

i
(D ∪ {k}) =

∑
a∈(D∩Fi)∪{i}

va(D ∪ {k})

|(D ∩ Fi) ∪ {i}|
=

1

|(D ∩ Fi) ∪ {i}| ⋅
(
vi(D ∪ {k}) + vj(D ∪ {k}) +

∑
a∈(D∩Fi)⧵{j}

va(D ∪ {k})
)

≥
1

|(D ∩ Fi) ∪ {i}| ⋅
(
vi(D) − 1 + vj(D) + n +

∑
a∈(D∩Fi)⧵{j}

(va(D) − 1)
)

=
1

|(D ∩ Fi) ∪ {i}| ⋅
( ∑
a∈(D∩Fi)∪{i}

va(D) + n − |D ∩ Fi|
)

> avgF+
i
(D) = u

EQ

i
(D).

avgF
i
(D ∪ {k}) > avgF

i
(D).
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We then construct the network of friends shown in Fig. 1 and define the coalition structure 
Γ = {{�1},… , {�12k3},A,QS1

,… ,QS3k
} . It holds that

Specifically, the friendship relationships are as follows:

• �2 is friends with �1 and every �b, b ∈ B.
• For S ∈ S  , �S is friends with the three �b with b ∈ S.
• For S ∈ S  , all players in {�S, �S,j, �S ∣ j ∈ [3k − 2]} are friends of each other.
• For S ∈ S  , �S is friends with every �S,� ,� ∈ [3k + 1].

The idea of this proof is to show that there can be a coalition structure Δ that is 
equally popular as Γ if and only if there is an exact cover for B.

We start by stating some useful claims. The first two claims are direct consequences 
of Observation 2 and the third claim is obvious, as the �-players do not have any friends.

Claim 1 �1 prefers A to every other coalition.

Claim 2 For every S ∈ S  and � ∈ [3k + 1] , �S,� prefers QS to every other coalition.

Claim 3 For h ∈ [12k3] , �h prefers {�h} to every other coalition.

To complete the proof, we further need the following two claims. The proof of 
Claim 4 is technically rather involved and is perhaps the key ingredient in this proof of 
the theorem.

Claim 4 For S ∈ S  , �S prefers QS to every other coalition.

Proof of Claim 4 It holds that

P = {�1,… ,�12k3}, A = {�1, �2} ∪ {�b ∣ b ∈ B}, and

QS = {�S, �S,j, �S, �S,� ∣ j ∈ [3k − 2],� ∈ [3k + 1]} for every S ∈ S.

n = |N| = 12k3 + 2 + 3k + 3k(6k + 1) = 12k3 + 18k2 + 6k + 2.

Fig. 1  Network of friends in the 
proof of Theorem 1. A dashed 
rectangle indicates that all play-
ers inside are friends of each 
other
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Hence, �S and their friends have more than 3k friends in QS on average. Now, assume that 
there is a coalition D ≠ QS that �S weakly prefers to every other coalition. It is clear that

because all other players are enemies of �S ’s and of all their friends.
Assume that there is some �b in D. We will show that �S prefers D ⧵ {�b} to D, which is 

a contradiction. It holds that �S prefers D⧵{�b} to D if and only if uEQ
𝜁S
(D ⧵ {𝛽b}) > u

EQ

𝜁S
(D) . 

Let

Then

For w, we have

u
EQ

�S
(QS) =

v�S (QS) + (3k − 2)v�S,1 (QS) + v�S (QS)

3k

=
(3k − 1)(n(3k − 1) − (3k + 1)) + n(6k)

3k

=
n(9k2 + 1) − (9k2 − 1)

3k

=n
(
3k +

1

3k

)
−
(
3k −

1

3k

)
.

D ⊆ QS ∪ {𝛽b ∣ b ∈ S} ∪ {𝛼2} ∪ {𝜁S� |S� ∈ S, S ∩ S� ≠ �}

x =|D ∩ F�S
|,

t =
∑

a∈((D⧵{�b})∩F�S
)∪{�S}

va(D ⧵ {�b}),

v =
∑

a∈(D∩F�S
)∪{�S}

va(D), and

w =v − t.

u
EQ

𝜁S
(D ⧵ {𝛽b}) > u

EQ

𝜁S
(D) ⇔

v − w

x
−

v

x + 1
> 0

⇔

(x + 1)(v − w) − xv

x(x + 1)
> 0

⇔(x + 1)(v − w) − xv > 0

⇔xv + v − (x + 1)w − xv > 0

⇔v − (x + 1)w > 0

⇔
v

x + 1
> w

⇔u
EQ

𝜁S
(D) > w.
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Hence, �S prefers D⧵{�b} to D; a contradiction that implies that there is no �b in D. It fol-
lows that D ⊆ QS.

Since �S has at most 3k − 1 friends in D and

there has to be at least one friend of �S in D who has at least 3k + 1 friends in  D. The 
only player for which this is possible is �S , so �S ∈ D . By Observation  1, it holds that 
�S,1,… , �S,3k+1 ∈ D . Thus {𝜁S, 𝛿S, 𝛾S,1,… , 𝛾S,3k+1} ⊆ D ⊆ QS.

Now, let y = |D ∩ {�S,1,… , �S,3k−2}| be the number of �-players in D. Then

We know that uEQ
�S
(D) ≥ u

EQ

�S
(QS) holds, for which we get the following equivalences:

w =
∑

a∈(D∩F𝜁S
)∪{𝜁S}

(
va(D)

)
− t

=
∑

a∈(D⧵{𝛽b})∩F𝜁S

(
va(D)

)
+ v𝛽b (D) + v𝜁S (D) − t

=
∑

a∈(D⧵{𝛽b})∩F𝜁S

(
va(D ⧵ {𝛽b}) − 1

)
+ v𝛽b (D) + v𝜁S (D ⧵ {𝛽b}) + n − t

=
∑

a∈((D⧵{𝛽b})∩F𝜁S
)∪{𝜁S}

(
va(D ⧵ {𝛽b})

)
− |(D ⧵ {𝛽b}) ∩ F𝜁S

|

+ v𝛽b (D) + n − t

= − |(D ⧵ {𝛽b}) ∩ F𝜁S
| + v𝛽b (D) + n

≤ − |(D ⧵ {𝛽b}) ∩ F𝜁S
| + 4n + n

<5n < u
EQ

𝜁S
(QS) ≤ u

EQ

𝜁S
(D).

u
EQ

�S
(D) ≥ u

EQ

�S
(QS) = n(3k +

1

3k
) − (3k −

1

3k
),

u
EQ

�S
(D) =

v�S (D) + y ⋅ v�S,j (D) + v�S (D)

y + 2

=
(y + 1) ⋅ (n(y + 1) − (3k + 1)) + n(y + 1 + 3k + 1)

y + 2

=n

(
y2 + 3y + 3k + 3

y + 2

)
−

(y + 1)(3k + 1)

y + 2
.
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This implies

For a contradiction, assume that 0 <
(3k−y−2)(3ky+3k−1)

(3k)(y+2)
 . Since 3ky + 3k − 1 > 0 , 3k > 0 , and 

y + 2 > 0 , it follows that 3k − y − 2 > 0 , i.e., y < 3k − 2 . Then, for 0 ≤ y < 3k − 2 and 
k ≥ 2 , the minimum of (3k−y−2)(3ky+3k−1)

(3k)(y+2)
 is reached for y = 3k − 3 , namely 9k

2−6k−1

3k(3k−1)
 . But even 

for the minimum we have n
(

9k2−6k−1

3k(3k−1)

)
−

(3k+1)(3k−y−2)

(3k)(y+2)
> 0 , which is a contradiction to 

Equation (3).
Since 3ky + 3k − 1 > 0 , 3k > 0 , and y + 2 > 0 , we have 3k − y − 2 ≤ 0 . Thus 

y ≥ 3k − 2 . Hence, all �-players are in D, so D = QS . This is a contradiction and completes 
the

proof.  ◻ Claim 4

Claim 5 If �b with b ∈ B prefers Δ to Γ , then �S ∈ Δ(�b) for some S ∈ S  with b ∈ S.

