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Zusammenfassung

Photosynthetische Organismen verwenden Lichtenergie, um Kohlendioxid in Bio-

masse zu binden und bilden damit die Grundlage fast aller terrestrischen trophi-

schen Netzwerke auf der Erde. Im Rahmen der Zivilisation werden photosynthe-

tische Organismen auch als Nutzpflanzen und Stoffwechselfabriken, z. B. für die

Produktion von Terpenen, genutzt. Die Menge an verfügbarem Licht, die für diese

Zwecke genutzt wird, ist von großer Bedeutung, um die Produktion von Biomasse

oder Metaboliten von Interesse zu maximieren. Dies wiederum ist für die Nachhal-

tigkeit und die Ernährungssicherheit von Bedeutung, da es sich auf die Effizienz der

Wasser-, Nährstoff- und Landnutzung auswirkt. Um zu verstehen, wie die Effizienz

der Lichtenergienutzung maximiert werden kann, muss der Prozess, wie diese Ener-

gie zur Bindung von Kohlendioxid genutzt wird, ganzheitlich verstanden werden.

Dazu gehören die photosynthetische Elektronentransportkette (PETC), der Calvin-

Benson-Bassham-Zyklus (CBB) und die Photorespiration. In dieser Arbeit wurden

mathematische Modelle verwendet, um die Interdependenz und die Kontrolle von

PETC, CBB und Photorespiration sowie die Produktion von Sekundärmetaboliten zu

untersuchen.

Anhand eines Modells, das PETC und CBB kombiniert, konnte gezeigt werden,

dass bei starkem Licht und hohem intrazellulären Kohlendioxid eine Erhöhung der

SBPase-Aktivität die Produktion reaktiver Sauerstoffspezies (ROS) verringern kann.

Ebenso erhöht eine Verringerung des zyklischen Elektronenflusses die Produktion

von ROS, während gleichzeitig ATP verbraucht wird, was wiederum den CBB-Zyklus

beeinträchtigt. Durch die Analyse der metabolischen Kontrolle wurde festgestellt,

dass die Steuerung der Kohlenstofffixierung von der Lichtintensität und der Koh-

lendioxidkonzentration abhängt. Unter niedrigen Lichtbedingungen kontrollieren

die Photosysteme den Fluss der Kohlenstofffixierung, während sich diese Kontrolle

unter hohen Lichtbedingungen auf RuBisCO und SBPase verlagert, je nachdem,

ob die intrazelluläre Kohlendioxidkonzentration niedrig oder hoch ist. Bei der Un-

tersuchung der Interdependenz von CBB und Photorespiration wurde festgestellt,

dass alternative Kohlenstofffixierungswege der vielversprechendste Weg sind, um

die erhebliche Verringerung des Ernteertrags aufgrund der Photorespiration zu

vermeiden. Dieser Effekt war jedoch unter Bedingungen mit niedriger intrazellulä-

rer Kohlendioxidkonzentration am stärksten ausgeprägt, welche entweder durch

eine niedrige atmosphärische Kohlendioxidkonzentration oder eine verringerte

Transportrate entsteht. Schließlich hat die Untersuchung der Terpenoid-Synthese

in photosynthetischen Drüsentrichomen gezeigt, dass die PETC eine Verschiebung

der Kohlenstoffverteilung ermöglichen kann. Diese Verschiebung wird durch eine

Verringerung der katabolen Aktivität aufgrund zusätzlicher Energiezufuhr verur-

sacht, wodurch mehr des zugeführten Kohlenstoffs für anabole Prozesse verwendet

werden kann.

Die Ergebnisse dieser Arbeit sollen sowohl zur Entwicklung effizienterer Nutz-

v



vi

pflanzen für einen nachhaltigen Ansatz zur Ernährungssicherung als auch zur

Entwicklung und Konzeption alternativer Wege im Allgemeinen beitragen.



Abstract

Photosynthetic organisms harvest light energy to fix carbon dioxide into biomass,

creating the foundation of almost all terrestrial trophic networks on Earth. In

the context of civilisation, photosynthetic organisms are also used as crops and

metabolic factories, e.g. for the production of terpenes. The amount of available

light used for these objectives is of great importance to maximise the production of

biomass or metabolites of interest. This in turn is relevant to sustainability and food

security, as it affects water, nutrient and land use efficicency. To understand how

the efficiency of light energy usage can be maximised, the process of how that en-

ergy is used to fix carbon dioxide needs to be understood holistically. This includes

the photosynthetic electron transport chain (PETC), the Calvin-Benson-Bassham

(CBB) cycle and photorespiration. In this work mathematical models were used to

study the interdependence and control of the PETC, CBB and photorespiration, as

well as the production of secondary metabolites.

Using a model combining the PETC and CBB, it could be shown that under high

light and high intracellular carbon dioxide an increase in SBPase activity could

decrease the production of reactive oxygen species (ROS). Likewise, a reduction

of cyclic electron flow increases the production of ROS, while also depleting ATP,

thus affecting the CBB cycle. Expanding on this, using metabolic control analysis

it was found that the control of carbon fixation is dependent on the light intensity

and the carbon dioxide concentration. In low light conditions the photosystems

control the flux of carbon fixation, while in high light conditions this control shifts

to RuBisCO and SBPase, depending on whether the intracellular carbon dioxide

concentration is low or high respectively. When studying the interdependence of

the CBB and photorespiration it was found that carbon-fixing alternative pathways

are the most promising way of avoiding the significant decrease in crop yield due

to photorespiration. However, this effect was most pronunced in conditions with

low intracellular carbon dioxide concentration, due to either by a low atmospheric

carbon dioxide concentration or a reduced transport rate. Lastly, studying the

terpenoid synthesis in photosynthetic glandular trichomes showed that the PETC

can allow a shift in carbon partitioning. This shift is caused by a reduction in the

catabolic activity due to additional energy supply which allows more of the supplied

carbon to be used for anabolic processes.

It is envisaged that the findings of this work shall contribute to both the develop-

ment of more effecient crops for a sustainable approach to food security and the

development and design philosophy of alternative pathways in general.
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1 Photosynthesis

Photosynthetic organisms are the basis of most modern life on earth, harnessing

the sun’s energy to fuse chemically inert carbon dioxide (CO2) into usable building

blocks, providing food for heterotrophic organisms and releasing oxygen as a

byproduct. While the sequence of processes and biochemical reactions performing

that conversion is tightly interlinked, it has been functionally separated into discrete

pathways: the Photosynthetic electron transport chain (PETC), also called the light-

dependent reactions and the Calvin-Benson-Bassham cycle (CBB cycle), also called

carbon, light-independent or dark reactions1 [1, 2]. The functions of these pathways

are to supply energy and redox equivalents (PETC) and fix CO2 (CBB cycle) into

stable products which can be exported as triose-phosphates or hexoses [3]. In

plants and algea the subcellular location for photosynthesis is the chloroplast, an

organelle originally developed by endosymbiosis [4]. The chloroplast itself can be

further divided into the stroma, which makes up for most of the volume, and the

membrane-enclosed subcompartments called thylakoids [5]. The PETC takes place

in the thylakoids, while the cbbc takes place in the chloroplast stroma.

As will become evident in the following sections, these processes are highly complex.

One particular useful tool to handle such highly complex systems and coalesce

large amounts of data and knowledge are mathematical models. As they allow

to identify which fidelity is required to steady each system respectively, allowing

simplification and systematic assessment of the hypotheses and theories at hand.

In the following sections I will explain the main processes and current state of

modelling for both the processes directly involved in photosynthesis (sections 1.1

and 1.2). Further, I will explain photorespiration - a process necessary to scavenge

the results of a side-reaction of the CBB cycle, as well as nitrogen refixation and

amino-acid production.

1.1 Photosynthetic electron transport chain

The photosynthetic apparatus is a highly complex system which converts light

energy into chemical energy in the form of ATP and NADPH usable by the remainding

plant metabolism [7]. The entire process of how this is achieved has been studied

for hundreds of years and a complete description is far beyond the reach of this

thesis. Thus, I will only introduce the necessary parts for sections 3.5 and 3.6 in the

following, see Fig. 1.1 for an illustration. The reader is referred to excellent works

such as by Blankenship for a full introduction into the topic [3].

The PETC mainly takes place in thylakoid membrane, with some reactions also

1The light-independent or "dark" reaction terminology originates from experiments being done in
isolated chloroplast, which given supply of adenosine triphosphate (ATP) and Nicotinamide adenine
dinucleotide phosphate (reduced) (NADPH) would perform carbon-fixation. However, in planta those
processes are all but independent of the PETC, so this terminology is rather misleading, as their
"independence" depended on an artifical supply of energy and redox equivalents.
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Figure 1.1: Schematic drawing of the PETC. Taken with permission from [6]

including the chloroplast stroma or the thylakoid lumen [8]. Light energy is collected

by in antennae complexes, also called light harvesting complexes (LHCs), attached

to photosystems I and II (PSI, PSII respectively). At PSII, two water molecules are

split using the collected light energy, pushing four electrons into the PETC while

producing molecular oxygen and four protons in the chloroplast lumen, causing it

to acidify. Those electrons are then used to reduce plastoquinone to plastoquinol

2H2O + 4hv + 2PQ + 4H
+
strom

=⇒ 2PQH2 + O2 + 4H
+
lÿmen

Subsequently, Plastoquinol is oxidised at the cytochrome b6f complex. This complex

uses the free electrons to reduce plastocyanin and pump further protons from the

stroma into the lumen. As a consequence, lumen becomes even more acidic,

creating a proton gradient between the stroma and the lumen [9]

2PCox + PQH2 + 2H
+
strom

=⇒ 2PCred + PQ + 4H
+
lÿmen

At PSI, light energy is used to drive electron transfer, this time from plastocyanin to

ferredoxin

2PCred + 2Fdox =⇒ 2PCox + 2Fdred

Finally the ferredoxin:NADP+ reductase uses the electrons from ferredoxin to reduce

NADP+ [10]

2Fdred + NADP
+ + H+

strom
=⇒ 2Fdox + NADPH

This sequence of reactions is called the linear electron flow and indicated with an

orange arrow in figure 1.1. There is, however, a secondary route for electron trans-

port called the cyclic electron flow, which instead of reducing NADP+ reintroduces

the electrons back at the cytochrome B6f complex, reducing plastoquinone [11]

2Fdred + PQ + 2H
+
strom

=⇒ 2Fd + 2PQH2

The cyclic electron transport causes more protons to enter the thylakoid lumen and

increases the proton gradient between the stroma and the lumen, while producing

less NADPH. The proton gradient between the stroma and lumen creates a proton

motive force, which is used by the ATP synthase (ATPSYN) to phosphorylate ADP

[12].

3ADP + 3Pi + 14H
+
lÿmen

=⇒ 3ATP + 3H2O + 14H
+
strom

The linear electron flow creates a constant ratio between the production of ATP and

2



NADPH. However, depending on the activity of the CBB cycle, photorespiration and

other energy-dependent pathways, the ratio required by downstream metabolism

differs from the fixed supply of energy and redox equivalents by the PETC. A

dynamically activated cyclic electron flow allows to match the ratio of ATP and

NADPH production to the demand of the downstream metabolism. While the

activity of cyclic electron flow can match the ratio of supply of energy and redox-

equivalents, the magnitude of that supply must also match the magnitude of the

demand of the downstream metabolism.

Both CBB cycle and photorespiration are regulated by diverse molecular interac-

tions. Particularly, the thioredoxin system plays a critical role orchestrating all

parts of photosynthesis [13]. Thioredoxins can be reduced by thioredoxin reduc-

tase (TrxR) by either NADPH or ferredoxin. While their function is ubiquituous in

all living organisms, in the case of photosynthesis their task is regulation of the

catalytic activity of key enzymes. This is achieved as reduced thioredoxin reduces

oxidised cysteine residues or cleaves disulfide bonds of enzymes, changing their

catalytic activity [14]. In addition to the thioredoxin system, both the CBB cycle

and photorespiration as the main consumers of energy and redox equivalents are

dependent on the rubisco activity. The activity of rubisco is directly dependent on

the supply of CO2 [15]. If the supply of CO2 is insufficient and thus the total demand

of energy and redox equivalents does not match the supply by the PETC, excess

energy will accumulate. This can lead to production of reactive oxygen species

(ROS) by photoreduction of oxygen [16]. Those ROS cause oxidative damage to

multiple cellular components, impairing growth and development [17]. Electron

sinks can alleviate this problem by allowing excess energy to be dissipated.

One electron sink allowing dissipation of excess photon energy is the water-water

cycle, where a plastid terminal oxidase (PTOX) oxidises plastoquinone, transferring

its electrons and protons onto molecular oxygen, producing water [18, 19]:

2PQH2 + O2 + 4H
+
strom

=⇒ 2PQ + H2O

This essentially is the reverse reaction that happens at PSII, in which water is split

and oxygen produced, thus dissipating the excess energy in a futile way.

Another electron sink is the Mehler reaction, which occurs when PSI reduces oxygen

instead of ferredoxin [20]. This causes formation of a superoxide radical, which is

converted to hydrogen peroxide and oxygen by superoxide dismutase

2O−
2
+ 2H+ =⇒ H2O2 + O2

In the peroxisome, hydrogen peroxide is disproportionated to water and oxygen

by catalase, however in the chloroplast the ascorbate-glutathione cycle is used

[16]. The ascorbate-glutathione cycle begins with a redox reaction of hydrogen

peroxide and ascorbate (ASC) catalysed by ascorbate peroxidase (APX), creating

monodehydroascorbate (MDA)

H2O2 + 2ASC + 2H
+ =⇒ 2MDA + H2O

The monodehydroascorbate is in turn reduced by monodehydroascorbate reductase

3



(MDAR) recovering ascorbate

2MDA + NADPH + 2H+ =⇒ 2ASC + H2O

However, monodehydroascorbate can also spontaneously split into ascorbate and

dehydroascorbate (DHA) 2MDA =⇒ ASC + DHA + 2H+ which then in turn has to be

recycled by dehydroascorbate reductase (DHAR), which requires glutathione (GSG)

oxidation to glutathione disulfide (GSSG)

DHA + 2GSH =⇒ ASC + GSSG

To replenish the glutathione, glutathione reductase uses NADPH as a reducing

agent

GSSG + NADPH =⇒ GSH + NADP+

While both these cycles allow dissipation of energy, the Mehler reaction produces

harmful ROS. Their harm is highlighted by studies showing that catalase expression

in the chloroplast enhances photo-oxidative stress tolerance [21].

Just as the demand of ATP and redox equivalents by the downstream metabolism

can be smaller than the supply by the PETC, the supply of energy by the LHCs

can exceed the capacity of the PETC. In that case there is an excess of excited

chlorophyll molecules, which requires dissipation of energy additional to the nor-

mal photochemical quenching. This includes non-photochemical quenching (NPQ),

which dissipates the excess energy as heat or fluorescence and ROS production

by triplet state electrons. Thse in turn destroy the chlorophyll molecules and other

structures, causing photobleaching [22, 23]. Included in NPQ are mechanisms over

multiple time-spans that protect the plant against damage by excess illumination.

First are the related pH-dependent mechanism qE and the zeaxanthin-dependent

mechanism qZ, which are activated by a high proton gradient between the thy-

lakoid lumen and stroma. The fast Psbs (photosystem II subunit S) component acts

as a proton sensor and quickly changes the organisation of PSII and its LHC. This

mechanisms dominates the total NPQ under short (<10 min) illumination times

and in Arabidopsis thaliana is activate at roughly 900
μmo

m2
·s
[24]. If the proton gradi-

ent continues to be excessive, the slower Xanthophyll cycle is activated, further

modifying the LHCs, which takes about 10 to 30 minutes [25]. This dual control

allows quick responses to sunflecks as well as adaptation to different average

illumination [26]. An additional mechanism to distribute excitation energy between

PSI and PSII are state-transitions (qT) by shifting the distribution of LHCs between

the photosystems, which in higher plants does not significantly contribute to NPQ

(compared to green algea) [27, 28, 29]. The last component is photoinhibitory

quenching (qI), which occurs at illumination of around 1800
μmo

m2
·s
is caused by ROS

damage and degradation of reaction centers that occurs at longer illumination

times over 30 minutes [30].

1.2 CBB cycle

The CBB cycle uses the energy provided by the PETC to fix CO2 into stable products

which can be exported as triose-phosphates or hexoses [3]. One turn of the cycle

requires 3 ATP and 2 NADPH and thus the production of a triose 9 ATP & 6 ATP and

4



Figure 1.2: Schematic drawing of the CBB cycle. Taken with permission from [6]

the production of an hexose 18 ATP and 12 NADPH.

The cycle starts with ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO),

the main enzyme responsible for carbon flux into the biosphere and estimated to

be the most abundant protein on Earth [31, 32, 33, 34]. It’s reaction mechanism

is quite complex. The enzyme tightly binds ribulose-1,5-bisphosphate (RUBP)

until activation by rubisco activase and subsequent carbamylation and addition of

Mg2+ . This in turn allows formation of the enediol enzyme complex, which can be

oxygenated or carboxylated [35, 36, 37, 38, 39]. See the work by Farazdaghi for an

excellent review on the reaction mechanisms [40]. In the case of the carboxylation

reaction, one CO2 is fixed and two molecules of 3-phospho-D-glycerate (PGA) are

produced:

RUBP + CO2 (−−+ 2 3PG

while in the case of the oxygenation one PGA and one 2-phosphoglycolate (PGO)

are produced, the latter of which needs to be recycled in a process called photores-

piration, see section 1.3. The first few reactions in the CBB cycle are shared with

gluconeogenesis and glycolysis (albeit in reverse order). This nicely illustrates the

reversibility of most of the reactions, which will be notated using the symbol (−−+,

while irreversible reactions will be notated using the symbol =⇒.

PGA is then phosphorylated by phosphoglycerate kinase (PGK) forming 2,3-bisphosphoglycerate

(BPGA)

3PG + ATP(−−+ BPGA + ADP

which in turn is reduced by glyceraldehyde 3-phosphate dehydrogenase (GADPH)

to form glyceraldehyde-3-phosphate (GAP), releasing inorganic phosphate:

BPGA + NADPH + H+ (−−+ GAP + NADP+ + Pi

GAP is then isomerised to form dihydroxyacetone phosphate (DHAP) by triose-

5



phosphate isomerase (TPI)

GAP(−−+ DHAP

It is assumed that PGA, GAP and DHAP can all be exported into the cytosol [41].

While BPGA in principle can also be exported its concentration is usually too low

and reactions producing and consuming it too fast for any significant transport

process to be measurable. GAP and DHAP are then fused by aldolase (ALD), forming

fructose-1,6-bisphosphate (FBP):

GAP + DHAP(−−+ FBP

FBP is dephosphorylated by fructose-1,6-bisphosphatase (FBPase), releasing inor-

ganic phosphate as a byproduct:

FBP + H2O =⇒ F6P + Pi

This is one of the few reactions in the CBB cycle that is irreversible at physiological

concentrations with a �rG′◦ of -11.8
kJ
mol

and was found to be regulated by the

thioredoxin system [42, 15]. Thus in glycolysis it requires ATP hydrolysis and is

thus replaced with phosphofructokinase.

fructose-6-phosphate (F6P) can now either be used for starch production, by using

phosphoglucomutase to produce G6P, or by transketolase (TK1) to form erythrose-

4-phosphate (E4P) and xylulose-5-phosphate (X5P).

F6P + GAP(−−+ E4P + X5P

E4P is then fused with DHAP to form sedoheptulose-1,7-bisphosphate (SBP)

E4P + DHAP(−−+ SBP

which in turn is dephosphorylated by sedoheptulose-bisphosphatase (SBPase),

forming sedoheptulose-7-phosphate (S7P) and releasing inorganic phosphate

SBP + H2O =⇒ S7P + Pi

Just like FBPase this reaction is irreversible at physiological concentrations with a

�rG
′◦ of -13.1

kJ
mol

and regulated by the thioredoxin system [42, 15].

The next step in the CBB cycle is again a mixing-reaction by transketolase, this

time producing ribose-5-phosphate (R5P) and X5P:

S7P + GAP(−−+ R5P + X5P

This repetition of the "fuse −→ control −→ mix" motif of using an aldolase followed

by an irreversible dephosphorylation and transketolase causes a rapid interchange

between the pools of GAP, DHAP, E4P and X5P and R5P.

The last steps of the CBB cycle repeat a similar motif of mixing followed by an

irreversible reaction, by the irreversible conversion of either X5P or R5P to ribulose-

5-phosphate (RU5P).

X5P(−−+ RU5P

6



R5P(−−+ RU5P

followed by the irreversible (�rG′◦ = -28.6
kJ
mol

) and thioredoxin-regulated phospho-

ribulokinase (PRK) to regenerated RUBP:

RU5P + ATP(−−+ RUBP + ADP

A review and quantitative comparison of CBB cycle models can be found in the

work of Arnold et al. [43]. In that review the models were categorised by the level

of abstraction and detail they use. The models were ranked by a score consisting

of the models stability (as in whether a steady-state at given conditions could

be reached), compliance of metabolite concentrations to experimental data and

robustness (as in whether small perturbations in kinetic parameters lead to small

deviations from the steady state). Ranked first for models only concerned with

carbon fixation is the work by Farquhar et al, followed by Medlyn et al, Schultz et al

and Sharkey et al [44, 45, 46, 47].

For models that only describe processes within the chloroplast stroma, the highest

ranking model is by Fridlyand et al, followed by Zhu et al [48, 49]. Lastly, for models

describing cellular interactions as well, the highest ranked model is by Poolman et

al, followed by Giersch et al, Damour et al, Hahn et al, Laisk et al (2006), Zhu et al,

Woodrow et al and again Laisk et al (1989) [50, 51, 52, 53, 54, 55, 56, 57].

No matter which complexity a model has, it is important to consider where to put

the boundary of description and what to assume about the processes outside of

the boundary. For the CBB cycle, the main points of interchange are energy supply

by the PETC, energy consumption by any downstream metabolism, export of triose

phosphates, starch sucrose production and photorespiration.

None of the models above consider a dynamic PETC, although that has been

achieved in the work by Matuszyńska et al, by coupling the model of the CBB cycle

to models of the PETC and [58, 50, 59, 23].

Export of triose phosphates and starch production are described in a highly simpli-

fied manner in the work by Poolman et al [50], export of sucrose in the work by

Laisk et al [57, 54]. None of the models above describe sucrose or starch storage in

a dynamic manner, which means that questions like "where would the fixed carbon

end up if plants are grown under continuous light and starch is accumulated to

its maximum capacity" cannot be answered by any of these models [60]. Com-

bining these models with models for starch metabolism is certainly an interesting

open task [61, 62]. Similar considerations can be made for the kinetics of triose-

phosphate export. McClain et al found that high concentration of stromal inorganic

phosphate inhibits the rate of photosynthesis [63]. While the CBB cycle model

by Poolman et al contains a static description of external inorganic phosphate, no

dynamic description is given [50].

Of all the models studied by Arnold et al, only the one by Zhu et al contains a

description of photorespiration [43, 55] Up to 20 % of rubisco activity can be

oxygenation and some of the intermediates in photorespiration can inhibit both

the CBB cycle and PETC [64, 65]. This means that of the 15 models studied by

Arnold et al, only the model by Zhu et al should show realistic behaviour under
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atmospheric conditions [43].

1.3 Photorespiration

Photorespiration is a scavenging pathway for PGO, which is produced by an oxy-

genation of RUBP by RuBisCO:

RUBP + O2 (−−+ 3PG + PGO

The pathway consists of reactions in three compartments (chloroplast, peroxisome

and mitochondrion), transporting metabolites via the cytosol [66]. Photorespiration

gained more importance over the last 2 billion years, as photosynthesis originated

in an almost anoxic, but CO2-abundant atmosphere but over time, photosynthesis

caused a significant shift in the composition of the atmosphere, resulting in a now

roughly 500-fold excess of over CO2
2. While rubisco has a higher affinity for CO2

than for , the excess in atmospheric causes up to 20 % of rubisco activity to be

oxygenation rather than carboxylation. Whereas 3PG can directly replenish the

CBB cycle, PGO inhibits multiple CBB cycle enzymes and is known to decouple

the PETC [67, 68]. Thus expectedly, higher photorespiratory flux (e.g. by overex-

pressing glycine decarboxylase) can enhance photosynthesis by preventing the

accumulation of inhibitory intermediates [64, 65, 69].

The next step is a dephosphorylation of PGO to glycolate (GLYCO) by phosphoglyco-

late phosphatase (PGP), releasing inorganic phosphate (Pi) in the process:

PGO + H2O(−−+ glycolte + Pi

Gycolate is then transported from the chloroplast stroma into the peroxisome and

oxidised by glycolate oxidase (GLCOX), reducing oxygen and producing hydrogen

peroxide in the process, which in turn is disproportionated by catalse:

GLYC(−−+ GLYOX + H2O2

H2O2 (−−+ H2O + 0.5 O2

The relocation of phosphoglycolate phosphatase (PGP) from the chloroplast to

the peroxisome is beneficial for two reasons. Firstly, hydrogen peroxide is a ROS,

which are known to damage various plant structures. In contrast to the chloroplast

the peroxisome is highly specialised in the savenging of ROS, thus the potential

negative effects are alleviated. Secondly, glyoxylate is known to impair rubisco

activiation, so production outside the chloroplast is probably beneficial [70, 71, 72].

As the next step, glyoxylate is aminated to produce glycine. This is done by both

glycine transaminase (GTA) while deaminating glutamate to 2-oxoglutarate and by

serine-glyoxylate transaminase (SGTA), using serine as the amino-donor.

glyoxylte + glÿtmte(−−+ glycine + 2 − oxoglÿtrte

glyoxylte + serine(−−+ glycine + hydroxypyrÿvte

2Assuming 20 % atmospheric oxygen and 400 ppm carbon dioxide
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This double-usage of glyoxylate is a potentially problematic pathway motif, as

either reaction can drain the other one of its substrate, creating a dead-lock in the

cycle. This is especially true for Serine which is produced in a later step of the

pathway and thus perturbations of the production and consumption rate of it might

be problematic. In contrast, the glycine transaminase (GTA) is bound by the ratio of

glutamate and 2-oxoglutarate, which are also used as a donor-acceptor pair by the

GS/GOGAT3 system. The GS/GOGAT system is essential for refixing the nitrogen

lost by the glycine decarboxylase complex, the next step in the photorespiration

pathway, which can be lumped together like the following

2 glycine + NAD(−−+ serine + CO2 + NADH + NH4
+

In this step two 2-carbon bodies are fused into one 3-carbon body, releasing one

CO2 and ammonium in the process and thus indirectly has the biggest energy cost

of the entire pathway, as refixing the CO2 costs 3 ATP and 2 reduction equivalents

and refixing the nitrogen costs 1 ATP and 1 reduction equivalents.

After serine has been deaminated by serine-glyoxylate transaminase, hydroxypyru-

vate, the product of the reaction, is reduced by glutamate dehydrogenase (GDH)

to form glycerate

hydroxypyrÿvte + NADH(−−+ glycerte + NAD

which in turn is phosphorylated by glycerate kinase (GK) to form 3PG

glycerte + ATP(−−+ 3PG + Pi

which can again be used to replenish the CBB cycle.

Overall, photorespiration looses one CO2, while costing 3.5 ATP and 2 reduction

equivalents, compared to the 3 ATP and 2 reduction equivalents required to fix one

CO2 by the CBB cycle. This high energy cost, together with the high flux through

photorespiration has been predicted to cause up to 20 % yield decrease in wheat

and 36 % in soybean in the US [73]. Considering this yield loss, it is not surprising

that considerable work has been done to improve on this. While there are decades

on research on further optimising rubisco to either increase the catalytic rate or

specificity, there seems to be growing concensus that modifications done to rubisco

either make the enzyme more specific at the cost of catalytic rate or vice versa,

suggesting pareto-optimality [74, 75, 76]. Notably, plants have not evolved an

alternative to carbon fixation by rubisco either, but developed quite complicated

mechanisms to either spatially or temporally separate carbon fixation from the

formation of the first organic compounds, called C4-photosynthesis and CAM-

photosynthesis respectively [77, 78, 79]. Another approach is to find alternative

photorespiratory pathways that either avoid the cost of nitrogen refixation, avoid

loosing the CO2 altogether, and some very promising approaches to even fix an

additional CO2 albeit at higher energy costs. See section 3.1 for a detailed review

of the currently existing pathway designs and section 3.2 for a computational

comparison of all currently known alternative pathways.

3glutamine synthetase and glutamine oxoglutarate aminotransferase respectively
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Arnold et al provide an extensive overview of modelling photorespiratory metabolism

using algebraic equations, ordinary differential equations (ODEs) and genome-scale

stoichiometric models [80]. As my work focusses on models based on ODEs, I will

only review those models. The earliest, albeit highly simplified, models of both

the CBB cycle and photorespiration have been presented by Brian Hahn [81, 53,

82], while the earliest complete description of photorespiration in isolation can

be found in the work of Akiho Yokota [83], which is not discussed in the work by

Arnold et al [80]. These were extended by Zhu et al and Zhao et al to contain the

sucrose production pathway [55, 84]. Laisk et al further included a highly simplified

description of the PETC [54]. The more recent worki of Bellasio et al resorts to

highly simplifying the pathways again [85]. As Arnold et al mention, most of the

models above highly simplify photorespiration and in general neglect the role of

photorespiration in amino acid metabolism as well as nitrogen metabolism [80].

While these carbon-centric approaches have their merit in understanding the role of

photorespiration in regard to energy consumption and central carbon metabolism,

a more detailed view at their role in especially amino acid metabolism needs to be

provided, especially if the design of alternative pathways is to be tested.

1.4 Goal of this thesis

The goal of this thesis is to understand how the central carbon metabolism and

energy management of plants work and how they can be optimised for various

purposes. For insights into plant metabolism the tight coupling of the CBB cycle

to the PETC is analysed (section 3.5 and 3.6) For the work on optimising the crop

yield see sections 3.1 and 3.2 and for terpene production section 3.7.
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2 Software development

2.1 Motivation

In 2005, John Ioannidis published an article called "Why most published research

findings are false", raising awareness to the lack of repeatability of published

laboratory research findings now termed the reproducibility crisis [86]. While the

paper doesn’t explicitly mention theoretical work, there certainly are numerous

theoretical publications which don’t supply sufficient information in order to be

repeated or are partly erroneous. Further, excluding the social incentives to conduct

low-quality science or scientific misconduct1, the fact remains that humans make

mistakes. A particular well-known example of this is the example of excel formula

errors in the work of Reinhart and Rogoff, falsely causing politicians to believe

that high public debt ratios cause sharp declines in GDP growth [87, 88]. As Marc

Branch writes: "if science is to regain its just position, it has to correct the problem

of unrepeatable research results" [89]. While there are complex systemic problems

in science that need to be addressed, there are also smaller problems that we as a

community can solve much more easily. My contribution to that regard is providing

software for building and analysis metabolic models.

Building and analysing computational metabolic models is a mentally taxing task,

requiring constant context-switching between biological abstraction and implemen-

tation of the abstraction in the preferred programming language. While some of

that complexity is inherent to the problem, we found that a lot of code for model

construction and analysis is highly repetitive. This presents two problems: first, the

person writing the code has to do a lot of unnecessary work to build their model

and second, the person checking the code has to try to to spot a potential problem

in a potentially huge amount of boilerplate code. The solution here is simple: if the

way the models are build is standardised, then most of the subsequent analysis can

be re-used, which at the same time dramatically increases the chances of errors to

be found and corrected.

The software packages that I developed or contributed to are ) modelbase (section

2.2), which provides tools to construct and analyse models based on ODEs, b)

moped (section 2.3), which provides tools to construct genome-scale models, c)

dismo (section 2.4), which provides tools to construct and analyse discrete spatial

ODE models and d) cobrexa (section 2.5), which provides analysis tools for models

exceeding genome-scale.

1and misconceptions regarding p-values
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2.2 modelbase

The modelbase Python package consists of a set of tools to standardise construction

and analysis of models based on ODEs. While originally designed and implemented

by Anna Matuszyńska and Oliver Ebenhoëh, I took over the development and

maintenance of the project. This has led to two peer-reviewed publications, for

which I am second and first author respectively.

Publication Building Mathematical Models of Biological Systems with

modelbase

Author position Second

Status peer-reviewed and published

doi 10.5334/jors.236

Publication Constructing and analysing dynamic models with model-

base v1.2.3: a software update

Author position First

Status peer-reviewed and published

doi 10.1186/s12859-021-04122-7
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(1) Overview
Introduction

Well designed mathematical models are excellent theoretical 
frameworks to analyse and understand the dynamics of 
a biological system. Here, the design process itself is the 
first important scientific exercise, in which biological 
knowledge is collected, organised and represented in 
a new, systematic way, that allows defining the model 
assumptions and formulating them in the language of 
mathematics. A working model then enables testing new 
hypotheses and allows for novel predictions of the system’s 
behaviour. Kinetic models allow simulating the dynamics 
of the complex biochemistry of cells. Therefore, they have 
the power to explain which processes are responsible 
for observed emergent properties and they facilitate 
predictions on how the system behaves under various 
scenarios, such as changed environmental conditions or 
modification of molecular components. Unfortunately, 
the construction of mathematical models is often already 
a challenging task, hampered by the limited availability of 
measured physiological and kinetic parameters, or even 
incomplete information regarding the network structure. It 

is therefore highly desirable to make the overall process of 
model construction as easy, transparent and reproducible 
as possible. Providing a toolbox with a wide range of 
methods that flexibly adapt to the scientific needs of the 
user, modelbase greatly simplifies the model-building 
process, by facilitating a systematic construction of kinetic 
models fully embedded in the Python programming 
language, and by providing a set of functionalities that help 
to conveniently access and analyse the results.

Despite the fact that mathematical models vary 
significantly in their complexity, from very simple and 
abstract models to extremely detailed ones, they share 
a set of universal properties. The process of building a 
kinetic model can be divided into a number of mandatory 
steps such as i) establishing the biological network 
structure (the stoichiometry), ii) defining the kinetic rate 
expressions, iii) formulation of the differential equations, 
iv) parametrisation, v) validation and, finally, vi) application 
[1]. modelbase supports researchers in every step of 
model development and application with its simple design 
aimed at being minimally restrictive. It has been written 
in Python, an open source, general-purpose, interpreted, 
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interactive, object-oriented, and high-level programming 
language. Due to a long list of its general features, such 
as clear syntax, useful built-in objects, a wealth of general-
purpose libraries, especially NumPy and SciPy, Python has 
become a widely used scientific tool [2]. Needless to say, 
the usage of Python over other, proprietary software, such 
as MATLAB or Wolfram Mathematica, decreases the risk 
of limited reproducibility and transparency, two critical 
factors while conducting research. Unfortunately, several 
powerful models of central biochemical pathways [3, 4] 
have been published before this need became apparent. 
As a consequence, some of these models are extremely 
difficult to implement to even attempt to reproduce their 
results. Therefore, modelbase provides an environment 
for relatively easy implementation of models that were 
published without source code, in a general-purpose and 
reusable format. Moreover, modelbase supports the 
export of a structural (stoichiometric) model into Systems 
Biology Markup Language (SBML) for further structural 
analysis with the appropriate software.

In recent years, several other Python-based modelling 
tools have been developed, such as ScrumPy [5] or 
PySCeS [6]. They allow performing various analyses of 
biochemical reaction networks, ranging from structural 
analyses ( null-space analysis, elementary flux modes) to 
kinetic analyses and calculation of control coefficients. To 
the best of our knowledge they do not provide dedicated 
methods for model construction inside Python, and the 
standard usage relies on loading previously assembled 
model definition files.

The modelbase package presented here provides an 
alternative toolbox, complementing the functionalities of 
existing programs for computer modelling. Its power lies 
mainly in integrating the model construction process into 
the Python programming language. It is envisaged that 
modelbase will greatly facilitate the model construction 
and analysis process as an integral part of a fully developed 
programming environment.

Motivation

In the course of our photosynthetic research, we identified 
several shortcomings that are not adequately met by 
available free and open source research software. When 
constructing a series of similar models, which share the 
same basic structure but differ in details, it is, in most 
modelling environments, necessary to copy the model 
definition file (or even pieces of code) and perform the 
desired modifications. This makes even simple tasks, 
such as changing a particular kinetic rate law, hideous 
and unnecessarily complicated, affecting the overall code 
readability. To facilitate a systematic and structured model 
definition, exploiting natural inheritance properties of 
Python objects, our intention was to fully integrate the 
model construction process into the Python programming 
language, allowing for an automated construction of 
model variants. The necessity for this fully Python-
embedded approach became further evident for isotope 
label-specific models [7], where an automatic construction 
of isotope-specific reactions from a common rate law and 
an atom transition map is desired. Such models are, for 

example, required to explain complex phenomena, such as 
the asymmetric label distribution during photosynthesis, 
first observed by Gibbs and Kandler in the 1950s [8, 9].

Implementation and architecture

modelbase is a console-based application written in 
Python. It supplies methods to construct various dynamic 
mathematical models, using a bottom-up approach, to 
simulate the dynamic equations, and analyse the results. 
We deliberately separated construction methods from 
simulation and analysis, in order to reflect the experimental 
approach. In particular, a model object constructed using 
the Model class can be understood as a representation of a 
model organism or any subsystem, on which experiments 
are performed. Instances of the Simulator class in turn 
correspond to particular experiments. The software 
components of modelbase are summarised in the 
Unified Modeling Language (UML) diagram in Figure 1.

Model construction

The user has the possibility to build two types of models, 
using one of the classes defined in the module model: 
Model, for differential-equation based systems, or 
LabelModel, for isotope-labelled models.

Class Model

Every model object is defined by:

1. model parameters,
2. model variables,
3. rate equations,
4. stoichiometries.

Model parameters can be simply defined in a dictionary, 
d. To build a mathematical model the user needs first to 
import the modelbase package and instantiate a model 
object (called m):

import modelbase

m = modelbase.Model(d)

After instantiation, the keys of the parameter dictionary d 
become accessible as attributes of an object of the internal 
class modelbase.parameters.ParameterSet, 
which is stored as the model’s attribute m.par.

To add reacting entities of the described system (referred 
to as species in SBML), e.g., metabolites, we pass a list of 
compounds names to the set_cpds method:
m.set_cpds(list_of_compounds)

Each of the added compounds becomes a state variable 
of the system. The full list of all variables is stored in the 
attribute m.cpdNames.

If S denotes the vector of concentrations of the 
biochemical reactants (as defined with the method  
set_cpds), the temporal change of the concentrations 
is governed by:

 ( )N , ,
dS

v S k
dt
=  (1)

where N denotes the stoichiometric matrix and v(S, k) 
the vector of reaction rates as functions of the substrate 
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concentrations S and parameters k. The system of ordinary 
differential equations is assembled automatically after 
providing all reaction rates and their stoichiometries to 
the method m.add_reaction(). The stoichiometric 
matrix of a model can be retrieved by the method 
m.print_stoichiometries() or m.print_

stoichiometries_by_compounds(), for the 
transposed matrix. A detailed example of instantiating 
objects and solving a simple biochemical system with 
three reactions and two metabolites is provided in Box 1.

Working with algebraic modules

A particularly useful function of the class Model has been 
developed to facilitate the incorporation of algebraic 
expressions, by which dependent variables can be computed 
from independent ones. Examples include conserved 
quantities, such as the sum of adenine phosphates, which 
is often considered to be constant, and rapid-equilibrium 
or quasi steady-state approximations (QSSA), which are 

applicable for systems with time-scale separation and 
allow calculation of fast from slow variables. The function  
add_algebraicModule() accepts as arguments a 
function describing the rule how the dependent variables 
are calculated from independent ones, the name of the 
newly created module, and lists of names of the independent 
and dependent variables. After definition of an algebraic 
module, all dependent variables become directly accessible. 
The full list of independent and dependent variables can be 
accessed using the method allCpdNames().

Various analysis methods

With import modelbase.Analysis the user has 
access to advanced analysis methods on the model object. 
Currently, it provides methods to numerically calculate 
elasticities and the Jacobian, find steady states by 
attempting to solve the algebraic equations, and calculate 
concentration control coefficients. We expect the range of 
analysis methods to increase continuously in the future.

Figure 1: UML class diagram of modelbase software components. It consists of six classes, with LabelModel inheriting 
from Model and LabelSimulate inheriting from Simulate. ParameterSet and Analysis are special classes containing 
parameter sets and static methods for analysis respectively.
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Box 1: Basic model use

We use modelbase to simulate a simple chain of reactions, in which the two state variables X and Y describe the 
concentrations of the intermediates. We assume a constant influx rate v

0
, a reversible conversion of X to Y, described 

with mass action kinetics with forward and backward rate constants k
1p

 and k
1m

, respectively, and an irreversible 
efflux of Y described by mass action kinetics with the rate constant k

2
.

We import the modelbase package, numpy and matplotlib.pyplot, define a list of metabolite species and 
a dictionary with parameters

import numpy as np

import matplotlib.pyplot as plt

import modelbase

cmpds = ['X','Y']

p = {'v0':1,'k1p':0.5,'k1m':1,'k2':0.1}

We instantiate a model object of class Model

m = modelbase.Model(p)

and pass metabolites to the model (variables are always defined by names)

m.set_cpds(cmpds)

In the next step we define reaction rate functions. The rate functions always accept the model parameters as first 
argument, whilst the remaining arguments are metabolite concentrations.

v0 = lambda p: p.v0

def v1(p,x,y):

 return p.k1p*x – p.k1m*y

def v2(p,y):

 return p.k2*y

and then pass them to the model using add_reaction()

m.add_reaction('v0', v0, {'X':1})

m.add_reaction('v1', v1, {'X':-1,'Y':1}, 'X', 'Y')

m.add_reaction('v2', v2, {'Y':-1}, 'Y').

To perform the computation we generate an instance of a simulation class using the function Simulator()

s = modelbase.Simulator(m)

To integrate the system over a given period of time (T=np.linspace(0,100,1000)), with the initial 
concentrations set to 0 (y0=np.zeros(2)), we use the method timeCourse()

s.timeCourse(T, y0)

Convenient access to the results of simulation through various get*() methods enables easy graphical display.

plt.昀椀gure()
plt.plot(s.getT(),s.getY())

plt.legend(m.cpdNames)

plt.show()
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Class LabelModel for isotope-labelled models

The modelbase package includes a class to construct 
isotope-labelled versions of developed models. In 
order to simulate the dynamic distribution of isotopes, 
modelbase defines dynamic variables representing 
all possible labelling patterns for all intermediates. In 
contrast to instances of the class Model, for instances of the 
class LabelModel the number of potentially labelled atoms 
(usually carbon) needs to be defined for every compound. 
This is done with the method add_base_cpd(), which 
accepts the name and the number of labelled atoms of the 
compound. It automatically creates all 2N isotope variants 
of the compound, where N denotes the number of 
labelled atoms. Finally, the method add_carbonmap_
reaction() automatically generates all isotope-specific 
versions of a reaction. It accepts as arguments the reaction 
name, rate function, carbon map, list of substrates, list of 
products and additional variables to be passed.

To instantiate a model object for an isotope-labelled 
version of developed model simply call
m = modelbase.LabelModel(d),

where d is again a dictionary holding parameters. With 
an instance of this class a dynamic process, such as the 
dynamic incorporation of radioactive carbon during 
photosynthesis, can be easily defined and simulated, 
using the Simulator class described below. An example of 
how to use this class is provided in Box 2.

Integration methods and simulation subpackages

Methods for the numeric integration of models 
are provided by the two subclasses Simulate and 
LabelSimulate, where the latter inherits many methods 
from the first. The first is used for standard kinetic models, 
the latter for isotope-specific models. Both classes provide 
computational support for dynamic simulations and 
methods to numerically simulate the differential equation 
system and to analyse the results. To provide an automatic 
instantiation of the correct class, we provide the function 
Simulator. Calling
s = modelbase.Simulator(m)

returns an instance of either Simulate or LabelSimulate, 
depending on the class of model m, providing all methods 
to numerically simulate the differential equation system 
and to analyse the results. Simple applications to run and 
plot a time course are given in boxes 1 and 2. By default, 
the dynamic equations are numerically integrated using a 
CVODE solver for stiff and non-stiff ordinary differential 
equation (ODE) systems. The default solver uses the 
Assimulo simulation package [10], with the most central 
solver group originating from the SUNDIALS (a SUite of 
Nonlinear and DIfferential/ALgebraic equation Solvers) 
package [11]. If Assimulo is not available, standard 
integration methods from the SciPy library [12] are used. 
When needed, almost every integrator option can be 
overridden by the user by simply accessing
s.integrator

Additionally, the Simulate class includes methods to 
integrate the system until a steady-state is reached 
(sim2SteadyState()), and to estimate the period of 
smooth limit cycle oscillations (estimatePeriod()). 
The solution arrays are accessed with the methods getT() 

and getY(). The advantage of using this method over 
using Assimulo’s integrator.ysol is that getY() 
also returns the result for all the derived variables (for 
which algebraic modules have been used). In addition, the 
methods getVarByName(), getVarsByName() 
and getVarsByRegExp() allow to access the 
simulated values of one or several variables by their 
variable names or by regular expressions. Moreover, the 
method getV() gives access to the arrays of reaction 
rates and getRate() allows to access particular rates by 
the reaction name. The powerful Python plotting library 
matplotlib [13] provides numerous methods for graphical 
display of the results.

Systems Biology Markup Language (SBML)

modelbase supports export of a structural (stoichio-
metric) version of a created model into an XML file in the 
computer-readable SBML format. To export the model (m) 
simply use the method m.ModelbaseToSBML(昀椀le_
name). A minimal working example can be found in  
our repository (https://gitlab.com/ebenhoeh/
modelbase/blob/master/examples/sbml_

export.py). Structural and stoichiometric analyses 
are currently not implemented in modelbase, therefore 
such export allows to take advantage of other SBML 
compatible modelling environments developed for such 
tasks (e.g. PySCeS or CobraPy [14]). The import of SBML 
models into modelbase is currently not supported, 
mainly because of the complementary purpose for which 
it was developed. The modelbase framework simplifies 
construction of kinetic models, allowing to perform this 
task with minimal modelling experience. Therefore, the 
main purpose of modelbase is the model design process 
itself, rather than importing a predefined construct to 
perform complex computations. However, a full SBML 
export and import functionality is currently under 
development to allow model sharing across different 
environments and platforms.

Quality control

modelbase has been continuously developed and used 
within our lab since 2016. It has been successfully applied 
to study the complexity of photosynthesis and carbon 
assimilation in plants [7] and is being further maintained 
and developed.

(2) Availability
Operating system

modelbase is compatible with all platforms with 
working Python distribution.

Programming language

modelbase is written in the Python programming 
language, a general-purpose interpreted, interactive, 
object-oriented, and high-level programming language. 
It is available for every major operating system, including 
GNU/Linux, Mac OSX and Windows and has been tested 
with Python 3.6.

Additional system requirements

None
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Box 2: Isotope-labelled model

A minimal example of an isotope-label specific model simulates equilibration of isotope distribution in a system 
consisting of the two reactions of triose-phosphate isomerase and fructose-bisphosphate aldolase:

  (2)   
+  (3)

We import the modelbase package, numpy and matplotlib.pyplot.

import numpy as np

import matplotlib.pyplot as plt

import modelbase

We define a dictionary of parameters and instantiate the model of class LabelModel

p = {'kf_TPI': 1,'Keq_TPI': 21,'kf_Ald': 2000,'Keq_Ald': 7000}

m = modelbase.LabelModel(p).

Compounds are added with an additional argument defining the numbers of carbons

m.add_base_cpd('GAP', 3)

m.add_base_cpd('DHAP', 3)

m.add_base_cpd('FBP', 6)

leading to an automatic generation of 80 = 26 + 23 + 23 isotope-specific compounds. All reactions are assumed 
to obey mass-action rate laws. Standard rate laws are defined in the modelbase.ratelaws module. Due to 
simplicity, the following steps are only shown for the forward triose-phosphate isomerase reaction. For more details 
please see the file examples/isotopeLabels.py in the modelbase package.

import modelbase.ratelaws as rl

def v1f(p,y):

 return rl.massAction(p.kf_TPI,y)

All isotope-specific rates are generated by the add_carbonmap_reaction() method, based on a list defining 
in which positions the carbons appear in the products.

m.add_carbonmap_reaction('TPIf',v1f,[2,1,0],['GAP'],['DHAP'],'GAP')

We set the initial conditions such that the total pools are in equilibrium, but carbon 1 of GAP is fully labeled

GAP0 = 2.5e-5

DHAP0 = GAP0 * m.par.Keq_TPI

y0d = {'GAP': GAP0,

 'DHAP': DHAP0,

 'FBP': GAP0 * DHAP0 * m.par.Keq_Ald}

y0 =  m.set_initconc_cpd_labelpos(y0d,labelpos={'GAP':0})

and simulate equilibration of the labels for 20 arbitrary time units

s = modelbase.LabelSimulate(m)

T = np.linspace(0,20,1000)

s.timeCourse(T,y0).

