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Abstract
Drawing on past work, we introduce a new approach to the New Riddle of Induc-
tion, showing that the inductive projection of gruesome properties is unreliable 
under particular ideal conditions that are sufficient for the reliable inductive projec-
tion of non-gruesome properties. As an auxiliary to our account, we introduce rules 
for resolving conflicts between background information and the conclusions of oth-
erwise reliable inductive inferences. Our approach to the New Riddle of Induction 
is quite permissive in the range of properties it recognizes as suitable for inductive 
projection, allowing for the inductive projection of highly gerrymandered non-nat-
ural properties. However, as an addendum to our discussion of the New Riddle, we 
show that natural properties do form a more reliable basis for inductive projection in 
cases where one’s sample is small.

Keywords Problem of induction · New riddle of induction · Nelson Goodman · 
Natural properties · Projectability

1 Introduction

In 1955, Nelson Goodman formulated so called ‘gruesome’ predicates in order to pre-
sent a previously unknown problem concerning the cogency of inductive inference 
(Goodman, 1955). In his original example, Goodman invites us to imagine a situation 
where, prior to the present time t, we have gathered a large sample of emeralds and 
observed that they are all green. In this situation, it appears that we have grounds for 
thinking it likely that all or nearly all of the emeralds that we have yet to observe are 
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also green, on the basis of a rudimentary principle of induction that tells us to expect 
that generalizations that hold for our observed sample will also hold for objects that are 
not in our sample. To illustrate a problem with this way of thinking (and the rudimentary 
principle of induction), Goodman introduced the term “grue” that applies to an object if 
and only if it is green and examined before t or blue and not examined before t. Within 
Goodman’s example, all of the emeralds in our sample are green and examined before 
t. So application of the rudimentary principle of induction tells us to expect that all or 
nearly all of the emeralds not in our sample are grue, and thus blue, since these emeralds 
were not examined prior to t. Goodman’s example thereby shows that the rudimentary 
principle of induction readily leads to inconsistent conclusions (i.e., that emeralds not 
in our sample are both green and blue). The Goodman problem, also known as the New 
Riddle of Induction, is the problem of identifying which of the generalizations that hold 
for our sample can reasonably be expected to hold for objects that are not in our sample.

Throughout the article, our concern will be with inductive inference in a narrow 
sense that is understood as including any inference that precedes from a principal 
premise stating that the frequency of a property ϕ within one’s sample is some value 
r (or within a range of values R) to the conclusion that the frequency of ϕ among a 
larger domain is probably approximately r (or within R), with the possibility of aux-
iliary premises specifying additional conditions (e.g., that the sample was random) 
whose function is to establish the reasonableness of the accepting the conclusion on 
the basis of the principal premise. Following past usage, we will refer to the act of 
inductive inference (in the narrow sense) as “inductive projection”. We will say that 
a predicate is projectable in a given situation if and only if the inductive projection 
of the predicate is reasonable in the given situation.

Typical approaches to the Goodman problem take the form of criteria aimed at 
blocking a range of intuitively undesirable inductive inferences, and invariably get 
things wrong in at least one of two possible ways: (1) by not blocking some inductive 
inferences that should be blocked, or (2) by blocking some inductive inferences that 
should not be blocked. Rather than identify general criteria aimed at blocking induc-
tive inferences with gruesome predicates, we make the following observation: Under 
certain conditions that may be regarded as ideal ones under which to perform induc-
tion, induction with gruesome predicates is unreliable. Inasmuch as we reasonably take 
ourselves to be in conditions that sufficiently approximate ideal ones for performing 
induction, we may reasonably judge that inductive inferences with gruesome predicates 
are not reliable, and so (obviously) should not be made. In the end, showing that induc-
tion with gruesome predicates is unreliable is not sufficient to address all Goodman-
type worries, since Goodmanesque problems may arise due to conflicts between our 
background information and the conclusions of otherwise reliable inductive inferences. 
In order to address such cases, we introduce rules for resolving conflicts between back-
ground information and the conclusions of otherwise reliable inductive inferences.

Our approach to Goodman’s problem is relatively permissive regarding the range 
of predicates that may be employed in making cogent inductive inferences. As a 
postscript to our discussion of the New Riddle, we consider whether there is any rea-
son to prefer some species of ‘natural’ predicate as a basis for induction. We answer 
in the affirmative, and explain why a certain kind of natural predicate tends to sup-
port more reliable inductive inferences in cases where the sample size is small.
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2  Discussion of Other Approaches

There are quite a number of alternative approaches to the Goodman problem. Rather 
than present an exhaustive survey, we consider three past approaches that illustrate 
the kinds of difficulties that arise when attempting to address Goodman’s problem. 
Despite their limitations, none of the approaches that we consider are without merit, 
and our approach synthesizes aspects of the three approaches that we consider.

2.1  Qualitative Predicates

This approach was proposed by Carnap (1947) and defended by Swinburne (1968), 
who was keen to point out that Goodman had been too quick in dismissing the 
proposal to restrict the set of projectable predicates to ones that are qualitative. 
Although proposed definitions vary, Swinburne defined a qualitative predicate as 
one whose applicability can be determined without knowing “its spatial or tempo-
ral relation to a particular object, event, time, or place” (Swinburne, 1968, 124). 
Although green is a qualitative predicate and grue is not, Swinburne’s proposal 
gets things wrong in two critical ways: (1) by blocking some inductive inferences 
that should not be blocked, and (2) by not blocking some inductive inferences that 
should be blocked.

While inductive inferences with qualitative predicates may appear to be on firmer 
ground than inductive inferences with non-qualitative predicates, it’s clear that many 
inductive inferences with non-qualitative predicates are cogent and of practical 
importance. For example, suppose one wants to make an inductive inference con-
cerning what percentage of a group’s members were born in France. It is possible to 
imagine situations where one will want to have such information, and it is reason-
able to make an inductive inference based on a random sample to draw a conclusion 
about the frequency of a group’s members that were born in France.

Swinburne’s official proposal was that inductive inferences using qualitative 
predicates take priority over those using non-qualitative ones, in case of conflict, 
which appears to allow for cases of cogent inductive inferences with non-qualita-
tive predicates. However, in the absence of further principles, Swinburne’s official 
proposal collapses into the doctrine that only inductive inferences with qualitative 
predicates are cogent, since for any inductive inference formulated using a non-qual-
itative predicate there is an inference formulated using a gruesome predicate that 
yields a conflicting conclusion. Since Swinburne’s approach offers no means for pri-
oritizing any of the inductive inferences with non-qualitative predicates over others, 
Swinburne’s approach winds up blocking all inductive inferences with non-qualita-
tive predicates, and thereby some inductive inferences that should not be blocked.

Swinburne’s approach also fails to block some inductive inferences that should be 
blocked. To see why this is, notice that in many circumstances it is possible to for-
mulate non-projectable qualitative predicates. We describe a schema for generating 
such predicates as follows. First, observe that qualitative predicates are closed under 
disjunction: if x is ϕ is a qualitative predicate and x is ψ is a qualitative predicate, 
then x is ϕ ∨ x is ψ is also a qualitative predicate. Next notice that it will frequently 
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be possible to form qualitative predicates of the following form: x is χ1 ∨ … ∨ x 
is χn ∨ x is γ, where one’s sample has n elements and for all i, x is χi is the most 
specific qualitative description we are able to provide of the ith member of the sam-
ple, and x is γ is an arbitrary qualitative predicate.1 Such predicates will permit the 
formulation of an inductive inference to the conclusion that all (or almost all) of the 
objects not in our sample are γ (where γ is arbitrary), so long as the available quali-
tative descriptions for the sample members are so specific that none (or few) of the 
objects outside the sample satisfy any of the descriptions. This will not always be 
the case, but it often will, as for example when one is reasoning about human beings 
(since no two are precise qualitative duplicates) and similarly for moderate-sized 
physical objects (since no two objects will have the exact same mass, etc.).