Proof of Claim  5 Assume that there is no �S with b ∈ S in Δ(�b) . Then �2 is �b ’s only 
remaining friend that could be in Δ(�b) . By Observation 1, �b gets the most utility from Δ if 
Δ(�b) = A . This means that �b does not prefer Δ to Γ.  ◻ Claim 5

Now, using these claims, we will show that there is an exact cover of B if and only if 
Γ is not strictly popular under EQ preferences.

Only if:      Assume there exists an exact cover S′
⊆ S  of B. Then, for the coalition 

structure

(3)

u
EQ

�S
(D) ≥ u

EQ

�S
(QS)

⇔n

�
y2 + 3y + 3k + 3

y + 2

�
−

(y + 1)(3k + 1)

y + 2
≥ n

�
9k2 + 1

3k

�
−

9k2 − 1

3k

⇔0 ≥ n

�
9k2 + 1

3k
−

y2 + 3y + 3k + 3

y + 2

�
−

�
(3k − 1)(3k + 1)

3k
−

(y + 1)(3k + 1)

y + 2

�

⇔0 ≥ n

�
(9k2 + 1)(y + 2) − (y2 + 3y + 3k + 3)(3k)

(3k)(y + 2)

�

−

�
(3k − 1)(3k + 1)(y + 2) − (y + 1)(3k + 1)(3k)

(3k)(y + 2)

�

⇔0 ≥ n

�
9k2y + y + 18k2 + 2 − 3ky2 − 9ky − 9k2 − 9k

(3k)(y + 2)

�

−

⎛⎜⎜⎜⎝

(3k + 1)
�
(3k − 1)(y + 2) − (y + 1)(3k)

�

(3k)(y + 2)

⎞⎟⎟⎟⎠
⇔0 ≥ n

�
(3k − y − 2)(3ky + 3k − 1)

(3k)(y + 2)

�
−

�
(3k + 1)(3k − y − 2)

(3k)(y + 2)

�
.

0 ≥
(3k − y − 2)(3ky + 3k − 1)

(3k)(y + 2)
.
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we can show that Δ and Γ are equally popular under EQ preferences: All players in QS with 
S ∈ S⧵S� and all �h, h ∈ [12k3] , are obviously indifferent between Γ and Δ . By Claims 1, 
2, and 4, �1 , �S,� , and �S , with S ∈ S

� and � ∈ [3k + 1] , prefer Γ to Δ . The remaining play-
ers prefer Δ to Γ : For �2 , it holds that

For any b ∈ [3k] , �b is part of exactly one S ∈ S
� . Thus there is exactly one �S in Δ(�b) that 

is �b ’s friend, and we have

For �S,j and �S with S ∈ S
� and j ∈ [3k − 2] , we can similarly calculate that uEQ

𝜂S,j
(Δ)> uEQ

𝜂S,j
(Γ) 

and uEQ
𝛿S
(Δ)> u

EQ

𝛿S
(Γ) . In more detail, for �S,j with S ∈ S

� and j ∈ [3k − 2] , we have

Δ =

{
{�1},… , {�12k3},A ∪

⋃
S∈S�

QS} ∪ {QS ∣ S ∈ S ⧵S�

}
,

uEQ
𝛼2
(Δ) =

1

3k + 2
⋅

( ∑
a∈{𝛼1,𝛼2,𝛽1,…,𝛽3k}

va(Δ)
)

=
1

3k + 2
⋅

(
v𝛼1 (Γ) − k(6k + 1) + v𝛼2 (Γ) − k(6k + 1)

+
∑
b∈[3k]

(
v𝛽b (Γ) + n − k(6k + 1) + 1

))

=
1

3k + 2
⋅

( ∑
a∈{𝛼1,𝛼2,𝛽1,…,𝛽3k}

va(Γ)
)

+
1

3k + 2
⋅

(
−(3k + 2)k(6k + 1) + 3k(n + 1)

)

=uEQ
𝛼2
(Γ) +

k

3k + 2
⋅

(
−(3k + 2)(6k + 1) + 3(n + 1)

)

=uEQ
𝛼2
(Γ) +

k

3k + 2
⋅

(
36k3 + 36k2 + 3k + 7

)
> uEQ

𝛼2
(Γ).

u
EQ

𝛽b
(Δ) =

1

3

(
v𝛽b (Δ) + v𝛼2 (Δ) + v𝜁S (Δ)

)
=

1

3

(
2n − (3k + k(6k + 1) − 1)

+ n(3k + 1) − k(6k + 1) + n(3k + 2) − (k(6k + 1) − 1)
)

=
1

3

(
n(6k + 5) − (3k(6k + 1) + 3k − 2)

)

=n(2k +
5

3
) − (k(6k + 2) −

2

3
)

>n
(
3

2
⋅ k + 1

)
−

3

2
⋅ k

=
1

2

(
n − 3k + n(3k + 1)

)
=

1

2

(
v𝛽b (Γ) + v𝛼2 (Γ)

)
= u

EQ

𝛽b
(Γ).
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Further, for �S with S ∈ S
� , we have

Overall, we have

Hence, Γ is not strictly popular.
If:   Assume that Γ is not strictly popular under EQ, i.e., there is a coalition structure 

Δ ≠ Γ with #Δ≻Γ ≥ #Γ≻Δ . Let k� = |{S ∈ S ∣ QS ∉ Δ}| be the number of sets QS that are 
not a coalition in Δ . Then, by Claims 2 and 4, all �S,� and �S from these k′ sets QS prefer 
Γ to Δ . Further, no �h can ever prefer Δ to Γ , and all players in the 3k − k� sets QS ∈ Δ 
are indifferent between Γ and Δ.

First, observe that k′ ≥ 1 . If k� = 0 then, for every S ∈ S  , QS is a coalition in Δ . 
Then, by Claim 5, no �b prefers Δ to Γ and, obviously, �b can only be indifferent between 
Γ and Δ if Δ(�b) = A . It follows that A ∈ Δ because otherwise all �b would prefer Γ to Δ 
and there would thus be more players who prefer Γ to Δ than vice versa. However, this 
means that Δ = Γ , which is a contradiction.

Second, observe that A is not a coalition in Δ . If this were the case, all players in A 
were indifferent between Γ and Δ . Then

uEQ
𝜂S,j
(Δ) =

1

3k

(
v𝜁S (Δ) + (3k − 2)v𝜂S,j (Δ) + v𝛿S (Δ)

)

=
1

3k

(
v𝜁S (Γ) + 3n − (3k − 1) − (k − 1)(6k + 1)

+ (3k − 2)
(
v𝜂S,j (Γ) − (3k + 2) − (k − 1)(6k + 1)

)

+ v𝛿S (Γ) − (3k + 2) − (k − 1)(6k + 1)
)

=
v𝜁S (Γ) + (3k − 2)v𝜂S,j (Γ) + v𝛿S (Γ)

3k

+
1

3k

(
3n + 3 − (3k)

(
3k + 2 + (k − 1)(6k + 1)

))

=uEQ
𝜂S,j
(Γ) + 6k2 + 20k + 5 + 3∕k

>uEQ
𝜂S,j
(Γ).

u
EQ

𝛿S
(Δ) =

v𝜁S (Δ) + (3k − 2)v𝜂S,j (Δ) + v𝛿S (Δ) + (3k + 1)v𝛾S,� (Δ)

6k + 1

=
v𝜁S (Γ) + (3k − 2)v𝜂S,j (Γ) + v𝛿S (Γ) + (3k + 1)v𝛾S,� (Γ)

6k + 1

+
3n + 3 − (6k + 1)

(
3k + 2 + (k − 1)(6k + 1)

)
6k + 1

=u
EQ

𝛿S
(Γ) +

60k2 + 14k + 8

6k + 1

>u
EQ

𝛿S
(Γ).

