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Abstract
The principle of total evidence says that one should conditionalize one’s degrees 
of belief on one’s total evidence. In the first part, I propose a justification of this 
principle in terms of its epistemic optimality. The justification is based on a proof of 
I. J. Good and embedded into a new account of epistemology based on optimality-
justifications. In the second part, I discuss an apparent conflict between the principle 
of total evidence and the political demands of anti-discrimination. These demands 
require, for example, that information about the sex of the applicant for a job should 
not be included in the relevant evidence. I argue that if one assesses the appli-
cant’s qualification in terms of those properties that are directly causally relevant 
for the job performance, then properties that are merely indirectly relevant, such as 
sex, race, or age, are screened off, i.e., become irrelevant. So, the apparent conflict 
disappears. 

1 Introduction

The principle of total evidence—henceforth abbreviated as PTE—says the 
following:

(1) PTE: In order to rationally estimate the epistemic probability (P) of a hypoth-
esis, one should conditionalize this probability on one’s total evidence, i.e., all “rel-
evant” evidence that is available to the epistemic subject. Thus, if E is the subject’s 
total evidence, then Pactual (H) = P(H|E).

Thereby, the evidence E is assumed to be “approximately certain.”1 Among oth-
ers, the PTE was introduced by Carnap (1950, 211f.). If the hypothesis is a singular 
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prediction, Fa, the PTE coincides with Reichenbach’s principle of the narrowest ref-
erence class, which says that we should conditionalize Fa’s probability on its mem-
bership in the narrowest (relevant) evidentially accessible reference class  to which 
a belongs  (Reichenbach, 1949, sec. 72). That the evidence can be restricted to rel-
evant evidence is obvious, since irrelevant evidence does not change the probability 
and can be omitted, i.e., P(H|Erel ∧ Eirr) = P(H|Erel).

Why is the PTE reasonable? It is certainly necessary to fix the evidence on which 
we conditionalize somehow, because otherwise, we may end up in contradictions.2 
But why should this be the most comprehensive evidence? Why is not better to leave 
evidence out if we do not like it? In what follows, we illustrate our problem at hand 
of a simple weather example, as follows:

– R denotes the prediction that it will rain tomorrow in my area.
– The probability of R, P(R), is assumed to be implicitly conditionalized on given 

the general background evidence that we live in a sunny area with a 20% rain 
chance. So, we assume  P(R) = 0.20 and P(¬R) = 0.80.

– F denotes the additional evidence that the barometer has fallen, indicating a rain 
chance of 95%, even for areas that are normally sunny.

Our assumptions entail that P(R) = 0.20, but P(R|F) = 0.95. So, we must fix the 
evidence on which we conditionalize our probability of the hypothesis, R, in order 
to avoid probabilistic incoherence. But why should we conditionalize our prediction 
on the total or most specific evidence, F? Why should not we rather be coherentists 
and stick with conditionalizing our belief about tomorrow’s weather on our general 
background evidence that we live in an overwhelmingly sunny area, ignoring the 
additional evidence F, so that we are not forced to give up the friendly-weather-
belief that we like? 

Hempel (1960, 453f.) and Suppes (1966) argued that for a Bayesian probabil-
ist, who identifies her or his degrees of belief with rationally estimated probabili-
ties, the PTE follows already from the probability axioms, or equivalently, from the 
requirement of probabilistic coherence. For P(F) = 1 implies P(H) = P(H|F), since 
P(H) = P(H|F) ⋅ P(F) + P(H|¬F) ⋅ P(¬F) = P(H|F) ⋅ 1 + P(H|¬F) ⋅ 0 = P(H|F) . So given 
the evidence F is taken as certain, then P(R) = P(R|F); so our coherent degree of 
belief in the hypothesis R must already be conditionalized all evidence that is taken 
as certain. Likewise, if F is almost certain, then provided P(R|F) is not close to zero, 
P(R) must be approximately equal to P(R|F). Roush (forthcoming, 31, fn. 47) consid-
ers this argument as an advantage of Bayesian probabilism. From the viewpoint of 
applied epistemology, however, I think this argument is insufficient, since real epis-
temic agents are far from being probabilistically omniscient. What people really do 
when estimating the probability of a future event, such as the possibility of tomor-
row’s rainfall, is retrieving from their memory some known facts that are regarded 
as relevant cues for this prediction, and then estimating the predicted probability 

2 In application to explanations, Hempel (1965, sec. 3.4) spoke of the “ambiguity of statistical explana-
tions”.
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conditional on the conjunction of these cues. For this epistemic practice, the PTE is 
highly important, because it requires that instead of confining oneself with just one or 
a few cues, one should actively retrieve all relevant cues that one knows. For example, 
if you base your prediction on a weather forecaster on the Internet, but there is a sec-
ond forecaster that predicts differently (a situation that does not occur unfrequently), 
then the PTE tells you that you should not just rely on one forecaster and ignore the 
other. Even for rational Bayesians, the PTE is not self-evident, because Bayesian-
ism does not prescribe how an epistemic agent should mold her or his probabilities. 
For coherentist Bayesians, ignoring a piece of evidence F when estimating the actual 
probability of a prediction R just means that they change their probability of F from 
a value close to 1 to some lower value. Why should such a “probabilistic suppres-
sion” of an unwanted fact not be a legitimate epistemic practice, for the mutual sake 
of increasing the coherence of our beliefs and desires? Why are we worse off if we 
follow this practice rather than follow the PTE? Moreover, why is searching for new 
(cheap) evidence better than applying the ostrich method of avoiding the acquiration 
of new evidence (putting one’s hat in the sand)?

