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A B S T R A C T

Aims: We examined the association of the G allele in the single-nucleotide polymorphism (SNP) rs738409 in the 
third exon of patatin-like phospholipase domain-containing 3 gene (PNPLA3) gene, with chronic kidney disease 
in diabetes endotypes.
Methods: Participants with recent-onset diabetes (n = 707) from the prospective German Diabetes Study (GDS) 
underwent cluster assignment, detailed phenotyping, genotyping and magnetic resonance spectroscopy to 
quantify hepatocellular lipid content (HCL).
Results: Severe insulin-resistant diabetes (SIRD) had the lowest glomerular filtration rates (eGFR) and highest 
HCL compared to severe insulin-deficient, moderate obesity-related, moderate age-related and severe autoim-
mune diabetes endotypes (all p < 0.05). HCL was negatively associated with eGFR (r = − 0.287, p < 0.01) across 
all groups. Stratification by G-allele carrier status did not reveal any association between HCL and eGFR among 
the endotypes. However, the proportion of G-allele carriers increased from 44 % for eGFR >60 ml/min to 52 % 
for eGFR <60 ml/min (p < 0.05).
Conclusions: The PNPLA3 polymorphism may contribute to declining kidney function independently of liver 
lipids.

1. Introduction

Over the past decade, several studies demonstrated that nonalcoholic 
fatty liver disease (NAFLD), which has been recently re-named and re- 
defined as metabolic dysfunction-associated steatotic liver disease 

(MASLD) [1], is an important risk factor for other chronic disorders such 
as cardiovascular disease (CVD), cardiac autonomic neuropathy and 
chronic kidney disease (CKD) [2,3]. MASLD is not only mutually asso-
ciated with obesity and type 2 diabetes, but also its progression has been 
linked to the major diabetes-related complications, CVD and CKD [4,5]. 
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However, the evidence for an independent association between MASLD 
and CVD remains controversial [6,7], In contrast, emerging data indi-
cate that the association between MASLD and CKD persists regardless of 
potential confounders such as obesity, hypertension and dysglycemia 
[8].

The relationship between MASLD and CKD is of high clinical rele-
vance for persons with type 2 diabetes because of their accelerated risk 
of MASLD progression to hepatic fibrosis and cirrhosis [4,6,9]. Aside 
from modifiable risk factors leading to positive energy balance, the 
single-nucleotide polymorphism (SNP) rs738409, which is located in the 
third exon of the patatin-like phospholipase domain containing 3 
(PNPLA3) gene, has been implicated in the development and progres-
sion of MASLD in humans with diabetes [10]. Moreover, some evidence 
also suggests an association between PNPLA3 rs738409 (I148M protein 
variant; G allele carriers) and risk of CKD, but the mechanisms under-
pinning this association are poorly understood [11].

Recent studies identified distinct diabetes endotypes (subtypes, 
clusters) with differences in metabolic features and prevalence of 
diabetes-related comorbidities and complications [12]. Particularly, the 
severe insulin resistant diabetes endotype (SIRD) tightly associates with 
an increased prevalence of both MASLD and CKD [13]. We described 
that members of SIRD are more frequently carriers of the G allele in 
rs738409 variant in the PNPLA3 gene, which further associates with 
higher circulating non-esterified fatty acids and adipose tissue insulin 
resistance [14].

In addition to metabolic and vascular factors, adipose-tissue derived 
cytokines and chemokines likely mediate the crosstalk between MASLD 
and CKD in diabetes [15], as shown by the correlation between several 
biomarkers of inflammation and lower baseline kidney function in 
recent-onset type 2 diabetes [16] and the their upregulation in SIRD 
[17].

Against this background, we aimed to investigate the role of PNPLA3 
for CKD in the novel diabetes endotypes and MASLD, and the possible 
associations between the risk allele and biomarkers of CKD at the time of 
diabetes diagnosis and their changes during the early course of the 
disease. The novelty of this study lies in the integration of genomic with 
phenomic data from distinct endotypes at the onset of diabetes. We 
hypothesized that carriers of the deleterious allele also have lower 
kidney function than non-carriers.