2.2  Counterfactual Independence

The basic idea behind this approach is that a property ϕ is projectable for a given 
sample only if each ϕ in one’s sample would still have been ϕ if it had not been in 
one’s sample. The proposed projectability condition is known as a counterfactual 
independence condition, since it requires that an object’s being ϕ is independent of 
its being in the sample (i.e., the objects in one’s sample that are ϕ would still have 
been ϕ in the counterfactual situation in which they were not in the sample). The 
approach was first proposed by Jackson (1975), but more sophisticated variants of 
the approach have gradually been formulated, in order to address problems raised by 
critics (Godfrey-Smith, 2003, 2011; Jackson & Pargetter, 1980; Warren, 2023).

We are sympathetic to the idea that the satisfaction of such a condition is neces-
sary for the projectability of a predicate, but it is clear that no such condition will be 
sufficient to block all intuitively undesirable inductive inferences. To see that this 
is so, it is sufficient to notice that it is generally possible to formulate a non-pro-
jectable predicate where an object’s satisfaction of the predicate is counterfactually 
independent of its membership (or not) in our sample. The highly gerrymandered 
qualitative predicates that we introduced in the previous subsection will serve this 
purpose. Moreover, since we need not limit ourselves to qualitative predicates in the 
formulation of the predicates that are now under consideration, it looks like it will 
always be possible to formulate a non-projectable predicate that slips by any pro-
posed counterfactual independence condition.2

2.3  Derivative Defeat

In a recent account, Freitag introduced a notion of ‘derivative defeat’ as a means 
to explaining why the projection of grueness (but not greenness) is defeated in 

1 Similar examples originate with Scheffler (1963).
2 Warren’s (2023) approach to the New Riddle combines a counterfactual independence condition with 
a ‘derivative defeat’ condition of the sort we consider in the next subsection, and is supposed to avoid 
the present problem thanks to the derivative defeat condition. We explain later why Warren’s derivative 
defeat condition gives the wrong results in some cases.
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Goodman’s example (Freitag, 2016). According to Freitag, “the projection of an 
(inductively confirmed) hypothesis is derivatively defeated if and only if the perti-
nent inductive evidence doxastically depends on the inductive evidence for the pro-
jection of a discriminating predicate”, where a discriminating predicate is one where 
the agent knows that the predicate applies to all members of the sample, and to no 
objects outside of the sample (Freitag, 2016, 8). Expressed in more colloquial terms, 
Freitag’s proposal is roughly that induction with a predicate ϕ is defeated if the evi-
dence that the objects in our sample are ϕ depends on the evidence that the objects 
in our sample are ψ, where we know that an object is ψ if and only if it is a mem-
ber of our sample. Freitag’s notion of derivative defeat applies straightforwardly to 
Goodman’s example, since, within the example, (1) the proposition that all emeralds 
in the sample are grue doxastically depends on the proposition that all emeralds in 
the sample were examined before t, and (2) the predicate examined before t is dis-
criminating (i.e., is known to apply to all and only members of our sample).

Freitag’s approach seems to correctly identify a problem with inductive infer-
ences with predicates such as grue, since the trouble apparently derives from trying 
to project a disjunction of a discriminating predicate (green and observed before t) 
and another arbitrary predicate. In fact, the problem identified by Freitag is closely 
related to a general problem that was identified by Pollock, which involves inference 
to an arbitrary proposition T from the disjunction of T with another proposition R, in 
a case where one has both a defeasible reason to believe R and a defeasible reason to 
believe not R (Pollock, 1995, 116). Pollock called instances of this kind of reasoning 
“self-defeating”, because some steps in such chains of reasoning conflict with oth-
ers. In the end, we think that a principle such as Freitag’s is needed in addressing 
Goodman-type cases that arise due to conflicts between our background information 
and otherwise reliable inductive inferences. Nevertheless, Freitag’s approach readily 
yields the unwelcome results when applied to variations of Goodman’s example.

Consider an agent, Tamara, who interacts with her environment using a sensor 
that detects whether or not objects are grue.3 Tamara knows what green and blue 
objects look like, but at present the only ‘color’ discriminations she is able to make 
are between grue and non-grue objects. Suppose that Tamara knows that an object is 
grue just in case it is green and examined before t or blue and not examined before t, 
but she does not know the date, and so she does not know whether t is in the past or 
in the future. Under these conditions, Tamara draws a sample of emeralds and ‘sees’ 
that they are all grue. After she has examined the emeralds in her sample, Tamara 
receives the information that the time is t and so correctly infers that all of the emer-
alds in the sample were examined before t. Tamara then correctly deduces that all of 
the emeralds in her sample are green. Tamara finally considers whether to project 
grueness or greenness to the emeralds that are not in her sample.

Within the preceding example, Tamara’s belief that the emeralds in her sample 
are green is dependent on the evidence that they were examined before t. So her pro-
posed projection of greenness to the emeralds that are not in her sample is subject to 

3 We assume that the sensor integrates information about time and the color of objects in order to indi-
cate with 100% reliability which objects are grue and which are not.
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derivative defeat, according to Freitag’s criterion. On the other hand, Tamara’s judg-
ment that the emeralds in her sample are grue is not doxastically dependent on the 
evidence that they were examined before t (or any other discriminating predicate). 
So her proposed projection of grueness to the emeralds that are not in her sample is 
not subject to derivative defeat, according to Freitag’s criterion.

Despite the recommendations of Freitag’s approach, it appears that Tamara 
should project greenness, and not grueness, to the emeralds that are not in her sam-
ple. Indeed, although the means by which Tamara came to know that the objects 
in her sample are green is indirect, her grounds for projecting greenness is no less 
cogent than the grounds of an agent who came to know that the emeralds in her sam-
ple are green in the normal way.

Despite her unusual situation, Tamara’s concepts and innate perceptual capaci-
ties are similar to our own. If we consider an agent whose concepts and innate per-
ceptual capacities are quite different than ours, it is evident that Freitag’s approach 
is unsatisfactory as a general solution to the Goodman problem. Indeed, consider 
an agent whose innate perceptual capacities present objects as grue and bleen, and 
for whom grue and bleen are basic conceptual categories, where greenness is only 
derivatively defined as grue and observed before t or not bleen and not observed 
before t.4 For such an agent, Freitag’s account tells us that, upon observing a sam-
ple of grue emeralds prior to t, the projection of greenness rather than grueness is 
subject to derivative defeat. So, in the end, Freitag’s account leads us to a form of 
relativism about which properties it is correct to project (cf. Dorst, 2018).5

3  Ideal Conditions for Induction

It is difficult to specify the problematic properties that give rise to the Goodman 
problem via a precise definition that blocks all of the inductive inferences that 
should be blocked, without also blocking some inductive inferences that should not 
be blocked. However, it is possible to show that certain sorts of properties (namely, 
green-like ones) support reliable inductive inferences under ideal conditions, while 
other properties (namely, grue-like ones) do not. This is the cornerstone of the 
approach taken here, namely, to investigate which properties support reliable induc-
tive inference under the sorts of conditions that are ideal ones in which to perform 
induction. Roughly stated, the ideal conditions that we consider are ones in which 
(i) sampling is random, and (ii) the properties of objects do not vary according to 
which objects are in the sample, save those differences implied by membership or 
non-membership in the sample. We refer to condition (ii) as “domain stability under 
sampling”, or “domain stability”, for short.

4 An object is bleen if and only if it is blue and examined before t or green and not examined before t.
5 The derivative defeat condition proposed by Warren (2023) yields the same conclusions as Freitag’s 
in this example and in the case of Tamara, and so also leads to what we regard as an undesirable form of 
relativism.
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Where the size of our sample is n, we use the expression σn to denote the set of 
n-membered subsets of the relevant domain D. Condition (i) requires that each ele-
ment of σn has the same probability of being sampled, i.e., our sampling procedure 
is an instance of a random experiment of drawing an n-membered sample from D, 
and each element of σn has the same probability of being the sample, namely, 1/|σn|.

