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Abstract

Whether and how well people can behave randomly is of interest in many areas of psychological research. The ability to
generate randomness is often investigated using random number generation (RNG) tasks, in which participants are asked to
generate a sequence of numbers that is as random as possible. However, there is no consensus on how best to quantify the
randomness of responses in human-generated sequences. Traditionally, psychologists have used measures of randomness
that directly assess specific features of human behavior in RNG tasks, such as the tendency to avoid repetition or to sys-
tematically generate numbers that have not been generated in the recent choice history, a behavior known as cycling. Other
disciplines have proposed measures of randomness that are based on a more rigorous mathematical foundation and are less
restricted to specific features of randomness, such as algorithmic complexity. More recently, variants of these measures have
been proposed to assess systematic patterns in short sequences. We report the first large-scale integrative study to compare
measures of specific aspects of randomness with entropy-derived measures based on information theory and measures based
on algorithmic complexity. We compare the ability of the different measures to discriminate between human-generated
sequences and truly random sequences based on atmospheric noise, and provide a systematic analysis of how the usefulness
of randomness measures is affected by sequence length. We conclude with recommendations that can guide the selection of
appropriate measures of randomness in psychological research.

Keywords Randomness - Human random number generation - Algorithmic complexity - Entropy

Psychologists have long been interested in the human ability
to generate random-like sequences (Baddeley, 1966; Falk
& Konold, 1997; Wagenaar, 1972). The basic consensus is
that humans generally do not behave randomly but instead
exhibit systematic patterns that make their decisions predict-
able (Bocharov et al., 2020; Schulz et al., 2012; Shteingart
& Loewenstein, 2016). Previous studies have used various
measures from psychological research, computer science,
and mathematics to quantify randomness or the lack thereof
(Gauvrit et al., 2016; Ginsburg & Karpiuk, 1994; Oomens
etal., 2015, 2021; Towse & Neil, 1998). However, the heter-
ogeneity in the plethora of measures used across studies has
been criticized by researchers for being subjective and not
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allowing for comparisons between studies (Barbasz et al.,
2008; Gauvrit et al., 2014, 2016), with the earliest criticisms
dating back decades (Wagenaar, 1972). In this paper, we
provide the first large-scale comparison of a diverse collec-
tion of randomness measures in terms of their ability to dis-
criminate between random and human-generated sequences.
We undertook this investigation to provide practitioners with
data-based recommendations for selecting appropriate meas-
ures of randomness in psychological research.

The ability to generate random-like sequences is typi-
cally assessed using so-called random number generation
(RNG) tasks, in which participants are asked to generate
a sequence of random numbers. Typically, participants are
asked to use numbers in the interval from 1 to 9 (Capone
et al., 2014; Jokar & Mikaili, 2012; Miyake et al., 2000;
Schulz et al., 2021; Zabelina et al., 2012), but there are also
experimental paradigms that require the use of 10 or more
numbers (Ginsburg & Karpiuk, 1994; Peters et al., 2007;
Towse, 1998; Towse & Cheshire, 2007) as well as studies
with only two numbers (Biesaga et al., 2021; Biesaga &
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Nowak, 2024; Gauvrit et al., 2016). Another variant of this
task requires participants to produce a random sequence of
letters (Baddeley, 1966; Cooper et al., 2012; Larigauderie
et al., 2020). Typically, participants are carefully instructed
about the properties of random sequences to avoid measur-
ing participants’ misconceptions about randomness (Schulz
et al., 2021; Towse & Cheshire, 2007).

The study of human RNG is of interest in several areas
of psychology because it can be used to better understand
various cognitive functions. For example, RNG performance
can be used as an indicator of working memory and inhibi-
tory capacity (Friedman & Miyake, 2004; Heuer et al., 2005)
or, more generally, of the central executive (Cooper, 2016;
Miyake et al., 2000; Miyake, Friedman et al., 2001a). Cog-
nitive models have been developed to explain how humans
attempt to generate random-like sequences of numbers
(Cooper, 2016). Because RNG tasks are demanding and
draw on different cognitive resources, they are often used as
secondary load tasks to analyze performance on both pri-
mary and secondary tasks in dual-task experiments. Stud-
ies have shown a significant reduction in performance on
the primary task and in the randomness of the sequences
generated in the secondary load task (Howarth et al., 2016;
Knott & Dewhurst, 2007; Miyake, Witzki et al., 2001b).
RNG tasks have also been used to study the cognitive abili-
ties of patients with psychiatric and neurological disorders
such as schizophrenia (Peters et al., 2007; Shinba et al.,
2000) or acquired brain injury (Maes et al., 2011), who
show even more stereotyped behavior than healthy controls
as evidenced by the tendency to generate series of adja-
cent number pairs (e.g., 7-6 or 4-5). The ability to generate
random-like sequences has been found to develop similarly
to other cognitive abilities across the lifespan: it increases
from childhood to adolescence, peaking at age 25, followed
by a decline that becomes steeper around age 60 (Gauvrit
et al., 2017).

To study how different cognitive processes contribute to
the ability to generate random-like sequences, researchers
need measures that are sensitive to systematic patterns that
people may exhibit. The problem that needs to be addressed
is that, in principle, it is impossible to tell with certainty
from a given sequence whether it was generated by a ran-
dom or a deterministic process. An apparently systematic
sequence such as 1-2-1-2-1-2-1-2 has the same probability
of occurrence under a random process as the less systematic
sequence 1-1-2-2-2-1-1-2 (Gauvrit et al., 2016). However,
we can infer from the occurrence of systematic patterns
in the first example sequence that it is more likely to have
been generated by a deterministic, nonrandom process than
the second sequence. Approaches to assessing the random-
ness of sequences generated in an RNG task are based on
the identification of systematic patterns that provide evi-
dence that a nonrandom process could have generated them
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(Gauvrit et al., 2016; Ginsburg & Karpiuk, 1994; Towse &
Neil, 1998). Researchers have not agreed on a single way
to assess randomness, as evidenced by the heterogeneity
among approaches summarized in the following section.
Instead, the measures used to quantify randomness or the
lack thereof can be broadly grouped into three categories.

Approaches to the detection of deviations
from randomness

Measures commonly used in psychological research

Over the past several decades of research, psychologists have
used a variety of measures to assess randomness. Many of
these measures take into account biases in human behavior,
such as the fear of repetition, which refers to the tendency
to avoid direct repetitions of a number (Cooper, 2016).
Two commonly used collections of randomness measures
for analyzing human-generated random number sequences
were proposed by Ginsburg and Karpiuk (1994) and Towse
and Neil (1998). Ginsburg and Karpiuk proposed a collec-
tion of 10 measures that assess typical human biases in an
RNG task: the coupon score, the gap score, the poker score,
the runs index, the cluster ratio, the RNG index, diagram
repetitions, repetitions, series, and variance of digits. These
measures were often aggregated using principal compo-
nent analyses based on the correlation between randomness
measures across participants. These analyses revealed three
components: cycling, seriation, and repetition. The cycling
component is shown by the tendency to select numbers that
have not been used recently with increased probability; the
seriation component is shown by the tendency to stereotype
behavior, such as the tendency to ascend or descend a series
of numbers; and the repetition component reflects the avoid-
ance of direct repetition (Peters et al., 2007).