To obtain a positive answer to these questions, we need an explicit justification of 
the PTE. Moreover, following Reichenbach’s ingenious idea, the justification of the PTE 
would at the same time tell us how the statistical (or frequentist) probabilities of repeat-
able events should be connected with the epistemic probabilities of single instances of 
these events. The above weather example is nothing but such a connection: the statistical 
chance of rain (Rx) in some reference class (Cx), abbreviated as p(Rx|Cx), is transferred 
to a particular day, namely tomorrow (a), as the epistemic probability of a rainfall tomor-
row: P(Ra) = p(Rx|Cx) (where “Cx” is a condition that refers to the past of x, logically 
expressed by a functor f, Cx = Gfx). The reason why we want a connection between epis-
temic and statistical probabilities is simple: only if there is such a connection, will the 
probabilistically expected utilities—which are the central guide for rational decisions—
agree with our actually experienced average utilities (in the long run); otherwise maxi-
mization of expected utilities could fail to be actually utility-increasing. However, there 
are different possible reference classes Cx—in our example that I live in a sunny area, 
that the barometer fell yesterday, etc. Which reference class should we choose? Accord-
ing to Reichenbach’s “principle of narrowest reference class,” we should identify the 
epistemic probability of a single case hypothesis with its statistical probability condi-
tional on the total (relevant) evidence about the respective individual a; in our example: 
P(Ra) = p(Rx|Fx).3 Therefore, a justification of the PTE would give us at the same time a 
justification of transferring statistical probabilities to single cases by means of the PTE.

In the next section, we offer such a justification of the PTE, based on a recon-
struction of a seminal proof of Good (1967). The proof demonstrates that for practi-
cal as well as predictive success, the best what we can do is to conditionalize on the 
total available evidence. The proof is an instance of what is called an optimality jus-
tification. It is part of the account of epistemology based on optimality-justifications 

3 The transfer of p(Rx|Fx) to P(Fa) is also called “direct inference” and is related to the so-called statisti-
cal principal principle; thereby “P” must be prior in regarded to the involved individual a (see Schurz 
2014, 161-164 and 2024, 58f.).
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developed by Schurz (2024) that grew out from work on the optimality of meta-
induction (Schurz, 2019).

2  An Optimality Justification of the Principle of Total Evidence

In what follows I explain the proof for the simplest case of binary partitions, illus-
trated at hand of our weather example. So we are interested in predicting the binary 
variable ± R, where “ ± ” stands for “unnegated” or “negated,” i.e., ±R ∈ {R,¬R} , in 
our example, that it will rain (R) or not rain ( ¬R)  tomorrow. Note that strictly speak-
ing, we have to represent the prediction R by the atomic formula Ran+1, where a1, 
a2,… stands for a sequence of days, an+1 for the day tomorrow, and an for today. We 
dispense with this formal complication since the meaning is obvious.

Preceding each day, we obtain additional evidence about whether the barometer 
reading has fallen or not, ± F, where according to our estimation P(R|F) = 0.95 and 
P(R|¬F) = 0.15.

Good’s proof of the optimality of the PTE is devised for success in actions, whose 
utility depends on the unknown utility-determining circumstances or predictive tar-
gets, in our example ± R. We assume that in our example the possible actions are

– the action(s) of taking an umbrella with us or not, abbreviated as ±U.

The decision concerning ± U must be made today, for example, because we leave 
today for a mountain tour tomorrow. Concerning the utilities, u(A|C) denotes the 
utility of action A given the circumstance C.4 In our example, we assume the follow-
ing utility values:

Utilities and probabilities are assumed to be reliably estimated.
According to decision theory, the expected utility, Eu, of the actions ± U is given 

as follows:

In informal words: The Eu of action U is the sum of U’s utilities under the dif-
ferent circumstances {R,¬R } multiplied with their probabilities. (Similarly for ¬U.)

u(¬U|R) = 0, u(¬U|¬R) = 0, u(U|R) = 3 and u(U|¬R) = −1.

(2)

Eu(U) = P(R) ⋅ u(U�R) + P(¬R) ⋅ u(U�¬R) =def

∑

±RP(±R) ⋅ u(U� ± R).

Eu(¬U) = P(R) ⋅ u(¬U�R) + P(¬R) ⋅ u(¬U�¬R) =def

∑

±RP(±R) ⋅ u(¬U� ± R).