In specifying ideal conditions under which to perform induction, domain stability 
is needed in addition to random sampling, since for any predicate, ϕ, whose sat-
isfaction by objects is contingent, random sampling is insufficient to support reli-
able inductive inferences concerning ϕ, due to the possibility that which objects are 
ϕ depends on which objects are in the sample. To see why this is so, first notice 
that, for some properties, which objects have the property always depends on which 
objects are in the sample. For example, which objects have the property ‘being a 
member of the sample’ always depends on which objects end up in the sample, and 
of course induction using the predicate ‘x is a member of the sample’ is obviously 
unreliable. But similar issues can arise for almost any property. For example, the 
inductive projection of greenness will be unreliable in situations where being green 
is fully dependent upon being a member of the sample, under conditions where any 
object that is not subject to the causal influence of sampling is non-green.

In order to provide a more precise statement of what domain stability requires, 
we use the terms  c1, …,  ck as rigid designators for the elements of D, and the terms 
s,  s1, …,  sm as rigid designators for the elements of σn. We use the expression S as a 
definite description denoting, in each possible world, the set of objects that are in the 
sample in that world, and we use terms of the form  wsi to refer to the counterfactual 
variant of the world w in which S =  si. Finally, in order to express which facts must 
remain stable regardless of which sample is selected, we use a notion of intrinsic-
ness that was explicated by Marshall and Weatherson (2018):

Intrinsicness: F is intrinsic if and only if, necessarily, for all x, if x is F, then x 
is F is a matter of how x and its parts are and how they are related to each other, 
as opposed to how x and its parts are related to other things and how other things 
are.6

Given these preliminaries, we define domain stability as follows:

Domain stability holds for S in a world w if and only if there is a situation (or an 
incomplete possible world)  w−s such that

(1) w−s agrees with each  wsi regarding the intrinsic properties of all objects, 
and

6 The present definition of intrinsicness is one of many notions of intrinsicness that Marshall and Weath-
erson identify and explicate. The present notion is most suitable for our purposes, but we do not here 
advocate a view concerning the definition’s primacy as an explication of intrinsicness.
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(2) for all  wsi, the set of statements that are true in  wsi is the deductive closure 
of { α | α is true  w−s} ∪ { α | α ≡  (cj is in S) and  cj ∈  si} ∪ { α | α ≡ ¬(cj is in 
S) and  cj ∉  si}.7

In understanding this definition, it may be helpful to think of the situation  w−s 
as if it were a complete possible world, with the worlds  ws1, …,  wsm being variants 
of  w−s that differ only through the addition of exogenous labels specifying which 
objects are in S and which are not. In addition to demanding conformity among all 
of the  wsi concerning the intrinsic properties of objects (in condition (1)), domain 
stability demands conformity concerning all further properties and relations that can 
be fixed independently of fixing which objects are in S (in condition (2)).

In the case of actual agents drawing samples in order to make inductive inferences 
about the actual world, domain stability will probably never be satisfied, since any 
procedure that actual agents use for choosing a sample will always bring about some 
changes in the intrinsic properties of some objects. Despite this practical limitation, 
domain stability, as stated, is suggestive of the ideal towards which we would like to 
proceed when we take a sample as a basis for making an inductive inference (espe-
cially if we are open to the inductive projection of virtually any property). Namely, 
we want to avoid circumstances where our sampling procedure induces changes in 
those properties about which we are open to making an inductive inference.

Domain stability is obviously a sort of counterfactual independence condition 
with a focus on certain properties (namely, the intrinsic ones). Our approach thereby 
synthesizes elements of Jackson’s approach with Swinburne’s proposal to assign 
priority to inductive inferences concerning qualitative properties (a close relative 
of intrinsic properties). We acknowledge that what we call “domain stability” is 
essentially domain stability with respect to intrinsic properties, and that one could 
achieve conclusions similar to the ones that we reach concerning intrinsic properties 
by substituting another sort of properties for the intrinsic ones in the definition of 
domain stability.8 We are open to considering other forms of domain stability, but 
focus on intrinsic properties, since (1) it is typically reasonable to expect domain 
stability to hold approximately for intrinsic properties, and (2) many non-intrinsic 
properties supervene on the intrinsic ones with the result that stability with respect 
to intrinsic properties ensures stability with respect to many non-intrinsic properties.

In cases where domain stability holds for a sample in a world w, it will be 
important to notice later that facts about which objects are green in a given world 

7 A situation is here understood to be an incomplete possible world. Unlike possible worlds wherein 
the set of propositions true in a world is both consistent and maximal, the set of propositions that is 
true in a situation is consistent but not maximal. We take no further stand on what kind of entity a situ-
ation is. We thereby allow for possible situations where an object is grue and yet there is no fact of the 
matter about whether the object was observed before time t, and so no fact of the matter about whether 
the object is green and no fact of the matter about whether the object is blue. Condition (1) of domain 
stability ensures that  w−s is not a situation of this kind. Indeed, since being green is an intrinsic property, 
condition (1) demands that if a given object is green in some  wsi, then it is green in  w−s and in each of 
the other  wsis.
8 One alternative would be to consider domain stability with respect to the set of properties, where is the 
largest set of properties such that domain stability holds with respect to those properties.
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w are fixed by  w−s, whereas facts about which objects are grue in w are frequently 
indeterminate in  w−s. The preceding holds since being green is an intrinsic prop-
erty, as is being blue. So for each object in D,  w−s specifies whether the object is 
green, blue, or neither. On the other hand,  w−s leaves the question open concern-
ing which of the green and blue objects in D are grue, since  w−s leaves the ques-
tion open concerning which objects in D are in S.

In the following section, we show that induction with non-Goodman-type 
predicates is reliable under conditions of random sampling and domain stability, 
while induction with Goodman-type predicates is not. Our position in addressing 
the Goodman problem is, then, that we frequently find ourselves in conditions 
that sufficiently approximate random sampling and domain stability, and so we 
frequently have grounds for making inductive inferences with non-Goodman-type 
predicates, while rejecting inductive inferences with Goodman-type predicates. 
Before proceeding, we consider some preliminary objections to the assumptions 
we have made so far.

To begin with, it may be objected that our use of the concept of an intrinsic 
property is problematic, since, despite ongoing efforts, no widely accepted analy-
sis of this concept has been given. In fact, we don’t think that the ongoing con-
troversies present a problem for our proposal, because cogent disagreements over 
the concept intrinsicness are exclusively at the margins (concerning the precise 
analysis of the concept and concerning the application of the concept in usual 
cases), in the context of broad agreement about which properties are intrinsic. To 
this we would add that our interest in the concept of intrinsicness is largely a mat-
ter of its suitability in playing a particular ‘functional role’ within our approach 
to the Goodman problem. In particular, stability is demanded with respect to 
‘intrinsic properties’ with the consequence (as we will see) that induction with 
predicates that denote ‘intrinsic properties’ is reliable. Since our concern with 
intrinsicness is limited to the fulfilment of this functional role (moving from sta-
bility regarding x to reliability with x) we are happy to adopt a flexible stance 
toward disagreements concerning the precise analysis and nature of intrinsicness.

