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Abstract
Whether and how well people can behave randomly is of interest in many areas of psychological research. The ability to 
generate randomness is often investigated using random number generation (RNG) tasks, in which participants are asked to 
generate a sequence of numbers that is as random as possible. However, there is no consensus on how best to quantify the 
randomness of responses in human-generated sequences. Traditionally, psychologists have used measures of randomness 
that directly assess specific features of human behavior in RNG tasks, such as the tendency to avoid repetition or to sys-
tematically generate numbers that have not been generated in the recent choice history, a behavior known as cycling. Other 
disciplines have proposed measures of randomness that are based on a more rigorous mathematical foundation and are less 
restricted to specific features of randomness, such as algorithmic complexity. More recently, variants of these measures have 
been proposed to assess systematic patterns in short sequences. We report the first large-scale integrative study to compare 
measures of specific aspects of randomness with entropy-derived measures based on information theory and measures based 
on algorithmic complexity. We compare the ability of the different measures to discriminate between human-generated 
sequences and truly random sequences based on atmospheric noise, and provide a systematic analysis of how the usefulness 
of randomness measures is affected by sequence length. We conclude with recommendations that can guide the selection of 
appropriate measures of randomness in psychological research.
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Psychologists have long been interested in the human ability 
to generate random-like sequences (Baddeley, 1966; Falk 
& Konold, 1997; Wagenaar, 1972). The basic consensus is 
that humans generally do not behave randomly but instead 
exhibit systematic patterns that make their decisions predict-
able (Bocharov et al., 2020; Schulz et al., 2012; Shteingart 
& Loewenstein, 2016). Previous studies have used various 
measures from psychological research, computer science, 
and mathematics to quantify randomness or the lack thereof 
(Gauvrit et al., 2016; Ginsburg & Karpiuk, 1994; Oomens 
et al., 2015, 2021; Towse & Neil, 1998). However, the heter-
ogeneity in the plethora of measures used across studies has 
been criticized by researchers for being subjective and not 

allowing for comparisons between studies (Barbasz et al., 
2008; Gauvrit et al., 2014, 2016), with the earliest criticisms 
dating back decades (Wagenaar, 1972). In this paper, we 
provide the first large-scale comparison of a diverse collec-
tion of randomness measures in terms of their ability to dis-
criminate between random and human-generated sequences. 
We undertook this investigation to provide practitioners with 
data-based recommendations for selecting appropriate meas-
ures of randomness in psychological research.

The ability to generate random-like sequences is typi-
cally assessed using so-called random number generation 
(RNG) tasks, in which participants are asked to generate 
a sequence of random numbers. Typically, participants are 
asked to use numbers in the interval from 1 to 9 (Capone 
et al., 2014; Jokar & Mikaili, 2012; Miyake et al., 2000; 
Schulz et al., 2021; Zabelina et al., 2012), but there are also 
experimental paradigms that require the use of 10 or more 
numbers (Ginsburg & Karpiuk, 1994; Peters et al., 2007; 
Towse, 1998; Towse & Cheshire, 2007) as well as studies 
with only two numbers (Biesaga et al., 2021; Biesaga & 
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Nowak, 2024; Gauvrit et al., 2016). Another variant of this 
task requires participants to produce a random sequence of 
letters (Baddeley, 1966; Cooper et al., 2012; Larigauderie 
et al., 2020). Typically, participants are carefully instructed 
about the properties of random sequences to avoid measur-
ing participants’ misconceptions about randomness (Schulz 
et al., 2021; Towse & Cheshire, 2007).

The study of human RNG is of interest in several areas 
of psychology because it can be used to better understand 
various cognitive functions. For example, RNG performance 
can be used as an indicator of working memory and inhibi-
tory capacity (Friedman & Miyake, 2004; Heuer et al., 2005) 
or, more generally, of the central executive (Cooper, 2016; 
Miyake et al., 2000; Miyake, Friedman et al., 2001a). Cog-
nitive models have been developed to explain how humans 
attempt to generate random-like sequences of numbers 
(Cooper, 2016). Because RNG tasks are demanding and 
draw on different cognitive resources, they are often used as 
secondary load tasks to analyze performance on both pri-
mary and secondary tasks in dual-task experiments. Stud-
ies have shown a significant reduction in performance on 
the primary task and in the randomness of the sequences 
generated in the secondary load task (Howarth et al., 2016; 
Knott & Dewhurst, 2007; Miyake, Witzki et al., 2001b). 
RNG tasks have also been used to study the cognitive abili-
ties of patients with psychiatric and neurological disorders 
such as schizophrenia (Peters et al., 2007; Shinba et al., 
2000) or acquired brain injury (Maes et al., 2011), who 
show even more stereotyped behavior than healthy controls 
as evidenced by the tendency to generate series of adja-
cent number pairs (e.g., 7-6 or 4-5). The ability to generate 
random-like sequences has been found to develop similarly 
to other cognitive abilities across the lifespan: it increases 
from childhood to adolescence, peaking at age 25, followed 
by a decline that becomes steeper around age 60 (Gauvrit 
et al., 2017).

To study how different cognitive processes contribute to 
the ability to generate random-like sequences, researchers 
need measures that are sensitive to systematic patterns that 
people may exhibit. The problem that needs to be addressed 
is that, in principle, it is impossible to tell with certainty 
from a given sequence whether it was generated by a ran-
dom or a deterministic process. An apparently systematic 
sequence such as 1-2-1-2-1-2-1-2 has the same probability 
of occurrence under a random process as the less systematic 
sequence 1-1-2-2-2-1-1-2 (Gauvrit et al., 2016). However, 
we can infer from the occurrence of systematic patterns 
in the first example sequence that it is more likely to have 
been generated by a deterministic, nonrandom process than 
the second sequence. Approaches to assessing the random-
ness of sequences generated in an RNG task are based on 
the identification of systematic patterns that provide evi-
dence that a nonrandom process could have generated them 

(Gauvrit et al., 2016; Ginsburg & Karpiuk, 1994; Towse & 
Neil, 1998). Researchers have not agreed on a single way 
to assess randomness, as evidenced by the heterogeneity 
among approaches summarized in the following section. 
Instead, the measures used to quantify randomness or the 
lack thereof can be broadly grouped into three categories.

Approaches to the detection of deviations 
from randomness

Measures commonly used in psychological research

Over the past several decades of research, psychologists have 
used a variety of measures to assess randomness. Many of 
these measures take into account biases in human behavior, 
such as the fear of repetition, which refers to the tendency 
to avoid direct repetitions of a number (Cooper, 2016). 
Two commonly used collections of randomness measures 
for analyzing human-generated random number sequences 
were proposed by Ginsburg and Karpiuk (1994) and Towse 
and Neil (1998). Ginsburg and Karpiuk proposed a collec-
tion of 10 measures that assess typical human biases in an 
RNG task: the coupon score, the gap score, the poker score, 
the runs index, the cluster ratio, the RNG index, diagram 
repetitions, repetitions, series, and variance of digits. These 
measures were often aggregated using principal compo-
nent analyses based on the correlation between randomness 
measures across participants. These analyses revealed three 
components: cycling, seriation, and repetition. The cycling 
component is shown by the tendency to select numbers that 
have not been used recently with increased probability; the 
seriation component is shown by the tendency to stereotype 
behavior, such as the tendency to ascend or descend a series 
of numbers; and the repetition component reflects the avoid-
ance of direct repetition (Peters et al., 2007).