4 In causal decision theory (Weirich 2020), one often writes u(A ∧ C) instead of u(A|C). This indicates 
that also C may contribute to the total utility outcome. This notation is appropriate if the circumstances 
includes factors that are effects of the actions, but we do not assume this (see below). Our utilities 
express the effect of the action relative to the total utility of the action-independent circumstances; this 
is reflected in the notation “u(A|C),” which is close to Savage’s notation (Steele and Stefánson 2020, sec. 
3.1). Note that for action-independent circumstances both notations are equivalent, because in this case 
the decision matrix can be rescaled by adding to each row a row-specific constant without changing the 
Eu-ordering of the actions (see Jeffrey 1983, 35–37).
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Here and in what follows, “ ±R” is a binary variable that can take the values R 
and ¬R . Equations expressed with variables are meant to hold for all value instantia-
tions of the variables. 

More generally, Eu(A) = Σ1≤i≤nP(Ci)⋅u(A|Ci), where {C1,…,Cn} is a partition of 
utility-determining circumstances. Note that we need not assume that the partition 
{C1,…,Cn} is complete, i.e., covers all utility-determining circumstances. For our 
example, Eq. (2) gives us

So with the above utilities, if all what I know is P(R) = 0.2, then my wisest action 
is not to take an umbrella.

The philosophical assumption behind the decision-theoretic formula (2) is that the 
choice of action is free in the sense of being probabilistically independent from those 
utility-determining circumstances that are not causally influenced by the actions. In 
the formula (2), the cells of the partition of circumstances range over those circum-
stances, in our example ± R. This assumption justifies that we write P(±R) instead of 
P(±R| ± U) , since ±U has no causal influence on tomorrow’s rain. We will defend 
this assumption below. Here, we merely point out that we may include action-depend-
ent circumstances by expanding in Eq. (2) the term u(U|±R) as follows:

where {D1,…,Dk} is an additional partition of action-dependent facts. Inserting this 
equation into (2) gives us

which is a version of Skyrms’ causal decision theory (Skyrms, 1980, sec IIC; Weir-
ich, 2020, sec. 2.3).

The argument of Good’s proof in my reconstruction consists of two steps:

Step 1 of Good’s proof: The expected utility Eu of a fixed action A—one that 
is independent of which additional evidence you observe—is provably preserved 
under conditionalization of the probabilities of the circumstances on a partition 
of new evidence {F,¬F}, here denoted as Eu(A|{F,¬F}) . In other words: the Eu 
does not change under refinements of the partition of action-independent circum-
stances. In our example, this means the following:

Eu(U) = 0.2 ⋅ 3 − 0.8 ⋅ 1 = −0.2 < Eu(¬U) = 0.2 ⋅ 0 + 0.8 ⋅ 0 = 0

u(U| ± R) =
∑

i
P(Di|U) ⋅ u(U ∧ Di| ± R),

Eu(U) =

∑

±R
P(±R) ⋅

∑

i
P(Di|U) ⋅ u(U ∧ Di| ± R),

(3)

Eu(¬U) = P(R) ⋅ u(¬U|R) + P(¬R) ⋅ u(¬U|¬R).This is equal to

Eu(¬U|{F,¬F}) =def P(F) ⋅ Eu(¬U|F) + P(¬F) ⋅ Eu(¬U|¬F),where

Eu(¬U|F)) =
∑

±RP(±R|F) ⋅ u(U| ± R ∧ F)

= the Eu of ¬U updated with P(±R|F), and

Eu(¬U|¬F) =
∑

±RP(±R|¬F) ⋅ u(U| ± R ∧ ¬F)

= the Eu of¬U updated with P(±R|¬F). Similarly for Eu(U).
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There are two ways to prove (3). The first way is to assume a Jeffrey-type decision 
theory. Under this assumption, there is (almost) nothing to prove, because here utili-
ties and expected utilities are identified; so the preservation of the (expected) utili-
ties under refinements of the partition holds analytically. More precisely, Jeffrey’s 
“desirability axiom” (1983, 80, (5–2)) entails for any action A5:

(4) Jeffrey’s axiom: u(A) = Eu(A) =
∑

1≤i≤nP(Xi) ⋅ Eu(A�Xi) for any partition of 
refined circumstances {X1,…,Xn} (where each Xi may be a conjunction of several 
factors). 

In our example: Eu(±U� ± R) =
∑

±FP(±F� ± R) ⋅ Eu(U� ± R ∧ ±F).
From (4), the Eq. (3) is proved as follows:

The advantage of the above derivation is that here the additional evidence, which 
may either be F or ¬F , may even influence the utility of the action ± U. The disad-
vantage is that Jeffrey’s axiom is rather strong. In our case, however, the additional 
evidence is meant to have no effect on the utilities but merely on the probabilities of 
the utility-determining circumstances ± R. Thus, we may safely assume:

(5) Utility-neutral additional evidence: u(U|R ∧ F) = u(U|R).
Under this assumption, Eq.  (3) can be proved without using Jeffrey’s axiom as 

follows:

Step 2 of Good’s proof: Now, the point of conditionalization is that the new 
evidence may change the optimal action under a particular observational out-
come ± F. If F is observed, this indicates a high chance of rain, and so the F-con-
ditional Eu of U is much higher than that of ¬U . In our example, we get

Eu(U�{F,¬F}) =def P(F) ⋅
∑

±RP(±R�F) ⋅ u(U� ± R ∧ F) + P(¬F) ⋅
∑

±RP(±R�¬F) ⋅ u(U� ± R ∧ ¬F)

=
∑

±F,±RP(±F ∧ ±R) ⋅ u(U� ± R ∧ ±F) (bymultiplication; ± F,±R" can take four values)

= Eu(U) by Jeffrey�s axiom.Q.E.D.