Towse and Neil’s work is a refinement of Ginsburg and
Karpiuk’s work, removing redundant measures, such as the
poker score, the cluster ratio, diagram repetition, repetitions,
and series, and adding new ones, such as the phi score—
a measure of repetition that, unlike most of the measures
discussed in Ginsburg and Karpiuk (1994), can be com-
puted over any interval length—and the redundancy index,
the turning point index, and the adjacency score. Towse
and Neil also performed a principal component analysis
on all of their measures. They concluded that the correla-
tion between measures of randomness across participants
was best explained by a four-component solution. Towse
and Neil (1998) named these four components “equality
of response usage,” “short repetitions,” “prepotent associ-
ates,” and “long repetitions.” Their “equality of response
usage” component mirrors Ginsburg and Karpiuk’s cycling
component in that both components reflect behavior that is
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aimed at using all numbers in a sequence in an equal man-
ner. This is also evidenced by other randomness measures
that load on these components, such as the coupon and the
median gap score, which assess how long it takes for all
numbers to occur once and how long it takes, on average,
for a number to be repeated. The component “prepotent
associates” assesses whether there is a tendency to engage
in stereotypical behavior, such as repeating some pairs of
number more often than others in a sequence, which is
conceptually similar to the seriation component. Random-
ness measures that assess the tendency to repeat number
pairs load on both of these components in the Ginsburg and
Karpiuk and Towse and Neil studies. The original repetition
component of Ginsburg and Karpiuk (1994) was found in
two components reflecting the number of repetitions over
short and long distances. The generation of a number that
has been used one to three numbers before in the sequence
is an example of a short-distance repetition; the generation
of a number that has been used at least four numbers before
is an example of a long-distance repetition. The Towse and
Neil collection comes with the RgCalc software tool and
has recently been implemented in the R package randseqR
(Oomens et al., 2021). The measures proposed by Towse
and Neil are widely used in psychological research (Bar-
basz et al., 2008; Cooper, 2016; Larigauderie et al., 2020;
Linschoten & Harvey Jr., 2004; Maes et al., 2011; Schulter
et al., 2010; Zabelina et al., 2012). Some of the measures
included in Towse and Neil’s collection that assess whether
some responses or pairs of responses are generated more
frequently than others in a sequence, such as the redundancy
index, the RNG index, and the RNG?2 index, fall into a sec-
ond category of entropy-based measures that can also be
used to quantify the randomness of a sequence.

Block entropy

As defined by Shannon (1948), entropy is a measure that
quantifies the amount of information in a sequence based on
the frequency distribution of the symbols that make up the
sequence. A sequence in which each symbol is equally fre-
quent has maximum entropy and contains the most informa-
tion. A sequence consisting of only one symbol has entropy
of 0 and contains no information due to redundancy. When
applied to the study of human RNG tasks, entropy indicates
whether there is an uneven distribution of the frequency of
numbers in a sequence. In this context, low entropy would
indicate that a person has used some numbers more than
others in a sequence. Block entropy is an extension of stand-
ard Shannon entropy that goes beyond the analysis of indi-
vidual numbers by assessing whether there is inequality in
the frequency of blocks (also called n-grams) of consecu-
tive responses in a sequence (Moore et al., 2018; Shannon,
1948). For example, a sequence might contain the block

7-4-1 more frequently than all other blocks of the same
size, resulting in lower block entropy. Some of the meas-
ures in Towse and Neil’s (1998) collection that are used to
assess whether there is inequality in responses or pairs of
responses in a sequence are variants of Shannon and block
entropy. However, to our knowledge, measures of block
entropy that assess whether there is inequality in response
triplets or quadruples (or even larger blocks) have not been
systematically used to analyze human RNG tasks. Including
such measures based on information theory may provide a
more complete assessment of recurring patterns in human
RNG that are associated with the seriation and “prepotent
associates” components in Ginsburg and Karpiuk (1994) and
Towse and Neil (1998), respectively. Recent findings indi-
cate that individuals may differ strongly in their tendency
to repeat specific number blocks larger than two numbers
(Schulz et al., 2021). However, measures of randomness that
are traditionally employed in psychological research do not
account for blocks of numbers larger than two.

Measures of algorithmic complexity

Recently, some promising new measures of randomness have
been proposed that originate from algorithmic complexity
theory (Gauvrit et al., 2014; Zenil et al., 2018). These ran-
domness measures are based on the Kolmogorov—Chaitin
definition of complexity (Gauvrit et al., 2016). In this frame-
work, complexity is defined as the length of the shortest
computer program that can produce a given object—in this
case, a sequence of numbers. A sequence that follows a sys-
tematic pattern, such as 1-2-1-2-1-2-1-2, can be generated
by a program that follows a simple algorithmic rule (e.g.,
repeat response pair 1-2 four times). This sequence would
therefore be considered not complex and probably not gen-
erated by a random process. However, the same sequence
would be considered random according to classical Shannon
entropy if, when choosing from two possible responses, both
responses (e.g., 1 and 2) occur equally often. The concept
of algorithmic complexity is important for algorithms for
lossless compression of long sequences, where the goal is
to replace the original sequence with a shorter sequence
that contains all of the information of the original sequence
but replaces recurring patterns (Lempel & Ziv, 1976). A
sequence is considered more random the less compressible
it is (i.e., the fewer repeating patterns it contains). Measures
of Lempel-Ziv complexity have only rarely been used in
psychological research. However, the study by Wong et al.
(2021) is an example of such an application. When analyz-
ing human-generated sequences, psychologists might profit
from also considering measures of algorithmic complexity.
A recent investigation found a strong correlation between the
algorithmic complexity of a sequence and its randomness
as perceived by humans (Gauvrit et al., 2016). Therefore,
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measures of algorithmic complexity may help to assess spe-
cific regularities that humans often perceive as random (Falk
& Konold, 1997; Gauvrit et al., 2016) and that may therefore
be present in sequences humans produce in RNG tasks.

The software needed to approximate the algorithmic com-
plexity for short sequences has only recently been imple-
mented (Gauvrit et al., 2014, 2016; Soler-Toscano et al.,
2014). It is based on the coding theorem method, according
to which sequences with low algorithmic complexity have a
high probability of being produced by a deterministic pro-
cess (in this case, a computer program), and sequences with
high algorithmic complexity have a low probability of being
produced by a deterministic process. The computer programs
used to quantify the probability that a deterministic process
produces a sequence are Turing machines. A Turing machine
is a theoretical model of a general-purpose computer that
produces an output based on a specified set of rules. By
sampling from many Turing machines, it is possible to con-
struct a frequency table showing how often a sequence is
generated by a randomly drawn Turing machine and, thus,
by a deterministic process. This information is then used
to approximate the algorithmic complexity of a sequence
by taking the negative logarithm of the relative frequency
with which the sequence is generated. Higher algorithmic
complexity indicates sequences that are rarely generated by
a deterministic process, and lower algorithmic complexity
indicates less complex sequences that are frequently gener-
ated by a deterministic process. This approach promises to
detect systematic patterns for short sequences (< 12), which
no previous measure of randomness has been able to do.
It was extended to longer sequences by Zenil et al. (2018),
who proposed the block decomposition method (BDM) by
combining it with the concept of entropy, which allows the
repeated use of identical blocks of numbers in a sequence
to be penalized. The usefulness of measures of algorithmic
complexity has already been demonstrated for the analysis of
binary sequences in a psychological setting (Biesaga et al.,
2021; Biesaga & Nowak, 2024; Gauvrit et al., 2016), but not
for sequences of more than two possible numbers.