Towse and Neil’s work is a refinement of Ginsburg and 
Karpiuk’s work, removing redundant measures, such as the 
poker score, the cluster ratio, diagram repetition, repetitions, 
and series, and adding new ones, such as the phi score—
a measure of repetition that, unlike most of the measures 
discussed in Ginsburg and Karpiuk (1994), can be com-
puted over any interval length—and the redundancy index, 
the turning point index, and the adjacency score. Towse 
and Neil also performed a principal component analysis 
on all of their measures. They concluded that the correla-
tion between measures of randomness across participants 
was best explained by a four-component solution. Towse 
and Neil (1998) named these four components “equality 
of response usage,” “short repetitions,” “prepotent associ-
ates,” and “long repetitions.” Their “equality of response 
usage” component mirrors Ginsburg and Karpiuk’s cycling 
component in that both components reflect behavior that is 
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aimed at using all numbers in a sequence in an equal man-
ner. This is also evidenced by other randomness measures 
that load on these components, such as the coupon and the 
median gap score, which assess how long it takes for all 
numbers to occur once and how long it takes, on average, 
for a number to be repeated. The component “prepotent 
associates” assesses whether there is a tendency to engage 
in stereotypical behavior, such as repeating some pairs of 
number more often than others in a sequence, which is 
conceptually similar to the seriation component. Random-
ness measures that assess the tendency to repeat number 
pairs load on both of these components in the Ginsburg and 
Karpiuk and Towse and Neil studies. The original repetition 
component of Ginsburg and Karpiuk (1994) was found in 
two components reflecting the number of repetitions over 
short and long distances. The generation of a number that 
has been used one to three numbers before in the sequence 
is an example of a short-distance repetition; the generation 
of a number that has been used at least four numbers before 
is an example of a long-distance repetition. The Towse and 
Neil collection comes with the RgCalc software tool and 
has recently been implemented in the R package randseqR 
(Oomens et al., 2021). The measures proposed by Towse 
and Neil are widely used in psychological research (Bar-
basz et al., 2008; Cooper, 2016; Larigauderie et al., 2020; 
Linschoten & Harvey Jr., 2004; Maes et al., 2011; Schulter 
et al., 2010; Zabelina et al., 2012). Some of the measures 
included in Towse and Neil’s collection that assess whether 
some responses or pairs of responses are generated more 
frequently than others in a sequence, such as the redundancy 
index, the RNG index, and the RNG2 index, fall into a sec-
ond category of entropy-based measures that can also be 
used to quantify the randomness of a sequence.

Block entropy

As defined by Shannon (1948), entropy is a measure that 
quantifies the amount of information in a sequence based on 
the frequency distribution of the symbols that make up the 
sequence. A sequence in which each symbol is equally fre-
quent has maximum entropy and contains the most informa-
tion. A sequence consisting of only one symbol has entropy 
of 0 and contains no information due to redundancy. When 
applied to the study of human RNG tasks, entropy indicates 
whether there is an uneven distribution of the frequency of 
numbers in a sequence. In this context, low entropy would 
indicate that a person has used some numbers more than 
others in a sequence. Block entropy is an extension of stand-
ard Shannon entropy that goes beyond the analysis of indi-
vidual numbers by assessing whether there is inequality in 
the frequency of blocks (also called n-grams) of consecu-
tive responses in a sequence (Moore et al., 2018; Shannon, 
1948). For example, a sequence might contain the block 

7-4-1 more frequently than all other blocks of the same 
size, resulting in lower block entropy. Some of the meas-
ures in Towse and Neil’s (1998) collection that are used to 
assess whether there is inequality in responses or pairs of 
responses in a sequence are variants of Shannon and block 
entropy. However, to our knowledge, measures of block 
entropy that assess whether there is inequality in response 
triplets or quadruples (or even larger blocks) have not been 
systematically used to analyze human RNG tasks. Including 
such measures based on information theory may provide a 
more complete assessment of recurring patterns in human 
RNG that are associated with the seriation and “prepotent 
associates” components in Ginsburg and Karpiuk (1994) and 
Towse and Neil (1998), respectively. Recent findings indi-
cate that individuals may differ strongly in their tendency 
to repeat specific number blocks larger than two numbers 
(Schulz et al., 2021). However, measures of randomness that 
are traditionally employed in psychological research do not 
account for blocks of numbers larger than two.

Measures of algorithmic complexity

Recently, some promising new measures of randomness have 
been proposed that originate from algorithmic complexity 
theory (Gauvrit et al., 2014; Zenil et al., 2018). These ran-
domness measures are based on the Kolmogorov–Chaitin 
definition of complexity (Gauvrit et al., 2016). In this frame-
work, complexity is defined as the length of the shortest 
computer program that can produce a given object—in this 
case, a sequence of numbers. A sequence that follows a sys-
tematic pattern, such as 1-2-1-2-1-2-1-2, can be generated 
by a program that follows a simple algorithmic rule (e.g., 
repeat response pair 1-2 four times). This sequence would 
therefore be considered not complex and probably not gen-
erated by a random process. However, the same sequence 
would be considered random according to classical Shannon 
entropy if, when choosing from two possible responses, both 
responses (e.g., 1 and 2) occur equally often. The concept 
of algorithmic complexity is important for algorithms for 
lossless compression of long sequences, where the goal is 
to replace the original sequence with a shorter sequence 
that contains all of the information of the original sequence 
but replaces recurring patterns (Lempel & Ziv, 1976). A 
sequence is considered more random the less compressible 
it is (i.e., the fewer repeating patterns it contains). Measures 
of Lempel–Ziv complexity have only rarely been used in 
psychological research. However, the study by Wong et al. 
(2021) is an example of such an application. When analyz-
ing human-generated sequences, psychologists might profit 
from also considering measures of algorithmic complexity. 
A recent investigation found a strong correlation between the 
algorithmic complexity of a sequence and its randomness 
as perceived by humans (Gauvrit et al., 2016). Therefore, 
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measures of algorithmic complexity may help to assess spe-
cific regularities that humans often perceive as random (Falk 
& Konold, 1997; Gauvrit et al., 2016) and that may therefore 
be present in sequences humans produce in RNG tasks.

The software needed to approximate the algorithmic com-
plexity for short sequences has only recently been imple-
mented (Gauvrit et al., 2014, 2016; Soler-Toscano et al., 
2014). It is based on the coding theorem method, according 
to which sequences with low algorithmic complexity have a 
high probability of being produced by a deterministic pro-
cess (in this case, a computer program), and sequences with 
high algorithmic complexity have a low probability of being 
produced by a deterministic process. The computer programs 
used to quantify the probability that a deterministic process 
produces a sequence are Turing machines. A Turing machine 
is a theoretical model of a general-purpose computer that 
produces an output based on a specified set of rules. By 
sampling from many Turing machines, it is possible to con-
struct a frequency table showing how often a sequence is 
generated by a randomly drawn Turing machine and, thus, 
by a deterministic process. This information is then used 
to approximate the algorithmic complexity of a sequence 
by taking the negative logarithm of the relative frequency 
with which the sequence is generated. Higher algorithmic 
complexity indicates sequences that are rarely generated by 
a deterministic process, and lower algorithmic complexity 
indicates less complex sequences that are frequently gener-
ated by a deterministic process. This approach promises to 
detect systematic patterns for short sequences (≤ 12), which 
no previous measure of randomness has been able to do. 
It was extended to longer sequences by Zenil et al. (2018), 
who proposed the block decomposition method (BDM) by 
combining it with the concept of entropy, which allows the 
repeated use of identical blocks of numbers in a sequence 
to be penalized. The usefulness of measures of algorithmic 
complexity has already been demonstrated for the analysis of 
binary sequences in a psychological setting (Biesaga et al., 
2021; Biesaga & Nowak, 2024; Gauvrit et al., 2016), but not 
for sequences of more than two possible numbers.

The present study

We present the first large-scale comparison of a diverse col-
lection of randomness measures from psychology (Gins-
burg & Karpiuk, 1994; Oomens et al., 2021; Towse & Neil, 
1998) and from information theory and algorithmic com-
plexity theory (Gauvrit et al., 2016; Lempel & Ziv, 1976; 
Shannon, 1948; Zenil et al., 2018). We determine how well 
randomness measures are suited to determining whether a 
human or a random process generated a sequence. Thus, our 
approach focuses on identifying measures of randomness 
that best detect biases that humans exhibit when they attempt 

to generate random numbers. Which measures best detect 
evidence of systematic behavior that is not present in random 
sequences? The rationale behind this validation approach is 
that a measure that is sensitive to nonrandomness, i.e., sys-
tematic patterns exhibited by humans, should be able to dis-
criminate between random and human-generated sequences 
with high confidence.