We plot the result using the getLabelAtPos() method (see examples/isotopeLabels.py).
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Dependencies 
Dependencies are provided in the setup.py file and 
include:

•	 numpy == 1.14.3
•	 scipy == 1.1.0
•	 numdifftools == 0.9.20
•	 assimulo == 2.9
•	 pandas == 0.22.0
•	 python-libsbml == 5.17.0

Support for the differential equation solver sundials 
(CVODE) through the python package assimulo requires 
moreover:

•	 Sundials-2.6.0 (for 64bits machines, install Sundials 
using -fPIC)

•	 Cython 0.18
•	 C compiler
•	 Fortran compiler

The detailed instruction how to install the prerequisites is 
included in the repository in our installation guide.

List of contributors

In alphabetic order: Marvin van Aalst, Oliver Ebenhöh, 
Anna Matuszyńska, Nima P. Saadat.

Software location

Archive

Name: Python Package Index (PyPI)
�Persistent� identi昀椀er: https://pypi.org/project/
modelbase/
Licence: GPL3
Publisher: Oliver Ebenhöh
Version published: 0.2.5
Date published: 09/10/18

Code repository

Name: GitLab
�Persistent� identi昀椀er: https://gitlab.com/ebenhoeh/
modelbase
Licence: GNU General Public License v3.0
Date published: 09/10/18

Language

modelbase was entirely developed in English.

(3) Reuse potential
The strength of our package lies in its flexibility to be 
applied to simulate and analyse various distinct biological 
systems. It can be as efficiently used for the development 
of new models, as for the reconstruction of existing ones. 
Here, we demonstrate its power by reimplementing three 
mathematical models that have been previously published 
without providing the source code (Table 1). This includes 
i) a model of the photosynthetic electron transport chain 
(PETC) used to model photoprotective mechanisms in 
plants and green algae, originating from our lab and 
initially developed in MATLAB [15]; ii) a model of the 
Calvin-Benson-Bassham (CBB) Cycle by Poolman et al. [16], 
developed to study the dynamics of the carbon assimilation 
and iii) a model of the Pentose phosphate pathway 
(PPP), adapted by Berthon et al. [17] to investigate label 
distribution dynamics in isotope labelling experiments.

Modelling the PETC to study photoprotective 

mechanisms

Part of our research focuses on understanding the 
dynamics of various photoprotective mechanisms 
present in photosynthetic organisms [18, 15, 19]. The 
foundation of our further work constitutes the model 
of the photosynthetic electron transport chain in green 
algae Chlamydomonas reinhardtii published in 2014 [15]. 
We have reimplemented the original work in Python 
and reproduced the results published in the main text 
(Figure 2), providing a photosynthetic electron transport 
chain core model, compatible with other modelbase-
adapted modules, to further our studies on the dynamics 
of light reactions of photosynthesis.

CBB Cycle and the dynamics of carbon assimilation

Using modelbase, we have reimplemented a model 
of the CBB Cycle by Poolman et al. [16]. The model is a 
variant of the Pettersson and Ryde-Pettersson [3] model, 
where the strict rapid equilibrium assumption is relaxed 
and fast reactions are modelled by simple mass action 
kinetics. Its main purpose is to study short to medium time 
scale responses to changes in extra-stromal phosphate 
concentration and incident light. The concentrations 
of NADPH, NADP+, CO

2
 and H+ are considered constant, 

leaving the 13 CBB cycle intermediates, ATP, ADP and 
inorganic phosphate as dynamic variables. The model 
further incorporates a simplified starch production using 
glucose 6-phosphate and glucose-1-phosphate and a 

Table 1: Mathematical models originally published without the source-code, reconstructed in our lab using the 
modelbase package. The source code and examples are available from the GitHub repository of our lab https://
github.com/QTB-HHU/.

Process Original 
publication

GitHub.com/
QTB-HHU/

Developer

Photosynthetic Electron 
Transport Chain 

[15] ./petc-modelbase A.M.

Calvin-Benson-Bassham Cycle [16] ./cbb-modelbase M.v.A.

Pentose Phosphate Pathway [4, 17] ./ppp-modelbase T.N.
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simple ATP recovery reaction. We used the modelbase 
implementation of the Poolman model to simulate 
the steady state concentrations of the metabolites 
depending on the extra-stromal phosphate concentration 
(Figure 3), reproducing original work by Pettersson and 
Ryde-Pettersson [3]. We have observed that the system is 
not stable any more for [P

ext
] > 1.5, a feature not discussed 

in the Poolman paper [16].
The compatible mathematical representation of the 

two photosynthetic subsystems, the ATP-producing 
light reactions and the ATP-consuming CBB cycle, is a 
prerequisite to merge those two models. Technically, in 
the modelbase framework, this is a straight forward 
process. Scientifically, it turned out to be not a trivial task 
(unpublished work).

PPP and isotope labelling experiments

We envisage that especially our LabelModel extension will 
find a wide application in metabolic network analysis. 
Radioactive and stable isotope labelling experiments 
constitute a powerful methodology for estimating 
metabolic fluxes and have a long history of application in 
biological research [20]. Here, we showcase the potential 
of modelbase for the isotope-labelled experiments by 
reimplementing the model of the F-type non-oxidative 
PPP in erythrocytes originally proposed by McIntyre et al. 
[4]. This was later adapted by Berthon et al. for label 
experiments and in silico replication of 13C nuclear magnetic 
resonance (NMR) studies [17]. We have reproduced the 
results obtained by the authors, including the time course 
of diverse Glucose-6-phosphate isotopomers (Figure 4).

Figure 2: Reproduction of the Figures from [15]. Simulated fluorescence trace obtained through Pulse Amplitude 
Modulation (PAM) under light induced (left) and anoxia induced (right) conditions. The dynamics of the fluorescence 
decrease corresponds to the activation of a specific photoprotective mechanism called state transitions, while the 
increase in the signal after the inducer (light or anoxia) is switched off relates to the relaxation of the mechanism.

Figure 3: Metabolite steady state concentrations dependent on the extra-stromal phosphate concentration simulated 
with the Poolman implementation of the Pettersson and Ryde-Pettersson model of the CBB cycle [16].
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Figure 4: Formation of diverse Glc6P isotopomers in a haemolysate, obtained by solving the adapted model by Berthon 
et al. [17] reimplemented using modelbase.
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Other possible applications

Among many other applications, modelbase provides 
tools to reproduce the ‘photosynthetic Gibbs effect’. 
Gibbs and Kandler described it in 1956 and 1957 [8, 
9], when they observed the atypical and asymmetrical 
incorporation of radioactive 14CO

2
 in hexoses. An example 

of label incorporation by the CBB cycle intermediates is 
presented schematically in Figure 5.

Finally, our package provides a solid foundation for 
additional extensions to the framework architecture, its 
classes and modelling routines. To encourage its use and to 
facilitate the first steps to apply the modelbase package, 
we have prepared an interactive tutorial using a Jupyter 
Notebook [21], which showcases basic implementation of 
modelbase and each of its classes in easy to follow and 
thoroughly explained examples (see https://gitlab.com/
ebenhoeh/modelbase/blob/master/Tutorial.ipynb).

Abbreviations

CBB Calvin-Benson-Bassham; NMR Nuclear Magnetic 
Resonance; ODE Ordinary Differential Equations; PAM Pulse 
Amplitude Modulation; PPP Pentose Phosphate Pathway; 
QSSA Quasi Steady-State Approximation; SBML Systems 
Biology Markup Language; UML Unified Modeling Language.
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Constructing and analysing dynamic models 
with modelbase v1.2.3: a software update

Marvin van Aalst1, Oliver Ebenhöh1,2 and Anna Matuszyńska1,2*  

Abstract 

Background: Computational mathematical models of biological and biomedical sys-

tems have been successfully applied to advance our understanding of various regula-

tory processes, metabolic fluxes, effects of drug therapies, and disease evolution and 

transmission. Unfortunately, despite community efforts leading to the development 

of SBML and the BioModels database, many published models have not been fully 

exploited, largely due to a lack of proper documentation or the dependence on propri-

etary software. To facilitate the reuse and further development of systems biology and 

systems medicine models, an open-source toolbox that makes the overall process of 

model construction more consistent, understandable, transparent, and reproducible is 

desired.

Results and discussion: We provide an update on the development of modelbase, 

a free, expandable Python package for constructing and analysing ordinary differential 

equation-based mathematical models of dynamic systems. It provides intuitive and 

unified methods to construct and solve these systems. Significantly expanded visuali-

sation methods allow for convenient analysis of the structural and dynamic properties 

of models. After specifying reaction stoichiometries and rate equations modelbase 

can automatically assemble the associated system of differential equations. A newly 

provided library of common kinetic rate laws reduces the repetitiveness of the com-

puter programming code. modelbase is also fully compatible with SBML. Previous 

versions provided functions for the automatic construction of networks for isotope 

labelling studies. Now, using user-provided label maps, modelbase v1.2.3 streamlines 

the expansion of classic models to their isotope-specific versions. Finally, the library 

of previously published models implemented in modelbase is growing continu-

ously. Ranging from photosynthesis to tumour cell growth to viral infection evolu-

tion, all these models are now available in a transparent, reusable and unified format 

through modelbase.

Conclusion: With this new Python software package, which is written in currently one 

of the most popular programming languages, the user can develop new models and 

actively profit from the work of others. modelbase enables reproducing and replicat-

ing models in a consistent, tractable and expandable manner. Moreover, the expansion 

of models to their isotopic label-specific versions enables simulating label propagation, 

thus providing quantitative information regarding network topology and metabolic 

fluxes.
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Background

Mathematical models are accepted as valuable tools for advancing biological and medi-

cal research [1, 2]. In particular, models based on ordinary differential equations (ODEs) 

have found application in a variety of fields. Most recently, deterministic models simu-

lating the dynamics of infectious diseases gained the interest of the general public dur-

ing the Covid-19 pandemic. Consequently, a large number of ODE based mathematical 

models were developed and discussed, even in nonscientific journals [3–5]. Such focus 

on mathematical modelling is not surprising, because computational models allow for 

methodical investigations of complex systems under fixed, controlled and reproducible 

conditions. Hence, the effect of various perturbations of the systems can be inspected 

systematically in silico.

�e model building process itself plays an important role in integrating and systema-

tising vast amounts of available information [6]. Properly designed and verified compu-

tational models serve various purposes. �ey are used to develop hypotheses to guide 

the design of new research experiments (e.g., in immunology to study lymphoid tissue 

formation [7]). Models can also support metabolic engineering efforts (e.g., identifica-

tion of enzymes to enhance essential oil production in peppermint [8]). More recently, 

models contribute to tailoring medical treatment to individual patient in the spirit of 

precision medicine (e.g., in oncology [2]). Finally, modelling results guide political deci-

sion making and governmental strategies (see the review on the impact of modelling for 

European Union Policy [9]). Considering their potential impact, models must be openly 

accessible so that they can be verified and corrected, if necessary.

In many publications, modelling efforts are justified by the emergence of extraordi-

nary amounts of data provided by new experimental techniques. However, arguing 

for the necessity of model construction only because a certain type or amount of data 

exists, ignores several important aspects. Computational models are generally a result 

of months, if not years, of intense research, which involves gathering and sorting infor-

mation, simplifying numerous details and distilling out the essentials, implementing 

the mathematical description in computer code, carrying out performance tests, and, 

finally, validating the simulation results. Our understanding of many phenomena could 

be deepened if, instead of constructing yet another first-generation model, we could effi-

ciently build on the knowledge that was systematically collected in previously developed 

models. Moreover, the knowledge generated during the model construction process is 

often lost, e.g. because the main developer left the research team.

Preservation of the information collected in the form of a computational model has 

become an important quest in systems biology, and has, to some extent, been addressed 

by the community. Development of the Systems Biology Markup Language (SBML) [10] 

for unified communication and storage of biomedical computational models, and the 

existence of the BioModels repository [11] already ensures the survival of models beyond 

the academic life of their developers, or the lifetime of the software used to create them. 

However, a model in SBML format rarely reveals the logic of model construction. �e 
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structure of modelbase code promotes consistent and transparent description of the 

model components (such as reaction rates), hence the logic of construction becomes 

inherently clear. Such knowledge loss can be prevented by providing simple-to-use tool-

boxes that enforce a universally readable model construction format.

For these reasons we developed modelbase[12], a Python package that allows the 

user to easily document the model building process. On the one hand, we defined the 

core of the model construction process, while on the other hand, the software does not 

make these definitions too strict, and fully integrates the model construction process 

into the Python programming language. �is differentiates modelbase  from many 

other Python-based modelling tools (such as ScrumPy [13], PySCeS [14], PySB [15] or 

tellurium [16, 17]) and other mathematical modelling languages (recently reviewed from 

a software engineering perspective by Schölzel and colleagues [18]). We would in par-

ticular like to stress a fundamental difference in the philosophy of modelbase, which 

distinguishes it from the other Python-based tools. In ScrumPy, PySCeS and tellurium, 

models are objects that are constructed by either SBML import or by a human-readable 

string (e.g. the Antimony representation chosen in tellurium [17]), which have methods 

for their numeric simulations and analysis. However, once constructed, the objects are 

not designed to be further modified. A modular design of different, but similar models, 

which all depend on sets of analogous modules, is thus difficult to represent. PySB aims 

at providing systematic construction methods, adding e.g.  ’monomers’ and ’rules’ how 

these are converted. However, PySB deliberately ignores and overrides standard Python 

behaviour, making it difficult to keep multiple models in one namespace. In model-

base, models and simulations are two different types of objects. In analogy to experi-

ments, a model corresponds to the biological entity, such as a cell, whereas a simulation 

corresponds to a particular experiment that is performed on the entity. A model object 

can be arbitrarily modified by numerous methods. Typically, a model is systematically 

constructed by instantiating an empty model object, to which components are added 

by dedicated methods. In this way, the model construction process remains maximally 

transparent, is fully integrated into the Python programming language, and is com-

pletely reproducible. Flexibility to modify and alter the model structure (incl. parame-

ters) is ensured in this way.

Here we report new features in modelbase v1.2.3, developed over the last two years. 

We have significantly improved the interface to make model construction easier and 

more intuitive. �e accompanying repository of replicated, published models, available 

from our GitLab project, has been considerably expanded, and now includes a diverse 

selection of biomedical models (see Additional file 1: Table 2). �is diversity highlights 

the general applicability of our software. Essentially, every dynamic process that can be 

described by a system of ODEs can be implemented with modelbase.

Implementation

modelbase  is a Python package to facilitate construction and analysis of ODE based 

mathematical models of biological systems. Version 1.2.3 introduces changes not com-

patible with the previous official release, version 0.2.5 [12]. All API changes are summa-

rised in the official documentation hosted by Read� eDocs and the differences between 

the versions are summarised in Table 1.
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�e model building process starts by creating a modelling object of the dedicated 

Python class Model and adding to it the chemical compounds of the system. �en, fol-

lowing the intuition of connecting the compounds, the reaction network is constructed 

by adding the reactions one by one. Each reaction requires stoichiometric coefficients 

and a kinetic rate law. �e latter can be provided either as a custom function or by 

selecting one from the newly provided library of rate laws. �e usage of this library 

(ratelaws) reduces the repetitiveness by avoiding boilerplate code. It requires the user 

to explicitly define reaction properties, such as directionality. �is contributes to a sys-

tematic and understandable construction process, following the second guideline from 

the Zen of Python, the guiding principles for Python’s design1: “Explicit is better than 

implicit”.

From this, modelbase automatically assembles the system of ODEs. It also provides 

numerous methods to conveniently retrieve information about the model. In particular, 

the get_* methods can be used to inspect all the components of the model, and calcu-

late reaction rates for given concentration values. �ese functions have multiple variants 

that return all the common data structures (array [19], dictionary, data frames [20]).

Table 1 Key changes between the first published version of modelbase [12] and the current 

update

Functionality modelbase 0.2.5 modelbase 1.2.3

Initialization Model takes only parameters as an 
argument

Model takes as arguments all 
other model components as 
dictionaries

Parameters Hidden as a private attribute Replaced with a vanilla dictionary

Derived parameters No function to calculate from other 
model parameters

Called on initialization and prior to 
any numerical operations

Handling of time-dependent reac-
tions

Time given in kwargs Modifiers argument is introduced

Simulation Integration via timeCourse that 
takes an array of time points for 
Simulation

Integration via simulate that 
takes only the endpoint of the 
simulation, default starting point 
t = 0, otherwise starts where the 
last simulation ended

Labelling features Focused on carbon labelling 
problems

Reference of the word carbon was 
changed to label

Method to calculate relative label 
distribution in steady-state

None available Via LinearLabelModel

Scan steady-state concentrations 
depending on parameter values

None available Via parameter_scan

SBML support Export of model stoichiometries Import of models that match the 
capabilities of modelbase and 
full export of models using 
ratelaw

Metabolic Control Analysis support None available A full suite of methods to calculate 
and plot elasticities via mca 
module

Predefined kinetic laws None available Via ratelaw module

Plotting support Time course plots Phase-plane analysis

1 python-c “import this”.
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After the model building process is completed, simulation and analyses of the model 

are performed with the Simulator class. Currently, we offer interfaces to two inte-

grators to solve stiff and non-stiff ODE systems. Provided the Assimulo package [21] 

is available, as recommended in our installation guide, modelbase will use CVode, a 

variable-order, variable-step multi-step algorithm. �e CVode class provides a direct 

connection to Sundials [22] which is a powerful industrial solver and robust time 

integrator, with a high computing performance. If Assimulo is not available, mod-

elbase will automatically use the SciPy library [23]. Specifically lsoda will be used 

to integrate the model, which in our experience resulted in lower computing perfor-

mance [24]. �e whole process of assembling a model has been summarised in Fig. 1.

Metabolic control analysis

Sensitivity analysis provides a theoretical foundation to systematically quantify the 

effects of small parameter perturbations on global system behaviour. In particular, 

Metabolic Control Analysis (MCA), initially developed to study metabolic systems, 

is an important and widely used framework providing quantitative information about 

the response of the system to perturbations [25, 26]. �e new version of model-

base  has a full suite of methods to calculate elasticities. �ese can be plotted as a 

heat-map, giving a clear and intuitive colour-coded visualisation of the results. An 

example of such visualisation, for a re-implemented toy model of the upper part of 

glycolysis (Section 3.1.2 [27]), can be found in Fig.  2.

Visualisation support

Many of the existing software packages for building computational models restrict the 

users by providing unmodifiable plotting routines with predefined settings that may not 

suit their personal preferences. In modelbase v1.2.3 plotting functions allow the user 

to pass optional keyword-arguments (often abbreviated as **kwargs), similar to Tellu-

rium [17]. All plot elements are accessible and available for change, providing a transpar-

ent and flexible interface to the commonly used matplotlib library [28]. �e easy access 

functions that visualise the results of simulations were expanded from the previous ver-

sion. �ey now include funcitonality to plot selections of compounds or fluxes, phase-

plane analysis and the results of MCA. An example of the latter is included in Fig. 2.

Models for isotope tracing

modelbase has also been developed to aid the in silico analyses of label propagation 

during isotopic studies. To simulate the dynamic distribution of isotopes, all possible 

labelling patterns for all intermediates need to be created. By providing an atom tran-

sition map in the form of a list or a tuple, all 2N  isotope-specific versions of a chem-

ical compound are created automatically, where N denotes the number of possibly 

labelled atoms. Changing the name of the previous function carbonmap to label-

map in v1.2.3 acknowledges the diversity of possible labelling experiments that can be 

reproduced with models built using our software.
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Isotope tracing under stationary conditions

Sokol and Portais derived the theory of dynamic label propagation under the station-

ary assumption [29]. In steady-state, the space of possible solutions is reduced and 

the labelling dynamics can be represented by a set of linear differential equations. We 

have used this theory and implemented an additional class LinearLabelModel that 

Fig. 1 An example of how to build and analyse a model with modelbase 
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allows rapid calculation of the label propagation given the steady-state concentrations 

and fluxes of the metabolites [29]. modelbase can automatically build the linear label 

model from user provided label maps. An example of such a model is provided in Fig. 3, 

where we simulate label propagation in a linear non-reversible pathway, see Fig. 1 in [29] 

for comparison. �e linear label models are constructed using modelbase   rate laws, 

and hence can be fully exported as an SBML file.

Model metadata

Many models lose their readability due to the inconsistent, intractable or misguided 

naming conventions. An example is a model with reactions named v1-v10, without ref-

erencing them properly. By providing metadata fields for all modelbase  objects, the 

Fig. 2 An example of how to use the visualisation methods within the mca package

Fig. 3 An example of how to use metadata functionality
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user can abbreviate component names in a personally meaningful manner and supply 

additional annotation information in accordance with recognised standards, such as 

MIRIAM [30]. An example of how to use metadata functionality is provided in Fig. 4. 

�is interface can also be used to supply additional information, such as the unit of a 

parameter.

SBML support

In contrast to the previous modelbase  version, where we only supported the export 

of stoichiometric models to SBML format, we now support both import and export of 

kinetic models. �e full summary of the SBML concepts supported by modelbase  is 

documented in the offic ial SBML test suite , where the output of our tests is stored. 

Examples where SBML models are imported and exported, using our build_model_

from_sbml and write_sbml_model functions, are supplied in the modelbase   

docum entat ion.

Results and discussion

With the newly implemented changes, modelbase is more versatile and user friendly. 

As argued before, its strength lies in its flexibility and applicability to virtually any bio-

logical system with dynamics that can be described using an ODE system. �ere exist 

countless mathematical models of biological and biomedical systems derived using 

ODEs. Many of these models are rarely re-used, at least not to the extent that could be 

reached, if models were shared in a readable, understandable and reusable way [18]. Our 

package can be used efficiently both for the development of new models, as well as the 

M1 M2 M3 M4 M5 F=1

Fig. 4 Labelling curves in a linear non-reversible pathway. Example of label propagation curves for a linear 

non-reversible pathway of five randomly sized metabolite pools, as proposed in the paper by Sokol and 

Portais [29]. Circles mark the position at which the first derivative of each labelling curve reaches maximum. 

In the original paper, this information has been used to analyse the label shock wave (LSW) propagation. To 

reproduce these results run the label-propagation-2015.ipynb Jupyter Notebook from the Additional file 4: 

Jupyter Notebook label-propagation-2015.ipynb
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reconstruction of existing ones. We are confident that modelbase  will in particular 

support users with limited modelling experience in re-constructing already published 

work, serving as a starting point for their further exploration and development. We have 

previously demonstrated the versatility of modelbase by re-implementing mathemati-

cal models previously published without the source code: two models of biochemical 

processes in plants [31, 32], and a model of the non-oxidative pentose phosphate path-

way of human erythrocytes [33, 34]. To present how the software can be applied to study 

medical systems, we used modelbase to re-implement various models, not published 

by our group, and reproduced key results of the original manuscripts. It was beyond 

our focus to verify the scientific accuracy of the corresponding model assumptions. 

We selected these examples to show that despite describing different processes, they all 

share a unified construct. �is highlights that by learning how to build a dynamic model 

with modelbase, the user do not learn how to build a one-purpose model, but in fact 

expands the toolbox to be capable of replicating any given ODE based model. All exam-

ples are available as Jupyter notebooks and listed in the Additional file 3: Jupyter Note-

book upper-glycolysis.ipynb.

Compartment model for disease evolution

For this paper, we surveyed available computational models and selected a relatively 

old publication of significant impact, that was published without providing the com-

putational source code, nor details regarding the numerical integration. We chose a 

four-compartment model of HIV immunology that investigates the interaction of a 

single virus population with the immune system described only by the CD4+ T cells, 

commonly known as T helper cells [35]. We implemented the four ODEs describing the 

Fig. 5 The total CD4+ T-cell population versus time after the infection. We have reproduced the results from 

Fig. 4 from the original paper [35] showing the decrease in the overall population of CD4+ T-cell (uninfected 

+ latently infected + actively infected CD4+) over time, depending on the number of infectious particles 

produced per actively infected cell (N). To reproduce these results run the hiv-t4cell.ipynb Jupyter Notebook 

from the Additional file 5: Jupyter Notebook hiv-t4cell.ipynb
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dynamics of uninfected (T), latently infected (L), actively infected CD4+ T cells (A), and 

infectious HIV population (V). In Fig. 5, we reproduce the results from Fig. 4 in the orig-

inal paper, whereby changing the number of infectious particles produced per actively 

infected cell (N) we follow the dynamics of the overall T cell population (T+L+A) over 

a period of 10 years. �e model was also used to explore the effect of azidothymidine, 

an antiretroviral medication, by decreasing the value of N after 3 years by 25% or 75%, 

mimicking the blocking of the viral replication of HIV. A more detailed description of 

the time-dependent drug concentration in the body is often achieved with pharmacoki-

netic models. Mathematical models based on a system of differential equations that link 

the dosing regimen with the dynamics of a disease are called pharmacokinetic-pharma-

codynamic (PK-PD) models [36]. �e next example explores how modelbase  can be 

used to develop such models.

PK-PD models and precision medicine

Technological advances forced a paradigm shift in many fields, including medicine, mak-

ing more personalised healthcare not only a possibility but a necessity. A pivotal role 

in the success of precision medicine will be to correctly determine dosing regimes for 

drugs [37]. PK-PD models provide a quantitative tool to support this [38]. PK-PD models 

have proven successful in many fields, including oncology [39], here we use the classi-

cal tumour growth model developed by Simeoni and colleagues, originally implemented 

using the industry-standard software WinNonlin [40]. As the full pharmacokinetic 

model is not fully described, we reproduced only the highly simplified case, where we 

assume a single drug administration and investigate the effect of drug potency ( k2 ) on 

simulated tumour growth curves. In Fig. 6 we plot the simulation results of the mod-

elbase  implementation of the system of four ODEs over a period of 18 days, where 

we systematically changed the value of k2 , assuming a single drug administration on 

Day 9. With the MCA suite available in our software, we can calculate the response to 

perturbation of all other system parameters. Such a quantitative description of the sys-

tem’s dynamics to local parameter perturbation provides support for further studies of 

the rational design of combined drug therapy and the discovery of new drug targets, as 

described in the review by Cascante and colleagues [41].

Modelling of infectious diseases with SIR models

Finally, compartmental models based on ODE systems have a long history of application 

in mathematical epidemiology [42]. Many of them, including numerous recent publica-

tions studying the spread of coronavirus, are based on the classic epidemic Susceptible-

Infected-Recovered (SIR) model, originating from the theories developed by Kermack 

and McKendrick at the beginning of the last century [43]. One of the most important 

insights gained from simulating the dynamics of infectious disease is the existence of 

disease-free or endemic equilibrium, and assessment of its stability [44]. Interestingly, 

periodic oscillations have been observed for several infectious diseases, including mea-

sles, influenza and smallpox [42]. To provide an overview of more modelbase  func-

tionalities we have implemented a relatively simple SIR model based on the recently 

published autonomous model for smallpox [45]. We have generated damped oscillations 

and visualised them using the built-in function plot_phase_plane (Fig.  7). In the 
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x1 x2 x3 x4 cell death
k2 · c(t) k1 k1 k1

growth

Fig. 6 Compartmental pharmacokinetic-pharmacodynamic model of tumour growth after anticancer 

therapy. We have reproduced the simplified version of the PK-PD model of tumour growth, where the PK 

part is reduced to a single input and simulated the effect of drug potency ( k2 ) on tumour growth curves. 

The system of four ODEs describing the dynamics of the system visualised on a scheme above is integrated 

over a period of 18 days. We systematically changed the value of k2 , assuming a single drug administration 

on Day 9. We have obtained the same results as in Fig. 4 in the original paper [40]. To reproduce these 

results run the tumour-growth-2004.ipynb Jupyter Notebook from the Additional file 6: Jupyter Notebook 

tumour-growth-2004.ipynb

Fig. 7 Sample phase portrait obtained with SIR model with oscillations. SIR model with vital dynamics 

including birth rate has been adapted based on the autonomous model to simulate periodicity of 

chickenpox outbreak in Hida, Japan [45]. To reproduce these results run the sir-model.ipynb Jupyter 

Notebook from the Additional file 7: Jupyter Notebook sir-model.ipynb
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accompanying Jupyter notebook we demonstrate using modelbase, how simply the 

SIR model can be built and how to modify it to construct more variants, such as the 

SEIR (E-exposed) or SIRD (D-deceased) models.

Conclusions

Here, we are presenting an update of our modelling software that simplifies the process 

of building mathematical models based on ODEs. modelbase   is fully embedded in 

the Python programming language. It facilities a systematic construction of new models, 

and replication of models in a consistent, tractable and expandable manner. As ODEs 

are a core method to describe the dynamical systems, we hope that our software will 

serve as the base for deterministic modelling, hence its name. With the smoothed inter-

face and clearer description of how the software can be used for medical purposes, such 

as simulation of possible drug regimens for precision medicine, we expect to broaden 

our user community. We envisage that by providing the MCA functionality, users new 

to mathematical modelling will adopt a working scheme where such sensitivity analyses 

are an integral part of model development and analysis. �e value of sensitivity analyses 

is demonstrated by considering how the results of such analyses have given rise to new 

potential targets for drug discovery [41]. We anticipate that the capability of model-

base  to automatically generate isotopic label-specific models will prove useful in pre-

dicting fluxes and label propagation dynamics through various metabolic networks. In 

emerging fields such as computational oncology, such models will be useful to, e.g., pre-

dict the appearance of labels in cancer cells.
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2.3 Network Reconstruction and Modelling Made

Reproducible with moped

The moped Python package consists of tools to automatically reconstruct genome-

scale constraint-based models from combining different data sources. While easily

extendable to other databases, it is primarily used with the MetaCyc database

[90]. The focus of this package is the reconstruction of the metabolic models, while

tools such as cobrapy are interfaced to facility analysis [91]. The package has

been developed in close cooperation with Nima P. Saadat and we share the first

authorship for it.
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Abstract: Mathematical modeling of metabolic networks is a powerful approach to investigate the

underlying principles of metabolism and growth. Such approaches include, among others, differential-

equation-based modeling of metabolic systems, constraint-based modeling and metabolic network

expansion of metabolic networks. Most of these methods are well established and are implemented

in numerous software packages, but these are scattered between different programming languages,

packages and syntaxes. This complicates establishing straight forward pipelines integrating model

construction and simulation. We present a Python package moped that serves as an integrative hub for

reproducible construction, modification, curation and analysis of metabolic models. moped supports

draft reconstruction of models directly from genome/proteome sequences and pathway/genome

databases utilizing GPR annotations, providing a completely reproducible model construction and

curation process within executable Python scripts. Alternatively, existing models published in SBML

format can be easily imported. Models are represented as Python objects, for which a wide spectrum

of easy-to-use modification and analysis methods exist. The model structure can be manually

altered by adding, removing or modifying reactions, and gap-filling reactions can be found and

inspected. This greatly supports the development of draft models, as well as the curation and

testing of models. Moreover, moped provides several analysis methods, in particular including the

calculation of biosynthetic capacities using metabolic network expansion. The integration with other

Python-based tools is facilitated through various model export options. For example, a model can be

directly converted into a CobraPy object for constraint-based analyses. moped is a fully documented

and expandable Python package. We demonstrate the capability to serve as a hub for integrating

reproducible model construction and curation, database import, metabolic network expansion and

export for constraint-based analyses.

Keywords: metabolic networks; modeling; topological networks; metabolic network expansion;

network reconstruction

1. Introduction

Theoretical analysis of metabolic pathways has a longstanding tradition. The early ap-
proaches to study glycolysis, for example, have considerably increased our understanding
of fundamental regulatory principles in metabolism [1]. In recent approaches, metabolic
modeling was employed to study metabolic interdependencies in microbial communities
and to identify putative drug targets for microbial pathogens [2,3].

Several theoretical techniques to study metabolism have been established. The most
classic technique is the analysis of metabolic networks by representing them as systems of
ordinary differential equations (ODEs). This representation heavily depends on detailed
knowledge of stoichiometries, parameters of enzyme kinetics and regulatory mechanisms
of reactions [4]. This approach is extremely useful for investigating relatively small systems.
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The upsurge of novel high-throughput experimental “omics” techniques led to the collec-
tion of immense amounts of data, resulting in an ever-increasing number of fully sequenced
genomes. The improved quality of annotated genes resulted in a tremendous increase in
information of enzymes and the respective metabolic reactions. This information has been
collected in biochemical databases such as MetaCyc, BioCyc, KEGG or BiGG [5–8]. Such
databases provide information for large-scale metabolic networks of many different organ-
isms. However, analyzing such large-scale metabolic networks using systems of ordinary
differential equations is difficult. This is, to a large extent, due to missing information on
kinetic parameters of the involved enzymatic reactions [9]. One convenient alternative is
constraint-based modeling and its mathematical method flux balance analysis (FBA) [10].
This commonly used approach uses the stoichiometric matrix of a reaction network and
finds a steady-state vector of reaction fluxes that maximizes or minimizes an objective
function that linearly depends on the reaction rates. Other structural analysis techniques
focus on the topology of metabolic networks [11]. One such technique is metabolic network
expansion and the related concept of metabolic scopes. The metabolic scope describes
the set of metabolites, which are topologically producible by a given network from an
initial set of compounds [12,13]. Thus, metabolic network expansion allows to functionally
characterize metabolic networks with respect to their biosynthetic capacities [14].

Topological techniques are extremely useful in the process of curating models, in par-
ticular to identify and add missing reactions [15]. This process, called gap filling, allows,
for example, to complement draft metabolic networks in order to guarantee that observed
compounds can be produced from the growth medium [16].

Many of the techniques described above have been implemented as Python packages.
However, most of these software packages are not directly compatible with each other.

In this work, we present moped, a compact but useful Python package that serves as a
hub, offering tools for analysis, development and extension or modification of metabolic
models. The integration of BLAST and pathway/genome databases such as MetaCyc
and BioCyc into moped allows reconstructing metabolic network models directly from
genome sequences [17] and ensures that the reconstruction process is fully transparent
and reproducible. In addition to the de novo construction of models, moped provides an
interface to import existing metabolic network models in SBML format.

To facilitate curation of metabolic models, moped provides an interface to Meneco,
a topological gap-filling tool based on answer set programming [18]. All models created
with moped can easily be exported as CobraPy objects, thus directly integrating constraint-
based with model construction and modification [19]. It is even possible to extract a
scaffold model of metabolic pathways for kinetic modeling via modelbase [20]. The Python
package moped presented here is a mathematical modeling hub, which allows constructing
reproducible metabolic models de novo, integrating existing models in SMBL format,
curating models by gap filling and performing topological or constraint-based analyses.

2. Implementation

2.1. Model Import, Extension and Modification

moped uses SBML files or PGDB flat files as input for constructing a metabolic network
model. PGDBs are organism-specific pathway/genome databases containing annotated
reactions and compounds of the metabolism of the organism [6]. These databases further
include detailed information about reactions and compounds, such as sum formulas,
charges, references to other database entries or subcellular localization. This information is
of great importance for a consistent analysis of metabolic networks. SBML files represent
metabolic networks in an XML-based format and can be considered as a standard for the
exchange of reconstructed and curated metabolic models between tools and platforms [21].
Such files can be, among others, obtained from databases such as BiGG, which provides
SBML files of curated metabolic models together with information about the corresponding
publications [7].
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Because of the wide range of import methods (FASTA, PGDBs and SBML), one par-
ticular strength of moped is the integration of several analysis tools. An overview of
mopeds functionalities is shown in Figure 1. Furthermore, moped provides an accessible
environment to extend or modify constructed or imported models. Therefore, adding
alternative or additional metabolic pathways to pre-existing models, as well as modifying
compound and reaction identifiers, is simple and straightforward. Naturally, all moped
objects can be exported as SBML. A UML diagram of moped can be found in Figure S1 in
the Supplementary Material.

Figure 1. The modeling hub moped. moped accepts SBML, FASTA files or MetaCyc and BioCyc

PGDBs as inputs. PGDBs and SBML files are directly converted into a moped object. By BLASTing

genome/proteome-sequences against MetaCyc, moped models can be constructed utilizing GPR

rules. Further reconstruction can be achieved using Meneco for gap filling. Topological model

analysis is implemented in moped. For constraint-based and kinetic analysis, moped offers export as

CobraPy and modelbase objects, respectively [19,20].
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2.2. Tools for Metabolic Network Expansion

A useful and valuable feature of moped is the fully implemented network expansion
algorithm to perform metabolic network expansions on moped objects. Metabolic network
expansion can be used to investigate structural properties of metabolic networks, such as
biosynthetic capacities and their robustness against structural perturbations [12]. The core
concept of metabolic network expansion is the metabolic scope, which contains all com-
pounds that are producible by a network from a given initial set of compounds, termed the
seed (see Figure 2). In the expansion process, the seed is used to find all reactions that can
proceed in their annotated direction. The respective products are then added to the seed,
forming the new seed for the next expansion step. This process continues until no new
compounds can be added to the seed. Thus, scopes characterize biosynthetic capacities of
metabolic networks, based exclusively on their topology.

Figure 2. Metabolic network expansion. Beginning with an initial set of compounds, the seed (here

panel 1), the expansion process detects all producible compounds in a network and adds them to the

seed for the next generation until no additional producible compounds are found.

Network expansion depends on a precise definition of reaction reversibilities and
involved cofactors. Network expansion uses the stoichiometry of reactions to identify
producible compounds. However, stoichiometric coefficients of reactions are annotated for
one particular direction. To include the opposite direction (for reversible reactions) into
the metabolic network expansion, moped provides a method for reversibility duplication.
As illustrated in Figure 3 for triose-phosphoisomerase as an example, this method finds
all reversible reactions in a moped object and adds the reversed reaction to the network.
The new reaction identifier is identical to the identifier of the original reaction concatenated
with the suffix ‘ rev ’. This model modification can be reverted if no longer needed.

Many reactions depend on specific cofactors. Cofactors usually appear in pairs. One of
the most prominent examples is the cofactor pair ATP and ADP. In the majority of reactions
with ATP as substrate, ATP serves as a donor of a phosphate group, thus producing ADP.
Only a few reactions actually modify the adenosine moiety (for example, in nucleotide
de novo synthesis). In network expansion, therefore, no reaction utilizing ATP or ADP
as cofactor could proceed, unless these compounds are either included in the seed or can
be produced from metabolites within the seed. If the purpose of network expansion is to
realistically calculate a set of producible compounds, this behavior is not desired because it
leads to a drastic underestimation of the scope. The most naive approach to directly include
cofactors in the seed yields misleading results, because in such a case, all compounds that
can be generated from digesting, e.g., ATP would be included in the scope.

A pragmatic approach to solve this problem is the duplication of cofactors as proposed
in [12]. Here, reactions with cofactor pairs are duplicated, where the copied reactions
contain “mock cofactors”. In contrast to the real cofactors, the mock cofactors only occur
in reactions, in which they act in their role as cofactors. For ATP, this is the transfer of
a phosphate group, for NADH or NADPH the transfer of protons and electrons and for
acetyl coenzyme-A, the transfer of the acetyl group. The cofactor duplication allows the
use of mock cofactors inside the initial seed. Reactions depending on cofactors might now
be able to occur in the expansion process. However, reactions using the cofactors as proper
substrates can only occur if the real cofactor can be produced from the seed.

moped provides a convenient method for finding and duplicating all reactions using
cofactor pairs. The cofactor pairs can either be automatically determined by moped for
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networks imported from BiGG or MetaCyc (see Table S1 and S2 in the Supplementary
Material) or they can be declared individually by the user. The identifiers of the duplicated
cofactors are replaced by mock identifiers, which contain the suffix ‘ cof ’. The same
modification is applied to the respective reaction identifiers. This model modification can
be reverted if no longer needed.

The implemented methods for cofactor and reversibility duplication are commonly
used to obtain biologically meaningful results for metabolic network expansion. How-
ever, they are also highly useful for topological gap-filling using Meneco, during model
reconstruction. This is further explained in the next section.

Figure 3. Topological network modifications moped offers functions for splitting reversible reactions

into forward and backward reactions in a network. Adding a copy of each cofactor dependent

reaction and replacing cofactors (here ATP and ADP) with mock identifiers allows unblocking

cofactor dependent reactions while avoiding degradation products of cofactors contained in the seed.

Such modifications enable biologically feasible metabolic network expansion.

2.3. Reconstruction of Draft Network Models

Construction of metabolic networks highly depends on reliable databases. In order
to enable user-friendly metabolic network reconstruction, moped includes methods for
importing data from the MetaCyc and BioCyc databases, identifying homologous sets of
genes with BLAST and gap-filling.

MetaCyc is a universal, highly curated reference database of metabolic pathways
and biochemical reactions from all domains of life. BioCyc is a database of organism-
specific PGDBs containing metabolic network information based on predictions by the
PathoLogic component of the Pathway Tools software [22,23]. The MetaCyc and BioCyc
databases provide many advantages. Both databases are freely available for academic
and nonprofit users. All PGDBs are available in useful flat file formats. Furthermore,
these databases include information on the reaction directions based on experimental
references and thermodynamics, extensive annotations and, therefore, information about
gene–protein–reaction (GPR) associations, as well as thermodynamic information about
metabolites and reactions such as the Gibbs energy of formation and the standard Gibbs
energy of reactions.

In order to use BioCyc and MetaCyc for metabolic network construction and analysis,
moped offers a parser for PGDBs, allowing direct construction of moped objects from
MetaCyc or BioCyc flat files. moped objects can directly be used for network analyses
including network expansion and constraint-based modeling. Especially for the latter, it
is extremely important that all reactions are mass- and charge-balanced to ensure that all
solutions obey mass conversation. Therefore, only reactions which are mass- and charge-
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balanced are parsed in moped. While this process has the danger of omitting annotated
genes, including reactions that are not mass- or charge-balanced would violate fundamental
physical principles and lead to unrealistic model properties. This pipeline provided by the
database import and parsing of moped makes it straightforward to construct prokaryotic
network models. For eukaryotic metabolic networks, however, intensive and careful
curation is required due to missing compartment information. More detailed information
about the parsing of PGDBs using moped can be found in the documentation.

There exist several pipelines to automatically extract a set of metabolic reactions from
a genome or proteome sequence. One popular pipeline is the above mentioned PathoLogic
software. moped integrates such a pipeline into the Python programming language, directly
converting a genome/proteome sequence into a moped object that can be immediately used
for modeling applications. This functionality is provided by an implemented wrapper for
local BLAST to find enzyme reactions in genome sequence fasta files or proteome fasta files
by similarity search against enzyme reference sequences from the MetaCyc database. This
method constructs a new moped object representing a metabolic network of all reactions
that are found in a genome sequence or proteome using enzyme monomer amino acid
sequences and protein–reaction annotations from MetaCyc to ensure fulfilled gene–protein–
reaction associations (GPRs) in all found reactions [24]. This process can be controlled by
user-defined thresholds. This integrated pipeline makes the model reconstruction perfectly
reproducible and illustrates the functionality of moped as a modeling hub.

The next curation step after the initial automatic network construction is usually
gap-filling. This describes a process in which reactions are added to the network in order
to ensure that the reconstructed model reflects experimentally observed behavior, such
as the production of experimentally measured compounds from the growth medium [25].
There are many available gap-filling methods such as GapFill or MIRAGE [26,27]. Most
of these methods are based on constraint-based approaches. A common problem is that
these approaches can predict gap-filling solutions that use thermodynamically infeasible
cycles. In this sense, these approaches are sensitive to self-producing or energy-generating
cycles [18]. Meneco, in contrast, is a topological gap-filling tool based on the network
expansion algorithm. Meneco calculates a minimal set of reactions that need to be added to
a draft network such that a specified list of target compounds can be produced from a given
set of seed compounds. This gap-filling approach offers the advantage that it is inherently
impossible for gap-filling solutions to depend on infeasible cycles. Meneco gap-filling can
be directly applied as a method to moped objects. One moped object represents the draft
network and a second the repair network, from which the added reactions are chosen.

The topological network modifications, i.e., reversibility and cofactor duplication,
harmonize ideally with the application of Meneco, resulting in networks with biologically
realistic behavior. This again illustrates the integrative nature of the modelling hub moped.
For an accurate manual curation, automatically determined gap-filling reactions should
always be manually inspected before adding them to the network model.

A major advantage and distinguished feature of moped is the complete reproducibility
of the construction of draft models, which is much needed in systems biology, and the
subsequent manual curation [28]. In moped, the user can add and remove reactions, or even
entire pathways, from draft networks. Furthermore, the user can inspect the reactions
found by Meneco to fill gaps and decide if these reactions are valid for specific models.
All user decisions become part of an executable Python script, making them perfectly
reproducible by others. This underlines that in moped, early curation can be integrated
closely into the draft model reconstruction process. The importance of such reproducibility
and traceability has recently been highlighted [29]. To our knowledge, this feature is
unique to is unique to moped and is not yet found in any other reconstruction software.
For constraint-based modeling, the user can define which exchange reactions are to be
included and, if desired, define their own specific objective functions. moped offers a
template biomass function which is based on the iJO1366 and iML1515 biomass functions
(see Table S3 in the Supplementary Material); however, users should be encouraged to
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design their own specific and precise biomass function for their models as a part of correct
manual curation. Reconstructing draft networks in moped lays the ground for model
curation without the need to change software environments. In all reconstruction and
curation steps, user decisions are documented as commands in an executable Python script,
thus making them fully reproducible and transparent.

3. Results

3.1. Displaying the Advantage of Cofactor Duplications in Topological Network Analysis

To display the benefits of including the moped cofactor duplication, three established
models of E. coli, B. subtilis and Synechocystis sp. PCC 6803 have been parsed into moped
for a comparative metabolic network expansion [30–32]. In this analysis, we calculated all
single metabolite scopes (i.e., the scopes for the seed consisting only of a single metabolite
and water) for the respective models. This has been done in three variations: (i) including
no cofactors to the seed, (ii) including the original cofactor compounds and (iii) including
on the mock cofactors resulting from cofactor duplication (see above). Figure 4 displays
the scope sizes (number of compounds contained in the scope) for each model and each
variant to calculate the scopes. Apparently, without cofactors, the scopes are small for most
compounds (blue lines). This can be explained by the missing connectivity for reactions
that require cofactors. The analysis including the actual cofactor compounds in the seed
(orange lines) displays an unrealistically large metabolic scope for every compound, even
for inorganic metabolites. This can be explained by the fact that cofactors are usually
rather complex metabolites, and now all degradation processes are included during the
network expansion. Therefore, the resulting metabolic scopes are no longer reflecting
the property of the compound of interest but rather the degradation products of the
metabolized cofactor compounds. The corresponding analysis of models using cofactor
duplication and mock cofactors duplicates in the seed (green lines) demonstrates that for
small or inorganic metabolites, the scope is still relatively small. For more complex organic
compounds, the metabolic scope is increasing without artificially increasing the scope
size with degradation products of cofactors. This demonstrates the perks of including
cofactor duplication and mock cofactors in seeds for biologically more realistic metabolic
network expansions.
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Figure 4. Metabolic scopes in established models of E. coli (iML1515), B. subtilis (iYO844) and

Synechocystis sp. PCC 6803 (iSynCJ816). The differently colored graphs represent the same analysis

but including no cofactors, actual cofactors and cofactor duplicates in the seed.

3.2. Applying Metabolic Network Expansion to a Model of E. coli Core Metabolism

We illustrate moped’s metabolic network expansion algorithm with a compact net-
work of E. coli core metabolism, which is freely available in SBML format from the BiGG
database [33]. After importing the SBML file into moped, we applied cofactor and re-
versibility duplications as described above.

For each metabolite in the network, we calculate the scope size, i.e., how many new
compounds are producible if only this metabolite, water and a set of mock cofactors are
available. The results of that analysis are displayed in Figure 5. In this relatively small
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metabolic network (72 metabolites and 95 reactions), eleven key compounds, which are
mostly part of central metabolism, exhibit a largest observed scope size of 47. Such detailed
metabolic network expansion is useful to provide insight about central metabolites, as well
as structural and functional characteristics of metabolic networks [14]. Whereas we here
only display the scope size, the methods implemented in moped allow a far wider
spectrum of analysis methods, including determination the set of producible metabolites,
as well as following each step of the expansion process. The code used to produce
the results and Figure 5 can be found on https://gitlab.com/marvin.vanaalst/moped-
publication-2021/-/tags/final-publication, accessed on 13 December 2021.

Figure 5. Metabolic scopes of all compounds in the E. coli core metabolic model calculated using

moped. The Y-axis indicates the total amount of compounds producible from every compound,

water and a set of acceptor mock cofactors.

3.3. Comparison of Draft Reconstructions with Established Models and Softwares

We demonstrate how moped provides a complete and easy-to-use pipeline to construct
genome scale models from genome and proteome sequences and how these models can be
directly applied for constraint-based analyses. For this, we download the freely available
proteome sequences of Escherichia coli str. K-12 substr. MG1655, Synechocystis sp. PCC
6803 and Bacillus subtilis strain 168 [34–36]. We import the MetaCyc PGDB to construct
a moped object of the MetaCyc database as a reference network. Applying the BLAST
wrapper, which was described above, to the FASTA files and the reference network, we
obtained three moped objects, representing the draft network reconstructions. Then, we
applied gap filling to ensure that the reconstructed models can produce all basic biomass
compounds (inspired by the E. coli biomass reaction from iJO1366 [37], including all nucleic
acids, amino acids and lipid precursors) from M9 minimal glucose medium. For this
analysis, we directly accepted all resulting gap-filling reactions. For a more accurate
reconstruction, the proposed gap-filling reactions should be manually inspected before
addition to the draft model. We added exchange reactions for all medium compounds
and tested if the draft models can exhibit a stationary flux distribution to produce biomass,
as determined by flux balance analysis. The construction of these models can be reproduced
using the notebooks provided on our accompanying git.