The present study

We present the first large-scale comparison of a diverse col-
lection of randomness measures from psychology (Gins-
burg & Karpiuk, 1994; Oomens et al., 2021; Towse & Neil,
1998) and from information theory and algorithmic com-
plexity theory (Gauvrit et al., 2016; Lempel & Ziv, 1976;
Shannon, 1948; Zenil et al., 2018). We determine how well
randomness measures are suited to determining whether a
human or a random process generated a sequence. Thus, our
approach focuses on identifying measures of randomness
that best detect biases that humans exhibit when they attempt
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to generate random numbers. Which measures best detect
evidence of systematic behavior that is not present in random
sequences? The rationale behind this validation approach is
that a measure that is sensitive to nonrandomness, i.e., sys-
tematic patterns exhibited by humans, should be able to dis-
criminate between random and human-generated sequences
with high confidence.

As a gold standard for comparison, we used data from
atmospheric noise as a presumably truly random source
(Furutsu & Ishida, 1961; Haahr, 2023). We chose atmos-
pheric noise to avoid having to rely on computer-generated
pseudorandom sequences based on deterministic algorithms
as a validation criterion. Unlike pseudorandom number gen-
erators, true random number generators such as atmospheric
noise produce random numbers that are aperiodic and non-
deterministic (Haahr, 2023).

In addition, we investigate how the length of a sequence
affects the usefulness of measures to discriminate between
human-generated and random sequences, as sequence
lengths often vary widely across studies (Figurska et al.,
2008; Ginsburg & Karpiuk, 1994; Schulz et al., 2021).
Moreover, it is plausible to assume that the measures differ
in their sensitivity to detect systematic patterns in human-
generated sequences depending on the sequence length, as
some measures, such as the complexity measure of Gauvrit
et al. (2016), were specifically designed for short sequences,
while other measures, such as compression algorithms, are
generally only used to analyze longer sequences (Zenil et al.,
2018). Based on our results, we try to derive practical rec-
ommendations for the selection of the most useful measures
for the analysis of randomness in human behavior.

Methods
Design

Sequences of numbers were generated either by human par-
ticipants in an RNG task or by continuously updated varia-
tions in the amplitude of atmospheric noise data provided by
the website random.org (Haahr, 2023) as accessed through
an interface included in the R package random (Eddelbuet-
tel, 2017). For each measure of randomness, we computed
the resampled correct classification rate at which sequences
of numbers could be correctly assigned to their generating
source (human vs. random). We used logistic regression
models with each measure of randomness as the independ-
ent variable and the source of the sequences as the dependent
variable. Each logistic regression model was bootstrapped
(n = 1000). To this end, each of the n logistic regression
models was computed on 1660 randomly sampled sequences
(with replacement). The sample size for each bootstrap itera-
tion was chosen to equal our human sample size (n = 830)
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multiplied by 2, since there were as many random as human-
generated sequences. Drawing samples with replacement
allowed for the possibility of repeated occurrences or no
occurrences at all of a sequence in the training set used for
computing the logistic regression model. Each model’s pre-
dictive performance could then be evaluated on the sequences
that were not part of the training process, resulting in n cor-
rect classification rates for each measure of randomness that
could then be used for constructing 95% confidence intervals.
Going beyond previous approaches, we also present the first
comprehensive investigation of how sequence length affects
classification rates. To this end, we calculated the correct
classification rate for complete sequences and for the first 20,
50, and 100 digits of the 200-digit sequences.

Material

Random number generation task

Instructions Following the approach of Schulz et al. (2021)
and Towse and Cheshire (2007), we instructed participants
to consider the following essential features of random num-
ber generation: (1) equal probability of responses, (2) inde-
pendence of responses from each other, and (3) absence of
patterns and unpredictability of responses. We explained the
RNG task using the analogy of repeatedly drawing a number
from 1 to 9 from a hat, returning the drawn number, and then
shuffling the contents of the hat to repeat this procedure. We
provided participants with examples of repetitive patterns
to avoid and an example of what a random sequence might
look like. We asked participants to generate a random num-
ber each time they heard a metronome tone. If they missed
a response, they were instructed to move on and generate
another number with the next sound.

Experimental task We used a 3% 3 grid to record the
responses, with a number from 1 to 9 displayed in each cell
of the grid. The numbers 1, 2, and 3 were in the first row,
4, 5, and 6 were in the middle row, and 7, 8, and 9 were in
the bottom row (in the order of their naming). The experi-
mental paradigm of using a 3 X 3 grid for the RNG task was
adopted from Maes et al. (2011), who showed that the use
of this grid yielded similar results with respect to the widely
used Towse and Neil (1998) collection of randomness meas-
ures as when the numbers were produced orally. Before the
start of RNG task, participants had to confirm through the
click of a button that they were ready to do the task. Fol-
lowing this confirmation, the screen cleared for 2000 ms,
after which a horizontally centered 3 X 3 grid of 450 x 450
pixels appeared. After a further 1000 ms, the rhythmic
sound of a metronome began and was repeated every 1500
ms until the RNG task was completed. Participants were

instructed to randomly select and click on one of the cells
with their mouse each time they heard the metronome sound.
In response, the selected cell changed its color to orange for
250 ms, providing visual feedback to the participant. For
the 1000 ms following their selection, participants could not
select another cell from the grid, ensuring that they could not
speed through the experiment. Once the last trial of the task
was completed, the grid disappeared, and the study moved
to the next page. Participants had to complete 200 trials of
the RNG task, which took exactly 5 minutes if they kept to
the rhythm of the metronome. A green bar indicated their
overall progress on the RNG task.

Procedure

The study was conducted using the online platform Unipark
(https://www.unipark.com/). Participants were welcomed on
the first page of the study. We informed them about the gen-
eral purpose of the study (random number generation), their
rights, and the intended use of their data in order to obtain
their informed consent. On the following page, we asked for
demographic information about their age, gender, German lan-
guage proficiency, and educational level. Next, participants
had to complete an audio check to ensure that they could hear
the metronome during the RNG task. They had to listen to a
short audio file in which they heard a rooster, and then choose
which of several animals they had heard. On the next page,
participants were given instructions on how to complete the
RNG task. Instructions could only be skipped after 60 sec-
onds, so clicking through the instructions was not possible.
We then asked participants two simple multiple-choice ques-
tions to make sure they understood the instructions. The first
question asked how they should behave during the experiment
(answer: randomly). The second question asked when partici-
pants should choose a random number (answer: at the sound
of the metronome). Participants were excluded from the study
at this stage if they answered one or both questions incorrectly.
On the next two pages, participants were allowed to adjust the
volume of the metronome so that the sound was comfortable,
and then completed 10 test trials of the RNG task to become
familiar with it. This phase was followed by the main experi-
mental task, which consisted of 200 trials. After completing
the experimental task, participants provided self-reports on a
need for cognition scale (Lins de Holanda Coelho et al., 2020),
a conscientiousness scale (Rammstedt et al., 2013), and on
their mathematical abilities (e.g., school grade in mathematics,
learning stochastics in school or at university). Additionally,
participants could enter comments about this study. On the
next page, they were asked to indicate whether they were seri-
ous about participating in the study (Aust et al., 2013), with
assurances that this question would not result in forfeiting their
compensation. On the last page, participants were debriefed
and thanked for their participation. Participants could again
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enter comments in a text box for feedback, as they now knew
the purpose of the study. The median time it took to complete
the study was 12 minutes.