As a gold standard for comparison, we used data from 
atmospheric noise as a presumably truly random source 
(Furutsu & Ishida, 1961; Haahr, 2023). We chose atmos-
pheric noise to avoid having to rely on computer-generated 
pseudorandom sequences based on deterministic algorithms 
as a validation criterion. Unlike pseudorandom number gen-
erators, true random number generators such as atmospheric 
noise produce random numbers that are aperiodic and non-
deterministic (Haahr, 2023).

In addition, we investigate how the length of a sequence 
affects the usefulness of measures to discriminate between 
human-generated and random sequences, as sequence 
lengths often vary widely across studies (Figurska et al., 
2008; Ginsburg & Karpiuk, 1994; Schulz et  al., 2021). 
Moreover, it is plausible to assume that the measures differ 
in their sensitivity to detect systematic patterns in human-
generated sequences depending on the sequence length, as 
some measures, such as the complexity measure of Gauvrit 
et al. (2016), were specifically designed for short sequences, 
while other measures, such as compression algorithms, are 
generally only used to analyze longer sequences (Zenil et al., 
2018). Based on our results, we try to derive practical rec-
ommendations for the selection of the most useful measures 
for the analysis of randomness in human behavior.

Methods

Design

Sequences of numbers were generated either by human par-
ticipants in an RNG task or by continuously updated varia-
tions in the amplitude of atmospheric noise data provided by 
the website random.org (Haahr, 2023) as accessed through 
an interface included in the R package random (Eddelbuet-
tel, 2017). For each measure of randomness, we computed 
the resampled correct classification rate at which sequences 
of numbers could be correctly assigned to their generating 
source (human vs. random). We used logistic regression 
models with each measure of randomness as the independ-
ent variable and the source of the sequences as the dependent 
variable. Each logistic regression model was bootstrapped 
(n = 1000). To this end, each of the n logistic regression 
models was computed on 1660 randomly sampled sequences 
(with replacement). The sample size for each bootstrap itera-
tion was chosen to equal our human sample size (n = 830) 
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multiplied by 2, since there were as many random as human-
generated sequences. Drawing samples with replacement 
allowed for the possibility of repeated occurrences or no 
occurrences at all of a sequence in the training set used for 
computing the logistic regression model. Each model’s pre-
dictive performance could then be evaluated on the sequences 
that were not part of the training process, resulting in n cor-
rect classification rates for each measure of randomness that 
could then be used for constructing 95% confidence intervals. 
Going beyond previous approaches, we also present the first 
comprehensive investigation of how sequence length affects 
classification rates. To this end, we calculated the correct 
classification rate for complete sequences and for the first 20, 
50, and 100 digits of the 200-digit sequences.

Material

Random number generation task

Instructions Following the approach of Schulz et al. (2021) 
and Towse and Cheshire (2007), we instructed participants 
to consider the following essential features of random num-
ber generation: (1) equal probability of responses, (2) inde-
pendence of responses from each other, and (3) absence of 
patterns and unpredictability of responses. We explained the 
RNG task using the analogy of repeatedly drawing a number 
from 1 to 9 from a hat, returning the drawn number, and then 
shuffling the contents of the hat to repeat this procedure. We 
provided participants with examples of repetitive patterns 
to avoid and an example of what a random sequence might 
look like. We asked participants to generate a random num-
ber each time they heard a metronome tone. If they missed 
a response, they were instructed to move on and generate 
another number with the next sound.

Experimental task We used a 3 × 3 grid to record the 
responses, with a number from 1 to 9 displayed in each cell 
of the grid. The numbers 1, 2, and 3 were in the first row, 
4, 5, and 6 were in the middle row, and 7, 8, and 9 were in 
the bottom row (in the order of their naming). The experi-
mental paradigm of using a 3 × 3 grid for the RNG task was 
adopted from Maes et al. (2011), who showed that the use 
of this grid yielded similar results with respect to the widely 
used Towse and Neil (1998) collection of randomness meas-
ures as when the numbers were produced orally. Before the 
start of RNG task, participants had to confirm through the 
click of a button that they were ready to do the task. Fol-
lowing this confirmation, the screen cleared for 2000 ms, 
after which a horizontally centered 3 × 3 grid of 450 × 450 
pixels appeared. After a further 1000 ms, the rhythmic 
sound of a metronome began and was repeated every 1500 
ms until the RNG task was completed. Participants were 

instructed to randomly select and click on one of the cells 
with their mouse each time they heard the metronome sound. 
In response, the selected cell changed its color to orange for 
250 ms, providing visual feedback to the participant. For 
the 1000 ms following their selection, participants could not 
select another cell from the grid, ensuring that they could not 
speed through the experiment. Once the last trial of the task 
was completed, the grid disappeared, and the study moved 
to the next page. Participants had to complete 200 trials of 
the RNG task, which took exactly 5 minutes if they kept to 
the rhythm of the metronome. A green bar indicated their 
overall progress on the RNG task.

Procedure

The study was conducted using the online platform Unipark 
(https:// www. unipa rk. com/). Participants were welcomed on 
the first page of the study. We informed them about the gen-
eral purpose of the study (random number generation), their 
rights, and the intended use of their data in order to obtain 
their informed consent. On the following page, we asked for 
demographic information about their age, gender, German lan-
guage proficiency, and educational level. Next, participants 
had to complete an audio check to ensure that they could hear 
the metronome during the RNG task. They had to listen to a 
short audio file in which they heard a rooster, and then choose 
which of several animals they had heard. On the next page, 
participants were given instructions on how to complete the 
RNG task. Instructions could only be skipped after 60 sec-
onds, so clicking through the instructions was not possible. 
We then asked participants two simple multiple-choice ques-
tions to make sure they understood the instructions. The first 
question asked how they should behave during the experiment 
(answer: randomly). The second question asked when partici-
pants should choose a random number (answer: at the sound 
of the metronome). Participants were excluded from the study 
at this stage if they answered one or both questions incorrectly. 
On the next two pages, participants were allowed to adjust the 
volume of the metronome so that the sound was comfortable, 
and then completed 10 test trials of the RNG task to become 
familiar with it. This phase was followed by the main experi-
mental task, which consisted of 200 trials. After completing 
the experimental task, participants provided self-reports on a 
need for cognition scale (Lins de Holanda Coelho et al., 2020), 
a conscientiousness scale (Rammstedt et al., 2013), and on 
their mathematical abilities (e.g., school grade in mathematics, 
learning stochastics in school or at university). Additionally, 
participants could enter comments about this study. On the 
next page, they were asked to indicate whether they were seri-
ous about participating in the study (Aust et al., 2013), with 
assurances that this question would not result in forfeiting their 
compensation. On the last page, participants were debriefed 
and thanked for their participation. Participants could again 

https://www.unipark.com/
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enter comments in a text box for feedback, as they now knew 
the purpose of the study. The median time it took to complete 
the study was 12 minutes.