2. Methods

Participants. This analysis comprises 726 participants with diabetes 
(type 1 diabetes, n = 234; type 2 diabetes, n = 422) and 70 metabolically 
healthy humans (control). Persons with diabetes were further stratified 
according to their diabetes endotype [13] and assigned to either severe 
autoimmune diabetes (SAID, n = 200), severe insulin-deficient diabetes 
(SIDD, n = 17), SIRD (n = 53), moderate obesity-related diabetes (MOD, 
n = 191) or moderate age-related diabetes (MARD, n = 195). A sub-
group of participants (n = 424) was prospectively analyzed after 5 years 
of diabetes duration.

All volunteers were recruited from the Düsseldorf cohort of the 
prospective multicenter German Diabetes Study (GDS), which includes 
persons with recently diagnosed diabetes and glucose tolerant humans. 
The GDS is approved by the ethics committee of Heinrich-Heine Uni-
versity of Düsseldorf (reference number 4508), registered at Clinicalt 
rials.gov (Identifier number: NCT01055093) and performed according 
to the Declaration of Helsinki as reported previously [18]. Briefly, 
diagnosis of diabetes was based on current criteria of the American 
Diabetes Association [19]. The control group comprises of healthy 
humans presenting neither with dysglycemia, excluded by a 75 g oral 
glucose tolerance test [19], nor with first-degree relatives with known 
diabetes. Exclusion criteria for all participants comprise: pregnancy, 
acute or severe chronic heart diseases, and immunosuppressive treat-
ment. Known severe kidney diseases as defined by chronic GFR <60 
ml*min− 1*1.73 m-2, liver diseases as defined by clinical signs or 

transaminases >2-fold above the upper limit of the normal ranges as 
well as relevant alcohol use (>30 g/day in men, >20 g/day in women) 
were also exclusion criteria.

Laboratory analyses. Blood samples drawn at study inclusion were 
analyzed in a centralized lab as described [18]. Glutamic acid decar-
boxylase antibodies (GADA) were measured systematically in all par-
ticipants as described previously [20]. High-sensitivity C-reactive 
protein (hsCRP), interleukin (IL)-6, IL18, soluble E-selectin (sE-selectin) 
and ICAM-1 intercellular adhesion molecule 1 (ICAM-1) were measured 
as described [16,21].

Calculations. Steatosis risk was assessed by the Dallas steatosis index 
(DSI) and the fatty liver index (FLI), whereas liver fibrosis risk was 
assessed by fibrosis-4 (FIB-4) and Aspartate transaminase to Platelet 
Ratio Index (APRI) using anthropometric and routine laboratory pa-
rameters [22–24]. The estimated glomerular filtration rate (eGFR) was 
computed based on creatinine and cystatin C and nephropathy was 
subsequently categorized as normal function (stage 1, eGFR >90 
ml*min− 1*1.73 m-2), stage 2 CKD (eGFR 60–90 ml*min− 1*1.73 m-2) and 
stage 3 CKD (eGFR <60 ml*min− 1*1.73 m-2), while microalbuminuria 
was defined as urinary albumin levels between 30 and 300 mg/l and 
macroalbuminuria as urinary excreted albumin levels above 300 mg/l 
according to international criteria [25].

Magnetic resonance spectroscopy (MRS). HCL was quantified using 1H- 
MRS on a 3-T MR scanner as described [26]. Both water-suppressed and 
non-suppressed 1H spectra were taken in the identical voxel within the 
homogeneous part of liver tissue, avoiding major vessels and gall-
bladder, with a volume of interest of 25*25*25 mm3. HCL content was 
calculated from the methylene peak at 1.3 ppm in water-suppressed 
MRS, relative to the sum of the methylene and water peaks at 4.7 ppm 
in non-suppressed MRS.