Sample

Participants were recruited through the online panel Bilendi
(https://www.bilendi.de). Participants had to be at least 18
years old and be native German speakers or have a compa-
rable language level to participate in the experiment. Partici-
pants could take part in the study using a desktop computer,
a tablet (with a touchscreen), or a laptop. Another require-
ment of the study was that participants were able to play an
audio stream on the device they were using to participate.
Participants who did not correctly answer both comprehen-
sion questions about the experimental paradigm on the first
attempt (n = 181) were not allowed to continue at this stage
due to presumed inattention, in order to ensure the quality
of the data. The total sample consisted of 830 participants,
as 21 participants had to be excluded for the following rea-
sons: one participant reported using a 10-sided fair dice for
the task; another participant used the same answer 50 times
in a row (for a quarter of the task); 16 participants indicated
in a seriousness check at the end of the study that they did
not participate sincerely; one participant used only three of
the nine possible numbers during the entire RNG task; two
participants did not follow the rhythm of the metronome
in the RNG task (median intertrial latency over 2000 ms).
The final sample consisted of 405 men, 424 women, and
one person who reported a non-binary gender. The age of
the sample ranged from 18 to 87 years (M = 51.15, SD =
15.37). Most participants, 567, reported a certificate of sec-
ondary education or a high school diploma as their highest
level of education, 245 participants had a college degree,
16 had obtained a Ph.D., and only two participants had not
completed high school. The participants were compensated
with €0.50 for their participation in the study. To increase
the motivation of the participants, we conducted a lottery
and awarded an additional bonus of €5 to the 30 participants
who generated the most random sequences according to the
coupon score (the participants did not know how we would
determine the most random sequences). This was to provide
an additional incentive for participants to be as random as
possible in the RNG task. The lottery was announced at the
end of the instructions for the RNG task.

Measures of randomness

Commonly used measures in psychological research (Towse
& Neil, 1998)

We computed the most widely used collection of randomness
measures in psychological research, namely that of Towse
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and Neil (1998), who also described these measures in detail
in their review. To compute these measures, we used the R
package randseqR as described in Oomens et al. (2021). For
the computation, we used the randseqR option (same name
as the package) as suggested by the authors of the package.
Thus, for measures that rely on computing the frequency of
occurrence of response pairs in a given sequence, the last
response pair consisting of the last and (after starting over)
the first sequence number was not considered.

Redundancy index The redundancy index is a measure of
whether there is inequality in the frequency of responses
in a sequence, approaching 100 if a sequence consists of
only one response and O for perfect equality of all possible
responses. The redundancy index is a transformed version
of the classical Shannon entropy.

Random number generation (RNG) index The RNG index
measures whether pairs of responses in a sequence (e.g.,
4-1, 1-5, and 5-6 in the sequence 4-1-5-6) are equally dis-
tributed, given the underlying frequency distribution of the
first response in a pair. Thus, the RNG index is a measure
of whether the transition probabilities from one response to
another are equal. The index ranges from O (perfect equality
of transition probabilities) to 100 (all transition probabilities
are either 1 or 0).

RNG2 index The RNG?2 index follows the same logic as the
RNG index. However, instead of looking at the transition
probabilities between consecutive responses, it computes
whether there is inequality in transition probabilities between
interleaved responses by a gap of 1. For example, in the
sequence 4-1-5-6, the two pairs 4-5 and 1-6 are considered.
The range of this index is identical to the regular RNG index.

Null-score quotient (NSQ) The NSQ is the proportion of
response pairs that do not occur in a sequence relative to the
number of possible response pairs. The measure is multi-
plied by 100 to obtain percentages. The range of this meas-
ure is from 0 to 100, with a value of 0 indicating that all pos-
sible response pairs occur in a sequence. For this measure,
lower values indicate a more even distribution of response
pairs and therefore a higher degree of randomness.

Coupon score The coupon score measures how long it takes
for all possible responses in a sequence to occur. This meas-
ure is computed by iterating over a sequence and counting
the time until each response has occurred at least once. The
result is stored, and the procedure starts again with the first
response after the completed set. The final score is the aver-
age of the lengths required to observe all of the responses. If
a sequence does not contain all possible responses, the score
is set to the length of the sequence + 1. Whether a particular
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score indicates low or high randomness can be judged only
by comparing it to the average score of random sequences,
because the average time it takes for all responses to appear
depends strongly on the cardinality of the set of available
numbers. For this comparison, we used the sequences based
on atmospheric noise data, which we used as a benchmark
for a random source of numbers.

Repetition gap The repetition gap is the average gap
between identical responses in a sequence. We computed
three variants of this measure: the mean, median, and mode
over the distribution of gaps between identical responses.
Like the coupon score, the repetition gap can be interpreted
as a measure of randomness only when compared to the
mean repetition gap of random sequences.

Adjacency index The adjacency index measures the propor-
tion of ascending pairs relative to the total number of pairs
in a sequence. The measure can be computed for ascending
(e.g., 3-4) and descending pairs (e.g., 7-6), or a combina-
tion of both. The index is multiplied by 100 to represent
percentages. On average, a random sequence will contain
a percentage of adjacent pairs equal to the proportion com-
puted by dividing the number of possible adjacent pairs by
the number of all possible response pairs.

Turning point index Turning points are defined as minima
and maxima in a sequence (e.g., the sequence 1-3-5-4-3-7
has two turning points, 5 and 3). The number of observed
turning points is then compared to the theoretically expected
number of turning points and multiplied by 100. Values of
random sequences for this measure range from 90 to 100
(Oomens et al., 2021). Higher values indicate more turning
points than theoretically expected, and lower values indicate
fewer turning points than theoretically expected.

Runs index The runs index computes the variance over
the lengths of ascending subsequences in a sequence. For
instance, the sequence 1-4-7-3-5 contains two runs, one of
length 3 (1-4-7) and one of length 2 (3-5). The runs index is
the variance computed over the two values 3 and 2, which
represent the run lengths. The idea behind this measure is
to capture the variability in the length of ascending subse-
quences. A higher value would indicate frequent switching
between short and long runs of ascending numbers, and a
value of 0 would indicate that all runs of ascending num-
bers in a sequence have the same length. This measure must
also be compared to the expected value of randomly drawn
sequences in order to interpret an observed value as random
or not.

Phi index The phi index is a measure of repetitions of
responses that are divided by a gap of other responses

between them. More specifically, the measure counts the
number of repetitions between the first and the last response
of all blocks of specified length in a sequence and compares
this frequency to the expected frequency of repetitions based
on the observed number of repetitions between the first and
last response of blocks that are one response smaller. Nega-
tive values indicate too few repetitions, and positive values
indicate more repetitions than theoretically expected. We
computed the phi index for blocks ranging in size from 2 to
10 to allow comparability with other measures computed
over different block sizes.