Sample

Participants were recruited through the online panel Bilendi 
(https:// www. bilen di. de). Participants had to be at least 18 
years old and be native German speakers or have a compa-
rable language level to participate in the experiment. Partici-
pants could take part in the study using a desktop computer, 
a tablet (with a touchscreen), or a laptop. Another require-
ment of the study was that participants were able to play an 
audio stream on the device they were using to participate. 
Participants who did not correctly answer both comprehen-
sion questions about the experimental paradigm on the first 
attempt (n = 181) were not allowed to continue at this stage 
due to presumed inattention, in order to ensure the quality 
of the data. The total sample consisted of 830 participants, 
as 21 participants had to be excluded for the following rea-
sons: one participant reported using a 10-sided fair dice for 
the task; another participant used the same answer 50 times 
in a row (for a quarter of the task); 16 participants indicated 
in a seriousness check at the end of the study that they did 
not participate sincerely; one participant used only three of 
the nine possible numbers during the entire RNG task; two 
participants did not follow the rhythm of the metronome 
in the RNG task (median intertrial latency over 2000 ms). 
The final sample consisted of 405 men, 424 women, and 
one person who reported a non-binary gender. The age of 
the sample ranged from 18 to 87 years (M = 51.15, SD = 
15.37). Most participants, 567, reported a certificate of sec-
ondary education or a high school diploma as their highest 
level of education, 245 participants had a college degree, 
16 had obtained a Ph.D., and only two participants had not 
completed high school. The participants were compensated 
with €0.50 for their participation in the study. To increase 
the motivation of the participants, we conducted a lottery 
and awarded an additional bonus of €5 to the 30 participants 
who generated the most random sequences according to the 
coupon score (the participants did not know how we would 
determine the most random sequences). This was to provide 
an additional incentive for participants to be as random as 
possible in the RNG task. The lottery was announced at the 
end of the instructions for the RNG task.

Measures of randomness

Commonly used measures in psychological research (Towse 
& Neil, 1998)

We computed the most widely used collection of randomness 
measures in psychological research, namely that of Towse 

and Neil (1998), who also described these measures in detail 
in their review. To compute these measures, we used the R 
package randseqR as described in Oomens et al. (2021). For 
the computation, we used the randseqR option (same name 
as the package) as suggested by the authors of the package. 
Thus, for measures that rely on computing the frequency of 
occurrence of response pairs in a given sequence, the last 
response pair consisting of the last and (after starting over) 
the first sequence number was not considered.

Redundancy index The redundancy index is a measure of 
whether there is inequality in the frequency of responses 
in a sequence, approaching 100 if a sequence consists of 
only one response and 0 for perfect equality of all possible 
responses. The redundancy index is a transformed version 
of the classical Shannon entropy.

Random number generation (RNG) index The RNG index 
measures whether pairs of responses in a sequence (e.g., 
4-1, 1-5, and 5-6 in the sequence 4-1-5-6) are equally dis-
tributed, given the underlying frequency distribution of the 
first response in a pair. Thus, the RNG index is a measure 
of whether the transition probabilities from one response to 
another are equal. The index ranges from 0 (perfect equality 
of transition probabilities) to 100 (all transition probabilities 
are either 1 or 0).

RNG2 index The RNG2 index follows the same logic as the 
RNG index. However, instead of looking at the transition 
probabilities between consecutive responses, it computes 
whether there is inequality in transition probabilities between 
interleaved responses by a gap of 1. For example, in the 
sequence 4-1-5-6, the two pairs 4-5 and 1-6 are considered. 
The range of this index is identical to the regular RNG index.

Null‑score quotient (NSQ) The NSQ is the proportion of 
response pairs that do not occur in a sequence relative to the 
number of possible response pairs. The measure is multi-
plied by 100 to obtain percentages. The range of this meas-
ure is from 0 to 100, with a value of 0 indicating that all pos-
sible response pairs occur in a sequence. For this measure, 
lower values indicate a more even distribution of response 
pairs and therefore a higher degree of randomness.

Coupon score The coupon score measures how long it takes 
for all possible responses in a sequence to occur. This meas-
ure is computed by iterating over a sequence and counting 
the time until each response has occurred at least once. The 
result is stored, and the procedure starts again with the first 
response after the completed set. The final score is the aver-
age of the lengths required to observe all of the responses. If 
a sequence does not contain all possible responses, the score 
is set to the length of the sequence + 1. Whether a particular 

https://www.bilendi.de
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score indicates low or high randomness can be judged only 
by comparing it to the average score of random sequences, 
because the average time it takes for all responses to appear 
depends strongly on the cardinality of the set of available 
numbers. For this comparison, we used the sequences based 
on atmospheric noise data, which we used as a benchmark 
for a random source of numbers.

Repetition gap The repetition gap is the average gap 
between identical responses in a sequence. We computed 
three variants of this measure: the mean, median, and mode 
over the distribution of gaps between identical responses. 
Like the coupon score, the repetition gap can be interpreted 
as a measure of randomness only when compared to the 
mean repetition gap of random sequences.

Adjacency index The adjacency index measures the propor-
tion of ascending pairs relative to the total number of pairs 
in a sequence. The measure can be computed for ascending 
(e.g., 3-4) and descending pairs (e.g., 7-6), or a combina-
tion of both. The index is multiplied by 100 to represent 
percentages. On average, a random sequence will contain 
a percentage of adjacent pairs equal to the proportion com-
puted by dividing the number of possible adjacent pairs by 
the number of all possible response pairs.

Turning point index Turning points are defined as minima 
and maxima in a sequence (e.g., the sequence 1-3-5-4-3-7 
has two turning points, 5 and 3). The number of observed 
turning points is then compared to the theoretically expected 
number of turning points and multiplied by 100. Values of 
random sequences for this measure range from 90 to 100 
(Oomens et al., 2021). Higher values indicate more turning 
points than theoretically expected, and lower values indicate 
fewer turning points than theoretically expected.

Runs index The runs index computes the variance over 
the lengths of ascending subsequences in a sequence. For 
instance, the sequence 1-4-7-3-5 contains two runs, one of 
length 3 (1-4-7) and one of length 2 (3-5). The runs index is 
the variance computed over the two values 3 and 2, which 
represent the run lengths. The idea behind this measure is 
to capture the variability in the length of ascending subse-
quences. A higher value would indicate frequent switching 
between short and long runs of ascending numbers, and a 
value of 0 would indicate that all runs of ascending num-
bers in a sequence have the same length. This measure must 
also be compared to the expected value of randomly drawn 
sequences in order to interpret an observed value as random 
or not.

Phi index The phi index is a measure of repetitions of 
responses that are divided by a gap of other responses 

between them. More specifically, the measure counts the 
number of repetitions between the first and the last response 
of all blocks of specified length in a sequence and compares 
this frequency to the expected frequency of repetitions based 
on the observed number of repetitions between the first and 
last response of blocks that are one response smaller. Nega-
tive values indicate too few repetitions, and positive values 
indicate more repetitions than theoretically expected. We 
computed the phi index for blocks ranging in size from 2 to 
10 to allow comparability with other measures computed 
over different block sizes.

Block entropy

Block entropy is a measure that indicates whether there is 
inequality in blocks of responses in a sequence. Blocks are 
determined by iterating over the sequence with a rolling win-
dow of size k. We defined k to be between 2 to 10, excluding 
only blocks of size 1, as the redundancy index in the previ-
ous section is a transformed version of Shannon’s entropy 
(Shannon, 1948), which reduces to block entropy of size 
1. High values of block entropy indicate an equal distribu-
tion of blocks of length k; low values indicate inequality, 
with a minimum of 0 indicating that a sequence consists of 
only one response. We chose a block size of 10 as a cutoff 
to allow comparison with complexity measures for short 
sequences, which only allow block sizes of up to 10 to be 
considered (see below).

Measures of algorithmic complexity

For clarity, we divided the group of algorithmic complexity 
measures into three subgroups: averaged algorithmic com-
plexity measures for short sequences as proposed by Gauvrit 
et al. (2016), the block decomposition method as proposed 
by Zenil et al. (2018), and compression algorithms (Lempel 
& Ziv, 1976).

Averaged algorithmic complexity for short sequences This 
measure was computed using the R- package acss by Gauvrit 
et al. (2016), which is based on the coding theorem method. 
Complexity was computed over a rolling window for each 
block of length k between 2 and 10. A block size of 10 was 
chosen as the cutoff, because for block sizes 11 and 12, for 
nine possible values in a sequence, the complexity could 
not be computed for all possible sequences (Gauvrit et al., 
2016). Finally, the mean of all complexity values was taken 
as an aggregate measure for the entire sequence.