Genotyping. Genomic DNA was extracted from whole blood and 
genotyping was performed using real-time polymerase chain reaction- 
based allelic discrimination with probe-based genotyping assay for the 
rs738409 SNP in the PNPLA3 gene (Thermofisher, Darmstadt, Germany) 
as described [14]. Genotypes containing the minor allele C/G and G/G 
were pooled for the subsequent analyses due to the low number of ho-
mozygous carriers.

Statistics. The k-means clustering via nearest centroid approach, 
assigned each participant to a predefined cluster based on an algorithm 
including age, BMI, glycemia and homeostasis model estimates 
(HOMA2-IR, HOMA2-B) and GADA [13].

Data are presented as mean (standard deviation) for continuous 
variables and percentages (%) for categorical variables. Skewed data 
were log-transformed before analysis. Associations between parameters 
have been evaluated using Spearman and adjusted (partialized) 
Spearman correlation coefficients (r) and corresponding P values. P 
values < 5 % were considered to indicate statistically significant dif-
ferences or correlations.

Multiple linear regression models were employed to examine the 
interaction among estimated glomerular filtration rates (eGFR), fatty 
liver index (FLI), and biomarkers for inflammation. The analyses 
assessed the predictive capacity of these biomarkers as independent 
variables in relation to the onset of diabetes-related complications, 
which were treated as dependent variables. Statistical analyses were 
performed with SAS (version 9.4; SAS Institute, Cary, NC) and R soft-
ware (version R-4.3.2). Figures were drawn using GraphPadPrism 
(version 8.1; GraphPad Software, San Diego, CA, USA) and R software.

3. Results

3.1. Differences in hepatic lipid content among diabetes endotypes

Characteristics of the participants stratified according to the G-allele 
of the SNP of the PNPLA3 gene and to diabetes diagnosis (Table 1) and 
diabetes endotype (Table S1). FLI was higher in SIRD compared to CON, 
MARD, SAID (all p < 0.001) and SIDD (p = 0.04) and tended to be higher 
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compared to MOD (p = 0.07). In a representative subcohort with 
available 1H-MRS (n = 226), HCL was higher in SIRD than in CON, 
MARD, SAID (p < 0.001) and MOD (p = 0.028), but similar to SIDD (p =
0.21). Accordingly, prevalence of steatosis by HCL was 80 % in SIRD, 59 
% in MOD, 31 % in MARD, 25 % in SIDD, 23 % in CON and only 5 % in 
SAID. FLI values > 60 predicted the presence of steatosis (HCL >5.56 %) 
with a sensitivity of 93 % and a specificity of 70 %.

3.2. Distribution of the rs738409 variant of the PNPLA3 gene across 
diabetes endotypes

There was no difference in the prevalence of G-allele carriers be-
tween participants with type 1 diabetes, type 2 diabetes or normogly-
cemia (Fig. 1A). Similarly, there were no differences in eGFR between 
carriers and non-carriers neither at baseline (Fig. 1B) nor in the change 
of eGFR during 5 years of disease duration (Fig. 1C). These results 
remained unchanged after adjustments for HOMA-IR.

Endotype stratification revealed a lower prevalence of the common 
C/C genotype in SIRD than in CON, SAID, MOD and MARD (all p < 0.05) 
except for SIDD (p = 0.68; Fig. 1D). When considering the endotypes 
individually, there were no differences in eGFR between carriers and 
non-carriers neither at baseline (Fig. 1E) nor in the change of eGFR after 
5 years of disease duration (Fig. 1F).

3.3. Association between hepatic lipid content and kidney function in 
diabetes endotypes

As assessed from eGFR, the prevalence of stage 2 CKD was 67 % in 
SIRD, 56 % in MARD, 45 % in CON, 44 % in MOD 25 % in SAID and 17 % 
in SIDD. Stage 3 CKD was present in 15 % SIRD, 3 % MARD, 2 % MOD, 1 
% CON, and 0 % in SAID or SIDD. HCL was inversely associated with 
eGFR across all groups (r = 0.29, p < 0.05, Fig. 2), which also held true 
for FLI (r = 0.47, p < 0.05).