Block entropy

Block entropy is a measure that indicates whether there is
inequality in blocks of responses in a sequence. Blocks are
determined by iterating over the sequence with a rolling win-
dow of size k. We defined & to be between 2 to 10, excluding
only blocks of size 1, as the redundancy index in the previ-
ous section is a transformed version of Shannon’s entropy
(Shannon, 1948), which reduces to block entropy of size
1. High values of block entropy indicate an equal distribu-
tion of blocks of length k; low values indicate inequality,
with a minimum of 0 indicating that a sequence consists of
only one response. We chose a block size of 10 as a cutoff
to allow comparison with complexity measures for short
sequences, which only allow block sizes of up to 10 to be
considered (see below).

Measures of algorithmic complexity

For clarity, we divided the group of algorithmic complexity
measures into three subgroups: averaged algorithmic com-
plexity measures for short sequences as proposed by Gauvrit
et al. (2016), the block decomposition method as proposed
by Zenil et al. (2018), and compression algorithms (Lempel
& Ziv, 1976).

Averaged algorithmic complexity for short sequences This
measure was computed using the R- package acss by Gauvrit
et al. (2016), which is based on the coding theorem method.
Complexity was computed over a rolling window for each
block of length k between 2 and 10. A block size of 10 was
chosen as the cutoff, because for block sizes 11 and 12, for
nine possible values in a sequence, the complexity could
not be computed for all possible sequences (Gauvrit et al.,
2016). Finally, the mean of all complexity values was taken
as an aggregate measure for the entire sequence.

Block decomposition method (BDM) The BDM (Zenil
et al., 2018) was also computed over a rolling window for
each block size k between 2 and 10. Each block was then
assigned its algorithmic complexity from the previous
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section. However, instead of repeatedly counting the algo-
rithmic complexity of recurring blocks, the total score is
only increased by the logarithm of the frequency of a block
after its first occurrence. A repetition of blocks is thus penal-
ized by the BDM formula.

Compression algorithms We also computed two different com-
pression algorithms: Lempel-Ziv complexity (Lempel & Ziv,
1976; LZ76) following the guidelines of Kaspar and Schuster
(1987) and Dolan et al. (2018), and the gzip algorithm using
the memCompress() function in R programming language (R
Core Team, 2023). The goal of compression algorithms is to
search for repeating patterns in a sequence and replace them
with a symbol representing that pattern. In this way, the length
of a sequence can be reduced without losing information, since
the original sequence can be reconstructed from the new com-
pressed version of the sequence. This approach can also be used
to test how random a sequence is, since random sequences with-
out patterns should be difficult to compress, while systematic
sequences with many repeating patterns should result in shorter
compressed sequences.

Results

Data analysis was performed using the R environment for
statistical computing version 4.3.0 (R Core Team, 2023).
The following additional packages were used for the
analysis: acss 0.3-2 (Gauvrit et al., 2016), randseqR 0.1.0
(Oomens et al., 2021), randfindR 0.1.0 (Angelike, 2022),
papaja 0.1.1 (Aust & Barth, 2022), ggplot2 3.4.2 (Wick-
ham, 2016), and ggpubr 0.6.0 (Kassambara, 2020). The data
and code used in all analyses can be found at https://osf.io/
xwzup/.

Computation of randomness indices

First, we drew random sequences equal in length (200
digits) and number (830 participants) to the experimen-
tal data. For this purpose, we used the R package random
(Eddelbuettel, 2017), which is an interface to the random.
org website that generates data sequences of numbers
based on atmospheric noise data (Haahr, 2023). Next, we
computed all of the randomness measures summarized in
the methods section over all sequences (human-generated
and random). We also computed all measures over the first
20, 50, and 100 numbers of each sequence to examine the
effect of sequence length on these measures. To ensure
the robustness of our findings, we repeated all analyses
with two additional random datasets'. The first additional

! We are grateful to Henrik Singmann for suggesting these additional
analyses.
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dataset served as an independent replication and was also
drawn from the R package random that provides access
to atmospheric noise data. The second additional dataset
was generated using the pseudorandom number generator
in R programming language with the sample() function.
The results did not vary across datasets, confirming their
robustness, with all findings remaining virtually the same.
For the sake of shortness and clarity, only the results based
on the first random dataset generated from atmospheric
noise are reported here.

Neither gender nor any of the personality variables
showed a significant association with the measures of ran-
domness under investigation, after a Bonferroni correction
was applied to avoid inflating the alpha error. Participants
who had studied stochastics at school or had received higher
education tended to have higher randomness scores, even
after a Bonferroni correction, but their level of randomness
was still significantly lower than that of truly random data
generated by atmospheric noise.

Classification results

In this section, we investigated which measures of ran-
domness were best suited for discriminating between
human-generated and random sequences. For this pur-
pose, we constructed logistic regression models for each
individual measure of randomness where the score of a
measure computed over all sequences was the independ-
ent variable, and the binary dependent variable was the
source of generation of a sequence (human or random).
The analysis was repeated for each randomness measure
computed over all sequence lengths examined. To con-
trol for possible effects of overfitting, the correct clas-
sification rate of each model was determined through
bootstrapping (n = 1000; further details are provided in
the design section). This allowed us to construct empiri-
cal confidence intervals of the correct classification rate
for each randomness measure by selecting the 2.5th and
the 97.5th percentiles of the bootstrapped correct clas-
sification rates. If the confidence intervals of two differ-
ent randomness measures do not overlap, the difference
between these two measures regarding the correct classi-
fication rate can be considered significant. For example,
suppose a hypothetical randomness measure A has an
upper bound of 75% for the correct classification rate at
the 97.5th percentile, while randomness measure B has
a lower bound of 80% at the 2.5th percentile. Since in
this case the confidence intervals for the correct clas-
sification rates of these two measures do not overlap,
we can conclude that randomness measure B is better
suited for distinguishing between human-generated and
random sequences than measure A. Similarly, we con-
sidered a measure as showing only approximate random
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Fig.1 Correct classification rate for randomness measures ordered by their group of origin

performance if a confidence interval included the value
.50.

Overview of measures

First, we provide an overview of the usefulness of the meas-
ures computed over the entire sequences in discriminating
between human-generated and random sequences (see Fig. 1
for visualization and the Supplementary Materials for all raw
values). The correct classification rate was high for many
randomness measures (M = 0.78, with a range from 0.44 to
0.96). Thus, on the basis of many randomness measures, it
was possible to distinguish between human-generated and
random sequences. Overall, measures of averaged algorith-
mic complexity were consistently useful for discriminating
between the two sources of sequences (between .88 and .94),
although the correct classification rate increased with block

size. Similarly, the phi index showed a high correct classifi-
cation rate (.63 to .96, highest for a block size of 4). Interest-
ingly, the results showed a higher range for the BDM and
block entropy (.46 to .93 and .53 to .89, respectively). BDM
measures showed high correct classification rates for larger
block sizes of 7 to 10 (.80 to .93) and for smaller block sizes
of 2 to 4 (.79 to 89) but not for moderate block sizes of 5 to
6 (.60 and .46). Block entropy measures were most useful for
block sizes of 2 to 4, with decreasing performance as block
size length increased. Other useful measures for distinguish-
ing between human-generated and random sequences were
the coupon score (.92) and all variants of the repetition gap
score, with the median gap between identical numbers being
the most useful (.94). The LZ76 showed significantly better
than chance performance (.73) but fell short of other meas-
ures of algorithmic complexity. The runs, redundancy, and
turning point index, as well as all variants of the adjacency
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Fig.2 Correct classification rate into human-generated and random sequences of logistic regression models based on the measures of Towse and

Neil (1998)

index, showed, at best, slightly above-chance performance
in distinguishing between human-generated and random
sequences (.44 to .59).