Block decomposition method (BDM) The BDM (Zenil 
et al., 2018) was also computed over a rolling window for 
each block size k between 2 and 10. Each block was then 
assigned its algorithmic complexity from the previous 
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section. However, instead of repeatedly counting the algo-
rithmic complexity of recurring blocks, the total score is 
only increased by the logarithm of the frequency of a block 
after its first occurrence. A repetition of blocks is thus penal-
ized by the BDM formula.

Compression algorithms We also computed two different com-
pression algorithms: Lempel–Ziv complexity (Lempel & Ziv, 
1976; LZ76) following the guidelines of Kaspar and Schuster 
(1987) and Dolan et al. (2018), and the gzip algorithm using 
the memCompress() function in R programming language (R 
Core Team, 2023). The goal of compression algorithms is to 
search for repeating patterns in a sequence and replace them 
with a symbol representing that pattern. In this way, the length 
of a sequence can be reduced without losing information, since 
the original sequence can be reconstructed from the new com-
pressed version of the sequence. This approach can also be used 
to test how random a sequence is, since random sequences with-
out patterns should be difficult to compress, while systematic 
sequences with many repeating patterns should result in shorter 
compressed sequences.

Results

Data analysis was performed using the R environment for 
statistical computing version 4.3.0 (R Core Team, 2023). 
The following additional packages were used for the 
analysis: acss 0.3-2 (Gauvrit et al., 2016), randseqR 0.1.0 
(Oomens et al., 2021), randfindR 0.1.0 (Angelike, 2022), 
papaja 0.1.1 (Aust & Barth, 2022), ggplot2 3.4.2 (Wick-
ham, 2016), and ggpubr 0.6.0 (Kassambara, 2020). The data 
and code used in all analyses can be found at https:// osf. io/ 
xwzup/.

Computation of randomness indices

First, we drew random sequences equal in length (200 
digits) and number (830 participants) to the experimen-
tal data. For this purpose, we used the R package random 
(Eddelbuettel, 2017), which is an interface to the random.
org website that generates data sequences of numbers 
based on atmospheric noise data (Haahr, 2023). Next, we 
computed all of the randomness measures summarized in 
the methods section over all sequences (human-generated 
and random). We also computed all measures over the first 
20, 50, and 100 numbers of each sequence to examine the 
effect of sequence length on these measures. To ensure 
the robustness of our findings, we repeated all analyses 
with two additional random datasets1. The first additional 

dataset served as an independent replication and was also 
drawn from the R package random that provides access 
to atmospheric noise data. The second additional dataset 
was generated using the pseudorandom number generator 
in R programming language with the sample() function. 
The results did not vary across datasets, confirming their 
robustness, with all findings remaining virtually the same. 
For the sake of shortness and clarity, only the results based 
on the first random dataset generated from atmospheric 
noise are reported here.

Neither gender nor any of the personality variables 
showed a significant association with the measures of ran-
domness under investigation, after a Bonferroni correction 
was applied to avoid inflating the alpha error. Participants 
who had studied stochastics at school or had received higher 
education tended to have higher randomness scores, even 
after a Bonferroni correction, but their level of randomness 
was still significantly lower than that of truly random data 
generated by atmospheric noise.

Classification results

In this section, we investigated which measures of ran-
domness were best suited for discriminating between 
human-generated and random sequences. For this pur-
pose, we constructed logistic regression models for each 
individual measure of randomness where the score of a 
measure computed over all sequences was the independ-
ent variable, and the binary dependent variable was the 
source of generation of a sequence (human or random). 
The analysis was repeated for each randomness measure 
computed over all sequence lengths examined. To con-
trol for possible effects of overfitting, the correct clas-
sification rate of each model was determined through 
bootstrapping (n = 1000; further details are provided in 
the design section). This allowed us to construct empiri-
cal confidence intervals of the correct classification rate 
for each randomness measure by selecting the 2.5th and 
the 97.5th percentiles of the bootstrapped correct clas-
sification rates. If the confidence intervals of two differ-
ent randomness measures do not overlap, the difference 
between these two measures regarding the correct classi-
fication rate can be considered significant. For example, 
suppose a hypothetical randomness measure A has an 
upper bound of 75% for the correct classification rate at 
the 97.5th percentile, while randomness measure B has 
a lower bound of 80% at the 2.5th percentile. Since in 
this case the confidence intervals for the correct clas-
sification rates of these two measures do not overlap, 
we can conclude that randomness measure B is better 
suited for distinguishing between human-generated and 
random sequences than measure A. Similarly, we con-
sidered a measure as showing only approximate random 

1 We are grateful to Henrik Singmann for suggesting these additional 
analyses.

https://osf.io/xwzup/
https://osf.io/xwzup/
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performance if a confidence interval included the value 
.50.

Overview of measures

First, we provide an overview of the usefulness of the meas-
ures computed over the entire sequences in discriminating 
between human-generated and random sequences (see Fig. 1 
for visualization and the Supplementary Materials for all raw 
values). The correct classification rate was high for many 
randomness measures (M = 0.78, with a range from 0.44 to 
0.96). Thus, on the basis of many randomness measures, it 
was possible to distinguish between human-generated and 
random sequences. Overall, measures of averaged algorith-
mic complexity were consistently useful for discriminating 
between the two sources of sequences (between .88 and .94), 
although the correct classification rate increased with block 

size. Similarly, the phi index showed a high correct classifi-
cation rate (.63 to .96, highest for a block size of 4). Interest-
ingly, the results showed a higher range for the BDM and 
block entropy (.46 to .93 and .53 to .89, respectively). BDM 
measures showed high correct classification rates for larger 
block sizes of 7 to 10 (.80 to .93) and for smaller block sizes 
of 2 to 4 (.79 to 89) but not for moderate block sizes of 5 to 
6 (.60 and .46). Block entropy measures were most useful for 
block sizes of 2 to 4, with decreasing performance as block 
size length increased. Other useful measures for distinguish-
ing between human-generated and random sequences were 
the coupon score (.92) and all variants of the repetition gap 
score, with the median gap between identical numbers being 
the most useful (.94). The LZ76 showed significantly better 
than chance performance (.73) but fell short of other meas-
ures of algorithmic complexity. The runs, redundancy, and 
turning point index, as well as all variants of the adjacency 

Note. Correct classification rates for distinguishing between human-generated and random sequences using the randomness measures
on the y-axis individually as predictors. The lines represent bootstrapped empirical confidence intervals (95%). The dashed line at x 
= .50 indicates chance performance. The line at x = 1.00 indicates perfect performance. All measures can be assigned to one of three
origins as indicated by the curly brackets on the right: measures commonly used in psychological research, measures of block entropy,
and measures of algorithmic complexity (see methods section). The color coding indicates the type of the respective randomness measure.
BDM = block decomposition method. LZ76 = Lempel–Ziv complexity. Numbers from 2 to 10 after the names of randomness measures
indicate the block size that was used to compute the measure

Fig. 1  Correct classification rate for randomness measures ordered by their group of origin
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index, showed, at best, slightly above-chance performance 
in distinguishing between human-generated and random 
sequences (.44 to .59).

Groups of randomness measures

A complete collection of all randomness measures, includ-
ing their descriptive values and correct classification rates by 
sequence length, can be found in the Supplementary Mate-
rials. This analysis is divided into five sections: measures 
commonly used in psychological research (Towse & Neil, 
1998) using the R package randseqR (Oomens et al., 2021), 
block entropy measures, and complexity measures, with the 
last being divided into measures of algorithmic complexity 
for short sequences, the BDM, and compression algorithms.