In order to test the quality of our draft models, we compared them with established
models for the respective organisms (iML1515, iYO844 and iSynCJ816) [34–36]. Further-
more, we used the same dataset and medium to construct draft models with the established
genome scale modeling reconstruction software CarveMe [38]. In order to quantitatively
compare all three versions of the organism network reconstructions, we used metabolic
model testing (MEMOTE) pipeline to establish a fair and reproducible comparison [39].
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MEMOTE calculates scores for genome scale metabolic models to evaluate the stoichiomet-
ric consistency, the GPR rules and the quality of annotations for reactions and metabolites
in the respective models. A summary of the MEMOTE evaluations for the three models
for the three organisms is presented in Figure 6. The MEMOTE evaluation shows that the
stoichiometric consistency of draft models produced by moped is always of high quality.
Figure 6 shows that draft models reconstructed by CarveMe and moped display generally
good overall scores and annotations. While CarveMe draft model reconstructions show
the tendency to provide better reaction annotations, moped draft model reconstructions
display a generally better annotation of genes and GPR rules.

Overall

Consistency

Met Annotation

Rxn Annotation

Gene Annotation

SBO Annotation
0.33

0.66

1

E. coli

iML1515
CarveMe
Moped

Overall

Consistency

Met Annotation

Rxn Annotation

Gene Annotation

SBO Annotation
0.33

0.66

1

B. subtilis

iYO844
CarveMe
Moped

Overall

Consistency

Met Annotation

Rxn Annotation

Gene Annotation

SBO Annotation
0.33

0.66

1

Synechocystis PCC 6803

iSynCJ816
CarveMe
Moped

Figure 6. MEMOTE evaluations for draft model reconstructions produced by CarveMe and moped,

as well as established models, for E. coli, Bacillus subtilis and Synechocystis sp. PCC 6803. MEMOTE

evaluations include the stoichiometric consistency and the annotation level of models.

The functionality and predictive power of draft models constructed by moped has
been compared for Escherichia coli str. K-12 substr. MG1655 with a similarly constructed
draft model using CarveMe, and the iML1515 model. For this analysis, the models auto-
matically constructed moped and CarveMe were analysed without further modification.
We calculated maximal growth rates, respective ATP production rates and exchange fluxes
for compounds in the medium. Furthermore, we calculated optimal production rates
for amino acids and nucleic acids. These model functionalities have been compared to
the predictions of iML1515. Figure 7A displays the predicted fluxes of the draft models
constructed by moped and by CarveMe relative to the predictions of iML1515. In the
radar plots, the relative distance is indicated. For two flux values v1 and v2, the distance
min(v1/v2, v2/v1) is plotted. The draft model constructed with moped shows a higher
similarity to the behaviour of iML1515 in almost all functionalities, especially in oxygen
uptake rate, ATP production rate and nucleic acid synthesis. Some discrepancies between
the model behaviours can be linked to slightly differing biomass compositions and lower
bounds for exchange fluxes. In order to reduce such bias, we performed the same analysis
but with such adjustments that biomass compositions and all lower and upper bounds are
identical. Extended MEMOTE evaluations can be found in Figure S2 in the Supplementary
Material. Figure 7B shows that now draft models produced with moped and CarveMe
exhibit very similar behaviour to iML1515 in all functionalities, except in nucleic acid
synthesis, in which moped draft models are more similar to iML1515. The overlap of GPR
annotations of the draft model constructed with moped and iML1515 is shown in Figure 7C.
The vast majority of genes in the draft model constructed with moped can be found in
iML1515 and therefore illustrates the quality of the automated reconstruction. This analysis
has only been performed with the draft model constructed with moped because the draft
model constructed with CarveMe and iML1515 do not share any common database links.
These results shows that draft model reconstructions made with moped exhibit a high
quality that is able to keep up with the quality of established models and software tools.

48



Metabolites 2022, 12, 275 10 of 12

(A)
Growth Rate

Amino Acid Synth.

DNA Synth

ATP production

Nr Reactions

Nr CompoundsGlc Uptake

O2 Uptake

NH4 Uptake

SO4 Uptake

CO2 Excretion

0.33

0.66

1

CarveMe
Moped

(B)
Growth Rate

Amino Acid Synth.

DNA Synth

ATP production

Nr Reactions

Nr CompoundsGlc Uptake

O2 Uptake

NH4 Uptake

SO4 Uptake

CO2 Excretion

0.33

0.66

1

CarveMe
Moped

(C)

132 4441072

Moped iML1515

Figure 7. Functional comparison of the draft model reconstructions using moped and CarveMe with

iML1515. We calculated maximal growth rates, respective ATP production rates and exchange fluxes

for compounds in the medium, as well as optimal production rates for amino acids and nucleic

acids for completely unmodified draft models (A) and models with identical biomass functions and

reaction bounds (B). In the radar plots, the relative distance between the two values are reported.

Panel (C) shows the overlap of GPR annotations found in the draft model constructed with moped

and iML1515.

4. Conclusions

Here, we present moped, a Python package representing a hub connecting the con-
struction, modification and curation of genome scale metabolic networks with various
analysis methods, which support studies of metabolic networks. moped supports the de
novo construction of metabolic networks by importing databases, providing homology
searches, including GPR associations and integrating an established gap-filling routine
without the need to change software environments. Existing models from external sources
can be imported using the standardized format SBML. Metabolic network models are
represented as moped objects, which can be modified by easy-to-use and intuitive methods.
moped models can be exported into various formats, thus integrating a diverse set of
established analysis tools. Metabolic network expansion and constraint-based optimization
can be easily performed for any model represented as a moped object.

Examination of moped draft model reconstructions using MEMOTE demonstrated
that the resulting models are generally of a high quality. The strength of draft model
reconstructions with moped is the direct integration into the Python programming lan-
guage: Every decision in the automatic and manual reconstruction process is documented
in executable Python scripts. Therefore, the whole reconstruction process becomes fully
transparent and is easily reproducible by any interested user.

The modular architecture of the open source package moped is particularly designed
for allowing further extensions to enhance its functionality, such as the integration of
additional software tools. We provide an extensive documentation for moped, as well as
troubleshooting guides, unit-tests for all provided methods and example notebooks illustrat-
ing the usage of moped at https://gitlab.com/marvin.vanaalst/moped-publication-2021
(accessed on 13 December 2021).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/metabo12040275/s1, Figure S1: UML diagram of core packages in moped, Figure S2: Extended

MEMOTE evaluations for draft model reconstructions, Table S1: Cofactor pairs of MetaCyc identifiers,

Table S2: Cofactor pairs of BiGG identifiers, Table S3: Default biomass composition
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Abstract

Summary: dismo is a Python package for building
and analysing discrete spatial models based on ordi-
nary differential equations. Its primary purpose is
to allow arbitrarily complex internal and transport
processes to easily be mapped over multiple different
regular grids. For this it features one, two and three-
dimensional layouts, with standard and non-standard
(e.g. hexagonal or triangular) grids, which can be ar-
ranged in intricate, non-regular shapes.

Availability and implementation: https://

gitlab.com/qtb-hhu/dismo

Documentation: https://qtb-hhu.gitlab.io/

dismo/

Contact: oliver.ebenhoeh@hhu.de

mathematical modelling | discrete | spatial

Introduction

Complex multicellular organisms depend on commu-
nication between cells. This includes exchange of in-
formation, for example by hormone signalling, and
the transport of metabolites between cells and organs.
Many mathematical models of biological processes,
including metabolism, signalling, and ecosystem dy-
namics, ignore this spatial dimension and describe
the system dynamics by coupled ordinary differen-
tial equations. The classical approach to model spa-
tial dynamics is by using partial differential equations
(PDEs). Famous examples include reaction-diffusion
systems, which are able to describe diverse phenom-
ena, such as the formation of patterns or the disper-
sion of animals in an ecosystem (Landge et al., 2020,
Soh et al., 2010). There are numerous well-established
tools for simulating such problems, for an excellent
review see (Van Liedekerke et al., 2015). However,
the numerical treatment of PDEs poses various chal-
lenges. Simulation requires a careful definition of the
boundary conditions, and the spatial discretisation
must fulfil certain criteria in order to guarantee con-
vergence. Moreover, they are computationally very
expensive, especially when the number of dynamic
variables becomes large. However, when describing
multicellular systems, each individual cell can be ap-
proximated to be well-mixed. If this assumption is
fulfilled, the dynamics can be described as the interac-
tion of discrete entities, which may correspond to the

single cells, and can thus be modelled using a system
of ordinary differential equations (ODEs), in which
the intracellular processes and the exchange processes
between cells form the basis of the coupled equations,
similar to agent-based modeling (Helbing, 2012). In
this way, the spatial discretisation naturally reflects
the biological system under investigation, and, espe-
cially when different cell types are involved, appears
more straight-forward than in a pure PDE-based ap-
proach.

There are excellent tools for solving PDEs in Python,
such as py-pde (Zwicker, 2020), and highly sophis-
ticated packages designed for biological cell simula-
tion such as biocellion (Kang et al., 2014), CellSys

(Abbasi et al., 2022), Chaste (Mirams et al., 2013),
MecaGen (Delile et al., 2013), PhysiCell (Ghaf-
farizadeh et al., 2018) and tools based on Morpheus

(Starruß et al., 2014, Alamoudi et al., 2023). But
to the best of our knowledge there exist no tools to
easily create and analyse discrete spatial ODE models
aimed at beginner modellers. Here, we present dismo,
a Python package for implementing and solving dis-
crete spatial systems of ODEs. Our package pro-
vides methods to automatically create the complete
set of coupled ODEs, based on a user-defined grid, the
ODEs describing the processes within, and transport
between the individual cells. All of these processes
can be described using arbitrary Python functions,
enabling a very flexible interface. We offer numerous
regular pre-defined one-, two- and three-dimensional
grids, which can be arranged in intricate, non-regular
shapes. The package further supports the definition
of different cell types, which can each have their spe-
cific intracellular dynamics. In this application note,
we describe the functionality of dismo and demon-
strate its capabilities for a spatially resolved model of
sugar transport in a photosynthetic leaf.

Implementation and results

We build dismo using best object-oriented program-
ming (OOP) practices, utilizing composition, separa-
tion of concerns and abstract base classes (Gamma
et al., 1994). For example, coordinates and their re-
spective behaviour are separated from the general grid
implementation, such that it is easy to implement new
grids. Furthermore, we utilized composition instead
of inheritance to supply different grids for the model
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Figure 1. Schematic representation of a dismo model. The left-hand-side de-
picts that every model consists of a grid, which can be one-, two- or three-
dimensional, and one or multiple ordinary differential equations for one or mul-
tiple state variables, that either describe the dynamics within a given cell, or
transport processes between cells in that grid. The right-hand-side depicts the
flux of sugars in a plant leaf model.

instances. This way it is easy to interchange parts and
expand both the model and grid types. Construction
and analysis of models, as well as how to subtype a
model class are all described in detail in accompanying
jupyter notebooks (Granger and Pérez, 2021).

Common analysis methods like time course simula-
tion and visualization are implemented as ready-to-
use functions and utilize well-known packages from
the scientific Python landscape, like NumPy, pandas,
Matplotlib as well as the assimulo wrapper around
the sundials solver suite (Andersson et al., Hunter,
Harris et al., McKinney, Gardner et al., 2022).

As modelling sugar transport inside of plant leaves
was the motivation behind building dismo, the pack-
age also includes different types of plant leaf models,
which build up in complexity. First we supply meso-
phyll models, which consist of a single variable for su-
crose as well as a single mesophyll cell type and incor-
porate both a saturating photosynthesis function and
a passive diffusion process between mesophyll cells.
The mesophyll model is then expanded by supplying
an additional vein cell type, which transports sucrose
more rapidly and provides an outflux out the leaf. For
this, passive transport processes between vein cells as
well as an active (as in one-sided) transport of sucrose
from the mesophyll cells into the vein cells are added
to the model description. Finally, the stomata models
further extend the model by both a new stomatal cell-
type and a second variable for CO2. The idea here is
that CO2 only enters stomatal cells, which can then
transport this CO2 into mesophyll cells. Vein cells are
assumed not to contain any CO2. In this model the
mesophyll photosynthesis function is now dependent
on the CO2 concentration in that particular cell and
thus more dynamic and subject to the placement of
stomatal cells in the leaf.

Conclusion

dismo is a new Python package developed for easily
building and analysing multi-variate, discrete spatial
models based on ODEs aimed at beginner modellers.
It thus differs from highly sophisticated packages fo-
cused on continuous PDEs, enabling spatial discreti-
sation that naturally reflects the biological system
under investigation, making model construction and
analysis more straight-forward than in a PDE-based
approach.

The flexible nature of dismo allows arbitrary code
to be run per cell, such that it can be extended to
even run other types of models. As an example, it
would be possible to create spatial community mod-
els, where each cell represents one or more organisms
using a constrained-based model and then metabo-
lite exchanges between the communities are modelled
using diffusion processes (Orth et al., 2010).
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2.5 COBREXAj̇l: constraint-based reconstruction

and exascale analysis

The COBREXAj̇l Julia package consists of tools for the analysis of constraint-based

models exceeding the genome-scale. Contrasting moped (section 2.3), the focus is

less on the reconstruction and more on the analysis. While the majority of the work

was done by Miroslav Kratochvil, I contributed functionality regarding loopless FBA

and gene knockouts and am the seventh author of the publication.
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Abstract

Summary: COBREXA.jl is a Julia package for scalable, high-performance constraint-based reconstruction and

analysis of very large-scale biological models. Its primary purpose is to facilitate the integration of modern high per-

formance computing environments with the processing and analysis of large-scale metabolic models of challenging

complexity. We report the architecture of the package, and demonstrate how the design promotes analysis scalabil-

ity on several use-cases with multi-organism community models.

Availability and implementation: https://doi.org/10.17881/ZKCR-BT30.

Contact: christophe.trefois@uni.lu or wei.gu@uni.lu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding metabolic interactions in cells is a crucial step to in-
vestigate disease mechanisms and to discover new therapeutics
(Apaolaza et al., 2018; Brunk et al., 2018; Cook and Nielsen, 2017).
Constraint-Based Reconstruction and Analysis (COBRA) is a prom-
ising methodology for analyzing various metabolic processes at the
organism- and community- levels (Fang et al., 2020). The main idea
behind COBRA is to represent an organism as a constrained set of
interconnected reactions and metabolites based on genomic sequenc-
ing data. This leads to a straightforward interpretation of metabol-
ism as a constrained linear system, which enables the utilization of a
wide range of well-developed analysis methods (Orth et al., 2010).

The increasing ubiquity of genomic sequencing has led to a rapid
expansion in the number and complexity of genome-scale metabolic
models, e.g. the human metabolic model that has more than 80 000
reactions (Thiele et al., 2020). Recent automated reconstruction
tools can generate models spanning the entire primary metabolism
of both pro- and eukaryotes (Machado et al., 2018). Consequently,
metabolic models are becoming considerably larger in scale than
their predecessors, which is further compounded by the construction
of multi-member community models. This growth implies increasing

analysis complexity (see Supplementary Fig. S1), which in turn
drives the need to develop analysis software that can accommodate
this complexity. While computing the solutions to the underlying
constrained optimization problems is hard to accelerate and paral-
lelize, many analysis types can be decomposed into individual invo-
cations of the optimizer, which may be parallelized. However,
despite continued efforts (Heirendt et al., 2017), this remains
challenging due to the scalability limits of existing software
implementations.

Here, we present COBREXA.jl, a package for implementing and
running distributed COBRA workflows. The package is imple-
mented in the Julia programming language (Bezanson et al., 2017),
enabling facile extension with user-defined numeric-computing
routines, and interoperability with many high-performance
computing packages. It provides a ‘batteries-included’ solution
for scaling analyses to make efficient use of high-performance
computing (HPC) facilities, giving researchers a powerful toolkit
for executing complicated high-volume workflows, such as
the creation and exploration of digital metabolic twins in person-
alized medicine (Björnsson et al., 2019), and analysis of extensive
microbial communities in ecology and biotechnology. We report
the implementation architecture, and substantiate how the

VC The Author(s) 2021. Published by Oxford University Press. 1171

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(4), 2022, 1171–1172

https://doi.org/10.1093/bioinformatics/btab782

Advance Access Publication Date: 16 November 2021

Applications Note

57



design accommodates future extensions and scaling of common
analysis tasks.

2 Implementation and results

COBREXA.jl is an open architecture solution, providing inter-
changeable building blocks for implementing complicated COBRA
workflows. Common analysis methods, such as flux balance, flux
variability and gene knockout analyses (Gudmundsson and Thiele,
2010), are implemented as ready-to-use functions that may be easily
composed and customized. Most importantly, the building blocks
are designed so that the constructed workflows can be easily sepa-
rated into parallelizable analysis steps and executed on multiple
computation nodes in HPC environments (as illustrated in Fig. 1).
The concurrent execution of such workflows results in significant
computational speedups, without requiring user expertise in parallel
programming.

The design of COBREXA.jl distinguishes it from other COBRA
implementations, which typically provide parallelization support for
only a few selected methods, and no current support for paralleliza-
tion of custom method variants. For example, parallel single-gene
deletion analysis is commonly supported, but a variant that explores
the flux variability in knockouts must be reimplemented and paral-
lelized by the user.

A variety of model exchange and representation formats are sup-
ported, including MATLAB format (Heirendt et al., 2019); object-
oriented JSON format (Ebrahim et al., 2013), and SBML (Keating
et al., 2020). In addition, implementation of the workflows in Julia
results in highly optimized execution of the code at the cost of minor
pre-compilation overhead, which benefits large, data-heavy use
cases. A detailed architecture overview is provided in Supplementary
Section S1.

To evaluate the effect of the new architecture and optimiza-
tions on the performance and scalability of COBRA analyses, we
benchmarked COBREXA.jl on use-cases that benefit from paral-
lelization. We compared its performance to that obtained with
COBRApy (Ebrahim et al., 2013) and the COBRA Toolbox
(Heirendt et al., 2019), which are the widely adopted tools for run-
ning COBRA workflows. Running on a 256-CPU multi-node clus-
ter, COBREXA.jl was able to fully utilize the available distributed
computing resources and outperform the implementation of flux
variability analysis in other packages by a factor of between 2�
and 10�, even on relatively small models (Supplementary
Table S2). We further demonstrated that COBREXA.jl is able to
parallelize and distribute custom workloads by re-implementing
the production envelope functionality of COBRApy; leading to
speedups of over 10�, even on a single 16-core computation
node (Supplementary Table S3). Consequently, we expect that
the COBRA methods implemented in COBREXA.jl will enable
reliable acceleration of many current and future workloads by

simply adding more computing resources. The results are further
discussed in Supplementary Section S3.4.

3 Conclusion

COBREXA.jl is a new package developed for large-scale distributed
processing of constraint-based biological models. It differs from the
other implementations of COBRA methods (Ebrahim et al., 2013;
Heirendt et al., 2019) by focusing on computational efficiency, and
simplifies high-level construction of parallelized user-defined ana-
lysis methods. This is required for performing extensive analyses of
large models, future-proof extensibility and workload distribution
that enables effective utilization of the common HPC infrastructure
resources. The package thus enables fast analysis of datasets that
may pose challenges for the currently available tools, such as the
comprehensive human gut microbiome models.
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3.1 Improving photosynthetic efficiency toward

food security: Strategies, advances, and per-

spectives

The review "Improving photosynthetic efficiency toward food security: Strategies,

advances, and perspectives" discusses bypassing photorespiration, enhancing

light use efficiency, harnessing natural variation in photosynthetic parameters for

breeding purposes, and adopting new-to-nature approaches that show promise

for achieving unprecedented gains in photosynthetic efficiency. My contribution,

together with Ed Smith, was writing the sections regarding the state of metabolic

modelling of photorespiratory bypasses, specifically "A critical qualitative assess-

ment of mechanistic hypotheses" and "Modeling at different scales can inform

photorespiration engineering".
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ABSTRACT

Photosynthesis in crops and natural vegetation allows light energy to be converted into chemical

energy and thus forms the foundation for almost all terrestrial trophic networks on Earth. The efficiency

of photosynthetic energy conversion plays a crucial role in determining the portion of incident solar radia-

tion that can be used to generate plant biomass throughout a growth season. Consequently, alongside the

factors such as resource availability, crop management, crop selection, maintenance costs, and intrinsic

yield potential, photosynthetic energy use efficiency significantly influences crop yield. Photosynthetic ef-

ficiency is relevant to sustainability and food security because it affects water use efficiency, nutrient use

efficiency, and land use efficiency. This review focuses specifically on the potential for improvements in

photosynthetic efficiency to drive a sustainable increase in crop yields. We discuss bypassing photorespi-

ration, enhancing light use efficiency, harnessing natural variation in photosynthetic parameters for

breeding purposes, and adopting new-to-nature approaches that show promise for achieving unprece-

dented gains in photosynthetic efficiency.

Key words: photosynthesis, photorespiration, photorespiratory bypass, natural variation, synthetic biology, plant

metabolic engineering
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INTRODUCTION

Photosynthesis harnesses the energy of visible light quanta to

extract electrons from water, utilizing them to convert atmo-

spheric carbon dioxide (CO2) into biomass. This crucial metabolic

process originated over 2 billion years ago in an atmosphere

abundant in CO2 and low in oxygen (O2). Throughout geological

time, oxygenic photosynthesis caused a significant shift in the

Published by the Molecular Plant Shanghai Editorial Office in association with
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atmospheric O2-to-CO2 ratio, resulting in the present 500-fold

excess of O2 over CO2. The enzyme responsible for CO2 fixation

in the Calvin–Benson cycle (CBC), known as ribulose 1,5-

bisphosphate carboxylase/oxygenase (Rubisco), exhibits a

higher affinity for CO2 than for O2. However, under current

atmospheric conditions, Rubisco frequently reacts with O2, lead-

ing to production of 3-phosphoglyceric acid (3PGA) and 2-

phosphoglycolic acid (2PG). Notably, 2PG acts as an inhibitor

of key enzymes in the CBC; namely, triose phosphate isomerase

and sedoheptulose 1,7-bisphosphate phosphatase (Fl€ugel

et al., 2017).

The two carbon atoms present in 2PG cannot be further metab-

olized within the CBC. Instead, conversion of 2PG to 3PGA oc-

curs via a metabolic pathway known as photorespiration

(Bauwe, 2023). During photorespiration, one of four carbon

atoms contained in two molecules of 2PG is released as CO2;

i.e., previously fixed carbon is lost. Additionally, the process re-

sults in release of ammonia and consumption of ATP and redox

power. Overall, photorespiration significantly diminishes the effi-

ciency of carbon assimilation in C3 plants, leading to yield losses

of approximately 30% or higher (Walker et al., 2016a). Despite its

negative impact on photosynthetic efficiency, photorespiration is

an essential process that enables photosynthesis in an O2-

containing atmosphere through breakdown of 2PG (Bauwe,

2023). Mutations affecting photorespiration are typically lethal,

even in the presence of carbon-concentrating mechanisms

such as carboxysomes in cyanobacteria, pyrenoids in algae, or

C4 photosynthesis in land plants (Eisenhut et al., 2008; Zelitch

et al., 2009; Levey et al., 2019). The topic of photorespiration

has been reviewed extensively (Bauwe et al., 2010; Hodges

et al., 2016; Eisenhut et al., 2019; Fernie and Bauwe, 2020;

Bauwe, 2023; Broncano et al., 2023), rendering a detailed

account of the pathway unnecessary in this work. Instead, here

we focus on recent approaches aiming to mitigate the impact

of photorespiration on photosynthetic efficiency.

Tomitigate the oxygenation reaction of Rubisco, land plants have

evolved carbon-concentrating mechanisms, including C4 and

crassulacean acid metabolism photosynthesis. These pathways,

however, are complex and require specific leaf anatomy. Despite

significant efforts, introduction of these photosynthetic subtypes

into C3 plants remains an unsolved challenge. Instead of reducing

oxygenation, several research groups have focused on improving

the efficiency of 2PG recovery, designing and implementing alter-

native pathways that bypass photorespiration, converting 2PG

into CO2, intermediates of the CBC, or metabolites of C4 photo-

synthesis. In this review, we will explore these photorespiration

bypasses and other strategies to enhance photosynthetic effi-

ciency, considering their potential contributions to increased

crop yields. Additionally, we will examine naturally occurring var-

iations in photosynthetic efficiency and explore how such varia-

tions could be leveraged to enhance photosynthetic efficiency

through breeding. Finally, we will discuss the potential of new-

to-nature pathways to increase photosynthetic efficiency.

INCREASING PHOTOSYNTHETIC
EFFICIENCY THROUGH
PHOTORESPIRATORY BYPASSES

Chloroplast-localized photorespiratory bypasses

We will first describe the design and implementation of bypasses

to photorespiration, focusing on in planta experimentally vali-

dated approaches (Figure 1). We will then discuss how such

bypasses improve yield and novel strategies that have not yet

Figure 1. Bypasses to photorespiration discussed in this review.

Shown are (1) wild-type photorespiration, (2) Maier et al. (2012), (3) South et al. (2019), (4) Kebeish et al. (2007), (5) Shen et al. (2019), (6) Carvalho et al.

(2011), and (7) Roell et al. (2021).

1548 Molecular Plant 16, 1547–1563, October 2 2023 ª 2023 The Author.
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been tested in plants. We will start the discussion with the

designs proposed by Kebeish et al. (2007) and Maier et al.

(2012) because most of the reported photorespiratory bypasses

since 2012 are variations of these schemes.

Intraplastidic conversion of 2PG into 3PGAby glyoxylate

carboligase (GCL) and tartronate semialdehyde

reductase

Kebeish et al. (2007) successfully introduced a bacterial glycolate

metabolic pathway into the chloroplasts of Arabidopsis thaliana, a

process that involved incorporation of five pathway enzymes

fused with chloroplast-targeting peptides. The ability of certain

bacteria to utilize glycolate as the sole carbon source served

as the basis for this implementation. Within the bacterial

glycolate pathway, glycolate dehydrogenase (GDH), composed

of three subunits (D, E, and F), converts glycolate to glyoxylate.

Subsequently, GCL catalyzes ligation of two glyoxylate

molecules, resulting in formation of tartronic semialdehyde and

release of one molecule of CO2. Tartronic semialdehyde is further

transformed intoglycerate through the actionof tartronic semialde-

hyde reductase. Native glycerate kinase converts glycerate

to 3PGA.

To establish the complete bacterial glycolate pathway, Kebeish

et al. (2007) introduced the corresponding pathway components

using three different plasmids. Through genetic crossings of lines

expressing partial pathways, they eventually combined all of the

components to create the full pathway. The transgenic

Arabidopsis plants expressing the full pathway exhibited a two-

fold increase in shoot biomass and a three-fold increase in root

biomass. The transgenics also demonstrated a decrease in the

glycine-to-serine ratio, which is indicative of reduced photorespir-

atory flux. Moreover, the post-illumination burst of CO2 release, a

measure of photorespiratory glycine in the light, was reduced.

Additionally, the lines expressing the complete bacterial pathway

showed a minor reduction in O2-inhibition of photosynthetic car-

bon assimilation and a slight decrease in the CO2 compensation

point. These findings suggest that implementation of the pathway

resulted in amodest elevation of CO2 levels at the site of Rubisco.

Intriguingly, transgenic lines expressing only GDH D, E, and F

also exhibited significant increases in biomass and rosette diam-

eter, along with decreased Gly/Ser ratios. However, the reason

behind the improved plant performance solely from expression

of bacterial GDH remains unexplained.

Intraplastidic glycolate oxidation by glycolate oxidase

Maier et al. (2012) developed an alternative photorespiratory

bypass strategy by redirecting peroxisomal enzymes to the

chloroplasts. This pathway involves complete oxidation of

glycolate to CO2 within the chloroplast stroma. To achieve this,

peroxisomal glycolate oxidase is targeted to the chloroplasts,

where it catalyzes oxidation of glycolate to glyoxylate, releasing

hydrogen peroxide as a byproduct. The chloroplast-targeted

catalase then dissipates the hydrogen peroxide. Subsequently,

glyoxylate and acetyl-coenzyme A (CoA) are condensed to ma-

late by a plastid-targeted malate synthase, an enzyme from the

peroxisomal glyoxylate cycle. Malate is decarboxylated by the

native chloroplast NADP-malic enzyme, generating pyruvate

and Nicotinamide adenine dinucleotide phosphate (NADPH).

The resulting pyruvate is further decarboxylated by the native

chloroplast pyruvate dehydrogenase, yielding acetyl-CoA and

NADH. Acetyl-CoA, along with another glyoxylate molecule, re-

enters the cycle through malate formation via malate synthase.

Overall, this cycle completely oxidizes the carbon present in gly-

colate and releases CO2 within the chloroplast stroma. Addition-

ally, it generates NADPH and NADH as reducing equivalents.

Unlike the pathway described by Kebeish et al. (2007), the

Maier et al. (2012) pathway requires introduction of only three

transgenes.

Transgenic Arabidopsis plants expressing the glycolate oxidizing

pathway showed significantly increased rates of CO2 assimilation

and a decreasedGly/Ser ratio. However, in contrast to the findings

of Kebeish et al. (2007), the CO2 compensation point remained un-

changed. This result is surprising considering that the local CO2/O2

ratio within the chloroplasts of these lines is expected to be higher

than in the lines of Kebeish et al. (2007). One of the two lines

analyzed by Maier et al. (2012) exhibited increased leaf fresh and

dry weight, along with a reduction in leaf thickness.

Expression of GDH in chloroplasts

Kebeish et al. (2007) observed that transgenic Arabidopsis

plants expressing all three subunits of Escherichia coli GDH

exhibited enhanced biomass accumulation and reduced flux

through the conventional photorespiration pathway. Building on

this discovery, N€olke et al. (2014) created transgenic potato

plants that were genetically modified to express a single GDH

polyprotein, wherein the D, E, and F subunits were linked by a

(Gly4Ser)3 linker sequence. The polyprotein was targeted to the

chloroplasts using a Rubisco small subunit-targeting peptide

(rbcS1).

The transgenic potato plants demonstrated elevated rates of CO2

assimilation at a 400 ppm CO2 concentration, decreased repres-

sion of CO2 assimilation by O2, and a lowered CO2 compensation

point. Moreover, these transgenic lines exhibited increased

above-ground biomass accumulation compared with the control

plants, with a more than 2-fold increase in tuber yield observed in

lines showing the highest GDH activity. The precise mechanism

underlying the augmented biomass production and yield in the

transgenic plants was not extensively investigated in this

study. However, the authors put forward the hypothesis that

chloroplast-produced glycolate is decarboxylated by plastidial

pyruvate dehydrogenase, resulting in a localized rise in CO2 con-

centration at the Rubisco site.

Combination of plastid-localized photorespiration

bypasses with reduced export of glycolate from

chloroplasts

South et al. (2019) conducted a comparative analysis of three

alternative designs for photorespiratory bypasses (AP1–AP3) in

tobacco, a model crop, and evaluated the performance of

transgenic plants in field trials. AP1 corresponds to the

pathway described by Kebeish et al. (2007), AP2 is based on

the pathway reported by Maier et al. (2012), and AP3 is a

modified version of the Maier et al. (2012) pathway. In AP3, the

combination of peroxisomal glycolate oxidase and catalase

was replaced by mitochondrial GDH from Chlamydomonas

reinhardtii, which was retargeted to the chloroplasts. Unlike the
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bacterial GDH with its three subunits, the algal mitochondrial

enzyme consists of a single subunit and does not produce

H2O2 (the electron acceptor remains unknown), eliminating the

need for co-expression of catalase. Consequently, the AP3

design only requires two transgenes: GDH and malate synthase.

Furthermore, all three alternative pathway designs were combined

with a reduction in glycolate export fromchloroplasts by employing

antisense repression of the chloroplastic glycolate/glycerate trans-

porter (PLGG1; Pick et al., 2013). T2 transformants were initially

screened under high-light and low-CO2 conditions to identify

lines that exhibited enhanced protection against photorespiratory

stress. This pre-selection step was crucial for identifying lines

with optimal expression levels and stoichiometry of the pathway

components. In greenhouse trials, all pathway designs were asso-

ciated with increased biomass production, with AP2 and AP3

performing better when combined with repression of PLGG1.

Subsequently, the AP3 design was evaluated in replicated field

trials with and without repression of PLGG1. Surprisingly, contrary

to the greenhouse experiments, the AP3 design performed best in

the field without repression of PLGG1. The field-grown AP3 lines

exhibited significantly higher biomass productivity, increased

CO2 assimilation rates, and decreased CO2 compensation points.

Additionally,AP3 linesdisplayedelevated levelsofglyoxylate,while

serine and glycerate levels were significantly reduced.

This study is significant because it validated previously reported

bypass designs through a comparative analysis in the same

model system, demonstrating that growth benefits observed in

a greenhouse setting can be reproduced in the field. However,

it is worth noting that lines expressing only a chloroplast-

targeted GDH from C. reinhardtii were not included in this

comparison. This omission is a limitation because it could have

provided insights into whether the improved performance

observed for AP3 is truly dependent on the coordinated activity

of GDH and malate synthase or whether, similar to N€olke et al.

(2014), GDH alone can confer growth benefits.

Complete oxidation of glycolate via oxalate oxidase

The study of Shen et al. (2019) describes a modified pathway,

based on the work of Maier et al. (2012), that enables complete

intraplastidic decarboxylation of glycolate. This pathway involves

conversion of glycolate to oxalate through the action of rice

glycolate oxidase isoform 3, previously demonstrated to oxidize

glycolate and glyoxylate (Zhang et al., 2012). The resulting

oxalate is then fully decarboxylated to CO2 by rice oxalate oxidase

3. The accumulation of H2O2, a byproduct of glycolate and oxalate

oxidation, is effectively eliminated by a chloroplast-targeted

catalase. Consequently, implementation of this pathway necessi-

tates incorporation of three transgenes encoding the chloroplast-

targeted enzymes: glycolate oxidase, oxalate oxidase, and

catalase.

Rice plants expressing these genetic constructs exhibited

enhanced photosynthetic performance, characterized by a

reduced CO2 compensation point and a higher maximum photo-

synthetic rate under saturating light conditions. Furthermore, the

Gly/Ser ratio and glycolate levels decreased, while glyoxylate and

oxalate levels increased under ambient air conditions. Notably,

the yield of single plant seeds varied depending on the seeding

season, with a 27% increase observed in spring seeding but a

yield penalty of 13%–16% in fall seeding.

In another variation of the pathways proposed by Kebeish et al.

(2007) and Maier et al. (2012), Wang et al. (2020a) substituted

the bacterial GDH component of the GCL route with the

glycolate oxidase/catalase system in transgenic rice plants.

This approach effectively combined aspects of the two

previously reported bypasses. The transgenic plants exhibited

improved photosynthetic parameters and yield in replicated

field trials, further confirming the potential of photorespiratory

bypasses to enhance crop performance under field conditions.

Peroxisome-localized photorespiratory bypasses

In the native photorespiration process, glycolate is transported

from chloroplasts to peroxisomes. Within the peroxisomes, gly-

colate undergoes oxidation by glycolate oxidase, resulting in pro-

duction of glyoxylate. Subsequently, glyoxylate is transaminated

to form glycine. The glycinemolecules are then transported to the

mitochondria, where glycine decarboxylase and serine hydroxy-

methyltransferase catalyze the conversion of two glycine mole-

cules into serine, CO2, and ammonia. The generated serine is

subsequently transported back to the peroxisomes, where it is

converted into hydroxypyruvate by the action of serine:glyoxylate

aminotransferase. Hydroxypyruvate is further reduced to glycer-

ate, which is then transported back to the chloroplasts, thereby

completing the photorespiratory cycle. Given the crucial role of

peroxisomes in photorespiration, researchers have endeavored

to develop strategies for bypassing the ammonia- and CO2-

releasing step that occurs in the mitochondria through alternate

glycolate conversion within peroxisomes. Two such attempts

have been documented in the literature.

Peroxisomal conversion of glyoxylate to

hydroxypyruvate

This pathway design capitalizes on conversion of glycolate to

glyoxylate by the inherent peroxisomal glycolate oxidase, aiming

to redirectglyoxylate towardhydroxypyruvate through involvement

of GCL and hydroxypyruvate isomerase. Similar to the pathway

design proposed by Kebeish et al. (2007), bacterial GCL is

employed to convert glyoxylate into tartronate semialdehyde,

which is subsequently transformed into hydroxypyruvate by

hydroxypyruvate isomerase. Essentially, this strategy enables

retrieval of 75% of the carbon content present in two glyoxylate

molecules while mitigating the release of ammonia mediated by

mitochondrial glycine decarboxylase. Transgenic tobacco plants

carrying constructs encoding peroxisome-targeted versions of

these bacterial enzymes were generated.

Under non-photorespiratory conditions at highCO2, the transgenic

plants exhibited robust growth. However, when exposed to current

ambient CO2 conditions, the leaves displayed yellow lesions, and

the plants exhibited a chlorotic phenotype. Metabolic labeling ex-

periments employing [14C]-glycolate revealed that glycolate was

still predominantly converted into glycine and subsequently serine,

suggesting that only a minor fraction of glycolate entered the engi-

neered pathway. Surprisingly, amino acid analysis indicated that

the leavesof the transgenicplantscontainedhigher levelsofglycine

and serine compared with wild-type plants, contrary to initial ex-

pectations. Notably, the researchers were unable to detect the
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presence of the hydroxypyruvate isomerase protein in the trans-

genic plants through immunoblotting despite detectable expres-

sion of the transgene confirmed by RNA gel blots. These findings

suggest that the pathway may have been incomplete and that the

observed phenotypes could arise from accumulation of undesired

tartronate semialdehyde in peroxisomes, exerting adverse effects.

Peroxisomal glyoxylate-to-oxaloacetate conversion via

the b-hydroxyaspartate shunt

In this study (Roell et al., 2021), a recently discovered microbial

pathway involved in the metabolism of glyoxylate was

introduced into plant peroxisomes. The pathway, known as

the b-hydroxyaspartate cycle, encompasses four enzymatic

steps that convert glyoxylate and glycine into oxaloacetate.

The sequential actions of b-hydroxyaspartate aldolase,

b-hydroxyaspartate dehydratase, and iminosuccinate reductase

transform glyoxylate and glycine into b-hydroxyaspartate,

iminosuccinate, and aspartate, respectively. Finally, aspartate:

glyoxylate aminotransferase converts glyoxylate into glycine

and releases oxaloacetate as the end product of the pathway.

Transgenic Arabidopsis plants were engineered to express

the pathway enzymes fused with peroxisomal targeting

signals. Promoters that drive gene expression specifically in

photosynthetic tissues were employed to prevent undesired

pathway activity in non-photosynthetic plant organs.

Roell et al. (2021) hypothesized that reducing the conversion of

glyoxylate to glycine would enhance metabolic flux through the

b-hydroxyaspartate cycle. Therefore, apart from wild-type

Arabidopsis plants, the pathway was introduced into the genetic

background of the ggt1-1mutant, which lacks peroxisomal gluta-

mate:glyoxylate aminotransferase 1 and exhibits a photorespira-

tory phenotype under ambient air conditions. This enabled investi-

gation of the b-hydroxyaspartate cycle’s function by assessing its

ability to complement the visual phenotype of the ggt1-1mutant.

Similar to the findings of Carvalho et al. (2011), wild-type plants

expressing the b-hydroxyaspartate cycle exhibited reduced

growth and photosynthetic rates in ambient air. However, when

exposed to elevated CO2 concentrations that suppress photo-

respiration, their growth was comparable with that of wild-type

controls. Importantly, expression of the b-hydroxyaspartate cycle

in the ggt1-1 mutant partially rescued the photorespiratory

phenotype, indicating that the introduced pathway fulfilled its ex-

pected function to some extent.

Metabolic analysis was conducted to investigate the underlying

reasons for the impaired growth observed in wild-type transgenic

plants expressing the b-hydroxyaspartate cycle. These plants, as

well as the transformed ggt1-1 mutants, exhibited elevated levels

ofaspartateandmalate,whileglycine levelswere reduced.Further-

more, intermediates of the CBC, such as 3-phosphoglycerate and

sedoheptulose 7-phosphate, were depleted, suggesting a

decrease in the availability of CBC intermediates and unproductive

metabolic flux into C4 acids.

Collectively, the studies by Carvalho et al. (2011) and Roell et al.

(2021) indicate that perturbing the peroxisomal steps of the

canonical photorespiration pathway does not yield the

anticipated improvement in photosynthetic performance.

Although not extensively discussed in this review, we note that by-

passes to photorespiration often led to a multitude of pleiotropic

changes, including alterations in leaf shape and anatomy, meta-

bolic changes, and developmental effects. For example, changes

in leaf anatomy can have a multitude of effects on leaf photosyn-

thetic activities. Changes in leaf thickness alone can result in

increased photosynthetic activity because of more photosynthetic

biomass per unit leaf area (Onoda et al., 2017). Changes in leaf

anatomy, such as modifications of leaf thickness, intercellular

airspace (IAS) volume, mesophyll cell wall thickness, and

chloroplast size can also affect mesophyll conductance for CO2

(gm; see Figure 2 for a schematic explanation of gm) and thereby

alter the CO2 concentration in chloroplasts (Flexas et al., 2012,

2013; Knauer et al., 2022). Given that observed changes in the

CO2 compensation points have often been small in the abovemen-

tioned studies, consideration of possible changes in gm is impor-

tant. We also note that the CO2 compensation point does not

only depend on Rubisco characteristics and CO2 and O2

concentrations but is also affected by the rate of mitochondrial

respiration in light (Rd). Rd may change as a consequence of

pathway engineering; for example, generation of extra respiratory

substrate, such as malate transported out of chloroplasts.

The precise relationship between modified photorespiration

and its impact on plant structure and function beyond phot-

osynthesis remains incompletely understood. It is important to

acknowledge that native photorespiration does not operate as a

closed cycle in which 75% of the carbon derived from glycolate is

reincorporated into the CBC as glycerate and 25% is released as

CO2. Instead, considerable amounts of carbon can be diverted

toward synthesis of amino acids glycine and serine (Samuilov

et al., 2018; Abadie and Tcherkez, 2019; Fu et al., 2023a), which

serve as building blocks for protein biosynthesis and other plant

metabolites. Moreover, photorespiration indirectly transfers

redox equivalents from chloroplasts to mitochondria (Heber

and Krause, 1980; Heber et al., 1996), where they are oxidized

by the mitochondrial electron transport chain, contributing to

ATP biosynthesis. The observed effects extending beyond

photosynthetic metabolism may be linked to these additional,

albeit less extensively studied and recognized, functions of the

photorespiratory pathway. In the following paragraphs, we will

provide a critical assessment of the assumptions as to how

photorespiratory bypasses function, and we highlight unresolved

questions regarding these pathways.

A critical qualitative assessment of mechanistic

hypotheses

Despite the fact that someof thegenetic implementationsofphoto-

respiratorybypasses increasedphotosyntheticefficiencyandeven

yieldunder someconditions,manyquestions remainunresolved. In

particular the precise molecular mechanisms that are responsible

for higher performance are not yet understood. To develop

informedhypotheses thatarealsobackedupby theoretical consid-

erations, we give some qualitative and quantitative arguments

about attempts to explain increased photosynthetic rates.

First, it should be noted that an observation of biomass increases

of a certain percentage after a growth period (usually several

weeks long) cannot be directly translated into increased fluxes.

Even marginal differences in flux will, over time, lead to an

Molecular Plant 16, 1547–1563, October 2 2023 ª 2023 The Author. 1551

Improving photosynthetic efficiency toward food security Molecular Plant

65



exponential difference in overall biomass accumulation. For

example, in South et al. (2019), it was shown that, under

saturating CO2, the assimilation rate is increased by approxi-

mately 10% (cf. South et al., 2019; Figure 5A). However, this

increase is considerably lower than the reported 24% increase

in biomass after a growth period of 6 weeks. This example

illustrates that yield gains in percent stated for the diverse

experimental approaches are not comparable on a quantitative

level.

Other observations in South et al. (2019) are also challenging to

explain. For example, it has been suggested that an increase in

CO2 locally in the chloroplast could explain a higher carbon fixation

rate. However, increased CO2 assimilation was observed even for

saturating conditions, which entails that increasing the local con-

centration isnot theprimarycause for higher fixation rates.A similar

result was observed when a complete glycolate decarboxylation

pathway was expressed in rice, with several transgenic lines

showing increasedmaximum rates ofRubisco carboxylation under

saturating CO2 (Shen et al., 2019). Another hypothesis was that, as

a result of the glycolate oxidase activity, glycolate levels should be

reduced, thus reducing its toxic effects. However, in various lines,

the glycolate levels were actually increased, making this

explanation unlikely. Similarly, although not explicitly measured,

2PG levels might be reduced as a result of the newly introduced

pathways, but because dephosphorylation of 2PG to glycolate is

highly irreversible, there is no convincing argument why 2PG

levels should actually be reduced. We note, however, that it has

been shown previously that more efficient removal of 2PG by

overexpression of 2-phosphoglycolate phosphatase improved

photosynthetic performance in A. thaliana under stress conditions

(Timm et al., 2019).

Possibly, the growth promoting effect is of a more indirect nature.

A possible explanation could be connected with the algal GDH,

which transfers electrons not to H2O2 but to a so far unidentified

electron acceptor. If this acceptor is one of the common electron

carriers of the photosynthetic electron transport chain, such as

plastoquinone or ferredoxin, then this new pathway would

contribute to generation of redox equivalents and, thus, directly

support the photosynthetic electron transport chain. The obser-

vation that the transformed plants exhibit a higher apparent quan-

tum efficiency (4; cf. South et al., 2019; Figure 6) is in line with this

hypothesis. An experimental test would be to measure how the

observed increase in growth depends on the light intensity

under which plants are grown. If this speculation is correct,

then the growth increase should be less pronounced the more

saturating the light intensity.

Insummary, theseconsiderations illustrate thecomplexityof thesys-

temand the necessity to usemathematicalmodels,which are based

on clear mechanistic hypotheses and are designed to quantitatively

reproduce experimental results and, thus, provide a platform to test

different mechanistic hypotheses and, by making novel predictions,

support the experimental design to confirm or falsify these.

Modeling at different scales can inform

photorespiration engineering

The mechanisms of yield improvement caused by photorespira-

tory bypasses can be divided into four categories: improved stoi-

chiometry and energy efficiency, improved kinetics (i.e., altered

Rubisco carboxylation-to-oxygenation ratio), relief of inhibition

by toxic intermediates, and indirect effects of altered physiology

or development. Models at different scales, from simple cofactor

accounting and stoichiometric models to kinetic models of

photosynthesis, have provided some insight into how these

mechanisms allow photorespiratory bypasses to be effective,

but further work is still required if models are to explain all

observed experimental results (Peterhansel et al., 2013; Xin

et al., 2015; Basler et al., 2016; Trudeau et al., 2018; Khurshid

et al., 2020; Osmanoglu et al., 2021).

Figure 2. Semi- and ultrathin cross-

sections of Helianthus occidentalis leaf

mesophyll.

(A and B) Semi- and ultrathin cross-sections of

Helianthus occidentalis leaf mesophyll (A) and

palisade cells (B) to illustrate the CO2 diffusion

pathway from ambient air (Ca) to substomatal

cavities (Ci) through IASs to the outer surface of

the mesophyll cell wall (Ci,w) and farther into the

chloroplast (Cc). The CO2 concentration draw-

down, Ca–Ci, is modulated by stomatal conduc-

tance. Mesophyll conductance (gm) is determined

by gas- and liquid-phase conductance. The Ci–

Ci,w drop is modulated by gas-phase diffusion

conductance (gias), depending on mesophyll

thickness and effective porosity of mesophyll

airspace. The CO2 drawdown from the outer

surface of cell walls to chloroplasts, Ci,w–Cc, is

determined by liquid-phase diffusion conduc-

tance (gliq), which is determined by multiple liquid

and lipid phase barriers: cell wall (cw), plasma

membrane (pm), cytoplasm (cyt), chloroplast envelope (env), and chloroplast stroma (chl). Thus, the physical dimensions of each anatomical component

of gm determine its partial conductance, largely setting the maximum gm in a given species (Tosens et al., 2012). In this context, the cell periphery facing

the IAS is largely enveloped by chloroplasts (Sc/Smes� 1,B). On a global scale,Sc/Smes varies from 0.3–0.98. A highSc/Smes signifies the direct passage of

CO2 fluxes from the IAS into the chloroplasts; this configuration also facilitates efficient recycling of respiratory CO2 fluxes as chloroplasts are covered by

mitochondria (M) (Busch et al., 2013). Scale bars: (A) 0.03 mm, (B) 2 mm. Unpublished images by T.T.
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A common feature of photorespiratory bypasses is to avoid the en-

ergetic cost of ammonium refixation or to capture the reducing po-

wer fromglycolate oxidation, thus decreasing the ATP andNADPH

cost of photorespiration. Models for energy cofactor accounting

can quantify these direct energetic benefits of bypassing

photorespiration as well as indirect benefits, such as avoiding

the cost of CO2 refixation via the CBC in carbon fixing bypasses

(Table 1; Peterhansel et al., 2013; Trudeau et al., 2018). Larger,

genome-scale stoichiometric models can also calculate energy

efficiency and have the advantage of predicting flux into

biomass rather than just rates of carbon fixation, placing

bypasses in the wider context of the plant metabolic network

(Basler et al., 2016). For example, a curated stoichiometric

model was able to predict a decrease in photorespiratory flux

and a biomass output increase of �6.2%, qualitatively consistent

with experimental data (Kebeish et al., 2007; Basler et al., 2016).