#Δ≻Γ = |{𝛼2, 𝛽1,… , 𝛽3k} ∪ {𝜂S,j, 𝛿S ∣ S ∈ S
�, j ∈ [3k − 2]}|

= 1 + 3k + k(3k − 1) = 1 + k(3k + 2)

= |{𝛼1} ∪ {𝜁S, 𝛾S,� ∣ S ∈ S
�,� ∈ [3k + 1]}| = #Γ≻Δ.
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With k′ ≥ 1 , this contradicts #Δ≻Γ ≥ #Γ≻Δ.
Third, observe that k′ ≤ k . For a contradiction, assume that k′ > k . Since A ∉ Δ , we 

know by Claim 1 that �1 prefers Γ to Δ . So, we have

But this implies the following contradiction to #Δ≻Γ ≥ #Γ≻Δ:

Finally, observe that k′ ≥ k . For a contradiction, assume that k′ < k . Because of Claim 5 
we then know that at most 3k′ �-players prefer Δ to Γ . The remaining 3k − 3k� �b do not 
have any �S with b ∈ S in their coalitions in Δ . Together with A ∉ Δ , it follows that these 
3k − 3k� �-players prefer Γ to Δ . Hence,

This again contradicts our assumption #Δ≻Γ ≥ #Γ≻Δ.
Since we have k� = k , for #Δ≻Γ ≥ #Γ≻Δ to hold, every �b needs to prefer Δ to Γ . By 

Claim 5, this is only possible if every �b has some �S with b ∈ S in their coalition in Δ . 
This implies that {S ∈ S ∣ QS ∉ Δ} is an exact cover of B.   ◻

For strict popularity in AL AHGs, we can use the same construction but have to 
modify our arguments appropriately.

Theorem 2 SP-Verification is coNP-complete for AL AHGs.

Proof Consider the construction from the proof of Theorem 1, again with the network of 
friends shown in Fig. 1. Only some details in the proof of correctness are different when 
considering AL instead of EQ. We again start our proof by stating some claims. Claims 1, 
2, 3, and 5 from the proof of Theorem 1 also hold for AL preferences:

• �1 prefers A to every other coalition;
• for every S ∈ S  and � ∈ [3k + 1] , �S,� prefers QS to every other coalition;
• for every h ∈ [12k3] , �h prefers {�h} to every other coalition; and
• if �b prefers Δ to Γ , then �S ∈ Δ(�b) for some S ∈ S  with b ∈ S.

In addition, we now have the following claim.

Claim 6 For S ∈ S  , �S prefers {�S, �S, �S,1,… , �S,3k+1} and every coalition 
{�S, �S, �S,1,… , �S,3k+1}⧵{�S,�} , � ∈ [3k + 1] , to  QS , and �S prefers  QS to every other 
coalition.

#Γ≻Δ ≥ |{𝜁S, 𝛾S,1,… , 𝛾S,3k+1 ∣ S ∈ S
�}| = k� ⋅ (3k + 2) and

#Δ≻Γ ≤ |{𝜂S,1,… , 𝜂S,3k−2, 𝛿S ∣ S ∈ S
�}| = k� ⋅ (3k − 1).

#Γ≻Δ ≥ |{𝛼1} ∪ {𝜁S, 𝛾S,1,… , 𝛾S,3k+1 ∣ S ∈ S
�}| = 1 + k� ⋅ (3k + 2) and

#Δ≻Γ ≤ |{𝛼2, 𝛽1,… , 𝛽3k} ∪ {𝜂S,1,… , 𝜂S,3k−2, 𝛿S ∣ S ∈ S
�}|

= 1 + 3k + k� ⋅ (3k − 1).

#Δ≻Γ ≤ 1 + 3k + k� ⋅ (3k − 1) < 1 + 3k� + k� ⋅ (3k − 1) = 1 + k� ⋅ (3k + 2) = #Γ≻Δ.

#Γ≻Δ ≥ 1 + 3k − 3k� + k� ⋅ (3k + 2) = 1 + 3k + k� ⋅ (3k − 1)

> 1 + 3k� + k� ⋅ (3k − 1) ≥ #Δ≻Γ.
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Proof of Claim  6 For C = {�S, �S, �S,1,… , �S,3k+1} , it holds that avgF�S
(C) = v�S (C)

 = n(3k + 2) ; for 
C
�
= C⧵{�S,�} with � ∈ [3k + 1] , it holds that avgF

�S
(C

�
) = v�S (C�

) = n(3k + 1) ; and for QS , 
we have

Thus �S prefers C to every C
�
 , � ∈ [3k + 1] , and every C

�
 to QS.

Now, let D with D ≠ C and D ≠ C
�
 for � ∈ [3k + 1] be a coalition that �S weakly pre-

fers to every coalition except for C and C
�
 . We will show that D = QS . Similarly as in the 

proof Claim 4, it follows that {𝜁S, 𝛿S} ⊆ D ⊆ QS . (We omit the details because this proof is 
very similar.) Now, let x = |D ∩ {�S,1,… , �S,3k+1}| be the number of �-players in D and let 
y = |D ∩ {�S,1,… , �S,3k−2}| be the number of �-players in D.

First, assume y = 0 . Then avgF
�S
(D) = v�S (D) = n(x + 1) . Since �S weakly prefers D 

to QS , we know that avgF
�S
(D) ≥ avgF

�S
(QS) , i.e., n(x + 1) ≥ n

(
3k +

2

3k−1

)
−
(
3k −

2

3k−1

)
 . 

This implies x ≥ 3k . This is a contradiction because it implies that D = C or D = C
�
 for 

some � ∈ [3k + 1] . Thus we have y ≥ 1.
By Observation  1, {𝛾S,1,… , 𝛾S,3k+1} ⊆ D ; otherwise, �S would prefer 

D� = D ∪ {�S,1,… , �S,3k+1} to D. This would be a contradiction to �S weakly preferring D 
to every coalition except for C and C

�
 . (Note that D′ ≠ C and D′ ≠ C

�
 because of y ≥ 1 .) It 

holds that

Now, rearranging avgF
�S
(D) ≥ avgF

�S
(QS) , the difference

cannot be positive. It follows that

Since k ≥ 2 and y ≥ 1 , this implies that 0 ≥ 3k − y − 2 , i.e., y ≥ 3k − 2 . Hence, we have 
D = QS.  ◻ Claim 6

avgF
�S
(QS) =

(3k − 2)v�S,j (QS) + v�S (QS)

3k − 1

=
(3k − 2)(n(3k − 1) − (3k + 1)) + n(6k)

3k − 1

=
n(9k2 − 3k + 2) − (9k2 − 3k − 2)

3k − 1

=n
(
3k +

2

3k − 1

)
−
(
3k −

2

3k − 1

)
.

avgF
�S
(D) =

yv�S,j (D) + v�S (D)

y + 1

=
y
(
n(y + 1) − (3k + 1)

)
+ n(y + 1 + 3k + 1)

y + 1

= n

(
y2 + 2y + 3k + 2

y + 1

)
−

y(3k + 1)

y + 1
.

n

(
(3k − y − 2)(3ky − y − 2)

(y + 1)(3k − 1)

)
−

(3k − y − 2)(3k + 1)

(y + 1)(3k − 1)

0 ≥
(3k − y − 2)(3ky − y − 2)

(y + 1)(3k − 1)
.
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We now show that there is an exact cover of B if and only if Γ is not strictly popular 
under AL preferences.