Common measures in psychological research The median 
repetition gap and the coupon score showed a high correct 
classification rate with only small effects of sequence length 
on performance (see Fig. 2). The mean and mode over the 
repetition gap between identical pairs were also among the 
most useful measures for distinguishing between human-
generated and random sequences, although they performed 

slightly worse. The RNG and RNG2 indices and the NSQ 
showed only chance or near-chance performance for short 
sequences (size 20), but became increasingly useful for distin-
guishing between human-generated and random sequences as 
the sequence length increased. These measures assess system-
atic repetition in response pairs, and apparently require longer 
sequences to show clear differences between human-generated 
and random sequences. The combined adjacency, runs, and 
turning point indices did not show high correct classification 
rates regardless of sequence length. One striking finding was 
that the redundancy index enabled adequate discrimination 
between human-generated and random sequences for the 
first 20 digits (.78), but this performance declined for longer 
sequences (.44 for the complete sequences). The redundancy 
index is a measure that assesses whether all possible responses 
(here, the numbers from 1 to 9) are equally likely to occur. In 
this experiment, human-generated sequences showed greater 
response equality than random sequences during the first 20 
numbers of the sequence (see Supplementary Materials). 
This effect disappeared in the long run, until there was no 
difference between the groups in the relative frequency of 
the numbers. Humans may show too much equality in the 
frequency of their responses, which is particularly evident for 

Note. Correct classification rates for distinguishing between human-generated and random sequences using the randomness
measures in the legend as predictors. Error bars represent bootstrapped empirical confidence intervals (95%). The dashed line
at y = .50 indicates the chance performance of a measure. The line at y = 1.00 indicates perfect performance. Due to the large
number of randomness measures in this category (Towse & Neil, 1998), we excluded some less interesting measures from the
visualization for the sake of clarity. In particular, we only included the combined adjacency score instead of using all of its
variants, because it included the information from the adjacency score for ascending and descending runs

Fig. 2  Correct classification rate into human-generated and random sequences of logistic regression models based on the measures of Towse and 
Neil (1998)



7841Behavior Research Methods (2024) 56:7831–7848 

short sequences (Ginsburg, 1997). This observation is also 
consistent with previous findings that people may try too hard 
to use all responses equally compared to random sequences of 
the same length (Ginsburg & Karpiuk, 1994).

The correct classification rate obtained with the phi index 
increased steadily the longer the sequence used for computing 
the measure. Performance was particularly high when comput-
ing the measure for blocks of size 4, although the correct classifi-
cation rate was also high for block sizes 2 to 6 (see Fig. 3A). The 
correct classification rate was not as high for larger block sizes.

Block entropy When examining block entropy, two interest-
ing results can be highlighted (see Fig. 3B). First, all meas-
ures of block entropy were uninformative for analyzing short 
sequences, as indicated by the near-chance performance 
in distinguishing between human-generated and random 
sequences using only the first 20 numbers of a sequence. 
Second, increasing the length of the sequence used to com-
pute block entropy increased the correct classification rate 
into human-generated and random sequences. However, the 
magnitude of this increase seemed to depend on the block 
size. A clear increase in the correct classification rate can be 

seen for block sizes of 2 to 4. Block sizes of 5 to 6 yielded 
moderate increases in the correct classification rate, while 
block sizes of 7 to 10 were only marginally informative in 
terms of distinguishing between human-generated and ran-
dom sequences for any given length of a sequence. This 
was probably due to the exponentially increasing number of 
distinct blocks with increasing size ( 9k, where k is the block 
size). Measures of block entropy look for inequality in the 
use of blocks of a given size, which is particularly hard to 
find when the number of possible blocks is too large. Block 
entropy measures for large block sizes (e.g., 9 or 10) are 
likely to require much longer sequences to be informative.

Measures of algorithmic complexity The section on meas-
ures of algorithmic complexity is divided into three sections: 
measures of algorithmic complexity for short sequences, the 
BDM, and compression algorithms.

Averaged algorithmic complexity for short sequences In 
this section, we investigate the measures of algorithmic 
complexity as proposed by Gauvrit et al. (2016). Figure 3C 
shows that the correct classification rate for all measures of 

Note. Correct classification rates for distinguishing between human-generated and random sequences using different classes of randomness
measures. The block sizes used to compute the measures are shown to the right of the corresponding lines and in the legend. Error bars represent
bootstrapped empirical confidence intervals (95%). The dashed lines at y = .50 indicate the chance performance of a measure with respect to the
correct classification rate. The lines at y = 1.00 indicate perfect performance

Fig. 3  Correct classification rate into human-generated and random sequences of logistic regression models based on measures computed over 
block sizes 2 to 10
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averaged algorithmic complexity increases steadily with the 
length of the sequence considered and the block size used to 
compute the measure. Overall, measures of averaged algorith-
mic complexity showed a consistently high correct classifica-
tion rate compared to all other measures, with the lowest cor-
rect classification rate above 70% and the highest above 90%.

Note that we observed a rather surprising result for all 
measures of averaged algorithmic complexity. Higher values 
are associated with more complex and random sequences. 
However, we found that human-generated sequences had 
higher values for these measures than sequences generated 
by a random process (see Supplementary Materials). This 
finding seems to be caused by the short block length of num-
bers for which it can be computed. In this study, the measure 
was computed for blocks up to size 10. A high-complexity 
sequence usually contains all possible numbers equally often, 
as can be seen in the examples of high-complexity binary 
strings in Gauvrit et al. (2014). However, if there are nine 
possible numbers, high-complexity sequences will appear as 
if someone had cycled through all available numbers when 
generating the sequence, because each number will occur 
approximately once. As a result, short sequences of high 
complexity may resemble those generated by humans, who 
show such a cycling tendency in their behavior. This is illus-
trated by the negative correlation between algorithmic com-
plexity for block size 10 and the coupon score, r(828) = −.59, 
p < .001, showing that participants with a stronger tendency 
to cycle through all available numbers (lower coupon score) 
obtain higher values of algorithmic complexity.

BDM Results for BDM did not exactly follow the pattern of 
the averaged algorithmic complexity (see Fig. 3D). For large 
block sizes (8 to 10), the BDM was useful for distinguish-
ing between human-generated and random sequences. How-
ever, for block sizes of 5 to 6, the correct classification rate 
decreased steadily with increasing sequence length. On the 
other hand, for block sizes of 2 to 4, the correct classification 
rate using the BDM was at chance level when computed over 
the first 20 numbers of the sequence but increased steadily 
with longer sequences.

To further investigate this finding, we computed the com-
mon language effect size for the difference in BDM scores 
between human-generated and random sequences, which 
indicates the probability that a randomly selected BDM 
score from the human sample is higher than a randomly 
selected BDM score from the random sequence sample 
(Fig. 4). The results showed a general tendency: as sequence 
length increased, the differences between BDM scores for 
human-generated and random sequences decreased. For 
block sizes of 2 to 4, this difference even reversed, so that 
random sequences had higher BDM scores than human-gen-
erated sequences. For larger block sizes, however, humans 
had consistently higher BDM scores regardless of sequence 

length. The reason for this pattern of results probably lies 
in the combination of algorithmic complexity and entropy 
in the BDM. Humans generally show a tendency to cycle 
through all available numbers too quickly, leading to higher 
averaged algorithmic complexity on the one hand and a ten-
dency to repeat smaller blocks of size 2 to 4 on the other 
hand. Penalizing the latter leads to lower BDM scores for 
human-generated sequences for smaller block sizes. How-
ever, penalizing repetitive patterns becomes increasingly 
ineffective with increasing block size due to the exponen-
tially increasing number of distinct blocks, as explained in 
the section on block entropy. As a result, human-generated 
sequences have higher BDM scores than random sequences 
for larger block sizes and lower scores for smaller block 
sizes. For moderate block sizes (5 to 7), the combination 
of these opposing effects may explain the declining perfor-
mance of the measure as these effects appear to cancel each 
other out, resulting in smaller differences in BDM scores 
between human-generated and random sequences.