Groups of randomness measures

A complete collection of all randomness measures, includ-
ing their descriptive values and correct classification rates by
sequence length, can be found in the Supplementary Mate-
rials. This analysis is divided into five sections: measures
commonly used in psychological research (Towse & Neil,
1998) using the R package randseqR (Oomens et al., 2021),
block entropy measures, and complexity measures, with the
last being divided into measures of algorithmic complexity
for short sequences, the BDM, and compression algorithms.

Common measures in psychological research The median
repetition gap and the coupon score showed a high correct
classification rate with only small effects of sequence length
on performance (see Fig. 2). The mean and mode over the
repetition gap between identical pairs were also among the
most useful measures for distinguishing between human-
generated and random sequences, although they performed
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slightly worse. The RNG and RNG2 indices and the NSQ
showed only chance or near-chance performance for short
sequences (size 20), but became increasingly useful for distin-
guishing between human-generated and random sequences as
the sequence length increased. These measures assess system-
atic repetition in response pairs, and apparently require longer
sequences to show clear differences between human-generated
and random sequences. The combined adjacency, runs, and
turning point indices did not show high correct classification
rates regardless of sequence length. One striking finding was
that the redundancy index enabled adequate discrimination
between human-generated and random sequences for the
first 20 digits (.78), but this performance declined for longer
sequences (.44 for the complete sequences). The redundancy
index is a measure that assesses whether all possible responses
(here, the numbers from 1 to 9) are equally likely to occur. In
this experiment, human-generated sequences showed greater
response equality than random sequences during the first 20
numbers of the sequence (see Supplementary Materials).
This effect disappeared in the long run, until there was no
difference between the groups in the relative frequency of
the numbers. Humans may show too much equality in the
frequency of their responses, which is particularly evident for
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Fig.3 Correct classification rate into human-generated and random sequences of logistic regression models based on measures computed over

block sizes 2 to 10

short sequences (Ginsburg, 1997). This observation is also
consistent with previous findings that people may try too hard
to use all responses equally compared to random sequences of
the same length (Ginsburg & Karpiuk, 1994).

The correct classification rate obtained with the phi index
increased steadily the longer the sequence used for computing
the measure. Performance was particularly high when comput-
ing the measure for blocks of size 4, although the correct classifi-
cation rate was also high for block sizes 2 to 6 (see Fig. 3A). The
correct classification rate was not as high for larger block sizes.

Block entropy When examining block entropy, two interest-
ing results can be highlighted (see Fig. 3B). First, all meas-
ures of block entropy were uninformative for analyzing short
sequences, as indicated by the near-chance performance
in distinguishing between human-generated and random
sequences using only the first 20 numbers of a sequence.
Second, increasing the length of the sequence used to com-
pute block entropy increased the correct classification rate
into human-generated and random sequences. However, the
magnitude of this increase seemed to depend on the block
size. A clear increase in the correct classification rate can be

seen for block sizes of 2 to 4. Block sizes of 5 to 6 yielded
moderate increases in the correct classification rate, while
block sizes of 7 to 10 were only marginally informative in
terms of distinguishing between human-generated and ran-
dom sequences for any given length of a sequence. This
was probably due to the exponentially increasing number of
distinct blocks with increasing size (9%, where k is the block
size). Measures of block entropy look for inequality in the
use of blocks of a given size, which is particularly hard to
find when the number of possible blocks is too large. Block
entropy measures for large block sizes (e.g., 9 or 10) are
likely to require much longer sequences to be informative.

Measures of algorithmic complexity The section on meas-
ures of algorithmic complexity is divided into three sections:
measures of algorithmic complexity for short sequences, the
BDM, and compression algorithms.

Averaged algorithmic complexity for short sequences In
this section, we investigate the measures of algorithmic
complexity as proposed by Gauvrit et al. (2016). Figure 3C
shows that the correct classification rate for all measures of

@ Springer



7842

Behavior Research Methods (2024) 56:7831-7848

averaged algorithmic complexity increases steadily with the
length of the sequence considered and the block size used to
compute the measure. Overall, measures of averaged algorith-
mic complexity showed a consistently high correct classifica-
tion rate compared to all other measures, with the lowest cor-
rect classification rate above 70% and the highest above 90%.

Note that we observed a rather surprising result for all
measures of averaged algorithmic complexity. Higher values
are associated with more complex and random sequences.
However, we found that human-generated sequences had
higher values for these measures than sequences generated
by a random process (see Supplementary Materials). This
finding seems to be caused by the short block length of num-
bers for which it can be computed. In this study, the measure
was computed for blocks up to size 10. A high-complexity
sequence usually contains all possible numbers equally often,
as can be seen in the examples of high-complexity binary
strings in Gauvrit et al. (2014). However, if there are nine
possible numbers, high-complexity sequences will appear as
if someone had cycled through all available numbers when
generating the sequence, because each number will occur
approximately once. As a result, short sequences of high
complexity may resemble those generated by humans, who
show such a cycling tendency in their behavior. This is illus-
trated by the negative correlation between algorithmic com-
plexity for block size 10 and the coupon score, r(828) = —.59,
p < .001, showing that participants with a stronger tendency
to cycle through all available numbers (lower coupon score)
obtain higher values of algorithmic complexity.

BDM Results for BDM did not exactly follow the pattern of
the averaged algorithmic complexity (see Fig. 3D). For large
block sizes (8 to 10), the BDM was useful for distinguish-
ing between human-generated and random sequences. How-
ever, for block sizes of 5 to 6, the correct classification rate
decreased steadily with increasing sequence length. On the
other hand, for block sizes of 2 to 4, the correct classification
rate using the BDM was at chance level when computed over
the first 20 numbers of the sequence but increased steadily
with longer sequences.

To further investigate this finding, we computed the com-
mon language effect size for the difference in BDM scores
between human-generated and random sequences, which
indicates the probability that a randomly selected BDM
score from the human sample is higher than a randomly
selected BDM score from the random sequence sample
(Fig. 4). The results showed a general tendency: as sequence
length increased, the differences between BDM scores for
human-generated and random sequences decreased. For
block sizes of 2 to 4, this difference even reversed, so that
random sequences had higher BDM scores than human-gen-
erated sequences. For larger block sizes, however, humans
had consistently higher BDM scores regardless of sequence
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length. The reason for this pattern of results probably lies
in the combination of algorithmic complexity and entropy
in the BDM. Humans generally show a tendency to cycle
through all available numbers too quickly, leading to higher
averaged algorithmic complexity on the one hand and a ten-
dency to repeat smaller blocks of size 2 to 4 on the other
hand. Penalizing the latter leads to lower BDM scores for
human-generated sequences for smaller block sizes. How-
ever, penalizing repetitive patterns becomes increasingly
ineffective with increasing block size due to the exponen-
tially increasing number of distinct blocks, as explained in
the section on block entropy. As a result, human-generated
sequences have higher BDM scores than random sequences
for larger block sizes and lower scores for smaller block
sizes. For moderate block sizes (5 to 7), the combination
of these opposing effects may explain the declining perfor-
mance of the measure as these effects appear to cancel each
other out, resulting in smaller differences in BDM scores
between human-generated and random sequences.