Assuming categorical objections to our use of the concept of intrinsicness are 
waived, further worries are certainly possible. Such worries relate to two proposi-
tions that are critical to our approach: (1) that we are able to reliably distinguish 
between intrinsic and extrinsic properties, and (2) that we are often in a situa-
tion wherein it is possible to draw a sample in such a way that we may justifi-
ably believe that domain stability and random sampling hold for the sample (at 
least approximately). It must be acknowledged that both of these propositions are 
dubitable. But indubitability is surely the wrong standard to adopt in the present 
context, since our aim is not to refute skepticism or even skepticism with regard 
to induction (Hume’s problem). While the two propositions are obviously subject 
to skeptical worries, they are supported by common sense and contemporary sci-
ence, and this is sufficient for our goal, which is to explain why some inductive 
inferences are reasonable and others are not. This being our principle response 
to possible objections, let us briefly consider specific worries that may be raised 
concerning the two aforementioned propositions.
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Consider the claim that we are able to reliably distinguish between intrinsic and 
extrinsic properties. To begin with, it appears that most of the properties that John 
Locke called “primary qualities” are intrinsic as a matter of conceptual necessity, 
and so having the proper conception of these properties is sufficient for understand-
ing that they are intrinsic. For example, if one understands what it is for an object 
to be  cube-shaped, then one sees for any cube-shaped object that its being cube-
shaped is a matter of how the object and its parts are and how they are related to 
each other, and not a matter of how the object and its parts are related to other things 
and how other things are. The situation is somewhat different with those properties 
that Locke called “secondary qualities”. Take, for example, the property of being 
green. Our common sense conception of greenness appears to include the idea that 
an object’s being green is a matter of how the object itself is, and not a matter of how 
the object is related to other things. However, there is still controversy concerning 
which property, if any, our common sense conception of greenness denotes. Faced 
with this problem, we propose to treat a predicate as denoting an intrinsic property if 
there is a possible relatively felicitous precising definition of the predicate such that 
the predicate so defined denotes an intrinsic property. Contemporary science tells us 
that there are possible definitions of this sort for color predicates such as ‘x is green’. 
Schematically such a definition would take the following form: x is green = dfn x has 
a physical surface of sort ϕ (where having a physical surface of sort ϕ is intrinsic 
and it is understood that objects in the actual world reflect and absorb light in char-
acteristic ways as a consequence of having a physical surface of sort ϕ).

Now consider the claim that we are often in a situation wherein it is possible to 
draw a sample is such a way that we may justifiably believe that domain stability and 
random sampling hold for the sample (at least approximately). This claim is justified 
according to common sense and the picture of the world provided by contemporary 
science. The picture given by science and common sense tells us that we can select 
objects in a manner the approximates randomness using urns filled with numbered 
balls, for example. Similarly, science and common sense tell us that which intrinsic 
properties an object has is typically not dependent on our sampling procedures. It’s 
clear that the picture of the world given by science and common sense is dependent 
on some form or forms of non-deductive inference, and so the picture of the world 
given by science and common sense is potentially subject to skepticism about induc-
tion. But our goal here is not to address the problem of induction. So those worries 
are not a present concern.

In spite of the preceding, it might be objected that an agent with a suitably for-
mulated ‘grue friendly’ conceptual scheme could make parallel arguments for the 
agent’s favored gruesome predicates, maintaining that the properties denoted by 
their favored gruesome predicates are actually the ones that are intrinsic. Our main 
point in addressing this worry is to observe that the notion intrinsicness appealed to 
in our account is non-relative in the following sense: Whether a property is intrinsic 
is not relative to any factor that could vary among different agents. In particular, the 
concept of intrinsicness includes no explicit or implicit indexical element that would 
allow for the possibility of one agent truly believing and another truly disbelieving 
that a given property is intrinsic. Rather if two agents differ in their beliefs about 
whether a given property is intrinsic, then those beliefs are in conflict and one of the 
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agents is mistaken. So if an agent disagrees with our judgment that green is intrinsic, 
then the disagreement concerns a factual matter. Regarding such factual disagree-
ments, we repeat our previous point: The claim the green is intrinsic is a matter of 
common sense and established science. The claim is perhaps dubitable. But since 
our goal here is not to address skepticism or even skepticism about induction, the 
dubitability of the claim is not a worry for us.

4  Induction Under Ideal Conditions

The justification of induction, in the case of random sampling, is plausibly pursued 
by appeal to a combinatorial principle about the frequent similarity of sets with 
their subsets. The combinatorial principle says: For any finite sets D and G, the vast 
majority of subsets of D of sufficient size have approximately the same frequency of 
Gs as D, regardless of what the frequency of G in D is. So if one randomly selects a 
sufficiently large set S (namely, a sufficiently large sample) of a given finite domain 
D, then it appears reasonable to expect that the frequency of Gs among S will be 
approximately the same as the frequency of Gs among D. Of course, not all instances 
of the preceding way of thinking are reasonable. For example, if G denotes the set of 
objects in one’s sample, then one’s sample will not agree with D on the frequency of 
G (assuming one’s sample is much smaller than D). It is also apparent that domain 
stability plays a role in distinguishing which properties can be reliably projected in 
the case of random sampling. Indeed, the frequency of green objects in one’s sample 
need not be a good indicator of the frequency of green objects in the full domain in 
cases where facts about which sample is selected influence which objects are green.

In order to get a concrete idea about how reliable induction is in the case of ran-
dom sampling with domain stability, consider a case where we take a random 100 
member sample from a 10,000 member domain and project the frequency of a given 
property G. It can be shown that induction is reliable in this case regardless of the 
frequency of G in the domain as a whole, which is a critical point, since our concern 
is typically with the case where we do not know what the frequency of G in the 
domain is, and we demand assurance that induction concerning G is reliable regard-
less of the frequency of G in the domain. For this reason, we consider all possible 
cases regarding the frequency of G in D, and show that the frequency of G in our 
sample tends to closely approximate the frequency of G in D, in each case. Because 
it is possible to compute the distribution of the frequency of G among the 100 mem-
ber subsets of D, given the number of Gs in D, it would be straightforward (though 
extremely tedious) to compute the probability of various claims concerning the dif-
ference between freq(G|S) and freq(G|D) (i.e., the difference between the frequency 
of G in S and the frequency of G in D), assuming various values of freq(G|D). 
Rather than present such calculations, we present the results of computer simula-
tions that estimate the mean difference between freq(G|S) and freq(G|D) for random 
samples, according to the possible values of freq(G|D).

Figure 1 presents the average difference between the frequency of G in a domain 
D and in a sample S, with the frequency of G in D as the independent variable. The 
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values presented in Fig. 1 were estimated via 1,000,000 randomly generated cases 
for each possible frequency of G in D. In each case, the set G and then the set S were 
selected independently and at random according to a uniform probability distribu-
tion. Within the simulations presented in Fig.  1, it is implied by the independent 
selection of G and S that the extension of G does not change according to which 
set S is selected. This assumption corresponds to domain stability: Domain stability 
permits us to infer that the extension of many predicates is invariant according to 
which sample is selected, and the method for selecting G and S ensures that G is one 
of these predicates.

Figure 1 illustrates that the inductive projection of G in these circumstances, is 
absolutely reliable in the case were freq(G|D) = 0 or freq(G|D) = 1, which is obvi-
ous since freq(G|D) = 0 implies that it is impossible to select a sample that contains 
any Gs, and similarly freq(G|D) = 1 implies that it is impossible to select a sample 
that contains any non-Gs. The projection of G is least accurate in the case where 
freq(G|D) = 0.5, with the difference between freq(G|D) and freq(G|S) averaging just 
less than 0.04 in that case. Regardless of the value of freq(G|D), the average differ-
ence between freq(GD) and freq(G|S) can be made as close to zero as one likes by 
increasing the size of the sample S, regardless of the size of D.

The data presented in Fig.  1 shows that the inductive projection of a property, 
G, based on a moderate-sized sample is reliable, regardless of the frequency of G 
in the population, assuming random sampling and assuming that the extension of 
G does not change according to which set S is selected. Of course, inductive pro-
jection is not reliable for all properties, under the ideal conditions considered here. 
The paradigmatic example is the property of being a member of the sample, which 
is obviously unreliable in any circumstance where the domain is much larger than 
one’s sample. Inductive projection is also unreliable for grueness, under the ideal 
conditions considered here. We make this point, by considering some further data 
concerning the simulations presented in Fig. 1.