Only if:    Assume that there is an exact cover S′
⊆ S  of B. As in the proof of Theo-

rem 1, consider the coalition structure

We will show that Δ and Γ are equally popular under AL preferences.
Omitting the detailed calculations, for S ∈ S

� and j ∈ [3k − 2] , we have

Also, using the preceding claims, it then follows that

Hence, Γ is not strictly popular.
If:   Assume that Γ is not strictly popular, i.e., that there is a coalition structure Δ ≠ Γ 

with #Δ≻Γ ≥ #Γ≻Δ.
First, note that there is no S ∈ S  with {�S, �S, �S,1,… , �S,3k+1} in Δ or with 

{�S, �S, �S,1,… , �S,3k+1}⧵{�S,�} in Δ for any � ∈ [3k + 1] : Indeed, for the sake of contra-
diction, assume that there is such an S ∈ S  . Then �S prefers Δ to Γ ; and �S,j , �S , and �S,� , 
j ∈ [3k − 2] and � ∈ [3k + 1] , prefer Γ to Δ . For �S and �S,� , this follows from the preceding 
claims. For �S,j and �S , this can be shown by direct calculations. In more detail, for �S , we 
have

Δ =

{
{�1},… , {�12k3},A ∪

⋃
S∈S�

QS} ∪ {QS ∣ S ∈ S ⧵S�

}
.

avgF
�2
(Δ) =avgF

�2
(Γ) +

3k(n + 1) − (3k + 1)k(6k + 1)

3k + 1
;

avgF
�S,j
(Δ) =avgF

�S,j
(Γ) +

3n + 3 − (3k − 1)
(
3k + 2 + (k − 1)(6k + 1)

)
3k − 1

;

avgF
�S
(Δ) =avgF

�S
(Γ) +

3n + 3 − 6k
(
3k + 2 + (k − 1)(6k + 1)

)
6k

.

#Δ≻Γ = |{𝛼2, 𝛽1,… , 𝛽3k} ∪ {𝜂S,1,… , 𝜂S,3k−2, 𝛿S ∣ S ∈ S
�}|

= 1 + 3k + k(3k − 1) = 1 + k(3k + 2)

= |{𝛼1} ∪ {𝜁S, 𝛾S,1,… , 𝛾S,3k+1 ∣ S ∈ S
�}| = #Γ≻Δ.
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Further, for any �S,j with j ∈ [3k − 2] , we have

If C or C
�
 is in Δ , then the best coalition that could form for �S,j is {�S,1,… , �S,3k−2} . Hence,

It follows that all �S and �S,j with j ∈ [3k − 2] prefer Γ to Δ.
For T ∈ S  , let #in QT

Δ≻Γ
 denote the number of players in QT that prefer Δ to Γ , and let 

#
in QT

Γ≻Δ
 denote the number of players in QT that prefer Γ to Δ . Then #in QS

Δ≻Γ
= 1 and #in QS

Γ≻Δ
= 6k . 

For all other S� ∈ S  , it holds that #in QS�

Δ≻Γ
≤ 3k and #in QS�

Γ≻Δ
≥ 3k + 1 if QS� ∉ Δ ; and 

#
in QS�

Δ≻Γ
= #

in QS�

Γ≻Δ
= 0 if QS� ∈ Δ . This means that, in QS′ , at least as many players prefer Γ 

to Δ as the other way around. Then only the players in {�2, �1,… , �3k} could prefer Δ to Γ . 
However, since #in QS

Γ≻Δ
= 6k , this means that #Γ≻Δ > #Δ≻Γ , a contradiction.

The remainder of the proof proceeds identically to the If-part in the proof of Theo-
rem 1.    ◻

From Theorems 1 and 2, we get the following corollary.

Corollary 1 SP-exiStence is coNP-hard for EQ and AL AHGs.

Proof We use the same reduction as in the proof of Theorem 1 but do not give any coali-
tion structure as a part of the instance. It holds that there exists a strictly popular coalition 
structure for the defined game if and only if there is no exact cover of B. The correctness 
of this equivalence follows from the proofs of Theorems 1 and 2. Indeed, Γ as defined in 
the proof of Theorem 1 is strictly popular under EQ and AL preferences if there is no exact 
cover. If, on the other hand, there does exist an exact cover, then Δ as defined in the proof 

avgF
𝛿S
(Γ) =

v𝜁S (Γ) + (3k − 2)v𝜂S,j (Γ) + (3k + 1)v𝛾S,𝓁 (Γ)

6k

=
(3k − 1)(n(3k − 1) − (3k + 1)) + (3k + 1)(n − (6k − 1))

6k

=
n(9k2 − 3k + 2) − (27k2 + 3k − 2)

6k

= n(
3

2
⋅ k −

1

2
+

1

3k
) − (

27

6
⋅ k +

1

2
−

1

3k
);

avgF
𝛿S
(C) =

v𝜁S (C) + (3k + 1)v𝛾S,𝓁 (C)

3k + 2

=
n − (3k + 1) + (3k + 1)(n − (3k + 1))

3k + 2

= n − (3k + 1)

< avgF
𝛿S
(Γ); and

avgF
𝛿S
(C

𝓁
) =

v𝜁S (C𝓁
) + (3k)v𝛾S,𝓁 (C𝓁

)

3k + 1
=

n − 3k + (3k)(n − 3k)

3k + 1
= n − 3k

< avgF
𝛿S
(Γ).

avgF
�S,j
(Γ) = avgF

�S
(Γ) = n

(
3k +

2

3k − 1

)
−
(
3k −

2

3k − 1

)
.

avgF
𝜂S,j
(Δ) ≤

(3k − 3)(n(3k − 3))

3k − 3
= n(3k − 3) < avgF

𝜂S,j
(Γ).
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of Theorem 1 is as popular as Γ while there is still no coalition structure that is more popu-
lar than Γ . Hence, no strictly popular coalition structure can exist in this case.   ◻

Corollary 1 establishes a lower bound on the complexity of SP-exiStence. Yet, we suspect 
that this bound is not tight (i.e., SP-exiStence is not in coNP) but SP-exiStence might even be 
hard for the complexity class Σp

2
.

4  Verifying popularity in AHGs and MBAHGs

Now, we provide the first complexity results for P-Verification in AHGs and MBAHGs, and 
we cover for both all three degrees of altruism. As mentioned earlier, Nguyen et al. [13, Theo-
rem 12] showed that SP-Verification is coNP-complete for SF AHGs and Wiechers and Rothe 
[14, Theorem 4] showed the same result for SF MBAHGs. We modify their proofs to establish 
the same results for P-Verification.

Theorem 3 P-Verification is coNP-complete for SF AHGs and SF MBAHGs.

Proof The proof of this theorem, which is the same for SF AHGs and SF MBAHGs, is 
inspired by the proofs of Nguyen et  al. [13, Theorem  12] and Wiechers and Rothe [14, 
Theorem 4] for SP-Verification. Given an instance (B,S) of RX3C, with B = {1,… , 3k} 
and S = {S1,… , S3k} , we construct the network of friends shown in Fig. 2 with the set 
of players N = {�} ∪ {�b ∣ b ∈ B} ∪

⋃
S∈S QS , where QS = {�S, �S,j ∣ j ∈ [4]} for S ∈ S  , 

and we define the coalition structure Γ = {{�, �1,… , �3k},QS1
,… ,QS3k

} . Specifically, the 
friendship relationships are:

• All players in {�} ∪ {�b ∣ b ∈ B} are friends.
• For S ∈ S  , �S is friends with � and all �b with b ∈ S.
• For S ∈ S  , all players in QS are friends of each other.

We show that Γ is not popular under SF preferences if and only if there exists an exact 
cover of B in S .

If:   Assume that there exists an exact cover S′
⊆ S  of B. Then the coalition structure

is more popular than Γ:

Δ =

{
{�, �1,… , �3k} ∪

⋃
S∈S�

QS} ∪ {QS ∣ S ∈ S ⧵S�}

}

Fig. 2  Network of friends in the 
proof of Theorem 3. A dashed 
rectangle indicates that all play-
ers inside are friends of each 
other
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Hence, Γ is not popular.
Only if:      Assume that Γ is not popular, so there is a coalition structure Δ ≠ Γ with 

#Δ≻Γ > #Γ≻Δ . First observe, for any S ∈ S  and j ∈ [4] , that QS is �S,j ’s unique most pre-
ferred coalition, as it contains all of their friends and none of their enemies. Thus �S,j pre-
fers Γ to Δ if QS ∉ Δ , and is indifferent between them if QS ∈ Δ.