Eu(U|{F,¬F}) =def P(F) ⋅
∑

±R
P(±R|F) ⋅ u(U| ± R ∧ F) + P(¬F) ⋅

∑

±R
P(±R|¬F) ⋅ u(U| ± R ∧ ¬F)

= P(F) ⋅
∑

±R
P(±R|F) ⋅ u(U| ± R) + P(¬F) ⋅

∑

±R
P(±R|¬F) ⋅ u(U| ± R) (by assumption (6))

=

∑

±R
[P(±R ∧ F) ⋅ u(U| ± R) + P(±R ∧ ¬F) ⋅ u(U| ± R)] (by multiplication)

=

∑

±R
[P(±R ∧ F) + P(±R ∧ ¬F)] ⋅ u(U| ± R)

= (by rearranging terms)

=

∑

±R
P(±R) ⋅ u(U| ± R) = Eu(U) (by probability theory).Q.E.D.

Eu(U|F) = 0.95 ⋅ 3 − 0.05 ⋅ 1 = 2.8 > Eu(¬U|F) = 0.95 ⋅ 0 + 0.15 ⋅ 0 = 0.

5 Jeffrey’s desirability axiom asserts for disjoint X, Z, Eu(X ∧ Z) = (P(X) ⋅ Eu(X) + P(Z) ⋅ Eu(Z))∕(P(X) + P(Z)) . This 
implies Eu(X) = Eu((X ∧ Y) ∧ (X ∧ ¬Y)) = (P(X ∧ Y) ⋅ Eu(X ∧ Y) + P(X ∧ ¬Y) ⋅ Eu(X ∧ ¬Y))∕P(X) = P(Y|X) ⋅ Eu(X ∧ Y) + P(¬Y|X) ⋅ Eu(X ∧ ¬Y) . Rewrit-
ing Eu(X ∧ ±Y) as Eu(X|±Y ) (recall fn. 4) gives Eq. (4).
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If ¬F is observed, we should not change the best evidence-independent action ¬U ; 
in this case, the surplus of ¬U over U even increases. In our example, we get

In conclusion, after conditionalization, the rational subject performs the condi-
tionalized or evidence-dependent action U* =def “U if F and ¬U if ¬F .” For U* the 
Eu is computed as follows:

Eu(U*|{F,¬F}) is greater than the Eu of the best-fixed action, Eu(¬U|{F,¬F}) , 
since Eu(U|F) > Eu(¬U|F) . To see this, compare Eq. (6) with the second line of the 
equation (3): the two equations differ only in the term that is underlined in (6), and 
since Eu(U|F) > Eu(¬U|F) , it follows that Eu(U*|{F,¬F}) > Eu(¬U|{F,¬F}) , 
where Eu(¬U|{F,¬F}) = Eu(¬U) (as proved above) and ¬U is the best evidence-
independent action. Note that the basic argument is entirely independent of the 
assumed utilities. Even if the utility of taking an umbrella given rain would be 
much smaller than given not-rain (for example, because of a dictator who punishes 
people who are taking an umbrella while it rains), the theorem would go through. 
Either under one of the two evidential outcomes ± F the evidence-dependent Eu of 
one of the two actions, say A′, becomes greater than the best evidence-independent 
action, call it Aind, then we switch from Aind to A′ under this outcome and this will 
increase the Eu, or under both evidential outcomes Aind has still maximal Eu, in 
which case we stay with Aind and (by the proof of equation (3)) the Eu will be 
preserved. 

This proof generalizes to arbitrary finite partitions of possible actions, circum-
stances, and evidence, leading to the following result:

Theorem: Optimality of the PTE.
Assume a partition C of possible circumstances and a partition of possible actions A whose Eu is gov-

erned by the decision-theoretic formula (2). Then:
(1.) Conditionalization of the probabilities of the circumstances C ∈ C of one’s possible actions A ∈ A 

on the cells of a partition F of additional evidence can only increase but not decrease the Eu of the 
agent’s evidence-dependent action A* defined as follows:

(A*): “For all cells F in F, if F is observed, then choose action AF,” where AF is the action with the high-
est F-conditional Eu.

(2.) Moreover: Let A
ind

 , be the fixed (evidence-independent) action with the highest Eu. Then: If for all , 
then A* has the same Eu as A

ind
, but if for at least one , then the Eu of A* increases.