However, stoichiometric models predict no benefit for bypasses

that are energetically more costly than photorespiration, such as

those that completely decarboxylate glycolate in the chloroplast.

Experimentally, such bypasses still show increased yields when

expressed in plants, suggesting either incorrect prediction of

energy costs or benefits that are beyond just direct ATP and

NADPH savings (Maier et al., 2012; Peterhansel et al., 2013; Xin

et al., 2015; Shen et al., 2019; South et al., 2019).

Photorespiration involves transport of metabolites between three

compartments as well as movement of reducing equivalents from

the chloroplasts to the mitochondria. Photorespiratory bypasses

can relocate reactions to different compartments, potentially

avoiding the energetic costs of metabolite transport. Therefore,

more complete modeling of transport reactions, including

thermodynamic constraints, may improve the accuracy of energy

accounting. However, even if all energetic costs were accurately

modeled, stoichiometric models alone cannot account for

changes in metabolite concentrations or reaction kinetics.

Several of the bypasses validated in plants aim to relocate the

release of photorespiratoryCO2 frommitochondria to chloroplasts,

which has two potential advantages: increasing the CO2 concen-

tration at the site of Rubisco and recapturing photorespiratory

CO2 that could otherwise be lost from the cell by diffusion out of

mitochondria. Predicting such effects requires use of kinetic

models or additional constraints on Rubisco carboxylation and

oxygenation fluxes (Basler et al., 2016). A kinetic model predicted

that, under high light conditions, the entire benefit of the Kebeish

et al. (2007) bypass is relocation of CO2 release, not the reduced

ATP cost, which only contributes under low-light conditions (Xin

et al., 2015). However, the same kinetic model failed to explain

the benefit of complete glycolate decarboxylation in the

chloroplast, predicting that the photosynthetic rate would be

31% lower than in the wild type, despite reported increases of

more than 30% in carbon assimilation rate and biomass (Maier

et al., 2012; Xin et al., 2015). Additionally, the kinetic model

demonstrated that any benefit of relocating CO2 release is depen-

dent on the CO2 permeability of the chloroplasts; predicting that, if

more than 30% of photorespiratory CO2 is already recaptured and

refixed inwild-typeplants, then there isnobenefit to thebypass (Xin

et al., 2015). It is therefore surprising that a glycolate

decarboxylationbypass in rice,wherewild-typeplantsalready refix

38% of photorespiratory CO2, still showed some biomass gains,

suggesting additional benefits not captured by the kinetic model

(Busch et al., 2013; Xin et al., 2015; Shen et al., 2019; Wang et al.,

2020a; Zhang et al., 2022).

In contrast to Xin et al. (2015), a different kinetic model of a

cyanobacterial complete glycolate decarboxylation bypass

Reference Pathway name CO2 (a) ATP (b) Red. equiv. (g) Total ATP equiv.a
Total ATP equiv.a normalized

to net 0 carbon lost/gainedb

Trudeau et al., 2018 TaCo 1 7 4 17 9

Kebeish et al., 2007 chloroplast TSS �0.5 3 1 5.5 9.5

Shih et al., 2014 3OHPc 1 8 4 18 10

Carvalho et al., 2011 peroxisome TSS �0.5 3 2 8 12

Roell et al., 2021 BHACd
�0.5 3 2 8 12

photorespiration �0.5 3.5 2 8.5 12.5

South et al., 2019 AP3 �2 2 �2 �3 13

Maier et al., 2012 GMK �2 2 �1 �0.5 15.5

Shen et al., 2019 GOC �2 2 1 4.5 20.5

Calvin cycle 1 3 2 8

Table 1. Photorespiratory bypass energy costs (adapted from Trudeau et al., 2018).

The table is based on the consumermodel of photosynthesis, which describes the processes of photorespiration and theCBC as independent cycles that

are able to regenerate ribulose 1,5-bisphosphate (RuBP) using ATP (b) and reducing equivalents (g) and either consume or produce CO2 and glyceral-

dehyde 3-phosphate (GAP) (a) (Trudeau et al., 2018). This description allows bypasses to be compared directly and separated from the CBC. Positive

values represent consumption, and negative values represent production. See Supplemental Table 1 for detailed calculations.

3OHP, 3-hydroxypropionate; Red equiv, reducing equivalents; TaCo, tartonyl-CoA; TSS, tartronic-semialdehyde shunt; BHAC, b-hydroxyaspartate cy-

cle; GMK, glycolate oxidase, malate synthase, catalase (KatE); AP3, alternative pathway 3; GOC, glycolate oxidase, oxalate oxidase, catalase.
aAssuming 2.5 ATP per reducing equivalent.
bAssuming CBC compensates for carbon lost by PR bypasses.
c3OHP bypass assuming that pyruvate is converted to GAP via pyruvate phosphate dikinase.
dBHAC bypass assuming that oxaloacetate is converted to GAP via phosphoenolpyruvate-carboxykinase to regenerate RuBP.
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expressed in the chloroplast predicted a 10% increase in

photosynthetic rate, although this model did not explicitly

account for the movement of CO2 between compartments and

has yet to be experimentally validated by expression of the full

pathway in plants (Bilal et al., 2019; Khurshid et al., 2020;

Abbasi et al., 2021). Kinetic models have been useful for

estimating the potential effect of relocation of CO2 release and

distinguishing this from energy benefits, but they are still unable

to explain all currently observed experimental results.

Reducing the concentration of inhibitory intermediates of photo-

synthetic metabolism could account for some of the benefit of

photorespiratory bypasses, and this can be simulated using ki-

netic models. However, kinetic models of photorespiratory by-

passes did not include parameters for the inhibitory effects of

2-phosphoglycolate on the CBC or the inhibitory effect of glyox-

ylate on Rubisco activation and Rubisco oxygenase activity

(Oliver and Zelitch, 1977; Oliver, 1980; Campbell and Ogren,

1990; Xin et al., 2015; Fl€ugel et al., 2017; Khurshid et al., 2020).

Increasing the scale of kinetic models to include more inhibition

terms may provide additional explanation for benefits, although

this can be limited by the availability of accurate kinetic

parameters.

As pointed out previously, a higher apparent 4 could be respon-

sible for yield improvements in the transformed plants. Modeling

the effect of bypasses on 4 would require a high-fidelity kinetic

model of the photosynthetic electron transport chain and the

CBC, such as in Saadat et al. (2021), to be combined with a

model of photorespiration.

Additional effects beyond the cellular metabolic changes

described by current models, such as altered gene expression,

signaling, physiology, and pleiotropic effects, could also explain

a large proportion of observed growth benefits (Maier et al.,

2012; Shen et al., 2019). Using larger-scale integrated models

could potentially provide more accurate prediction of the effect

of engineering photorespiration in the field by accounting for

interactions across scales (Wu, 2023). Additionally, attempting to

model dynamic processes under non-steady-state conditions

may also help identify advantages of photorespiratory bypasses

not captured by current models (Fu et al., 2023b). Finally,

extending current metabolic models to account for diurnal cycles

could explain advantages of bypass reactions beyond altered

photosynthetic metabolism, such as altered dark respiration and

sucrose export during the night (Dalal et al., 2015).

No singlemodeling strategy can explain all of the observed pheno-

types of plants expressing photorespiratory bypasses; instead,

multiple models at different scales should be used as tools to

help explain the underlyingmechanisms of growth benefits. Ques-

tions still remain to be tested by exploring models: why does

expression of GDH alone also increase photosynthetic perfor-

mance and yield in Arabidopsis, potato, and Camelina (Kebeish

et al., 2007; N€olke et al., 2014; Dalal et al., 2015; Abbasi et al.,

2021), and how does the anatomy and physiology of different

crop species affect CO2 diffusion between cells and subcellular

compartments? Future implementation of new bypass designs

based on carbon-fixing rather than decarboxylating reactions will

also provide valuable data for exploring the effect of a fundamen-

tally different bypass mechanism (Trudeau et al., 2018; Scheffen

et al., 2021) (see discussion of new-to-nature pathways below).

With future modeling efforts and better understanding, it may be

possible to further increase yields and improve the transferability

of benefits between different crop species.

COMBINED OPTIMIZATION OF LIGHT
USE AND CARBON ASSIMILATION
EFFICIENCY TO ENHANCE PLANT
PRODUCTIVITY

The intricate relationship between light conversion, carbon fixa-

tion, and their impact on plant productivity calls for a comprehen-

sive exploration of their interdependencies. Through combining

modifications of light utilization and carbon fixation, we have

the potential to achieve synergistic enhancements. Here we

discuss the interplay between these pathways and evaluate the

possibility of maximizing overall productivity by improving the ef-

ficiency of converting light energy into ATP and NADPH while

optimizing their utilization for carbon fixation.

In plants, pigments absorb light, and the excitation energy is uti-

lized by photosystems to facilitate synthesis of ATP and NADPH,

which are essential for all metabolic reactions, including carbon

fixation. This initial phase of photosynthetic reactions effectively

transforms light into chemical energy, and its efficiency signifi-

cantly influences crop productivity (Zhu et al., 2010).

In highly dynamic environments, the amount of light absorbed by

the photosynthetic apparatus can exceed the metabolic capacity

of the cell, resulting in over-reduction of the photosynthetic elec-

tron transport chain and production of harmful reactive O2

species. Photosynthetic organisms have evolved various mech-

anisms to regulate light utilization efficiency and photosynthetic

electron transport, aiming to minimize the likelihood of over-

reduction and cellular damage by safely dissipating excess exci-

tation or electrons (Li et al., 2009). While protection of the

photosynthetic apparatus plays a crucial biological role, it

comes at the expense of reduced efficiency in converting

sunlight into chemical energy (Alboresi et al., 2019).

Fluctuations in light intensity represent a particular challenge to

regulation of photosynthesis and significantly impact primary pro-

ductivity (Long et al., 2022). Abrupt increases in illumination can

be detrimental because they do not allow sufficient time for

activation of regulatory responses and modulation of metabolic

reactions. Conversely, when light levels decrease from excessive

to limiting, the photoprotective mode remains active for several

minutes, leading to unnecessary energy dissipation and a

subsequent reduction in carbon fixation efficiency (Wang et al.,

2020b).

To address this limitation, modifications were made to the ki-

netics of non-photochemical quenching (NPQ), which is one

of the mechanisms involved in light harvesting regulation. By

overexpressing key proteins such as the Photosystem II sub-

unit S, violaxanthine de-epoxidase, and zeaxanthin epoxidase

the activation and relaxation kinetics of NPQ were accelerated.

This overexpression allowed tobacco and soybean plants to

effectively respond to changes in light and minimize potential

damage during sudden increases in sunlight. Additionally, it
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facilitated faster relaxation of NPQ when illumination intensity

decreased. This approach has demonstrated positive effects

on biomass productivity not only in the field, for crops like to-

bacco and soybean (Kromdijk et al., 2016; Souza et al., 2022),

but also in high-density culture photobioreactors for the micro-

alga Nannochloropsis (Perin et al., 2023). However, in

Arabidopsis, the same approach was not as successful,

suggesting that species-specific traits, including light distribu-

tion within the canopy, significantly impact plant productivity

and the optimal balance between light harvesting and photo-

protective responses (Garcia-Molina and Leister, 2020).

Another strategy to enhance the efficiency of sunlight utilization is

modification of the light-harvesting apparatus. Leaves have

evolved to efficiently capture light and outcompete other organ-

isms for sunlight. However, in densely cultivated fields, this high

light harvesting efficiency can have negative consequences. Light

is primarily absorbedby theuppermost leaves in the canopy, leav-

ing fewer photons available for the lower layers. While high light

harvesting efficiency provides a competitive advantage in natural

environmentswhere individuals vie for a limited resource like light,

it provesdetrimental in cultivatedfields. In this context, plantswith

paler leaves can enable a more uniform distribution of light within

the canopy, which has been shown to enhance overall productiv-

ity (Rotasperti et al., 2022; Cutolo et al., 2023). Also, extra nitrogen

that is no longer needed for construction of the pigment-binding

machinery of photosynthesis could be invested in Rubisco and

rate-limiting proteins of photosynthetic machinery, thereby

increasing leaf photosynthetic capacity (Walker et al., 2017;

Niinemets, 2023). It is interesting here to discuss whether these

efforts in modulating regulation of light harvesting could be

combined with improvements in carbon fixation efficiency. In

principle, a higher-efficiency conversion of light energy into ATP

and NADPH could be combined with more efficient utilization of

these molecules for carbon fixation, with a potentially additive ef-

fect on productivity.

One possible implication to be considered is that photorespi-

ration has been shown to be a major sink for photosynthetic

electron transport and that this energy loss can have a bene-

ficial effect under conditions where the photosynthetic appa-

ratus is overexcited (Heber and Krause, 1980; Kozaki and

Takeba, 1996; Hanawa et al., 2017). Light saturation occurs

when electron transport is faster than the metabolic capacity

of consuming ATP and NADPH produced, and, under these

conditions, photorespiration can be beneficial in reducing

oversaturation. If efficiency in carbon fixation is improved

by introduction of photorespiratory bypasses, however,

then this would also drive stronger ATP and NADPH consump-

tion with a similar protective effect. This suggests that the crit-

ical point is that the new or modified pathways have a suffi-

cient capacity to also compensate for ATP and NADPH

consumption associated with photorespiration. If this is the

case, then their introduction will increase CO2 fixation while

complementing the role of photorespiration in protection

from light excess.

It is anticipated that altering crucial pathways in plantmetabolism,

including light conversion and carbon fixation, will inherently have

interdependent effects that require additional investigation.

Furthermore, there exists the possibility of enhancing the effi-

ciency of converting light energy into ATP and NADPH while

concurrently optimizing the utilization of these molecules for car-

bon fixation. Such combined improvements could potentially

yield an additive outcome, maximizing the overall impact on

productivity.

LEVERAGING NATURALLY OCCURRING
VARIATION OF PHOTOSYNTHETIC
PARAMETERS

Exploiting natural variation of Rubisco kinetic traits, G*,

and photorespiration in coordination with CO2 diffusion

Leveraging the inherent diversity in essential photosynthetic traits

presents two notable advantages: first, it provides engineering

with essential knowledge about potential trade-offs, and second,

it facilitates the breeding process, allowing accelerated improve-

ments in crops. The crucial traits related to photorespiration in

Rubisco include the Michaelis-Menten constant for CO2 (Kc),

the Michaelis-Menten constant for O2 (Ko), Rubisco specificity

to CO2 over O2 (Sc/o), and maximum turnover rates (specific ac-

tivity per active center per mass or protein [s�1]) for carboxylase

(Vc) and oxygenase (Vo). Several authors have investigated the

environmental and evolutionary trends of natural variation in Ru-

bisco’s kinetic properties and their temperature responses,

including several recent meta-analyses (Galmés et al., 2019;

Bouvier et al., 2021; Tcherkez and Farquhar, 2021). These

studies have revealed substantial variability in major kinetic

traits, which are highly sensitive to factors such as temperature,

CO2 availability, and photosynthetically active quantum flux den-

sity. Moreover, this variability is inherent among species adapted

to different environments. There are several key trade-offs among

Rubisco kinetic traits, most notably the reverse relationships

between Sc/o and Vc (Galmés et al., 2014, 2019), which are

important to consider in Rubisco engineering.

Recent findings have demonstrated a strong co-regulation be-

tween the natural diversity of Rubisco kinetics and gm as well

as in underlying anatomical traits. For instance, plants adapted

to drought exhibit reduced gm and chloroplast CO2 concentration

(Cc) because of higher mesophyll cell wall thickness. Conse-

quently, these plants possess Rubisco with higher Sc/o but lower

turnover rates (Galmés et al., 2019). This highlights the substantial

influence of Cc associated with species adaptation on the

diversity of Rubisco’s kinetic properties and the trade-offs

observed. Importantly, this regulation is significantly influenced

by gm, which exhibits considerable variation among species

and is responsive to environmental stressors (Elferjani et al.,

2021; Knauer et al., 2022).

It is noteworthy that gm can limit photosynthesis, accounting for

approximately 10%–70% of the limitation, thereby exerting an

equally significant impact on photosynthetic assimilation (A) as

stomatal conductance (gs) does (Knauer et al., 2020).

The CO2 compensation point (G) has traditionally served as a

parameter reflecting Rubisco functionality and photosynthetic ef-

ficiency. It represents the equilibrium between the A and leaf

respiration, making it a useful characteristic for categorizing

crops and herbaceous species based on their inherent photosyn-

thetic efficiency and stress resilience. In C3 plants, G is typically
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highest (40–100 mmol mol�1), intermediate in C3–C4 intermedi-

ates (20–30 mmol mol�1), and low in C4 plants (3–10 mmol

mol�1) (Nobel, 1991; Schl€uter et al., 2023).

However,G is a complex trait and can be estimated in amultitude of

ways. To incorporate Rubisco kinetics, photorespiration, and more

accurately, an alternative parameter called the photorespiratory

CO2 compensation point in absence of day respiration (G*) has

been proposed. G* can be determined from A/Cc curves by using

the common interception method measured at different light

intensities and represents the Cc at which photosynthetic carbon

uptake equals photorespiratory CO2 release (Walker et al., 2016b).

G* and G differ significantly; the magnitude of difference depends

on the variable gm (Figure 2) and the fate of the mitochondrial CO2

fluxes because both estimates affect the resultingCc andG*. An un-

derstanding of partitioning of respiratory fluxesbetween thepropor-

tion directed into the chloroplast and what diffuses into the cyto-

plasm and IAS is also crucial for correct gm estimations. However,

the fate of respiratory fluxes and gm largely depend on similar

anatomical traits, such as the proportion of mesophyll cell surface

area lined with chloroplasts, and physical dimensions of the cell

wall, chloroplasts, and cytoplasm (Figure 2B). All of these traits

vary significantly across species, indicating substantial variability

in partitioning of respiratory fluxes between chloroplasts and

cytoplasm (Evans et al., 1994; Tosens et al., 2012; Ubierna et al.,

2019). Thus,considering thephysiological natureofCO2compensa-

tion points estimated through differentmethods, includingG*, offers

valuable insights into how mitochondrial CO2 effluxes curb Cc

(Walker et al., 2016b; Busch, 2020; Sage, 2022).

Achieving optimal photosynthetic efficiency requires precise

coordination between traits that regulate CO2 diffusion effi-

ciency and the functionality of Rubisco. Consequently, a major

focus in improving photosynthesis, whether through breeding

or engineering, is to explore and comprehend the natural

diversity of key kinetic traits of Rubisco and their relationship

with CO2 availability in the chloroplast stroma (Walker et al.,

2016b; Galmés et al., 2019; Flexas and Carriquı́, 2020;

Evans, 2021; Knauer et al., 2022; Iqbal et al., 2023). In

angiosperms with elevated rates of turnover, the constraints

of photosynthesis, including stomata, gm, and photo/

biochemical processes, typically coexist in a harmonious

equilibrium unless stress-induced alterations disrupt this

balance. Consequently, attaining optimal enhancements of

photosynthesis and resource utilization efficiency requires

the simultaneous manipulation of all three constraints or a shift

in focus toward augmenting the gm/gs ratio. This approach en-

ables a simultaneous increase in intrinsic water use efficiency

(Gago et al., 2019; Flexas and Carriquı́, 2020; Knauer et al.,

2020; Clarke et al., 2022; Kromdijk and McCormick, 2022).

Previous studies have often addressed the kinetics components

of A/Ci curves (Rubisco kinetics, RuBP turnover rate, electron

transport limitations; Rd, respiration because of photorespiration

[Rp], CO2 compensation point) separately, combining in vivo and

in vitro estimations, resulting in fragmented information

(Bernacchi et al., 2013). However, employing state-of-the-art

fast response gas-exchange and optical diagnostic systems,

as described by Laisk et al. (2002), allows simultaneous

measurement of all necessary parameters to comprehensively

assess the photosynthetic apparatus in leaves. This approach

enables a holistic understanding of how photosynthesis is

optimized. A primer on measuring photorespiration is given in

Supplemental File S1.

Natural genetic variation in photosynthetic parameters

as a basis for breeding

One way to adapt plants to human requirements is by harnessing

the natural genetic variation that has been generated through

random mutations over historical time spans. This genetic varia-

tion can occur at the intraspecific and interspecific level.

The first evidence of natural genetic variation in the context of

photorespiration was provided by Jordan and Ogren (1981).

They observed differences in the specificity factors toward the

substrates CO2 and O2, Sc/o, of Rubiscos purified from seven

different species, ranging from 77–82. Subsequent studies, as re-

viewed by Hartman and Harpel (1994), revealed changes in the

specificity factor because of replacement of the active-site metal,

random and site-directed mutagenesis, chemical modification,

and hybridization of heterologous subunits. The highest reported

specificity factor for Rubisco is 238, found in the red alga Galdie-

ria partita (Uemura et al., 1996), which is about three times higher

than that reported for Rubisco from most crop plants (Parry

et al., 1989).

Evenbeforediscovery of the oxygenase activity ofRubisco (Bowes

et al., 1971), selection experiments aiming to manipulate the

specificity factor of Rubisco through selection were conducted

(cf. Cannell et al., 1969; Menz et al., 1969). In these experiments,

plants were kept at or slightly above the compensation point, and

plants with high rates of photorespiration were expected to perish.

As discussed in the previous section, over the recent years, the

number of studies exploring the natural plasticity and inherent

variability of Rubisco’s key catalytic traits have increased

significantly. Information about the interspecific variation in

photorespiration has also been observed through carbon isotope

fractionation (Lanigan et al., 2008). However, to the best of our

knowledge, only the study by Cai et al. (2014) examined and

observed natural genetic variation in CO2 compensation points

and evaluated these differences in the context of leaf anatomy

variations among three Rhododendron species.

The genes or alleles responsible for the advantageous photores-

piratory phenotype can be transferred through interspecific hy-

bridization, protoplast fusion, transformation, or genome editing.

To facilitate these processes, it is necessary to identify the under-

lying genes or alleles. One approach to achieve this is through

large-scale comparative genomics, which incorporates pheno-

typic information and is referred to as phylogenetic association

mapping (e.g., Collins and Didelot, 2018).

However, with the exception of Schl€uter et al. (2023), no earlier

study has considered natural variation in characters related to

photorespiration in a densely sampled phylogenetic tree, making

application of phylogenetic association mapping challenging for

identifying the underlying genomic features.

An alternative approach for identifying the genomic features

responsible for interspecific differences is utilization of segre-

gating genetic material derived from interspecific hybrids.
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Comparative transcriptomics is another approach that can aid

in identifying the cis and trans factors responsible for interspe-

cific differences. By comparing transcriptomes of accessions

adapted to specific conditions or subjected to environmental

perturbations, strategies for crop improvement can be guided.

For example, in rice, RNA sequencing (RNA-seq) identified a

transcription factor with the potential to enhance photosynthetic

capacity and increase yield (Wei et al., 2022). However, when

using bulk RNA-seq of an organ, it becomes challenging to

detect differentially expressed genes specific to rare cell types

because their expression is diluted. In the case of C3–C4 or C4

photosynthesis, where the pathways operate in specific cell

types of the leaf, obtaining cell-type-specific transcriptomes is

crucial. Approaches such asmechanical separation of cell types

(John et al., 2014) and laser capturemicrodissection followed by

microarray/RNA seq have been used previously, but their scale

and resolution are limited by the speed of sampling, and

separating low-abundance cell types can still be challenging

(Zhang et al., 2007; Aubry et al., 2014; Hua et al., 2021; Xiong

et al., 2021).

The adoption of single-cell methods, particularly droplet-based

technology, is gaining increasing acceptance in plant research.

This approach allows capture of individual transcriptomic profiles

of cells from a wide range of plant species, providing valuable

insights at a remarkably low cost per cell. For example, compar-

ative single-cell analysis of roots from three grass species

provided significant insights into the evolution of cellular diver-

gence in these crops (Guillotin et al., 2023). This approach

therefore must hold potential for better understanding the

compartmentation of gene expression in C3–C4 and C4 species

(Cuperus, 2021; Seyfferth et al., 2021). Currently the number of

single-cell or single-nucleus datasets generated from leaf tissues

is limited, and most studies have tended to focus on a single

model species under one condition (Bezrutczyk et al., 2021;

Kim et al., 2021; Lopez-Anido et al., 2021; Berrı́o et al., 2022;

Procko et al., 2022; Sun et al., 2022). To enhance

photosynthesis efficacy in crops, understanding the changes in

gene expression associated with closely related C3, C4, or/and

C3–C4 intermediate species is likely to provide insights into the

molecular signatures of each of these traits and therefore how

they might be rationally engineered. Comparative analyses of

leaf anatomy, cellular ultrastructure, and photosynthetic traits

between species within a genus (for example, in Gynandropsis

[Marshall et al., 2007; Koteyeva et al., 2011], Moricandia

[Schl€uter et al., 2017], or Flaveria [McKown and Dengler, 2007;

K€umpers et al., 2017]) have provided insights into traits that

engender higher photosynthesis efficiency. Therefore, acquiring

transcriptome data from individual bundle sheath and

mesophyll cells of these closely related plants should provide

new insights into how the patterns of transcript abundance alter

in association with modifications to photosynthetic efficiency.

We also anticipate that single-cell RNA-seq (scRNA-seq) will

contribute to crop improvement by providing insights into

underlying molecular mechanisms. Last, additional advantages

can be obtained from scRNA-seq when the data are associated

with a complex phenotype (single-cell transcriptome-wide asso-

ciation studies) and genotype (cell-type-specific expression

quantitative trait loci) at the population level (Perez et al., 2022).

It seems likely that such approaches will be adopted for high-

resolution genotyping of bioengineered plants in synthetic

biology projects. In summary, combination of scRNA-seq

technology with comparative transcriptomics, population

genetics, and synthetic biology is likely to serve as a powerful

tool for crop improvement.

A technically simpler procedure to the above-described approach

of exploiting interspecific natural genetic variationwould be exploi-

tation of the intraspecific variation within the species under consid-

eration for photosynthetic properties because transfer or the

enrichment of positive alleles is much easier to realize in compari-

son with interspecific variability. Within species, natural variation

in leaf photosynthesis has been reported for model species (e.g.,

Tomeo and Rosenthal, 2018) but also for major crops (e.g., Gu

et al., 2012; Driever et al., 2014). However, the improvements that

can be realized in that way are up to now smaller compared with

the approaches exploiting interspecific variability.

NEW-TO-NATURE APPROACHES TO
IMPROVE PHOTOSYNTHETIC
EFFICIENCY

Most efforts to improve carbon capture in plants have focused on

engineering naturally existing enzymes and pathways (Kebeish

et al., 2007; South et al., 2019). However, the emergence of

synthetic biology has opened up the possibility to radically (re)

draft plant metabolism to overcome the limitations of natural

evolution, which is driven by co-linearity, tinkering, epistatic drift,

and purifying selection, rather than by ‘‘design’’ (Wurtzel et al.,

2019). Thus, such engineering approaches have the potential to

expand the biological solution space and provide new-to-

nature pathways that outcompete their natural counterparts in

respect to thermodynamics and/or kinetics because they are

drafted from first principles.

As an example, while nature has evolved seven different path-

ways for CO2 fixation, more than 30 synthetic CO2 fixation path-

ways have already been designed, which are all superior to the

CBC (Bar-Even et al., 2010). Some of these new-to-nature solu-

tions have even been realized successfully realized in vitro

(Schwander et al., 2016; Luo et al., 2022; McLean et al.,

2023) and are awaiting their transplantation in vivo.

The concept of designer metabolism has also been extended

to photorespiration lately (Figure 3). Two studies have proposed

alternative ways to use the photorespiratory metabolite

glyoxylate to feed into synthetic carbon fixation cycles (Figure 3,

pathways 1 and 2). The first cycle is the malyl-CoA-glycerate

(MCG) pathway. In this cycle, the bacterial glyoxylate assimilation

route condenses two molecules of glyoxylate to form a C3 com-

pound, releasingCO2 in the process. The resulting tartronate semi-

aldehyde is then reduced and phosphorylated into 2PG. 2PG is

converted to phosphoenolpyruvate and further carboxylated to

oxaloacetate, subsequently reduced to malate and activated with

CoA, followed by cleavage into glyoxylate and acetyl-CoA. Glyox-

ylate is thenavailable to initiate thenextcycle,while acetyl-CoAcan

be utilized for biosynthesis (Yu et al., 2018). The MGC pathway,

therefore, does not result in a net loss of CO2.

A second study proposed the 3-hydroxypropionate (3OHP) pho-

torespiratory bypass, inspired by the naturally occurring 3OHP
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bi-cycle (Zarzycki et al., 2009). The 3OHP bypass exploits malyl-

CoA lyase to produce b-methylmalyl-CoA from glyoxylate and

propionyl-CoA. Methylmalyl-CoA undergoes a series of intercon-

versions that yield citramaly-CoA, which, in turn, serves as a sub-

strate for malyl-CoA lyase and produces pyruvate and

acetyl-CoA. Acetyl-CoA is carboxylated to malonyl-CoA, which

is then reduced and further activated into the starter compound

of the cycle: propionyl-CoA. Pyruvate, on the other hand, can

be further converted to phosphoglycerate and re-enter the CBC

(Shih et al., 2014), resulting in a net gain in carbon.

Both studies implemented their proposed cycles in cyanobacte-

ria. Regardless of the CO2 fixing ability of 3OHP bypass, strains

carrying the cycle did not present a conclusive phenotype. How-

ever, the authors set an example for future in vivo implementation

of carbon-capturing photorespiratory bypasses. On the other

hand, strains containing the MCG pathway showed increased

bicarbonate assimilation and acetyl-CoA accumulation and

achieved higher optical densities than strains lacking MCG.

The aforementioned cycles represent what has been described in

literature as ‘‘mix and match’’ synthetic pathways because they

described novel pathways relying on known reactions and en-

zymes (Erb et al., 2017). Nevertheless, a recent study has

identified several new-to-nature pathways by systematically

developing reaction sequences from the pool of feasible

biochemical transformations that could convert (phospho)glyco-

late back into a central intermediate of the CBC cycle (Trudeau

et al., 2018). The design of these solutions was guided by two

additional principles. First, the new reaction sequences should

require as little energy as possible, and second, these pathways

should be CO2 neutral (i.e., not release CO2) or even capture CO2.

Through these efforts, the authors proposed four ‘‘carbon-neutral

pathways’’ to reincorporate the C2 compound product of the

oxygenation reaction of Rubisco into the CBC (Figure 3,

pathways 3–6). These pathways rely on a novel reduction of

glycolate to glycolaldehyde via engineered enzymes. Taking

advantage of the high reactivity of glycolaldehyde, it is further

combined with sugar phosphates present on the CBC, such

as glyceraldehyde 3-phosphate (GAP), dihydroxyacetone phos-

phate, fructose 6-phosphate, or sedoheptulose 7-phosphate,

via aldolase, transketolase, or transaldolase reactions. In all

cases, a C5 compound is produced and further converted into

the substrate of Rubisco. In the case of transketolase and

transaldolase reactions, side products are formed that are also

part of the CBC and, therefore, can be reused directly. Trudeau

et al. (2018) proved the in vitro feasibility of one of their

proposed carbon neutral bypasses; however, to date, no

further improvement or in vivo implementation has been reported.

Furthermore, in the same study, another photorespiration bypass

comprising novel reactions was proposed, the tartonyl-CoA

(TaCo) pathway (Figure 3, pathway 7). The TaCo pathway is a

five-reaction sequence that first converts photorespiratory glyco-

late into glycolyl-CoA, which is subsequently carboxylated into tar-

tronyl-CoA, the namesake compound of the pathway. In two sub-

sequent steps, tartronyl-CoA is then reduced to glycerate, which

can re-enter the CBC at the level of phosphoglycerate. Compared

withnatural photorespiration, the TaCopathwaysequence is about

50% shorter, requires about 20% less ATP and 30% less reducing

power, and does not release ammonia or, notably, CO2 but instead

captures additional CO2 during photorespiration. In other words,

through the TaCo pathway, photorespiration can be turned into a

carbon-capturingprocess inwhich the oxygenation reaction ofRu-

bisco will still lead to subsequent fixation of carbon.

Although this pathway outcompetes natural photorespiration, a

challenge has been that the central TaCo pathway sequence re-

lies on enzyme reactions that have not been described so far. This

Figure 3. Designed (new-to-nature) photorespiratory bypasses.

Shown are (1) the malyl-CoA-glycerate pathway (MCG) (Yu et al., 2018), (2) 3-hydroxypropionate bypass (3OHP) (Shih et al., 2014), (3)–(6) carbon neutral

bypasses (Trudeau et al., 2018), and (7) the tartronyl-CoA (TaCo) pathway (Scheffen et al., 2021).
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apparent challenge was addressed through re-engineering the

active sites of enzyme candidates that catalyze similar reactions

to establish and/or improve the desired reactions (Scheffen et al.,

2021). The full pathway was reconstituted and prototyped in vitro.

However, this proof of principle is only the starting point for further

developments to successfully realize the TaCo pathway in the

context of the living plant. This could be achieved through a combi-

nation of complementary approaches. The in vitro prototyping ef-

forts could be expanded by combining high-throughput combina-

torics with machine-learning-guided experimentation to optimize

the enzyme stoichiometry and robustness of the pathway (Pandi

et al., 2022; V€ogeli et al., 2022). The optimized network could

then be (partially) transplanted in a suitable (micro)organism to

test its feasibility and use adaptive laboratory evolution to further

improve the network and its cellular integration. The latter

strategy has been recently used successfully to establish the

CBC, the reverse glycine cleavage pathway, or a modified serine

cycle in E. coli (Antonovsky et al., 2016; Yishai et al., 2017;

Gleizer et al., 2019; Luo et al., 2022), in which selection strains

were designed, which need to form (part) of their biomass

through the new pathways. Having established a functional cycle

inside of a microorganisms will guide further efforts to integrate

this new reaction sequence in plants.

CONCLUDING REMARKS AND
PERSPECTIVES

Sustainably increasing crop yields is crucial to meet the growing

demands of a rising global population for food, feed, and other

plant-derived products. Maximizing photosynthetic efficiency is

hence an important factor for food security in the context of anthro-

pogenic climate change and resource limitations. In the quest to in-

crease crop productivity through improvement of photosynthetic

efficiency, bypasses to canonical photorespiration and modifica-

tions of excess light protection have been designed, implemented

in several model species and in crops, and tested in the field.

Jointly, these data provide a proof of concept for yield increases

through engineering of photorespiration and light harvesting.

While progress has been made, there are still unanswered

questions that need to be addressed, essential to fully gather

the potential improvements achievable from these approaches.

For example, how do photorespiratory bypasses actually work?

What are the mechanisms that underpin the observed yield in-

creases? Resolving questions such as these will require addi-

tional experiments and comprehensive analysis by mathematical

models of plant metabolism.

Available data suggest that combining photorespiratory by-

passes with optimized energy dissipation holds promise to maxi-

mize the energy available for CO2 assimilation. New-to-nature

pathways show potential to exceed the yield improvements

that have been achieved by current photorespiratory bypasses.

To date, these pathways have been prototyped in vitro and in

bacteria, and they are awaiting testing in plants.

Furthermore, natural variation in photosynthetic efficiency exists

in domesticated crops and their wild relatives and so provides a

valuable resource for breeding strategies. Techniques such as

intra- and interspecific hybridization and genome editing could

leverage promising alleles identified through pan-genomic asso-

ciation mapping and systems biology approaches to introduce

beneficial genetic variants into crops. Knowledge of the natural

variation in photosynthetic parameters should be combined

with synthetic photorespiratory bypasses for synergistic effects.

For example, alternative forms of Rubisco with higher Vc at the

cost of lower Vc/Vo could be combined withmore energy-efficient

or CO2-concentrating photorespiratory bypasses, resulting in

additive benefits. Also, it should be possible to combine more

performant Rubisco variants with better sourcing of CO2 via opti-

mization of gm. The CO2 compensation point serves as a key

parameter when screening for photosynthetic efficiency; multiple

methods have been employed for its determination, but its preci-

sion relies on accurate estimation of cellular CO2 efflux and influx.

The efficacy of increasing photosynthetic efficiency in crops in

the field has been clearly demonstrated, but further improve-

ments, or reliable transfer of traits from model organisms to

crop species or between crop species, will likely require addi-

tional modifications of sink tissues or harvestable biomass to

reap the full benefits of increased photosynthetic efficiency.

Only when sink strength can keep up with source capacity will

it be possible to capitalize on gains in efficiency.

The practicality of implementing different strategies to improve

photosynthetic efficiency that range from selective breeding to

new-to-nature pathways depends on government regulation of

genetic modification, which must be also considered when

applying scientific discoveries to solve real-world problems.
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3.2 Secondary carbon-fixation improves photores-

piration

The paper "Secondary carbon-fxation improves photorespiration" evaluates all

currently known photorespiratory bypasses using both a genome-scale stoichiomet-

ric model, as well as a smaller, mechanistic model based on ordinary differential

equations. My contribution to this was building and analysing the ODE model, as

well as writing the manuscript together with Ed Smith.

Publication Evaluating photorespiratory bypasses
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Introduction

Rubisco is the primary site of carbon fixation in1

plants. Alongside CO2, ribulose-1,5-bisphosphate car-2

boxylase/oxygenase (rubisco) can also react with oxy-3

gen to produce one molecule of 3-phosphoglycerate4

(3PGA) and one molecule of 2-phosphoglycolate (2PG).5

Through a process called photorespiration, the 2-6

carbon product of the rubisco oxygenase reaction is7

converted back to an intermediate that can replenish8

the Calvin-Benson-Bassham cycle (CBB cycle). In9

this process, CO2 and ammonia are released in the10

mitochondria and reassimilated in the chloroplasts.11

Photorespiration consumes ATP and reducing power12

and causes losses of approximately 26 % of fixed CO213

and up to 36 % of the yield of certain crops [1, 2].14

Thus, next to efforts in reducing the oxygenase ac-15

tivity of rubisco, the carbon and energy efficiency of16

photorespiration can be improved [2, 3, 4, 5]. This is17

highly desired to feed an increasing human population18

and to mitigate climate change.19

Alternative pathways (APs) can increase the car-20

bon and energy efficiency of photorespiration while21

still serving the primary function of photorespiration:22

detoxifying 2PG and replenishing the intermediates23

of the CBB cycle following the rubisco oxygenase re-24

action. There are four ways this can be achieved,25

ranging from fixing an additional CO2 to two CO2 per26

cycle being released (Figure 1). For fixing additional27

carbon, the two carbon 2PG can be converted into28

a 3-carbon compound such as 3PGA by addition of29

one carbon from CO2. A carbon-neutral photorespi-30

ratory pathway, with no net loss or fixation of CO2,31

is accomplished by combining 2PG with other com-32

pounds to generate a 4- or 5-carbon compound that33

can replenish the CBB cycle directly. In partial decar-34

boxylation pathways, such as native photorespiration,35

a 2PG molecule is decarboxylated to form a 1-carbon36

compound that can be combined with another 2PG to37

make a 3-carbon compound that can enter the CBB38

cycle. Finally, 2PG can be completely decarboxylated,39

releasing two CO2 that can be refixed by the CBB40

cycle.41

From a carbon perspective an AP that fixes additional42

CO2 would be preferred. However, additional carbon43

fixation comes along with extra energy and redox re-44

quirements, decreasing the supply for other cellular45

processes. In contrast, decarboxylating APs generate46

reducing power that can be captured as redox equiva-47

lents as in the Kebeish and South AP3 pathways [6,48

7]. In addition to that, decarboxylating APs can shift49

the rubisco activity towards carboxylation by releas-50

ing CO2 in the chloroplast and thereby increasing the51

local concentration of CO2. Thus, next to mere car-52

bon efficiency, several other cellular parameters might53

determine the overall benefit of an AP.54

Native photorespiration has cellular functions other55

than just clearing 2PG and replenishing the CBB56

cycle. Further functions include helping to balance57

ATP:NADPH supply and demand [8], increasing nitro-58

gen assimilation into amino acids [9] and acting as an59

important source of 1C units [10] as well as serine and60

glycine [11]. An ideal APs must therefore still support61

these other roles of native photorespiration.62

All these aspects together indicate that implementing63

1
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photorespiratory APs to accomplish increased crop64

yield is far from trivial. In fact, simultaneously in-65

terfering with carbon, nitrogen, energy, and redox66

balances, means interfering with a highly complex, in-67

tertwined system. Thus, whether any change increases68

or decreases crop yield is dependent on metabolism,69

physiology and conditions, i.e. gas exchange differs70

with physiology and conditions and metabolism dif-71

fers with conditions and growth stage/time of day etc.72

Towards rational engineering and full understanding73

of APs, global experimental analyses and mathemati-74

cal modelling will likely be required to evaluate and75

understand the effect of variants. Exemplary for the76

challenge and for our yet limited understanding is the77

fact we still do not fully understand the true cause for78

the increased yields observed in complete decarboxy-79

lation pathways that have been experimentally tested80

in plants [12].81

In this work, we quantitatively examine 12 APs using82

different mathematical approaches (Figure 1), building83

on previous modelling efforts [4]. These APs include84

those that have experimentally been tested in planta,85

but also include newly designed pathways that are86

either carbon-neutral or fix additional CO2 [13]. Our87

assessment includes carbon efficiency, energy and redox88

effects and effects emerging from altered subcellular89

CO2 levels in order to make judgments on the yield90

increases that one can expect on the system level. In91

addition, we make predictions on optimal variants92

of AP designs (e.g. optimal enzyme location) and93

which types of plants might benefit most from certain94

pathways and under which environmental conditions.95

By developing a mechanistic understanding of how96

APs can be effective, we identify the most promising97

pathways. Thereby, we hope to contribute to the98

challenge of increasing photosynthetic efficiency and99

thereby crop yield, to meet pressing societal issues.100

Results101

Description of APs102

Several APs have been proposed or implemented to103

date, which can be classified with regards to their CO2104

stoichiometry, ranging from fixing an additional CO2,105

via being CO2 neutral down to two molecules of CO2106

being released (see Figure 2 and [4] for a review).107

A CO2 fixing AP is the tartronyl-CoA pathway (TaCo),108

which activates glycolate with CoA, carboxylates the109

glycolyl-CoA to tartronyl-CoA and then reduces the110

tartronyl-CoA to generate glycerate (blue line in Fig-111

ure 2) [13, 14]. The enzymes in the pathway and the112

metabolite tartronyl-CoA are not known to occur in113

nature, and therefore novel enzyme activities had to be114

engineered starting from related promiscuous enzymes.115

In particular, the glycol-CoA carboxylase, catalysing116

the fixation of bicarbonate to form tartronyl-CoA, has117

been subject to multiple rounds of engineering to alter118

the kinetic properties and to reduce the futile hydrol-119

ysis of ATP [14, 15]. While the TaCo pathway has120

been validated in-vivo [14], it has yet to be tested in121

photosynthetic organisms.122

Carbon-neutral pathways have been proposed based123

on a glycolate reduction pathway, which converts gly-124

colate to glycolaldehyde with glycolyl-CoA synthetase125

and glycolyl-CoA reductase, consuming ATP and126

NADPH (yellow lines in Figure 2) [13]. The glycolalde-127

hyde is subsequently condensed with a sugar phosphate128

to generate longer chain sugars or sugar phosphates129

that can re-enter the CBB cycle via further conversion130

steps. Four variants have been proposed depending131

on the intermediates generated, namely arabinose-5P,132

ribulose-1P, erythrulose or xylulose. These carbon-133

neutral pathways required the engineering of novel134

enzyme activities for the two steps of the glycolate135

reduction. These novel pathways have been validated136

in-vivo [13], but are yet to be tested in photosynthetic137

organisms.138

Partial decarboxylating pathways rely on combining139

two glycolate molecules and releasing one CO2 to140

generate a three-carbon intermediate (green lines in141

Figure 2). Several pathways with this design have142

been experimentally validated in plants. The path-143

ways can be divided into those that rely on the E. coli144

glycolate catabolic pathway of glyoxylate condensation145

via tartronic semialdehyde (Carvalho, Kebeish/South146

AP1 and Wang pathways) [5, 6, 7, 16] and the β-147

hydroxyaspartate cycle (BHAC), which is the primary148

glycolate assimilation pathway in marine proteobacte-149

ria [17, 18]. The tartronic semialdehyde-based pathway150

generates glycerate that can be phosphorylated and151

re-enter the CBB cycle. The Kebeish/South AP1 and152

Wang pathways have been implemented in chloroplasts153

and the Carvalho pathway has been expressed in the154

peroxisome. The BHAC pathway generates a 4C prod-155

uct from two glycolate molecules, oxaloacetate (OAA),156

which can directly be incorporated into biomass via157

aspartate or can be used to replenish the CBB cycle.158

For this it must be decarboxylated to generate a three159

carbon CBB cycle intermediate, for instance 3PGA,160

via phosphoenolpyruvate-carboxykinase and enolase.161

So far the BHAC pathway has been implemented in162

peroxisomes of Arabidopsis [17]. The BHAC pathway163

could also theoretically be expressed in the plastid,164

which would facilitate CO2 reassimilation, but this165

remains to be tested in plants. The partial decarboxy-166

lation APs all release 0.5 CO2 per rubisco oxygenase167

reaction, the same as in native photorespiration, but168

are proposed to be more energy efficient as they all169

avoid the release and subsequent refixation of ammo-170

nium.171

Complete decarboxylation pathways convert glycolate172

to CO2 using either malate synthase and pyruvate173

dehydrogenase (Maier/SouthAP2/AP3) [7, 19], or ox-174

alate oxidase (Shen)[20] (dark orange lines in Figure 2).175

The primary difference between the two options is the176

fate of reductant released from glyoxylate oxidation.177

Malate synthase generates NADPH and pyruvate de-178
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Figure 1: Graphical overview of this work. We analysed 12 alternative photorespiratory pathways (APs) that
can be described using four general schemes regarding their carbon stoichiometry: carbon-fixing, carbon-neutral, partial
decarboxylating and full decarboxylating pathways. The three modelling approaches we used are a simple stoichiometric
consumer model, a genome-scale model solved using flux-balance analysis and a kinetic model to describe key reactions
with higher fidelity. Modelling at these different scales allowed the mechanisms behind potential AP benefits to be
evaluated.

hydrogenase generates NADH, whereas in the oxalate179

oxidase pathway two redox equivalents are transferred180

to water generating two H2O2. The CO2 released by181

glycolate decarboxylation can re-enter the CBB cycle182

and therefore complete decarboxylating pathways can183

still fulfil the requirement of converting 2PG into a184

CBB cycle intermediate.185

In both partial and complete decarboxylating APs and186

in native photorespiration, oxidation of glycolate is the187

first step (Figure 2 a, b). Variants exist on in which188

subcellular compartment this oxidation takes place,189

and on what the final electron acceptor is of the oxi-190

dation. In native photorespiration, the Carvalho path-191

way and BHAC (perox.) pathway, glycolate oxidase192

is located in the peroxisome and converts glycolate to193

glyoxylate generating H2O2. In the Maier/South AP2,194

Shen, and Wang pathways [5, 7, 19, 20], glycolate195

oxidase was relocated to the chloroplast potentially196

altering subcellular redox dynamics. Glycolate dehy-197

drogenase from E. coli, which generates NADH, was198

used for the Kebeish and South AP1 pathways and gly-199

colate dehydrogenase from the algae Chlamydomonas200

reinhardtii (CrGDH), with an as yet unknown elec-201

tron acceptor, was used in the South AP3 pathway [7,202

21]. The different electron acceptors of the glycolate203

oxidation reaction have effects on the energy state204

and redox metabolism in the chloroplast, potentially205

affecting stress responses to high-light.206

Overall, the above-described APs all convert 2PG to207

a CBB cycle intermediate. Yet, they differ in the CO2208

stoichiometry, the energetic and redox costs, and their209

subcellular location.210

A consumer model allows comparison of211

APs stoichiometries212

To compare the ATP, redox equivalents and CO2 sto-213

ichiometry of both the CBB cycle, photorespiration214

and APs it is convenient to define the pathways as215

closed cycles that regenerate one molecule of ribulose-216

1,5-bisphosphate (RuBP) and fix or release CO2 and217

triose phosphates in a so-called consumer model [13].218

In this way, photorespiration can be separated from219

the CBB cycle to directly compare energy and CO2 sto-220

ichiometries. To calculate the ATP, redox equivalents221

and CO2 costs of the APs the individual reaction steps222

starting and ending at RuBP were summed (Table 1).223
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Figure 2: Schematic depiction of APs studied in this work. Grey arrows indicate wildtype reactions, colored
arrows signify the classification regarding the carbon stoichiometry of the pathways: carbon-fixing, carbon-neutral, partial
decarboxylating and full decarboxylating. Solid lines depict single reactions, while dashed lines depict intermediate
steps that were omitted for clarity. The pathway variants a and b denote whether O2 / hydrogen peroxide (H2O2) or
Nicotinamide adenine dinucleotide (NAD) / Nicotinamide adenine dinucleotide (reduced) (NADH) are used as the redox
pair for glycolate dehydrogenase.