Stratification by G allele carrier status did not reveal any association 
between FLI and eGFR specific to any of the diabetes endotypes. How-
ever, with declining eGFR the proportion of G-allele carriers increased 
from 44 % for eGFR >60 ml*min− 1*1.73 m-2 to 52 % for eGFR <60 
ml*min− 1*1.73 m-2 (p < 0.05, Fig. 3A), while G allele carriers had 
higher FLI values than non-carriers in the group featuring eGFR >90 
ml*min− 1*1.73 m-2 (p < 0.05; Fig. 3B).

We performed a partial correlation analysis to examine the rela-
tionship between eGFR and HCL while controlling for insulin resistance 
(HOMA2-IR). The unadjusted Pearson correlation between eGFR and 
HCL (r = − 0.29, p < 0.001) suggests that the observed correlation be-
tween eGFR and liver lipid content maybe at least partly mediated by the 
prevailing insulin resistance.

3.4. Role of pro-inflammatory biomarkers for CKD and hepatic steatosis

Overall, hsCRP was positively associated with HCL (r = 0.386, p <

Table 1 
Characteristics of the participants stratified according to diabetes diagnosis and G allele carrier status of the single-nucleotide polymorphism (SNP) rs738409 in the 
patatin-like phospholipase domain containing 3 (PNPLA3) gene.

CON T1D T2D

G allele carriers Non-carriers G allele carriers Non-carriers G allele carriers Non-carriers

N 25 45 106 128 199 223
Age (years) 46.6 ± 13.7 49.3 ± 13.9 37.6 ± 12.4 37.0 ± 11.7 52.9 ± 10.5 53.7 ± 10.0
Sex (% female) 7 (28) 14 (31) 50 (47) 53 (41) 77 (39) 71 (32)
BMI (kg/m2) 28.5 ± 6.3 28.8 ± 5.1 25.9 ± 5.1 24.8 ± 3.8 32.1 ± 5.7 31.6 ± 6.1
HbA1c (%) 5.3 ± 0.2 5.3 ± 0.3 6.6 ± 1.2 6.6 ± 1.2 6.4 ± 1.0 6.4 ± 0.9
HOMA2-B (a.u.) 117 ± 43 122 ± 34 48 ± 36 47 ± 29 104 ± 47 98 ± 40
HOMA2-IR (a.u.) 1.4 ± 0.7 1.5 ± 0.7 1.1 ± 1.1 0.9 ± 0.6 2.8 ± 1.1 2.7 ± 1.3

eGFR (ml*min− 1*1.73 m-2) 95.9 ± 13.7 91.5 ± 14.9 98.2 ± 16.0 100 ± 13.0 87.8 ± 16.5 87.8 ± 14.6
Cystatin C (mg/l) 0.9 ± 0.1 0.9 ± 0.2 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.2 0.9 ± 0.2
Microalbuminuria (n,%) 1 (4) 1 (2) 5 (5) 6 (5) 16 (8) 28 (12)
Macroalbuminuria (n,%) 0 (0) 0 (0) 0 (0) 0 (0) 3 (1) 0 (0)

ALT (U/l) 27.8 ± 15.8 29.5 ± 22.3 24.4 ± 13.9 24.1 ± 20.5 35.9 ± 18.4 33.6 ± 19.5
AST (U/l) 25.0 ± 6.7 26.0 ± 13.6 21.8 ± 8.1 21.3 ± 8.7 25.8 ± 11.2 25.4 ± 11.5
GGT (U/l) 26.0 ± 19.0 27.6 ± 19.7 27.3 ± 31.7 18.7 ± 12.2 38.0 ± 29.9 49.5 ± 67.9
HCL (%) 4.6 ± 7.0 3.4 ± 4.7 1.6 ± 2.9 2.3 ± 6.3 9.8 ± 9.2 7.2 ± 6.8
FLI (a.u.) 47.8 ± 30.0 49.1 ± 34.9 32.4 ± 29.9 24.1 ± 25.7 74.5 ± 24.3 71.0 ± 28.6
DSI (a.u.) − 0.9 ± 1.5 − 0.9 ± 1.4 − 1.1 ± 1.4 − 1.4 ± 1.2 0.9 ± 1.2 0.6 ± 1.3
FIB4 (a.u.) 1.0 ± 0.3 1.1 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 1.1 ± 0.6 1.1 ± 0.5
APRI (a.u.) 0.2 ± 0.1 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 0.2 ± 0.1