Compression algorithms Both compression algorithms, 
LZ76 and gzip, showed a comparatively low rate of correct 
classification into human-generated and random sequences 
(see Supplementary Materials). The correct classification 
rate peaked at about 60–70%. This is significantly lower 
than the highest correct classification rate of randomness 
measures from each of the measure groups analyzed so far. 
There were several examples of measures (e.g., the RNG 
index, phi index, measures of block entropy, or algorith-
mic complexity) that exceeded the 80% or even 90% correct 
classification rate. This finding is not very surprising given 
that compression algorithms are typically used to quickly 
compress longer sequences, such as files, and not to analyze 
human-generated sequences of a few hundred digits or less 
(Gauvrit et al., 2016; Zenil et al., 2018).

Discussion

The present study is the first large-scale integrative compari-
son of a broad collection of different measures of random-
ness. We analyzed not only measures that are traditionally 
used in psychological research (Towse & Neil, 1998), but 
also classical measures from information theory, such as 
block entropy (Moore et al., 2018; Shannon, 1948), as well 
as measures of algorithmic complexity (Gauvrit et al., 2016; 
Lempel & Ziv, 1976; Zenil et al., 2018). In addition, we 
analyzed how the effectiveness of measures for identifying 
human behavior may depend on sequence length. We also 
proposed a classification-based approach to evaluate ran-
domness measures in terms of their usefulness in identifying 
human behavior in RNG tasks. For this analysis, we did not 
rely on numbers obtained through pseudorandom generation 



7843Behavior Research Methods (2024) 56:7831–7848 

from a computer for comparison; instead, we used sequences 
from a random source that are aperiodic and nondetermin-
istic (Haahr, 2023).

Our results show that several measures of randomness can 
distinguish between human-generated and random sequences 
with a high correct classification rate of > .80. This is not 
too surprising, given the large body of research showing that 
humans generally fail to behave randomly (Bocharov et al., 
2020; Figurska et al., 2008; Ginsburg & Karpiuk, 1994; 
Montare, 1999; Schulz et al., 2021). However, some ran-
domness measures were particularly good at distinguishing 
between human-generated and random sequences. Complex-
ity measures such as averaged algorithmic complexity for 
larger block sizes (especially block size 10), block entropy 
for shorter to moderately long block sizes (especially block 
size 3), and the phi index for moderately long block sizes 
(especially block size 4) were most useful. The median rep-
etition gap score and the coupon score also showed large dif-
ferences between human-generated and random sequences. 
We argue that researchers who wish to use measures of ran-
domness that are sensitive to systematic patterns typical of 
humans should use these measures.

It should be noted, however, that the sensitivity of ran-
domness measures to systematic patterns, which are often 
generated by humans, depends on the length of the sequence 
over which the measures are computed. Measures such as 

algorithmic complexity for blocks of size 10 or the rep-
etition median already showed large differences between 
human-generated and random sequences for short sequences 
of length 20, with a rate of correct classification between 
human-generated and random sequences close to 90%. If 
researchers want to analyze short sequences or subsequences 
of longer human-generated sequences, they should use these 
two measures. The phi score (block size 4) and the coupon 
score were also sensitive to differences between human-
generated and random sequences for short sequences, but 
to a lesser extent than the averaged algorithmic complexity 
and the repetition median.

Averaged algorithmic complexity, the median repeti-
tion gap, the phi score, and, to a lesser extent, the coupon 
score also showed a high correct classification rate for 
longer sequences, demonstrating their applicability in vari-
ous contexts of RNG tasks. On the other hand, measures 
such as block entropy showed almost no difference at all 
between human-generated and random sequences of short 
length. These measures required sequences 100 digits or 
more in length to achieve a high correct classification rate 
for moderate block sizes. Even for sequences of 100 digits, 
the correct classification rate between human-generated and 
random sequences by block entropy could not exceed the 
classification rate of the average algorithmic complexity for 
sequences of length 20. A similar effect was observed for the 

Note. CLES = common language effect size. The dashed line at y = 0.50 indicates no difference between groups.
Values above 0.50 indicate higher BDM scores for human-generated sequences than for random sequences.
Values below 0.50 indicate higher BDM values for random sequences than for human-generated sequences

Fig. 4  Difference in BDM scores between human-generated and random sequences measured by the common language effect size (CLES)
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RNG and RNG2 indices, which are modified measures of 
block entropy for number pairs. Several studies using these 
measures were based on the analysis of human-generated 
sequences of 100 digits (Friedman & Miyake, 2004; Gins-
burg & Karpiuk, 1994; Maes et al., 2011; Miyake et al., 
2000, Miyake, Friedman et al., 2001a; Peters et al., 2007; 
Towse, 1998; Zabelina et al., 2012). Thus, it would seem 
advisable to increase the sequence length of the RNG task if 
researchers plan to use these measures, as longer sequences 
appear to be required to exploit their full potential. Our 
results suggest that block entropy-derived measures for short 
to medium block sizes should only be used for sequences of 
at least, but preferably more than, 100 digits.

Several measures were not useful for identifying system-
atic patterns observed in humans: the turning point and the 
runs index showed little or no difference between human-
generated and random sequences regardless of sequence 
length. We advise caution in using these measures in future 
research, as they may introduce irrelevant variance for char-
acterizing human behavior in RNG tasks. However, this find-
ing should be replicated in future research to determine its 
stability. Otherwise, our findings are consistent with pre-
vious studies such as Ginsburg and Karpiuk (1994), who 
found similar differences in measures such as coupon and 
the median repetition gap between human-generated and 
random-like sequences. Our results are also consistent with 
their finding that humans show a more even use of all pos-
sible numbers in a sequence than would be expected on aver-
age for a random sequence of the same short length (100 
numbers; Ginsburg & Karpiuk, 1994).

One measure that we recommend against using for the 
analysis of sequences consisting of numbers in the range 
of 1 to 9 is the block decomposition method (BDM) due to 
its inconsistent interpretation. Depending on the length of 
the sequence and the block size used to compute it, a larger 
value may indicate either a randomly generated sequence 
or a human-generated sequence. This is likely due to the 
opposing effects of complexity and block entropy on scores 
in the BDM: on the one hand, we found that the complexity 
was generally higher for human-generated than for random 
sequences; on the other hand, the BDM formula penalizes 
repetitions in a similar way to block entropy, leading to 
lower scores for humans, especially for blocks of short to 
medium length. We therefore argue that researchers should 
use average algorithmic complexity if they wish to use com-
plexity measures, as it consistently shows higher values for 
human-generated sequences than for random sequences.

A strong argument can be made against the use of com-
pression algorithms. The investigated measures, LZ76 and 
the gzip algorithm, even when computed over the complete 
sequences, performed worse regarding the correct classi-
fication rate than the averaged algorithmic complexity as 
proposed by Gauvrit et al. (2016), even when the latter was 

computed using only the first 20 numbers of each sequence. 
Therefore, we cannot recommend the use of compression 
algorithms as measures of randomness.

How can the randomness measures considered in this 
investigation be used for applied research questions? Fortu-
nately, implementations are available for all of the measures 
presented in this paper. The measures commonly used in 
psychological research proposed by Towse and Neil (1998) 
can be computed using either the computer program from 
their original publication RgCalc or the more recent imple-
mentation in the R package randseqR by Oomens et al. 
(2021). The algorithmic complexity of short sequences 
as well as the BDM can be computed using the R package 
acss by Gauvrit et al. (2016), who also provide an intro-
duction and tutorial on how to use it. The BDM can also 
be computed using the online algorithmic complexity cal-
culator https:// compl exity- calcu lator. com/ (Soler-Toscano 
et al., 2014; Zenil et al., 2018). Implementations of block 
entropy and LZ76 can be found in the R package randfindR 
at the following link: https:// github. com/ TImA97/ randfi ndR 
(Angelike, 2022). The code used to compute all randomness 
measures in this investigation can be found at https:// osf. io/ 
xwzup/.