The general mathematical fact behind this theorem is expressed by Schwarz 
(2021) as follows: The maximum of a weighted average with a variable parameter 
(which is Eu(¬U|{F,¬F}) is always smaller than or at most equal to the correspond-
ing weighted  average of the maxima (which is Eu(U*|{F,¬F}) (see also Bradley 
and Steel 2016, 4).

Three features of this general result are remarkable:

Eu(U|¬F) = 0.15 ⋅ 3 − 0.85 ⋅ 1 = −0.4 < Eu(¬U|¬F) = 0.15 ⋅ 0 + 0.15 ⋅ 0 = 0.

(6)Eu(U*|{F,¬F}) = P(F) ⋅ Eu(U|F) + P(¬F) ⋅ Eu(¬U|¬F).
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First: The argument holds for every utility function. This result is astonishing, in 
particular in the domain of predictions (see below).
Second: The only essential assumption of the optimality result is that the 
costs of acquiring new information are negligible. (Note: this is a different 
thing than a possible utility of the evidence.) If these costs are too high, 
they could of course offset the benefits gained. Some counterexamples to 
the PTE are of this sort—for example, the first counterexample in Schwarz 
(2021).6
Third: The result implies two things: (i) That you should take into account all the 
(relevant) evidence that you actually possess, but also (ii) that you should try to 
gather new evidence whenever this is easily possible, because by doing so you 
cannot decrease and will in most cases increase the Eu of your actions.

Horwich (1982, 125–128) objected against Good’s proof that it would apply 
only to practical (non-epistemic) actions. But this is not true: the possible actions in 
Good’s proof may also be purely epistemic actions, for example, predictions whose 
utility is given by a predictive scoring measure. In our example, the actions would 
be predictions of tomorrow’s weather, abbreviated as “pred(± R)” for predicting R 
or ¬R . The optimal fixed prediction in our weather example would be pred(¬R ). 
But conditional on observing F the optimal prediction is not ¬R but R. So the 
rational forecaster predicts R if F was observed and ¬R if ¬F was observed, and this 
increases the predictive score. Let us designate this evidence-dependent prediction 
as pred*. Good’s proof applies in precisely the same way and our theorem applies: 
the Eu of pred* can only increase but not decrease the Eu of the best evidence-
independent prediction, and this result holds for every scoring function (for details 
cf. Schurz, 2024, sec. 7.3).

We have illustrated Good’s argument for qualitative predictions (predic-
tions of events), but a related argument applies to the predictions of probabili-
ties (cf. Thorn, 2017). In this case, the possible predictions are P-distributions 
P ∶ {e

1
,… , en} → [0,1] , where {e1,…,en} are the possible events (in our exam-

ple ± R). The prediction is scored against the truth-value “1” of the true event, 
etrue, among the partition of predicted events, i.e., score(pred) = 1 − loss(P(etrue),
1), where “loss” is a loss function (cf. Cesa-Bianchi & Lugosi, 2006, ch. 9). For 
probabilistic predictions the scoring function is usually assumed to be proper (e.g., 
quadratic), because only for proper scoring functions is it optimal for the fore-
caster to predict her (rationally estimated) probabilities of the events (cf. Brier, 
1950; Maher, 1990, 113). In contrast, for linear scoring (loss(pred,1) = 1 − pred), 
it is optimal to predict the roundings of the event’s probabilities to 0 or 1 (the 
so-called “maximum rule”; cf. Schurz, 2019, 103). However, Good’s optimality 

6 A further problem arises when one conditionalizes on new evidence for which one’s estimated condi-
tional probabilities are highly imprecise. In what follows, we ignore this problem (see Bradley and Steel 
2016 for a nice treatment of this problem).
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argument for the PTE generalizes also to non-proper scorings, provided the pre-
dictions pred ∈ [0,1] are allowed to deviate from one’s actual probabilities that are 
used to compute the Eu.7

Let me note that the optimality of the PTE has an important consequence for 
the externalism-internalism debate, in the justificational sense of externalism/inter-
nalism (cf. Schurz, 2024, sec. 3.2). In epistemological externalism, the question 
of choosing the right reference class in which the reliability of a belief-generat-
ing method should be determined is part of what is called the generality problem 
(Conee & Feldman, 1998; Matheson, 2015). Within externalism, this question is 
largely undecided or at least hard to answer. But within justification-internalism, the 
question has a straightforward and unique solution: the reliability should be evalu-
ated with regard to the agent’s total relevant evidence for the belief in question. 