hsCRP (mg/dl) 0.1 ± 0.2 0.2 ± 0.3 0.4 ± 1.5 0.2 ± 0.3 0.4 ± 0.5 0.4 ± 0.6
IL6 (pg/ml) NA NA 1.6 ± 1.4 1.2 ± 0.8 2.4 ± 1.5 2.3 ± 4.4
IL18 (pg/ml) NA NA 322 ± 174 263 ± 135 334 ± 173 299 ± 118
E-selectin (ng/ml) NA NA 39.4 ± 21.3 38.1 ± 17.0 46.3 ± 20.3 42.5 ± 19.1
ICAM-1 (ng/ml) NA NA 242 ± 77 228 ± 64 256 ± 77 250 ± 77

Lifestyle modification only (n) 25 45 4 11 74 92
Insulin (n) 0 0 95 104 16 16
Metformin (n) 0 0 4 11 98 102
Other (n) 0 0 3 2 11 13

Data are shown as absolute numbers, percentages, mean ± standard deviation, as applicable. Abbreviations: ALT, alanine aminotransferase; APRI, AST to Platelet 
Ratio Index; AST, aspartate aminotransferase; BMI, body mass index; CON, control group; DSI, Dallas steatosis index; eGFR, estimated glomerular filtration rate; FIB4, 
fibrosis 4 index; FLI, fattly liver index; GGT, gamma-glutamyl transferase; HbA1c, glycated hemoglobin A1c; HOMA2, homeostatic model assessment for insulin 
resistance (IR) and beta cell function (B); hsCRP, high-sensitivity C-reactive protein; IL, interleukin; T1D, type 1 diabetes; T2D, type 2 diabetes.
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0.001), but not with eGFR (r = − 0.068, p = 0.07). Among various 
biomarkers of inflammation and endothelial cell adhesion (hsCRP, IL-6, 
IL-18, E-selectin, ICAM-1), only IL-6 was found to be higher in G-allele 
carriers that in non-carriers with SIRD (Table S1).

Fig. 4 shows the tridimensional relationship between pro- 
inflammatory markers, FLI and eGFR across all groups. Trilinear 
regression models showed a weak, yet statistically significant (all p <
0.05) interrelation with IL-6 (r = − 0.001, Fig. 4A) and ICAM-1 (r =
0.033, Fig. 4C) in type 1 diabetes, but not in type 2 diabetes (Fig. 4B–D).

4. Conclusions

This study shows that higher hepatic lipid content is associated with 
lower kidney function across this study population. However, the 
PNPLA3 polymorphism does not directly affect this association in any 
diabetes endotype, neither at disease onset, not within the first 5 years 
after diagnosis.

The finding of a strong correlation between markers of liver steatosis 
and eGFR among diabetes endotypes extends the conclusion of previous 
meta-analyses that MASLD identifies individuals at increased risk of 
CKD [8,27,28]. This suggests a specific role of the hepato-renal axis 
independently of glucometabolic differences operating even before the 
onset of advanced liver diseases [29].