Now, let k� = |{S ∈ S ∣ QS ∉ Δ}| be the number of sets QS that are not a coalition in Δ.
Assume that k′ > k . Then

Since #Δ≻Γ is integral, this implies #Γ≻Δ ≥ 4k� ≥ #Δ≻Γ , a contradiction. Hence, k′ ≤ k.
Next, assume that k′ < k . For any b ∈ B , observe that Γ(�b) = {�, �1,… , �3k} is a clique. 

Hence, �b can only prefer Δ to Γ if there are at least 3k + 1 of �b ’s friends in Δ(�b) , i.e., 
there is at least one �S with b ∈ S in Δ(�b) . Since there are k′ �S available (with QS ∉ Δ ), 
there thus are at most 3k′ �-players who prefer Δ to Γ . All other �-players (at least 3k − 3k� ) 
prefer Γ to Δ . Note that they are not indifferent between the two coalition structures: They 
would only be indifferent if {�, �1,… , �3k} ∈ Δ . However, this is not possible as it would 
imply that Δ is not more popular than Γ . We now have

Since #Γ≻Δ is integral, this implies #Γ≻Δ ≥ 4k� + 1 ≥ #Δ≻Γ , which is a contradiction. Thus 
we have k� = k.

Now, since exactly 4k �-players prefers Γ to Δ and because of #Δ≻Γ > #Γ≻Δ , 4k + 1 play-
ers need to prefer Δ to Γ . Thus � , all �b with b ∈ B , and all �S with QS ∉ Δ prefer Δ to Γ . 
As observed earlier, this means that every �b has some �S with b ∈ S in their coalition in Δ . 
Since there are 3k �-players and k �S with QS ∉ Δ , this implies that {S ∈ S ∣ QS ∉ Δ} is an 
exact cover of B.    ◻

Since the altruistic tie-breaker is never used in the construction of Theorem 3, we get 
the following corollary.

Corollary 2 P-Verification is coNP-complete for friend-oriented hedonic games.

With a slight adaptation of the construction in the proof of Theorem 1 we can show the 
following theorem.

Theorem 4 P-Verification is coNP-complete for EQ AHGs and AL AHGs.

Proof Consider the same construction as in the proof of Theorem 1 but delete player �1 
who under EQ and AL preferred Γ to the equally popular coalition structure Δ . Then 

#Δ≻Γ = |{𝛼, 𝛽1,… , 𝛽3k} ∪ {𝜁S ∣ S ∈ S
�}| = 1 + 3k + k

> 4k = |{𝜂S,j ∣ S ∈ S
�, j ∈ [4]}| = #Γ≻Δ.

#Γ≻Δ ≥ |{𝜂S,j ∣ QS ∉ Δ, j ∈ [4]}| = 4k� and

#Δ≻Γ ≤ |{𝛼, 𝛽1,… , 𝛽3k} ∪ {𝜁S ∣ QS ∉ Δ}| = 3k + 1 + k� < 4k� + 1.

#Γ≻Δ ≥|{𝜂S,j ∣ QS ∉ Δ, j ∈ [4]} ∪ {𝛽b| there is no QS ∉ Δ with b ∈ S}|
=4k� + 3k − 3k� = 3k + k� > 4k� and

#Δ≻Γ ≤|{𝛼} ∪ {𝛽b| there is an QS ∉ Δ with b ∈ S} ∪ {𝜁S ∣ QS ∉ Δ}|
=1 + 3k� + k� = 4k� + 1.
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Γ� = {{�1},… , {�12k3},A⧵{�1},QS1
,… ,QS3k

} is not popular if and only if there is an 
exact cover of B.3 The proof is analogous to the proofs of Theorems 1 and 2.   ◻

Wiechers and Rothe [14] showed that SP-Verification is coNP-complete for 
EQ MBAHGs. We substantially modify their proof to establish the same result for 
P-Verification.

Theorem 5 P-Verification is coNP-complete for EQ MBAHGs.

Proof The proof of this theorem is inspired by proofs of Wiechers and Rothe [14, Theo-
rem 4] and Kerkmann and Rothe [26, Theorem 7]. Given an instance of (B,S) of RX3C, 
with B = {1,… , 3k} and S = {S1,… , S3k} , we construct the network of friends shown 
in Fig.  3 with the set of players N = {�1, �2, �3} ∪ {�b ∣ b ∈ B} ∪

⋃
S∈S QS , where 

QS = {�S,� , �S,j ∣ � ∈ [3k], j ∈ [3]} for S ∈ S  , and we define the coalition structure

The friendship relationships are as follows:

• �1 , �2 , and �3 are friends of each other.
• All players in {�1} ∪ {�b ∣ b ∈ B} are friends.
• For S ∈ S  and � ∈ [3k] , �S,� is friends with the three �b with b ∈ S.
• For S ∈ S  , all players in QS are friends of each other.

We show that Γ is not popular under min-based EQ preferences if and only if there 
exists an exact cover of B in S .

If:      Assume that there exists an exact cover S′
⊆ S  of  B. Then, for the coalition 

structure

it holds that

Γ = {{�2, �3}, {�1, �1,… , �3k},QS1
,… ,QS3k

}.

Δ ={{�1, �2, �3}} ∪ {{�b ∣ b ∈ S} ∪ {�S,1,… , �S,3k} ∣ S ∈ S
�}∪

{{�S,1, �S,2, �S,3} ∣ S ∈ S
�} ∪ {QS ∣ S ∈ S ⧵S�},

Fig. 3  Network of friends in the 
proof of Theorem 5. A dashed 
rectangle indicates that all play-
ers inside are friends of each 
other

3 Specifically, Δ� = {{�1}… , {�12k3}, (A⧵{�1}) ∪
⋃

S∈S� QS} ∪ {QS ∣ S ∈ S⧵S�} is more popular than Γ� 
(by one player) if there is an exact cover S′ for B.
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• �2 and �3 prefer Δ to Γ , as they are in a clique of size three in Δ but in a clique of size 
two in Γ;

• all �b with b ∈ B prefer Δ to Γ , as they are in a clique of size 3k + 3 in Δ but in a clique 
of size 3k + 1 in Γ;

• �1 prefers Γ to Δ , as �1 is in a clique of size 3k + 1 in Γ but in a clique of size three in Δ;
• all �S,j with S ∈ S

� and j ∈ [3] prefer Γ to Δ , as they are in a clique of size 3k + 3 in Γ 
but in a clique of size three in Δ ; and

• all remaining players are indifferent between Γ and Δ , as they are in cliques of the same 
size in both coalition structures.

So, we have

Hence, Γ is not popular.
Only if:    Assume that there is a coalition structure Δ ≠ Γ with #Δ≻Γ > #Γ≻Δ . Then the 

following four claims hold from which we will be able to conclude that there exists an 
exact cover of B.

Claim 7 For S ∈ S  and j ∈ [3] , �S,j prefers QS to every other coalition.

Proof of Claim 7 Since QS is a clique of size 3k + 3 , it holds that uminEQ
�S,j

(QS) = n(3k + 2) . As 
every �S,j has only 3k + 2 friends in total, QS is the only clique of size 3k + 3 that can reach 
this utility for �S,j . Every other coalition C ∈ N�S,j

 either contains fewer friends or more 
enemies of �S,j ’s than QS , which leads to a decrease in utility for �S,j.  ◻ Claim 7

Claim 8 For S ∈ S  and � ∈ [3k] , �S,� has exactly two most preferred coalitions: QS and 
{�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]}.

Proof of Claim 8 Since the coalitions

are cliques of size 3k + 3 , it holds that uminEQ
�S,�

(A) = u
minEQ

�S,�
(B) = n(3k + 2) . For a contradic-

tion, assume that there is another coalition C with uminEQ
�S,�

(C) ≥ n(3k + 2).

In case of uminEQ
�S,�

(C) = n(3k + 2) , C would be a clique of size 3k + 3 . However, there are 
no other cliques of size 3k + 3 containing �S,� besides A and B.