Finally, let me return to the presupposition of our decision-theoretic formula (2): that 
the choice of action is free in the sense of being probabilistically independent from those 
utility-determining circumstances Ci that are not causally influenced by the actions. First, 
note that if we conditionalize our decision on the available evidence E, this independ-
ence condition has to be formulated conditionally: Ci and the chosen action A should be 
independent conditional on E, i.e., P(Ci|E) = P(Ci|E ∧ A) . Second, the independence 
condition excludes various versions of Newcomb’s paradox, in which some past event 
X (in Newcomb’s paradox the prediction of a perfect or nearly perfect forecaster) deter-
mines which action you will choose, or the probability with which you will choose it, 
already in advance, so that there is a probabilistic dependence between the circumstances 
Ci (that incorporate ± X) and your choice of action. Newcomb’s paradox in its various 
versions generates a second line of purported counterexamples against Good’s proof of 
the universal rationality of the PTE (the 2nd, 3rd, and 4th counterexample in Schwarz, 
2021 falls under this category). I am inclined to think, however, that the assumption of 
Newcomb’s paradox is in conflict with the fact that decision theory delivers a norma-
tive recommendation. It is not possible for me here to go into the extensive literature 
on the Newcomb paradox8 and I content myself here with a brief statement of my main 
argument. Decision theory gives the normative recommendation that you should always 
choose the action with the highest expected utility, conditional on the total evidence E. 
But in typical Newcomb-type situations, the normatively recommended action is differ-
ent from that action that is determined or predicted by the past event X. This implies that 
in many cases it will be impossible for you to follow the decision-theoretic recommen-
dation. But this means that the decision-theoretic recommendation will itself be itself 
unreasonable, because according to the famous Ought-Can principle (Ought implies 

7 It may happen that conditionalizing on one cell of ±F , say on F, brings the actual probabilities closer 
to 0.5 (e.g., if P(R) = 0.2 and P(R|F) = 0.3). In this case, Good’s strategy with linear scoring would 
require to predict the old non-actual probabilities conditional on F (and the new conditional probabilities 
conditional on ¬F ), which is not allowed if one must predict one’s actual probabilities. Horwich (1982, 
128f.) proved that the PTE maximizes the Eu of one’s actual probabilities even under linear scoring, 
which is a second important result. But his proof is specially designed for linear scorings and does not 
generalize to arbitrary scorings.
8 Cf., e.g., Nozick (1969), Eells (1981), Lewis (1981), Skyrms (1982), Horwich (1985), Weirich (2020).
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Can), a normative recommendation can only be reasonable if the recommended action 
can be done. But in Newcomb-type situations, you know that certainly or with consider-
able probability the recommended action cannot be done, because a past event forces 
the agent to choose an action different from the recommended one. On the other hand, 
if the recommended action luckily agrees with the action the agent is forced to do, then 
the normative recommendation becomes superfluous. Summarizing, if the actions are 
determined by past circumstances, then normative recommendations either violate the 
Ought-Can principle or become superfluous. Therefore the freedom assumption seems to 
be an implicit presupposition of decision-theoretic recommendations.

Contrary to what other authors have written, I am tempted to conclude that the 
proof of the optimality of the PTE is highly general, so general that it may even be 
called universal. The only essential assumption on which it hangs is the negligi-
bility of the costs of acquiring new information. Let me finally defend this claim 
against two further frequently heard objections. Buchak (2010) has argued that the 
PTE does not apply to risk-avoiding agents. However, as long as risk-avoidingness 
is modelled by a suitably concave utility-function, there is no problem in risk-
avoidingness because the PTE holds for all utility-functions. Buchak’s violation of 
the PTE is due to the fact that she uses squared probabilities instead of probabili-
ties. This leads to some strange and in my view even incoherent consequences. For 
example, her account may give the following recommendations: “Perform action A 
whether-or-not condition C obtains, but as soon as C obtains, perform action ¬A”.

Another often-heard argument against the PTE asserts that some information is 
so “dangerous” so that it is better not to make it  accessible to the people; this can 
be the case even if the acquiration of the information is cost-free and the involved 
utilities are correctly estimated. As an example, let I be the information of how to 
build a small conventional bomb. Making I publicly accessible would be so dan-
gerous that this information should be better suppressed. On closer inspection, this 
is not a violation of the PTE but a problem of the social interaction of differing 
interests. For every single person P of a given collective C, giving information I to 
P will either have no effect for P’s utility (if P has no interest in building a bomb) 
or it will increase it (if it is in P’s interest to build a bomb). Nevertheless the util-
ity-sum of giving the information I to all members of C may be strongly negative, 
because the bomb-building actions of the few “bad guys,” although (assumedly) in 
their own interest, are utility-decreasing for so many other people that it is better 
for the whole society not to make this information accessible. In other words, the 
fact that the PTE can only increase (not decrease) the individual utilities of epis-
temic agents does not imply that it will increase the utility-sum of the collective; 
this only follows if the individuals’ utilities are sufficiently altruistic.

3  The Political Significance of the Principle of Total Evidence

In the concluding section, we discuss an apparent conflict of the PTE with political 
requirements of anti-discrimination. Consider the example of sex discrimination in 
job hiring (Birkelund et al., 2022):
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– According to the PTE, information about the sex (or biological gender) of the 
applicant should be included in the qualification-relevant evidence iff it is statisti-
cally relevant.

– In contrast, politicians of anti-discrimination often require sex to be ignored 
despite of its statistical relevance, because it would lead to discrimination.