The observed absence of a direct effect of the PNPLA3 polymorphism 
rs738409(G) on kidney function in any diabetes endotype contrasts with 
the association of the I148M variant of PNPLA3 with CKD, occurring 
independently of common risk factors for kidney disease and severity of 
MASLD in some previous studies [11,30]. PNPLA3 expression levels 
were particularly high in renal podocytes [11]. Datasets on human 
kidney biopsy material also indicate relevant PNPLA3 expression in the 
proximal tubule cells (Humphreyslab.com online resource). Further-
more, a specific subgroup of persons with MASLD, carrying the PNPLA3 
rs738409 G allele, was found to be at higher risk of early glomerular and 
tubular damage [31]. From another study, the authors concluded that 
MASLD remains the main determinant of decline in kidney function in 
overweight children, while the PNPLA3 rs738409 variant has a small, if 
any, impact [32]. Surprisingly, their subsequent study found that 
already prediabetic state negatively affects renal function in children 
with obesity, with a greater effect in those carrying the G allele [33]. The 
differences between the different studies likely results from specific 
features of the cohorts such as age, diabetes and degree of CKD and/or 
MASLD. Our study included individuals with normal glucose tolerance 
and those with metabolically well-controlled diabetes, short known 
diabetes duration and no severe liver and kidney disease. Thus, we may 

Fig. 1. Data are presented as percentages or mean and standard deviation. Figures depict differences in G allele carrier status (panels A, C), and estimated glomerular 
filtration rates (eGFR) in metabolically healthy humans (CON, circles), type 1 diabetes (T1DM, triangles) and type 2 diabetes (T2DM, squares) (panel B, C) as well as 
in diabetes endotypes: severe autoimmune diabetes (SAID) in indigo, severe insulin deficient diabetes (SIDD) in light blue, severe insulin-resistant diabetes (SIRD) in 
green, moderate obesity-related diabetes (MOD) in orange and moderate age-related diabetes (MARD) in pink (panel D, E). Δ eGFR refers to the difference between 
eGFR after 5 years and eGFR at study inclusion (baseline). 
Full shapes represent carriers of the variant (G-allele) while empty shapes represent non-carriers. *, p < 0.05.

Fig. 2. Scatterplot showing the association of renal function with steatosis in 
the study population. Dotted line refers to cut-off values for MASLD.
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conclude that the PNPLA3 genotype is at least not the main driver of 
CKD during the early course of diabetes or its endotypes.

Indeed, the mechanisms suggested to underlie an association be-
tween the G allele of rs738409 and decreasing kidney function are yet 
unclear. For example, nephrotoxic effects occurring via activation of 

renal pericytes, which play a key role in angiogenesis and in regulating 
renal medullary and cortical blood flow, can promote renal fibrogenesis 
and glomerulosclerosis [8]. Alternatively, glomerular podocytes may 
accumulate lipid droplets, which have been implicated in the patho-
genesis of CKD [34]. Also, dysregulation of proximal tubule transport 

Fig. 3. Data are presented as percentages or mean and standard deviation. Figures depict differences in G allele carrier status (panel A), and fatty liver index (FLI, 
panel B) in categories based on estimated glomerular filtration rates (eGFR). Full shapes represent carriers of the variant (G-allele) while empty shapes represent non- 
carriers. *, p < 0.05.

Fig. 4. Trilinear regression models showing the interrelation between estimated glomerular filtration rates (eGFR), fatty liver index (FLI) and interleukin 6 (IL-6, 
panels A, B), ICAM-1 (panel C, D) in type 1 diabetes (panels A,C) and type 2 diabetes (panels B, D) respectively. *, p < 0.05.
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driven by misexpression of PNPLA3 may lead to abnormalities in elec-
trolyte or acid-base-homoeostasis and glucosuria [35].