AP CO2 ATP Redox eq.
Total

energy cost
ATP at

net-zero CO2

Redox eq. at
net-zero CO2

Total energy
cost at

net-zero CO2

TaCo 1 7 4 17 4 2 9
Ara5P/Ru1P shunts 0 4 2 9 4 2 9
Xyl./Eryth. shunts 0 5 2 10 5 2 10
BHAC (plastid) -0.5 3 1 5.5 4.5 2 9.5
Kebeish/South AP1 -0.5 3 1 5.5 4.5 2 9.5
BHAC (perox.) -0.5 3 2 8 4.5 3 12
Carvalho -0.5 3 2 8 4.5 3 12
Wang -0.5 3 2 8 4.5 3 12
Photorespiration -0.5 3.5 2 8.5 5 3 12.5
South AP3 -2 2 -2 -3 8 2 13
Maier/South AP2 -2 2 -1 -0.5 8 3 15.5
Shen -2 2 1 4.5 8 5 20.5
CBB cycle 1 3 2 8

Table 1: Consumer model allows comparison of APs stoichiometries. ATP, redox equivalent and CO2

stoichiometry of AP defined as converting 2PG to RuBP (extended from [4]). Positive values represent consumption,
negative values production. The total energy cost assumes 2.5 ATP per redox equivalent. To account for differences in
CO2 stoichiometry, the energy costs for 0 net change in CO2 were calculated by assuming the CBB cycle can compensate
for the release / uptake of CO2 caused by photorespiration or APs. For example, for native photorespiration an additional
1.5 ATP and 1 redox equivalent must be spent to compensate for the 0.5 CO2 released. For the TaCo pathway 3 ATP
and 2 redox equivalents are spared as 1 CO2 is already fixed by the AP.

The three complete decarboxylation pathways, South224

AP3, Maier/South AP2 and Shen, require the same225

amount of ATP but differ in their redox equivalent226

stoichiometry, e.g. production of H2O2 or NAD(P)H227
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(Table 1). Here, and in subsequent analyses, we as-228

sumed the Chlamydomonas reinhardtii glycolate dehy-229

drogenase (CrGDH) used in the South AP3 pathway230

indirectly produces NADH, although the exact elec-231

tron acceptor remains unknown [21]. The South AP3232

and Maier/South AP2 pathways have the lowest total233

energy costs because they net generate NAD(P)H from234

the decarboxylation of glycolate (Table 1). Compared235

to native photorespiration, the partial decarboxyla-236

tion pathways BHAC (perox.), Carvalho, and Wang237

pathways save 0.5 ATP and 0.5 NADPH by avoiding238

ammonia release, but require an additional NADH239

for reduction of tartronic-semialdehyde and do not240

gain 0.5 NADH from the oxidation of glycine. There-241

fore, avoiding the cost of ammonium release in these242

pathways only saves 0.5 ATP per rubisco oxygenase243

conversion when compared to native photorespiration.244

The Kebeish/South AP1 and BHAC (plast.) pathways245

have the same benefits from avoiding ammonia release246

but also produce an additional NADH from the use of247

glycolate dehydrogenase in place of the glycolate oxi-248

dase used by the Carvalho, Wang, and BHAC (perox)249

pathway. The carbon-neutral pathways require 0.5-1.5250

more ATP than native photorespiration but require251

the same amount of redox equivalents (Table 1). The252

carbon-fixing TaCo pathway has the largest total en-253

ergy cost as redox equivalents and ATP are required254

to fix CO2 in this pathway (Table 1). Overall, there255

is a positive correlation between CO2 released/taken256

up and the total energy cost of the pathway. Here,257

carbon-fixing pathways have the largest energy cost258

and CO2-releasing pathways, which can generate re-259

dox equivalents from the oxidation of previously fixed260

carbon, have the lowest energy cost.261

Net-zero CO2 consumer model accounts262

for the cost of CO2 release263

The previous consumer model does not account for264

the increase in energetic cost caused by CO2 release,265

which needs to be refixed by the CBB cycle, or the266

reduction in energetic costs if CO2 is fixed by the267

APs. Accounting for the cost of modified CO2 stoi-268

chiometry provides a different perspective and allows269

for more direct comparison between pathways. For270

example, in native photorespiration if we also account271

for the cost of fixing the additional 0.5 carbons re-272

quired to compensate for the loss of CO2 by glycine273

decarboxylase, then an additional cost of 1.5 ATP and274

1 redox equivalent are required (with the simplifying275

assumption that the CBB cycle is able to fix CO2 with276

no associated rubisco oxygenase or photorespiration).277

Therefore, the total cost for native photorespiration278

assuming no net release/uptake of CO2, is 5 ATP and279

3 redox equivalents per regeneration of RuBP (Table280

1). Similar calculations were performed for all APs.281

Note that for the TaCo pathway, which fixes one CO2,282

we calculated a benefit in terms of ATP and NADPH283

spared by not requiring CBB cycle flux.284

The complete decarboxylation pathways now have the285

largest total energy costs as an additional 6 ATP and286

4 NADPH are required to refix the 2 CO2 that are287

lost by these pathways (Table 1). The partial decar-288

boxylation pathways have a small additional energy289

cost for refixation of 0.5 CO2 and the carbon-neutral290

pathways have no additional costs/benefits as no ad-291

ditional CO2 must be fixed. In contrast, the TaCo292

pathway spares 3 ATP and 2 NADPH as it fixes an293

additional CO2, reducing the total energy cost. Over-294

all, from an energetic perspective the importance of295

accounting for CO2 stoichiometry becomes apparent296

as large direct energy costs in CO2-fixing pathways297

can be compensated for by the energy saving from298

additional CO2 fixation.299

Stoichiometric network modelling ac-300

counts for system-wide effects of APs301

While the consumer model offers a useful description of302

the pathway stoichiometries, it does not capture the in-303

terplay of APs with the wider metabolic network, such304

as amino acid metabolism. Therefore, we extended our305

analysis by integrating the individual APs in a large-306

scale stoichiometric model of core plant metabolism307

based on an Arabidopsis leaf, including photosynthetic308

electron transport and subcellular compartments [22].309

We used these models to investigate whether the APs310

can replace the complete flux of native photorespi-311

ration. Therefore, photorespiration was blocked by312

constraining the flux through glycine decarboxylase to313

zero. To ensure flux through photorespiration or an314

AP was required, we mimicked ambient CO2 partial315

pressure by fixing the rubisco carboxylase:oxygenase316

ratio at 3:1 [23].317

Carbon-fixing APs are more energy effi-318

cient319

We first assessed the photosynthetic energy efficiency of320

the APs, which we defined as the CO2 fixed per photon321

absorbed. For this, a sink reaction for glyceraldehyde-322

3-phosphate (GAP) was fixed to 1 µmol s
−1 and the323

optimisation objective set to minimisation of photon324

influx. Thus, the most energy efficient flux distribution325

was identified for each AP.326

The photosynthetic energy efficiency of the APs can327

have largely different values, ranging from an 27 %328

increase down to a -54 % decrease relative to native329

photorespiration (Figure 3). The carbon-fixing TaCo330

pathway shows the largest increase, followed by the331

carbon-neutral Ara5P and Xylulose APs (Figure 3).332

The partial decarboxylation APs range from a small333

increase to almost no change and the complete decar-334

boxylation APs show a large decrease in photosyn-335

thetic energy efficiency (Figure 3).336

In terms of energetic efficiency, the net carbon ex-337

changed by the AP has the greatest effect, with carbon-338

fixing APs being the most energy efficient and decar-339

boxylating APs being the least energy efficient (Figure340

3). The second most important factor determining the341
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Figure 3: Change in photosynthetic energy efficiency
(CO2 fixed per photon) of APs relative to WT photores-
piration for a rubisco carboxylase:oxygenase ratio fixed
at 3:1 calculated by stoichiometric FBA modelling. Neg-
ative numbers denote a decrease in CO2 fixed per pho-
ton relative to the WT, while positive numbers denote
an increase. Model outputs were fixed to either glycer-
aldehyde 3-phosphate (GAP), phloem exudate or biomass
represented by grey shading. AP label colours signify the
amount of CO2 the AP fixed or released by the alternative
pathways; blue, 1; yellow, 0; green, -0.5; orange, -2. The
absolute CO2 fixed per photon range from 13.63 for GAP
output to 17.67 for biomass, see supplementary Figure S2.

relative energy efficiency is the fate of redox equiva-342

lents or electrons from 2PG. Conversion of 2PG to343

CO2 can generate three pairs of electrons which can344

be used to either reduce NAD(P)+ to generate redox345

equivalents or water to generate H2O2. APs which346

generate more NAD(P)H (Figure 2, Table 1) therefore347

have an advantage in terms of energy efficiency (Figure348

3).349

APs can provide biosynthetic energy ef-350

ficiency benefits351

Photorespiration interacts with other metabolic path-352

ways besides the CBB cycle. For example, carbon353

can be withdrawn from native photorespiration to pro-354

vide one carbon units (CH2-THF), glycine or serine355

which can result in release of less than 0.5 carbons per356

rubisco oxygenase reaction [11, 24, 25, 26, 27, 28]. Sim-357

ilarly, intermediates can also be withdrawn from APs358

and used to synthesise amino acids or other biomass359

precursors.360

To calculate the impact that APs have on wider361

metabolism, we calculated the relative energy effi-362

ciency in the presence of APs with more complex cel-363

lular outputs including Arabidopsis phloem exudate364

or biomass [29, 30]. In general, for the carbon-fixing,365

carbon-neutral, and Kebeish/South AP1 pathways the366

benefit of the APs decreases as the output complexity367

increases (Figure 3). Phloem exudate and biomass368

contain amino acids which can already be efficiently369

synthesised by native photorespiration. Therefore, the370

benefit of these APs is smaller when the cell is produc-371

ing amino acids compared to GAP alone because these372

APs do not generate amino acids or amino acid pre-373

cursors as intermediates. In contrast, the BHAC and374

Carvalho pathways demonstrate an enhanced benefit375

when synthesising biomass or phloem exudate com-376

pared to GAP alone (Figure 3). Synthesis of amino377

acids with five-carbon backbones is more efficient in378

the presence of the BHAC and Carvalho pathways as379

additional separate decarboxylation steps and subse-380

quent refixation of CO2 are not required to synthesis381

these amino acids. Similarly, the complete decarboxy-382

lation pathways also show a benefit (i.e. decreased383

energy efficiency penalty) when synthesising biomass384

or phloem exudate in comparison to just GAP alone385

(Figure 3). Specifically, in the Maier/South AP2 and386

South AP3 pathways, carbon can be withdrawn as387

malate from malate synthase. Malate can then be388

used as the carbon backbone for generating aspartate389

and other derived amino acids. In this way, carbon390

is conserved and not released as CO2 that must be391

refixed with an associated energetic cost.392

APs can have some small additional benefits compared393

to native photorespiration when cells are synthesising394

biomass, and these will depend on the precise amino395

acid demands of the leaf. The WT model predicts here396

that approximately 6 % of the carbon entering native397

photorespiration is withdrawn as serine, substantially398

less than the 32 % reported for Tobacco leaves [11]. All399

the APs investigated here bypass the serine producing400

steps of native photorespiration and could therefore401

disadvantage the plant if serine is in high demand402

and other serine producing pathways are unable to403

compensate. Overall however, the greatest effect of404

the alternative pathways is on the efficiency of carbon405

fixation and any changes in the energy efficiency of406

synthesising biomass precursors is likely to be relatively407

minor.408

APs alter the ATP and NADPH demand409

The linear electron flow of photosynthesis supplies a410

fixed stoichiometry of ATP and redox equivalents that411

does not necessarily match the demand of the cell.412

Plants employ various mechanisms to match the sup-413

ply to the demand, such as cyclic electron flow, but414

imbalances can potentially lead to photosynthetic inef-415

ficiency or damage [8]. Introducing APs can alter the416

ATP and redox demands of the cell with potentially417

positive or negative effects. We therefore quantified418

the ratio of ATP to NADPH demand of the cell in419

the presence of the APs to see whether the demand420

is shifted towards or away from the ratio supplied by421

linear electron flow. For this we identified the most422

energy-efficient flux distribution by forcing a GAP out-423

flux of 1 µmolm−2s−1 while minimising the photon424

input and then quantified the fluxes through ATP syn-425

thase and ferredoxin-NADP reductase to quantify the426
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Figure 4: APs alter the ATP:NADPH demand of car-
bon fixation. The net ATP:NADPH demand of carbon
fixation to glyceraldehyde 3-phosphate in the presence of
APs calculated using the stoichiometric model and FBA,
and assuming a rubisco carboxylase:oxygenase activity of
3:1. Dashed line represents the ATP:NADPH supplied by
linear electron flow through the photosystems 9

7
.

net ATP and reductant demand. Because the model427

represents autotrophic leaf metabolism these reactions428

are the primary source of ATP and NADPH and can429

therefore be used to calculate the net ATP:NADPH430

demand of the cell.431

Here, only the Carvalho, Wang and peroxisomal BHAC432

pathways, with an ATP:NADPH demand of 1.5, are433

closer to the supply from linear electron flow (9
7

or434

1.28) than that of a plant with WT photorespiration435

(1.56) (Figure 4). The lower ATP:NADPH demand436

in the Carvalho, Wang and BHAC (perox.) pathways437

is due to avoiding the need for ammonia reassimila-438

tion and the associated ATP cost. APs that capture439

the redox equivalents from complete glycolate decar-440

boxylation as NADPH, such as the Maier and South441

AP3 pathways, significantly increase the demand of442

ATP relative to NADPH (up to 2.75 in South AP3)443

(Figure 4). This is caused by the increased NADPH444

supply from glycolate decarboxylation which decreases445

the NADPH that must be supplied from photosyn-446

thetic electron flow. In contrast, the Shen pathway,447

which also completely decarboxylates glycolate, does448

not capture the redox equivalents as NADPH and in-449

stead produces H2O2, resulting in an ATP:NADPH450

demand of 1.57 (Figure 4).451

Overall, most of the APs cause relatively minor452

changes in the ATP:NADPH demand compared to453

native photorespiration with the notable exception of454

the complete decarboxylating Maier/South AP2 and455

South AP3 pathways which cause large increases in456

the ATP:NADPH demand (Figure 4).457

Figure 5: Complete decarboxylation pathways require an
increased rubisco carboxylase:oxygenase ratio to achieve
an increased photosynthetic energy efficiency relative to
WT photorespiration. Effect of altered rubisco carboxy-
lase:oxygenase ratio on photosynthetic energy efficiency of
APs relative to WT photorespiration at a fixed rubisco car-
boxylase:oxygenase ratio of 3:1 (dashed line). Simulations
were performed using the stoichometric model and FBA
with the objective set to maximisation of glyceraldehyde
3-phosphate production. Photosynthetic energy efficiency
was defined as the CO2 fixed per photon absorbed.

Complete decarboxylation pathways re-458

quire an increased rubisco carboxylation459

rate to have a benefit460

Analysis so far has focused purely on photosynthetic461

energy efficiency and assumed no limitation of CO2462

diffusion either from outside the cell or between sub-463

cellular compartments. However, CO2 diffusion poses464

a major limitation to photosynthesis in C3 plants [31].465

The complete decarboxylation pathways decrease the466

photosynthetic energy efficiency relative to WT pho-467

torespiration if unlimited CO2 diffusion is assumed.468

However, if CO2 diffusion into the chloroplast is lim-469

ited, releasing CO2 specifically within the chloroplast470

and thereby increasing the carboxylation rate rela-471

tive to the oxygenation rate could be beneficial. We472

therefore determined the increase in carboxylation473

rate relative to the oxygenation rate necessary to com-474

pensate for the increased energy cost of the complete475

decarboxylation pathways.476

To model the effect of an increased chloroplast CO2477

concentration, we constrained the rubisco carboxy-478

lase:oxygenase ratio of rubisco to a range of values479

and calculated the photosynthetic energy efficiency480

relative to the WT in terms of CO2 fixed per photon481

absorbed.482

At a rubisco carboxylase:oxygenase ratio of 3:1 the483

complete decarboxylation pathways were less energet-484
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ically efficient than WT photorespiration (Figure 5).485

However, these pathways can become more energeti-486

cally efficient than WT photorespiration if they are487

able to increase the chloroplast CO2 concentration such488

that the rubisco (rubisco carboxylase:oxygenase) ratio489

reaches 4.8-6.1:1 (Figure 5). This represents a 60-103 %490

increase relative to the rubisco carboxylase:oxygenase491

ratio of 3:1 assumed for native photorespiration. The492

remaining partial decarboxylation, carbon-neutral or493

carbon fixing APs continue to show an increased photo-494

synthetic efficiency relative to native photorespiration,495

even at lower rubisco carboxylase:oxygenase ratios496

(Figure 5).497

Native CO2 refixation capacity affects498

AP benefit499

Another factor that needs to be taken into account is500

that in native photorespiration CO2 set free by glycine501

decarboxylase activity in the mitochondria can diffuse502

out of the cell before it reaches the chloroplast, and503

is therefore only partly refixed. Plants have evolved504

mechanisms to recapture this CO2 that would other-505

wise be lost, such as placing chloroplasts around the506

cell periphery [28, 32, 33, 34, 35] or relocating the507

decarboxylation step to the bundle sheath cells, as508

in C3-C4 intermediate photosynthesis [36, 37]. The509

exact amount of CO2 refixation depends on both the510

plant species and the environmental conditions [32,511

37]. APs can relocate the site of CO2 release from512

the mitochondrion to the chloroplast and therefore513

potentially increase the proportion of refixed CO2.514

CO2 diffusion is dependent on a series of resistances515

between the external and internal airspace and be-516

tween subcellular organelles [28, 33, 34, 35]. These517

resistances were simplified in our stoichiometric model518

to a constraint on the fraction of CO2 released in mito-519

chondria that can be refixed by chloroplasts (refixation520

potential), with the remainder assumed to exit the521

leaf. We modelled the effect of different CO2 refixa-522

tion potentials in the WT plant on the relative carbon523

export of plants expressing APs compared to the WT.524

We assumed that relocation of CO2 release by the525

APs to the chloroplast results in complete recapture of526

CO2 released by the APs, therefore representing the527

maximum potential benefit. The input of CO2 from528

outside the cell was fixed to the WT value to represent529

a CO2 diffusion limited condition and prevent cells530

from compensating for CO2 lost from photorespiration531

or APs by simply importing more CO2. Photon input532

was constrained to the WT value representing an en-533

ergy limited condition and the optimisation objective534

set to maximisation of GAP production.535

In general, as the CO2 refixation potential of the WT536

plant increases, the benefit of an AP which recap-537

tures this otherwise lost CO2 decreases (Figure 6A).538

The maximum carbon export increase of any AP that539

recaptures otherwise lost CO2 is 20 % for a rubisco540

carboxylase:oxygenase ratio of 3:1 (Figure 6A). Un-541

der the energy limited condition modelled here, the542

Figure 6: The benefit of an AP that recaptures otherwise
lost CO2, depends on how effective the WT plant is at
already refixing CO2 released by photorespiration. A) The
effect of CO2 refixation in WT plants on the relative benefit
of photorespiratory APs to carbon fixation calculated using
the stoichiometric model and FBA. Refixation potential is
defined as the fraction of CO2 released from photorespira-
tion in the mitochondria that could enter the chloroplast
rather than leaving the cell. The refixation potential of
a WT cell was fixed between 0-100 % and the objective
set to maximisation of glyceraldehyde 3-phosphate produc-
tion (GAP). Rubisco carboxylase:oxygenase activity was
constrained to 3:1. When simulating the APs, photon and
CO2 inputs were constrained to the WT value required
to generate GAP at a rate of 1 µmol s

−1 representing an
energy and CO2 limited condition. Dashed lines are with
flux though native photorespiration blocked; solid lines are
with native photorespiration free to carry flux. B) The
optimal flux through native photorespiration relative to
the AP at varying CO2 refixation potentials. Photon and
CO2 inputs were constrained as in A. 100 % means that
there is no flux through the AP and 0 % means that the
AP completely replaces photorespiration.
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APs that are more energetically efficient than native543

photorespiration (carbon-fixing, carbon-neutral and544

partial decarboxylation pathways) can all achieve this545

maximum 20 % benefit (Figure 6A "All other APs").546

In contrast, the complete decarboxylation pathways,547

which are less energy efficient than native photorespi-548

ration, fixed less CO2 than the WT plant at all CO2549

refixation potentials (Figure 6A, dashed orange lines).550

Next we evaluated whether residual flux through the551

native photorespiratory pathway could be beneficial in552

combination with an AP. Native photorespiration po-553

tentially loses CO2 from the cell by releasing it in the554

mitochondria, affecting the carbon export. APs can555

recapture this CO2 by releasing it in the chloroplast,556

but can be more energetically expensive. Therefore,557

for the complete decarboxylation APs, there is a trade-558

off between the relatively more energy efficient native559

photorespiration and the more carbon efficient AP.560

We therefore repeated the previous analysis but al-561

lowed unlimited flux through native photorespiration562

and identified the optimal flux through native pho-563

torespiration and the AP under a CO2 and energy564

limitation.565

Under these energy- and CO2-limited conditions, the566

optimal flux distribution for the more energy effi-567

cient pathways required zero flux through photores-568

piration (Figure 6B). In contrast, for the less energy569

efficient complete decarboxylation pathways, the opti-570

mal amount of native photorespiratory flux varied with571

the CO2 refixation potential (Figure 6 B). In other572

words, residual flux though native photorespiration573

can compensate for the energy inefficiency of complete574

decarboxylation pathways while the APs act to re-575

capture otherwise lost CO2. Therefore, some residual576

photorespiratory flux can be beneficial in the presence577

of complete decarboxylation pathways, particularly578

when the CO2 refixation potential is low (Figure 6 A,579

solid orange lines). The optimal flux through native580

photorespiration in combination with an AP may vary581

dynamically with the environmental conditions which582

can affect CO2 diffusion and the refixation potential583

of the plant. Overall, assuming approximately 25 %584

of CO2 is refixed in a WT plant, all AP designs are585

advantageous when both CO2 and energy are limit-586

ing, and when operating in combination with native587

photorespiration (Figure 6A, solid lines).588

Understanding CO2 dynamics requires589

kinetic modelling590

Stoichiometric modelling demonstrated the energetic591

and stoichiometric benefits of the AP designs, how flux592

through certain APs can support amino acid biosyn-593

thesis and the potential beneficial effects of avoiding594

CO2 release in the mitochondria. However, the stoi-595

chiometric model required fixing the rubisco carboxy-596

lase:oxygenase ratio, whereas in-vivo it depends on597

the concentrations of O2 and CO2 which can vary598

dynamically. Therefore, to model the effect of varying599

CO2 diffusion and CO2 concentration more accurately,600

Figure 7: Steady-state performance indicators of plant
metabolism simulated by the kinetic model for different
AP designs, grouped by their CO2 stoichiometry. The sim-
ulation was performed at reference conditions of 400 ppm
atmospheric CO2 and an illumination of 700 µmol/m2

s.
Transparent bars signify the addition of secondary carboxy-
lation steps to the measurement of rubisco carboxylation
rate for the carbon-fixing pathways. The different AP
designs are grouped by their CO2 stoichiometry and only
the pathway variant with the maximal carbon export of
the group is shown.

we developed a kinetic model of photosynthesis to test601

the different AP designs.602

The kinetic model was developed as a system of or-603

dinary differential equations by combining models of604

the CBB cycle [38] and photorespiration [39], as well605

as a complete description of rubisco kinetics including606

carboxylation and oxygenation reactions [40]. CO2607

was modelled as a dynamic variable to capture the608

effect of the various APs on the CO2 concentration609

in the chloroplast. A fixed proportion (25 %) of CO2610

released by glycine decarboxylase in the mitochondria611

was assumed to diffuse back into the chloroplast [32].612

The APs were implemented on top of this WT model613

and are grouped by their CO2 stoichiometry, with the614

best performing variant of each group shown in the615

following results. For a complete description of the616

model as well as a comparative analysis of intermedi-617

ate model stages see supplementary material section618

S2.619

Carbon-fixing pathways are more effi-620

cient at exporting carbons621

We first evaluated the different AP designs at refer-622

ence conditions of 400 ppm atmospheric CO2 and an623

illumination of 700 µmol/m2
s. From this analysis we624

calculated the rubisco carboxylation and oxygenation625

rates (Vc and Vo) and rubisco carboxylase:oxygenase626

ratio. We further extended the evaluation by con-627

sidering export of triose-phosphates and hexoses as628

a proxy for plant growth and defined the carbon-use629
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efficiency as the ratio of carbon export rate relative to630

the rubisco carboxylase rate.631

The carbon-fixing pathways show a reduced rubisco632

carboxylation rate (less than 60 % of the WT) and633

slightly increased oxygenation rate, leading to a re-634

duced rubisco carboxylase:oxygenase ratio relative635

to the WT (Figure 7). The complete decarboxyla-636

tion APs show the exact opposite, with a higher car-637

boxylation rate (more than 125 % of the WT) and638

lower oxygenation rate, leading to a rubisco carboxy-639

lase:oxygenase ratio of more than 175 % relative to640

the WT (Figure 7). Even if the secondary carboxy-641

lation steps like glycolyl-CoA carboxylase (GCC) in642

the carbon fixing TaCo pathway are counted in the643

total carboxylation rate, this general trend stays the644

same, even though now the total carbon fixation of645

the carbon-fixing APs is less decreased than the car-646

bon neutral pathways (Figure 7, transparent area).647

Contrastingly, the carbon export is highest for the648

carbon-fixing APs (around 120 %) and lowest for the649

complete decarboxylation APs at slightly above 100650

% (Figure 7). This is reflected by the carbon-use effi-651

ciency, which is highest for the carbon-fixing APs at652

around 190 % and lowest for the complete decarboxy-653

lation APs at around 80 % (Figure 7). This increase654

is carbon-use efficiency in carbon-neutral and carbon-655

fixing APs is caused by the fact that they generate656

intermediates, other than CO2, that can enter the657

CBB cycle. By increasing the input of intermediates658

into the cycle, more carbon can be withdrawn with-659

out requiring additional fixation of CO2 by rubisco.660

Therefore, carbon-fixing and carbon-neutral alterna-661

tive photorespiratory pathways increase the carbon use662

efficiency of the CBB cycle resulting in more carbon663

exported per rubisco carboxylase reaction.664

APs are most beneficial at low intracel-665

lular CO2666

The activity and effectiveness of the APs, which we667

measure as the improvement of carbon export, depends668

on the local CO2 concentration in the chloroplast. The669

velocity at which this local CO2 can be replenished670

is dependent on the external CO2 concentration as671

well as the internal transport rate. We systematically672

evaluated all AP designs for both of these factors. The673

improvement of carbon export relative to the WT is674

highest for both low CO2-transport rate (Figure 8D),675

as well as low external CO2 concentration (Figure676

S1), in which the carbon-fixing pathways perform best677

(Figure 8D). Importantly, these are also the conditions678

where the absolute rates of carbon export are reduced679

(Figure 8B). The carbon-fixing APs consistently show680

the highest improvement relative to the WT, closely681

followed by the carbon-neutral APs and then by the682

partial decarboxylation APs (Figure 8D). The full683

decarboxylation APs show the lowest improvement684

and perform worse than the WT if the CO2-transport685

rate is increased more than 10 % (Figure 8 D). The686

improvement to carbon export diminishes for all APs687

under very high CO2 conditions (Figure S1).688

High-light increases AP benefit689

All APs require more energy equivalents than the690

CBB cycle per carbon export and the full decarboxyla-691

tion pathways even more than native photorespiration.692

Therefore, it is important to assess how much energy693

supply is necessary, such that the benefits of the path-694

ways outweigh this energy cost. As light is the primary695

source of energy for plants, and natural light conditions696

are continuously changing, the AP performance should697

be assessed at a variety of light-conditions. We did this698

by systematically scanning the effect of illumination699

on the carbon export, by simulating the steady-state700

for each photosynthetic photon flux density (PPFD).701

Here, we found all APs show the highest relative in-702

crease in carbon export in high-light conditions, with703

the carbon-fixing APs showing the highest increase in704

carbon export at 125 % relative to the WT (Figure 8C).705

The second-best option are carbon-neutral pathways,706

which in low-light conditions outperform the carbon-707

fixing pathways (Figure 8 C illumination below 400708

µmol). The complete decarboxylation pathways show709

a beneficial effect for medium and high-light conditions710

compared to the WT, but are disadvantageous in low711

light conditions compared to the other APs (Figure712

8C). These results demonstrate that in medium to713

high-light conditions the benefits of all APs outweigh714

the increased direct energy cost, while at low light the715

increased energy demand outweighs the benefits for716

the complete decarboxylation APs.717

Environmental conditions require differ-718

ent AP designs719

The previous results highlight that depending on the720

environmental conditions, which will affect CO2 diffu-721

sion and light intensity, different APs should be utilised722

to maximise carbon export. We predicted the carbon723

export improvement of different APs for three distinct724

scenarios. First, a normal scenario, which corresponds725

to a well-watered, plant in a temperate climate with726

sufficient light. Next, a scenario with a well-watered727

plant in temperate climate but low light, which is thus728

energy-limited. For this we used an illumination of 250729

µmol/m2
s. Lastly, a scenario of a hot and dry climate730

and high light, with partially closed stomata, which731

is thus CO2-limited. This we represented by lowering732

the carbon transport rate to 90 % of the WT.733

In both the normal and CO2-limited scenario the734

carbon-fixing APs show the highest carbon export (Fig-735

ure 8E, G). Under energy-limiting conditions carbon-736

fixing and carbon-neutral APs show similar carbon737

export (Figure 8F). In all cases, complete decarboxyla-738

tion pathways show the lowest carbon export, with a739

negative effect in energy-limited conditions, a slightly740

positive effect in normal conditions and a positive ef-741

fect in CO2-limited conditions (Figure 8E-G). Thus,742
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Figure 8: Steady-state carbon export of photorespiratory APs simulated by the kinetic model depending on photosynthetic
photon flux density (PPFD) (A, C) or CO2 transport rate (B, D). Carbon export is shown in both absolute terms (A, B)
and relative to the WT under the same conditions (C, D). Three representative scenarios are highlighted for a well-watered
plant in a temperate climate with sufficient light (700 µmol/m2

s) (E); a well-watered plant in temperate climate with
low light (250 µmol/m2

s), which is thus energy-limited (F); and a hot and dry climate with low water supply and thus
partially closed stomata (90 % of WT CO2 transport rate), which is thus CO2-limited (G). The different AP designs are
grouped by their CO2 stoichiometry (-2, -0.5, 0, 1) and only the pathway variant with the maximal carbon export of the
group is shown.

kinetic-overview
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in most scenarios the carbon-fixing APs are the pre-743

ferred choice, while in energy-limited conditions the744

carbon-neutral APs might be more beneficial.745

Discussion746

Using various mathematical models of plant747

metabolism, we have comprehensively identified and748

assessed the mechanisms by which APs can enhance749

carbon assimilation and growth. To understand how750

environmental conditions and plant physiology can af-751

fect pathway benefits, we also quantitatively assessed752

the effects of light intensity and CO2 availability on753

the different APs. We show that carbon-fixing APs,754

such as the TaCo pathway, have the greatest potential755

benefit over a range of conditions, and could provide756

an increase in carbon export from photosynthesis of757

over 20 %. Due to the initial exponential growth phase758

of plants, such a percentage could generate substantial759

gains in biomass over time [41].760

APs use distinct mechanisms to improve761

growth762

Our work showed that alternative photorespiratory763

pathways can provide benefits to plants via five dif-764

ferent mechanisms (Table 2): (i) An energy efficiency765

benefit by metabolising the 2PG produced by the ru-766

bisco oxygenase reaction in a way that uses less ATP767

and reducing power compared to native photorespi-768

ration. (ii) A biosynthetic energy efficiency benefit769

if intermediates of the alternative pathway can be770

used for biosynthetic reactions. (iii) Recapture of CO2771

that could otherwise diffuse from the cell. (iv) An772

increased CO2 concentration at the site of rubisco773

in the chloroplasts caused by altered CO2 diffusion774

within the cell. (v) Increased carbon use efficiency of775

the CBB cycle caused by an additional input of CBB776

cycle intermediates, which enables more carbon to be777

exported per rubisco carboxylase reaction. As CO2778

diffusion differs depending on cell morphology and leaf779

physiology, these CO2 related benefits can be different780

in different plant species. Thus, next to simply clearing781

the 2PG produced by the rubisco oxygenase reaction,782

alternative photorespiratory pathways can have broad783

effects on the plant in terms of energetics, biosynthesis784

and CO2 dynamics and these must be considered at785

the system level to evaluate the effectiveness of any786

pathway.787

Benefits of APs depend on environmen-788

tal conditions789

Importantly, the environmental conditions a plant790

grows in, such as light intensity, temperature, and791

water availability can affect the benefit of the dif-792

ferent mechanisms that alternative pathways employ.793

Under low-light conditions, when energy is limiting,794

the energy efficiency of alternative pathways becomes795

critical to their effectiveness [12, 42]. Our models796

showed that alternative pathways that are more en-797

ergy efficient than the native photorespiration will798

offer greater benefits in low-light, which is experimen-799

tally supported by growth enhancement in Arabidopsis800

expressing the Kebeish pathway and grown under low-801

light and short-day conditions [6]. In contrast, com-802

plete decarboxylation pathways, which are less energy803

efficient than native photorespiration, are predicted804

to show no benefits under these low-light conditions.805

Under high-light conditions energy efficiency no longer806

offers an advantage, and the pathways’ effects on CO2807

diffusion and fixation become more important. As808

our analyses showed, all pathways perform best under809

high-light conditions (Figure 8A,C) suggesting that810

benefits from altered CO2 diffusion have the biggest811

potential to increase plant growth. This finding is812

also supported experimentally with complete decar-813

boxylating pathways including South AP3, Shen, and814

Wang all showing increased benefits under high-light815

conditions [5, 7, 20]. Overall, the alternative pathways816

provide the greatest benefit over native photorespi-817

ration under high-light, and CO2-limiting conditions,818

with certain pathways also able to provide benefits819

under low-light conditions.820

The benefits of alternative pathways are compara-821

ble to those predicted for C3-C4 intermediate or C4822

metabolism [43]. Indeed, the conditions which favour823

these naturally evolved mechanisms are also those we824

identified as beneficial for the alternative pathways.825

However, from a metabolic engineering perspective,826

the alternative pathways described here offer advan-827

tages over introducing C3-C4 or C4 metabolism into828

a C3 plant, as they can require as few as three genes829

compared to the >15 genetic modifications potentially830

needed to support the biochemistry, leaf anatomy, and831

intercellular transport of C3-C4 or C4 photosynthesis.832

Therefore, alternative pathways offer a more easily im-833

plementable solution to the same problems that C3-C4834

intermediate and C4 photosynthesis have evolved to835

address.836

Applying new insights to previous re-837

sults838

By applying the insight we have gained, we can now try839

to better explain previous experimental observations.840

For example, complete decarboxylating pathways such841

as the Maier/South AP2, South AP3 and Shen by-842

passes experimentally showed growth benefits, but the843

molecular basis for these benefits was less clear, as844

previous computational analysis based on a kinetic845

model describing carbon fixation and subcellular CO2846

conductance did not predict an enhanced rate of pho-847

tosynthesis [12]. Here, we quantitively demonstrate848

that complete decarboxylating pathways can indeed849

enhance photosynthesis by increasing the CO2 concen-850

tration in the chloroplast and subsequently the rubisco851

carboxylase:oxygenase ratio, as well as by recapturing852

otherwise lost CO2. These effects are consistent with853

experimental measurements of unchanged or decreased854

CO2 compensation points in engineered plants express-855

ing these pathways [7, 19, 20, 44]. Furthermore, for856
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Table 2: Alternative photorespiratory pathways can affect carbon assimilation and growth in multiple ways.
*Only applies to pathways that relocate CO2 release to chloroplasts i.e not Carvalho or BHAC(perox.) pathways which are
peroxisomal. †Only applies to BHAC and Carvalho pathways not Wang, Kebeish/South AP1. 2PG, 2-phoshpoglycolate;
CBBC, Calvin-Benson-Bassham cycle; G3P, glyceraldehyde 3-phosphate.

Pathway effect
applies to (carbon

stoichiometry)

Direct or indirect effect of pathway -2 -0.5 0 1
Interactions with
physiology and
environment

i) Energy
efficiency

• • •

Most relevant when
energy is limiting i.e.
low-light

ii)
Biosynthetic
efficiency

•
†

Depends on biomass
composition and if
leaves are growing or
mature

iii) CO2

recapture
• * • •

Depends on; mitochon-
dria/chloroplast
arrangement, leaf CO2

diffusion, chloroplast
CO2 permeability

iv) Increase
chloroplast
CO2

concentration

• *
Depends on chloroplast
CO2 permeability

v) Increase
CBB cycle
carbon use
efficiency

• •

High-light and low
CO2 scenarios provide
the greatest relative
increase in carbon
export

complete decarboxylating and some partial decarboxy-857

lating pathways, we demonstrated additional increases858

in energy efficiency in cells synthesizing amino acids859

for biomass synthesis or phloem exudate that have not860

previously been identified. Thus, through our work,861

we can now better explain the reasons why in previous862

studies a particular alternative pathway has generated863

benefits.864

Some aspects of APs require future in-865

vestigation866

Yet, despite improving our understanding of alterna-867

tive photorespiratory pathways, a number of experi-868

mental observations remain unexplained. For example,869

the South AP3 pathway expressed in tobacco shows870

increased CO2 assimilation even at very high intra-871

cellular CO2 [7]. Decarboxylation pathways reduce872

rubisco oxygenase activity by increasing the local CO2873

concentration at increased energetic costs. At very874

high intracellular CO2 this mechanism cannot offer875

any additional benefit, as CO2 concentration in the876

chloroplast should already be high. The mechanism of877

the benefit of South AP3 pathway even at high CO2878

remains unexplained and may relate to the reported879

beneficial effects of expressing glycolate dehydrogenase880

alone, which could affect the efficiency of photosyn-881

thetic electron transport [6, 45, 46, 47]. Addition-882

ally, our models predicted that partial decarboxylating883

pathways should outperform full decarboxylating path-884

ways across conditions. However, comparison of the885

partial decarboxylating South AP1 and the complete886

decarboxylating South AP3 expressed in tobacco in887
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greenhouse trials, showed greater yield increases in the888

AP3 pathway [7]. In this context, it is important to889

realise that our model predictions reflect best-case sce-890

narios, requiring optimal expression and kinetics of the891

pathway enzymes. While a discrepancy between our892

model predictions and experimental implementations893

of alternative pathways could point to shortcomings894

in our models, an alternative explanation for the dis-895

crepancy could be that an engineered plant might not896

yet have optimal enzyme expression levels. Thus, such897

discrepancy might also indicate potential for further898

improvements of plant performance.899

Conclusion900

With this work, we have improved our mechanistic un-901

derstanding of how alternative photorespiratory path-902

ways can enhance carbon assimilation and growth,903

and used this to predict that the carbon fixing TaCo904

pathway represents the best option for increasing crop905

yields over a range of conditions. In future, crops,906

or specific cultivars, should be screened to identify907

those with limitations in CO2 refixation capacity or908

CO2 diffusion that make them most likely to benefit909

from engineering with alternative pathways to native910

photorespiration. The models presented here could911

also be used to evaluate or develop new alternative912

pathway designs that may further increase yield gains913

e.g. by targeting specific growth scenarios, such as914

the juvenile or adult growth stages, or specific crop915

species. With the ability to more rationally engineer916

alternative photorespiratory pathways into suitable917

crops, and identify their optimal growing conditions,918

our work will hopefully contribute to realising the max-919

imum impact of alternative photorespiratory pathways920

for improving crop yields.921

Methods922

Stoichiometric model923

A stoichiometric model of core plant metabolism based924

on an Arabidopsis leaf, PlantCoreMetabolism_v3, was925

curated starting from a previously described model926

(PlantCoreMetabolism_v1_2, [22]). The model is927

available in SBML format as an XML file at https:928

//gitlab.com/gain4crops/2024-paper. Python 3, CO-929

BRApy [48] and the CPLEX solver were used for FBA930

optimisations. All code required to reproduce the931

results is available at https://gitlab.com/gain4crops/932

2024-paper as Jupyter notebook files. Output fluxes to933

phloem exudate were defined from Arabidopsis phloem934

composition [29]. Output fluxes to biomass were de-935

fied as described in the AraGEM model [30]. Net936

ATP demands were calculated by quantifying the flux937

through both plastidic and mitochondrial ATP syn-938

thase. As the model is autotrophic, all ATP must939

ultimately be generated by either plastidic ATP syn-940

thase, or by mitochondrial ATP synthase using NADH941

generated in the plastid. To calculate the reductant de-942

mand the flux through proton pumping mitochondrial943

NADH-dehydrogenase (which is used for generating944

ATP) was subtracted from the flux through plastidic945

ferredoxin-NADP reductase.946

Kinetic model947

The ordinary differential equation (ODE) model was948

built mainly using two previously published models of949

the CBB cycle [38, 49] and photorespiration (PR) [39]950

and developed using Python-based software modelbase951

[50]. Rubisco kinetics including carboxylation and oxy-952

genation reactions were described based on the rate953

equation from Witzel 2010 [40]. Energy metabolites,954

ATP and NADPH, were implemented as dynamic vari-955

ables as in Matuszyńska 2019 [51] and their production956

modelled using a simplified light-dependent reaction957

with an additional quenching reaction to account for958

the different ATP and NADPH demands of the sys-959

tem. Thioredoxin based redox regulation of CBB cycle960

enzymes was linked to the energy status of the model961

via an NADPH-thioredoxin reductase reaction based962

on the description by Saadat 2021 [52]. CO2 was mod-963

elled dynamically with CO2 input from the atmosphere964

described with a diffusion equation. As refixation of965

respired and photorespired CO2 was shown to range966

between 24-38 % in wheat and rice [32], a static CO2967

refixation of 25 % from mitochondiral glycine decar-968

boxylation was assumed with the remaining CO2 lost969

to the atmosphere. For APs that relocate the CO2970

to the chloroplast we assumed 100 % of this could971

potentially be refixed. Ammonia was also modelled as972

a dynamic variable along with ammonium assimilation973

into glutamate and the associated energy costs. The974

model was built in a stepwise manner, with each iter-975

ation being compared to the previous one to ensure976

that the changes made were valid (see supplementary977

material section S2 for a complete description).The978

final model was used as a reference point, called WT,979

and the APs were implemented on top of this model.980

Native photorespiration was deactivated in the pres-981

ence of the APs by setting the Vmax of the first native982

photorespiratory enzyme that was not used by the983

respective AP to zero. The AP designs were grouped984

by their CO2 stoichiometry and the best performing985

pathway of each group is shown in the results. All986

code required to reproduce the results is available at987

https://gitlab.com/gain4crops/2024-paper.988
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3.3 Explaining the photosynthetic Gibbs effect

The paper "Explaining the photosynthetic Gibbs effect" investigates the asymmetric

distribution of radioactive labels in sugars produced by photosynthesis. I was

involved in this project during every step of the research process, including writing

the manuscript.

Publication Explaining the photosynthetic Gibbs effect
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Status pre-print

doi ...
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The photosynthetic Gibbs effect describes an

asymmetric distribution of radioactive labels in

sugars produced by photosynthesis. Previous

arguments regarding whether these findings are

in agreement with the Calvin-Benson-Bassham

cycle have mostly been qualitative. Here we

present a quantitative analysis of the photo-

synthetic Gibbs using a mathematical model

of the Calvin-Benson-Bassham cycle. We show

that the photosynthetic Gibbs effect is in agree-

ment with the Calvin-Benson-Bassham cycle,

providing a more detailed explanation as to

why.
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Introduction
The Calvin-Benson-Bassham (CBB) cycle is a critical1

biochemical pathway integral to global carbon fixa-2

tion [1]. Various photosynthetic organisms, including3

plants, utilize this cycle to assimilate carbon dioxide,4

ultimately converting it into sugars [2]. Central to5

this process is the enzyme rubisco, which catalyzes6

the carboxylation of ribulose-1,5-bisphosphate. The7

enzyme rubisco is arguably the most abundant en-8

zyme on Earth, responsible for over 99 % of global9

carbon dioxide fixation [3, 4]. Given its pivotal role,10

the biochemical mechanisms underlying inorganic car-11

bon fixation have been the focus of extensive scientific12

research since the inception of metabolic studies.13

In the initial phase of elucidating the CBB cycle,14

Otto Kandler and Martin Gibbs experimentally tested15

Melvin Calvin’s proposed carbon fixation model by16

employing radioactive carbon labeling. Unexpectedly,17

their findings revealed an asymmetric distribution of18

radioactive labels within starch-derived hexoses pro-19

duced during photosynthesis. This asymmetry was20

consistent across various experimental conditions and21

independent of the botanical origin of the hexoses.22

The observed asymmetries, now referred to as the23

’Gibbs effect’, demonstrated a specific labeling se-24

quence in starch-derived hexoses: the fourth carbon25

position consistently acquired the radioactive label26

prior to the third, the first position was labeled before27

the sixth, and the second carbon was labeled before28

the fifth. In the following, these asymmetries will be29

abbreviated by a fraction, with the numerator showing30

the position labeled first, e.g. C4/C3.31

In the debate regarding whether these findings are in32

agreement with the CBB cycle reaction scheme, the ar-33

guments have largely been qualitative and speculative34

in nature [5]. Thus, we present a quantitative exami-35

nation of the photosynthetic Gibbs effect, building on36

previous work [5]. This not only gives us the ability37

to give an explanation for the patterns observed by38

Gibbs, but also to make falsifiable predictions about39

the label distribution of all other compounds in the40

CBB cycle.41

Gibbs effect readily explained by42

CBB cycle structure43

To quantitatively study the Gibbs effect with theoreti-44

cal models, we implemented and adapted a published45

kinetic model of the CBB cycle [6, 7]. We then trans-46

formed the model to reflect all possible isotopomers47

using the Python package modelbase [8]. For this,48

every intermediate is represented by all possible 2n49

isotopomer versions, where n denotes the number of50

carbon atoms. Likewise, all reactions are represented51

by all possible versions transforming the correspond-52

ing isotopomers. The resulting scheme is depicted in53

Fig. 1.54

Due to the rapid equilibrium assumption of the fast55

reversible reactions in the model showed an instant56

equilibration of the labels in the respective interme-57

diates, see supplementary Fig. S1. Thus, in contrast58

to the original model, we here explicitly determined59

the disequilibrium of the involved reactions. This in-60

volved the identification of forward and backward rate61

constants of the reversible reactions. The forward and62

backward rate constants can be uniquely determined63

from measured concentrations and the equilibrium64

constants [9, 10].65

With this we performed simulations over time, assum-66

ing a constant supply of fully labeled carbon dioxide.67

To avoid biases by arbitrary choices of time points to68

compare the asymmetry, we took the integral of the dif-69

ference between the labelled carbons as a measurement70

of the asymmetry.71

Fig. 2 shows the labeling patterns of fructose-1,6-72

bisphosphate (FBP) and fructose 6-phosphate (F6P)73

(see supplementary Fig. S2 for all other metabolites).74

In both hexoses the fourth carbon is labeled before the75

third. However, while in F6P the first carbon is labeled76

before the sixth and the second carbon before the fifth,77

this pattern is reversed in FBP. The label asymme-78

tries in F6P originally described in experiments by79

Gibbs can be observed without any further parameter80

adjustments to the model.81

1
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Figure 1: The path of carbon atoms in the CBB cycle. Shown are the carbon positions of CBB cycle intermediates and
the mappings of the corresponding reactions. Reactions changing the label position between the reactants are coloured,
irreversible reactions are drawn with dashed lines. Triose phosphate exporters, pathways to starch production and enzyme
names are omitted for clarity.

Figure 2: Time development of label distribution in
FBP and F6P shown relative to the concentration of the
respective metabolite. C1 to C6 denote the respective
carbon atoms.

In FBP however, the C1/C6 and C2/C5 asymmetries82

are reversed. To investigate what causes the contrast83

between the C1/C6 and C2/C5 label asymmetries in84

FBP and F6P, we systematically varied the enzyme85

activity of all CBB cycle enzymes. We then calculated86

the respective label asymmetries for F6P, shown in87

Fig. 3 for a selection of enzymes (see supplementary88

Fig. S4 for all CBB cycle enzymes). The C4/C3 asym-89

metry in F6P is mostly affected by triose-phosphate90

isomerase (TPI), which shows an antiproportional ef-91

fect. For example, at half the TPI activity the C4/C392

asymmetry is 150 % relative to the wildtype and at93

twice the TPI acitivity the asymmetry is 57 %. In-94

creasing sedoheptulose-bisphosphatase (SBPase) also95

slightly decreases the C4/C3 asymmetry, which at96

fivefold activity is at 89 % of the wildtype asymmetry.97

As with the C4/C3 asymmetry, an increase in TPI98

activity also decreases the C1/C6 and C2/C5 asym-99

metries. This is also the case for SBPase and phospho-100

ribulosekinase (PRK), which reduce the C2/C5 and101

C1/C6 asymmetries. At fivefold SBPase activity both102

C2/C5 and C1/C6 asymmetries are at 31 % of the103

wildtype activity. Similarly, at fivefold PRK activity104

both asymmetries are at 16 % of the wildtype asymme-105

try. Contrastingly, increasing transketolase increases106

the C1/C6 and C2/C5 asymmetries, which at double107

the activity are at 200 % of their respective wildtype108

asymmetry.109
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Figure 3: Systematic scan of relative F6P label asymmetries dependent on the activity of selected CBB cycle enzymes.
The asymmetries are calculated as the integral of the difference between the respective time series and shows relative to
the wildtype asymmetries. The x-axis shows the scaling factor of the Vmax and the y-axis denotes the respective enzyme.