Of course, if the belief about a correlation between sex and job qualification 
is not statistically supported, but is based on prejudice or some other sort of cog-
nitive bias, then the PTE does not demand sex to be included. Then, we should 
leave out the male/female information simply because the job assigner’s beliefs 
about properties correlated with biological sex are biased, i.e., wrong. There is a 
rich literature about cognitive prejudice and bias, but here we will not enter these 
topics. Rather, we make the idealizing assumption that our statistical beliefs are 
well supported by the statistical evidence. In other words, the assessment proce-
dure of the job assigner is not biased but well calibrated. Then it seems that we 
have a conflict: For the job assigner, conditionalizing on the additional information 
about sex increases the expected qualification of the chosen candidate(s). But at 
least for some candidates, this seems to be unfair, given that fairness means that 
the job assignment corresponds to the candidates’ objective job-relevant qualifica-
tions. This understanding of fairness is also called the meritocratic understanding 
(cf. Barocas et al., 2023, ch. 4).

Let us give an example: A woodworking factory has to hire a person for a wood 
chipper job that requires a lot of physical strength. According to statistical evidence, 
males are physically stronger on average than females. So if sex is a criterion for job 
hiring, then a female applicant will have less chances even if she is physically very 
strong. If statistics is correct, these cases of unfairness will be in the minority, but 
they will unavoidably occur, and with significant frequency. Similar examples may be 
given with sexes switched. For example, assume a nursery school hires a person for 
early childhood care. According to statistical evidence, female caregivers are better 
accepted by young children than males. So if sex is used as a criterion, a male person 
will have less chances to be hired even if children would like him most (cf. Birkelund 
et al., 2022, 347).

The only solution which I see is the following: One should base the decision 
about the job assignment solely on information about the directly relevant proper-
ties of the applicants. With this I mean those properties that are most direct causes 
of the job performance of the candidate (if the candidate would be hired), within 
the set of evidentially accessible variables. If we do this, then the merely indirectly 
relevant properties such as sex, race, or age are screened off, which means that after 
conditionalization on the directly relevant properties, they become irrelevant. In 
our example: The wood factory should directly test the candidates for their physi-
cal strength and other directly relevant properties, such as social skills, reliability, 
etc. Given this information, additional information about sex or other merely indi-
rectly relevant properties of the applicants becomes irrelevant. This is an implica-
tion of the so-called causal Markov condition, according to which conditionaliza-
tion on the direct causes screens off indirect causes from their effects, and likewise, 
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conditionalization on common causes screens off their effects from each other.9 
This means in terms of probabilities:

(7) P(qualification|physical strength & sex) = P(qualification|physical strength).
Let us generalize this idea. Assume the following variables (or partitions of their 

possible values) designated by bold-face letters:

– Q is a partition of degrees of qualification of the candidate (e.g., from 1 (best) to 
5 (worst)), understood as expressions of their future job performance which is to 
be predicted.

– D is a partition of evidentially accessible properties of the candidates that are 
(supposedly) directly causally relevant for Q and measured by a score S on which 
the decision is based.

– A is a partition of additional information, for example about sex, race, or age 
(etc.), that is merely indirectly relevant, by being correlated with S. In the litera-
ture on fairness in machine learning, A is often called the (partition of) sensitive 
attributes (Barocas et al., 2023, ch. 3; Mitchell et al., 2021, 149).

Then, I propose the following.

 (F) Fairness criterion.
If the score is fair, then Indep(Q,A|S) should hold (where “Indep(X,Y|Z)” means that if we fix the 

variableZ to a particular value, then the values of X andY, respectively, are mutually probabilistically 
independent).

In the literature on fairness in machine learning, (F) corresponds to an important 
anti-discrimination criterion that has been called sufficiency (Barocas et  al., 2023, 
ch. 3) or predictive parity (Mitchell et al., 2021, 154).

The causal model behind the above fairness criterion is illustrated in Fig. 1 below. 
Causal arrows are distinguished into required ones (marked with “r”), admissible but not 
required ones (marked with an “a”), and excluded ones (marked with a cross ×). Thus, 
the sensitive attribute A may (but need not) be relevant for Q, the job qualification, but 
if A is relevant for Q, then merely indirectly, via the path over the directly relevant prop-
erties D, whence A is screened off by conditionalization on D. This requires that the 
variable D must be complete, in the sense of covering all or almost all properties of the 
job candidate that are direct causes for Q. Moreover, the score S must be accurate in the 
sense of measuring the values of D precisely (in the sense that for all D-values d there 
exists an S-value s such that P(d|s) = 1) . If this is the case then not only D but also S 
screens off A from Q—which is the required condition because S determines the deci-
sion who will get the job. What is excluded is that information about A directly influ-
ences the score S or the decision (independent from D), or that A has a direct influence 
on Q (relative to the model), which would mean that the scoring variable S leaves out 
important causal information and, thus, fails to screen off indirect causes of Q. 