Suppose that an object is G* if and only if it is (G and S) or (not G and not S). 
Figure 2 shows that the inductive projection of G* is not reliable, for many values of 
freq(G|D). For example, in the case where the frequency of G in the population is 0 
or 1, the difference between freq(G*|D) and freq(G*|S) is the difference between the 
size of D and the size of S divided by the size of D (i.e., (|D| −|S|)/|D|), which is 0.99 
in the cases presented in Fig. 2, and tends to 1 for increasing |D|, if |S| is constant. 
The inductive projection of G* is reliable in the case where freq(G|D) = 0.5 (or is 
near 0.5). In this case, freq(G|S) tends to be close to 0.5 (as shown in Fig. 1), and 
so both freq(G*|S) and freq(G*|D) also tend to be close to 0.5 by implication from 
freq(G|S) ≈ 0.5 and freq(G|D) ≈ 0.5 and the definition of G*.

The fact that induction with G is generally reliable, and induction with G* is not, 
derives from the fact that the extension of G, unlike the extension of G*, is inde-
pendent of which members of the domain came to be members of S. The fact that 
the extension of G is independent of the selection of S, and the extension of G* 
is dependent on the selection of S, is a consequence of choices we made in pro-
gramming our simulations. Of course, we could easily have set things up so that the 
extension of G* is independent of the selection of S, and the extension of G is not. 
Indeed, since G = (G* ∩ S) ∪ (¬G* ∩ ¬S), we could have selected G* (rather than G) 
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at random and independently of S. In that case, the inductive projection of G* would 
generally be reliable, and the inductive projection of G would not.9 However, such a 
‘reversal’ is impossible for the properties green and grue* (where grue* = (green ∩ 
S) ∪ (¬green ∩ ¬S)), in the case where domain stability holds, since greenness is an 
intrinsic property of objects. So, assuming domain stability holds, which objects are 
green does not change according to which objects are in S.

It might be suggested that a fair comparison of induction with G versus G* would 
treat freq(G*|D), rather than freq(G|D), as the independent variable in assessing 
the reliability of induction with G*. However, it would only make sense to treat 
freq(G*|D) as an independent variable, corresponding to the dependent variable 
|freq(G*|D) − freq(G*|S)|, in a case where the members of G* are selected indepen-
dently of the members of S (otherwise the selection of S would affect the value of 
freq(G*|D)). However, it is not possible to select the elements of G* independently 
of the elements of S in the case where G is an intrinsic property and domain stability 
holds.

It may be observed that Goodman’s original grue predicate would be better for-
mulated as: G′ = (G and S) or (B and not S), where G ∩ B = ∅. A variant of Fig. 2 
for G′ would have an independent variable for freq(B|D), in addition to one for 
freq(G|D), and a satisfactory condition for the reliability of projecting G′ would be 
that the mean difference between freq(G′|D) and freq(G′|S) be small regardless of 
the values of freq(G|D) and freq(B|D). It is clear from the data presented in Fig. 2 
that this condition cannot be met, since Fig. 2 implicitly represents the mean differ-
ence between freq(G′|D) and freq(G′|S), for the presented values of freq(G|D), in the 
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Fig. 1  The average difference in the frequency of G in the domain D (of size 10,000) and the sample S 
(of size 100, randomly chosen), depending on the frequency of G in D

9 In this case, it would be appropriate to treat freq(G*|D) as the independent variable in assessing the 
general reliability of inductively projecting G and G*.
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case where freq(B|D) = freq(¬G|D) (namely, the case where all the non-Gs are Bs). 
So the data presented in Fig. 2 shows that induction with G′ is not generally reliable.

There are, of course, many other Goodman-type predicates, and the results of our 
simulations don’t directly apply to all of them. Nevertheless, the simulation results 
presented here are representative of our approach, which is in the first instance to 
rule out undesirable inductive inferences by showing that they are not reliable, under 
conditions of random sampling and domain stability. The simplest recipe for gener-
ating problematic predicates is to take the disjunction of any predicate ‘x is ϕ’ and 
the predicate ‘x is a member of the sample’:

x is ϕ or x is a member of the sample

With the help of such compound predicates, we can formulate inductive infer-
ences for any conclusion whatsoever concerning the characteristics of the objects 
that are not in our sample. It is straightforward to show that inductive inferences 
with such predicates are typically not reliable, under conditions of random sampling 
and domain stability. Indeed, it is clear that induction with the predicate ‘x is ϕ or 
x is a member of the sample’ is only reliable to the degree that |ϕ| approximates the 
size of the domain. If ϕ is empty, then regardless of which objects end up in our 
sample, induction with the predicate ‘x is ϕ or x is a member of the sample’ will tell 
us that all objects not in our sample are ϕ, although none are.

The more direct point of the simulations presented in this section is to illustrate 
that induction with predicates denoting intrinsic properties is reliable under condi-
tions of random sampling and domain stability. More precisely, we claim that the 
following reliability principle holds for intrinsic properties:

For all predicates ϕ, if ϕ denotes an intrinsic property, then it is highly prob-
able that the frequency of ϕ in one’s sample will be approximately the same 
as the frequency of ϕ in the domain, given all and only the conditions that 

Fig. 2  The average difference in the frequency of G* (grueness) in the domain D and the sample S, 
depending on the frequency of G (greenness) in D
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obtained prior to the determination of which objects are in the sample, assum-
ing random sampling, domain stability, and that one’s sample is sufficiently 
large.

The principal ground for this claim is the already stated fact that, under the condi-
tions of random sampling and domain stability, induction with a relevant ϕ is reli-
able no matter what the frequency of ϕ is in the domain. Our conclusion, then, is 
that given the extent to which random sampling and domain stability fix the effects 
of sampling, no further facts concerning the situation prior to sampling can under-
mine the claim that it is highly probable that the frequency of ϕ in our sample will 
be approximately the same as the frequency of ϕ in the domain.

In what follows, when we  say that induction with a predicate ϕ is reliable, we 
mean that it is highly probable that the frequency of ϕ in one’s sample will be 
approximately the same as the frequency of ϕ in the domain, given all and only the 
conditions that obtained prior to the determination of which objects are in the sam-
ple. While domain stability and random sampling are sufficient for the reliability of 
induction with any predicate that denotes an intrinsic property, denoting an intrinsic 
property is not a necessary condition for the reliability of induction with ϕ. To see 
that intrinsicness is not necessary, notice that the reliability of the inductive projec-
tion of G, as illustrated in Fig. 1, is not a consequence of G’s intrinsicness. G is sim-
ply a set of objects that is selected at random and independently of the set of objects 
in the respective sample S. In fact, the results presented in Fig. 1 do not depend on 
the assumption that the elements of G were selected at random. Indeed, we could 
have selected the elements of G by any means that we like (e.g., with the goal of 
maximizing heterogeneity) and would still obtain the same results, so long as the 
elements of S were selected independently of the elements of G.