Of note, other - indirect - effects related to inflammation and fibrosis 
are largely unexplored. A recent meta-analysis showed that increased 
concentrations of pro-inflammatory mediators such as hsCRP and IL-6 
were associated with increased risk of MASLD and diabetes and may 
therefore add to biomarker panels for early MASLD diagnosis and 
MASLD progression [15,36]. Several of these biomarkers also associate 
with lower eGFR in recent-onset diabetes [16]. The present study 
detected a three-way interaction between CKD, steatosis and inflam-
mation indicating that low-grade (subclinical) inflammation orches-
trates this interorgan communication at least in persons with diabetes 
[15,36]. However, the absence of differences between carriers and 
non-carriers with respect to pro-inflammatory biomarkers in any of the 
diabetes endotypes suggest that this relationship occurs independently 
of the PNPLA3 SNP carrier status. Only in the presence of severe insulin 
resistance, the carriers of the G-allele exhibited increased circulating 
IL-6 levels, which are known to associate with higher adipose tissue 
lipolysis, which promotes hepatic lipogenesis, gluconeogenesis and in-
sulin resistance [37]. This finding supports previous observations sug-
gesting PNPLA3-induced susceptibility to hepatic steatosis is at least 
partly mediated by adipose tissue dysfunction, which might contribute 
to MASLD via excessive lipolysis and augmented flux of nonesterifed 
fatty acids to the liver [14]. Our analyses further suggest a relevant role 
for insulin resistance driving the relationship between CKD and MASLD.

One recent review proposed that the association between PNPLA3 
and progression of MASLD to fibrosis seems to predispose to the 
development of CKD [2]. It has been also postulated that the prevalence 
of impaired renal function in persons with MASLD is dependent on the 
severity of liver disease, particularly in the presence of diabetes [38]. 
Indeed, the PNPLA3 variant may have detrimental impact on eGFR even 
in middle-aged individuals with metabolic dysfunction independently of 
established risk factors and ethnicity [34]. Of note, most studies in 
adults showing the association between carriers of the G allele and CKD 
were described in Asian populations [30,31]. The present study cannot 
confirm these findings in people with short known diabetes duration and 
early MASLD, but cannot exclude a relevant role of the G allele during 
long-standing diabetes and with progression of both MASLD and CKD 
[33].

Of note, disease duration and progression are particularly important 
for future therapeutic strategies that target both liver lipid reduction as 
well as preservation of renal function in order to prevent clinical out-
comes. Among individuals with type 2 diabetes, specifically sodium 
glucose transport 2 inhibitors (SGLT2i) consistently reduce the risk for 
renal outcomes [39], but also lead to improved adipose tissue function 
and decreased HCL [40]. In the present study, only less than 5 % of the 
persons with diabetes were on SGLT2i, which did not allow further 
subgroup analysis, but unlikely affects the overall results also because of 
the relatively short observation period.

The present analysis benefits from the comparatively large size of the 
comprehensively phenotyped GDS cohort with a defined short known 
diabetes duration, which reduces confounding by chronic diabetes- 
related alterations such as - but not only limited to – hyperglycemia, 
dyslipidemia and low-grade inflammation. The GDS cohort further al-
lows to examine the novel diabetes endotypes and monitor changes 
during first 5 years of disease. This study uniquely demonstrates that 
increased HCL is associated with reduced eGFR across all diabetes 
endotypes, extending beyond the SIRD endotype. Additionally, it high-
lights the role of the G-allele in the PNPLA3 gene as a potential 
contributor to declining kidney function, independent of its direct effect 
on the relationship between HCL and eGFR. Nevertheless, the exclusion 
criteria of GDS limits the generalizability of the present data for humans 
without severe liver and kidney diseases (GFR<60 ml/min). This study 
also cannot address effects in people with severe MASLD and/or CKD. 
Finally, all study participants are of European descent, so that this study 
cannot examine the impact of ethnic disparities, e.g. regarding MASLD 

prevalence and severity, which has been reported to be highest in His-
panics and lowest in African descent [41]. Overall, the lack of effect seen 
in the individual phenotypes can be attributed to the low sample after 
subclassification.

In conclusion, presence of hepatic steatosis is associated with lower 
kidney function across different diabetes endotypes already at the onset 
of diabetes. While this association occurs independently of the PNPLA3 
polymorphism rs738409(G), there might be a detrimental role for the 
PNPLA3 gene variation in progressing CKD, occurring independently of 
diabetes endotype.

Advances in precision medicine could make targeting specific SNPs 
like rs738409 a pivotal strategy for identifying humans at higher risk for 
CKD, enabling early intervention and tailored therapies, ultimately 
improving outcomes.
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