Finally, we must discuss the surprising result concern-
ing the averaged algorithmic complexity as a measure of 
randomness. We found that human-generated sequences 
yielded higher estimates of averaged algorithmic complex-
ity than random sequences. In this study, participants gen-
erated sequences containing the numbers 1 through 9. A 
highly complex sequence must contain all possible values 
approximately equally often, leaving little or no room for 
repetition if the sequence is only 10 digits in length. Conse-
quently, a highly complex sequence with nine alternatives 
is a sequence that appears to show a certain cycling ten-
dency. We argue that algorithmic complexity, as proposed 
by Gauvrit et al. (2014, 2016) for sequences with nine pos-
sible alternatives, does not accurately reflect randomness, 
since systematic nonrandom biases lead to higher values of 
complexity. Rather, the measure of algorithmic complexity 
appears to be inversely related to randomness. This limita-
tion of the measure in terms of its interpretation needs to be 
addressed in future research. However, it should be empha-
sized that the averaged algorithmic complexity showed high 
sensitivity to systematic patterns that humans exhibited 
when attempting to generate random sequences, regardless 
of the sequence length, underscoring the usefulness of this 
measure for characterizing human behavior.

A common criticism of the state of the scientific litera-
ture on the analysis of randomness in human-generated 
sequences is that too many different measures of randomness 
are used (e.g., Gauvrit et al., 2016; Wagenaar, 1972). This 
makes it difficult, if not impossible, to compare the results 
of different studies. The goal of this paper is to inform 

https://complexity-calculator.com/
https://github.com/TImA97/randfindR
https://osf.io/xwzup/
https://osf.io/xwzup/
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researchers about the properties of the randomness meas-
ures they employ in their research. We analyzed a diverse 
collection of randomness measures in terms of their sensitiv-
ity to systematic patterns that humans show when trying to 
generate random sequences of numbers: measures that are 
motivated by psychological research (Towse & Neil, 1998), 
measures of block entropy (Shannon, 1948), and measures 
of algorithmic complexity (Gauvrit et al., 2016; Lempel & 
Ziv, 1976; Zenil et al., 2018). We went beyond previous 
research not only in the number and variety of randomness 
measures evaluated, but also in the systematic analysis of 
the influence of the sequence length on the measures’ sen-
sitivity to systematic human behavior in RNG tasks. We 
showed that some measures, such as the turning point and 
the runs index, show only a negligible difference between 
human-generated and random sequences. We argue that not 
all of the measures proposed by Towse & Neil (1998) may 
be necessary for analyzing sequences from an RNG task. 
We found that measures such as the phi index for moderate 
block sizes (a measure of repetition over a number gap), the 
coupon score (a measure of the cycling tendency), the rep-
etition gap score, the block entropy of shorter to moderate 
block sizes for longer sequences, and especially the averaged 
algorithmic complexity regardless of sequence length show 
high sensitivity to the patterns exhibited by humans in an 
RNG task. We hope these results help researchers to make 
more informed decisions about the choice of randomness 
measures for the analysis of RNG tasks. For a reasonably 
well-specified research question, only one or a few sensi-
tive randomness measures may be sufficient, rather than a 
large collection of randomness measures that may contain 
uninformative measures.

There are many different examples of analyzing the ran-
domness of human-generated sequences from RNG tasks. 
Randomization performance can be analyzed to compare 
different experimental groups, such as different levels of pro-
duction speed (Towse, 1998), or quasi-experimental groups 
such as healthy versus schizophrenic patients (Peters et al., 
2007) or healthy controls versus patients with acquired brain 
injury (Maes et al., 2011). Performance on RNG tasks has 
been recognized as a possible indicator of executive function 
(e.g., Cooper, 2016). Deterioration in this performance can, 
thus, be used to infer the effect of an experimental manipula-
tion or to uncover correlates of psychiatric and neurologi-
cal disorders on cognitive functions. For such purposes, 
it seems prudent to use measures that have been shown to 
be most sensitive to systematic human behavior. We hope 
that this study will help researchers choose the most appro-
priate measure of randomness for their research question. 
However, researchers should not be completely discouraged 
from using other measures of randomness if they can better 
answer a theoretically meaningful question. For example, 
Peters et al. found that patients with schizophrenia tend to 

respond to pairs of adjacent numbers (such as 8-7 or 1-2). 
This could be explicitly investigated using the adjacency 
score, although it did not show high sensitivity to systematic 
patterns found in humans in this study.

Quantifying the randomness of number sequences has 
applications beyond the setting of the RNG task. For exam-
ple, measures of randomness could potentially be used to 
assess whether participants’ responses to a task or question-
naire are provided thoughtfully2. It would be interesting to 
investigate whether and which measures of randomness are 
most effective in distinguishing between serious and nonse-
rious responses. For example, in a lexical decision task in 
which words and nonwords are presented in random order, 
responses that deviate substantially from a random sequence 
likely indicate a violation of the instruction to categorize 
stimuli as being words versus nonwords, and a tendency to 
produce some kind of systematic pattern instead. The effec-
tiveness of measures of randomness in detecting nonserious 
responding could be compared with existing approaches to 
detect repetitive patterns that are based on computing auto-
correlations between subsequent responses. These latter 
methods are limited to some extent because they are only 
sensitive to specific regularities that have sometimes been 
found to characterize nonserious responses (Gottfried et al., 
2022). To improve data quality in empirical investigations 
by identifying careless responses more reliably, established 
measures to detect nonserious responding could be supple-
mented or possibly even replaced with quantitative measures 
of randomness.

In the present study, we did not examine measures of 
recurrence quantification analysis (Oomens et al., 2023) 
because principal component analyses show that even though 
only recurrence quantification analysis preserves all time-
based information, recurrence quantification analysis and the 
measures proposed by Towse and Neil (1998) show a similar 
factorial structure (Oomens et al., 2015). Future research 
should further investigate the effectiveness of randomness 
measures in assessing changes in randomness over time, as 
these changes may reflect changes in the underlying cogni-
tive processes (Oomens et al., 2023). Temporal changes in 
algorithmic complexity may improve our understanding of 
RNG task performance, as this measure strongly correlates 
with the perceived randomness of sequences (Gauvrit et al., 
2016). Changes in algorithmic complexity could potentially 
indicate corresponding changes in information processing. 
Using measures of algorithmic complexity, such temporal 
changes have already been established for binary sequences 
(Biesaga et al., 2021; Biesaga & Nowak, 2024). Comparing 
recurrence quantification analysis and algorithmic complex-
ity for binary sequences or for sequences based on a set 

2 We are grateful to the editor for making this suggestion.
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size of three or more could provide additional insights into 
potential changes in the cognitive demands posed by RNG 
tasks over time. Furthermore, measures based on informa-
tion theory could improve our understanding of how humans 
generate random numbers, as this approach has been shown 
to accurately reflect and to be sensitive to individual differ-
ences in pattern preferences (Schulz et al., 2021). Employ-
ing different types of randomness measures may therefore 
help to better understand the components underlying RNG 
performance.

In summary, we have compared a large collection of 
randomness measures for their usefulness in distinguishing 
between human-generated and random sequences, thereby 
establishing a validation criterion for judging the usefulness 
of a measure for identifying human behavior. These results 
are directly applicable to psychological research using RNG 
tasks. We find that some of the commonly used random-
ness measures are insensitive to the differences between 
human-generated and random sequences and are, therefore, 
not informative for characterizing human behavior. We also 
show that the sensitivity of many randomness measures can 
strongly depend on the sequence length used for analysis. 
On the other hand, some measures, such as the algorithmic 
complexity or the repetition gap score, showed high sensitiv-
ity to patterns indicative of human behavior for both short 
and long sequences. Taken together, these results can help 
guide practitioners in selecting the measures of randomness 
that are most appropriate for their research question.
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