5  Managing Conflicts with Background Knowledge

In the preceding section, we argued that the intrinsicness of a property, ϕ, is a 
sufficient condition for the reliability of induction with the corresponding predi-
cate ‘x is ϕ’, under conditions of random sampling and domain stability. How-
ever, reliable inferential processes can still lead to conclusions that are inconsist-
ent with one’s background information. For example, suppose one takes a large 
random sample of objects from a domain, in a case where domain stability holds 
and one knows that 80% of objects in a given domain are green. In this case, 
one can reasonably expect that about 80% of the objects in one’s sample will be 
green, but it is obviously possible (however unlikely) that one draws a large sam-
ple in which only 20% of the objects are green. In such a case, inductive inference 
to the conclusion that 20% of the objects in the domain are green is obviously 
unreasonable. Similar situations may also arise in cases where we do not know 
the frequency of a given intrinsic property ϕ in a domain, but we are justified in 
assigning prior probabilities to the possible frequencies of ϕ in the domain, and 
we know the likelihood of the observed frequency of ϕ in our sample conditional 
on the different possible frequencies of ϕ in the domain. In such cases, we are in 
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a position to use Bayesian conditonalization to form justified conclusions about 
the posterior probabilities of different hypotheses concerning the frequency of ϕ 
in the domain. In case of conflict, we maintain that justified conclusions reached 
by Bayesian conditionalization override conclusions reached by inductive infer-
ence in the narrow sense (and this result is built into the projectability condition 
[PRO] that we introduce below, which deems any predicate that supports induc-
tion to a conclusion that conflicts with propositions we are justified in accepting 
to be non-projectable).

By exploiting inconsistencies with background information, it is also possible 
to formulate problematic predicates that generate problems analogous to the Good-
man problem. For example, in the situation described in the preceding paragraph 
(where we know that 80% of objects in a given domain are green but only 20% of 
the objects in our sample are green), induction with predicates of the form ‘x is 
non-green or ϕ’ is obviously unreasonable, where ϕ denotes an arbitrary intrinsic 
property. Similarly, in any case where we are in a position to identify an intrinsic 
property that characterizes all and only members of our sample, it is straightfor-
ward to define problematic predicates that denote intrinsic properties. This will be 
the case, for example, if every object in the domain has a unique mass, and we are 
able to measure the mass of each object in our sample. In that case, if  m1, …,  mn 
are the masses of the objects in our sample, M is the property of having mass  m1 
or…or mass  mn, and ϕ is an intrinsic property, then ϕ ∨ M is an intrinsic property. 
Although induction with ‘x is ϕ or x is M’ is correctly regarded as reliable prior to 
the determination of which objects are in the sample (assuming random sampling 
and domain stability), induction with the predicate is obviously unreasonable in any 
case where M characterizes membership in our sample. Moreover, it’s clear that in 
any case where we are in a position to formulate such predicates (because we are in 
a position to identify an intrinsic property that characterizes sample membership) 
we will be able to formulate inductive inferences for any conclusion whatsoever 
concerning the properties of objects that are not in our sample.

In order to address the problem of conflicts between background information and 
the conclusions of inductive inference with reliable predicates, we offer an approach 
that satisfies 4 desiderata:

1. Reliability: A predicate ϕ is projectable in a given situation only if given all and 
only the conditions that obtained prior to the determination of which objects are 
in the sample it is probable that the frequency of ϕ in the sample is approximately 
the same as the frequency of ϕ in the domain.

2. Consistency: The set of predicates Φ that is projectable in a given situation is 
such that the set of conclusions supported by induction from the elements of Φ is 
consistent with our background information and with other propositions we are 
justified in accepting.

3. Non-arbitrary Resolution: In the case where the conclusions of one or more 
inductive inferences are inconsistent with each other or with our background 
information and other propositions we are justified in accepting, the inconsist-
ency is resolved in favor of one conclusion over another only if there are cogent 
grounds favoring one of the conclusions over the other.
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4. Avoid Unnecessary Exclusion: Outside of inductive inferences that are deemed 
unreasonable as a consequence of avoiding inconsistency in a non-arbitrary man-
ner (conditions 2. and 3.), it is reasonable to accept the conclusions of reliable 
inductive inferences.

In order to satisfy the 4 desiderata, we propose two preliminary projectability 
conditions and a final definition of projectability that insures that induction with 
projectable predicates does not lead to inconsistency. Before proceeding, observe 
that condition 4 (Avoid Unnecessary Exclusion) is critical, since absent this con-
dition, we could easily satisfy the other three conditions by advocating skepticism 
about induction, i.e., that the set of predicates that is projectable in any given situ-
ation is, invariably, empty, thereby guaranteeing reliability, consistency, and non-
arbitrary resolution.

We call the additional projectability conditions “self-defeat” and “avoid the pro-
jection of overly broad predicates”. In stating the two conditions, we use the term 
“ρ” to denote the set of predicates that are reliable in the given situation (evaluated 
prior to sampling). Self-defeat is then expressed as follows:

Self-defeat [SD]: A predicate ϕ in ρ is projectable in a given situation only if 
there is no object c in our sample for which we are justified in believing that c is 
ϕ, such that for all collections of inferences, Σ, that we have made that are suf-
ficient for justifying our belief that c is ϕ, there exists a proposition, P, appearing 
in Σ, and a predicate ψ in ρ, such that P implies that c is ψ, and we are justified in 
believing that the frequency of ψ in the domain is not approximately identical to 
the frequency of ψ in the sample.

[SD] is similar to Freitag’s principle of derivative defeat, and its purpose is to 
exclude induction with a ϕ predicate in cases where our justification for attributing ϕ 
to some elements of our sample is derivative of our justification for attributing ψ to 
those objects, and we are justified in believing that the frequency of ψ in the domain 
is not approximately identical to the frequency of ψ in the sample (but notice that 
[SD] also applies in the case where ϕ = ψ). In understating [SD], we assume that we 
are justified in believing that the frequency of ψ in the domain is not approximately 
identical to the frequency of ψ in the sample if and only if we are justified in believ-
ing that freq(ψ|D − S) ∈ U and freq(ψ|S) ∈ V, for some U and V, such that U and V 
are subsets of [0, 1] and U ∩ V = ∅ (where D is the domain and S is the sample).

In one respect, [SD] is less restrictive than Freitag’s principle, because it only 
applies when a relevant ψ is in ρ, which is why [SD] does not deem ‘x is green’ to 
be non-projectable in the example of Tamara presented in Sect. 2. Beyond this, [SD] 
is far more demanding the Freitag’s principle, and it is straightforward to find exam-
ples where [SD] deems a predicate to be non-projectable but Freitag’s principle does 
not. For example, suppose we draw an n member sample (under conditions of ran-
dom sampling and domain stability). Suppose we also know that each element of the 
domain has a unique mass, and that exactly one element of the domain is yellow. Let 
 m1 through  mn specify n distinct possible masses, let M be the property of having 
mass  m1 or …or mass  mn, and let  My be the property of being yellow or having mass 
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 m1 or …or mass  mn. Now suppose that for each object c in our sample we are able to 
determine that c is  My, but not whether c is M or whether c is yellow. Now consider 
the predicate ‘x is  My or ϕ’, where ϕ is arbitrary. Because ‘x is  My’ is not a ‘discrim-
inating predicate’, Freitag’s principle does not tell us that the predicate ‘x is  My or ϕ’ 
is non-projectable. However, [SD] implies that ‘x is  My or ϕ’ is non-projectable in 
the case described, since in the situation described we are justified in believing that 
freq(My|D-S) ≤ 1/|D − S| and freq(My|S) = 1.

Our second proposed principle is expressed as follows:

Avoid Induction with Overly Broad Predicates [AOB]: A predicate ϕ in ρ is 
projectable in a given situation only if there is no predicate ψ in ρ, such that nec-
essarily all ψ are ϕ but not necessarily all ϕ are ψ, and for all objects c in our 
sample for which we are justified in believing that c is ϕ and for all collections of 
inferences, Σ, that we have made that are sufficient for justifying our belief that c 
is ϕ, there is a proposition P appearing in Σ, such that P implies that c is ψ.

[AOB] applies in order to exclude inductive inferences with predicates that are 
unnecessarily broad. In cases where the principle applies due to some predicate ψ 
being more specific than another one ϕ, the principle prevents inductive inference 
concerning ϕ-ness. There are two interesting subcases: In the case where induction 
with ψ is non-projectable, it is desirable to prevent induction concerning ϕ-ness, 
in addition to induction concerning ψ-ness, which is what [AOB] requires. On the 
other hand, in the case where ψ is projectable, the principle allows conclusions con-
cerning ϕ-ness to proceed by the deduction from conclusions reached by induction 
concerning ψ-ness. We will explain later why [AOB] is needed in addition to [SD].