Octuloses might influence labeling110

patterns111

The model in its current form readily explains the112

photosynthetic Gibbs effect. However, there is a long113

standing debate about additional reactions catalysed114

by the promiscuous enzymes transketolase and aldolase115

[11]. These additional reactions allow production116

of D-glycero-D-altro-octulose 8-phosphate (O8P), D-117

erythro-D-gluco-octose α-1,8-bisphosphate (OBP) and118

aldehydo-D-arabinose 5-phosphate (A5P) [12, 13]. All119

these metabolites have been detected experimentally120

in both photosynthetic and heterotrophic organisms121

[14, 15]. However, the significance of the flux through122

the reactions producing those metabolites is still de-123

bated [16]. We thus sought to quantify the effect those124

reactions might have on the labeling distribution. For125

this, we included the reactions in Table 1. This in-126

cluded ways to produce A5P or consume OBP further127

for which we included an A5P isomerase which catal-128

Non-standard transketolase reactions

Substrates Products

F6P + R5P S7P + E4P
X5P + G6P O8P + GAP
F6P + G6P O8P + E4P
S7P + G6P O8P + R5P

Neutral transketolase reactions

Substrates Products

X5P + GAP X5P + GAP
F6P + E4P F6P + E4P
S7P + R5P S7P + R5P
O8P + G6P O8P + G6P

Non-standard aldolase reactions

Substrates Products

DHAP + A5P OBP

Table 1: Stoichiometries of extended transketolase and
aldolase reactions.

Figure 4: Relative F6P asymmetries dependent on the
rate constant the extended transketolase reactions (upper
panel) or both transketolase and aldolase reactions (lower
panel). Rate constants are shows relative to to the respec-
tive rate constant of the standard CBB cycle reaction.
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Figure 5: Effect of extended transketolase and aldolase on the labeling pattern of selected CBB cycle intermediates.
The effect is shown as the integral of the difference between the time course of the respective carbon at a given relative
rate constant against the time course at wildtype conditions. The rate constants are shown relative to the value of their
respective wildtype reaction rate constants.

yses the reaction A5P <=> RU5P and an OBPase,129

which catalyzes the reaction OBP + H2O <=> O8P130

+ Pi. The respective rate equations of transketolase131

and aldolase were adapted using reversible kinetics to132

ensure thermodynamically sound behaviour [10]. We133

assumed OBPase to be irreversible and thus adapted134

the rate equation of SBPase instead. For all the newly135

added reactions we added scaling factors, as we could136

not find any kinetic data for them.137

We systematically scanned the label distributions for138

model variants containing the extended transketolase139

reactions, the extended aldolase reactions or both.140

The C1/C6 and C2/C5 asymmetries are increased141

more than 200 % if the relative activity of the ex-142

tended transketolase reactions matches the one for the143

standard ones, see upper panel of Fig. 4. If the ex-144

tended aldolase reaction is also scaled proportionally,145

the C4/C3 asymmetry increases to over 300 % and146

the C1/C6 asymmetry is also further increased, see147

lower panel of Fig. 4.148

As the inclusion of extended transketolase and aldolase149

reactions can increase the Gibbs effect we sought to150

further quantify the general effect on the label distri-151

bution in the CBB cycle. The effect of the extended152

transketolase and aldolase reactions on the labeling153

patterns of select CBB cycle intermediates is shown in154

Fig. 5 systematically for rate constants between 0-100155

% of the respective wildtype rate constants (see sup-156

plementary Fig. S7 for all CBB cycle intermediates).157

There we took the integral of the relative difference158

between the time course at a specific relative rate con-159

stant and the one at zero activity as a metric for the160

change of a given label. Even at 100 % relative rate161

constant of the extended transketolase and aldolase162

reactions, the magnitude of the relative difference is163

less than 5 % (see glucose-1-phosphate (G1P) in sup-164

plementary Fig. S7).165

Of special interest are the four carbons in the CBB166

cycle which with the additional reactions require fewer167

enzymatic steps to be labelled. For example, with the168

addition of the extended reactions the first carbon of169

glucose-6-phosphate (G6P) only requires three instead170

of seven enzymatic steps to be labelled starting from171

DHAP. This can be achieved by the reaction sequence172

of aldolase producing OBP, OBPase producing O8P173

and transketolase running backwards. Similar path-174

ways can be found for the first carbon of F6P, requiring175

seven instead of nine steps, the second carbon of G6P,176

requiring 11 instead of 13 steps and the first carbon177

of sedoheptulose-7-phosphate (S7P), requiring eight178

instead of nine steps. At 100 % relative rate constant179

the first carbon of G6P is labelled 1 % more. Similarly,180

the first carbon of F6P is labelled 0.5 % more and the181

label of the second carbon of G6P and the first carbon182

of S7P are also increased.183

However, these are not the only effects the addition184

of the extended reaction has on the label distribution.185

For a low relative rate constant, the third carbon of186

PGA is labelled less, which is alleviated at high rela-187

tive activitiy by aldolase activity (see supplementary188

Fig. S5 for a comparison to just the transketolase ac-189

tivity). This effect propagates to the fourth and third190

carbon of erythrose-4-phosphate (E4P), the sixth and191

seventh carbon of the heptuloses and the fifth and192

van Aalst et. al | | November 8, 2024 | Page 4–7

100



fourth carbon of the pentoses respectively. Similarly,193

the increased C4/C3 asymmetry in FBP can be ob-194

served in the second and first carbon of E4P.195

At a high relative rate constant the third carbon of196

G6P the change in the label of the third carbon is197

more negative than the one of F6P. The third carbon198

of G6P can only be derived from the third carbon199

of F6P or the second carbon of A5P. This suggests200

that the same mechanism causing the increase in the201

labeling of the first carbon decreases the labeling of202

this carbon.203

Carbons three and four of sedoheptulose-1-7-204

bisphosphate (SBP) and S7P are affected differently205

by an increased relative rate constant of the extended206

reactions. While there is almost no change in those207

carbons in SBP (see supplementary Fig. S7), they208

are reduced by roughly 2 % in S7P. In the extended209

transketolase reactions the third and fourth S7P car-210

bons are derived from the first and second carbons211

of ribose-5-phosphate (R5P), which also happens in212

the standard transketolase reactions. Thus, this effect213

is caused by an increase in transketolase activity in214

general and not by the extended reactions per se.215

Discussion & Conclusions216

Our model, without any parameter fitting, qualita-217

tively reproduces the asymmetries experimentally mea-218

sured by Gibbs. That is, we can observe that in F6P219

the fourth carbon is labeled before the third, the first220

before the sixth and the second before the fifth, see221

Fig. 2.222

Bassham noted in 1964 that the asymmetry in the 4223

and 3 positions can be explained by the different pool224

sizes of the triose phosphates [17]. We argue here that225

regardless of the pool sizes the C4/C3 asymmetry will226

always be observed. It is true that TPI activity and227

thus different pool sizes of GAP and DHAP can change228

the magnitude of the asymmetry. However, the set of229

reactions necessary to label the fourth carbon of FBP230

is a strict subset of the reactions necessary to label the231

third carbon of FBP. As the relative outflux of a label232

from one metabolite cannot exceed the relative amount233

of label in the respective pool, it is thus structurally234

impossible for the third carbon to be labeled more235

than the fourth.236

While the C4/C3 asymmetry is present in FBP as well,237

the C1/C6 and C2/C5 asymmetries are reversed. This238

difference can readily be explained by transketolase239

activity, as Bassham already noted in 1964 [17]. In240

order for the first and sixth carbon of FBP to be241

labeled, the third carbon of GAP needs to be labeled.242

If CO2 is the only label influx to the system, this243

requires the label to be passed through the entire cycle244

once, via the third carbon of SBP, which ends up in245

the third carbon of GAP. The difference between the246

labeling of the first and sixth position can then be247

explained exactly like the C4/C3 asymmetry above.248

In F6P however, there exists a second influx route for249

labels into the first two carbons via transketolase. This250

just requires six reactions from DHAP to take place,251

while the first label in FBP requires ten reactions of252

which four are shared with the alternative route. As253

Fig. 3 shows, increased transketolase activity increases254

the C1/C6 label asymmetry, giving more weight to255

this explanation. While this asymmetry in principle256

can be reversed by very low transketolase activity the257

model does not yield stable solutions for those cases.258

An analogous explanation can be given for the C2/C5259

asymmetry.260

We next extended the model to include non-standard261

transketolase and aldolase reactions, capable of pro-262

ducing octuloses. While octuloses have been detected263

experimentally, the significance of the flux through264

them still debated [14, 15]. As kinetic parameters for265

these reactions are unknown we systematically scanned266

possible rate constants between 0-100 % of the rate con-267

stants of the respectively standard transketolase and268

aldolase reactions. The inclusion of extended transke-269

tolase and aldolase reactions increased the magnitude270

of the Gibbs effect by up to three-fold, see Fig. 4.271

However, when the relative changes of all the labels272

in the CBB cycle was assessed, we found no change273

larger than ± 5 % (Fig. 5). This suggests both that274

small changes in labelling can lead to large changes in275

asymmetries and that inclusion of this larger scheme276

in approaches like MFA might not be necessary, as the277

difference is likely going to be small [18]. However, it278

is theoretically possible for the rate constants to be279

higher than the bounds we chose. More experimen-280

tal data is required to increase the confidence in the281

predictions made.282

In order to estimate the fluxes through the extended283

reactions we identified asymmetries and label patterns284

as useful targets. One such target is the first carbon of285

G6P, which with the addition of the extended reactions286

just requires three instead of seven enzymatic steps287

from DHAP to be labelled - all of which are extended288

reactions. Thus, deviation from the expected labelling289

can be a useful hint for the total flux through the290

extended reactions. Similarly, the third carbon of G6P291

is predicted to be labelled less due to and only due292

to the extended reactions. Here, again, the total flux293

can be estimated from a deviation from the expected294

label.295

However, as the labelling pattern of carbons three296

and four of S7P shows, those estimates require a good297

estimate of the transketolase activity in general, as298

changes in transketolase activity already cause changes299

in a multitude of labelling patterns. Thus, when assess-300

ing the differences caused by the extended reactions it301

is important to distinguish them from changes caused302

by increased total transketolase and aldolase activity.303

Further theoretical work is required to isolate these304

two effects.305
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Methods306

k
+ =
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and respectively307

k
− = −

v

j
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1−
Keq

Q

With the new obtained mass action rate parameters the308

corresponding reactions were brought into standard309

mass action format310

v = k
+

i

Si − k
−

j

Pj (1)

Similiarly, in order to fit the regularised reactions that311

follow the canonical expression312

v =
VMax · [S]

[S] +Km ·R(S)
(2)

the VMax values were obtained using313

VMax =
v ([S] +Km ·R(S))

[S]
(3)

and the experimentally measured concentrations.314
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3.4 Approximating carbon fixation - how impor-

tant is the Calvin-Benson cycle steady-state

assumption?

The paper "Approximating carbon fixation - how important is the Calvin-Benson

cycle steady-state assumption?" investigates whether a steady-state assumption

for the CBB cycle is realistic in the context of fluctuating light environments. I was

involved in this project during every step of the research process, including writing

the manuscript.
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Plants use light energy to produce ATP and
redox equivalents for metabolism. Since dur-
ing the course of a day plants are exposed to
constantly fluctuating light, the supply of ATP
and redox equivalents is also fluctuating. Fur-
ther, if the metabolism cannot use all of the
supplied energy, the excess absorbed energy
can damage the plant in the form of reactive
oxygen species. It is thus reasonable to as-
sume that the metabolism downstream of the
energy supply is dynamic and as being capable
of dampening sudden spikes in supply is ad-
vantageous, it is further reasonable to assume
that the immediate downstream metabolism
is flexible as well. A flexible metabolism ex-
posed to a fluctuating input is unlikely to be
in metabolic steady-state, yet a lot of mathe-
matical models for carbon fixation assume one
for the Calvin-Benson-Bassham (CBB) cycle.
Here we present an analysis of the validity of
this assumption by progressively simplifying
an existing model of photosynthesis and car-
bon fixation.
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Introduction

The light reactions of photosynthesis must provide the
chemical energy (ATP and NADPH) needed for CO2

fixation through the CBB cycle under rapidly fluctu-
ating light availability. Light fluctuates across many
time scales under natural conditions, greatly compli-
cating the challenge plants have in harvesting suffi-
cient light energy for optimal rates of carbon fixation
[1, 2, 3, 4]. Plants possess a myriad of physiological
responses to changing light intensity such as variable
stomatal conductance, regulation of CBB enzymes
and possibly even the activation of photorespiratory
genes [5]. While these factors are critical for under-
standing the integrated response of net assimilation
to fluctuating light, we have focused this investigation
on dissecting out the important assumptions for mod-

eling the CBB and photosynthetic electron transfer
chain (pETC) using reaction kinetic models.

There have been many excellent metabolic models
representing the CBB and associated pETC activity
using various frameworks that can represent steady-
state or dynamic behavior [6, 7, 8, 9, 10]. In this
paper we use a metabolic definition of steady-state,
specifically that under steady-state metabolite pool
sizes are constant as well as all input and output
fluxes. We use a corresponding metabolic definition
for dynamic in that it is a condition where metabo-
lite pool sizes and internal fluxes are changing. Note
that this is a slightly different definition of a physi-
ological dynamic model, which can represent compo-
nents like the slow relaxation of non-photochemical
quenching, changes in stomatal conductance and ru-
bisco activation state [11]. In this work we ask how
important it is to consider the dynamic response of
the CBB during light fluctuations and how well the
commonly applied steady-state assumption can rep-
resent metabolism.

The fundamental aim of mathematical modeling is
to enhance understanding of the system studied, as
B.D. Hahn already noted in 1993 [12]. Thirty years
later much effort is still being put into building ever
more complicated models with high fidelity, which are
increasingly difficult to understand. Notably, Hahn
considered models with 17-31 non-linear differential
equations to be large while nowadays genome-scale
modeling techniques are frequently employed, which
can contain thousands of reactions [13, 14, 15, 16].
To revisit the spirit of trying to understand the key
features of a system we employ model reduction of
a previously published model of the pETC and the
CBB cycle to elucidate the main processes controlling
carbon fixation in C3 plants under dynamic condi-
tions [17]. The resulting simplified models can serve
as robust alternatives in situations where few param-
eters are known and the research question is only con-
cerned with carbon fixation rate, as their predictions
are in very good agreement with the predictions of
the original complex model. The three consecutive
reductions we employ are first replacing the dynamic
system behavior with a steady-state approximation,
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then replacing the steady-state system with a poly-
nomial fitted to the predicted carbon dioxide fixation
rate and lastly reducing the amount of data that is fed
into the model. We find that a good prediction of car-
bon fixation rate requires a remarkably low amount
of model fidelity as well as data, while prediction of
other fluxes requires a much better description of the
underlying biochemistry.

Results

To determine the required fidelity to represent the
CBB cycle, pETC and photo-protective mechanisms,
we first compared simulations of a detailed ordinary
differential equation (ODE) model with and without
a simplifying metabolic steady-state assumption [17,
7]. For this first simplification we removed the dy-
namic change of metabolite concentrations by pre-
calculating steady-state fluxes of an ODE model in
response to realistic field conditions using incoming
photosynthetically active photon flux density (PPFD)
measured in one minute intervals at a National Eco-
logical Observatory Network site in Washington state,
USA [18]. We then compared the simulated rate
of carbon fixation of the dynamic and the steady-
state model for a 6 hour window from a typical
summer day (shown in Figure 1). There is gener-
ally good agreement between the simulation of car-
bon fixation (ribulose-1,5-bisphosphate carboxylase-
oxygenase (rubisco) flux) between the two approaches.
While the relative error in short periods can exceed
50 %, the total error of predicting the rubisco flux is
0.49 %.

Figure 1. Comparison of ODE and steady-state approximated model predic-
tions over a dynamic light signal (grey area). The left subplot shows the rubisco
flux predicted by the ODE and the steady-state approximated model respec-
tively over a time course of 6 hours. The right subplot shows the error of the
steady-state approximated model rubisco flux predictions relative to ODE model
predictions.

To understand why the steady-state model behaves
similarly to the dynamic model with regard to to-
tal carbon fixation despite the lack of dynamic in-
teraction we investigated how well other fluxes are
predicted and how much the concentrations change
over the course of the experiment. Shown in Figure 2
is the absolute total difference between the simula-
tions of key CBB, pETC and acclimation fluxes and
the relative standard deviation (coefficient of varia-
tion) of representative concentrations in the dynamic
model. The remaining fluxes and concentrations are

Figure 2. Left: absolute total error of steady-state approximated model predic-
tions compared to ODE model predictions. Right: relative standard deviation
(coefficient of variation) of ODE model predicted metabolite concentrations over
a course of a 6-hour experiment.

displayed in supplementary figures S1 and S2 respec-
tively and the relative standard deviation for the
fluxes in supplementary Figure S3. In contrast to the
the small difference between the rubisco flux in the
simulations, the difference between rapid acclimation
response mechanisms such as the xanthophyll cycle
(zeaxanthin epoxidase) or reactions of the water-water
cycle (glutathione reductase) is between 20 % and
50 %. Similarly, the relative standard deviation of the
rubisco substrate ribulose-1,5-bisphosphate (RuBP) is
comparatively small, varying 15 % of its mean value
compared to the large relative standard deviation of
some metabolites that take part in the rapid accli-
mation response, e.g. glutathione-disulfide (GSSG)
and dehydroascorbate (DHA) which vary nearly up to
350 % of their mean value. Notably, other CBB cy-
cle intermediates like sedoheptulose-1-7-bisphosphate
(SBP) and sedoheptulose-7-phosphate (S7P) vary up
to 50 % while the difference between the flux pre-
dictions of sedoheptulose-bisphosphatase (SBPase) is
comparable to the one of rubisco.

Figure 3. Box-plot of CBB cycle fluxes in model collection with randomly per-
turbed kinetic parameters relative to the fluxes in model with reference parame-
ters.

To understand how alternative parameterizations of
the model that lead to similar carbon fixation rates
would effect internal fluxes of the CBB cycle we gen-
erated 100,000 sets of randomly perturbed kinetic pa-
rameters. For these parameter-sets we calculated the
steady state flux and then selected the ones for which
the carbon fixation flux was within 1 % of the original
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model, which was the case for 321 of them. Figure 3
shows a box-plot of simulated CBB cycle fluxes of
the selected parameter sets relative to the dynamic
model, the remaining fluxes are shown in supplemen-
tary Figure S7. Some reactions of the CBB cycle must
vary less than 10 % to ensure a similar flux, while
e.g. triose-phosphate isomerase (TPI), fructose-1,6-
bisphophatase (FBPase) and fructose-bisphosphate
aldolase (ALDOA) can vary more than 30 %. Reac-
tions related to triose phosphate export and storage
can vary upwards of 100 %.

Given the stability of the RuBP concentration dur-
ing our simulations across irradiances and the insen-
sitivity of rubisco flux to parameterization of many
CBB model reactions, we hypothesized that it is pos-
sible to vastly simplify the CBB cycle and still get a
reasonable prediction. To describe the carbon fixa-
tion rate as being only dependent on irradiance, we
replaced the explicit CBB model with a 4th degree
polynomial function which we fitted over simulated
carbon fixation fluxes. The agreement between these
two models was very good, with a very small root-
mean-square error (RMSE) of 0.02 mM

s
(shown in

supplementary Figure S4). When simulated over the
same data shown in Figure 1, the difference between
the total rubisco flux of the polynomial model and
the dynamic model ODE fluxes is 0.64 % and thus
comparable to the difference of 0.49 % between the
steady-state model and the dynamic model (shown in
supplementary Figure S5).

So far we have used high temporal resolution data in
our simulations, but data availability, lack of compu-
tational power or technical difficulties due to multi-
scale modeling can require the use of low temporal
resolution data. A common practice to reduce the
temporal resolution is to simply average the PPFD
values over longer time periods. In our experiment, an
increase from one minute to 60 minute steps increased
the difference of carbon fixation from 0.49 % to
roughly 7 % (see supplementary Figure S10).

While an increase in error with fewer data was to be
expected, we hypothesized that the simulation can
be improved substantially by using an alternative av-
eraging approach. If carbon assimilation responded
linearly to irradiance, carbon assimilation over the
average irradiance of a time period would equal the
average of carbon assimilation over that time period.
In other words, irradiance could be averaged over a
time period with fluctuating light and simulate an
equal total amount of carbon fixation as the fluctuat-
ing light period. However, as carbon fixation responds
non-linearly to irradiance, the simulated carbon fix-
ation of the average irradiance does not lead to the
average of the simulated carbon fixation over fluctu-
ating light. In the case of the saturating response of
carbon fixation to irradiance, simple averaging would
lead to over-estimates over periods of fluctuating ir-

Figure 4. Total prediction error of carbon fixation of the steady-state approxi-
mated model (60 minute resolution) and the polynomial model (60 minute res-
olution) relative to the ODE model (1 minute resolution). Results are shown
for both the mean PPFD value of the raw data and the mean value of the data
clipped at either PPFD 900 (steady-state approximated model) or 1000 (poly-
nomial model).

radiance.

To produce representative PPFD values that avoid
the bias of simple averaging over each time period, we
clipped the input data by capping saturating PPFD
values to reduce their effect before calculating the
mean. As this approach led to promising results with
our single-day data we expanded the analysis to a rep-
resentative day for each month of the entire year, and
then simulated the carbon fixation rate of this day for
each month with one minute steps for the ODE model
and 60 minute steps for the polynomial model.

For the polynomial model we included both the pre-
diction with the mean of the raw data and the mean of
the clipped data. Figure 4 shows the total error of the
rubisco flux prediction of the polynomial model rela-
tive to the ODE model per month. As indicated in
the figure legend, the total error per year of the poly-
nomial model relatives to the ODE model is 4.0 %
for raw data and 0.1 % for data clipped at a PPFD
of 1000. The absolute of the error of the polynomial
model for October to February is between 5 and 15
%, while it is lower for the summer months (except
June), however if the data is clipped at a PPFD of
1000 there is an improved fit relative to the polyno-
mial model for the winter months.

Discussion & Conclusions

Our simulations reveal that accounting for the dy-
namic change of metabolite concentrations under fluc-
tuating light results in only small differences in the
predicted carbon fixation rate relative to assuming a
metabolic steady state in a combined model including
the CBB and light reactions. Specifically, in Figure 1
we compared predictions of an ODE model with a
simplified version in which we removed the dynamic
change of metabolite concentrations and instead pre-
calculated the steady-state fluxes for a range of PPFD
inputs. Despite the rapid light fluctuations in the in-
put data, our results show that the predicted total car-
bon fixation essentially stays the same, even though
the difference of the prediction of the dynamic state
can exceed 50 % for some time steps. This means
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that for the purpose of predicting total carbon fixa-
tion, our ODE model of carbon fixation can be greatly
simplified using steady-state assumptions with little
difference - saving time and energy by avoiding com-
putationally costly numerical integration. We expect
this to hold for other ODE models of biological sys-
tems that are structured similarly. Next we inves-
tigated how such a simplified model, which does a
mechanistically poor job at representing the under-
lying biochemistry, does a good job at representing
carbon fixation. For this we turned to other biochem-
ical predictions of the model.

While total carbon fixation was predicted well in the
steady-state model, the fluxes of rapid acclimation
mechanisms (e.g. violaxanthin deepoxidase) were pre-
dicted poorly, with relative errors exceeding 50 % (see
Figure 2). These observations can be explained by
the amount of dynamic change in concentration over
time of specific metabolite pools that directly influ-
ence carbon fixation. For example, the RuBP pool is
comparatively stable (varying 15 % of its mean con-
centration), while the GSSG pool can vary over 350
% of its mean concentration (see Figure 2). Since the
RuBP pool comprises the only dynamic substrate for
carbon fixation in the original model it has the largest
effect on rates of rubisco carboxylation, reflected by
the small relative error in this reaction of 0.49 %. The
higher errors of acclimation and pETC intermediates
in contrast contribute very little to the error of rubisco
carboxylation, as they mostly depend on prior pertur-
bations of the system but always tend towards stabi-
lizing the system towards the respective steady state.
Notably, other CBB cycle intermediates like SBP can
also show a variation of more than 50 % of their mean
concentration, but these errors are not reflected in the
downstream concentrations of RuBP, resulting in less
differences in rates of rubisco carboxylation.

One explanation for the different variation over time
in metabolite pool sizes is that multiple flux distribu-
tions can lead to the same carbon fixation rate, thus
allowing a wider range of concentrations for certain
CBB cycle intermediates. This buffering effect can be
seen in Figure 3, where in models with perturbed ki-
netic parameters but similar rates of carbon fixation
some reactions like FBPase can vary more than a third
of their reference flux. This suggests that the CBB
cycle is structured such that temporary changes in
illumination are buffered by the cycle for RuBP con-
centration to remain relatively constant, resulting in
similar rates of carbon fixation, effectively working as
a low-pass filter (see supplementary figures S8 and S13
and supplementary Figure S16 to Figure S45). Due to
this stability, carbon fixation can be accurately simu-
lated, even if the underlying metabolism is not. While
the stability of RuBP is advantageous for downstream
metabolism this also implies that alternative energy
sinks like quenching mechanisms and the water-water

cycle (WWC) are required to dissipate further excess
energy. The reactions with the most variation re-
late to sucrose and starch partitioning (e.g. FBPase,
FBP aldolase and TPI), suggesting that while car-
bon fixation is simulated accurately, downstream car-
bon partitioning may not be. These findings suggest
that carbon fixation can be simulated accurately in
an even more simplified CBB cycle, providing down-
stream carbon partitioning is not of interest. Our
findings that an explicit model of the CBB cycle can
be replaced with a simple polynomial model with lit-
tle sacrifice, see Figure 4, are in line with many crop-
systems models that represent net carbon assimilation
using a simple radiation use efficiency (e.g.

The discussion above highlights that metabolic mod-
els of the CBB cycle can produce similar rates of car-
bon fixation despite mechanistically curedely simpli-
fied assumptions of the underlying biochemistry. This
finding indicates that care is needed when validating
a model using only carbon fixation rates, since any
model that keeps RuBP concentration stable can lead
to realistic carbon fixation rates. Possible improve-
ments include using predictions of other metabolite
pools ([6]) or fluorescence data if the model also con-
tains the pETC ([17]). Further work can test the
ability to make steady-state assumptions with more
complex models of carbon assimilation that include
for example photorespiration, CO2 as a dynamic vari-
able or dynamic temperature. Photorespiration may
present an interesting case since large pools of glycine
accumulate during photorespiratory induction, effec-
tively decreasing relative rates of glycine decarboxyla-
tion (and increasing net carbon exchange) during this
transient by up to 40 % [19].

We show that temporally high-resolution PPFD data
is not required to give a good prediction of total car-
bon fixation as reducing the amount of data by 60-
fold still led to an prediction error of less than 1 %
if over modified averaging approach is used, see Fig-
ure 4. The ability to properly aggregate data is im-
portant, since often all data needed to produce and
validate a model are not available on the same time
resolutions. For example, in canopy scale predictions,
irradiance values are available at time scales of sec-
onds, while eddy covariance data is usually presented
over 30 minute time steps. Our modeling indicates
that clipping saturating values before averaging im-
proved prediction error by ≈ 14-fold, see Figure 4.
While these findings demonstrate the value of clip-
ping saturating values before averaging, considering
the saturating kinetics of carbon fixation to PPFD,
this method could be valuable for any high-resolution
data which needs to be averaged over a time-step in
a process with saturating kinetics.
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Methods

We performed our analyses in Python 3.10, util-
ising the common packages NumPy, pandas,
SciPy and Matplotlib for general data analysis
as well as modelbase and Assimulo for build-
ing and integrating the ODE model [20, 21, 22,
23, 24, 25, 26]. All code used to generate the
publication results and figures is publicly avail-
able on our GitLab repository https://gitlab.

com/qtb-hhu/photosynthesis-task-force/

2022-how-realistic-is-the-cbb-ssa. We
obtained field observation PPFD data measured in
one minute intervals in Washington state (latitude
45.790835, longitude -121.933788) by the National
Ecological Observatory Network (NEON) for which
we identified which day had the highest data coverage
for each month, which was the 25th, and the ODE
model from Saadat 2021 [18, 17]. Due to model
instabilities for PPFD values below 30, we clamped
the minimum of the data to 30.

Steady-state model

We calculated the steady state fluxes of the ODE
model for PPFD values between the minimal and
maximal values found in the dataset with step size
1. Then we simulated the model by looking up the
steady state flux of the PPFD value rounded to the
nearest integer.

Approximations

We fitted the Vmax and Km parameters of the
Michaelis-Menten function using the SciPy minimize

function and the L-BFGS-B algorithm [23, 27]. The
polynomial fit was performed using NumPy’s polyfit

function [21].
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3.5 What controls carbon sequestration in plants

under which conditions?

The paper "What controls carbon sequestration in plants under which conditions"

investigates which reactions involved in carbon fixation (e.g. CBB cycle and PETC)

carry control over the carbon fixation rate under different environmental conditions,

challenging overly simplifying results that claim the control is always on the same

reaction, e.g. SBPase. I was involved in this project during every step of the

research process, including writing the manuscript.
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A B S T R A C T

Photosynthetic organisms use photosynthesis to harvest sunlight and convert the solar energy into chemical
energy, which is then used to reduce atmospheric carbon dioxide into organic molecules. This process forms
the basis of all life on Earth, and stands at the beginning of the food chain which feeds the world population.
Not surprisingly, many research efforts are currently ongoing aiming at improving growth and product yield of
photosynthetic organisms, and several of these activities directly target the photosynthetic pathways. Metabolic
Control Analysis (MCA) shows that, in general, the control over a metabolic flux, such as carbon fixation, is
distributed among several steps and highly dependent on the external conditions. Therefore, the concept of a
single ‘rate-limiting’ step is hardly ever applicable, and as a consequence, any strategy relying on improving
a single molecular process in a complex metabolic system is bound to fail to yield the expected results. In
photosynthesis, reports on which processes exert the highest control over carbon fixation are contradictory.
This refers to both the photosynthetic ‘light’ reactions harvesting photons and the ’dark’ reactions of the
Calvin3Benson3Bassham Cycle (CBB cycle). Here, we employ a recently developed mathematical model,
which describes photosynthesis as an interacting supply3demand system, to systematically study how external
conditions affect the control over carbon fixation fluxes.

1. Introduction

Photosynthesis classically has been divided into two parts. The
‘light’ reactions supply energy and reduction equivalents to the ‘dark’
reactions of the Calvin3Benson3Bassham (CBB) cycle (Bassham et al.,
1950, 1954), where carbon dioxide is fixed to form reduced carbon
compounds used as building blocks in other metabolic processes. The
CBB cycle (demand side) is one of the most critical pathways on Earth
that plants and many other photosynthetic organisms use. Current
estimates indicate that over 99% of global carbon dioxide is fixed by
the key enzyme of the CBB cycle ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (RuBisCO) (Raven, 2009). However, the CBB cycle is
not the only carbon fixation mechanism employed by photosynthetic
organisms, especially phototrophic prokaryotes. For instance, green
sulfur bacteria fix carbon dioxide via a reversed tricarboxylic acid cycle
or filamentous anoxygenic photorophs use a carbon fixation pathway
known as hydroxypropionate pathway for autotrophic growth (Fuchs,
2011). In this paper, we focus on carbon fixation by the CBB cycle only.

To guarantee efficiency and prevent the formation of toxic reactive
oxygen species, the supply (PETC) and demand (CBB cycle) of energy
and redox equivalents must be coordinated (Matuszyńska et al., 2019).
However, the habitats of photosynthetic organisms are usually charac-
terized by a high fluctuation of abiotic factors, such as light intensity
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and CO2 concentration (Kaiser et al., 2018), which makes balancing
the photosynthetic electron transport chain (PETC, supply side) and
the CBB cycle challenging. Therefore, versatile regulatory mechanisms
that coordinate carbon fixation and the PETC and adapt both pro-
cesses to external conditions have evolved. Examples of regulatory
mechanisms include non-photochemical quenching, the thioredoxin-
dependent redox control of CBB cycle enzymes, and regulated changes
in stomatal conductance (Farquhar and Sharkey, 1982; Muller et al.,
2001; Geigenberger et al., 2017). These processes are currently targets
of research activities aiming to increase plant performance and crop
yield (Kaiser et al., 2019).

Considering the importance of the PETC and CBB cycle it is un-
surprising that much effort has been spent studying their kinetics
regulation, and control by experimental and theoretical methods. Var-
ious mathematical models have been developed aiming at providing a
theoretical framework to analyse which factors determine the efficiency
of carbon fixation (Hahn, 1986, 1987; Pettersson and Ryde-Pettersson,
1988; Poolman et al., 2000; Jablonsky et al., 2011). Kinetic models of
the CBB cycle established, e.g., the importance of the sedoheptulose-
1,7-bisphosphatase (SBPase) for controlling carbon assimilation and
provided theoretical explanations for a wide range of observed kinetic
properties of RuBisCO (Poolman et al., 2000; Raines et al., 2000;
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Witzel et al., 2010). Appropriate theoretical tools are needed to study
control in metabolic networks, e.g., the CBB cycle and PETC. Metabolic
control analysis (MCA) is a theoretical framework developed in the
1970s, which is continuously improved and generalized (Heinrich and
Rapoport, 1974; Kacser et al., 1995; Heinrich and Schuster, 1996;
Dourado and Lercher, 2020; Wilken et al., 2022). A major purpose of
MCA is to quantify the influence that single enzymes have over the
steady-state properties of metabolic networks. A central concept is the
control coefficient which describes how small changes in activities of
single steps affect stationary metabolites and fluxes. Because control co-
efficients depend on the dynamics of the interactions of all components,
they are systemic properties. MCA has been repeatedly applied to study
the control of reaction steps in plant metabolic pathways (Rohwer,
2012) with examples including applications to the benzoid pathway,
sucrose accumulation, the CBB cycle, the electron transport chain, and
combinations of these (Uys et al., 2007; Colón et al., 2010; Ebenhöh
et al., 2011; Matuszyńska et al., 2019; Saadat et al., 2021).

Here we present an in silico analysis of how external conditions
affect the control over carbon fixation fluxes. We focused in partic-
ular on the effect of two environmental parameters, light intensity,
and CO2 concentration, to assess how these factors affect the control
of carbon fixation. Classically many studies stress the importance of
RuBisCO and its activation processes as highly influential on photo-
synthetic efficiency (Stitt and Schulze, 1994). But is RuBisCO always
the main controlling factor? For our analysis, we employ a published
kinetic model of photosynthesis (see Fig. S1) that combines the PETC,
the CBB cycle, and the Ascorbate-Gluthatione (ASC-GSH) cycle im-
plemented in Python using the modelbase software package (Saadat
et al., 2021; van Aalst et al., 2021). This model was originally used to
study the importance of cyclic electron transport around photosystem
I for photoprotection and also includes regulatory mechanisms, such
as non-photochemical quenching, state transitions between the two
photosystems, and redox regulation of CBB cycle enzymes through the
thioredoxin system. We began our analysis by using the stoichiometric
structure of this combined model to conduct a reaction correlation
analysis (Poolman et al., 2007), followed by the investigation of control
on carbon fixation by different key processes in photosynthesis. We
identified a condition-dependent shift in control and determined its
structural origin using a robustness analysis with sampled parameter
sets. Using the results from the robustness analysis, we could show
that some reactions exert control in an either-or relationship while
others may exert control simultaneously. With this work, we contribute
to elucidating the control in photosynthesis and its dependence on
external conditions.

2. Results

2.1. Reaction correlation analysis

We begin our analysis by studying the constraints on stationary
fluxes, which are imposed by the stoichiometry of the network alone.
For this, we calculate reaction correlation coefficients (Poolman et al.,
2007) for the previously published photosynthesis supply3demand
model (Saadat et al., 2021). These coefficients provide a generalization
of the concept of enzyme subsets. Reactions within one enzyme subset
are strictly coupled in the sense that they always carry fluxes in a
fixed proportion. For such reactions, the reaction correlation coefficient
is ±1, and the corresponding row vectors of the kernel matrix of
the stoichiometry matrix are parallel. Reaction correlation coefficients
generalize this idea by essentially calculating the angle between row
vectors of the kernel matrix (for details, see Poolman et al. (2007)),
and therefore indicate how strong reactions are correlated as a result
of structural constraints of a network. Fig. 1 presents a metabolic tree
constructed by hierarchical clustering using dissimilarities calculated
by the reaction correlation coefficients (see Methods). The matrix of

reaction correlation coefficients � can be found in the supplement (Fig.
S2).

There exist ten enzyme subsets containing more than one reac-
tion (table S1). Generally, reactions that function as regulatory con-
trol mechanisms (such as deprotonation/protonation of PsbS, and the
xanthophyll cycle necessary for non-photochemical quenching, or the
reactions involved in the redox control by thioredoxin), each form an
enzyme subset. Three subsets are connected to the electron transport
chain and ROS scavenging. The first subset consists of the reactions
mediated by cytochrome b6f and photosystem I, which are therefore
strictly coupled. The second contains the Mehler reaction and ascorbate
peroxidase, while the third consists of the remaining reactions of the
ASC-GSH cycle. Four subsets can be assigned to the CBB cycle and
starch synthesis. The largest subset contains eight reactions, including
RuBisCO, the transketolase reactions, and the reactions of the regener-
ation phase leading to the formation of ribulose-1,5-bisphosphate.

In Fig. 1, clusters of reactions, which are highly correlated but not
strictly coupled, are indicated by different colours. We identify clusters
that are associated with key metabolic functions, such as the PETC,
the ASC-GSH cycle, and the CBB cycle. The CBB cycle is split into two
pronounced subclusters, which can be associated with carbon fixation
and carbon export, respectively. The same is true for the PETC, for
which we can distinguish between the linear (photosystems II/I and
cytochrome b6f) and the cyclic electron flow. Interestingly, RuBisCO
and PSII are grouped in different clusters, which suggests that these two
processes are decoupled. This is unexpected because the electrons ob-
tained by photosystem II are mainly used by the CBB cycle to fix carbon,
therefore, one would expect highly correlated fluxes. This observation
can be explained by considering that the stoichiometric analysis applied
here is based on the full null space and completely ignores constraints
on the stationary flux solutions by the kinetic parameters.

A kinetic model, however, drastically restricts the possible station-
ary fluxes by the specific parameter values of the dynamic equations.
Therefore, actually observable steady-state fluxes will represent only
a small subset of the complete null space. The processes decoupling
reaction rates of RuBisCO and PSII, such as proton leak, terminal
oxidases, etc., are constrained by their kinetic parameters to carry
only relatively small fluxes, such that, in fact, the correlation between
RuBisCO and PSII rates should be high for realistic conditions. To test
this assumption, we repeated the correlation analysis based on steady-
state fluxes sampled from the kinetic model, in which the reference
values of the rate constants have been randomly varied by a factor
between 0.5 and 2. The rationale behind this is that now the stationary
fluxes are restricted to solutions which are close to a reference state
and therefore reflect a more physiologically relevant subset of the null
space. The resulting tree is depicted in Fig. 1B. As expected, the fluxes
of the CBB cycle and the PETC are now strongly correlated. We decided
to use a factor of 2 as we assume it to be a realistic range achievable for
biotechnological manipulation and short-term evolutionary processes.
To test whether a higher factor would drastically change our results we
repeated all analyses with a factor 5 (see Figs. S3 to S9). Generally the
analyses with a higher factor result in similar trends, but show larger
variations. This is because, at least for some parameters, a factor of 5
is relatively high, leading to entirely different system behaviours than
usually expected.

2.2. The control on carbon fixation switches between environmental condi-
tions

We use metabolic control analysis (MCA) to quantify the control
that individual molecular processes exert on the performance of the
system, measured by the net carbon fixation rate, in different environ-
mental conditions. We found that overall flux control is exerted mostly
by one of four steps: photosystem I and II in the electron transport chain
and RuBisCO and SBPase in the CBB cycle. In Fig. 2 we depict the four
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Fig. 1. Metabolic trees, showing different metabolic clusters. The left tree was obtained by reaction correlation analysis. The right tree was obtained by steady-state flux correlation
analysis for 10000 random parameter sets in low light intensity and low CO2 concentration conditions for the kinetic model of photosynthesis. Abbreviations in the cluster
annotations: PETC 4 photosynthetic electron transport chain, CBB 4 Calvin3Benson3Bassham cycle, ASC-GSH cycle 4 ascorbate-glutathione cycle.

Fig. 2. The flux control of PSII (top left), PSI (top right), RuBisCO (bottom left), and
SBPase (bottom right) on carbon fixation in light intensities ranging from 50 to 1000
½mol∕m2∕s and in CO2 concentrations ranging from 5 to 20 ½M. The control coefficients
are indicated by the heat map with dark areas indicating low and light areas high
control. The blue crosses are the reference points for the further analyses indicating
low CO2/low light (6 ½M, 100 ½mol∕m2∕s), low CO2/high light (6 ½M, 900 ½mol∕m2∕s),
high CO2/low light (18 ½M, 100 ½mol∕m2∕s), and high CO2/high light (18 ½M, 900
½mol∕m2∕s).

flux control coefficients on the overall carbon fixation rate for light in-
tensities ranging from 50 to 1000 ½mol∕m2∕sand for CO2 concentrations
between 6 and 20 ½M, corresponding to atmospheric concentrations
between approximately 170 and 700 ppm. It is clearly visible that there
are two distinct light regimes. A sharp transition between control by
the light reactions (low light) to control by the dark reactions (high
light) can be observed. Interestingly, the curve separating these two
regimes corresponds to the limit where the quenching capacity reaches
its maximum, and the lumen becomes highly acidic (see Fig. S10).
As we observed and discussed previously (Saadat et al., 2021), this
transition marks the saturation of the photosynthetic system, above
which increasing light no longer facilitates higher carbon fixation rates.
At the transition, the carbon fixation rate (and many other rates and
intermediate concentrations) is not a smooth function of the incident
light intensity. Therefore, the numerical differentiation employed to
calculate the control coefficients may lead to imprecise results and as

a consequence, the coefficients very close to the transition should be
interpreted with care.

In the low light regime, both photosystems have substantial control
whereas the CBB cycle enzymes exert almost no control. This changes
drastically for higher light intensities, where PSI exerts practically no
control and PSII only a small but distinguishable control, whereas the
CBB cycle enzymes now control the carbon fixation rate. In high light,
a gradual shift in control from RuBisCO to SBPase can be observed as
CO2 concentrations increase. SBPase has the highest control in high
light intensities and high CO2 concentrations, while RuBisCO is the
dominant reaction in high light intensities and low CO2 concentrations.
High control of RuBisCO in high light and low CO2 concentrations has
also been found experimentally (Stitt and Schulze, 1994).

In summary, this analysis shows that the control on carbon fixa-
tion switches from photosystem I in low light to photosystem II in
medium light intensities to SBPase and RuBisCO in high light inten-
sities, where RuBisCO control dominates in low and SBPase control
in high CO2 concentrations. For our further analyses, we define four
reference conditions for low CO2/low light (6 ½M, 100 ½mol∕m2∕s), low
CO2/high light (6 ½M, 900 ½mol∕m2∕s), high CO2/low light (18 ½M, 100
½mol∕m2∕s), and high CO2/high light (18 ½M, 900 ½mol∕m2∕s). These
conditions are indicated by blue crosses in Fig. 2.

2.3. Control of photosynthetic intermediates

Besides the carbon fixation rate, also the states of the intermediates
in the photosynthetic electron transport chain and the CBB cycle are
important determinants for the efficiency and status of the photosyn-
thetic system at large. In particular, poised redox levels of the electron
carriers are indicative of the efficient functioning of the PETC, the
concentrations of ATP and NADPH are important as ubiquitous energy
and redox equivalents, and the CBB cycle intermediates must be above
a certain level to ensure the cycle runs efficiently (Matuszyńska et al.,
2019). Moreover, various mechanisms ensure that in particular in high
light, photodamage by reactive oxygen species (ROS) is minimized.

The electron carriers behave as expected (see Figs. S11 to S14). In
general, upstream reactions have a positive control on their redox state,
while downstream reactions exert a negative control. For example,
the redox state of plastoquinone is strongly positively controlled by
PSII, slightly positive by the cyclic electron flow (which feeds back
electrons from ferredoxin to plastoquinone), and negatively or not at
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Fig. 3. Distribution of flux control coefficients of key reactions in the PETC and CBB
cycle on carbon fixation over 10000 sets of randomly perturbed parameters with
a factor between 0.5 and 2. The shaded area shows the frequency of flux control
coefficients. In all cases, the area was scaled to the maximum (including values outside
the shown range) for clarity. The white dot indicates the median of the distribution
and the bold part of the central line denotes the range between upper and lower
quartile. Top left shows results under low CO2/low light conditions, top right under
low CO2/high light, bottom left under high CO2/low light and bottom right under
CO2/high light conditions. Only flux control coefficients between 0 and 1 are shown.

all by downstream processes, such as PSI or the CBB enzymes (see
figure S11). The only electron carrier that is more reduced when the
CBB cycle enzymes are increased is plastocyanin, which is in agreement
with previous model analyses (Saadat et al., 2021) (Fig. S12). An
interesting observation is that under low light, both ferredoxin and
NADPH are less reduced if PSI activity is enhanced, although ferredoxin
is a direct product of PSI (Figs. S13 and S14). A possible explanation
for this counter-intuitive finding is that the cyclic electron flow is
strongly increased with increasing PSI activity (Fig. S15) and that,
together with the increased CBB activity (see above) this leads to a
slight reduction of these two electron carriers. The control of ATP levels
is complex (Fig. S16). For example, increased PSII leads to reduced ATP
levels in very low light, increased in intermediate light (still below the
quencher saturation threshold), and a slight reduction again for high
light conditions. However, steady-state energy levels range between 0.6
and 0.8 (fraction of ATP in the adenosine phosphate pool), which are in
the range of measured values (Stitt et al., 1982). An interesting effect is
observed when calculating the control on the total phosphates in CBB
intermediates. Apparently, enhancing the fixation process (RuBisCO)
leads to a reduction in CBB intermediates, whereas enhancing the
recycling phase (SBPase) leads to an increase, except for very low light
intensities (Fig. S17). ROS (simulated as stationary H2O2 concentra-
tions) levels respond as expected. Increasing the photosystems leads to
higher levels while increasing the cyclic electron flow the b6f complex
activity or the CBB cycle lead to reduced levels (Fig. S18.)

2.4. Robustness of the control on carbon fixation in multiple environmental
conditions

Control coefficients quantify the strength of control of individual
processes in a metabolic network. They are system-wide properties and
as such depend on the specific values of the kinetic parameters of the

involved enzymatic reactions. Therefore, they should not be consid-
ered a rigid value independent of all choices in the model-building
process or of varying external conditions. The control on RuBisCO, an
essential enzyme for carbon fixation, by other reaction steps in the
CBB cycle, PETC, or ASC-GSH cycle, is interesting for broadening our
understanding of sequestering carbon in photosynthetic organisms.

In order to determine if the previously observed shift in control
(Fig. 2) is a consequence of the structural design of the PETC and
the CBB, we performed a robustness analysis. For this, we varied
parameters by multiplying a randomly selected factor between 0.5 and
2 to generate 10000 perturbed parameter sets. For each parameter
set, we analysed the control exerted by PSII, cytochrome b6f, RuBisCO,
FBPase, and SBPase on carbon fixation in the four reference conditions
for low/high CO2/light as defined above. Fig. 3 shows the distributions
of flux control coefficients on carbon fixation by selected reactions.
With most parameter sets, the photosystems had a much higher control
on carbon fixation in low light intensities in both CO2 concentration
conditions than reactions in the CBB cycle. In low light intensity,
cytochrome b6f and RuBisCO have almost no control, and SBPase, while
detectable, has only a minor influence. Investigating the correlation of
control coefficients for both photosystems under low-light conditions
reveals that these two processes indeed share the main flux control in
a proportion, which depends on the exact parameter values (Fig. 4).

The control of photosystems on carbon fixation is drastically re-
duced in high-light conditions. Especially photosystem I has lost almost
all its control. As a general trend, the distribution of flux control coef-
ficients in high light is broader than in low light. The main controlling
steps are now on the demand side of photosynthesis, in particular on
RuBisCO and SBPase. SBPase is, besides photosystem II, the controlling
reaction for carbon fixation in high light intensity and high CO2 con-
ditions. At the same time, RuBisCO and SBPase are the main factors in
high light intensity and low CO2 concentrations, with RuBisCO having
a slightly higher influence. Correlating the control coefficients of these
two central CBB enzymes shows for most randomly selected parameter
sets RuBisCO does not exert any considerable control under high light
and high CO2 concentrations, while under high light but low CO2 the
control can be on either of these enzymes (or none of the two) but only
for a few parameter sets the control is shared between the two enzymes
(Fig. 5).