In case of uminEQ
𝜁S,�

(C) > n(3k + 2) , �S,� and all their friends each need to have at least 
3k + 3 friends in C. Each �-player has only 3k + 2 friends in total and thus cannot be part of 
C. However, without the �-players, �S,� has only 3k + 2 friends in total. Thus we have a 
contradiction.  ◻ Claim 8

Claim 9 {�1, �1,… , �3k} is �1 ’s unique most preferred coalition.

Proof of Claim 9 For coalition A = {�1, �1,… , �3k} , it holds that uminEQ
�1

(A) = n3k . If there 
were another coalition B ≠ A with uminEQ

�1
(B) ≥ uminEQ

�1
(A) = n3k , �1 would have at least 3k 

#Δ≻Γ = |{𝛼2, 𝛼3, 𝛽1,… , 𝛽3k}| = 3k + 2 > 3k + 1 = 3|S�| + 1

= |{𝛼1} ∪ {𝜂S,1, 𝜂S,2, 𝜂S,3 ∣ S ∈ S
�}| = #Γ≻Δ.

A = QS and B = {�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]}
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friends in B and all these friends would also have at least 3k friends in B. Since �2 and �3 
have only two friends in total, it holds that �2 ∉ B and �3 ∉ B . However, �1 ’s remaining 3k 
friends are �-players, which implies A = {𝛼1, 𝛽1,… , 𝛽3k} ⊆ B . Since any additional � - or �
-player in B would contradict uminEQ

�1
(B) ≥ n3k , we get A = B , which also is a contradiction.  

◻ Claim 9

Note that Claims 7, 8, and 9 imply that there is no coalition structure that any of �S,j , 
�S,� , or �1 prefers to Γ . The �-players, however, do prefer some coalition structures to Γ , 
and the following claim says which coalitions of such preferred structures they are in.

Claim 10 For any b ∈ B , if �b prefers Δ to Γ , then Δ(�b) = {�a ∣ a ∈ S} ∪ {�S,� ∣ � ∈ [3k]} 
for some S ∈ S  with b ∈ S.

Proof of Claim  10 Assume that Δ ≻
minEQ

𝛽b
Γ . Since Γ(�b) = {�1, �1,… , �3k} is a clique, it 

follows that �b has a friend in Δ(�b) that is not in Γ(�b) . Hence, there is a �S,� with b ∈ S 
in Δ(�b).

Now assume that Δ(�b) ≠ {�a ∣ a ∈ S} ∪ {�S,� ∣ � ∈ [3k]} . Then �S,� ∈ Δ(�b) together 
with Claim 8 implies that all �S,�′ with �� ∈ [3k] prefer Γ to Δ . Further, Claim 7 implies 
that �S,j , j ∈ [3] , prefer Γ to Δ . Hence, we have #Γ≻Δ ≥ 3k + 3 . From Claims 7, 8, and 9 we 
know that no � , � , or �1 can prefer Δ to Γ . Hence, #Δ≻Γ ≤ |{𝛼2, 𝛼3, 𝛽1,… , 𝛽3k}| = 3k + 2 . 
We get #Γ≻Δ > #Δ≻Γ , which is a contradiction.  ◻ Claim 10

Now, since #Δ≻Γ > #Γ≻Δ , there is a player i ∈ N who prefers Δ to Γ . By the previous 
claims, this player i can only be either a �-player or one of �2 and �3 . Accordingly, we 
distinguish the following two cases, and in the first case (that i is a �-player) we will 
show that there exists an exact cover of B, while the second case (that i is either �2 or �3 ) 
must reduce to the first case.

Case  1 i = �c for some c ∈ B . Let k� = |{S ∈ S ∣ QS ∉ Δ}| . Then, by Claim  7, 
there are 3k′ �-players who prefer Γ to Δ and the remaining �-players are indif-
ferent between Γ and  Δ . Since �c prefers Δ to Γ , we know by Claim  10 that 
Δ(�c) = {�a ∣ a ∈ S} ∪ {�S,� ∣ � ∈ [3k]} for some S ∈ S  with c ∈ S . Thus, by Claim 9, 
�1 prefers Γ to Δ.

We will now see that k� = k.
First, assume that k′ > k . Then

Hence, #Γ≻Δ ≥ 3k + 2 ≥ #Δ≻Γ , which contradicts #Δ≻Γ > #Γ≻Δ.
Second, assume that k′ < k . Per one QS ∉ Δ , there are at most three �b with b ∈ S who 

prefer Δ to Γ (see Claim 10). Hence,

All remaining 3k − 3k� players �b do not have any �S,� with b ∈ S in Δ(�b) and thus prefer Γ 
to Δ . We get

#Γ≻Δ ≥ |{𝛼1} ∪ {𝜂S,j ∣ QS ∉ Δ, j ∈ [3]}| = 3k� + 1 > 3k + 1 and

#Δ≻Γ ≤ |{𝛼2, 𝛼3, 𝛽1,… , 𝛽3k}| = 3k + 2.

#Δ≻Γ ≤ |{𝛼2, 𝛼3} ∪ {𝛽b ∣ b ∈ S,QS ∉ Δ}| = 3k� + 2 < 3k + 2.
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Hence, #Γ≻Δ ≥ 3k + 1 ≥ #Δ≻Γ , which again is a contradiction.
It follows that k� = k and thus

Hence, since #Δ≻Γ > #Γ≻Δ , there are at least 3k + 2 players preferring Δ to  Γ , which 
can only be �2 , �3 , and all  �b , b ∈ B . Then, by Claim  10, every �b is in a coalition 
Δ(�b) = {�a ∣ a ∈ S} ∪ {�S,� ∣ � ∈ [3k]} for some S ∈ S  with b ∈ S . This implies that 
{S ∈ S ∣ QS ∉ Δ} is an exact cover of B.

Case 2: i = �2 or i = �3 . Since �2 or �3 prefer Δ to Γ , it follows that {𝛼1, 𝛼2, 𝛼3} ⊆ Δ(𝛼2) . 
Then, considering only the �-players, we have #Δ≻Γ ≥ 2 and #Γ≻Δ ≥ 1 . If at least one �b 
prefers Δ to Γ , we are in Case 1 and an exact cover of B is already implied. Hence, assume 
that there is no �b that prefers Δ to Γ . Then #Δ≻Γ = 2 because, by Claims 7 and 8, no other 
player can prefer Δ to Γ . With #Δ≻Γ > #Γ≻Δ , it follows that no player �b , �S,� , nor �S,j prefers 
Γ to Δ . Hence, by Claim 7, QS ∈ Δ for every S ∈ S  . However, this implies that all �b pre-
fer Γ to Δ , which is a contradiction.    ◻

Wiechers and Rothe [14, Theorem  4] showed that SP-Verification is coNP-complete 
for AL MBAHGs. We extensively modify their proof to establish the same result for 
P-Verification.

Theorem 6 P-Verification is coNP-complete for AL MBAHGs.

Proof We use the same set of players and network of friends as in the proof 
of Theorem  5 that is shown in Fig.  3. We again consider coalition structure 
Γ = {{�1, �1,… , �3k}, {�2, �3},QS1

,… ,QS3k
} and show that Γ is not popular under AL 

preferences if and only if there exists an exact cover of B in S .
If:   Assume that there exists an exact cover S′

⊆ S  of B. Then the coalition structure

is more popular than Γ : All players in QS with S ∈ S⧵S� are obviously indifferent between 
Γ and Δ because their coalitions stay the same. The utilities of the other players are shown 
in Table 1.

#Γ≻Δ ≥|{𝛼1} ∪ {𝜂S,j ∣ QS ∉ Δ, j ∈ [3]}∪

{𝛽b ∣ QS ∈ Δ for all S ∈ S with b ∈ S}|
≥1 + 3k� + 3k − 3k� = 3k + 1.

#Γ≻Δ ≥ |{𝛼1} ∪ {𝜂S,j ∣ QS ∉ Δ, j ∈ [3]}| = 3k + 1.