While [SD] blocks all instances of induction where the proposed inference 
is based on the projection of a predicate whose frequency among the sample and 
domain is known to differ, [SD] does not block the possibility of inductive infer-
ences with reliable predicates leading to inconsistent conclusions. For example, 
suppose we take a large random sample of objects, in a case where domain stabil-
ity holds and we know that 50% of the objects in a domain are red. Now suppose 
(unlikely as it may be) that 50% of the objects in our sample are blue and 50% are 
green. Although neither ‘x is blue’ nor ‘x is green’ is deemed non-projectable by 
[SD] or [AOB], the conclusion that 50% of the objects in the domain are blue and 
50% are green is inconsistent with the information that 50% of the objects in the 
domain are red. A further condition is needed, in order to block inconsistency in this 
kind of situation.

Recall that ρ denotes the set of predicates that are reliable in a given situation. 
Now let ρ′ be the set of predicates that result from removing all of the elements of ρ 
that are deemed non-projectable by [SD] or [AOB]. We say that a set of predicates 
P is inductively consistent if and only if the set of conclusions given by induction 
from the elements of P is consistent with our background information in conjunction 
with all other propositions we are justified in accepting. In that case, define the set 
of predicates that are projectable in a given circumstance as the intersection of the 
set of subsets of ρ′ that are inductively consistent and have no inductively consistent 
proper supersets. Expressed more precisely, we have:
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Projectability [PRO]: x is ϕ is projectable in given circumstances if and only if
x is ϕ ∈  ∩ {P: P ⊆ ρ′ & P is inductively consistent & for all  P+: P ⊂  P+  ⊆ ρ′ ⇒  P+ is 
not inductively consistent}.

Having provided our formal proposal, we finally return to explain the role of 
[AOB]. The purpose of [AOB] is to block consideration of predicates whose inclu-
sion in ρ′ would create conflicts with other predicates that should be regarded as 
projectable. For example, consider the previously described situation where we 
know that 50% of the objects in the domain are red, and 50% of the objects in our 
sample are blue and 50% are green (where sampling was random and domain stabil-
ity holds). In this case, the predicates ‘x is blue’ and ‘x is green’ are deemed non-
projectable, because no subset of ρ′ that contains both predicates is inductively con-
sistent. Now suppose that in addition to their color, we observed that 100% of the 
objects in our sample are cubes. This gives us a reason for concluding that that the 
frequency of cubes in the domain is probably very high. But consider the predicates 
‘x is blue or not a cube’ and ‘x is green or not a cube’. The purpose of [AOB] is to 
exclude such predicates from ρ′: If these predicates were in ρ′, then [PRO] would 
incorrectly classify the predicate ‘x is a cube’ as non-projectable, since ‘x is a cube’ 
would not be a member of any inductively consistent subset of ρ′ that includes both 
‘x is blue or not a cube’ and ‘x is green or not a cube’.

Before considering some additional examples, let us assess how well [PRO] sat-
isfies the four desiderata that we proposed earlier. The first desideratum concerns 
reliability. The set of predicates ρ′ with which our proposed projectability condition 
is expressed only includes reliable predicates. So clearly the proposal satisfies this 
condition. Our second desideratum is that the set of projectable predicates be induc-
tively consistent. Our proposal clearly satisfies this desideratum, since our proposed 
condition says that the projectable predicates are the ones whose conclusions are in 
the intersection of a set of consistent subsets of a set. Our proposal also apparently 
satisfies the third condition (Non-arbitrary Resolution). Indeed, the set of project-
able predicates is simply the result of taking the reliable predicates, ρ, removing 
some apparently problematic predicates (according to [SD]) and some redundant 
and potentially problematic predicates (according to [AOB]) in order to form ρ′, 
and then removing any further predicates that contribute to inconsistency (accord-
ing to [PRO]). Our final desideratum tells us that outside of inductive inferences 
that are deemed non-projectable as a consequence of avoiding inconsistency in a 
non-arbitrary manner, it is reasonable to accept the conclusions of reliable inductive 
inferences. It is not 100% clear that [PRO] satisfies this desideratum. In fact, we 
regard [PRO] provisional, and acknowledge the possibility that [SD] and [AOB] are 
too weak to exclude a sufficient number of predicates from ρ′, in some cases. With 
regard to the provisionality of [PRO], notice that if further non-trivial conditions are 
added to [SD] and [AOB] in defining ρ′, then the only effect will be to increase the 
number of predicates that are deemed projectable, in some situations. This is due 
to brute manner by which [PRO] eliminates inconsistency: In the case of a conflict 
among predicates, all are ejected. So the only possible effect of an additional prin-
ciple that removes a predicate ψ from ρ′, is that a predicate that would have been 
deemed non-projectable due to conflict with ψ may yet be projectable according to 
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[PRO]. We are satisfied with the provisionality of [PRO], since it is clear that any 
reasonable projectability conditions that could be added to our account would only 
increase the number of predicates that are deemed projectable in a very small num-
ber of highly unusual cases.

Variant expressions of the Goodman problem have been formulated (in, e.g., 
Skyrms, 2000; Johannesson, 2023) that consider the problem of predicting which 
function best captures the relationship between two (or more) quantities. Inasmuch 
as such examples can be reformulated as the problem of projecting the frequency 
with which some property holds among a sample of objects, the approach presented 
here applies to the examples. For example, suppose we gather a random sample of 
squirrels, under conditions of domain stability. Suppose that among our sample we 
notice that the length of the body of each squirrel is twice the length of its tail. 
The predicate ‘x is a squirrel with a body that is twice as long as its tail’ obviously 
denotes an intrinsic property. So projection of the predicate is reliable, assuming 
random sampling and domain stability, and we expect that this predicate would typi-
cally be projectable. On the other hand, relevant grue-like predicates are non-pro-
jectable. For example, consider the predicate ‘x is a squirrel with a body that is twice 
as long as its tail or x is a member of our sample’. It is demonstrable that induction 
with this predicate is not reliable under the given conditions. But now suppose we 
know that every squirrel has a unique mass and  m1, …,  mn are the masses of the 
squirrels in our sample. In that case, projection of the predicate ‘x is a squirrel with a 
body that is twice as long as its tail or x has mass  m1 or … or  mn’ denotes an intrin-
sic property. Although induction with this predicate is reliable, it is not projectable 
in the situation described (according to [SD]).

In an example presented by Johannesson (2023), we are presented with a device 
that computes an unknown function for input values ranging from 0 to 1,000,000 
and output values of 0 and 1. We draw a random sample of 1,000 input–output 
pairs and observe that 100% of the pairs conform to some function ƒ. As Johan-
nesson observes, there is inevitably another function ƒ* that agrees with ƒ for all of 
the input–output pairs in our sample, but disagrees with ƒ for all of the input–out-
put pairs that our not in our sample. To make the example interesting, assume that 
domain stability holds and that the input–output pairs in the relevant domain are 
physically realized as intrinsic properties of associated objects. In that case, there 
are 1,000,001 objects in the relevant domain and each is uniquely identified by an 
associated input value. So the situation described is one in which we are able to 
formulate a predicate denoting an intrinsic property that characterizes membership 
in the sample. It is also apparent that neither of the predicates ‘x agrees with ƒ’ nor 
‘x agrees with ƒ*’ is projectable according to our account. Indeed, let M be the set 
of 1,000 input values for objects in our sample. In that case, [SD] tells us that the 
predicate ‘x agrees with ƒ’ is non-projectable, where ϕ = ‘x agrees with ƒ’ and ψ = ‘x 
has an input value in M’ (and similarly for ƒ*). In the present example, it is pos-
sible to foster the intuition that it is possible to draw a reasonable conclusion about 
which function the device computes, if we add the detail that the output values con-
form to a familiar pattern (e.g., for all objects in our sample, the device returns 1 
for even-numbered inputs, and 0 for odd-numbered ones). However, this intuition is 
only warranted if we import background information into the example, in the form 
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of justified expectations concerning which functions the device is likely to compute. 
In a variant of the example where we are justified in assigning prior probabilities to 
different propositions concerning which function the device computes, it might be 
possible to use Bayesian conditionalization to assign justified posterior probabilities 
to various hypotheses concerning which function the device computes, after seeing 
how the device behaves in a random sample of cases. Our account delivers the cor-
rect result in such cases: In cases we are justified in accepting posterior probabilities 
on the basis of Bayesian conditionalization, our account (and [PRO] in particular) 
deems all predicates that support inductive inference to a conclusion that conflicts 
with those posteriors to be non-projectable.