Overall, our robustness analysis, in which we randomly varied
parameters by a factor between 0.5 and 2, confirms our previous
observations, namely that the control shifts from the photosystems in
low light to the CBB cycle enzymes in high light. Under the latter
conditions, RuBisCO exerts a higher control if ambient CO2 concen-
trations are low, while SBPase is the controlling step under high CO2
concentrations. This indicates that the shift in control is less a ki-
netic, parameter-dependent, effect but rather a structural property of
photosynthesis.

3. Discussion & conclusions

Photosynthesis is a supply3demand system. The supply (PETC) and
demand (CBB cycle) sides must be coordinated to ensure efficient pho-
tosynthesis. Considering the often rapidly and unpredictably changing
light intensities (Kaiser et al., 2018) plants are exposed to in natural
environments, maintaining such coordination appears challenging. It is
plausible to assume that the present environmental-dependent regula-
tory mechanisms controlling carbon fixation have evolved to be highly
efficient, considering the direct effect that carbon capture has on plant
growth and fitness. This work presents an in silico analysis of the control
over carbon fixation in different environmental conditions. For this, we
used a published model of photosynthesis that combines the supply side
(PETC), the demand side (CBB cycle), and the Ascorbate-Glutathion
cycle (Saadat et al., 2021).

Such a supply3demand photosynthesis model allows for quantifying
the control that individual processes have on the overall carbon fixation
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Fig. 4. Correlation of control coefficients for both photosystems on carbon fixation under low-light conditions represented as a 3D histogram. The z-axis indicates how many
control coefficients fall into a specific numerical range. The calculation is based on 10000 randomly generated parameter sets as described in the text.

Fig. 5. Control coefficients of carbon fixation by RuBisCO vs. SBPase under high-light conditions represented as a 3D histogram. The z-axis indicates how many control coefficients
fall into a specific numerical range. The calculation is based on 10000 randomly generated parameter sets as described in the text.

rate. We focused in particular on photosystems I and II, cytochrome b6f,
RuBisCO, and SBPase, which were reported to exert control on carbon
fixation under several conditions (Poolman et al., 2000; Johnson and
Berry, 2021; Raines et al., 2000). Using Metabolic Control Analysis, we
quantified the control of these single steps on carbon fixation for differ-
ent simulated environmental conditions. By simultaneously varying the
light intensity and CO2 concentration, we could show that the control
shifts from the photosystems in low light intensities to RuBisCO and
SBPase in high light intensities but then from RuBisCO in low to SBPase
in high CO2 concentrations (Fig. 2). The shift of the control confirms
that most of the reactions previously reported to control the flux are
indeed critical for regulating carbon fixation. However, whether PSII,
PSI, RuBisCO, or SBPase is the main controlling factor strongly depends

on the external conditions. In our photosynthesis model, a relatively
sharp threshold marks the transition between a supply- and a demand-
controlled situation (see Fig. 2). This threshold, separating ‘low’ and
‘high’ light conditions, occurs when the quenching mechanism reaches
its maximal capacity (see Fig. S10). This results in a reduction of most
electron carriers and a sharp accumulation of protons in the lumen.
The PETC still operates at a fast rate, so ATP and NADPH production
is no longer limiting carbon fixation. It is an open question whether
this sharp transition is a feature of the specific model that was used
for this analysis or whether this is actually a systemic property of
photosynthesis. We assume that the transition from non-saturated to
saturated quencher is not as sharp in vivo as suggested by the model, but
that the principle feature, namely that high light intensity results in a
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shift of control to the demand reactions of the CBB cycle, is a structural
feature of the photosynthetic supply3demand system. The continuous
transition under high light between the RuBisCO and SBPase-mediated
control suggests that at high CO2 concentrations, the carboxylation
by RuBisCO is not determining carbon fixation rate, but rather the
distribution of the intermediates in the CBB cycle through SBPase.
To test whether the shift in control is a kinetic property of the rates
in photosynthesis or follows from the structure resulting from the
interconnections of the PETC and CBB cycle, we performed a robustness
analysis by randomly varying kinetic parameters by a factor between
0.5 and 2. Fig. 3 illustrates that, at least in our model representation,
the control shift is a property that occurs with many parameter sets.
This observation indicates that the shift of control indeed seems to be
a structural feature, and rather independent of the specific parameter
values.

Interesting patterns emerge by correlating the flux control coeffi-
cients obtained by the robustness analysis. In the low light regime, the
control is shared mostly among the two photosystems (Fig. 4 and Fig.
S19), where often one of the photosystems exhibits a higher control
than the other. Which photosystem exerts the higher control apparently
depends on the specific numerical parameter values. Additionally, the
fact that both photosystems always have clearly non-zero control for
all parameter sets in low light underlines the importance of the PETC
for carbon fixation as a limiting factor in these conditions. The light-
driven photosystems ultimately determine the flow of electrons through
the PETC and the translocation of protons into the lumen, hence the
production of ATP and reduction equivalents required by the CBB
cycle. Correlating the control coefficients quantifying the importance
of RuBisCO and SBPase under high light shows a drastically different
picture. Fig. 5 reveals that typically carbon fixation is either controlled
by RuBisCO or by SBPase, but the control is rarely shared. This is es-
pecially pronounced in high light intensity and low CO2 concentration
conditions. Fig. 5 also reveals that for a substantial number of param-
eter combinations, neither RuBisCO nor SBPase exerts control over the
carbon fixation rate. A closer inspection reveals that in these cases,
the control lies, in fact, with the photosystems. In fact, correlating the
total control (sum of control coefficients of the individual processes)
of the supply reactions with the total control of the demand reactions
reveals that the control lies either on the supply side or on the demand
side, but is rarely shared between both sides (Fig. S20). An interesting
observation is that even in high light conditions, the model exhibited
control by the light reactions for a substantial fraction of parameter
sets. A possible explanation for the observation that also in high light
for many parameter sets the control lies on the photosystems is that
variations of the parameters can lead to scenarios where our selected
’high light’ condition is actually not perceived as saturating light. In
order to test this hypothesis, we relate the control exhibited by the dark
reaction to the simulated stationary lumen pH (Fig. S21). This analysis
shows that whenever the control is on the dark reactions, the pH is
low, indicating that light (and the quencher) is saturated, whereas low
control by the dark reactions is associated with a high lumenal pH,
indicating non-saturating conditions.

Some experimental and theoretical studies claim that cytochrome
b6f controls the photosynthetic flux (Stiehl and Witt, 1969; Johnson
and Berry, 2021). In contrast, our analysis suggests that cytochrome
b6f exhibits a considerable control only for very few parameter sets
(Fig. 3). However, when we systematically decrease the activity of
cytochrome b6f, also in our model cytochrome b6f can become a rate-
controlling step (Fig. S22). These considerations show that seemingly
conflicting reports on the control of cytochrome b6f are not necessarily
contradictory. In fact, the parameters describing the composition and
kinetic properties of the photosynthetic apparatus have an important
influence on the strength of control.

Most concentration control coefficients behave as expected. For the
electron carriers, upstream reactions exert positive and downstream
reactions negative control. We obtained an initially counter-intuitive

result only for ferredoxin and NADPH, as they are both less reduced
when PSI activity is enhanced in low light. This observation might be
explained through an increased cyclic electron flow with a concomitant
increase in CBB cycle activity. The cyclic electron flow is an integral
part of the photosynthetic machinery adjusting the ATP/NADPH ratio
in the PETC and, hence, is an essential regulatory mechanism. Re-
sponding to the ATP/NADPH ratio required by the demand reactions,
the effects of other processes can be reduced or even reverted, when
compared to a system without cyclic electron flow. The regulatory
effects of CEF may also explain the complex patterns in the control that
some processes have on ATP concentrations. These results demonstrate
that control in a complex system is often non-trivial, and altering
reaction rates may result in counterintuitive effects.

Exploring a previously published supply3demand photosynthesis
model with metabolic control analysis, we could resolve seemingly con-
tradictory statements about which reactions have the strongest control
on carbon fixation. We showed that basically all reactions previously
reported exerting a strong control can indeed have high flux control
under some conditions. It is important to note that all results have
been obtained from a single, imperfect model. The model does not, for
example, include the important process of photorespiration or stomatal
aperture. It is unclear how far the interpretation of the results and the
derived conclusions can be generalized. Still, the strength of theoretical
analyses is that also with simplified and imperfect models, general
features can be identified and novel hypotheses derived. For example,
the general pattern observed in our analysis of how the control shifts
between key enzymes and complexes depending on light intensity and
CO2 concentrations is plausible and generally applicable. By under-
standing the principles of how regulation depends on environmental
conditions, new data can be interpreted in a highly informed manner.
Additionally, the existence of different physiological states and the fact
that the control in photosynthesis shifts might necessitate the adaption
of experimental protocols aiming for the improvement of photosynthe-
sis. For instance, improvement strategies could differ depending on the
typical physiological states of the photosynthetic organism. With our
study, we aimed at demonstrating the usefulness of systematic model
analyses with Metabolic Control Analysis in understanding metabolic
regulation in complex networks.

4. Methods

4.1. Model description

For the in silico analyses, we used a previously published model of
photosynthesis (Saadat et al., 2021). This model (see Fig. S1) combines
mechanistic descriptions of the PETC, and the CBB cycle, supplying and
consuming ATP and NADPH. The model includes the regulation of CBB
enzymes via thioredoxin and mechanisms responsible for producing
and scavenging ROS around PSI. The scavenging of ROS is mediated
by a module representing the ASC-GSH cycle.

4.2. Metabolic control analysis

The flux (C
Jj
vk
) and concentration (C

Sj

vk
) coefficients are defined, as

C
Jj
vk

=
vk

Jj

)Jj∕)p

)vk∕)p
, (1)

and

C
Sj

vk
=

vk

Sj

)Sj∕)p

)vk∕)p
, (2)

where the steady state fluxes and concentrations are denoted as Jj and
Sj , respectively. p is a kinetic parameter affecting only the reaction
k with rate vk directly. In the computational analyses, the control
coefficients were numerically approximated using central difference
and varying the parameter p by ±1%.
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4.3. Reaction dendrogram and reaction correlation coefficients

A set of flux vectors satisfying the steady state condition,

ĊĔ = ÿ, (3)

defines the null space of the stoichiometric matrix. A set of base vectors
summarized in the kernel matrix ć, in which they form the columns,
span the null space. The kernel matrix can be obtained by the relation,

Ċć = 0. (4)

The reaction correlation coefficients were calculated following
(Poolman et al., 2007). The kernel matrix was orthonormalized using
the Gram3Schmidt process implemented in the sympy (Meurer et al.,
2017) package. For a pair of reactions and corresponding row vectors
in the kernel matrix ĉi, and ĉj , the reaction correlation coefficients
calculate as,

�ij =
ĉiĉ

T
j

√

ĉiĉ
T
i

√

ĉjĉ
T
j

. (5)

.
The dissimilarity matrix �ij , describing the angle between the row

vectors of the kernel matrix ć, was obtained using the reaction corre-
lation matrix

�ij = cos−1(�ij ). (6)

Hierarchical clustering, using �ij , was conducted with the WPGMA
algorithm implemented in the scipy package (Virtanen et al., 2020).

4.4. Robustness analysis

To analyse whether our previous results were due to the general
properties of the system or due to the choice of parameters we per-
formed a control analysis scan over 10000 sets of randomly perturbed
parameters. The varied parameters were, (1) the total concentration
of photosystem II and (2) photosystem I, (3) the rate constant of
cytochrome b6f, (4) the rate constant determining the rate of cyclic
electron flow and (5) the Mehler reaction, (6) the maximum veloc-
ities of RuBisCO, (7) FBPase, and (8) SBPase, as well as the rate
constants of the (9) MDAR and (10) DHAR-catalyzed reactions. The
model parameters were randomly multiplied by a factor 2x, where x

was drawn from a uniform random distribution between −1 and 1. This
results in a multiplication by a factor between 0.5 and 2. This analysis
was performed for low/high CO2 and light conditions. To reduce the
amount of unrealistic simulation we only used those parameter sets that
lead to a 5 times higher or lower RuBP steady state concentration for
further downstream analyses.
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During photosynthesis, organisms respond to their energy demand and ensure

the supply of energy and redox equivalents that sustain metabolism. Hence, the

photosynthetic apparatus can, and in fact should, be treated as an integrated

supply-demand system. Any imbalance in the energy produced and consumed can

lead to adverse reactions, such as the production of reactive oxygen species (ROS).

Reaction centres of both photosystems are known sites of ROS production. Here, we

investigate in particular the central role of Photosystem I (PSI) in this tightly regulated

system. Using a computational approach we have expanded a previously published

mechanistic model of C3 photosynthesis by including ROS producing and scavenging

reactions around PSI. These include two water to water reactions mediated by Plastid

terminal oxidase (PTOX) and Mehler and the ascorbate-glutathione (ASC-GSH) cycle, as

a main non-enzymatic antioxidant. We have used this model to predict flux distributions

through alternative electron pathways under various environmental stress conditions

by systematically varying light intensity and enzymatic activity of key reactions. In

particular, we studied the link between ROS formation and activation of pathways

around PSI as potential scavenging mechanisms. This work shines light on the role of

alternative electron pathways in photosynthetic acclimation and investigates the effect of

environmental perturbations on PSI activity in the context of metabolic productivity.

Keywords: reactive oxygen species, cyclic electron flow, mathematical model, photosynthesis, electron transport

(photosynthetic)

1. INTRODUCTION

Photosynthetic organisms are the primary producers of biomass available in the biosphere. By
employing complex biophysical processes, which act on multiple temporal and spatial scales, they
perform highly efficient energy converting reactions (see for example Ksenzhek and Volkov, 1998).
The basic machinery behind these reactions consists of two parts. The first one is the photosynthetic
electron transport chain (PETC). Embedded in the thylakoid membrane, the PETC mediates the
transfer of electrons, extracted from water molecules, over the complexes of Photosystem II (PSII),
Cytochromeb6f , and Photosystem I (PSI) to the final electron acceptor NADP+ via the mobile
electron carriers plastoquinone (PQ), plastocyanin (PC), and ferredoxin (Fd). Thereby a proton
gradient is formed, which is used to drive the synthesis of ATP by the ATP synthase. The second
part of the photosynthetic process is the Calvin-Benson-Bassham (CBB) cycle, regulated by the
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thioredoxin system (Geigenberger et al., 2017). NADPH and
ATP produced by the PETC are used during the CBB cycle
to fix CO2 into organic compounds. Any imbalance between
production and consumption can lead to adverse reactions, such
as the production of reactive oxygen species (ROS) (Asada, 2006;
Suzuki et al., 2012; Schwarzlander and Finkemeier, 2013) and
affect the overall photosynthetic efficiency. Several sub-processes
exist, distributed over the whole PETC, that contribute to the
production of potentially toxic ROS compounds (Maurino and
Flügge, 2008; Dietz et al., 2016; Khorobrykh et al., 2020).

To fine-adjust the formation of ATP and NADPH in the
PETC, alternative electron transport pathways evolved (Curien
et al., 2016). These alternative electron transport pathways are
used to react immediately to changing environmental conditions
(Alric and Johnson, 2017). Foremost, the cyclic electron flow
(CEF) around PSI including the PGR5-PGRL1mediated pathway
is worth mentioning (Johnson, 2011). Studies have shown that
CEF is essential for the functioning of photosynthesis (Munekage
et al., 2004) and acts as a protective mechanism in fluctuating
light conditions (Kono et al., 2014; Kono and Terashima, 2016).
Alternative electron transport pathways balance the ATP and
NADPH ratio to prevent an overexcitation of photosystems and
redox imbalance in the PETC. Thus, the chance of forming
toxic ROS is lowered. The Mehler reaction at PSI, which forms
superoxide radicals O−·

2 , was extensively investigated in multiple
species (Makino et al., 2002; Curien et al., 2016). Scavenging
of ROS, for instance via the ascorbate-glutathione (ASC-GSH)
cycle, is potentially an energy-demanding process (Das and
Roychoudhury, 2014). However, it prevents physical damage
inflicted on the molecular machinery of photosynthesis, which
would be even more severe for the energy balance (for an analysis
of costs associated with photoinhibition, see for example Raven,
2011). Multiple sophisticated regulatory mechanisms evolved to
prevent the formation of ROS beforehand by lowering the energy
pressure that acts on the PETC, such as non-photochemical
quenching (NPQ) (see Müller et al., 2001).

Because of the existence and possible interaction of numerous
mechanisms acting on different parts of the PETC, a system-
wide investigation of the dynamics of photosynthesis is necessary.
Existing evidence of the beneficial role of various water to
water (W-W) cycles during photosynthesis (Curien et al., 2016)
inspired us to investigate their impact on balancing the ATP to
NADPH ratio. Computational kinetic models of photosynthesis
have been proven to be useful for such analyses (Stirbet et al.,
2020). Yet, none of these models investigated the role of
ROS formation and scavenging. Our goal was to expand the
existing model (Matuszyńska et al., 2019) of photosynthesis
with key steps of both ROS formation and scavenging (via
the ASC-GSH cycle) around PSI as well as linking the W-W

Abbreviations: ASC, ascorbate; CBB, Calvin-Benson-Bassham; CEF, cyclic

electron flow; OE, overexpressor; Fd, ferredoxin; GSH, glutathione; LEF, linear

electron flow; KD, knock down; KO, knock out; MCA, Metabolic Control

Analysis; MDA, monodehydroascorbate radicals; PETC, photosynthetic electron

transport chain; PC, plastocyanin; PPFD, photosynthetic photon flux density;

PSI, photosystem I; PSII, photosystem II; PTOX, Plastid terminal oxidase; PQ,

plastoquinone; ROS, reactive oxygen species; SOD, superoxide dismutase; TrxR,

thioredoxin reductase; W-W, water-water.

cycle with acclimation mechanisms. Moreover, based on our
previous supply-demand analyses (Matuszyńska et al., 2019), we
have included the regulation of key CBB enzymes through the
thioredoxin system. This model thus provides the theoretical
background to investigate non-trivial connections of the different
components and to study complex systemic behaviour.

In this work we present the results of multiple analyses
that allowed us to investigate the importance of alternative
electron flows around PSI. We systematically investigated the
impact of the Mehler reaction and the CEF on intermediate
concentrations of both PETC and CBB cycle. We found
out that some of the fluxes in the PETC are drastically
influenced by the CEF. Therefore, we performed a Metabolic
Control Analysis (MCA) that clearly showed a high impact of
the Sedoheptulose-bisphosphate enzyme (SBPase) on the ROS
scavenging mechanism, CBB and the PETC. Finally, the role
of the SBPase was further elucidated. With this scientific work,
we formalised a connection between the CBB cycle, PETC, and
ASC-GSH cycle. We showed the interconnection between these
parts of photosynthesis and also shed light on the control each
part has over others via mathematical modelling. We therefore
expanded our understanding of the complex interplay between
different acclimatory processes in photosynthesis and created a
computational framework to stimulate future scientific efforts in
this direction.

2. METHODS

2.1. Model Description
We have developed further the previously published mechanistic
model of photosynthesis (Matuszyńska et al., 2019). The
description of the demand side (Figure 1B) has been firstly
complemented by including the thioredoxin reductase (TrxR)
regulation. TrxR regulates the activation of the CBB-enzymes,
depending on reduced Fd. Next, considering that the CBB
cycle is the main, but not the only consumer of the energy
equivalents produced by the PETC (Figure 1C), we included
two reactions representing additional consumption of ATP and
NADPH. Finally, the focus was put on adding two mechanisms
responsible for the production and scavenging of ROS around
PSI. An alternative electron transfer from PSI to oxygen has
been included, leading to the production of superoxide which
is rapidly converted to hydrogen peroxide (H2O2) by the
superoxide dismutase (SOD). This implementation required
changing the description of the PSI mechanism from the
original model (Matuszyńska et al., 2019). Because of the
rapid velocity of the SOD enzyme, the H2O2 production is
modelled as a single step, representing the Mehler reaction.
We based our simplified description of the ROS scavenging
reactions on the published kinetic models of the ASC-GSH cycle
by Valero et al. (2009, 2015). Our description of the cycle is
represented by four saturating enzymatic reactions [mediated by
ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDAR), dehydroascorbate reductase (DHAR), glutathione
reductase (GR)] and one spontaneous disproportion of
monodehydroascorbate radicals (MDA), see Figure 1A. The
pools of ASC and GSH are considered constant.
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FIGURE 1 | Schematic representation of the processes included in the computational model of photosynthesis. The model consists of three modules:

ascorbate-glutathione (ASC-GSH) cycle (A), CBB with TrxR regulated reactions (B), and PETC (C). The compounds in the circle in the centre are the ones exchanged

between the compartments. Created with BioRender.com.

2.1.1. Linear and Alternative Electron Flows
The rates of electron flow through various pathways are directly
calculated from the rates through PSII and FNR. In the model,
the stoichiometry of the rate of PSII is

H2O+ 2hν → 2e− +
1

2
O2 + 2H+

lumen
, (1)

which produces 2 electrons. Therefore, the rate of linear electron
flow (LEF) is twice the simulated rate through PSII. Likewise, the
rate of CEF is twice the rate mediated by FNR.

2.1.2. Units
The choice of units is the same as in Matuszyńska et al.
(2019), keeping the original units of stromal and lumenal
compartments. The concentrations in the lumen are expressed
in mmol (mol Chl)−1 and inside the stroma in mM. To convert
the concentrations of ATP, NADPH and H2O2 produced in
the lumen to the unit of the stroma, where these metabolites
are consumed/scavenged, we employ a conversion factor where

1 mmol (mol Chl)−1 corresponds to 3.2 · 10−5 M in the
stroma (Laisk et al., 2006).

2.2. Computational Analysis
The mathematical model is a system of 30 ordinary differential
equations with 46 reaction rates. The model was integrated
with Assimulo (Andersson et al., 2015) via the Python-based
software modelbase version 1.3.8 (van Aalst et al., 2021).
Python files containing the model and Jupyter notebooks
with our simulations used to produce all figures are provided
on our GitLab repository https://gitlab.com/qtb-hhu/models/
cyclicphotosyn-2021.

2.2.1. Metabolic Control Analysis

Flux (C
Jj
vk ) and concentration (C

Sj
vk ) control coefficients are

defined as

C
Jj
vk =

vk

Jj

∂Jj/∂p

∂vk/∂p
, (2)
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C
Sj
vk =

vk

Sj

∂Sj/∂p

∂vk/∂p
, (3)

where Jj and Sj are respectively the steady-state fluxes and
concentrations of the system, p is a kinetic parameter which
affects directly only reaction k with the rate vk (see Kacser
and Burns, 1973; Heinrich and Rapoport, 1974; Heinrich and
Schuster, 1996). We approximated these formulas numerically
using the central difference, varying the parameters by ±1%.
Control coefficients quantify the relative effect of a parameter
perturbation on steady state fluxes and concentrations.

3. RESULTS

The model has been used to study electron flows around PSI and
their relevance to the overall performance of the photosynthetic
machinery under both steady-state and dynamic conditions.
To confirm that our improved model can indeed be used
beyond steady-state and can realistically reproduce short-term
acclimation responses we simulated a standard PAMfluorescence
trace. The results exhibit typical fluorescence dynamics under
high light conditions (Figure 2). It should be however noted
that quantities discussed here should not be understood as
precise predictions of a specific experimental observations, but
are rather meant to illustrate the general plausibility of the
model behaviour.

3.1. Steady-State Behaviour Under
Continuous Light
We first investigate the steady-state behaviour of the model
under various light intensities (Figure 3). In the left panel
(Figure 3A), the stationary electron fluxes over different light

intensities through the PSI, LEF, CEF, the Mehler reaction and
the plastid terminal oxidase (PTOX) are depicted. The rate
of the electron transport chain increases linearly for low light
conditions and saturates in high light. Carbon fixation rates
follow the same general pattern (see Supplementary Material),
which has been repeatedly confirmed in experiments for a wide
range of photosynthetic organisms (Hesketh and Baker, 1967;
Huang et al., 2016). In our simulations, the transition to the light-
saturated regime occurs around a photosynthetic photon flux
density (PPFD) of 900µmolm−2s−1, which is in good agreement
with previously observed and modelled values (Kromdijk et al.,
2019). In contrast to the electron transport chain, the rate of
the Mehler reaction strongly increases in high light conditions,
leading also to increased stationary hydrogen peroxide (H2O2)
concentrations (Figure 3B). Nevertheless, even in high light, the
rate of the electron transfer to oxygen by the Mehler reaction
reaches only around 0.2% of the electrons transferred by PSI. This
means that even under high light, less than 1% of the NADPH
produced by the electron transport chain is required to scavenge
the ROS produced in PSI through the Mehler reaction. Most
redox carriers are more reduced in high light, with the exception
of PC, which is more oxidised in higher light. This observation
can be explained by the fact that more light increases the rate
of PSI, which directly removes electrons from the PC pool. This
explanation is supported by the results of the MCA, indicating
that increased PSI leads to a more oxidised PC pool (see also
Figure 6).

A key enzyme in the ASC-GSH cycle is the MDA reductase,
which reduces MDA back to ASC using NADPH as an
electron donor (Figure 1A). Interestingly, a simulated knock-
down of this enzyme to 1% of its original value does not
affect the overall electron fluxes. However, in high light, the

FIGURE 2 | Calculated fluorescence trace (red) of a PAM experiment of a generic photosynthetic organism without CEF. A standard dark-light-dark protocol was

simulated (dark phase shaded). We used 1,000 µmolm−2s−1 photosynthetic photon flux density (PPFD) as the intensity of the actinic light and 40 µmolm−2s−1 PPFD

for dark/dimmed light with pulses every 2 min. The calculated NPQ is marked in black (dashed). It exhibits well-known dynamics of excitation and relaxation.
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FIGURE 3 | Stationary fluxes and stationary energy and redox status of the electron transport chain for different intensities of constant light. (A) displays the electron

flux through PSI, linear (LEF) and cyclic electron flow (CEF), the Mehler reaction and the plastid terminal oxidase (PTOX). (B) displays the energy equivalents (ATP,

NADPH) and redox states of the electron chain (PQ, PC, Fd), as well as the stationary H2O2 concentration resulting from the Mehler reaction.

deficiency in MDA reductase is compensated by the spontaneous
disproportionation of MDA into DHA and ASC, which leads to
approximately 100-fold increased levels of the MDA radical (see
Supplementary Material). Because overall electron fluxes and
H2O2 production rates are not affected, also the ratio of NADPH
required for scavenging ROS is unaltered in the MDA reductase
knock-down.

3.2. Performance of PGR5 Mutants Under
Continuous Light
By transferring electrons from Fd back into the PQ pool, the
protein PGR5 mainly mediates the CEF. We employed our
model to study how altering the CEF affects electron flows
and downstream metabolism, by systematically varying the
corresponding enzyme activity (Figure 4) under simulated high
light conditions (PPFD 1000 µmolm−2s−1). These simulations
correspond to knocking down (KD) or overexpressing (OE)
the PGR5 protein, which catalyses the reduction of PQ by
Fd. Slowing down CEF does not only result in a slower
CEF rate but also leads to a reduced overall photosynthetic
electron flux and carbon fixation rate (top panel of Figure 4).
This behaviour illustrates the physiological role of CEF to
adjust the ATP/NADPH ratio produced by the PETC to the
downstream demand. Because the provided ratio does not align
with downstream demand, electrons accumulate in the final
products of the PETC, leading to over-reduced Fd and NADPH
pools (lower panel of Figure 4). Over-reduced Fd, in turn,
reduces the availability of electron acceptors for PSI, which
leads to an increased rate of the Mehler reaction and H2O2

levels. The reduced photosynthetic capacity of PGR5 mutant
plants has been demonstrated experimentally (DalCorso et al.,
2008). A simulated knockout (KO) quantitatively reproduces the
observation that maximal PSII rate is approximately half of the
wildtype (∼ 300 vs. 520 mmol e−/mol Chl/s in Figure 4), and
that light saturation is reached at lower intensities compared
to the wildtype (approximately at PPFD 500 µmolm−2s−1—see
Supplementary Material). Also increasing the CEF has negative

effects on the performance. If more electrons are re-inserted
into the PETC, the overall ATP level increases and electron
carriers are less reduced, but the overall production rate of
NADPH and ATP decreases, leading again to a reduced carbon
fixation rate. It seems, therefore, that there exists an optimal
PGR5 activity, that maximises photosynthetic efficiency and
carbon fixation by avoiding over-reduction of the electron chain,
while at the same time redirecting not more electrons than
necessary back into the chain. Under low light (for figures,
see Supplementary Material), the CEF plays a less important
role. Under these conditions, increasing PGR5 activity increases
the ratio of CEF to LEF and slightly decreases carbon fixation
rates. The simulations suggest that, whereas under high light
CEF is clearly beneficial for the photosynthetic efficiency, under
low light conditions a low PGR5 activity is favourable for CO2

fixation rates.

3.3. Importance of Alternative Electron
Flows Under Fluctuating Light
It was repeatedly demonstrated experimentally that the CEF is
particularly important to maintain photosynthetic activity under
fluctuating light conditions (Yamori et al., 2016; Yamamoto
and Shikanai, 2018). Comparing simulations of wildtype with
PGR5 mutant shows that carbon fixation is indeed drastically
reduced when no CEF operates (Figure 5). These results are
in qualitative agreement with experimental findings (Yamori
et al., 2016). However, the experimentally observed dynamics are
quantitatively different from our simulations. In particular, the
reactivation dynamics of RuBisCO in the transition to high light
are considerably slower in the experiment as compared to the
model simulations. This indicates that the mechanisms activating
the CBB cycle in such transitions are not yet represented in the
model in a quantitatively correct way. Still, the model provides a
theoretical explanation for the reduced photosynthetic efficiency
by illustrating that the PGR5 mutant is unable to establish a
healthy redox balance in light periods.
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FIGURE 4 | Response of the model under high light (PPFD 1,000µmolm−2s−1) to changes in CEF activity. Altered CEF activity was simulated by changing the rate

constant for PGR5, the enzyme transferring electrons from Fd to PQ. The top panel displays electron flows through the PETC and the H2O2 concentrations resulting

from the flux through the Mehler reaction and the ASC-GSH cycle. The bottom panel shows the energy (ATP) and redox state (NADPH, Fd, PQ, PC) of the system. In

both panels, the solid lines indicate stationary values. The thin dashed lines indicate a parameter range, in which limit cycle oscillations were observed, denoting the

minimum and maximum values of the oscillating variable. Outside these parameter regions, the solid line indicates stationary values, within the bubble averages over

oscillations.

3.4. SBPase Exhibits Striking Control Over
Photosynthesis Under High Light
The above investigations illustrate that electron flow around PSI
apparently affects not only the PETC itself but also downstream
metabolism, in particular carbon fixation. In order to understand
which processes carry the strongest control in this complex
supply-demand system, we performed MCA and systematically
determined flux and concentration control coefficients for high
(PPFD 1000 µmolm−2s−2) and low (PPFD 100 µmolm−2s−2)
light conditions. A selection of flux and concentration control
coefficients are depicted in Figure 6. Additionally to get a
global picture of the model’s behaviour we performed a simple
golbal sensitivity analysis using Latin Hyperspace Sampling and
Partial Rank Correlation Coefficients that can be found in the
Supplementary Material.

In agreement with the analysis of the effects of perturbing
PGR5 activity, and thus CEF (Figure 4), it is observed that
increasing PGR5 leads to slightly decreased fluxes in the PETC
and the CBB cycle. In contrast, increasing CEF strongly decreases

the Mehler reaction and the associated scavenging pathways.
Remarkably, under high light, the strongest control on PETC
and CBB cycle fluxes is exhibited by the SBPase, whereas
RuBisCO carries almost no flux control. This observation
confirms previous theoretical results obtained from a model
simulating the CBB cycle alone (Poolman et al., 2000). Increasing
SBPase results in a significant increase of both PETC and CBB
cycle rates, and strongly suppresses the Mehler reaction and
associated scavenging reactions, while the redox pools except PC
are more oxidised, and ATP levels are decreased. PSII is the initial
complex of the PETC and thus a natural candidate for high flux

control. Indeed, it exerts positive control over PETC and CBB

cycle fluxes in high light, but with a much lower control strength

compared to SBPase. Increasing PSII (and PSI and to a lesser
extent the cytochrome b6f complex) predominantly increases
the Mehler reaction. This behaviour changes dramatically under
low light. Here, CBB enzymes exert almost no flux control, but
electron transport and carbon fixation rates are mostly controlled
by the activities of the photosystems. Increasing PSII leads
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FIGURE 5 | Simulating fluctuating light for the wildtype and the PGR5 knockout (KO) mutant. Shown are the Fd redox state (left) and the RuBisCO activity (right) for

the wildtype (black) and the PGR5 knockout (red). Light intensities were changed every 60s between high light (PPFD 600 µmolm−2s−1, white regions) and low light

(PPFD 40 µmolm−2s−1, grey regions).

to more reduced redox pools and lower ATP levels, whereas
increasing PSI leads to more oxidised redox pools and higher
ATP levels. Both photosystems have a positive control on CBB
cycle intermediates RuBP and PGA, while only PSI positively
affects the bisphosphates FBP and SBP. Altogether these analyses
confirm the previous observation (Matuszyńska et al., 2019) that
under low light control resides predominantly on the supply side
(PETC), while under high light control is shifted toward the
demand side (CBB).

3.5. ROS Production as a Balancing
Mechanism
To increase our understanding of the antagonistic behaviour
of the Mehler reaction and the CEF, and to account for the
changing relative importance of these processes under low
and high light, we systematically investigated the efficiency of
photosynthesis for altered CEF under different light intensities.
Figure 7 displays simulated linear electron fluxes and H2O2

concentrations in response to changed light intensities and PGR5
activities. Whereas under low light conditions (of less than
approximately 500 µmolm−2s−1, the photosynthetic efficiency
is rather independent of the PGR5 activity, this is dramatically
different in high light. Both, too low and too high CEF activity
leads to a reduced photosynthetic flux, but for different reasons.
Impaired CEF results in drastically elevated H2O2 levels because
ATP and NADPH production ratios cannot be adapted to the
downstream requirements. In contrast, increased activity of
PGR5 mediated CEF simply leads to more oxidised NADPH and

Fd (see Figure 5), and redirects electron flux from linear to cyclic,
thus reducing the overall net carbon fixation rate.

4. DISCUSSION

In oxygenic photosynthesis, LEF is considered the basic driver of
photosynthetic carbon fixation. Yet alone, it does not provide the
exact ratio of ATP to NADPH that is necessary to drive carbon
assimilation (Kramer and Evans, 2009). Hence, alternative
circuits of the electron flow are considered to balance the
production of ATP per NADPH (Curien et al., 2016). In this
work the presented computational model has been developed
to investigate the alternative electron circuits around PSI that
produce a proton gradient without NADPH synthesis, therefore
altering this ratio. These include the CEF around PSI and two
of the W-W cycle including the Mehler reaction at PSI and the
PTOX downstream PSII (Curien et al., 2016). Additionally, we
have provided an important link between ROS formation and
metabolism regulation by including a simple description of ROS
scavenging around PSI via the ASC-GSH cycle. This allowed us to
further investigate the role of the cycle in keeping photosynthetic
activity at medium and higher light intensities (Muller-Schussele
et al., 2020). Although it is only one of the many known pathways
(Maurino and Flügge, 2008), it is considered as the first step in the
long process of including redox balance through ROS production
into computational models of photosynthesis, in an attempt to
support the synthetic redesign of photosynthetic systems (Zhu
et al., 2020).
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FIGURE 6 | Results of the MCA. Flux (left) and concentration (right) control coefficients of representative reactions of photosynthesis in high and low light conditions.

The top panels show the distribution of control under high light (PPFD 1,000 µmolm−2s−1), the bottom panels under low light (PPFD 100 µmolm−2s−1). For all

panels, on the x-axis we marked the perturbed parameters. The parameters are perturbed by ± 1% and the resulting effect on steady state values is monitored for the

quantities on the y-axis. It can be clearly seen how the control of photosynthesis shifts from the supply side in low light (bottom) to the demand side under high light,

exhibiting striking control of SBPase (top).

FIGURE 7 | Surface plots of the stationary linear electron flux (left) and H2O2 concentration (right) in response to altered PGR5 (CEF) activity and light intensity.

Increased CEF activity reduces stationary H2O2 concentrations. For higher light intensities, more CEF activity is required to maintain low H2O2 levels. This indicates

that CEF activity should be regulated for maximal efficiency under various light regimes.
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We have argued before that photosynthesis shall be viewed as
a supply-demand system because of the connection between the
ATP and NADPH production and consumption (Matuszyńska
et al., 2019). Considering the tight regulation of such a system,
we investigated the influence of alternative electron pathways on
the rate of CO2 assimilation, with a particular focus on their
photoprotective behaviour and the role of the CEF (see change in
rate of RuBisCO in Figure 5). The presented model is intended
to serve as a theoretical workbench that is not only valid for a
single experiment or plant species but is in principle adaptable to
a wide range of scenarios and photosynthetic organisms. While
not precisely calibrated to a particular experimental dataset, we
ensured that the model displays realistic behaviour. In particular,
the steady-state of key variables, such as the redox state of
electron carriers as well as carbon fixation fluxes are plausible,
and the simulated PAM experiments show characteristic NPQ
dynamics (Figure 2). The model allows moreover the simulation
of genetic perturbations, such as KO, KD andOE, which has been
demonstrated extensively on the PGR5 mutant, impaired with its
capacity of a CEF. The focus on the PGR5/PGRL1 pathway was
motivated by its particular role in regulating proton motive force
around PSI (Wang et al., 2015). Figure 4 highlights the critical
role of the CEF by displaying a strongly reduced LEF, highly
oxidised redox state of the electron carriers and a very strong
increase in hydrogen peroxide concentration. Interestingly, our
computational analysis systematically displayed the dependency
of the system behaviour in PGR5 KO and OE to different light
intensities. The differences between PGR5 mutants are mostly
visible in higher light conditions, as shown in Figure 7.

Light, although necessary to drive photosynthesis, can be also
harmful to the organism. NPQ is a central part of the first line
of defence of plants against damaging effect of light. In order to
prevent high ROS levels, plants developed mechanisms allowing
dissipation of excess light energy as heat (Ruban, 2016). Our
simulations demonstrate that in high light intensity the whilst
Mehler and PTOX reactions continue to increase, contributing
significantly to the photoprotection and overall redox balance
(Figure 3). These results are in line with the previously proposed
role of the W-W cycle acting as a relaxation system to suppress
the photoproduction of 1O2 in PSII (Asada, 2006).We expect that
the model presented in this work will be useful for a systematic
assessment of the possible beneficial effect of ROS formation in
a physiological context (Foyer and Noctor, 2005; Foyer, 2018;
Mhamdi and Van Breusegem, 2018).

Within our expanded model of photosynthesis we have
performed MCA and confirmed the pivotal role of SBPase in
control over the system, as in our previous work (Poolman
et al., 2000; Matuszyńska et al., 2019). SBPase has been shown
to control both supply and demand of photosynthesis and,
consequently, in this expanded model, it exhibits a strong
influence on the electron flows. Figure 6 displays that in high
light conditions, an increase of SBPase activity strongly decreases
theMehler reaction rate and as a consequence the rate of themain
scavenging reactions DHAR and MDAR. This phenomenon
can be explained by the increase in efficiency of the CBB
cycle, which causes faster ATP consumption and prevents over-
reduction of the PETC, therefore reducing the rate and impact

of the Mehler reaction. It is important to consider that this
behaviour is observed in scenarios with saturated carbon dioxide
conditions. However, the model can in principle be directly
applied to other, more natural, conditions. For example, it would
be interesting to compare the electron flux distribution under
non-saturating conditions. Further, although we have varied
oxygen systematically, to mimic conditions under which oxygen
becomes limiting, all our analysis have been performed under
saturated CO2 conditions.

A natural further step of expanding this work would be to
include the mechanism of photorespiration, mainly because it
plays a physiological role in reducing the redox pressure in the
stroma under conditions leading to low carbon fixation (Ort and
Baker, 2002) and because it is a major source of ROS associated
with the photosynthetic activity (Dietz et al., 2016). A reliable
mathematical model of photorespiration to be considered has
been proposed by Yokota et al. (1985).

With this work we provide a tool to further study the dynamics
and cross-talk between the multiple regulatory mechanisms
activated by photosynthetic organisms in response to changes in
light. With our model, we could demonstrate how electron flows
around PS1 affect photosynthetic efficiency and how increasing
CBB cycle activity decreases Mehler reaction activity. Moreover,
the model allowed us to rationalise that CEF should be regulated
with changing light intensities as a trade-off between optimising
electron flux efficiency and minimising ROS production. We
envisage that this model helps to further investigate the tight
relation between ROS scavenging in the chloroplast and the
dynamic adaptation of photosynthesis to changing conditions.
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Matuszyńska, A., Saadat, N. P., and Ebenhöh, O. (2019). Balancing energy supply

during photosynthesis-a theoretical perspective. Physiol. Plant. 166, 392–402.

doi: 10.1111/ppl.12962

Maurino, V., and Flügge, U.-I. (2008). Experimental systems to assess the effects

of reactive oxygen species in plant tissues. Plant Signal. Behav. 3, 923–928.

doi: 10.4161/psb.7036

Mhamdi, A., and Van Breusegem, F. (2018). Reactive oxygen species

in plant development. Development 145:dev164376. doi: 10.1242/dev.

164376

Müller, P., Li, X.-P., and Niyogi, K. K. (2001). Non-photochemical quenching.

A response to excess light energy. Plant Physiol. 125, 1558–1566.

doi: 10.1104/pp.125.4.1558

Muller-Schussele, S., Wang, R., Gutle, D., Romer, J., Rodriguez-Franco, M., Scholz,

M., et al. (2020). Chloroplasts require glutathione reductase to balance reactive

oxygen species and maintain efficient photosynthesis. Plant J. 103, 1140–1154.

doi: 10.1111/tpj.14791

Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T.,

Tasaka, M., et al. (2004). Cyclic electron flow around photosystem

I is essential for photosynthesis. Nature 429, 579–582. doi: 10.1038/

nature02598

Ort, D., and Baker, N. (2002). A photoprotective role for O(2) as an

alternative electron sink in photosynthesis? Curr. Opin. Plant Biol. 5, 193–198.

doi: 10.1016/S1369-5266(02)00259-5

Poolman, M. G., Fell, D. A., and Thomas, S. (2000). Modelling photosynthesis

and its control. J. Exp. Bot. 51, 319–328. doi: 10.1093/jexbot/51.

suppl_1.319

Raven, J. A. (2011). The cost of photoinhibition. Physiol. Plant. 142, 87–104.

doi: 10.1111/j.1399-3054.2011.01465.x

Ruban, A. (2016). Nonphotochemical chlorophyll fluorescence

quenching: mechanism and effectiveness in protecting plants from

photodamage. Plant Physiol. 170, 1903–1916. doi: 10.1104/pp.15.

01935

Schwarzlander, M., and Finkemeier, I. (2013). Mitochondrial energy and

redox signaling in plants. Antioxid. Redox Signal. 18, 2122–2144.

doi: 10.1089/ars.2012.5104

Stirbet, A., Lazar, D., Guo, Y., and Govindjee, G. (2020). Photosynthesis:

basics, history and modelling. Ann. Bot. 126, 511–537. doi: 10.1093/aob/

mcz171

Frontiers in Plant Science | www.frontiersin.org 10 October 2021 | Volume 12 | Article 750580

129



Saadat et al. Electron Flows Around PSI

Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G. (2012). ROS and redox

signalling in the response of plants to abiotic stress: ROS and redox signalling in

plants. Plant Cell Environ. 35, 259–270. doi: 10.1111/j.1365-3040.2011.02336.x

Valero, E., González-Sánchez, M. I., Maciá, H., and Garcia-Carmona, F.

(2009). Computer simulation of the dynamic behavior of the glutathione-

ascorbate redox cycle in chloroplasts. Plant Physiol. 149, 1958–1969.

doi: 10.1104/pp.108.133223

Valero, E., Macia, H., De la Fuente, I. M., Hernandez, J.-A., Gonzalez-Sanchez,

M.-I., and Garcia-Carmona, F. (2015). Modeling the ascorbate-glutathione

cycle in chloroplasts under light/dark conditions. BMC Syst. Biol. 10:11.

doi: 10.1186/s12918-015-0239-y

van Aalst, M., Ebenhöh, O., and Matuszyńska, A. (2021). Constructing and
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3.7 Shifts in carbon partitioning by photosynthetic

activity increase terpenoid synthesis in glan-

dular trichomes

The paper "Shifts in carbon partitioning by photosynthetic activity increase ter-

penoid synthesis in glandular trichomes" investigates the bioenergetics of photo-

synthetic glandular trichomes, especially regarding the production of terpenes. In

it we provide the first reconstruction of specialised metabolism in Type-VI photo-

synthetic glandular trichomes of Solanum lycopersicum and predict that increasing

light intensities results in a shift of carbon partitioning from catabolic to anabolic

reactions driven by the energy availability of the cell. Moreover, we show the

benefit of shifting between isoprenoid pathways under different light regimes,

leading to a production of different classes of terpenes. Our computational predic-

tions were confirmed in vivo, demonstrating a significant increase in production of

monoterpenoids while the sesquiterpenes remained unchanged under higher light

intensities. I was involved in this project during every step of the research process,

as well as writing the manuscript.
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SUMMARY

Several commercially important secondary metabolites are produced and accumulated in high amounts by

glandular trichomes, giving the prospect of using them as metabolic cell factories. Due to extremely high

metabolic fluxes through glandular trichomes, previous research focused on how such flows are achieved.

The question regarding their bioenergetics became even more interesting with the discovery of photosyn-

thetic activity in some glandular trichomes. Despite recent advances, how primary metabolism contributes

to the high metabolic fluxes in glandular trichomes is still not fully elucidated. Using computational

methods and available multi-omics data, we first developed a quantitative framework to investigate the

possible role of photosynthetic energy supply in terpenoid production and next tested experimentally the

simulation-driven hypothesis. With this work, we provide the first reconstruction of specialised metabolism

in Type-VI photosynthetic glandular trichomes of Solanum lycopersicum. Our model predicted that increas-

ing light intensities results in a shift of carbon partitioning from catabolic to anabolic reactions driven by

the energy availability of the cell. Moreover, we show the benefit of shifting between isoprenoid pathways

under different light regimes, leading to a production of different classes of terpenes. Our computational

predictions were confirmed in vivo, demonstrating a significant increase in production of monoterpenoids

while the sesquiterpenes remained unchanged under higher light intensities. The outcomes of this research

provide quantitative measures to assess the beneficial role of chloroplast in glandular trichomes for

enhanced production of secondary metabolites and can guide the design of new experiments that aim at

modulating terpenoid production.

Keywords: bioenergetics, glandular trichomes, photosynthesis, stoichiometric model, secondary metabo-

lites, terpenes, tomatos.

INTRODUCTION

Most plant species exhibit cellular outgrowths of their epi-

dermis called trichomes. Due to their often species-specific

characteristic, many criteria for classification exist, the

most popular one being the division into non-glandular

and glandular trichomes (GT) (Werker, 2000). While non-

glandular trichomes serve more as a physical and mechan-

ical defence against biotic and abiotic stresses, all GTs are

characterised by the ability to synthesise and accumulate

vast amounts of valuable specialised (secondary) metabo-

lites. Due to extremely high metabolic fluxes in these

organs, the production of some metabolites can reach up

to 20% of the leaf dry weight (Fobes et al., 1985), GTs are

often referred to as true metabolic cell factories (Huchel-

mann et al., 2017). Products of GTs include terpenoids,

phenylpropanoids, flavonoids, fatty acid derivatives and

acyl sugars (Glas et al., 2012) exhibiting antifungal, insecti-

cide or pesticide properties. Therefore, GTs are not only

incredibly important to plant fitness, as they contribute to

the chemical arsenal of plants, but are also of relevance to

multiple industries.