9 Cf. Spirtes et al. (2000), sec. 3.4.1–2; Pearl (2009), 16–19; Schurz and Gebharter (2016), sec. 2.3, con-
ditions (6) and (8).
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Summarizing, it seems that by conditionalizing on the directly relevant proper-
ties, unfairness can be avoided. Moreover, if we are not sure which of the eviden-
tially accessible variables are the directly relevant ones, then conditionalization 
on more information can reveal possibly discriminating variables that are merely 
indirectly relevant—by detecting screening-off relations. So it seems that the PTE 
“wins”: it is not really in conflict with anti-discrimination. Is this true? 

I conclude this paper with a brief discussion of three objections to the above fair-
ness criterion.

Objection 1: In the literature in fairness in machine learning, there is a hot con-
troversy about the “right” criterion of fairness (Barocas et al., 2023, ch. 3 + 4). In 
my view, the above criterion is the right one, given the causal model of Fig. 1. Let 
me mention two rival criteria of fairness:

The first rival fairness criterion is called independence or statistical parity and 
requires Indep (S,A) (Barocas et  al., 2023, ch. 3). This means that on average all 
A-members—in our example, both sexes—should achieve the same qualification 
score. Obviously, this can only be compatible with meritocratic fairness if on aver-
age all A-members—in our example, both sexes—are equally qualified. Otherwise, 
this criterion leads to some sort of “affirmative action” that is discussed below.

A second rival is called the criterion of separation (ibid., ch. 3) which requires 
Indep(S,A|Q). In this criterion, the roles of the variables S and Q are switched, com-
pared to our preferred criterion (F). Thus, in the causal model on which the separation 
criterion is based, S is assumed not to express causes but the effects of Q. This implies 
a rather different understanding of Q and S. It makes sense if Q takes the role of D, 
i.e., is identified with actually measurable properties of the candidate that are suppos-
edly relevant for its job qualification, while S is a possibly inaccurate score of Q.

Objection 2: Some people, politically mainly left-wing oriented, argue for so-
called affirmative action. This is based on the idea that members of an underrep-
resented or even discriminated group should be preferred even if they are on aver-
age less qualified, because this kind of “compensatory unfairness” is necessary 
for breaking up historically or socially anchored injustice. An example would be 
the university policy to hire 50% males and 50% females for a professor job in 
theoretical philosophy, which is a discipline where we typically have 75% males 
and 25% females among students, researchers, and applicants for the professor job. 

Fig. 1  The causal model behind 
the fairness criterion of suf-
ficiency (or predictive parity). 
Causal arrows are distinguished 
into required ones (“r”), allowed 
ones (“a”) and excluded 
ones (“×”). “1:1” means that 
∀d ∈ Val(D) ∃s ∈ Val(S) ∶ P(d|s) = 1

Q

   r

D             S Decision (job assignment)

   a

A

r  1:1
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Affirmative action is controversial—how much unfairness (in the meritocratic 
sense) is tolerable in this attempt to encourage women’s engagement with theoretical 
philosophy? I do not want to discuss this question here. Rather, I want to emphasize 
that even if one supports affirmative action, the general optimality proof of the PTE 
stays intact, since PTE’s optimality holds for all utility functions. All what changes 
for a selection criterion based on affirmative action is the relevant utility function of 
the available actions and the partition of utility-determining circumstances. In our 
example, the utility of the hired applicant is then not only based on the candidates 
merits, but also on other desired properties such as the sex of the candidate. So “sex” 
is no longer merely “indirectly relevant,” but becomes a directly relevant property.

Objection 3: One may object that our recommendation makes only sense under 
the idealizing assumption that we possess sufficient information about the directly 
relevant qualification properties of the candidates. If the job recruiter is uncertain 
about these properties of the candidates, then the PTE recommends conditionali-
zation of the estimated qualification on evidence about merely indirectly relevant 
evidence properties. This will increase the expected qualification of the hired 
candidate, since now his or her qualification is no longer screened off from these 
indirectly relevant properties. However, the so achieved increase of the average 
qualification has the cost that it will produce a certain amount of unfairness. This 
unfairness can be measured in terms of the numbers of pairs of candidates A, B in 
which A is preferred over B although A is less competent than B.

I conclude that in such a situation there is a trade-off between maximizing the 
expected qualification of the chosen candidate and maximizing meritocratic fairness. 
What would be a fair policy in such a situation? A detailed answer to this question 
is beyond the scope of this paper. I confine myself with a remark concerning a fre-
quently heard suggestion, namely that without knowledge about the directly job-rele-
vant properties, one should choose the candidate randomly. Remarkably, many people 
find such a random choice as fair. However, if we use our measure of unfairness—the 
numbers of pairs of candidates A, B in which A is preferred over B although A is 
less competent than B—then a random choice will in most cases both decrease the 
expected qualification of the chosen candidate and increase the amount of unfairness. 
So I think the random-choice strategy is not a satisfying solution. I conclude that a 
true dissolution of the conflict is not possible by the suppression of information, but 
only by its magnification, by trying to achieve as much information as possible about 
those properties that are directly relevant for the decision one has to make.
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