Compression algorithms Both compression algorithms,
LZ76 and gzip, showed a comparatively low rate of correct
classification into human-generated and random sequences
(see Supplementary Materials). The correct classification
rate peaked at about 60-70%. This is significantly lower
than the highest correct classification rate of randomness
measures from each of the measure groups analyzed so far.
There were several examples of measures (e.g., the RNG
index, phi index, measures of block entropy, or algorith-
mic complexity) that exceeded the 80% or even 90% correct
classification rate. This finding is not very surprising given
that compression algorithms are typically used to quickly
compress longer sequences, such as files, and not to analyze
human-generated sequences of a few hundred digits or less
(Gauvrit et al., 2016; Zenil et al., 2018).

Discussion

The present study is the first large-scale integrative compari-
son of a broad collection of different measures of random-
ness. We analyzed not only measures that are traditionally
used in psychological research (Towse & Neil, 1998), but
also classical measures from information theory, such as
block entropy (Moore et al., 2018; Shannon, 1948), as well
as measures of algorithmic complexity (Gauvrit et al., 2016;
Lempel & Ziv, 1976; Zenil et al., 2018). In addition, we
analyzed how the effectiveness of measures for identifying
human behavior may depend on sequence length. We also
proposed a classification-based approach to evaluate ran-
domness measures in terms of their usefulness in identifying
human behavior in RNG tasks. For this analysis, we did not
rely on numbers obtained through pseudorandom generation
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from a computer for comparison; instead, we used sequences
from a random source that are aperiodic and nondetermin-
istic (Haahr, 2023).

Our results show that several measures of randomness can
distinguish between human-generated and random sequences
with a high correct classification rate of > .80. This is not
too surprising, given the large body of research showing that
humans generally fail to behave randomly (Bocharov et al.,
2020; Figurska et al., 2008; Ginsburg & Karpiuk, 1994;
Montare, 1999; Schulz et al., 2021). However, some ran-
domness measures were particularly good at distinguishing
between human-generated and random sequences. Complex-
ity measures such as averaged algorithmic complexity for
larger block sizes (especially block size 10), block entropy
for shorter to moderately long block sizes (especially block
size 3), and the phi index for moderately long block sizes
(especially block size 4) were most useful. The median rep-
etition gap score and the coupon score also showed large dif-
ferences between human-generated and random sequences.
We argue that researchers who wish to use measures of ran-
domness that are sensitive to systematic patterns typical of
humans should use these measures.

It should be noted, however, that the sensitivity of ran-
domness measures to systematic patterns, which are often
generated by humans, depends on the length of the sequence
over which the measures are computed. Measures such as

algorithmic complexity for blocks of size 10 or the rep-
etition median already showed large differences between
human-generated and random sequences for short sequences
of length 20, with a rate of correct classification between
human-generated and random sequences close to 90%. If
researchers want to analyze short sequences or subsequences
of longer human-generated sequences, they should use these
two measures. The phi score (block size 4) and the coupon
score were also sensitive to differences between human-
generated and random sequences for short sequences, but
to a lesser extent than the averaged algorithmic complexity
and the repetition median.

Averaged algorithmic complexity, the median repeti-
tion gap, the phi score, and, to a lesser extent, the coupon
score also showed a high correct classification rate for
longer sequences, demonstrating their applicability in vari-
ous contexts of RNG tasks. On the other hand, measures
such as block entropy showed almost no difference at all
between human-generated and random sequences of short
length. These measures required sequences 100 digits or
more in length to achieve a high correct classification rate
for moderate block sizes. Even for sequences of 100 digits,
the correct classification rate between human-generated and
random sequences by block entropy could not exceed the
classification rate of the average algorithmic complexity for
sequences of length 20. A similar effect was observed for the
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RNG and RNG?2 indices, which are modified measures of
block entropy for number pairs. Several studies using these
measures were based on the analysis of human-generated
sequences of 100 digits (Friedman & Miyake, 2004; Gins-
burg & Karpiuk, 1994; Maes et al., 2011; Miyake et al.,
2000, Miyake, Friedman et al., 2001a; Peters et al., 2007;
Towse, 1998; Zabelina et al., 2012). Thus, it would seem
advisable to increase the sequence length of the RNG task if
researchers plan to use these measures, as longer sequences
appear to be required to exploit their full potential. Our
results suggest that block entropy-derived measures for short
to medium block sizes should only be used for sequences of
at least, but preferably more than, 100 digits.

Several measures were not useful for identifying system-
atic patterns observed in humans: the turning point and the
runs index showed little or no difference between human-
generated and random sequences regardless of sequence
length. We advise caution in using these measures in future
research, as they may introduce irrelevant variance for char-
acterizing human behavior in RNG tasks. However, this find-
ing should be replicated in future research to determine its
stability. Otherwise, our findings are consistent with pre-
vious studies such as Ginsburg and Karpiuk (1994), who
found similar differences in measures such as coupon and
the median repetition gap between human-generated and
random-like sequences. Our results are also consistent with
their finding that humans show a more even use of all pos-
sible numbers in a sequence than would be expected on aver-
age for a random sequence of the same short length (100
numbers; Ginsburg & Karpiuk, 1994).

One measure that we recommend against using for the
analysis of sequences consisting of numbers in the range
of 1 to 9 is the block decomposition method (BDM) due to
its inconsistent interpretation. Depending on the length of
the sequence and the block size used to compute it, a larger
value may indicate either a randomly generated sequence
or a human-generated sequence. This is likely due to the
opposing effects of complexity and block entropy on scores
in the BDM: on the one hand, we found that the complexity
was generally higher for human-generated than for random
sequences; on the other hand, the BDM formula penalizes
repetitions in a similar way to block entropy, leading to
lower scores for humans, especially for blocks of short to
medium length. We therefore argue that researchers should
use average algorithmic complexity if they wish to use com-
plexity measures, as it consistently shows higher values for
human-generated sequences than for random sequences.

A strong argument can be made against the use of com-
pression algorithms. The investigated measures, LZ76 and
the gzip algorithm, even when computed over the complete
sequences, performed worse regarding the correct classi-
fication rate than the averaged algorithmic complexity as
proposed by Gauvrit et al. (2016), even when the latter was
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computed using only the first 20 numbers of each sequence.
Therefore, we cannot recommend the use of compression
algorithms as measures of randomness.

How can the randomness measures considered in this
investigation be used for applied research questions? Fortu-
nately, implementations are available for all of the measures
presented in this paper. The measures commonly used in
psychological research proposed by Towse and Neil (1998)
can be computed using either the computer program from
their original publication RgCalc or the more recent imple-
mentation in the R package randseqR by Oomens et al.
(2021). The algorithmic complexity of short sequences
as well as the BDM can be computed using the R package
acss by Gauvrit et al. (2016), who also provide an intro-
duction and tutorial on how to use it. The BDM can also
be computed using the online algorithmic complexity cal-
culator https://complexity-calculator.com/ (Soler-Toscano
et al., 2014; Zenil et al., 2018). Implementations of block
entropy and LZ76 can be found in the R package randfindR
at the following link: https://github.com/TImA97/randfindR
(Angelike, 2022). The code used to compute all randomness
measures in this investigation can be found at https://osf.io/
xwzup/.