The key carbon source in most GTs of tomatoes is

sucrose which is converted into a multitude of organism-

specific metabolites in the glands (Balcke et al., 2017). The

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
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massive productivity of hydrocarbon compounds implies,

however, a supply of adequate amounts of not only car-

bon, energy and reducing power, but also precursors, pro-

duced by intermediate pathways. Terpenoids represent the

largest and structurally most diverse class of plant metabo-

lites and are major products of GT biosynthesis. Despite

their multiplicity, with over 30 000 well-known structures,

they are all assemblies of C5 isoprene units built from iso-

pentenyl diphosphate (IPP) and its isomer dimethylallyl

diphosphate (DMAPP). There are two identified pathways

for IPP and DMAPP production: (i) the plastidial 2-C-

methyl-D-erythritol 4-phosphate (MEP) pathway from pyru-

vate and glyceraldehyde-3-phosphate or (ii) the cytosolic

mevalonate (MVA) pathway from acetyl-CoA (Kortbeek

et al., 2016). Although these pathways are thought to be

largely independent, some exchange of precursors may

occur (Paetzolda et al., 2010), and such crosstalk requires

further investigation. For instance, is there some crosstalk

of plastidial and cytosolic pathways providing the 5-carbon

precursors, as suggested in the latest work in peppermint

(Koley et al., 2020)? And if so, what effect does it have on

overall productivity? Beyond this, a major issue is the

source of energy and its distribution to understand how

GTs achieve their high productivity. The question becomes

more intriguing when one realises that some of the GTs

contain photosynthetically active chloroplasts (as the type

VI GT in S. lycopersicum [Bergau et al., 2015]). Considering

that in the case of many plants where the seeds are green

during embryogenesis, the light can influence the fatty

acid synthesis, and potentially power refixation of CO2

(Goffman et al., 2005; Ruuska et al., 2004), we took the

challenge to understand whether a similar effect of light

can be predicted in trichomes. Till now it is still unclear

what the advantages and disadvantages of photosynthetic

GTs are in contrast to non-photosynthetic GTs. Moreover,

there is limited research on GTs ability to absorb light.

Even research focused on light intensity-mediated tri-

chome production does not focus on their photosynthetic

activity (Escobar-Bravo et al., 2018). The separation of cyto-

solic and chloroplast-bound pathways, as well as the utility

of photosynthesis, are until now only vaguely understood,

and the most recent summary of current advances has

been recently provided (Brand & Tissier, 2022).

To shed light on the advantages of photosynthetic GT

for terpenoid synthesis and secondary metabolism, investi-

gations of the system’s bioenergetics and reaction flux dis-

tributions are needed. Mathematical, computational

models provide a coherent framework to study metabo-

lism. Constraint-based stoichiometric models (Maarleveld

et al., 2013) are particularly adequate for exploratory stud-

ies of the systemic properties of a metabolic network and

investigations of the flux distributions. Such models are

static and represent mathematically the network of bio-

chemical reactions of an organism in the form of a matrix

(Heinrich & Schuster, 1996). They can focus on various

scales, with genome-scale metabolic models (GEMs) aim-

ing at representing the whole biochemical network of an

individual organism. GEMs are constructed by assigning

biochemical functions to enzymes encoded in the genome,

and due to the expansion of the whole genome sequenc-

ing, many plant GEMs are currently available, with Oryza

sativa indica (Chatterjee et al., 2017), Arabidopsis thaliana

(Poolman et al., 2009) and Solanum lycopersicum L. (Yuan

et al., 2016) among many others. Flux balance analysis

(FBA) (Orth et al., 2011; Sweetlove & Ratcliffe, 2011), a

mathematical method that allows calculating the flow of

metabolites through the network, is a popular tool to pre-

dict the production rate of the compound of interest. FBA

requires two assumptions: (i) the experimental system is at

a steady state, and (ii) the network is optimised to maxi-

mise or minimise certain biological outcomes, for instance,

its biomass. The so-called, cell-specific, objective functions

in GEMs are optimised in a linear programming approach

in which all reaction fluxes are constrained within given

boundaries. This constraint-based analysis of GEMs allows

the calculation of optimal flux solutions in different condi-

tions, therefore allowing investigations on the metabolic

fluxes and bioenergetics of systems.

In this work, we have reconstructed the metabolism

in the photosynthetic glandular trichome type VI of a

Solanum lycopersicum LA4024 (see schematic representa-

tion on Figure 1) using previously published transcrip-

tome and metabolome data (Balcke et al., 2017). With a

general, mathematical framework, we investigated the

effect of having photosynthetically active machinery

inside of a trichome and systematically tested the model

on how GTs achieve high metabolic productivity pro-

posed by Balcke et al., (2017). In our simulations, we

observed the increase in terpenoid production under

increasing light intensities. Increased photosynthetic activ-

ity shifts the partitioning of uptaken carbons from catabo-

lism to anabolism due to increased energy levels.

Bioenergetics and energy levels determine which of the

known terpenoid precursor production pathways (MEV,

MEP) is more desirable/optimal in different light/stress

conditions. Our model can explain the benefits of having

chloroplasts in GTs and serves as a groundwork for fur-

ther investigations of the possible cross-talks between the

two pathways of terpenoid precursor synthesis. It comple-

ments the previous work by Balcke et al., (2017) by not

only confirming their hypothesis that the light-dependent

reactions of photosynthesis support the secondary metab-

olite pathways but explaining how this support is

achieved. Finally, our predictions were tested in vivo and

we provide an experimental validation by showing that

under high light conditions, production of the most abun-

dant MEP-derived terpenes (2-carene and β-phellandrene/

D-limonene) increases, while the most abundant

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 115, 1716–1728
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MEV-derived terpenes (β-caryophyllene and α-humulene)

remain unchanged.

RESULTS

We used our model to perform a general analysis in

which we simulate the rate of terpenoid synthesis over sys-

tematically increasing light intensities via parsimonious flux

balance analysis (pFBA) (Lewis et al., 2010). Figure 2 dis-

plays that with increasing light absorption, the rate of terpe-

noid synthesis in photosynthetic GTs increases up until

approximately 50 μmolPhotons
s�m2 . This increase in terpenoid syn-

thesis rate with increasing absorbed light is particularly

interesting due to the fact that the model cannot utilise

atmospheric carbon dioxide, and sucrose is the only carbon

Figure 1. Schematic overview of the key processes included in a constraint-based model of photosynthetic glandular trichome (GT) metabolism. While the model

is built using transcriptome and metabolome data and includes a large number of reactions, only pathways and metabolites of importance to the results are

highlighted in the presented model scheme. These include CBB Cycle, Calvin-Benson-Bassham Cycle; DMAPP, dimethylallyl diphosphate; IPP, isopentenyl diphos-

phate; MEP, methyl-erythritolphosphate pathwy; MEV, mevalonate pathway; PETC, photosynthetic electron transfer chain; TCA Cycle, tricarboxylic acid Cycle.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 115, 1716–1728
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source. This means that there is a change in metabolic

fluxes that enables this increase in terpenoid synthesis rate.

To further investigate what changes in the metabolism of

photosynthetic GTs in increasing light intensities, we

inspect the respective changes in the exchange fluxes of the

model. Figure 3 shows the exchange fluxes of carbon diox-

ide and oxygen in our pFBA model simulations over

increasing light absorptions. Noticeably, the release of car-

bon dioxide systematically decreases up until approxi-

mately 50 μmolPhotons
s�m2 . Interestingly, the consumption of

oxygen decreases to zero at approximately 21 μmolPhotons
s�m2 .

From this light intensity on, oxygen release begins and

increases until 50 μmolPhotons
s�m2 . These observations are crucial

for a general understanding of the model behaviour. An

increase in absorbed light causes higher photosynthetic

activity, resulting in oxygen production. This explains the

decreasing oxygen uptake and the switch to oxygen release

at 21 μmolPhotons
s�m2 absorbed light. However, the steady

decrease in carbon dioxide excretion is especially notewor-

thy. Most carbon dioxide is produced within catabolism,

therefore the model behaviour hints at a decrease in cata-

bolic activity in higher light intensities.

Figure 2. Impact of rates of absorbed light on the predicted fluxes through the photosynthetic glandular trichome.

(a) Terpenoid synthesis flux over different rates of absorbed light. The rate terpenoid synthesis increases with higher amounts of absorbed light.

(b) Oxygen and carbon dioxide exchange fluxes over different rates of absorbed light. Increased light absorption decreases carbon dioxide release and oxygen

absorption. In higher rates of light absorption, oxygen is secreted.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 115, 1716–1728
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To investigate how the catabolic activity in our model

simulations changes over increasing light intensities, we

further inspect representative reactions for relevant cata-

bolic pathways in our model. As sucrose, a disaccharide is

the only carbon source in our model, we inspect represen-

tatives of the upper glycolysis, the lower glycolysis and the

TCA cycle. Figure 3 displays the fluxes of these reactions

over different light intensities (shown on the x-axis as frac-

tions of saturating light intensities) relative to their fluxes

in the dark. The sucrose synthase and saccharase repre-

sent upper glycolysis activity. The 6-phosphofructokinase,

GAP dehydrogenase and pyruvate kinase represent lower

glycolysis activity and the pyruvate dehydrogenase and

the citrate synthase represent TCA cycle activity. Further-

more, the RuBisCO rate is displayed to monitor the rate of

carbon refixation. The results show that fluxes of upper

glycolysis remain completely unchanged in increasing

light intensities; however, the fluxes in lower glycolysis

decrease in higher light conditions. An even higher impact

can be observed for the TCA cycle activity. The pyruvate

dehydrogenase activity steadily decreases, and the citrate

synthase activity abruptly decreases in increasing light

conditions. These observations show that catabolic path-

ways, which are not responsible for energy and redox

equivalent production (like upper glycolysis), are unaf-

fected by increasing light intensities. However, the lower

glycolysis and the TCA cycle, both catabolic pathways that

produce energy and redox equivalents, display a strong

flux decrease in higher light conditions. There is no reason

to think that trichomes would not have the same regula-

tory mechanisms as mesophyll cells, leading to decreased

glycolysis in higher light conditions. Increased photosyn-

thesis is accompanied by increased photorespiration,

which eventually supplies reducing equivalents in the

mitochondria, which can then be used to fuel the respira-

tory electron transport chain (Balcke et al., 2023). The

increase in terpenoid synthesis flux observed in Figure 2.

and the decrease in catabolic fluxes in Figure 3 strongly

Figure 3. The relative fluxes of six selected catabolic reactions and one carbon fixation reaction calculated for increasing fractions of saturating light. The fluxes

are normalised to the respective fluxes under completely dark conditions. Reactions of upper glycolysis remain unaffected by increased light absorption, while

the fluxes of reactions of lower glycolysis and the TCA cycle decrease with increased absorbed light. Additionally, RuBisCO flux is only present when light

absorption is high.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 115, 1716–1728
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suggest that increasing light conditions shift the carbon

partitioning from catabolic to anabolic pathways. This

shift is enabled due to the energy and redox equivalent

production of the photosynthetic electron transport chain

in photosynthetic GTs. The metabolic network is not

dependent on the energy from oxidising carbon bodies in

high-light conditions and can therefore use more of those

carbon bodies in terpenoid synthesis pathways. Interest-

ingly, RuBisCO activity increases in higher light intensities,

displaying that only very high levels of photosynthetic

energy supply allows the refixation of carbon that is lost as

carbon dioxide in anabolic processes (like terpenoid syn-

thesis). GAP, pyruvate and acetyl-CoA are carbon bodies

which can be used to produce either energy and redox

equivalents or terpenoid precursors. Acetyl-CoA is the ini-

tial substrate of the TCA cycle in which it is oxidised to

gain energy and redox equivalents but is also the initial

substrate of the MEV pathway, also known as the isopren-

oid pathway, which is the primary terpenoid synthesis

pathway in non-photosynthetic GTs. GAP and pyruvate are

metabolites within the lower glycolysis pathway and also

initial substrates of the MEP, which is a terpenoid synthe-

sis pathway present in photosynthetic GTs.

To further analyse how the consumption of these

metabolites depends on the illumination, we simulated the

relative consumption rate of GAP/pyruvate and Acetyl-CoA

by the aforementioned pathways over increasing light

intensities. Figure 4 displays the proportions of the con-

sumption of these compounds by the TCA, MEV and MEP

pathways. In low light intensities, more than half of the

substrates are consumed by the MEV pathway, and the

remainder is consumed by the TCA cycle, in both cases in

the form of acetyl-CoA. In higher light intensities, the frac-

tion of substrates consumed by the TCA cycle is decreasing

until it does not consume any more substrates. At

this point, the relative flux of lower glycolysis starts

decreasing, and the MEP pathway is beginning to consume

proportions of the substrates, gradually taking over. This is

a very important observation that shows that increasing

light intensities, leading to higher energy levels due to pho-

tosynthetic activity, shift the carbon partitioning from cata-

bolic to anabolic pathways by reducing the TCA cycle and

lower glycolytic flux and increasing terpenoid synthesis.

Furthermore, it shows that the two terpenoid synthesis

pathways, MEP and MEV, are more advantageous at differ-

ent energetic levels. In lower light intensities, and therefore

lower energetic levels, the MEV pathway seems to be more

advantageous because the conversion of GAP and pyruvate

to acetyl-CoA produces energy and redox equivalents, and

the resulting acetyl-CoA can directly be used in the TCA

cycle to generate additional energy and redox equivalents.

In higher light intensities, and therefore higher energetic

levels, the MEP pathway is more advantageous because the

high energy levels provided by photosynthetic activity

remove the necessity of providing energy and redox equiva-

lents via lower glycolysis and the TCA cycle. Instead, GAP

and pyruvate can directly be used as substrates with higher

energy contents (than acetyl-CoA) in the MEP pathway, and

therefore further increase the fraction of carbon used in

anabolism, enabling more efficient terpenoid synthesis.

This phenomenon can also be observed in Figure 5 in

which we used model simulations to calculate the fluxes of

the final MEV and MEP reactions in systematically chang-

ing light conditions and ATP maintenance costs. In this

analysis, higher ATP maintenance costs reflect increased

energy requirements of cells in, for example, stress condi-

tions. At low light conditions and low ATP maintenance

costs, the MEV pathway is the main terpenoid synthesis

pathway, with very little MEP pathway activity. In low light

conditions and high ATP maintenance costs, the MEV path-

way is the only active pathway. However, the overall terpe-

noid synthesis flux is relatively low due to the increased

demand for catabolic flux in such conditions. At high light

conditions and high ATP maintenance costs, the MEP path-

way is carrying the majority of terpenoid synthesis flux. In

high light conditions and low ATP maintenance costs, the

MEP pathway is the only active terpenoid synthesis path-

way, providing the highest terpenoid synthesis flux. It

appears that the distribution of terpenoid synthesis

between the MEV and the MEP pathways is highly depen-

dent on the light conditions and resulting energy levels of

the photosynthetic GTs.

The general conclusions of our model simulations

have then been tested experimentally. The impact of light

Figure 4. Predicted relative consumption of GAP, pyruvate and acetyl-CoA

(here described as 3C bodies) by different pathways over increasing frac-

tions of saturating light. The fraction of the lower glycolysis flux relative to

dark conditions is displayed as a dashed line. Increasing rates of absorbed

light decrease the fraction of 3C bodies consumed by catabolic pathways,

like lower glycolysis and TCA cycle. Furthermore, the fraction of 3C bodies

consumed for terpenoid synthesis switches from the MEV to MEP pathway

in high rates of light absorption.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 115, 1716–1728
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intensity on the shift from the MEV to MEP precursor path-

way has been tested by quantifying sesquiterpenes, pro-

duced by MEV, and monoterpenes, produced by MEP.

Three-week-old tomato (Solanum lycopersicum cv Money-

maker) plants were exposed to nearly threefold higher light

intensity (HL) for seven days and the productivity of the

main volatile terpenoids produced in the type VI GTs was

estimated by GC–MS along different leaf developmental

stages. The results showed a significant increase in mono-

terpenoids while the sesquiterpenes remained unchanged,

and such increment is linked to the age of the leaves (Fig-

ure 6). These findings suggest that the photosynthetic light

reactions support the productivity of the specialised reac-

tions occurring in the plastids through the MEP pathway.

Finally, the high rate of terpenoid synthesis in high-

light conditions is partly resulting from increased rates of

carbon refixation. It remains unknown how active the

CBB cycle is in photosynthetic GTs. To quantify the

impact of different carbon refixation fluxes, we per-

formed a systematic analysis in which we calculated the

terpenoid synthesis rate over different quanta of

absorbed light and systematically changed the activities

of RuBisCO (Figure 7). Interestingly, the overall rate of

carbon refixation is increasing the rate of terpenoid

synthesis by almost 20%, while the shift in carbon parti-

tioning between catabolism and anabolism increases it

by almost 200%. This shows that the impact of energy-

dependent shift in carbon partitioning and isoprenoid

synthesis pathways is a lot higher than the RuBisCO-

dependent refixation of carbon dioxide.

DISCUSSION

In photosynthetic GTs, synthetic pathways of terpenoids

and other secondary metabolites are found in the cytosol

of the cells and the chloroplasts. The additional terpenoid

synthesis pathway in photosynthetic GTs has been sub-

ject to many speculations, for example, terpenoid produc-

tion in chloroplasts is specialised for the production of

particular secondary metabolites (Besser et al., 2009). In

our work, we built a simplified, yet data-driven

constraint-based model of photosynthetic glandular tri-

chome metabolism, and used it to show that one of the

two different synthesis pathways is more advantageous

for terpenoid production than the other in different

energy availabilities. Previously published multi-omics

data (Balcke et al., 2017) supports our hypothesis that the

energy and reducing power (ATP and NADPH) from pho-

tosynthesis are primarily used to power the secondary

Figure 5. Fluxes of the final reaction steps of the MEV and MEP pathway over increasing relative ATP maintenance activities, as well as increasing rates of light

absorption. In energetically favourable conditions, like high light and low ATP maintenance (function representing the additional energy requirement for the

maintenance of cells), terpenoid synthesis is carried out by the MEP pathway. In opposite conditions, meaning low light and high ATP maintenance, the MEV

pathway is performing terpenoid synthesis.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 115, 1716–1728
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metabolism. Our model provides a mechanistic explana-

tion of how this is achieved.

We show that with lower energy availability, the cyto-

solic MEV pathway is more advantageous for terpenoid

synthesis because the catabolic pathways, producing the

critical initial substrate acetyl-CoA from sucrose, provide

additional energy and redox equivalents needed for all cel-

lular activities, including terpenoid synthesis. However,

higher energy availability (coming from photosynthetic

activity in higher light conditions) removes the need for

the additional energy and redox equivalents gained from

the conversion of sucrose to acetyl-CoA. Therefore sub-

strates with higher energy levels (GAP and pyruvate) can

be directly used for terpenoid synthesis. This shortcut of

catabolic reactions reduces the loss of carbon as carbon

dioxide and increases the flux of carbon through anabolic

processes. The general conclusions derived from the theo-

retical analyses have been strengthened with the experi-

mental evidence that under higher light intensities

production of monoterpenoids is significantly increased,

while the production of sesquiterpenes remains

unchanged (Figure 6).

We show that in higher light conditions, energy levels

of the photosynthetic GTs are so advantageous, that

excess energy can be spent to perform carbon refixation

using the CBB cycle. In the supplementary material, we cal-

culated that the terpenoid yield per sucrose is twice as

high in high light compared to low light conditions. This

Figure 6. Effect of high light in volatile terpene content of leaves of tomato. Estimation of (a) monoterpenes and (b) sesquiterpenes by gas chromatography–

mass spectrometry (GC–MS) on young (Small, from bottom-to-top leaf number 6), expanded (Medium, leaf number 5) and fully develop (Large, leaf number 4)

leaves, in control (CN) and high light (HL) conditions. Chromatogram peak areas were normalised by leaf dry weight (DW). Error bars indicate SD (n= 5 biologi-

cal replicates; *P< 0,05, **P< 0,01; using t-test).

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 115, 1716–1728
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illustrates that the benefit of including chloroplasts in GTs

is not only the ability to shift carbon partitioning from cata-

bolic to anabolic processes but also to further maximise

carbon use efficiency. It is important to note that the

increase in terpenoid synthesis from carbon refixation is

not nearly as high as the increase from the shift in carbon

partitioning, as seen in Figure 7. This dual behaviour, that

is, in the absence versus in presence of photosynthesis, is

reminiscent of the situation in photosynthetic leaves,

where the TCA cycle is inactive during the day and active

during the night (Tcherkez & Atkin, 2021).

Interestingly our model shows that even without

CBB cycle activity, the TCA cycle may be reversed in high

energy availability and function as a reductive TCA cycle.

This reductive TCA cycle could theoretically take over the

function of the CBB cycle, using energy to fix carbon

dioxide which was produced in catabolic and anabolic

reactions, thus increasing carbon use efficiency. This is a

very interesting observation, as, from a bioenergetic

point of view, such a scenario is possible. Considering

the previous results where Phosphoenolpyruvate carbox-

ylase (PEPC) expression was significantly increased in tri-

chomes compared to leaves (Balcke et al., 2017), we

consider PEPC as a plausible candidate to mediate the

carbon fixation. However, we decided to adjust the key

reactions of the TCA cycle for this scenario as irreversible

to prevent this phenomenon to be included in our results

for now. The reason for this decision is that the reductive

TCA cycle is usually found in green sulphur bacteria and

different thermophilic prokaryotes and archaea (Beh

et al., 1993; Wahlund & Tabita, 1997). This indicates that

from a phylogenetic perspective, the presence of a reduc-

tive TCA cycle in photosynthetic GTs is rather unlikely.

However, we think that this model suggestion is worth

investigating the fluxes of the TCA cycle in light condi-

tions in photosynthetic GTs, as it has been suggested

that carbon dioxide may be recovered (Schuurink & Tis-

sier, 2020). Generally, instead of showing that chloroplas-

tic terpenoid synthesis pathways provide improved

production of particular terpenoids, our work shows that

the chloroplast in photosynthetic GTs functions as a solar

panel in light conditions, which can be used to shift car-

bon from catabolic to anabolic fluxes and even enable

carbon dioxide refixation and therefore improve carbon

use efficiency. To support our findings, experiments are

needed which can keep track of the rate of terpenoid

synthesis in similar sucrose availability but different light

absorptions. Interestingly, such an increase in the effi-

ciency of carbon use through RubisCO, but without the

CBB cycle, has been observed in other plant cells.

Schwender et al. (Schwender et al., 2004) showed that

Rubisco without the Calvin cycle improves the carbon

efficiency of developing embryos of Brassica napus L.

(oilseed rape) during the formation of oil.

Photosynthetic carbon refixation indicates that photo-

respiration may be present in photosynthetic GTs.

Although photorespiratory genes were very low expressed

in the transcriptome data (Balcke et al., 2017), and photo-

respiration is not included in our model, we show that in

high light there is oxygen evolution in photosynthetic GTs.

Therefore, new experimental data obtained in high light

intensities and gas exchange rates is required to investi-

gate putative photorespiratory activities. Furthermore, it

remains unclear if and how high the evolution of reactive

oxygen species and photodamage is present in photosyn-

thetic GTs. For this, quantitative metabolic data for the

components of the electron transport chain is needed, as

well as measurements of the photosynthetic efficiency in

photosynthetic GTs. Finally, more questions regarding the

dynamics, and not only bioenergetics of trichomes arise.

For example, what is the composition of terpenoids under

different light intensities, or even light colours? A recent

study using different basil cultivars showed that light spec-

tra affect the concentrations and volatile emissions of

important compounds (Kivimäenpä et al., 2022). Such light

modulation requires further investigation with a use of

more detailed models of secondary metabolism in photo-

synthetic GTs that take the light spectrum into consider-

ation. For transparency, we include the light spectra used

for our experimental validation in Figure S1. As most of

the processes discussed here are heavily dependent on

enzyme kinetics and saturation, constraint-based models

like the one presented may not be the best method for

answering these new emerging questions. Mechanistic

models, for example based on ordinary differential equa-

tions, can include such information (if available) and may

be helpful to give further insights into terpenoid synthesis

in photosynthetic GTs. Further interdisciplinary studies

combining experiments and robust theoretical simulations

can provide a quantitative understanding of whether, how,

and by how much the production of specific terpenoids

could be increased, and with this work, we provide the

stepping stone for such analyses. The outcomes of this

research provide quantitative measures to assess the bene-

ficial role of chloroplast in GTs and can further guide the

design of new experiments aiming at enhanced terpenoid

production.

METHODS

Choice of the model organism

In this study, we have chosen to investigate type VI GT in the

tomato genus. The tomato genus displays seven types of tri-

chomes: II, III and V (non-glandular) and I, IV, VI and VII (glandular

trichomes), with type VI being the most abundant one in the Sola-

num lycopersicum species. S. lycopersicum serves as an excellent

model organism for glandular trichome study due to the availabil-

ity of (i) high-quality complete genome sequence (Tomato

Genome Consortium, 2012), (ii) excellent genetic resources (Falara

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 115, 1716–1728
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et al., 2011), (iii) comparative multi-omics data (Balcke

et al., 2017), (iv) several mathematical models available, including

whole genome metabolic network reconstruction (Yuan

et al., 2016) and (v) in contrast to other well-studied organisms like

peppermint (Rios-Estepa et al., 2008, 2010), possession of photo-

synthetic GT.

Modelling environment

Our model is implemented in Python, using our in-house devel-

oped package moped, “an integrative hub for reproducible con-

struction, modification, curation and analysis of metabolic

models” (Saadat et al., 2022). With moped all decision processes

and modelling steps are well documented in a transparent and

repeatable fashion. All details and information about the exact

construction process of the model, as well as all investigations

and analyses, can be found in our provided scripts at https://

gitlab.com/qtb-hhu/models/glandular-trichomes. The summary of

the construction steps is provided in the section below.

Model construction and assumptions

Although a genome-scale model of tomato metabolism is avail-

able (iHY3410 model (Yuan et al., 2016)), we decided to use a

bottom-up approach and perform the reconstruction ourselves,

because we were not able to reconstruct the steps of manual cura-

tion performed by the authors. We based the model reconstruc-

tion on available transcriptomics and metabolomics data (Balcke

et al., 2017), the LycoCyc database (tomato metabolic pathway

database, version 3.3 (Fernandez-Pozo et al., 2015), available from

Solanaceae Genomics Network, http://www.sgn.cornell.edu) and

biochemical knowledge in plants from scientific publications. All

reactions and metabolites found in transcriptomics and metabolo-

mics data have been added to the model from the LycoCyc data-

base using the moped metabolic modelling package, ensuring

GPR rules for all added reactions in the network.

We used Meneco, a tool for metabolic network completion

(Prigent et al., 2017) to subsequently fill gaps in our network with

annotated reactions from the LycoCyc database, so our model is

capable of synthesising all compounds found within the metabo-

lomics data (Balcke et al., 2017), all terpenoids found in photosyn-

thetic GTs of tomato (Besser et al., 2009) as well as all amino

acids, nucleotide bases and lipid precursors from sucrose, light,

orthophosphate, ammonia, sulfate, protons and water. All reac-

tions in our model have been checked for mass and charge bal-

ance and are able to carry steady-state fluxes. Our model shows

the ability to synthesise biomass precursors and terpenoids on a

realistic scale. The model has been examined for inconsistencies

in energy metabolism by analysing the model behaviour accord-

ing to changes in ATP demand. Increasing ATP demand leads to

plausible changes in key reactions of the model, such as a

decrease in objective function flux. A detailed description of every

implemented step in model construction, as well as the code for

reproducing the entire model reconstruction process, can be

found in our model_construction.ipynb notebook in the supple-

mentary material.

Our model is a data-driven, yet simplified, constraint-based

model which is ensured not to include infeasible energy and

mass-generating cycles. Within our model simplifications, we

found that a model consisting of three essential compartments

(cytosol, intermembrane space and extracellular space, as

Figure 7. Predicted flux of the terpenoid synthesis under changing carbon refixation rates, as well as increasing rates of light absorption. Under simulated satu-

rating light, the rate of terpenoid synthesis is two-fold higher than in darkness. If additionally the carbon refixation flux is increased to the maximal chosen

value, the increase in terpenoid synthesis is less than 20%. This result shows how the energy-dependent shift in carbon partitioning and isoprenoid synthesis

pathway is higher than the RuBisCO dependent refixation of carbon dioxide.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 115, 1716–1728
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represented on Figure 1) is able to represent photosynthetic GT

metabolic profiles. While detailed compartmental separation is

common practice in large genome-scale metabolic models, it

would not make any difference to the results of our model simula-

tions due to the fact that there are several intercompartmental

transporters between the chloroplast and the cytosol for energy

equivalents like ATP and other key metabolites (Gardeström &

Igamberdiev, 2016). Adding over-detailed compartmentalisation to

the model would therefore not alter any of our results and is left

out for the sake of model simplicity and preventing unfavourable

model modifications. The resulting model consists of 1307 reac-

tions and 1371 metabolites and thanks to the integration of the

multiomics data, its behaviour has been ensured to match

reported experimental observations (Balcke et al., 2017). There are

nine exchange reactions, allowing the free exchange of inorganic

metabolites such as oxygen, as well as light absorption and

sucrose uptake. To ensure the highest quality and consistency

our model has been thoroughly inspected using the MEMOTE

standarised testing suite (Lieven et al., 2020).

Optimisation and objective function

In most constraint-based models and their analyses, the maximi-

sation objective is the production of biomass (Gottstein

et al., 2016). While this may be applicable for prokaryotic organ-

isms, we doubt that photosynthetic glandular trichome cells are

maximising the increase of their replication rate, and rather maxi-

mise terpenoid synthesis while also having a mandatory produc-

tion rate of macromolecules to keep cells intact. For this, our

model includes an objective function to produce terpenoids while

requiring a fixed flux through a function of biomass synthesis,

consuming typical components like amino acids, sugars, nucleo-

tides, cell wall and fatty acid precursors. We used a simplified bio-

mass function inspired by plant biomass functions from Seaver

et al., (2015), similar to standard biomass functions used success-

fully for FBA in plants (Arnold & Nikoloski, 2014; Zager &

Lange, 2018). Our aim was to capture the necessity for growth and

self-repair, while setting the objective function to maximise the

production of terpenoids. To describe additional energy required

for the maintenance of cells, we implemented a representative

reaction for ATP maintenance, as it is common practice in meta-

bolic modelling (Cheung et al., 2013).

Calculation of flux units and light intensity units

There is limited research on GTs ability to absorb light (e.g. Con-

neely et al., 2021), and we have not found any dedicated research

focused on the optical properties of GTs. Overall, while there is

some evidence to suggest that GTs may have optical properties

allowing for some light absorption, more research is needed to

fully understand their ability to absorb light. Therefore we have

decided to estimate the maximal absorption rate based on the

reported maximal production fluxes. Light is therefore repre-

sented as photons absorbed by the photosystems used for photo-

synthesis in contrast to the incident light that will be several-fold

higher.

Although it is known that due to diel cycles of photosynthesis

different metabolic flux patterns in the light and the dark are

observed and require different treatments for the optimisation

problem (Cheung et al., 2014), our FBA on the trichome model is

performed under continuous light. The units of light absorption

are represented in μmolPhotons
s�m2 and the detailed calculations are pro-

vided in the Supporting Information. As it has been reported that

carbon dioxide exchange is 100 times lower in photosynthetic GTs

than in leaves we decided not to include a carbon dioxide influx,

however, carbon dioxide is produced in the system and can flow

out of the model (Balcke et al., 2017).

A suggested terpenoid production rate of GTs has been pro-

vided by Turner et al. (Turner & Croteau, 2004) at 0.017 nmol
h�gland

.

Assuming that this rate can be applied to the maximal terpenoid

production rate of photosynthetic GTs of tomatoes, we transform

our calculated fluxes to the corresponding units by

Flux �

0:017 nmol
h�gland

max:Terpflux
. Next, in order to convert the fluxes of photons

into units of light intensities, we calculated the light-absorbing

surface of the GT type VI. Although the head of GT type VI is

made up of four secretory cells, we simplify the whole surface of

the head as a sphere. Based on the measured values of the diame-

ters of GTs from (Kowalski et al., 2019) and bright-field micro-

scopic image from (Bergau et al., 2015) we took the estimate of 50

μm as the diameter. This number can be substituted with a differ-

ent value and the light conversion function will be adapted. Under

these assumptions, the surface area can be estimated as

A ¼ 4 � π
50 μm

2

� �2

¼ 8000 μm2
¼ 8 � 10�9m2

:

To calculate the conversion factor for the photon absorption

of GTs, we first calculate the units of photons absorbed by the

gland at saturated light flux and maximal terpenoid production

predicted by our model as

0:017 �Max:LightFlux

Max:Terp:Flux
¼

0:017 � 480

8:85
¼ 0:92

nmolPhotons

h � gland
:

To convert this unit into μmol
s�m2 , we first calculate the corre-

sponding unit for nmolPhotons
h�gland

by

1nmolPhotons

h � gland
¼

1

28800

mol Photons

s �m2
¼ 56

μmolPhotons

s �m2
:

For our maximal light flux, this corresponds to

0:92 � 56 μmolPhotons
s�m2 ¼ 51:52 μmolPhotons

s�m2 as the saturating light inten-

sity, providing the light flux conversion factor of

LightFlux �

51:52
μmolPhotons

s�m2

sat:Lightflux
.

Experimental setup

The high light experiment was conducted using two LED-light

panels (Rhenac GreenTech AG, Hennef, Germany) placed inside a

phytochamber and separated by a black curtain. Tomato (Solanum

lycopersicum cv Moneymaker) plants were germinated on soil

under control conditions (CN): 16 h light, 422 μ mol m�2sec�1 at

25°C and 8 h dark at 20°C, 70% humidity day and night. After 22

days of growth, half of the plants were transferred to high light (HL)

conditions for further 7 days, where light intensity was adjusted to

1289 μmolm�2 sec�1. Light spectra were recorded using a Specbos

1211UV (JETI, Jena, Germany) photometer (Figure S1). Volatile ter-

penoids of leaflets of three different developmental stages were

collected by surface extraction using leaf discs of 1 cm diameter

and vortexed for 30 sec in n-hexane. Mono- and sesquiterpenes

were detected using a Trace GC Ultra gas chromatograph coupled

with an ATAS Optic 3 injector and an ISQ mass spectrometer

(Thermo Scientific) with electron impact ionisation. The chromato-

graphic separation was performed on a ZB-5ms capillary column

(30m × 0.32mm, Phenomenex). The flow rate of helium was 1ml

min�1, and the injection temperature rose from 60 to 250°C at 10°C

sec�1 during 30 sec. The GC oven temperature ramp was 50°C for 1

min, 50–150°C at 7°C min�1 and 150–300°C at 25°C min�1 for 2min.

Mass spectrometry was performed at 70 eV in full scan mode with
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m/z from 50 to 450. Data analysis was done with the Xcalibur soft-

ware (Thermo Scientific).
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4 Conclusion

The goal of this thesis was to understand how the central carbon metabolism and

energy management of plants work and how they can be optimised for various

purposes, including higher yields for crop enhancement and plant-based industrial

terpene production. For this, I investigated the Calvin-Benson-Bassham cycle and its

tight coupling to the photosynthetic electron transport chain (sections 3.5 and 3.6),

the effects of photorespiration and alternative photorespiratory pathways on carbon

fixation (sections 3.1 and 3.2) as well as the effects of different bioenergetic cell

states on the shift of metabolic routes for the production of secondary metabolites

(section 3.7).

We now increase the scope of observation to also include the photosynthetic

electron transport chain (section 3.5), alternative electron flows, and the production

of ROS (section 3.6). The results of the studies on metabolic control on rubisco

clearly show that the notion of a single rate-limiting step in carbon fixation is wrong.

Depending on the exact distribution of the enzyme concentration in the PETC and

CBB cycle, we find both PETC dominant and CBB dominant control states, as well

as mixed states in between. The same holds if single reactions are examined in

either the PETC or CBB. For example, the control in the CBB cycle can be mostly on

rubisco, sbpase or a mix between them. Since enzyme concentrations between

plant species can vary drastically, we strongly advise to look beyond the behaviour

of model organisms and cherish the diversity of species and their various survival

strategies.

The results of studies on ROS and alternative electron flows highlights the mecha-

nisms that excess energy obtained through photosynthesis can be dissipated and

how the activity of the CBB cycle controls alternative electron flows. A particularly

important outcome of this study concerns attempts to make carbon fixation or pho-

torespiration more efficient in the sense of energy use. Although this idea sounds

intuitively beneficial and should lead to higher yields under low light conditions,

care needs to be taken in stressful conditions. If the CBB cycle and photorespiration

are significantly more energy efficient, then less energy can be consumed and

thus more excess energy from photosynthesis needs to be dissipated. The results

of our model show an almost exponential increase in hydrogen peroxide (H2O2)

concentration under high light conditions, which would even further increase in the

case of more energy-efficient carbon fixation.

The idea of contextual switches between limiting carbon fixation rate and energy

supply has been further developed in the work on photorespiration (sections 3.1

and 3.2). There we found that at high light and atmospheric CO2 concentrations,

neither the amount of rubisco or any other CBB cycle enzyme, nor the amount of

energy supplied, but the transport rate of carbon dioxide into the chloroplast was

the limiting factor for additional carbon fixation. This had profound implications
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for the design and performance of different alternative photorespiratory pathways

under different conditions. The alternative pathways that were studied can be

broadly categorised by either fixing an additional carbon dioxide, instead of loosing

it by the activity of glycine decarboxylase in the mitochondrium, or relocating the

carbon dioxide release into the chloroplast and then doing either a single or two

decarboxylation steps. The model results agree with experimental studies that

the relocation of the carbon dioxide release is beneficial, as not all of the carbon

dioxide release by glycine decarboxylase will end up in the chloroplast. Therefore,

this relocation of the release locally increases the carbon dioxide concentration,

which at the same time reduces the rubisco oxygenase activity. At their core,

these pathways thus use extra energy to inhibit rubisco oxygenase as much as

possible, which is still a net positive effect. A much more promising approach is the

fixation of an additional carbon during photorespiration, as in the TaCo pathway

variant. This again highlights that given sufficient energy supply, the main issue

plants face is the transport of carbon dioxide into the chloroplast. This result is not

unsurprising, as plants have evolved stomata precisely for the reason of increased

gas exchange, which comes at the cost of water loss. Further evidence for this

comes from the development of C4 and CAM photosynthesis, which use spatial

and temporal mechanisms for carbon prefixation and concentration respectively, in

order to adapt to arid conditions.

Lastly, we again increase the scope of observation and include secondary metabolism

as well (section 3.7). In this work on terpene metabolism in photosynthetic glandu-

lar trichomes we could show that even in cells that have a continuous and sufficient

supply of sucrose, production of terpenoids and other secondary metabolites can be

increased by the presence of both the PETC and the CBB cycle, even though there

is only very little gas exchange between the photosynthetic glandular trichome

and the surrounding air. The main mechanisms we could identify were light-driven

carbon partitioning and refixation of CO2 released by catabolic processes. The light-

driven carbon partitioning clearly showed that the presence of the PETC allowed

the photosynthetic glandular trichome to use energy supplied by the light-reactions

instead of relying on catabolising sucrose for energy, providing direct applicability

to bioproduction of terpenoids. This energy-driven shift from catabolic to anabolic

reactions again shows the interconnectedness of plant metabolism.

One recurring result of this work was that plant metabolism is tightly interlinked

and minor changes to one part of it can have far-reaching effects on other parts

of it. This highlights the necessity to avoid overly reductionist approaches to

understanding plant metabolism and instead to try to systematically collate the

knowledge gained over time, in order to build a complete picture. On particular

helpful tool in this regard are mathematical models, as they not only allow to distil

and combine knowledge from different studies and experiments, but do require

rigour in doing so. This is in stark contrast to hand-waving arguments that are

still way to common in biological research. But even the state of mathematical

modelling in biology currently leaves a lot to be desired. Too often pathways are

looked at in isolation and their interaction with the remaining metabolism is either

ignored or assumed to be of a simple linear nature. While convenient, it has

become clear in this thesis that more often than not the remaining metabolism in

fact shows non-linear response to changes in the pathway of interest.
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This is often due to the inherit challenges of the modelling approach chosen. While

FBA-type models allow for a holistic overview of metabolism, they completely fail

to account for non-linear kinetic behaviour or state-dependent constraints. On the

other hand, ODE-type models allow for a very fine-grained description of single

pathways, but are increasingly difficult to work with at scale. While trying to

understand how different photorespiratory bypasses affect carbon fixation, we thus

employed both these techniques to get a better overall picture, see section 3.2. This

allowed us to first use the stoichiometric genome-scale model to assess which parts

of the plant metabolism will be affected by the introduction of a photorespiratory

bypass and then to use the kinetic model to provide a detailed picture of the

affected processes. This combined approach yielded much better results than

either approach would have had in isolation, as the iterative nature of comparing

the respective results did allow us to continuously update and improve both our

models. However, we found that there were certain differences in the model

predictions which were fundamental to the modelling approaches. In particular, the

FBA model predicted that the carbon-fixing bypasses would be more efficient at

low-light, or energy-limited, conditions, while the ODE model predicted that they

would be more efficient at high-light conditions. This difference could ultimately

be explained, as in the ODE model at high-light conditions the carbon influx would

become limiting. Thus the carbon-fixing aspect of the bypasses was predicted

as the major advantage. In contrast, in the FBA model at low-light the energy-

efficiency of the bypasses was more important. The ODE model on the other

hand predicted that in low-light conditions the plastidic carbon-dioxide pool was

increased, which cause less photorespiration overall. Those non-linear effects can

arbitrarily be added to FBA models, but they are never their intrinsic results. On

the other hand, the stoichiometric model clearly showed energetic differences

of different compartmentalisation related to energy cost of metabolite transport

between those compartments, which weren’t part of the ODE model. It is thus

always important to model any given biological system from multiple perspectives,

as otherwise it is too easy not to do justice to the inherit complexity of it.

To conclude, this thesis provides several models and approaches to understanding

primary and secondary plant metabolism. I used these models to answer questions

about both fundamental research as well as industrial applicability. This work will

hopefully guide further research, crop development and above all - be useful.
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[23] Anna Matuszyńska et al. “A mathematical model of non-photochemical

quenching to study short-term light memory in plants”. In: Biochimica et

Biophysica Acta (BBA)-Bioenergetics 1857.12 (2016), pp. 1860–1869.

[24] Petar H Lambrev et al. “Kinetic and spectral resolution of multiple nonphoto-

chemical quenching components in Arabidopsis leaves”. In: Plant physiology

152.3 (2010), pp. 1611–1624.

[25] Manuela Nilkens et al. “Identification of a slowly inducible zeaxanthin-dependent

component of non-photochemical quenching of chlorophyll fluorescence

generated under steady-state conditions in Arabidopsis”. In: Biochimica et

Biophysica Acta (BBA)-Bioenergetics 1797.4 (2010), pp. 466–475.

[26] Danielle A Way and Robert W Pearcy. “Sunflecks in trees and forests: from

photosynthetic physiology to global change biology”. In: Tree Physiology 32.9

(2012), pp. 1066–1081.

[27] John F Allen et al. “Chloroplast protein phosphorylation couples plastoquinone

redox state to distribution of excitation energy between photosystems”. In:

Nature 291.5810 (1981), pp. 25–29.

[28] Xia Zhao et al. “Non-photochemical quenching plays a key role in light

acclimation of rice plants differing in leaf color”. In: Frontiers in plant science

7 (2017), p. 1968.

[29] Stephan Eberhard, Giovanni Finazzi, and Francis-André Wollman. “The dy-

namics of photosynthesis”. In: Annual review of genetics 42 (2008), pp. 463–

515.

[30] Peter Jahns and Alfred R Holzwarth. “The role of the xanthophyll cycle and

of lutein in photoprotection of photosystem II”. In: Biochimica et Biophysica

Acta (BBA)-Bioenergetics 1817.1 (2012), pp. 182–193.

[31] Paul Falkowski et al. “The global carbon cycle: a test of our knowledge of

earth as a system”. In: science 290.5490 (2000), pp. 291–296.

[32] Peter M Cox et al. “Acceleration of global warming due to carbon-cycle

feedbacks in a coupled climate model”. In: Nature 408.6809 (2000), pp. 184–

187.

150



[33] John A Raven. “Contributions of anoxygenic and oxygenic phototrophy and

chemolithotrophy to carbon and oxygen fluxes in aquatic environments”. In:

Aquatic Microbial Ecology 56.2-3 (2009), pp. 177–192.

[34] Yinon M Bar-On and Ron Milo. “The global mass and average rate of rubisco”.

In: Proceedings of the National Academy of Sciences 116.10 (2019), pp. 4738–

4743.

[35] Melvin Calvin. “Chemical and photochemical reactions of thioctic acid and

related disulfides”. In: (1954).

[36] William L Ogren and George Bowes. “Ribulose diphosphate carboxylase

regulates soybean photorespiration”. In: Nature New Biology 230.13 (1971),

pp. 159–160.

[37] Archie R Portis Jr. “Regulation of ribulose 1, 5-bisphosphate carboxylase/oxygenase

activity”. In: Annual review of plant biology 43.1 (1992), pp. 415–437.

[38] Archie R Portis Jr. “The regulation of Rubisco by Rubisco activase”. In: Journal

of Experimental Botany 46.special_issue (1995), pp. 1285–1291.

[39] Archie R Portis Jr, RM Lilley, and T John Andrews. “Subsaturating ribulose-1, 5-

bisphosphate concentration promotes inactivation of ribulose-1, 5-bisphosphate

carboxylase/oxygenase (rubisco)(studies using continuous substrate addition

in the presence and absence of rubisco activase)”. In: Plant Physiology 109.4

(1995), pp. 1441–1451.

[40] Hadi Farazdaghi. “The single-process biochemical reaction of Rubisco: A

unified theory and model with the effects of irradiance, CO2 and rate-limiting

step on the kinetics of C3 and C4 photosynthesis from gas exchange”. In:

Biosystems 103.2 (2011), pp. 265–284.

[41] Gosta Pettersson and Ulf Ryde-Pettersson. “A mathematical model of the

Calvin photosynthesis cycle”. In: European Journal of Biochemistry 175.3

(1988), pp. 661–672. ISSN: 14321033. DOI: 10.1111/j.1432-1033.1988.

tb14242.x.

[42] Moritz E Beber et al. “eQuilibrator 3.0: a database solution for thermodynamic

constant estimation”. In: Nucleic acids research 50.D1 (2022), pp. D603–

d609.

[43] Anne Arnold and Zoran Nikoloski. “A quantitative comparison of Calvin–

Benson cycle models”. In: Trends in plant science 16.12 (2011), pp. 676–

683.

[44] Graham D Farquhar, S von von Caemmerer, and Joseph A Berry. “A biochemi-

cal model of photosynthetic CO 2 assimilation in leaves of C 3 species”. In:

planta 149 (1980), pp. 78–90.

[45] BE Medlyn et al. “Temperature response of parameters of a biochemically

based model of photosynthesis. II. A review of experimental data”. In: Plant,

Cell & Environment 25.9 (2002), pp. 1167–1179.

[46] Hans R Schultz. “Extension of a Farquhar model for limitations of leaf photo-

synthesis induced by light environment, phenology and leaf age in grapevines

(Vitis vinifera L. cvv. White Riesling and Zinfandel)”. In: Functional Plant Biol-

ogy 30.6 (2003), pp. 673–687.

[47] Thomas D Sharkey et al. “Fitting photosynthetic carbon dioxide response

curves for C3 leaves”. In: Plant, cell & environment 30.9 (2007), pp. 1035–

1040.

151



[48] Leonid E Fridlyand and Renate Scheibe. “Regulation of the Calvin cycle for

CO2 fixation as an example for general control mechanisms in metabolic

cycles”. In: Biosystems 51.2 (1999), pp. 79–93.

[49] Xin-Guang Zhu, Rafael Alba, and Eric de Sturler. “A simple model of the

Calvin cycle has only one physiologically feasible steady state under the

same external conditions”. In: Nonlinear Analysis: Real World Applications

10.3 (2009), pp. 1490–1499.

[50] Mark G. Poolman, David A. Fell, and Simon Thomas. “Modelling photosyn-

thesis and its control”. In: Journal of Experimental Botany 51.suppl_1 (Feb.

2000), pp. 319–328. ISSN: 1460-2431. DOI: 10.1093/jexbot/51.suppl\_1.319.

URL: https://academic.oup.com/jxb/article-lookup/doi/10.1093/jexbot/51.

suppl%7B%5C_%7D1.319.

[51] Christoph Giersch, Dirk Lämmel, and Graham Farquhar. “Control analysis

of photosynthetic CO 2 fixation”. In: Photosynthesis research 24 (1990),

pp. 151–165.

[52] Gaëlle Damour and Laurent Urban. “Models of photosynthesis need to and

can be upgraded to include the effects of drought, phenological changes, sink

activity and carbohydrate accumulation on the light exposure/photosynthetic

capacity relationship:[Communication orale]”. In: 2007.

[53] Brian D Hahn. “A mathematical model of the Calvin cycle: analysis of the

steady state”. In: Annals of botany 57.5 (1986), pp. 639–653.

[54] Agu Laisk, Hillar Eichelmann, and Vello Oja. “C 3 photosynthesis in silico”. In:

Photosynthesis research 90 (2006), pp. 45–66.

[55] Xin-Guang Zhu, Eric De Sturler, and Stephen P Long. “Optimizing the distribu-

tion of resources between enzymes of carbon metabolism can dramatically

increase photosynthetic rate: a numerical simulation using an evolutionary

algorithm”. In: Plant physiology 145.2 (2007), pp. 513–526.

[56] Ian E Woodrow and Keith A Mott. “Modelling C3 photosynthesis: a sensitivity

analysis of the photosynthetic carbon-reduction cycle”. In: Planta 191.4

(1993), pp. 421–432.

[57] A Laisk et al. “A mathematical model of the carbon metabolism in photosyn-

thesis. Difficulties in explaining oscillations by fructose 2, 6-bisphosphate

regulation”. In: Proceedings of the Royal Society of London. B. Biological

Sciences 237.1289 (1989), pp. 389–415.
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