Δ ={{�1, �2, �3}} ∪ {{�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]} ∣ S ∈ S
�}∪

{{�S,1, �S,2, �S,3} ∣ S ∈ S
�} ∪ {QS ∣ S ∈ S ⧵S�}

Table 1  Utilities of the players 
�1 , �2 , �3 , �b for b ∈ B , and �S,� 
and �S,j for S ∈ S

� , � ∈ [3k] , and 
j ∈ [3] in the proof of Theorem 6

Player i uminAL
i

(Γ) uminAL
i

(Δ)

�1 M ⋅ n3k + n3k > M ⋅ 2n + 2n

�2 , �3 M ⋅ n + n < M ⋅ 2n + 2n

�b M ⋅ n3k + n3k < M ⋅ n(3k + 2) + n(3k + 2)

�S,� M ⋅ n(3k + 2) + n(3k + 2) = M ⋅ n(3k + 2) + n(3k + 2)

�S,j M ⋅ n(3k + 2) + n(3k + 2) > M ⋅ 2n + 2n
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Hence, Γ is not popular because

Only if:    Assume that there is a coalition structure Δ ≠ Γ with #Δ≻Γ > #Γ≻Δ . Then we can 
iteratively show and use the following claims.

Claim 11 For any S ∈ S  and � ∈ [3k] , if �S,� prefers Δ to Γ , then Δ(�S,�) contains no �S,j 
with j ∈ [3] , no �S,�′ with �� ∈ [3k] and �′ ≠ � , at least one �b with b ∈ S , and 3k + 2 other 
friends of �b’s.

Proof of Claim 11 Assume that �S,� prefers Δ to Γ and let Δ(�S,�) = D . As Γ(�S,�) = QS is a 
clique of size 3k + 3 , we have uminAL

𝜁S,�
(Δ) > uminAL

𝜁S,�
(Γ) = n(3k + 2) +Mn(3k + 2) . Thus D 

contains at least one friend of �S,� ’s and every friend of �S,� ’s in D has at least 3k + 3 friends 
in D. Since the players �S,j , j ∈ [3] , each have only 3k + 2 friends in total, they cannot be 
part of D. By omitting these players, all �S,�′ , �′ ≠ � , only have 3k + 2 friends left and can-
not be part of D either. Hence, D contains at least one �b with b ∈ S , and 3k + 2 other 
friends of �b’s.  ◻ Claim 11

Claim 12 For any S ∈ S  and � ∈ [3k] , if �S,� prefers Δ to Γ then at least 3k other players 
in QS prefer Γ to Δ.

Proof of Claim 12 Assume that �S,� prefers Δ to Γ . Since there are only three �b with b ∈ S , 
we know by Claim 11 that at most two other �S,�′ with �� ∈ [3k] and �′ ≠ � can prefer Δ to 
Γ at the same time. All other players from QS obviously prefer Γ to Δ because they can only 
stay among themselves in Δ . Thus at least 3k + 3 − 3 = 3k players in QS prefer Γ to Δ.  ◻ 
Claim 12

Claim 13 For any S ∈ S  and � ∈ [3k] , there are exactly two coalitions A ⊆ N with 
vminAL
�S,�

(A) = Mn(3k + 2) + n(3k + 2) , namely QS and {�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]}.

Proof of Claim 13 Since QS and {�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]} are cliques of size 3k + 3 , 
the statement is clearly true for them. Every other coalition C with the same valuation 
would also have to be a clique of size 3k + 3 containing �S,� . However, such a clique C does 
not exist in the given network of friends displayed in Fig. 3.  ◻ Claim 13

Claim 14 For every �S,j with S ∈ S  and j ∈ [3] , there is no coalition that is in a tie with QS.

Proof of Claim  14 Let C ⊆ N be a coalition containing �S,j and satisfying 
uminAL
�S,j

(C) = uminAL
�S,j

(QS) = M(3k + 2) + n(3k + 2) . Then it has to contain exactly 3k + 2 
friends of �S,j ’s who are all friends with each other. Since �S,j has exactly 3k + 2 friends, 
this is clearly determined as QS . ◻ Claim 14

Claim 15 For any S ∈ S  and j ∈ [3] , if �S,j prefers Δ to Γ then all other players in QS pre-
fer Γ to Δ.

#Δ≻Γ = |{𝛼2, 𝛼3, 𝛽1,… , 𝛽3k}| = 3k + 2 > 3k + 1 = 3|S�| + 1

= |{𝛼1} ∪ {𝜂S,j ∣ S ∈ S
�, j ∈ [3]}| = #Γ≻Δ.
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Proof of Claim  15 Assume that �S,j prefers Δ to Γ and let Δ(�S,j) = D . Then every 
friend of �S,j ’s in D has at least 3k + 3 friends in D. Thus �S,j� ∉ D for j� ∈ [3] , 
j′ ≠ j , since they only have 3k + 2 friends in total. Now there only remain the play-
ers  �S,� , � ∈ [3k] , which (after omitting the �S,j′ ) have exactly 3k + 3 friends left. Thus 
{𝛽b ∣ b ∈ S} ∪ {𝜁S,� ∣ � ∈ [3k]} ⊆ D . As �S,j has fewer friends in D than in QS , it follows 
that every �S,� , � ∈ [3k] , prefers QS to  D. Since the �S,j′ with j� ∈ [3] , j′ ≠ j , only have 
themselves left as friends, they clearly also prefer Γ to Δ.  ◻ Claim 15

Claim 16 If �2 or �3 prefer Δ to Γ then �1 prefers Γ to Δ.

Proof of Claim 16 Assume that �2 prefers Δ to Γ . Then �2 has at least one friend in Δ(�2) 
and every friend of �2 ’s in Δ(�2) has at least two friends in  Δ(�2) . Hence, 
{𝛼1, 𝛼2, 𝛼3} ⊆ Δ(𝛼2) or {𝛼1, 𝛼2, 𝛽b} ⊆ Δ(𝛼2) for some b ∈ B . In both cases, 
uminAL
𝛼1

(Δ) ≤ M ⋅ v𝛼2 (Δ) + v𝛼1 (Δ) ≤ M ⋅ 2n + v𝛼1 (Δ) < M ⋅ n3k + n3k = uminAL
𝛼1

(Γ) . Thus �1 
prefers Γ to Δ . Due to symmetry, the same arguments work if �3 prefers Δ to Γ.  ◻ Claim 16

Claim 17 No �S,� with S ∈ S  and � ∈ [3k] prefers Δ to Γ.

Proof of Claim 17 Assume that some �S,� prefers Δ to Γ . Then, by Claim 12, 3k players from 
QS prefer Γ to Δ . Further, by Claim 11, Δ(�S,�) does not contain any other player from QS 
but does contain a �b with b ∈ S and 3k + 2 friends of �b that are not in QS . Then

Hence, �b prefers Γ to Δ . Summing up, we have #Γ≻Δ ≥ 3k + 1 . With #Δ≻Γ > #Γ≻Δ , this 
implies #Δ≻Γ ≥ 3k + 2 . Thus there have to be 3k + 1 players, besides �S,� , who prefer Δ 
to Γ . Since there are only 3k − 1 �-players left who might prefer Δ to Γ , there have to be 
at least two other players who prefer Δ to Γ . Because of Claim 16, there can only be two �
-players who prefer Δ to Γ if there is also one �-player who prefers Γ to Δ . Hence, in any 
case, there has to be at least one additional player i of the form i = �S� ,�� or i = �S�,j� who 
prefers Δ to Γ . If i = �S,�� for some �� ∈ [3k] , �′ ≠ � , then with the same arguments as for 
�S,� there has to be an additional �b′ who prefers Γ to Δ . If i is from another QS′ , S′ ≠ S , then 
again, by Claim 12 or 15, at least 3k further players prefer Γ to Δ . Both cases again imply 
that there have to be some more � - and �-players who prefer Δ to Γ . Inductively, it follows 
that there are more players who prefer Γ to Δ than vise versa. This is a contradiction.   ◻ 
Claim 17

Claim 18 No �S,j with S ∈ S  and j ∈ [3] prefers Δ to Γ.