Finally, we must discuss the surprising result concern-
ing the averaged algorithmic complexity as a measure of
randomness. We found that human-generated sequences
yielded higher estimates of averaged algorithmic complex-
ity than random sequences. In this study, participants gen-
erated sequences containing the numbers 1 through 9. A
highly complex sequence must contain all possible values
approximately equally often, leaving little or no room for
repetition if the sequence is only 10 digits in length. Conse-
quently, a highly complex sequence with nine alternatives
is a sequence that appears to show a certain cycling ten-
dency. We argue that algorithmic complexity, as proposed
by Gauvrit et al. (2014, 2016) for sequences with nine pos-
sible alternatives, does not accurately reflect randomness,
since systematic nonrandom biases lead to higher values of
complexity. Rather, the measure of algorithmic complexity
appears to be inversely related to randomness. This limita-
tion of the measure in terms of its interpretation needs to be
addressed in future research. However, it should be empha-
sized that the averaged algorithmic complexity showed high
sensitivity to systematic patterns that humans exhibited
when attempting to generate random sequences, regardless
of the sequence length, underscoring the usefulness of this
measure for characterizing human behavior.

A common criticism of the state of the scientific litera-
ture on the analysis of randomness in human-generated
sequences is that too many different measures of randomness
are used (e.g., Gauvrit et al., 2016; Wagenaar, 1972). This
makes it difficult, if not impossible, to compare the results
of different studies. The goal of this paper is to inform
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researchers about the properties of the randomness meas-
ures they employ in their research. We analyzed a diverse
collection of randomness measures in terms of their sensitiv-
ity to systematic patterns that humans show when trying to
generate random sequences of numbers: measures that are
motivated by psychological research (Towse & Neil, 1998),
measures of block entropy (Shannon, 1948), and measures
of algorithmic complexity (Gauvrit et al., 2016; Lempel &
Ziv, 1976; Zenil et al., 2018). We went beyond previous
research not only in the number and variety of randomness
measures evaluated, but also in the systematic analysis of
the influence of the sequence length on the measures’ sen-
sitivity to systematic human behavior in RNG tasks. We
showed that some measures, such as the turning point and
the runs index, show only a negligible difference between
human-generated and random sequences. We argue that not
all of the measures proposed by Towse & Neil (1998) may
be necessary for analyzing sequences from an RNG task.
We found that measures such as the phi index for moderate
block sizes (a measure of repetition over a number gap), the
coupon score (a measure of the cycling tendency), the rep-
etition gap score, the block entropy of shorter to moderate
block sizes for longer sequences, and especially the averaged
algorithmic complexity regardless of sequence length show
high sensitivity to the patterns exhibited by humans in an
RNG task. We hope these results help researchers to make
more informed decisions about the choice of randomness
measures for the analysis of RNG tasks. For a reasonably
well-specified research question, only one or a few sensi-
tive randomness measures may be sufficient, rather than a
large collection of randomness measures that may contain
uninformative measures.

There are many different examples of analyzing the ran-
domness of human-generated sequences from RNG tasks.
Randomization performance can be analyzed to compare
different experimental groups, such as different levels of pro-
duction speed (Towse, 1998), or quasi-experimental groups
such as healthy versus schizophrenic patients (Peters et al.,
2007) or healthy controls versus patients with acquired brain
injury (Maes et al., 2011). Performance on RNG tasks has
been recognized as a possible indicator of executive function
(e.g., Cooper, 2016). Deterioration in this performance can,
thus, be used to infer the effect of an experimental manipula-
tion or to uncover correlates of psychiatric and neurologi-
cal disorders on cognitive functions. For such purposes,
it seems prudent to use measures that have been shown to
be most sensitive to systematic human behavior. We hope
that this study will help researchers choose the most appro-
priate measure of randomness for their research question.
However, researchers should not be completely discouraged
from using other measures of randomness if they can better
answer a theoretically meaningful question. For example,
Peters et al. found that patients with schizophrenia tend to

respond to pairs of adjacent numbers (such as 8-7 or 1-2).
This could be explicitly investigated using the adjacency
score, although it did not show high sensitivity to systematic
patterns found in humans in this study.

Quantifying the randomness of number sequences has
applications beyond the setting of the RNG task. For exam-
ple, measures of randomness could potentially be used to
assess whether participants’ responses to a task or question-
naire are provided thoughtfully”. It would be interesting to
investigate whether and which measures of randomness are
most effective in distinguishing between serious and nonse-
rious responses. For example, in a lexical decision task in
which words and nonwords are presented in random order,
responses that deviate substantially from a random sequence
likely indicate a violation of the instruction to categorize
stimuli as being words versus nonwords, and a tendency to
produce some kind of systematic pattern instead. The effec-
tiveness of measures of randomness in detecting nonserious
responding could be compared with existing approaches to
detect repetitive patterns that are based on computing auto-
correlations between subsequent responses. These latter
methods are limited to some extent because they are only
sensitive to specific regularities that have sometimes been
found to characterize nonserious responses (Gottfried et al.,
2022). To improve data quality in empirical investigations
by identifying careless responses more reliably, established
measures to detect nonserious responding could be supple-
mented or possibly even replaced with quantitative measures
of randomness.

In the present study, we did not examine measures of
recurrence quantification analysis (Oomens et al., 2023)
because principal component analyses show that even though
only recurrence quantification analysis preserves all time-
based information, recurrence quantification analysis and the
measures proposed by Towse and Neil (1998) show a similar
factorial structure (Oomens et al., 2015). Future research
should further investigate the effectiveness of randomness
measures in assessing changes in randomness over time, as
these changes may reflect changes in the underlying cogni-
tive processes (Oomens et al., 2023). Temporal changes in
algorithmic complexity may improve our understanding of
RNG task performance, as this measure strongly correlates
with the perceived randomness of sequences (Gauvrit et al.,
2016). Changes in algorithmic complexity could potentially
indicate corresponding changes in information processing.
Using measures of algorithmic complexity, such temporal
changes have already been established for binary sequences
(Biesaga et al., 2021; Biesaga & Nowak, 2024). Comparing
recurrence quantification analysis and algorithmic complex-
ity for binary sequences or for sequences based on a set

2 We are grateful to the editor for making this suggestion.
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size of three or more could provide additional insights into
potential changes in the cognitive demands posed by RNG
tasks over time. Furthermore, measures based on informa-
tion theory could improve our understanding of how humans
generate random numbers, as this approach has been shown
to accurately reflect and to be sensitive to individual differ-
ences in pattern preferences (Schulz et al., 2021). Employ-
ing different types of randomness measures may therefore
help to better understand the components underlying RNG
performance.

In summary, we have compared a large collection of
randomness measures for their usefulness in distinguishing
between human-generated and random sequences, thereby
establishing a validation criterion for judging the usefulness
of a measure for identifying human behavior. These results
are directly applicable to psychological research using RNG
tasks. We find that some of the commonly used random-
ness measures are insensitive to the differences between
human-generated and random sequences and are, therefore,
not informative for characterizing human behavior. We also
show that the sensitivity of many randomness measures can
strongly depend on the sequence length used for analysis.
On the other hand, some measures, such as the algorithmic
complexity or the repetition gap score, showed high sensitiv-
ity to patterns indicative of human behavior for both short
and long sequences. Taken together, these results can help
guide practitioners in selecting the measures of randomness
that are most appropriate for their research question.
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