6  Induction with Natural Properties

Our approach to Goodman’s problem is obviously very permissive regarding the 
range of predicates that may be employed in making cogent inductive inferences. 
Indeed, a common way to conceive of natural properties is as properties shared by 
objects that bear some ‘real’ similarity to each other, and are more sparse than sets 
(Bird & Tobin, 2022; Quine, 1970). But as the simulation results presented in Fig. 1 
show, inductive projection is reliable for randomly selected sets of objects, where 
the members of the set bear no similarity beyond shared membership in the ran-
domly selected set. And, as we already mentioned, the results presented in Fig. 1 do 
not depend on the assumption that the elements of G were selected at random: We 
could have selected them by any means that we like, so long as the elements of S 
were selected independently of the elements of G. So, in the end, we do not regard 
the naturalness of a property as a necessary condition for its inductive projection. 
Despite this conclusion, simulation results presented in this section show that the 
inductive projection of natural properties (construed in a particular way) is more 
reliable in cases where the sample size is small.

The previous discussion focused on bivalent properties, where for each property 
and individual, the individual simply has the property or it does not. In addition to 
bivalent properties, we now consider characteristics that admit of magnitude (such 
as height, weight, loudness, brightness, etc.), and represent the basic features of 
objects by points in a quality space, which is a sort of conceptual space (cf. Gärden-
fors, 1990). Given a preferred quality space, we suppose that the points representing 
the qualities of objects are distributed in a non-uniform way, with the points forming 
clusters which are aptly described as representing natural kinds. In this sort of case, 
one might expect that predicates that are formulated to match up to the natural kinds 
will be better as bases for induction than predicates that do not. Within the simu-
lation studies that we performed, this was the result that we observed in the case 
where the size of the sample is small.

We here present the results of a simulations study involving a four dimensional 
quality space, namely, CS = { (x1, x2, x3, x4) ∈ ℝ 4: 0 ≤ xi ≤ 1}.10 Our study consisted 

10 The actual numeric values in our simulations were double precision floating-point numbers.
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of many iterations of the following procedure: (1) generate a domain of objects, each 
object being assigned to a point in CS, (2) select a random sample, and (3) compare 
the sample and domain frequencies according to two competing systems of catego-
ries that differ in their naturalness. Each individual domain consisted of 1,000,000 
objects organized into natural kinds. A domain of objects was generated by first 
selecting eight prototypes (for the natural kinds) from among the points in CS by a 
uniform distribution over [0,1] for each quality dimension. Individual objects were 
then assigned to the prototypes (i.e., the natural kinds), with probability 1/8 of being 
assigned to each prototype. After being assigned to a prototype, the characteristics 
of objects were assigned. For each object, the value of each quality dimension was 
selected by a normal distribution, where the mean was the value in that dimension of 
the prototype to which the object was assigned, and the standard deviation was 0.3, 
with values less than 0 rounded up to 0, and values greater than 1 rounded down to 1.

Given a quality space populated by objects in the manner just described, we com-
pared the reliability of induction relative to two alternative systems of categories. 
The first category system is non-natural. The categories for this system simply con-
sist in the elements of the partition of CS that results from ‘slicing’ CS perpendicu-
larly to the first quality dimension into 8 cuboids of identical size. So the first cate-
gory consist of the region { (x1, x2, x3, x4) ∈ ℝ 4: 0 ≤ x1 ≤ 1/8 & 0 ≤ x2 ≤ 1 & 0 ≤ x3 ≤ 1 
& 0 ≤ x4 ≤ 1}, and the second category consist of the region { (x1, x2, x3, x4) ∈ ℝ 4: 
1/8 < x1 ≤ 2/8 & 0 ≤ x2 ≤ 1 & 0 ≤ x3 ≤ 1 & 0 ≤ x4 ≤ 1}, etc. The second category sys-
tem is more natural, and consists in the partition of the domain that maximizes the 
similarity between the sampled objects that are assigned to the same category. More 
precisely, k-means clustering, where k = 8, was applied to the objects in the sample. 
This results in a partition of the sample that minimizes the sum of the squared dis-
tances between objects and the mean values of the cells to which they are assigned. 
The mean values for the cells of the selected partition are called centroids. A parti-
tion of the full quality space is then given by assigning each point to the nearest 
centroid.

The independent variable for our simulations was sample size. The depend-
ent variable, for each system of categories, was the mean difference between the 
frequency of objects falling within a category in the sample and the frequency of 
objects falling within the category in the domain as a whole (averaged across the 8 
categories for each system). We refer to the mean distance between the frequency 
of objects falling within a category in the sample and in the domain as the “mean 
error” for inductive inference with the corresponding system of categories. Figure 3 
shows the mean error rates for the 2 systems of categories for different size samples. 
The data presented in Fig. 3 derives from 100,000 randomly generated domains for 
each of the 6 possible sample sizes, with one sample per domain.

The data presented in Fig.  3 suggests that induction with natural categories is 
more accurate than with non-natural categories in the case where objects are clus-
tered around prototypes and one’s sample size is small, with the advantage conferred 
by natural categories dissipating as one’s sample size becomes large. While the dif-
ference in the reliability of induction with the two sorts of categories is small, it is 
not inconsequential, and we would expect the difference to be of great consequence 
in  situations where it is necessary to make inductive inferences based on small 
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samples, and where the accuracy of those inferences makes a difference to success 
and/or survival. Indeed, under plausible evolutionary conditions, agents using non-
natural categories will die out, being replaced by agents who use natural ones.

7  Conclusion

Our main goal here was to present an approach to Goodman’s New Riddle of Induction 
that avoids the problems that have beset previous approaches. Rather than propose crite-
ria aimed at blocking a range of intuitively undesirable inductive inferences, we identi-
fied ideal conditions under which to perform induction. We then observed that induc-
tion with non-gruesome predicates is reliable under the ideal conditions, while induction 
with gruesome predicates is not. Identifying the predicates that permit reliable inductive 
inferences is not sufficient to address the possibility of conflicts with background infor-
mation. To address this issue, we proposed a mechanism for resolving inconsistencies. 
An ideal solution to the Goodman problem would precisely identify which instances of 
induction are reasonable and which are not. Our approach comes much closer to meeting 
this goal than previous approaches. A further advantage of our approach is in the tight 
connection it draws between projectability and reliability: The projectability criteria that 
we propose have the important consequence that induction with predicate ϕ is project-
able in a given situation only if induction with ϕ is reliable in that situation.

Our approach to the Goodman problem ultimately leads to a permissive view 
about which properties are suitable for inductive projection. As an addendum to this 
conclusion, we show, in the penultimate section, that natural properties are more 
reliable as a basis for induction in cases where the sample is small. Although the 
effect is small, it is a difference that would obviously confer a selective advantage 
upon agents who prefer the inductive projection of natural properties. 
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