Proof of Claim 18 Assume that some �S,j prefers Δ to Γ . Then, by Claim 15, the other 3k + 2 
players in QS prefer Γ to Δ . Hence, #Δ≻Γ > #Γ≻Δ implies #Δ≻Γ ≥ 3k + 3 . Since no �S,� pre-
fers Δ to Γ by Claim 17 and since not all � - and all �-players can prefer Δ to Γ at the same 
time (see Claim 16), there is another player �S′,j′ with S′ ≠ S , j� ∈ [3] , who prefers Δ to Γ . 
However, this again implies that 3k + 2 players from QS′ prefer Γ to Δ . Inductively, there 
are always more players who prefer Γ to Δ than vise versa, which is a contradiction.   ◻ 
Claim 18

uminAL
𝛽b

(Δ) ≤ M ⋅ v𝜁S,𝓁 (Δ) + v𝛽b (Δ) ≤ M ⋅ 3n + v𝛽b (Δ)

< M ⋅ n3k + n3k = uminAL
𝛽b

(Γ).
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Claim 19 �1 prefers Γ to Δ.

Proof of Claim 19 First, if �1 prefers Δ to Γ , then by Claim 16, �2 and �3 do not prefer Δ to Γ . 
Moreover,

which means that all friends of �1 ’s in Δ(�1) have at least 3k + 1 friends in Δ(�1) . Clearly, 
�2 ∉ Δ(�1) and �3 ∉ Δ(�1) but there is at least one �b in Δ(�1) . Since this �b needs 3k + 1 
friends in Δ(�1) , there is at least one �S,� with b ∈ S in Δ(�1) . With Claims  13, 14, 17, 
and 18, it follows that all 3k + 3 players from QS prefer Γ to Δ . Hence,

contradicting #Δ≻Γ > #Γ≻Δ.
Second, if �1 is indifferent between Γ and Δ , then uminAL

�1
(Δ) = M ⋅ n3k + n3k , which 

means that �1 has exactly 3k friends in Δ(�1) and all these friends have exactly 3k friends 
in Δ(�1) . This implies Δ(�1) = {�1, �1,… , �3k} . However, this is a contradiction because 
there is no player left who could prefer Δ to Γ.  ◻ Claim 19

Claim 20 For every S ∈ S  , either QS ∈ Δ or {�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]} ∈ Δ.

Proof of Claim  20 Assume that the statement does not hold for some S ∈ S  . Then, by 
Claims 13 and 14, no player in QS is indifferent between Γ and Δ . By Claims 17 and 18, no 
player in QS prefers Δ to Γ . Thus all 3k + 3 players from QS prefer Γ to Δ . Hence,

which is a contradiction to #Δ≻Γ > #Γ≻Δ.  ◻ Claim 20

Now, we use all these claims to show that the existence of  Δ implies the exist-
ence of an exact cover of  B. Let k� = |{S ∈ S ∣ QS ∉ Δ}| (or, equivalently, 
k� = |{S ∈ S ∣ {�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]} ∈ Δ} ). It is clear that k′ ≥ 1 because other-
wise Δ could not be more popular than Γ . We show that k� = k.

First, assume that k′ > k . Then, by the preceding claims, we have

This contradicts #Δ≻Γ > #Γ≻Δ.
Second, assume that k′ < k . All 3k′ �-players that are in one of the k′ coalitions of the form 

{�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]} prefer Δ to Γ . However, all other 3k − 3k� �-players have no �
-players in their coalitions and thus prefer Γ to Δ . Hence,

This again contradicts #Δ≻Γ > #Γ≻Δ.

uminAL
𝛼1

(Δ) > uminAL
𝛼1

(Γ) = M ⋅ n3k + n3k,

#Γ≻Δ ≥ |QS| = 3k + 3 and

#Δ≻Γ ≤ |{𝛼1} ∪ {𝛽1,… , 𝛽3k}| = 3k + 1,

#Γ≻Δ ≥ |QS| = 3k + 3 and

#Δ≻Γ ≤ |{𝛼2, 𝛼3, 𝛽1,… , 𝛽3k}| = 3k + 2,

#Γ≻Δ ≥ |{𝜂S,j ∣ QS ∉ Δ, j ∈ [3]} ∪ {𝛼1}| = 3k� + 1 > 3k + 1 and

#Δ≻Γ ≤ |{𝛼2, 𝛼3, 𝛽1,… , 𝛽3k}| = 3k + 2.

#Γ≻Δ ≥ 3k� + 1 + (3k − 3k�) = 3k + 1 > 3k� + 1 and

#Δ≻Γ ≤ 3k� + 2.
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Thus k� = k . Now, since there are k� = k sets S ∈ S  such that each 
{�b ∣ b ∈ S} ∪ {�S,� ∣ � ∈ [3k]} contains three distinct  �b , {S ∈ S ∣ QS ∉ Δ} is an exact 
cover of B of size k.    ◻

5  Do popular and strictly popular coalition structures exist in AHGs 
and MBAHGs?

Finally, we turn to P-exiStence. Note that we cannot simply modify the preceding theo-
rems in order to show the hardness of P-exiStence (similarly to how we used Theorems 1 
and  2 to obtain Corollary  1) because, obviously, a tie between two most popular coali-
tion structures would not suffice to show the nonexistence of a popular coalition structure. 
However, for both AHGs and MBAHGs and all three degrees of altruism, we now provide 
examples (which were verified by brute force) where no popular coalition structures exist, 
and we suspect that P-exiStence is hard for all six considered models.

Example 1 Under all three degrees of altruism in AHGs, there is no popular coalition struc-
ture for the left network of friends in Fig. 4.

Example 2 Under all three degrees of altruism in MBAHGs, there is no popular coalition 
structure for the right network of friends in Fig. 4.

6  Conclusions and future research

We have solved the two remaining open problems regarding the complexity of strict popu-
larity verification in AHGs, namely for equal treatment (Theorem 1) and altruistic treat-
ment (Theorem  2). The proofs of these results required new ideas and are technically 
demanding. The corresponding results for MBAHGs have already been established by 
Wiechers and Rothe [14, Theorem  4]. In addition, we have provided the first complex-
ity results for popularity verification in AHGs and MBAHGs, covering for both all three 
degrees of altruism (Theorems 3, 4, 5, and 6). Hence, the complexity of popularity verifi-
cation and strict popularity verification is now settled in AHGs and MBAHGs; the picture 
is complete.

Moreover, we have seen that our hardness result for popularity verification (Theorem 3) 
extends to friend-oriented hedonic games. Additionally, we get some implications for 
classes of hedonic games that generalize AHGs. For instance, since the “super AHGs” by 
Schlueter and Goldsmith [23] generalize SF AHGs, all our hardness results for SF AHGs 
extend to this class as well. Also, all our results for EQ MBAHGs carry over to the “loyal 
variant of symmetric friend-oriented hedonic games” by Bullinger and Kober [25].

For future research, we propose the consideration of restricted classes of AHGs. It 
would be interesting to find restrictions on the underlying network of friends that guarantee 

Fig. 4  Networks of friends in 
Example 1 (left) and Example 2 
(right)
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that (strictly) popular coalition structures can be verified in polynomial time. Another 
important direction for future research is to study the (strict) popularity existence prob-
lems. While we have established coNP-hardness, e.g., for strict popularity existence in EQ 
and AL AHGs (and this is also known for SF AHGS [13]), it is not known whether this 
bound is tight. We suspect that this is not the case and these problems might in fact be Σp

2

-complete. Another idea for future research are altruistic hedonic games in which agents 
may dynamically change their degree of altruism. In such a model, the agents’ degree of 
altruism might depend on the well-being of others. For instance, they might act more altru-
istically when others are doing worse than themselves, while they are more selfish when 
others are doing better than themselves. Also, their degree of altruism might depend on the 
global level of welfare. While a global well-being might not evoke a strong degree of altru-
ism among agents, a severe suffering of their friends might do so.
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